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Abstract

In this paper we present a method for analyzing a general class of ramdom walks on the
n�cube �and certain subgraphs of it�� These walks all have the property that the transition
probabilities depend only on the level of the point the walk is at� For these walks� we derive
sharp bounds on their mixing rates� i�e�� the number of steps required to guarantee that
the resulting distribution is close to the �uniform� stationary distribution�

�� Introduction

One popular object on which to study random walks is the so	called n	cube� denoted by

Qn 
see the next section for de�nitions� In this paper we present a method for analyzing a

general class of random walks on the n	cube These walks have the property that the transition

probabilities 
only� depend on the level 
or weight� of the point the walk happens to be at�

which is why we refer to them as strati�ed walks All our walks will be reversible� and will

have uniform stationary distributions Our main goal will be to bound the rate at which the

evolving distribution converges to its stationary distribution as a function of the number of

steps taken by the walk In particular� we will illustrate the method with several speci�c

examples� giving for the �rst time sharp bounds on the mixing times of these walks

For example� one special case is the following walk on Qn nf�g 
suggested by David Aldous
�A����� From x � 
x�� � � � � xn� � Qn n f�g� choose a random pair 
i� j� of distinct indices and
move to x� � 
x��� � � � � x

�
n� where x

�
i � xi � xj 
mod ��� and x

�
k � xk� k �� i We show that

O
n logn� steps su�ce for this walk to approach its 
uniform� stationary distribution

�� Preliminaries

By the n�cube Qn� we mean the graph with vertex set V � f
x�� � � � � xn� � xi � � or ��
� � i � ng and edge set E consisting of all pairs of vertices x� y � V which di�er in exactly



one coordinate We indicate edges by writing xy � E� or x � y The weight w
x� of a vertex

x is just the number of coordinates which are equal to �

We will let p � 
p�� p�� � � � � pn��� with � � pi � �� � � i � n � �� denote the transition
probability vector which will determine our process It de�nes a walkW � which we call a p�walk

on Qn� as follows�

If the walk is currently at x � 
x�� � � � � xn� with w
x� � k then for the next step� select a

random coordinate i 
each with probability ��n�� and then move to

x� � 
x�� � � � � xi��� �� xi� xi��� � � � � xn� with probability

�
pk if xi � �

pk�� if xi � �
�

and otherwise� do nothing It is easy to see that this p	walk W is reversible� and if not all the

pk � � 
which we will henceforth assume�� the walk is aperiodic with a uniform stationary dis	

tribution The standard random walk on Qn in which you either move to a random neighbor or

stay put� all with equal probability ��
n���� corresponds to the choice p � 
 n
n�� �

n
n�� � � � � �

n
n�� �

For x� y � V � let us write x � y if xi � �� yi � �

It will be useful to write down the transition matrix Q corresponding to the p	walk W 

Thus� Q is a �n � �n matrix indexed by the x � V with Q
x� y� denoting the probability of

going from y to x in one step� and given by

Q
x� y� �

���������
��������

�
npk�� if w
x� � k � �� w
y� � k� x � y

�
npk if w
x� � k � �� w
y� � k� y � x

�� k
npk�� � �n�k�

n pk if x � y� w
x� � k

� otherwise �

�� An overview

Our plan for analyzing the p	walk W will consist of the following steps�


i� We decompose E�
n
into various invariant subspaces under the action of Q This will

result in the formation of smaller matrices P�� P�� � � � � whose eigenvalues are just the

eigenvalues of Q 
with appropriate multiplicities� Furthermore� the eigenvectors of Q

are all formed from the eigenvectors of the Pi by simple linear transformations


ii� The largest eigenvalue of Q is �� � �� which will also be an eigenvalue of P� We then

derive good estimates for the second largest eigenvalue �� of P�� by relating P� to a

random walk on a certain weighted path Gn

�




iii� We next upper bound all the other eigenvalues of the Pi� i 	 � 
most of which are

substantially smaller than ���


iv� We use hitting time arguments to show that the �central� points of Gn are always hit

fairly soon with high probability


v� We then bound the mixing time 
using either total variation or relative pointwise dis	

tance� for approaching the stationary distribution on Gn� assuming that we have started

from a central point


vi� We �nally lift the results back up to our original walk on Qn to obtain the desired mixing

time estimates for W 

Of course� to get precise answers� we must make some speci�c assumptions about p We

will do this for several particular examples� namely� when pk grows linearly in k� and when pk

grows like k�� � � � Interpolation results can then be applied to treat the more general cases

pk � O
k� and pk � O
k��� � � � We remark that our techniques also apply to the simpler

case that pk is constant However� such walks have already been well	studied in the literature


eg� see �LT���� �DGM���� so we will not discuss them here

�� Decomposing Q

Let us denote by Vk the set of
�n
k

�
vectors x � V of weight k� � � k � n We will identify

a k	element subset 
� k	set� of �n� �� f�� �� � � � � ng with a weight k vector x in the usual way�
namely

x
� fi � �n� � xi � �g


so that we can also think of Vk as the set of k	sets of �n�� It will be convenient to regard Q

as being formed from blocks� induced by the Vk in the natural way�

Q �

�
�����������	

V� � � � Vj � � � Vn

V�




Vi � � � Q�i� j� � � �




Vn



������������

Here� Q�i� j� is an
�n
i

�
by
�n
j

�
submatrix whose structure we now describe

�



De�ne Mi�j � � � i� j � n� to be the comparability matrix of the sets Vi and Vj  That is�

Mi�j is indexed by Vi and Vj � and for x � Vi� y � Vj �

Mi�j
x� y� �

��
�
� if x � y or y � x

� otherwise
�

Then it is easily seen that

Q�i� j� �

���������
��������

pk
n Mk�k�� if i � k� j � k � �

pk
n Mk���k if i � k � �� j � k
�� k

npk�� � �n�k�
n pk

�
Mk�k if i � j � k

� otherwise

�

We abbreviate�

q
k� k� �� � q
k � �� k� � pk�n

q
k� k� � �� k

n
pk�� � 
n� k�

n
pk �

Since Mk�k is just an
�n
k

�
by
�n
k

�
identity matrix� and Mk���k � M�

k�k�� 
with  denoting
transpose� then we see that Q is symmetric

Our next goal will be to separate the eigenvectors and eigenvalues of Q

To begin� suppose X � 
X�� X�� � � � � Xn�� satis�es the eigenvalue equation

QX � �X
��

where Xk is a block of X of length
�n
k

�
� and has the form

Xk � ckMk�niyk
��

for some real numbers yk and constants ck 
which will be determined shortly� De�ne

Mn ��

�
BBBBBBB�

c�Mn��

c�Mn�� �
  

�
 

cnMn�n

�
CCCCCCCA

and Y � 
y�� y�� � � � � yn�
� Thus� X �M�

nY  It follows by 
�� that

MnQM
�
nY � �MnM

�
nY �
��

�



Let us now choose the ck so that MnM
�
n � I 
an appropriate identity matrix� Hence�

c�kMnkMkn � I

which implies

ck �

�
n

k

�����
� � � k � n �

Therefore� setting

P� ��MnQM
�
n

we have by 
��

P�Y � �Y

so that the n � � eigenvalues of P� are also eigenvalues of Q In fact� if Y is an eigenvector

of P� with eigenvalue �� then X � M�
nY is an eigenvector of Q with eigenvalue � Direct

computation shows that�

P�
k� k� � �� pk�� � k
n
� pk


n� k�

n
� q
k� k�
��

P�
k� k � �� � P�
k � �� k� �
q

k � ��
n� k�

pk
n
� � � k � n �
��

and all other entries are �

Now suppose that X � is an eigenvector of Q which does not arise from those of P� in this

way Then clearly X � � kerMn For the next step� assume X
� � kerMn satis�es 
��� and has

the form

X � � 
�� X �
�� X

�
�� � � � � X

�
n��� ��

�
��

where X �
k is a block of X

� of length
�n
k

�
and has the form

X �
k � c�kMk�n��y

�
k � � � k � n � � �

for some y�k 
vectors indexed by 
n� ��	sets of �n�� and constants c�k 
which will be determined
shortly� De�ne

Mn�� ��

�
BBBBBBBBB�

�
c��Mn���� �

 
  

c�n��Mn���n��

� �

�
CCCCCCCCCA

�



and

Y � � 
�� y��� � � � � y
�
n��� ��

� �

As before� 
�� implies

Mn��QM
�
n��Y

� � �Mn��M
�
n��Y

� �
��

Now it is easily checked that

Mn���kMk�n�� �

�
n� �
k � �

�
Mn���n�� �

�
n � �
k

�
Mn���nMn�n��� � � k � n� � �
��

Hence�


c�k�
�Mn���kMk�n��y

�
k � 
c�k�

�

�
n � �
k � �

�
y�k � c�k

�
n� �
k

�
Mn���n
c

�
kMn�n��y

�
k�

� 
c�k�
�

�
n � �
k � �

�
y�k

since

c�k

�
n � �
k

�
Mn�n��y

�
k � c�kMn�kMk�n��y

�
k

� Mn�kX
�
k � �

by the assumption that X � � kerMn We now choose

c�k �

�
n� �
k � �

�����

which then gives by 
��

Mn��QM
�
n��Y

� � �Y � �
��

Consider the matrix

�P� ��Mn��QM
�
n��

which we can regard as a block matrix by deleting the �rst and last rows and columns 
which

are all zero� Then

�P�
k� k� � c�kMn���kq
k� k�c
�
kMk�n�� � q
k� k�I �

where I is an
� n
n��

� � � n
n��

�
identity matrix Since by 
���

c�kMn���kq
k� k� ��Mk�k��c
�
k��Mk���n�� �

pk
n

q
k
n� k � �� I � T

�



where Tv � � for v � kerMn�n�� Now de�ne the 
n� ��� 
n� �� matrix P� by choosing

P�
k� k� � q
k� k�

P�
k� k � �� � P�
k � �� k� �
pk
n

q
k
n� k � �� �

for � � k � n� �
In addition� if Z� � 
z�� z�� � � � � zn���� satis�es

P�Z
� � �Z�
���

and v � kerMn�n�� then

X �
k �Mk�n��vzk

de�nes an eigenvector X � � 
�� X �
�� � � � � X

�
n��� ��

� of Q in kerMn with eigenvalue � Since

dim
kerMn�n��� �

�
n

�

�
�
�
n

�

�
� n � �

then for each eigenvalue � in 
���� we can produce n � � independent eigenvectors X � for Q

with eigenvalue �

We will carry out the preceding argument repeatedly to describe all the eigenvectors and

eigenvalues of Q In general� we assume that for a �xed j� X � kerMn�j�� satis�es 
��� and

has the form

X � 
�� � � � � �� Xj� � � � � Xn�j � �� � � � � ��
��

where Xk is a block of X of length
�n
k

�
and has the form

Xk � ckMk�n�jyk � j � k � n� j �

for some yk 
vectors indexed by 
n� j�	sets of �n�� and constants ck 
which will be determined

shortly�

Note that kerMn�j�� � kerMl for l 	 n � j � �

�



De�ne

Mn�j ��

�
BBBBBBBBBBBBBBBBBBBBBB�

�
   �

�
cjMn�j�j

  

ckMn�j�k

  

� cn�jMn�j�n�j

�
 

�

�
CCCCCCCCCCCCCCCCCCCCCCA

and

Y � 
�� � � � � �� yj� � � � � yn�j � �� � � � � ��
� �

By 
�� we have

Mn�jQM
�
n�jY � �Mn�jM

�
n�jY �

It can be checked that

Mn�j�kMk�n�j �

�
n � �j

n � j � k

�
Mn�j�n�j �

X
��n�j

c���Mn�j��M��n�j
���

for n� j � k � j and for appropriate constants c���  Therefore� we have


ck�
�Mn�j�kMk�n�jyk � 
ck�

�

�
n � �j

n � j � k

�
yk �

X
��n�j

c���Mn�j��
ckM��n�jyk�

� 
ck�
�

�
n � �j

n � j � k

�
yk

since

c���

�
n � j

k

�
M��n�jyk � c���M��kMk�n�jyk

� M��kXk � �

for X � kerMn�j�� � kerM� We now specify

ck �

�
n � �j

n � j � k

�����
�

Then

Mn�jQM
�
n�jY � �Y �

�



Let

�Pj ��Mn�jQM
�
n�j

which we can regard as a block matrix by deleting the �rst and last j rows and columns 
which

are all zero� The 
k� k�	block of �Pj � for j � k � n� j� is given by

�Pj
k� k� � ckMn�j�kq
k� k�Mk�kckMk�n�j � q
k� k�I

where I is an
� n
n�j

�� � n
n�j

�
identity matrix

To compute the 
k� k� �� and 
k � �� k� blocks of �Pj � using 
��� we have

ckMn�j�kq
k� k� ��Mk�k��ck��Mk���n�j �
pk
n

q

n� j � k�
k � j � �� I � T

where Tv � � for v � kerMn�j���n�j � Now� de�ne the 
n � �j � ��� 
n � �j � �� matrix Pj
by choosing

Pj
k� k� � q
k� k�

Pj
k� k� �� � Pj
k � �� k� �
q

k � j � ��
n� j � k�

pk
n

�

for j � k � n � j

Hence� if Z � 
zj � � � � � zn�j�� satis�es

PjZ � �Z
���

and v � kerMn�j���n�j then

Xk �Mk�n�jvzk

de�nes an eigenvector X � 
�� � � � � �� Xj� � � � � Xn�j � �� � � � � �� of Q in kerMn�j�� with eigen	

value � Since

dim
kerMn�j���n�j � �

�
n

n� j

�
�
�

n

n� j � �

�

then for each eigenvalue � in 
��� we can produce
� n
n�j

�� � n
n�j��

�
independent eigenvectors X

for Q with eigenvalue �

Executing this process for � � j � �n� �� and noting that Pj has n � �j � � independent
eigenvectors� then the total number of eigenvectors of Q generated this way 
counting the n��

from P�� is just

n� � �

bn
�
cX

j��


n� �j � ��
��

n

n� j

�
�
�

n

n � j � �

��
� �n

and so we have found a complete set

�



�� The Aldous cube

We will now examine in some detail a particular example of a �	walkWA which will illustrate

more speci�cally the approach we have described This walk WA� in which xi is replaced by

xi�xj 
mod �� for a randomly chosen pair 
i� j� of distinct indices 
see the description at the

end of Section �� corresponds to the choice pk �
k

n�� � � � k � n� � Note that this is actually
a walk on the punctured cube Q�

n � Qn n f�g Thus� in this case we have

q
k� k� � �� k�n and

Pj
k� k� �� � Pj
k � �� k� �
k

n�n���

p

k � j � ��
n� k � j��


���

for j � k � n � j� and � � j � �n� �
As usual� the largest eigenvalue of P� is � We will show that any other eigenvalue �

� of P�

satis�es

�� � �� �

�n
�
���

Furthermore� all other eigenvalues of QA 
the name for the transition matrix Q in this case�

are signi�cantly smaller than this To prove 
���� we �rst de�ne

P �
� �� I � P�

where I is an n� n identity matrix Thus�

P �
�
k� k� � �� P�
k� k� �

P �
�
k� k � �� � P �

�
k � �� k� � �P�
k� k� ��

and all other entries are zero

Claim� P �
� is the 
normalized� Laplacian matrix of a weighted path Gn on a set �n� �

f�� �� � � � � ng of n vertices The degree dk of vertex k is n
n � ���nk� The edge weight wk

on the edge fk� k � �g is k
n � k�
�n
k

�
 
Thus� the loop weight at k is 
n � ��
n � k�

�n
k

�
�

This claim follows by direct veri�cation from the de�nition of the Laplacian for Gn 
see �C����

�CY��� for background material on Laplacians on graphs�

In fact� Gn is just obtained from Qn n f�g by collapsing all vertices of weight k in Qn n f�g
into the single vertex k of Gn� for � � k � n

��



Thus� for any g � �n�� R�

P �
�g
x� �

�p
dx

X
y

y�x

�
g
x�p
dx

� g
y�p
dy

�
wxy

�
�p
dx

X
y

y�x


f
x�� f
y��wxy
���

where

f
x� �� g
x��
p
dx� x � �n�

dx � n
n� ��
�
n

x

�
� x � �n�

and

wxy is the edge weight on the edge xy


Of course� for the path Gn� wxy � � unless jx� yj � �� If we denote the eigenvalues of P �
� by

� � �� � �� � �� � � � � � �n

then our �rst goal is to lower	bound �� We will do this by constructing a �nearby� weighted

path �Gn for which we can control ��� � ���
 �P�� and its corresponding eigenfunction exactly�

and then applying a comparison theorem for relating �� to ���

The weighted path �Gn will have the same vertex set �n� as Gn The degrees in �Gn are given

by

�dk �

��
�

n�
n� � ���
n� �� for k � �

n
n� ��
�n
k

�
for � � k � n

�
���


We are assuming n � �� The edge weights �wk for the edges fk� k� �g of �Gn are given by

�wk � 
k � ��
n� k�

�
n

k

�
� � � k � n � � �
���

De�ne �f � �n�� R by

�f
k� ��
�

k � �
� �

n � �
� � � k � n
���

and set

�g
k� �� �f
k�
p
dk �

��



We claim that ��� �
�
n is the smallest positive eigenvalue of the corresponding Laplacian matrix

�P� for �Gn� and that �g is its corresponding eigenvector To see this� we �rst must check 
which

is straightforward� that �f satis�es the following condition 
analogous to 
�����

�P��g
x� �
�p
dx

X
y

y�x


 �f
x�� �f
y�� �wxy �
�

n
�g
x�

for all x � �n� This can be rewritten as
�

n
�dk �f 
k� � 
 �f
k�� �f 
k� ��� �wk � 
 �f
k�� �f
k � ��� �wk��
���

for all k � �n�� where we take �w� � �wn � �

We note that the eigenvalue ��� � � of �P� has the eigenvector �g�
k� �
p
dk� k � �n� It is

easily checked that �g is orthogonal to �g� We also note from 
��� that �f is monotone 
which

will soon be needed�

Next� we argue that any eigenvalue � of �P� with an eigenfunction g for which f
k� �

g
k��
p
dk is notmonotone must satisfy � � ��� To do this� we use the following characterization

of ��� 
cf �C�����

��� � inf
h���
sup
c

n��P
k��

h
k�� h
k � ���� �wk

nP
k��

h
k�� c�� �dk

�
���

So� let us assume that � is an eigenvalue of �P� with an associated eigenvector g for which

f
k� � g
k��
q
�dk is not monotone

Claim� � � ���

Proof� De�ne

f �
k� �
kX

j��

jf
j�� f
j � ��j� k 	 � �
���

Choose c� so that

nX
k��


f �
k�� c�� �dk � � �
���

Also� choose i� so that f �
i�� � c� � f �
i� � �� 
If no such i� exists then f � and f must be

constant� which is a contradiction� Without loss of generality� we can assume that f
io� �
f
i� � �� Now� de�ne

c� � f �
i��� f
i�� �
���

��



Fact�

jf �
k�� c�j 	 jf
k�� c� � c�j for � � k � n �
���

Proof of ����� For k � i�� 
��� holds with equality by 
��� Also

f �
i� � ��� c� � f �
i�� � jf
i� � ��� f
i��j � c�

� f
i��� c� � c� � f
i� � ��� f
i��

� f
i� � ��� c� � c�

which implies 
��� for k � i� � �

Now� in general for k � i� � ��

jf �
k�� c�j �
�� jf
k�� f
k � ��j� f �
k � ��� c�

��
�

�� jf
k�� f
k � ��j� � � �� jf
i� � ��� f
i� � ��j� f �
i� � ��� c�
��

	 �� jf
k�� f
i� � ��j� f
i� � ��� c� � c�
��

	 jf
k�� c� � c�j

as required by 
��� Similarly� for k � i��

jf �
k�� c�j � jf �
k � ��� jf
k�� f
k � ��j � c�j
�

��f �
i��� c� � jf
i� � ��� f
i��j � � � � � jf
k�� f
k � ��j ��
	 jf �
i��� jf
k�� f
i��j � c�j
	 jf
i��� c� � c� � f
k�� f
i��j
� jf
k�� c� � c�j �

This proves 
���

Note that since by assumption f is not monotone� then strict equality must hold in 
���

for some k Setting c� � c� � c�� we obtain

X
k


f �
k�� c��
� �dk 	

X
k


f
k�� c��
� �dk �
���

It follows from the preceding argument that equality holds in 
��� if and only if

f �
k� � f
k�� c� � c� for all k �

��



Now� by 
��� we have

� � sup
c

n��P
k��

f
k�� f
k � ���� �wk

nP
k��

f
k�� c�� �dk

	

n��P
k��

f
k�� f
k � ���� �wk

nP
k��

f
k�� c��� �dk

�

n��P
k��

f �
k�� f �
k � ���� �wk

nP
k��

f �
k�� c��� �dk

by 
��� since f is not monotone

	 inf
h���
sup
c�

n��P
k��

h
k�� h
k � ���� �wk

nP
k��

h
k�� c��� �dk

� ��� �

This proves the Claim

Next� we claim that �P� cannot have two di�erent eigenvectors g� and g�� both orthogonal

to g� and to each other� so that the corresponding functions f�
k� � g�
k��
q
�dk and f�
k� �

g�
k��
q
�dk are both monotone

To see this� will expand our n	vectors back to N 	tuples by the mapping

f � F � 



n
�
�z �� �

f
��� � � � � f
��� � � � �


nk�z �� �
f
k�� � � � � f
k�� � � � �


nn���z �� �
f
n���


where N � �n � �� So� assume to the contrary that F� and F� are both monotone 
wlog
increasing� and

hF�� �i �
NX
k��

F�
k� � � � hF�� �i � hF�� F�i
���

where F� �� �� F� �� �� and � is the all ��s vector
It well known 
see �GKP���� that the permutation � on �N � � f�� �� � � � � Ng which maxi	

mizes
NP
i��

F�
i�F�
�
i�� is the choice � � identity on �N � Hence� by 
��� we have

NX
i��

F�
i�F�
	
i�� � � for every permutation 	 on �N � �
���

��



Therefore�

� �
NX
i��

F�
i�
NX
j��

F�
j� �
NX

i�j��

F�
i�F�
j�

�
NX
i��

NX
j��

F�
i� j�F�
i� 	
j��


where addition inside Fk is taken modulo N� which implies

NX
i��

F�
i�F�
	
i�� � � for every permutation 	 on �N � �
���

In particular� this implies

F�
��F�
�� � F�
N�F�
N� �
N��X
i��

F�
i�F�
i�

� F�
��F�
N� � F�
N�F�
�� �
N��X
i��

F�
i�F�
i�

ie�

F�
��F�
�� � F�
N�F�
N� � F�
��F�
N� � F�
N�F�
��

or


F�
N�� F�
���
F�
N�� F�
��� � � �

However� this implies either F� or F� is constant� which is impossible� and our claim is proved

As a result of the preceding remarks� we can �nally conclude that the smallest nonzero

eigenvalue ��� of �P� satis�es

��� � ��n �
���

Our next job will be to establish the following�

Comparison Lemma� Suppose P and P � are two weighted paths on �n� with degrees di and

d�i� and edge weights wi and w�
i� respectively Assume that for all i we have

di 	 �d�i� w
�
i 	 
wi �
���

Then

��� 	 �
��
���

��



where �� and �
�
� are the smallest positive eigenvalues of the associated Laplacians on P and

P �� respectively

We give a short proof for completeness 
The reader can consult �C��� for more general

versions� Let f � denote a so	called �harmonic� eigenvector of P � associated with ��� 
ie�

g�
k� � f �
k�
q
d�k is an eigenvector of P

� with eigenvalue ���� Considering the Rayleigh quotient


see 
����� we have

��� 	
P
i

f �
i�� f �
i� ����w�

iP
i

f �
i�� c���d

�
i

	
�

P
i

f �
i�� f �
i� ����wiP
i

f �
i�� c���di

	 �
��

where c� is chosen so that
P
i

f �
i��c��di � � 
thus minimizing the denominator� This proves


���

Finally� we apply 
��� with �P� and P
�
� taking the roles of P and P

�� respectively From 
���

and 
��� we �nd
�di
di
	 n� �

n� � �
wi

�wi
	 w�

�w�
�
�

�
for all i �

Therefore�

�� 	 �
�

�
n� �

n� �
�
��� �

n � �

�n
n � �� �
�

�n
�
���

This implies

�� � �� n � �

�n
n� ��
which is slightly stronger than 
���

Our next goal will be to bound all the other eigenvalues of the other Pk� k 	 � We will
do this by using the fact that any eigenvalue of a nonnegative matrix is bounded above in

absolute value by the maximum row sum of the matrix It follows from the general expressions

for Pk
i� j� at the end of Section � that the i
th row sum 	
k� i� of Pk is

	
k� i� �
�

n
n� ��
�

n� ��
n� i� � i

q

i� k � ��
n� k � i� � 
i� ��

q

i� k�
n� k � i� ��

�
���

for k � i � n� k

��



Claim�

	
k� i�� �� k

�n
�
���

Proof� Note that

i
q

i� k � ��
n� k � i� �

q
i
i� k � ��i
n� k � i�

�
s�

�i� k � �

�

���n� k

�

��
�

�

�

�i� k � ��
n� k� �

Therefore�

	
k� i� � �

n
n� ��
�

n� ��
n� i� �

�

�

�i� k � ��
n� k� �

�

�

�i� k � ��
n� k�

�

�
�

n
n� ��
�

n� ��
n� i� � 
n� k�

�
i� k

�

��

� �

n

�
n � k

�

�

which proves 
���

As a consequence� any eigenvalue ��k� of Pk � k 	 �� satis�es

j��k�j � �� k

�n
�
���

Our next job will be to bound the expected time for the walk on Gn to hit the vertex
�
n
�

�
�

given that we start at vertex � In general� let EiTi�� denote the expected number of steps it

takes to reach vertex i� �� given that we start at vertex i Then it is not hard to show 
eg�

see Aldous �A�����

EiTi�� �
�

wi

iX
j��

dj
���

which in turn implies

E�Tn�� � E�T� � E�T� � � � �� En����Tn��
���

where n�� will denote bn��c when n is odd

Claim�

E�Tn�� � �n logn for n 	 � �
���

��



Proof�

E�Tn�� �
n����X
i��

iX
j��

dj
wi

�

n
�
��X

i��

iX
j��

n
n� ���nj�
i
n� i�

�n
i

�

� n
n � ��
n
�
��X

i��

�

i
n� i�

iX
j��

�
i

n � i

�i�j

since

�n
j

�
�n
i

� � � i

n � i

�i�j
for j � i

� n
n � ��
n
�
��X

i��

�

i
n� i�

�

�� i
n�i

� n
n � ��
n
�
��X

i��

�

i
n� �i�

� �
n� ��
n
�
��X

i��

�
�

�i
�

�

n� �i
�

� �n logn �

A similar argument shows that the expected time to hit the vertex n�� starting from the

other end of Gn� namely� from the vertex n� can be bounded by the same quantity 
in fact� a

somewhat smaller quantity We omit the proof� It therefore follows that for any i � �n��

EiTn�� � �n logn �
���

A key step now will be to bound the mixing time of our p	walk assuming that we are

allowed to start from some vertex y� � Vn�� 
ie� the binary n	tuple y� has weight n��� By

symmetry� all vertices in Vn�� have the same behavior Thus� we need to bound

��TV 
s� y�� ��
X
x�V

jQs
A
y�� x�� �
x�j

� ��
s� y�� ��

�X
x�V


Qs
A
y�� x�� ��N��

��N

����

�
���

where �TV denotes the total variation distance 
but starting at y���N � �n�� and �
x� � ��N
is the uniform 
stationary� distribution on V 

Let �y� � V � R denote the characteristic function of y�� ie�

�y�
x� �

��
�
� if x � y�

� otherwise
�

��



Then we can write

�y� �
X
i

�i
y���i
���

where the �i denote orthonormal eigenfunctions forQA� and �� corresponds to the eigenvalue �

Let I� denote the operator which projects a function de�ned on V to the eigenspace generated

by ��� ie� if f �
P
i
ai�i then I�f � a��� Then

X
x


Qs
A
y�� x�� ��N�� �

X
x


�y�
Q
s
A � I���

�
x�

�

�
X
x

�y�
Q
s
A � I���

�
x�x
Q

s
A � I���

�
y�

� �y� 
Q
�s
A � I���

�
y�

�
X
i���

��si �
�
i 
y��
���

where � � �� � �� 	 � � � 	 �N�� are the eigenvalues of QA Note that

X
y�V

��i 
y� � � for all i �
���

Therefore

X
y�Vn��


��
s� y��� �
X
i���

X
y�V

��i 
y��
�s
i � N

X
i ���

��si �
���

Since X
y�Vn��


��
s� y��� �

�
n

n��

�

��
s� y���

�

then we obtain


��
s� y���
� � N� n

n��

� X
i���

��si � �pn
X
i���

��si �
���

Finally� we need to bound the right	hand side of 
���

Claim� If s 	 �n logn� cn then

��
s� y�� �
r
�

n

�
�

ec � � �
�

e�c��

����
�
���

��



Proof� By 
��� � 
���� 
��� and the remarks following 
���� we have


��
s� y���
� � �

p
n

��
�n
�
�� �

�n

��s
�

bn��cX
k��


n� �k � ��
��

n

k

�
�
�

n

k � �

���
�� k

�n

��s��
 

� �
p
n

��
�exp

�
log n� �s

�n

�
�

bn��cX
k��

exp

�
log
n� �k � �� � k logn � sk

n

���
 

� �
p
n

�
�n����e��c�� � �

n�

bn��cX
k��

e�ck

�
A

� �

n

e��c�� � 
ec � �����

which proves 
���

We now have all the ingredients necessary for our �nal estimates

If Si denotes the numbers of steps taken starting at vertex i in Gn until vertex n�� is �rst

reached then by 
���

E�Si� �� i � �n logn �

Hence�

Pr�Si 	 �i� � ���

and� more generally� for any positive integer t�

Pr�Si 	 �t� � Pr�Si 	 �tn logn� � ��t �
���

Thus� for the total variation distance �TV de�ned by

�TV 
s� �� sup
y�V

�TV 
s� y�

then by 
��� and 
��� we have

�TV 
s� � �

�t
�
�p
n

�
�

nc � � �
�

n�c��

����
if s 	 
�t� � � c�n logn �
���

This implies the simpler 
but weaker� result�

�TV 
s� � ���a�	 if s 	 an logn �
���

It may in fact be true that �TV 
s� � � for s 	 c�n logn with a �xed constant c�� as

n � � This would follow if we knew that for some �xed c�� Pr�S� 	 c�n logn� � � as

n�� 
see 
����

��



We point out that for the standard p	walk on Qn having pk � n�
n � �� for all k� the

mixing time is known 
see �DGM���� to be of the form �

n logn � cn Hence� it is impressive


to us� that the walk WA also has a mixing time of order O
n logn�� given that in this case it

is much harder to leave points of low weight

We also note that earlier preliminary results 
�DS���� �CG���� established a bound of order

O
n� logn� on the mixing time on WA

We close this section with some remarks on another common metric on probability dis	

tributions This is the relative pointwise distance �
s� of P s to its stationary distribution ��

given by

�
s� �� max
x�y�V

jP s
y� x�� �
x�j
�
x�

�

It turns out that for the walk WA on the Aldous cube� at least s � cn� steps are required to

force �
s�� � To see this� let x� � V� be a vertex of weight � Of course�

�
s� 	 jQs
A
x�� x��� �
x��j

�
x��
�

Since p� � ��
n� �� for WA� then for any distribution f �

fQA
x�� 	
�
n� �
n� �

�
f
x� �

and this implies

�xQ
s
A
x� 	

�
n� �
n� �

�s
�

Thus�

�
s� 	
����
�n � ��

�
n � �
n � �

�s
� �
���� �

This implies in particular that for s � n� log �� n� �
s� is bounded away from �

On the other hand� the following argument shows that n� is the correct order of growth

This will follow from the following fact 
which applies to the standard random walk P on any

regular weighted graph G�

Fact� The mixing time under relative pointwise distance can be at most a factor of O
logN�

times the mixing time under total variation distance 
where N � jGj�

Proof� Standard arguments 
eg� see �C���� show that

�TV 
s� � �
s� � e�s��
vol G

min
x

dx
� Ne�s�� � �

if s 	 �

��
log

N

�

���

��



where vol G ��
P
x
dx

On the other hand�

�TV 
s� � max
y
max
A�V

�����X
x�A

P s
y� x�� �
x�

�����
	 sup

f
max
A�V

�����X
x�A


fP s
x�� �
x��

�����
over all initial probability distributions f  Let us choose fT���� � c��� where T is the

diagonal matrix of degrees dx� �� is an eigenfunction corresponding to the eigenvalue ��� and

c�� �
P
x
j��T ���
x�j Then

�TV 
s� 	 c��
X
x

jfP s
x�� �
x�j

	 c��
X
x

j
�� ���
s��T

���
x�j

� c��
�� ���
s
X
x

j��T ���
x�j

� 
�� ���
s �

This shows that �TV 
s� is bounded away from � for any s � c����� c� a �xed constant This�

together with 
���� completes the proof

Applying 
��� to the Aldous cube walk� where �� 	 ���n� we get

�
s� � e�c�� if s 	 �n� log � � cn �

which shows that c�n� is the correct order of growth for the mixing time under relative pointwise

distance It would be interesting to know what the correct coe�cient of n� is� and whether

this walk exhibits a cut	o� phenomenon 
cf �DGM����

�� Slower walks

We now describe what happens when our p	walk has pk growing like k
� for some � � �

Speci�cally� we will assume that

pk �

�
k � �

n� �

��
� � � k � n
���

where � � � is arbitrary but �xed Note that in contrast to the Aldous cube situation� p� � ��

so all �n points participate in the walk Since the argument follows the preceding procedure

rather closely� we will only hint at the proofs� pointing out di�erences along the way The

bottom line is given by the following result

��



Theorem� For each � � �� there is a constant c
�� depending on �� so that for the p�walk

on Qn given by ����� we have

�TV 
s�� � as n� �
���

provided s 	 c
��n� log n�

Note that this result is slightly stronger than the corresponding result 
��� for 
what is

essentially� � � � The basic reason for this di�erence arises from the fact that
�P
k��

k��

converges for � � � but diverges for � � �

Proof discussion� The proof of 
��� proceeds just like that of 
��� The corresponding

transition matrix �Q is decomposed into matrices �P�� �P�� � � � � �Pn�� As before� �P
�
� � I � �P� is

the Laplacian on a weighted path �Gn� this time on the vertex set f�� �� � � � � ng The degrees
and edge weights are now given by

dk � n
n� ��
�
n

k

�

wk � 
n� k�
n� ��pk
�
n

k

�
�

As before� the eigenvalues of �Q are just the eigenvalues of �P�� �P�� � � � � �Pn��� with those of �Pk

having multiplicity
�n
k

� � � n
k��

�
 We upper bound the eigenvalues of �P� using a comparison

theorem for a �nearby� weighted path �G�
n � which has

�dk �

��
�

n��n���
n�� for k � �

n
n� ��
�n
k

�
for � � k � n

and

�wk � 
k � ��
n� k�

�
n

k

�
for � � k � n �


The di�erence arises because of the additional vertex � in �Gn� It can be checked that with

�f 
k� �
�

k � �
� �

n � �
�

the function �g
k� � �f
k�
q
�dk� ��� k � n� is an eigenvector of �P �

� � I � �P� for the eigenvector

��� � ��n 
which is the smallest positive eigenvalue of �P
�
�� The Comparison Lemma then

implies

��� 	 �

�n

��




where ��� denotes the smallest positive eigenvalue of �P
�
�� With some e�ort� it can be shown

that the maximum row sum rk of �Pk � k 	 �� satis�es

rk � �� k � �
n

�
k

n � �

�n


thus upper	bounding any eigenvalue of �Pk� This is now enough to be able to show that for

y � Vn���

��
y� s� � �

ec � �
if s � �n� logn� cn�� n � n�
��


corresponding to 
���� The �nal calculation is that of estimating E�Tn�� and EnTn��� the

expected times of hitting n�� starting from either end of �Gn 
the larger of which upper bounds

EiTn�� for any i� This yields

EiTn�� � c�
��n
�� n 	 n�
��� � � i � n �

These results together then combine to give 
���

We remark in closing that it is not hard to derive interpolation results for our walks The

thrust of such results imply that if � � pk � p��k � p�k � � for all k� then the p
��	walk will mix

at least as rapidly as the slower of the p	walk and the p�	walk on Qn This implies for example

that if k�n � pk � �� k 	 �� then the mixing time of the p	walk on Qn is still O
n logn�

��
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