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THE IMPACT ON OPTION PRICING OF SPECIFICATION ERROR
*

IN THE UNDERLYING STOCK PRICE RETURNS

Robert C. Merton

I. Introduction

In an earlier paper,— I briefly discussed the problem of

errors in option pricing due to a misspecification of the stochastic

process generating the underlying stock's returns. While there are many

ways in which a specification error can be introduced, the particular

form chosen in that paper was to compare the option prices arrived at

by an investor who believes that the distribution of the unanticipated

returns of the underlying stock is lognormal and hence that he can use

2/
the classic Black-Scholes pricing formula — with the "correct" option

prices if the true process for the underlying stock is a mixture of a log-

normal process and a jump process. This is a particularly important case

because the nature of the error is not just one of magnitude, but indeed

the qualitative characteristics of the two processes are fundamentally

different. In this paper, I examine the nature and magnitude of the error

in a quantitative fashion using simulations. Before discussing the

simulations, it is necessary to briefly summarize the option pricing results

deduced in the earlier paper.

At the heart of the derivation of the Black-Scholes option pricing

formula is the arbitrage technique by which investors can follow a dynamic

portfolio strategy using the stock and riskless borrowing to' exactly repro-

duce the return structure of an option. By following this strategy in com-

bination with a short position in an option, the investor can eliminate all

risk from the total position, and hence to avoid arbitrage opportunities,

the option must be priced such that the return to the total position
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must equal the rate of interest. However, for this arbitrage technique to

be carried out, investors must be able to revise their portfolios fre-

quently and the underlying stock price returns must follow a stochastic

process that generates a continuous sample path. In effect, this require-

ment implies that over a short interval of time, the stock price cannot

change by much.

In my earlier paper I derived an option pricing formula when the

sample path of the underlying stock returns does not satisfy the continuity

property. In particular, it was assumed that the stock price dynamics can

be written as a combination of two types of changes: (1) the "normal" vibra-

tions in price, for examples, due to a temporary imbalance between supply

and demand, changes in capitalization rates, changes in the economic

outlook, or other new information that causes marginal changes in the

stock's value. This component is modeled by a standard geometric

Brownian motion with a constant variance per unit time and it has a

continuous sample path. In general, any continuous diffusion process

would work equally well. (2) The "abnormal" vibrations in price are due

to the arrival of important new information about the stock that has more

than a marginal effect on price. Typically, such information will be

specific to the firm or possibly its industry although occasionally

general economic information could be the source. It is assumed that

this important information arrives only at discrete points in time, and

it is reasonable to expect that (ex-post) there will be "active" periods

for the stock when such information arrives and "quiet" periods when it does

not although (ex-ante) the "active" and "quiet" periods are random. This

component is modeled by a "jump" process with an inherently noncontinuous

sample path reflecting the non-marginal impact of information. The proto-

3/
type for the jump component is a "Poisson-driven" process.—
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If S(t) denotes the stock, price at time t, then the posited stock

price dynamics can be written as a stochastic differential equation: namely,

dS/S = (a - Ak)dt + adZ + dq (1)

2
where a is the instantaneous expected return on the stock; a is the instan-

taneous variance of the return, conditional on no arrivals of important new

information; dZ is a standard Gauss-Wiener process; q(t) is the Poisson

process where dq and dZ are assumed to be independent; X is the mean number

of arrivals of important new information per unit time; k = e(Y - 1) where

(Y - 1) is the random variable percentage change in the stock price if the Poisson

event occurs; e is the expectation operator over the random variable Y.

Using these assumptions about the stock price dynamics, I derived

a formula for the option price which like the Black-Scholes formula does

not depend on either investors' preferences or knowledge of the expected

4/
return on the stock.— However, unlike the Black-Scholes formula, it cannot

be derived by using the Black-Scholes arbitrage technique because in this

case, the return structure of an option cannot be exactly reproduced by a

dynamic portfolio strategy using the stock and riskless borrowing. To derive

the formula, it was necessary to make the further strong assumption that

the jump component of the underlying stock's return represented nonsystematic

or diversifiable risk and therefore all of the stock's systematic or non-

diversifiable risk was contained within the continuous component. Because the

variations in the option's return caused by the continuous component in the

underlying stock's return can be replicated by a dynamic portfolio strategy

in the stock, it is possible to form a hedge position in the option, stock,

and riskless asset whose only source of stochastic variation is the jump

component. Therefore, all of the stochastic part of the return to this

position would represent nonsystematic or diversifiable risk. Hence, in

equilibrium, the option must be priced such t^at the expected return to this
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hedge position equals the interest rate. The resulting formula for the

option price can be written as—

F(S,T) = E ^^^^I^ [e {W(SX e-^^TT;E,a2,r)}] (2)On • n

where W is the standard Black-Scholes option pricing formula given by

W(S,T;E,a^,r) = S$(d^) - Ee"'^'^$(d2) (3)

2
and $ is the cumulative normal distribution function; d, = [log(S/E) + (r+a /2)t]/

a/x; d„ = d^ - a/r; E is the exercise price of the option; T is the length

of time to maturity, and r is the interest rate. X is a random variable' n

with the same distribution as the product of n independently and identically

distributed random variables, each identically distributed to the random vari-

able Y, where it is understood that X^ = 1. £ is defined to be the expecta-
' On

tion operator over the distribution of X .

The number of shares of stock to be held long to hedge against the

continuous component of the risk associated with the sale of one option, N ,

is equal to d¥/dS which is obtained by differentiating formula (2) with

respect to S.

Within this framework, I now turn to the substantive problem of this

paper; namely: suppose an investor believes that the stock price dynamics

follows a continuous sample-path process with a constant variance per unit time,

and therefore he uses the standard Black-Scholes formula (3) to appraise

the option when the true process for the stock price is described by (1)

.

How will the investor's appraised value, call it F (S,t), based on this

misspecified process for the stock, compare with the F(S,t) value based on

the correct process?
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To make the simulations feasible and to make clearer the nature

of the misspecification, it is further assiomed that Y is lognormally dis-

2
tributed with the variance of Y equal to 6 and the expected value of Y

equal to one. Given the investor's incorrect belief about the stock process,

it would be natural for him to estimate the variance by using the past

time series of the logarithmic returns on the stock.

Define the random variable p.(h) to be the logarithmic return

on the stock taken around its mean over the time interval from t + (j-l)h

to t + jh where j takes on positive integer values and h is the length of

the time interval. The investor's belief about the process is that the

{p.(h)} are independently and identically distributed which is in agreement

with the true process. However, the investor believes that for all j

p^(h) ^ iv\]^^h. (4)

2
where V is the constant variance per unit time of p.; Z. is a standard

normal random variable; and "'^" means "has the same distribution as" while

the true distribution satisfies

Pj(h) '^ [q.(h)6^ + a\]^^h. (5)

where q.(h) is a Poisson-distributed random variable with parameter Ah.

It is the difference between (4) and (5) that is responsible for

the error in pricing. However, before discussing the nature and magnitude

of the pricing error, it will be helpful to briefly examine the impact of

the misspecification on the variance estimation problem.
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II. On the Estimation of the Variance Rate

Even when all the assumptions required to use the Black-Scholes

option formula are satisfied, it is necessary to know the variance of

the logarithmic return on the stock to use the formula. Since the vari-

ance rate is not a directly-observable variable, it must be estimated, and

indeed option theory has induced a growing interest among both academics and

practitioners in variance estimation as a problem area onto itself. While

this is well known, it is not always recognized that the appropriate formula

is itself affected when the variance rate must be estimated even when the

Black-Scholes assumptions are satisfied. While a complete discussion of

this point is outside the range of this paper, an examination of the impact

of the specification error on the estimation problem will cast some light

on this other problem.

If the logarithmic returns on the stock satisfy equation (4) then

we have that

e[P?(h)] = v\ for all j (6a)

and

Var[P?(h)] = 2v\^ for all j (6b).

If, on the other hand, the logarithmic returns on the stock satisfy

equation (5) , then we have that

e[P?(h)] = (X6^ + a^)h for all j (7a)

and

Var[pJ(h)] = 3X6^ + 2[X5^-Kj^]\^

for all j (7b)
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Let g denote the estimated variance per unit time for the

true process using the time series of the stock returns over the past total

time period of length T with n observations. If h is the length of time

between observations, then h must satisfy nh = T, and g will satisfy

g = il.l^ p^^(h)}/T (8).

Let g^ denote the estimated variance per unit time if the stock returns

satisfy equation (4).

From the definition of g and (6) , we have that

and

Var[g^] = 2vVt (9b),

From (8) and (7), we have that

e[g] = [A6^ + a^] (lOa)

and

Var [g] = {3X6^ + 2h[A6^ + a^]^}/T (lOb)

Although the investor described in the previous section believes

that the process satisfies (4) and therefore, that his estimator satisfies

(9), he does use the actual time series generated by (5), and hence

2 _ 2 2
V = A6 + a . I.e., his estimate of the variance will be an unbiased

estimate of the variance per unit time of the true process.
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While the expected values of the estimates in both cases are

the same, independent of h or T, their stochastic properties are not. Con-

sider the following experiment: hold the length of the total time period,

T, fixed, but increase the number of observations by subdividing the time

interval between observations (i.e., let h get smaller). For example, fix

the past history to be one year: if we look at quarterly price changes,

then h = 1/4 and n = 4. Now look at the monthly price changes during the

past year, then h = 1/12 and n = 12. Continuing, look at the daily price

changes, then h = 1/270 and n = 270. If the underlying stock process satis-

fied (4), then the variance of the estimate would satisfy (9b), and as h -> 0,

2
the sample estimate would approach the true value V exactly. I.e., by

subdividing a fixed time period into small enough subintervals, one can get

as accurate an estimate of the true variance rate as one wants. Indeed, if

one could continuously monitor price changes such that p.(h) > dp. and

2 2
h > dt, then from (6a), we have that (dp.) = V dt, and from (6b), we have

that Var[(dp.) ]
= 2V (dt) . Hence, we have the well known result for Ito

Processes, that the instantaneous square of the change is nonstochastic with

probability one.

However, if the underlying stock process satisfies (5), then the

variance of the estimate will satisfy (10b), and even when h -> 0, this

4
variance will approach 3A6 /T, a finite number. Hence, although there will

be a reduction in the variance of the estimate as more observations are gen-

erated by further subdividing the interval, the magnitude of the estimation

2 2
error will be of the same order as the estimate unless a > > A6 j i.e.,

unless most of the variation in returns is due to the continuous component.
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What is the significance of this difference in the estimator

properties for the two processes? After all, it is easy to see that if

we had chosen to increase the number of observations by increasing the

total time period, T, rather than by subdividing the interval between ob-

servations, then from (9b) and (10b), the estimation error in both cases

tends to zero like 1/T.

The answer comes in two parts: first, if indeed we have a very

long past history of price changes (so that large values for T are possible)

and if the parameters of the process are truly constant over this long past

history, then for a fixed number of observations, it is better to use the

whole past history to estimate the parameters for the jump process while it

is a matter of indifference for the smooth process. I.e., in the former case,

number of observations is not a sufficient statistic for degree of accuracy

while in the latter case it is. Note: this difference is solely due to

differences in the types of processes and not to lack of independence between

observations, since in both cases each observation is independently and

identically distributed. In effect, estimating the expected return on a

stock generated by (5) to within a specified accuracy requires no longer a

past history than to estimate its variance with the same accuracy. On the other

hand, to estimate the expected return on a stock generated by (4) will

require a substantially longer past history than is necessary to estimate its

variance with the same accuracy.

Second, since the assumption that the parameters of either process

are constants over long periods of time is not consistent with empirical

evidence, the ability to estimate the variance accurately by using only a
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limited past history is a very important property. For example, suppose

that we knew that the parameters of the processes changed each year, but

were constant during the year. Suppose the change takes place on January

1 and it is now July 1 and one wanted to evaluate a six-month option. If

the underlying stock process satisfied (4), then one could use the past

six months of price changes and by subdividing the time interval between

observations obtain a very accurate estimate of the variance to substitute

in the option pricing formula. However, if the underlying stock process

satisfied (5), then by subdividing the time interval, one cannot improve the

estimate for the jump component. While this example is unrealistic, the same

principle will apply generally if the parameters are specified to be

"slowly-changing" over time. Indeed, many practitioneers who use the Black-

Scholes option formula estimate the variance by using a relatively short length of

past history (e.g., six months) and a short time between observations (e.g., daily)

because they believe that the variance parameter does not remain constant

over longer periods of time. Along these lines, if is of interest to note

that if investors believe that the underlying process for the stock does not

have jumps, then they may be led to the inference that the parameters of the

process are not constant when indeed they are.

For example, suppose that they observe the price changes over a

fixed time period but with a large number of observations so that they

believe that they have a very accurate estimate for each time period's

variance. If the true process for the stock is given by (5), then con-

ditional on m jumps having occurred during the observation period , the

{p.(h)} will be normally distributed with
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e[g|Zq. = m] = [a^ + m6^/T]

= V^ + 6^(m - Xt)/T (11)

If h is very close to zero, then from (9b), the investor will believe that

the observed g is very close to the true value for the variance rate. Hence,

if one time period was an (ex post) "active" one for the stock (i.e., m > XT)

and if a second time period was an (ex post) quiet period (i.e., m < AT), then

the investor would conclude that the variance rate on the "perceived" process

is not constant. Moreover, there would appear to be a "regression" effect

in the variance from period to period with the regression toward the "long-

2
run" variance, V .

Also depending on the length of each of the time periods, T, the

degree of "perceived" nonstationarity in the variance rate will be different.

Consider the experiment where we keep the number of observations per time

period fixed, but vary the length of the time period (i.e., we keep h/T

fixed). If the true process for the stock were smooth, then from (9b), the

variance of the estimate is always the same. However, if the true process

for the stock satisfies (5) » then the variance of the estimate is given

by (10b) in which case, it is affected by the choice for T. In particular,

the smaller is T, the larger is the variance of the estimate. Therefore, the

estimates of the weekly variance rate will be more variable than for the

monthly variance rate, and the monthly variance rate estimates will be more

variable than for the annual variance rate.

Having at least explored some of the errors in variance estimation

induced by a misspecification of the underlying stock price process, we

now turn to the main purpose of the paper which is to examine the impact
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on option pricing. For this purpose, it will be assumed that the investor

has available a long enough past history of stock prices so that his esti-

mate is the true, unconditional variance per unit time of the process:

2 _ 2 2
namely, V = A6 + a .

III. Pattern and Magnitude of the Errors in Option Pricing

In this section, we examine the magnitude of the error in pricing

2
if an investor uses V as his estimate of the variance rate in the

standard Black-Scholes formula (3) when the "true" solution is given by

formula (2). Define the variable, for n = 0, 1, 2, . . .,

2 2
t = a T + n6 .

n

Let N be a Poisson-distributed random variable with parameter (Ax) and define

t to be a random variable that takes on the value t when the random
n

variable N takes on the value n. Let "e" denote the expectation operator

over the distribution of t. The expected value of t can be written as

t 5 e(t)

2 2
= (a + A6 )t

= V^T (12)

Define W'(S,t) = W(S,t;1, 1, 0) where W is given by formula (3). I have

shown thatr- for the assumed distribution for Y, the value of the option

given by (2) can be rewritten as

-Xt,., .n

F(S,T) = Ee " Z
" -^ P^^W'(X,t) (13)
n=U n! n
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where X = S/E exp(-rT) is the current stock price denominated in units of

the present value of the exercise price. Clearly, (13) can be rewritten

as

F(S,T) = Ee"'^'^e{W'(X,t)} (13')

Similarly, I have also shown that the investor's incorrect appraisal can

be written as

F^(S,T) 5 Ee"'''^ W'(X,t) (14)
e

If W'(X,t) were a convex function of t, then at least the sign

of the difference between the true value and the investor's incorrect appraisal

would be determinate. Unfortunately, it is not. Indeed, for some stock price

parameter value combinations, the incorrect appraisal is too high and for

others, it is too low. Hence, to determine the sign and magnitude of the

error, it is necessary to do simulations over an appropriate range of

parameter values.

For maximum effectiveness, it is necessary to determine a minimum

number of parameters required to specify the error value. This minimum number

was found to be four. While the particular four chosen are not unique, I

attempted to choose ones with the greatest intuitive appeal. The four

parameters are defined as follows:

X E S/E exp(-rT) (15a)

T E t (15b)

Y E u'^llo^ + X6^] (15c)

V E Xx/t (15d),
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As previously discussed, X is simply the current stock price measured

in units of the present value of the exercise price rather than current

dollars. T is the expected variance of the logarithmic return on the stock

over the life of the option, and can be thought of as a kind of maturity

measure for the option where time is measured in variability units rather

than calendar time, y is the fraction of the total expected variance in

the stock's return caused by the jump component of the return, and as such,

is one measure of the degree of misspecification of the underlying stock re-

turn process. Thus, if y = 0> then the true process is the continuous process

and there is no specification error. If y = 1> then the true process is a

pure jump process with no continuous component, and in this respect the misspeci-

fication is maximal. V is equal to the ratio of the expected number of jumps

over the life of the option to the maturity measure T. Hence, it is a measure

of the frequency of jumps per unit time where time is scaled in variability

units. V is also a measure of the degree of misspecification. To see this,

2
consider the following: hold A6 fixed and let X,the expected number of jumps

per unit time, become large. I.e., the frequency of jumps becomes very large

while the variance of the change for each jump becomes very small. The limit

of this process is a continuous process with a corresponding normal distribution.

Hence, for a fixed value of y(^0) > as we increase v, the true process approaches

a pure continuous process and the misspecification disappears.

From the definitions in (15), we have that

t = (1 - y)T + ny/v

5 = y/v

Xt = VT ,

7/
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and substituting into (13) , we can rewrite the option pricing formula as

f(X,T;Y,v) = Z. „ ^—-P^ W'(X,(1 -Y)T + ny/v)
n—u n:

= e{W'(X,(l - y)T + ny/v)} (16)

where f E F(S,t)/E exp(-rt) is the option price denominated in units of the

present value of the exercise price and "e" is the expectation operator over

a Poisson-distributed random variable n with parameter (vT) . Similarly,

we can rewrite the investor's incorrect appraisal, (14), as

fjX,T) E W'(X,T) (17)

where f E F /E exp(-rT) is the appraisal value denominated in units of the

present value of the exercise price rather than dollars.

Figure 1. plots the dollar difference between the correct option

value and the incorrect appraisal, f - f , versus the standardized stock

price, X. As was suggested in a qualitative discussion of the problem [ 3 ],

the incorrect appraisal gives too low a value for deep in-or out-of-the-

money options, and it gives too high a value for options whose underlying

stock price is around the exercise price. For each set of parameter values,

there are two stock prices for which the correct and appraised values coin-

cide. In Tables (la) - (Id), the values of these "crossover" stock prices

are given along with the midpoint value between the crossover points plus or

minus the range. Thus, for the range of stock prices between these two

values, the incorrect option appraisal value will be too high.
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Further inspection of Figure 1 shows that there are three extreme

points In the dollar error: two points represent local maxima corresponding

to the largest positive discrepancies between the correct and incorrect ap-

praised value; and one local minimum corresponding to the largest negative

discrepancy. Tables (2a) - (2d) provide a listing of the stock prices

8 /
corresponding to these three extreme points.— In general, the largest-in-

magnitude dollar error occurs at the middle point which is the negative dis-

crepancy point.

Rather than examine the magnitudes of the dollar discrepancies, I

prefer to look at the percentage error. While this choice is somewhat

arbitrary, I believe that it is generally a better statistic. Moreover, by

looking at the percentage error as measured by [f - f ]/f , the reader

who is probably more familiar with the standard Black-Scholes values, can

easily convert back to dollar differences by multiplying the values pre-

sented here by the Black-Scholes formula value. Figure 2 plots the per-

centage error versus stock price. As in Figure 1, positive values correspond

to the correct option price being larger than the incorrect appraised value.

There are two local extreme points in the percentage error: one iS the

absolute largest percentage overestimate of option price (i.e., the largest-

in-magnitude, negative percentage) and the other is the largest positive

percentage error for in-the-money options. Note: there is no local maximum

for percentage error in out-of-the money options: the error becomes larger

and larger as the option becomes more out-of-the-money. A warning to

practitioners who use the Black-Scholes formula and measure "overvaluedness"

in percentage terms: deep out-of-the-money options which are greatly "over-

valued" in percentage terms may not be overvalued at all if the underlying





£
o
o

o
C

a.

c
o

c

« ?
i UJ

_^
c

t

*<^ O
I—» O





oo
LTl O O
O O D
>o O ^

X 3 >0
f\) O vC
vD O >0

f^ O X)
r^ O <»

in o CO

o o o
ro o d-
J^ o o

CO o —

<

J- Ot\)

o -^ -« O -< -4 O -^ M O -^ (\J O -^ (\l

—» O f>^

in o o
J- O LD

o -< rvj

in

or»\0 rvjn^ vO'^j- o^vorvioooo o>^(\j v*-^m oruLTi
OOlT) ^00(^ LDOJ* 4-0-*
o —• —

«

4- on
O —« -4 o —• -« O -4 \J O -* V

lTI -* o
fVJ <* -<
-1- O vO

O —* \J





oo
r^OLD ooo \Cof*» -<ofvj
—«orvi r^ O -t ^or~ —«o—

•

h-o.* vDOvO inooo Lno-<
I*- O O (\J o >
^0 O -1- "O O O
<f on >* o IT)

o -< — o -< -« O r-< <—

«

rvj o -< (\J O —. CM

r>





o
o

^ <:s —* "> o >
rvj o -» —< o f^

'^





o





- 17 -

stock process includes jumps.

Tables (3a) - (3d) give the stock price for which the incorrect

Black-Scholes formula gives the largest percentage overestimate of the option

price and underneath each stock price is the actual percentage error. A

dotted line within the table separates those parameter combinations result-

ing in percentage errors larger than five percent.

As inspection of these tables verify, the magnitude of the percentage

error increases as either y increases or V decreases which is consistent

with earlier discussion of how these parameters measure the degree of mis-

specification. Moreover, the magnitude of error decreases with increasing

T. In effect, the impact of the specification error is less as T increases

because for longer periods of time the distributions of the stock price

generated by either jump or continuous processes tend to converge to

one another.

What I did find rather surprising is the general level of the

magnitudes of the errors. For the smallest frequency value examined (v = 5),

the percentage of the variation caused by the jump component, Y> had to exceed

forty percent before an error of more than five percent could be generated.

Indeed, this magnitude error only occurred at the shortest maturity period

(T = .05). Moreover, for higher frequency values, the combination of high

Y and small T required to violate the five percent level was even more pro-

nounced.

To give the reader some feel for the range of parameter values

simulated, consider that y was taken between .10 and 1.00 which is essentially

its full range since smaller values than .10 for y will produce even smaller

errors. In taking X between .05 and .30, I have covered nine-month options





Table 3a

Maximum Percentage Overestimate

of Option Price Using B-S Model:

Stock Price and Percentage Error

(Dotted Line Denotes > 5% Error Region)

JUMH FJ^eoUENCY v = 5,

> = y = 0.10 0.25 0.^0 0.50 0.75 1.00

O.Ob 0.898 0.894 | 0.894 0.897 0.915 1,000
-0.6026 -3.3410 I -7.8810 -11.8^50 -25.1344 -53.7471

I

O.lu 0.H62 0.861 0.864
-0.3238 -1.8998 -4.6791

O.ib 0.835 0.835 0.839
-0.2228 -1.3362 -3.3427

0.869 0.893 1.000
|-7.2o37 -16.3082 -38.7656

0.845 0.874 1.000
-i.1923 -11.9991 -29.4940

O.e^Q 0.«13 0.812 0.8l7 0.823
|

0.856 1.000
-0.1711 -1.0361 -2.6105 -H.0689 '-9. 4506 -23.1573

0.2b 0.792 0.791 0.797 0.804 ' 0.83tt 1.000
-0.1395 -0.8495 -2.1486 -3.3535 1-7.7826 -18.6090

I

0.30 0.773 0.773 0.778 0.785 ' 0.819 I.OOO
-0.1180 -0.7222 -1.8309 -2.8596 -6.6162 -15.2494





Table 3b

Maximum Percentage Overestimate

of Option Price Using B-S Model:

Stock Price and Percentage Error

[(f - y/fj

(Dotted Line Denotes > 5% Error Region)

JUMP FREQUENCY v = lo.

1 = Y

0.05

o.iu

0.15

0.30

0.10 0.25 0.40 0.50 0.75 l.Qo

0.902 0.900 0.903
-n.3196 -1.8750 -4.61bb

0.907 0.y2<* 1.000
-7. 1127 -16.129:> -38.<»699

0.866 0.866 0.669 0.874
-0.1670 -1.0109 -2.5482 -3.9746

0.838 0.837 0.842 0.847
-0.1139 -0.6969 -1.7679 -2.7638

0.897 1.000
-9.2613 -22.9271

0.872 1.000
-6. '212 -15.0055

0.815 0.814 0.618 0.823 0.848
-0.0870 -0«5347 -1.3599 -2.1268 -4.9096

0.796 0.794 0.797 0.802 0.825
-0.0709 -0.4357 -1.1097 -1.7352 -3.983^

0.775 0.774 0.778 0.782 0.804
-0.0595 -0.3684 -0.9395 -1.4691 -3.360^

1

1.000
riO.5151

1.000
-7.7948

0.919
-6.1770





1





Table 3d

Maximum Percentage Overestimate

of Option Price Using B-S Model:

Stock Price and Percentage Error

[(f - f^)/f ]
e e

(Dotted Line Denotes > 5% Error Region)

JUMP Fi^EQUENCY v = ^0.

T = Y = 0.10 O.'db 0.^0 0.50 0.75 1,00
I

O.Ob 0.905 0.905 O.S»07 0.909 0.923| 1.000
-0.0^39 -0.5154 -1.3120 -2.0534 -4,75811-10.3139

J.lJ 0.870 0.868 0.870 0.872 0.882 0.915
-0.0430 -0.2654 -0.6771 "1.0592 -2.4201 -4.3838

y.i5 0.842 0,840 0.84i 0.843 0.850 0.868
-0.0290 -0.1798 -o.<^594 "0.7185 -l,633i -2.9544

0.2c 0.819 0.816 0.8i7 0.818 0.825 0.838
-0.0223 -0.1370 -0.3499 -0.5471 -1.2402 -2,2376

U.2S 0.596 0.796 0.796 0.797 0.802 0.814
0.0000 -0.1110 -0.2636 -0.4435 -1.0034 -1.8051

0.3u 0.564 0.778 0.777 0.778 0.782 0.792
0.0000 -0.0936 -0.2394 -0.3742 -0.8457 -1,5180





- 18 -

with annual variance rates ranging between .07 and .40; six-month options

with annual variance rates between .10 and .60; three-month options with

annual variance rates between .20 and 1.20. The values for v start at V - 5.

For a stock with an annual variance rate of .30, this corresponds to an ex-

pected number of jumps per month of less than 1.5. Larger values of v produce

smaller errors.

While similar tables were constructed for the largest percentage

underestimate by the incorrect Black-Scholes formula for in-the-money

options, they are not presented here because the magnitude of the error

is always smaller than for the corresponding parameter values in Tables

(3a) - (3d), and indeed the largest error in the whole sample was only

2.32 percent.

Finally, Tables (4a) - (4d) give the percentage error when the

stock price, X, equals .5. These tables demonstrate the enormous per-

centage errors possible with deep out-of-the-money options.

In summary, the effect of specification error in the underlying

stock returns on option prices will generally be rather small particularly

when one realizes that the values given in the tables are maximums. How-

ever, there are some important exceptions: short-maturity options or options

on stocks with low total variance rates can have significant discrepancies

particularly if a significant fraction of the total variability comes

from the jump component and the frequency of such jumps is small. In addi-

tion, deep out-of-the-money options can have very large percentage errors.

Moreover, any situation where the V value is significantly less than five

or where the T value is less than .05 should be examined with care.





Table 4a

Percentage Underestimate of Option Price

Using B-S Model at Stock Price Equal

to .5 of Present Value of Exercise Price

[(f - f^)/fj

(Dotted Line denotes > 5% Error Region)

JUMP FfREQUENCY V = 5.

Y
1





Table 4b

Percentage Underestimate of Option Price

Using B-S Model at Stock Price Equal

to .5 of Present Value of Exercise Price

[(f - V/^e^

(Dotted Line denotes > 5% Error Region)

JUMP FREQUENCY v = 10.

Y = 0.10 0,2b 0.^0 O.bO 0.75 1.00
T =

I

I

O.Ob
]

?9.4b8 19B.319 51^.271 796.329 l70iJ.^52 2847, 0S6

O.iO 3.342 ! 20.042 48.B13 73,425 147.285 2iJ9,930

U.ib 0.958 1 5,775 14.374 22.087 47.097 76,287

0.2i; 0.374 2.273
J

5.762 9.014 20.492 35.300

0.25 0.167 1.018 2.617 4.15^ ' 9.999 18.489
I

0.3c 0.078 0.472 1.227 1.974 ' 5.041 10.115
i

(





Table 4c

Percentage Underestimate of Option Price

Using B-S Model at Stock Price Equal

to .5 of Present Value of Exercise Price

[(f - fe)/fe^

(Dotted Line Denotes > 5% Error Region)

JUMP FR€QUE^4CY V = 20.

Y = 0.10 0.25 0.^0 0.50 0.75 1,00
1 = I

O.Ob
j

13.964 91.89b 239.405 374.003 824.065 1416.418
— — — — — ^1

O.lo 1.686 ; 10.307 25.611 39.052 81.320 132.029

0.15 0.487 2.985
|

7.525 11.652 25,489 43.174

0.2C 0.190 1.171 2.986 4.673
; 10.655 19.019

— — —
-J

0.25 0.084 0.523 1.344 2.121 4.995
| 9.372

0.31; 0.040 0.243 0.627 0.996 2.418 4.775





Table 4d

Percentage Underestimate of Option Price

Using B-S Model at Stock Price Equal

to .5 of Present Value of Exercise Price

Kf - y/fj
(Dotted Line Denotes > 5% Error Region)

JUMP FSEQUENCY v = 'O.

y = 0.10 o.^5 o#^o 0.50 0.75 i.oo
f =

.

I

O.Ob • 6.758 ^3,690 113.519 177.978 398.74'» 699.001
I

O.lO 0.B46 ,' 5.233 13.179 20.306 43.650 73.i70— —" — — — ——' — —

I

0.15 0.245 1.517 3.853 I 5.^93 13. 32<i ^3.209

0.2C 0.095 0.593 1.51/ 2.374 | _5^^01 ^^l^^O

0.25 0.042 0.264 0.680 1.069 2.470 4.574

O.JO 0.020 0,123 0.315 0.497 1.167 2.216





1/

3/

4/

5/

8/

FOOTNOTES

Given at the meeting of the American Economic Association and the
American Finance Association, Dallas, Texas, December 1975. The
author is Professor of Finance, Massachusetts Institute of Technology.
I thank J. Ingersoll for programming the simulations and general
scientific assistance, and F. Black and M. Scholes for helpful dis-
cussions. Aid from the National Science Foundation is gratefully
acknowledged

.

See section 4., titled "A possible answer to an empirical puzzle" in

Merton [3].

2/— See Black and Scholes [1],

For a more complete description and references to the mathematics of the
stochastic processes used in this section, see Merton [3].

See section 3 of Merton [3] for a derivation of the formula, especially
formula (16).

Merton [3, equation (16)].

— See Merton [3], especially formula (19) and footnote 13.

— This is essentially a valid application of the Central Limit Theorem.
For discussion in this context, see Cox and Ross [2].

Since these three stock prices correspond to points where the derivative
of (f - f ) with respect to X equals zero, they also correspond to

points where the respective hedge ratios, N = 8f/3X, and Ng = 3f /SX
are equal. Thus, at these stock prices, the number of shares required
to hedge against the option risk using the incorrect specification is

equal to the correct number. Although not presented, in general, the
error in the hedge ratio using the incorrect specification is not large
over the range of parameters simulated.
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