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Abstract

Friedman ������ has proposed a regularization technique �RDA� of discriminant anal�
ysis in the Gaussian framework� RDA makes use of two regularization parameters to
design an intermediate classi	cation rule between linear and quadratic discriminant
analysis� In this paper
 we propose an alternative approach to design classi	cation
rules which have also a median position between linear and quadratic discriminant
analysis� Our approach is based on the reparametrization of the covariance matrix
�k of a group Gk in terms of its eigenvalue decomposition
 �k � �kDkAkD

�
k where

�k speci	es the volume of Gk
 Ak its shape
 and Dk its orientation� Variations on
constraints concerning �k� Ak and Dk lead to � discrimination models of interest�
For each model
 we derived the maximum likelihood parameter estimates and our ap�
proach consists in selecting the model among the � possible models by minimizing
the sample�based estimate of future misclassi	cation risk by cross�validation� Nu�
merical experiments show favorable behavior of this approach as compared to RDA�

Keywords� Gaussian Classi�cation� Regularization� Eigenvalue Decomposition� Max�

imum Likelihood�

� Introduction

The basic problem in discriminant analysis is to assign an unknown subject to one
of K groups G�� � � � � GK on the basis of a multivariate observation x � �x�� ���� xd�

�



d denoting the number of variables� The assignment function is generally designed
to minimize the expected overall error rate and consists in assigning a measurement
vector x to the group Gk such that

k � arg max
��j�K

�jfj�x�� �����

�



�k denoting the a priori probability of belonging to group Gk and fk�x� denoting
the group conditional density of x� �� � k � K�� Discriminant analysis models
di�er essentially by their assumptions on the group conditional densities fk�x�
 �k �
�� � � � �K�� The most often applied model
 the linear discriminant analysis �LDA�
assumed that the group conditional distributions are d�variate normal distributions
with mean vectors �k and identical variance matrix �� When the variance matrices
�k are not assumed to be equal
 the model is called quadratic discriminant analysis
�QDA�� The parameters �k and �k are usually unknown and must be estimated
from a training set consisting in �xi� zi�� i � �� � � � � n� where xi is the vector�valued
measurement and zi is the group of subject i� The parameters are generally chosen
to maximize the likelihood of the training sample� Its lead to the plug�in estimates

��k � �xk �

P
i�zi�k xi

nk
� k � �� � � � �K� �����

where nk �
Pn

i�� Ifzi � kg� And
 for LDA


�� � S �

PK
k��

P
i�zi�k�xi � �xk��xi � �xk��

n
� �����

or
 for QDA


��k � Sk �

P
i�zi���xi � �xk��xi � �xk��

nk
�k � �� � � � �K�� ����

Regularization became an important subject of investigation in discriminant analysis
since in many cases the size n of the training data set is small in regard to the num�
ber d of variables �see McLachlan �����
 and standard methods such as QDA or even
LDA can have a disappointing behavior in such cases� Generally
 regularization tech�
niques for discriminant analysis make use of real valued regularization parameters�
For instance
 one of the most employed regularization technique
 the Regularized
Discriminant Analysis �RDA� of Friedman ������ specify the value of a complexity
parameter and of a shrinkage parameter to design an intermediate classi	cation rule
between linear and quadratic discriminant analysis� RDA performs well but do not
provide easy interpretable classi	cation rules�
In this paper
 we propose an alternative approach to design regularized classi	cation
rules in the Gaussian framework� Following Ban	led and Raftery ������ and Flury et

al� �����
 our approach is based on the reparametrization of the covariance matrix
�k of a group Gk in terms of its eigenvalue decomposition

�k � �kDkAkD
�
k �����

where �k � j�kj��d�Dk is the matrix of eigenvectors of �k and Ak is a diagonal
matrix
 such that jAkj � �
 with the normalized eigenvalues of �k on the diagonal
in a decreasing order� The parameter �k determines the volume of group Gk
 Dk its
orientation and Ak its shape� By allowing some but not all of these quantities to vary
between groups
 we obtain parsimonious and easily interpreted Gaussian discriminant
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models� Variations on assumptions on the parameters �k�Dk and Ak �� � k � K�
lead to � general models of interest� For instance
 we can assume di�erent volumes
and keep the shapes and orientations equal by requiring that Ak � A �A unknown�
and Dk � D �D unknown� for k � �� � � � �K� We denote this model ��kDAD���
With this convention
 writing �for instance� ��DkAD

�
k� means that we consider a

discriminant model with equal volumes
 equal shapes and di�erent orientations�
Moreover � other families of situation are of interest� The 	rst one consists in
assuming that the variance matrices �k are diagonal matrices� In the considered
parametrization
 it means that the orientation matrices Dk are permutation matri�
ces� Since
 in such a case
 it does not seem that variations on the shape matrices are
of any interest
 we write �k � �kBk where Bk is a diagonal matrix with jBkj � ��
This particular parametrization gives rise to  models ���B�� ��kB�� ��Bk� and ��kBk���
The second family of models consists in shrinking discriminant models by assuming
spherical shapes
 namely Ak � I
 I denoting the identity matrix� In such a case
 two
parsimonious models are in competition� ��I� and ��kI�� Finally
 we get � di�erent
discriminant models�

The method
 that we propose and that we called EDRDA �Eigenvalue Decomposition
Regularized Discriminant Analysis�
 consists in selecting the m�l� estimated model
among the � above mentioned models which minimizes the sample�based estimate
of future misclassi	cation risk by cross�validation�

Remark �� The main motivation of EDRDA is to provide a regularized classi	cation
rule easily interpreted
 since it can be analyzed from the volumes
 the shapes and the
orientations of the groups�

Remark �� Our selection procedure �the cross�validated error rate� has been proved to
provide good performances for selecting models in discriminant analysis �e�g� Fried�
man ������

Remark �� EDRDS generalizes the approach of Flury et al� ����� which analyzed
the performance of models ��DAD��� ��kDAD��� ��kDAkD

��� and ��kDkAkD
�
k� and sug�

gested to choose among di�erent models with the cross�validated error rate�

Remark 	� AS for RDA �see Section ��
 it often happens that several models provide
the same cross�validated error rate� In such cases
 we investigated
 in the following
numerical experiments
 two strategies� the 	rst one consists in selecting the most par�
simonious model �parsimonious strategy� and the second one in selecting the most
complex model �complex strategy�� This point is discussed further in the comments
of Section  and in Section ��

In Section �
 we sketch RDA since this method can be regarded as a reference method
of regularization in discriminant analysis� In Section �
 for each of the � above men�
tioned models from which the EDRDA classi	cation rule is designed
 we give the
formulas for maximum likelihood �m�l�� estimation� In Section 
 we compare RDA
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and EDRDA on the basis of Monte Carlo simulations and a short discussion section
ends this paper�

� Regularized Discriminant Analysis

The regularized discriminant analysis of Friedman ������ makes use of a complexity

parameter � and of a shrinkage parameter � in the following way� RDA replaces the
plug�in estimator ���� of �k with

��k��� �� � �� � ����k��� �
�

d
tr���k����I� �����

where

��k��� �
��� ��Sk � �S

��� ��nk � �n
�����

�
Thus � �� � � � �� controls the amount the Sk are shrunk towards S
 while �
�� � � � �� controls the shrinkage of the eigenvalues towards equality as tr���k����	p
is equal to the average of the eigenvalues of ��k����

The parameters in ����� and ����� are chosen to minimize jointly the cross�validated
error rate� Friedman proceeds in the following way� A grid of candidate ��� ���
pair is 	rst selected on the unit square� The cross�validation is then employed to
obtain a �nearly� unbiased estimate of the overall error rate for the discriminant rule
associated with each ��� ���pair on the grid� Then
 RDA chooses the point ��� ��
with the smallest estimated error rate�
A characteristic of the RDA approach
 pointed out by Rayens and Greene ������
 is
that the optimal value of the cross�validated error rate rarely occurs at a single point
of the grid
 but for a large range of values of ��� ��� The RDA procedure resolve ties
by selecting 	rst the points with the largest value of � �parsimonious principle�
 and
then the point with the largest value of � �shrinking principle��
RDA provides a fairly rich class of regularization alternatives� Holding � 	xed at �
and varying � produces models between QDA and LDA� While
 holding � 	xed at �
and increasing � attempts to unbias the sample�based eigenvalues estimates� Holding
� 	xed at � and increasing � gives rise to the ridge�regression analog for LDA� The
reported experiments in Friedman ������ showed that RDA performs well in many
circumstances as compared with LDA and QDA�

However
 the resulting classi	cation rule can have no clear interpretation especially
when both parameters are far from the boundaries of ��� ��� ��� ���

� Maximum likelihood estimation of the models

Table � summarizes some features of the � models considered by EDRDA� In this
table
 the 	rst column speci	es the model� The second column gives the number of





Table �� Some characteristics of the � models� We have � � Kd � K � � and

 � d�d���

� � CF means that the m�l� estimates are closed form
 IP means that the m�l�
estimation needs an iterative procedure�

model number of parameters m�l� est�
��DAD�� � � 
 CF
��kDAD�� �� 
 �K � � IP
��DAkD

�� �� 
 � �K � ���d � �� IP
��kDAkD

�� � � 
 � �K � ��d IP
��DkAD

�
k� � �K
 � �K � ��d CF

��kDkAD
�
k� ��K
 � �K � ���d � �� IP

��DkAkD
�
k� � �K
 � �K � �� CF

��kDkAkD
�
k� ��K
 CF

��B� �� d CF
��kB� � � d�K � � IP
��Bk� ��Kd �K � � CF
��kBk� � �Kd CF

��I� � � � CF
��kI� ��K CF

parameters to be estimated� The third column indicates if the m�l� estimates can be
achieved with closed form formulas �CF� or if there is the need to make use of an
iterative procedure �IP��
For each model
 the m�l� estimation of the group mean vectors ��k
 k � �� � � � �K� is

��k � �xk �

P
i�zi�k xi

nk
�����

where nk � �Gk in the learning sample�

The m�l� estimation of the variance matrices of the groups depends on the model
at hand� In some cases
 it leads to closed form formulas but most of the time there
is a need to use an iterative procedure to derive m�l� estimates� And
 in some cir�
cumstances
 especially for models assuming di�erent shape group variance matrices

designing these algorithms need some e�ort� In this section
 we do not provide details
on the m�l� calculations
 since those details appear in a paper of Celeux and Govaert
����� where the same models were considered in a cluster analysis context� In the
following
 we only give the formulas of m�l� estimators of the variance matrices for
the � models� First
 we need to de	ne some matrices� The within group scattering
matrix W

W �
KX
k��

X
i�zi�k

�xi � �xk��xi � �xk�
� �����

�



and
 the scattering matrix Wk of group Gk �� � k � K�

Wk �
X

i�zi��

�xi � �xk��xi � �xk�
�� �k � �� � � � �K�� ������

Model ��DAD��� This is the classical linear discriminant analysis model� This model
is obtained with � � � and � � � in the RDA scheme� The common variance matrix
� is estimated by

�� �
W

n
�

Model ��kDAD��� In this situation
 it is convenient to write �k � �kC with
C � DAD�� This model has been considered and called the proportional covari�

ance matrices model by Flury ������� The estimation of the �k�s and C need an
iterative procedure�

� As the matrixC is kept 	xed
 the �k�s are solution of the equations �� � k � K�

�k �
tr�WkC

���

dnk
�

� As the volumes �k�s are kept 	xed
 the matrix C maximizing the likelihood is

C �

PK
k��

�
�k
Wk

jPK
k��

�
�k
Wkj �d

�

Model ��DAkD
��� In this situation and in the next one
 there is no interest to

assume that the terms of the diagonal matrices Ak are in decreasing order� Thus
for the models ��DAkD

�� and ��kDAkD
�� we do not assume that the diagonal terms

of Ak are in decreasing order� The m�l� estimates of ��D and �Ak� k � �� � � � �K�
are derived using an iterative method
 that we describe hereunder
 and by a direct
calculation of �


� �

PK
k�� tr�DA

��
k D�Wk�

nd
�

� For 	xed D
 compute

Ak �
diag�D�WkD�

jdiag�D�WkD�j �d
where diag�M� denotes the diagonal matrix which has the same diagonal as the
matrix M �

� For 	xed A�� � � � � AK
 D is obtained using an adaptation of an algorithm of
Flury and Gautschi �������
Starting from an initial solution D � �d�� � � � �dd�
 for any couple ���m��� ��
m� � f�� � � � � dg
 the couple �d��dm� is replaced with ���� �m� where �� and �m
are orthonormal vectors
 linear combination of d� and dm
 such that

�� � �d��dm�q� and �m � �d��dm�q�

�



where q� and q� are two orthonormal vectors of R� with q� is the eigenvector
associated to the smallest eigenvalue of the matrix

PK
k���

�
a�
k

� �
am
k

�Zk with Zk �

�d��dm��Wk�d��dm��
This algorithm is repeated until it produces no increase of the likelihood�

Model ��kDAkD
��� In this situation
 it is convenient to write �k � DAkD

� where
jAkj � j�kj� This model has been considered and called the common principal com�

ponents model by Flury ������ The algorithm for deriving the m�l� estimates of
D�A�� � � � � AK� is similar to the previous one�

� For 	xed D
 we get

Ak �
�

nk
diag�D�WkD��

� For 	xed A�� � � � � AK
 D is obtained using the same procedure as described for
model ��DAkD

���

Model ��DkAD
�
k�� Considering for k � �� � � � �K the eigenvalue decomposition Wk �

Lk�kL
�

k of the symmetric de	nite positive matrix Wk with the eigenvalues in the
diagonal matrix �k in decreasing order
 we get

Dk � Lk k � �� � � � �K�

A �

PK
k�� �k

jPK
k���kj �d

and

� �
jPK

k���kj �d
n

�

Model ��kDkAD
�
k�� We use again the eigenvalue decomposition Wk � Lk�k �L

�
k�

Parameters �k�Dk and A are solutions of the equations
 to be solved iteratively


�k �
tr�WkDkA

��D
�

k�

dnk
�� � k � K�

Dk � Lk �� � k � K�

and

A �

PK
k��

�
�k
�k

jPK
k��

�
�k
�kj �d

�

Model ��DkAkD
�
k�� In this situation
 it is convenient to write �k � �Ck where

Ck � DkAkD
�
k� We get

Ck �
Wk

jWkj �d
�� � k � K��

and

� �

PK
k�� jWkj �d

n
�

�



Model ��kDkAkD
�
k�� This is the most general situation corresponding to ordinary

quadratic discriminant analysis� This model is obtained with � � � and � � � in the
RDA scheme� The m�l� estimates of variance matrices �k are

��k �
�

nk
Wk�

We now present the m�l� estimates for models with diagonal variance matrices� For
this more parsimonious family of models
 the eigenvectors of �k �� � k � K� are
the vectors generating the basis associated to the d variables �Dk � Jk�� If the Jk
are equal
 the variable are independent� If the Jk are di�erent
 the variables are
independent conditionally to the groups to be classi	ed�

Model ��B�� In this situation
 we get

B �
diag�W �

jdiag�W �j �d
and

� �
jdiag�W �j �d

n
�

Model ��kB�� In this situation
 the m�l� estimates are derived from the following
iterative procedure�

� As the matrix B is kept 	xed
 the �k�s are

�k �
tr�WkB

���

dnk
�� � k � K��

� As the volumes �k�s are kept 	xed
 the matrix B is

B �
diag

�PK
k��

�
�k
Wk

�

jdiag
�PK

k��
�
�k
Wk

�
j �d
�

Model ��Bk�� In this situation
 we get

Bk �
diag�Wk�

jdiag�Wk�j �d
�� � k � K�

and

� �

PK
k�� jdiag�Wk�j �d

n
�

Model ��kBk�� In this situation
 we get

Bk �
diag�Wk�

jdiag�Wk�j �d
�� � k � K�

�



and

�k �
jdiag�Wk�j �d

nk
�� � k � K��

We consider now models for which the variance matrices are spherical� Two situations
have to be considered� �k � �I and �k � �kI
 I denoting the �d�d� identity matrix�
We derive the m�l� estimations of the volumes of the groups for these models�

Model ��I�� This model is obtained with � � � and � � � in the RDA scheme� It
has been called the nearest�means classi�er by Friedman ������� In this situation

we get

� �
tr�W �

nd
�

Model ��kI�� In this situation
 we get

�k �
tr�Wk�

dnk
�

� Numerical experiments

We now present Monte Carlo simulations to compare RDA and EDRDA� We essen�
tially used the same simulation scheme as Friedman ������� We called D��D� the
simulated data structures for dimensions d � � and d � �� and sample size n � ��
For each data structure D��D�
 we randomly generated ��� replications and we ran
RDA and EDRDA� The data structures are respectively corresponding to Tables ���
of Friedman�s paper� Roughly speaking
 D� provides spherical groups with di�erent
volumes and means� D� and D� provide ellipsoidal groups with same shapes and
orientations
 with poorly separated means for D� and well separated means for D��
D and D� provide unequal ellipsoidal groups with equal means for D and di�er�
ent means for D�� More precisely the simulated distribution parameters were the
following�

D�

����������
���������

��� � ��� �� �� � � � � ��
��� � ��� �� �� � � � � ��
��� � ��� �� � � � � � ��

�� � I
�� � �I
�� � �I

It can be remarked that data set D� can be related to models ��kI�
 ��kB�
 and
��kDAD���

The variances matrices for data sets D� and D� are identical� They are the same for
each group and diagonal
 with general diagonal term

aj � ���j � ��	�d � �� � ���� � � j � d�

�



For D�
 the group mean vectors are

��� � ��� � � � � ��

��j � ���
q
aj	d

d� j

d	� � �
� � � j � d

��j � ����j��j � � � j � d�

For D�
 the group mean vectors are

��� � ��� � � � � ��

��j � ���
q
aj	d

j � �

d	� � �
� � � j � d

��j � ����j��j � � � j � d�

Data set D� and D� are related to models ��B� and ��DADt��

The variance matrices for data sets D and D� are identical� They are diagonal but
di�erent for each group� For the group G�
 the general diagonal term is

a�j � ���j � ��	�d � �� � ���� � � j � d�

For group G�
 it is

a�j � ���d� j�	�d � �� � ���� � � j � d�

And
 for group G�
 it is

a�j � ���j � �d� ��	��	�d � ����� � � j � d�

The group mean vectors are equal for D and are for D�

�� � ��� � � � � ��

��j � �	
p
d� j � �� � � � � d

��j � ����j��j j � �� � � � � d�

Data sets D and D� are related to models ��kBk� and ��kDAkD
���

As Friedman
 for each simulated data set
 we used an additional test sample of size
��� to obtain an estimate of the compared classi	cation rules� The experiments
results are summarized in Tables ���� Tables � and � gives the means error rates and
�into parentheses� the standard deviations of the error rates� Table  displays the
mean values of the complexity ��� and the shrinkage ��� parameters of RDA with
their respective standard deviations into parentheses� Tables ��� give the frequencies
of the selected model by EDRDA among the � models in competition for the two
strategies �parsimonious and complex� and the two dimension �d � � and d � ����
The main points arising from these experiments are the following�
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Table �� Mean error rates on the test sample for RDA and EDRDA
 using the
parsimonious strategy �par� or the complex strategy �com� for the dimension d � ��

d � � error rate�RDA� error rate�EDRDA��par error rate�EDRDA��com
D� ���������� �������� ����������
D� ���������� ���������� ����������
D� ����������� ���������� ����������
D� ���������� ���������� ����������
D� ����������� ��������� ���������

Table �� Mean error rates on the test sample for RDA and EDRDA
 using the
parsimonious strategy �par� or the complex strategy �com� for the dimension d � ���

d � �� error rate�RDA� error rate�EDRDA��par error rate�EDRDA��com
D� ���������� ���������� ����������
D� ���������� ��������� ����������
D� �������� ���������� ����������
D� ���������� ���������� ���������
D� ��������� ���������� ����������

Table � Mean values of the complexity parameter � and of the shrinking parameter
� for RDA�

d � � d � ��
D� � � ������������ � � ����������

� � ����������� � � ���������
D� � � ���������� � � ����������

� � ���������� � � ����������
D� � � ��������� � � ����������

� � ���������� � � ����������
D� � � ����������� � � ����������

� � ���������� � � ���������
D� � � ���������� � � �����������

� � ���������� � � ����������

��



Table �� Frequencies of the selected model for EDRDA using the parsimonious strat�
egy �d � ���

Model D� D� D� D� D�

��DADt� � �  � �
��kDADt� �� � � � �
��DAkD

t� � � � � �
��kDAkD

t� �  � �� �
��DkAD

t
k� � � � � �

��kDkAD
t
k�  � � � �

��DkAkD
t
k� � � � � �

��kDkAkD
t
k� � � � � �

��I� �� � � � �
��kI� � � �� � �
��B� � �� �� � �
��kB� � � � � �
��Bk� � �� � � ��
��kBk� � � �  ��

Table �� Frequencies of the selected model for EDRDA using the complex strategy
�d � ���

Model D� D� D� D� D�

��DADt�  �� �� � �
��kDADt� �� � �� � �
��DAkD

t� � � � � �
��kDAkD

t� � �� �� �� ��
��DkAD

t
k� � � � � �

��kDkAD
t
k� � � � � ��

��DkAkD
t
k� � � �  ��

��kDkAkD
t
k� � � � � ��

��I� � � � � �
��kI� � � � � �
��B� � �� � � �
��kB� � �� �� � �
��Bk� � �� �� �� �
��kBk� � � � � �

��



Table �� Frequencies of the selected model for EDRDA using the parsimonious strat�
egy �d � ����

Model D� D� D� D� D�

��DADt� � � � � �
��kDADt�  � � � �
��DAkD

t� � � � � �
��kDAkD

t� � � � � �
��DkAD

t
k� � � � � �

��kDkAD
t
k� � � � � �

��DkAkD
t
k� � � � � �

��DkAkD
t
k� � � � � �

��I�  � �� � �
��kI� �� � � � �
��B� � �  � �
��kB� � � �� � �
��Bk� � � � � ��
��kBk� � � � � �

Table �� Frequencies of the selected model for EDRDA using the complex strategy
�d � ����

Model D� D� D� D� D�

��DADt� �  � � �
��kDADt� �� � � � �
��DAkD

t� �   �� ��
��kDAkD

t� � �� � � ��
��DkAD

t
k� � � � � �

��kDkAD
t
k� � � � � �

��DkAkD
t
k� � � � � �

��kDkAkD
t
k� � � � � �

��I� � �  � �
��kI� � � �� � �
��B� �� �� �� � �
��kB� � � �� � �
��Bk� � � �� � �
��kBk� � � � �� �

��



� In most cases EDRDA outperforms RDA �see Tables � and ��� The only case
where RDA do signi	catively better is D with d � ��� In this case
 where
group means are equal
 it seems that the shriking parameter � of RDA plays
an important role as it appears from Table � Indeed
 RDA could outperform
EDRDA when shrinking is an important factor
 since EDRDA do not propose
many shrinking models� But quite generally
 EDRDA performs favorably as
compared with RDA�

� Not surprisingly
 the complex strategy �resp� the parsimonious strategy� of
EDRDA tends to provide smaller error rates for d � � �resp� d � ���� But

for d � � the advantage of the complex strategy is not so marked
 and
 on
the contrary
 the advantage of the parsimonious strategy can be important for
d � ���

� From Tables � and �
 it appears that the parsimonious strategy of EDRDA
selected reasonable models among the � possible models� However
 and not
surprisingly
 this strategy has a tendency to select too simple models especially
when the groups are well separated� In such cases
 the criterion of selecting the
model
 namely the cross�validated error rate
 can indicate that simpler models
provide a quit performing classi	cation rule �as for data set D� with d � �

where the model ��B� is preferred to the model ��kD�� �

� From Tables � and �
 it appears that the complex strategy can select reasonable
models �see for instance the selected model for D� with d � ���
 but it can give
also some disconcerting choices
 as the model ��kDAkD

�� for the data set D�
with d � � or the models ��kB� and ��Bk� for the data set D� with d � ���

� As a consequence
 the parsimonious strategy can be preferred to the complex
strategy� It gives often better error rates and moreover
 it provides more realistic
or reliable models in most cases�

� Discussion

We have proposed a regularization approach
 EDRDA
 for Gaussian discriminant
analysis based on the eigenvalue decomposition of the group variance matrices� One
of the main interest of this approach is to provide a clear classi	cation rule� The
reported numerical experiments show that EDRDA can be expected to perform as
least as well as RDA by producing a more user friendly classi	cation rule� Moreover

in our opinion
 the usefulness of EDRDA is not reduced to a small sample size setup
and can provide quite performing classi	cation rules where LDA and QDA give poor
error rates�
We have proposed two strategies �a parsimonious one and a complex one� to solve
the problem of tied models in a context of Monte Carlo numerical experiments� And

from those experiments
 it appears that the parsimonious strategy can be preferred�
But
 we think that a better solution when models give close cross�validated error
rates is to suggest to the user to choose one of the models in competition from its

�



own point of view� It is one of the interest of EDRDA to allow users to select a
reasonable and good performing model from simple geometrical interpretations�
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