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Nonhomogeneity Analysis Using Borrowed Strength 
Carey E. PRIEBE 

This article develops a "borrowed strength" methodology for estimating local probability densities in a random field. Under a 
piecewise stationarity condition similarities between the densities in different regions of the field can be exploited by estimating 
a global mixture density and imposing the parameter-space support of this borrowed strength estimate on the local estimation 
problems. The local estimates are then used in an analysis of the homogeneity of the field, which is shown to benefit from the 
method of borrowing strength. 

KEY WORDS: Change detection; Maximum likelihood; Mixture model; Multiple comparison; Profile likelihood; Random field. 

1. INTRODUCTION 

Given a random field ((x), it is often reasonable to con- 
sider the domain of definition of this field to be a union of 
disjoint subregions of homogeneity. Under such an assump- 
tion, one can test for homogeneity of the field by estimating 
the regional characteristics and comparing them in a tra- 
ditional multiple comparisons framework. For instance, in 
image processing one may consider ((x): RO -> X, where 
RO is an M1 x M2 lattice of pixel locations and the value of 
a field observation represents pixel intensity. Assuming for 
simplicity that the image is made up of two disjoint regions 
RO = R1 U R2 with associated probability density functions 
((x) - a(() for x C Ri, the question of interest can be 
posed as 

Ho: Homogeneity (a1 a= G2) 

versus (1) 

H1: Nonhomogeneity (a 1 7 Ce2). 

That is, the image is made up entirely of pixels drawn 
from a single process (Ho) or composed of two disparate 
regions (H1). (The application then entails the inference 
that nonhomogeneity warrants further investigation; for in- 
stance, that regions with statistical characteristics differing 
from the norm should be the subject of additional attention 
or more sophisticated, potentially computationally intensive 
processing.) In this case, given probability density estimates 
& Y and & 2, large values of a statistic T = d(&l, &2) for 
some distance d defined on the space of probability densi- 
ties under consideration will indicate nonhomogeneity. This 
same scenario can be adapted to almost any image or signal 
processing application whenever the fundamental question 
being addressed is one of field homogeneity. 

This article seeks to address two issues pertaining to tests 
of the type described in (1). Although these two issues may 
at first glance appear unrelated, they in fact come together 
in the practice of nonhomogeneity analysis, as we demon- 
strate. 

Carey E. Priebe is Assistant Professor, Department of Mathematical 
Sciences, The Johns Hopkins University, Baltimore, MD 21218. This work 
was partially supported by Office of Naval Research grants N00014-95-1- 
0777 and R&T 4424314. The author is grateful to an associate editor and 
a referee for many useful suggestions and to David J. Marchette, George 
W. Rogers, and Edward J. Wegman for helpful discussions and support. 

First, can the estimates used in the statistic T be im- 
proved on under the assumption that there are fundamental 
similarities in the regional characteristics, even under the al- 
ternative hypothesis? We show the answer to this question 
to be "yes" when the &e have certain characteristics in com- 
mon. In particular, when the ai are finite mixture models 
whose underlying mixture components are invariant across 
the entire field domain RI in terms of their location in pa- 
rameter space, the local mixture probability density func- 
tions differ only in their mixing coefficients. A "borrowed 
strength" estimate that exploits this invariance by using all 
of the observed data to develop an estimate of the invariant 
parameters and imposing this estimate as a constraint on 
the estimation of the local ai can produce superior local 
estimates and hence a superior test for homogeneity. 

The second aspect of the nonhomogeneity analysis ad- 
dressed herein concerns a more realistic setup for a test 
of homogeneity for random fields. Because there is sel- 
dom prior knowledge of the location of the local regions 
of interest Rt, it is necessary to introduce a regional struc- 
ture on RI and test for homogeneity under this structure. 
Let RO - URi (i 1,... ), where the Ri are (possi- 
bly overlapping) neighborhoods. For instance, in the inves- 
tigation of scan statistics (Cressie 1993, pp. 312-313), one 
often considers E balls, in which case RT = B(r, E) { fx E 
R?: Iix -r i-l < c} for -r C RO and E > 0. The statistic to be 
used is then identified as T = maxt,,G(l. d(ai, Ia), and 
the test is defined as 

Ho: Homogeneity (ai V i, j) 

versus (2) 

H1: Nonhomogeneity (Hi, j such that ai 7 aJ). 

On observing ., .. . ., (z from each region Rf, the goal is 
to determine whether there are anomalous regions in the 
field or whether the r populations are identical (the field is 
homogeneous). 

These two issues are considered together, as they can be 
seen to give rise to a trade-off. The lack of knowledge of the 
location of potential subregions of nonhomogeneity neces- 
sitates that the second version of nonhomogeneity analysis 
be adopted and that the regions Ri be chosen to be rel- 
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atively small compared to the anticipated size of the true 
but unknown Ri. This in turn implies that the number of 
observations per region is small and hence the estimates 
&i (i = 1 ... I r) will have relatively large variance. There- 
fore, any improvement in these estimates that can be gained 
by borrowing strength will be potentially significant. Fur- 
thermore, because the Rk are necessarily smaller in their 
spatial extent than the nonhomogeneities anticipated, there 
likely will be numerous regions Rk completely contained 
within a given Rf and hence having the same statistical 
characteristics. This implies that there will be information 
relevant to the estimation of a^i in at least some of the re- 
gions Ri for j + i, and the assumption that borrowing 
strength can improve the local estimations is reasonable. 

2. FORMULATION 

2.1 Problem Statement 

Let RO C Rn be the domain of definition of a random 
field ((x): RO -> RIm and consider RO = UR' (i = 1, ... . r), 
where the r disjoint, connected regions Ri have each as- 
sociated with them random variables ((x), x c Ri As- 
sume that the observations from region Ri are identically 
distributed with common marginal density ai (a); that is, 
each Ri is a subregion of homogeneity and ((x) - i(() 
for x X RU. R0 can be termed piecewise stationary in the 
sense of being r stationary random fields ( embedded via 
((x) = 1 VJ{m(X)=i}, where '{m(x)=i} is the indica- 
tor function for an embedding field m(x) taking on the 
values 1,... r. This approach has been used by, for in- 
stance, Carlstein and Lele (1994). In the simplest case, the 
goal is to perform the test of the hypothesis of homogene- 
ity in (2). If this test is to be performed without choosing 
a specific type of nonhomogeneity in the alternative, then 
it is necessary to develop estimates di for each i and re- 
ject the null hypothesis of homogeneity for large values of 
T = maxi,j(l,...,j) d(&o, di). 

2.2 Borrowed Strength Methodology 

The fundamental assumption made regarding the densi- 
ties a i() is that they are finite mixture models. We assume 
that cei (() = ce ((; Oi) = ce ((; i, A') is a mixture of mi 
component densities C((; -y). That is, 

mi 

0i () = Z C((; ni) 
t=1 

where 

O' = (pi a A') =( 7r 7 ) 

Furthermore, we assume that m' = m and (-y7 ... , ayt) 

= +t = +? = (70 . ... 7mO) for all i. Thus 

m 

<>,(( =((;oi =((;f ) i)= Z rriC((; yt); (3) 
t=l1 

that is, for univariate normal mixtures, we have -a = (,A, vi) 
and 

m 

- Z7r'L9((;/AO,7bt.) (4) 
t=1 

4,0(,u = v?t,. .0 . /Uto I t) is common to all of the densities 
a&, , and the difference between the densities is encompassed 
entirely in the mixing coefficients Ai- (i,... ,7r? ). The 
maximum likelihood performance exhibited in Section 3 
for our proposed methodology is valid whenever the com- 
ponent family is an exponential family, the 'to are distinct, 
and 7rt > 0 for all i, t. 

Let the collection of all observations in the field be 
0 = , where = J j 1 ,.. ,n7 represents - o = u-i where E~~~~~- 

the observations from region Ri. 

Borrowed Strength Methodology 

1. Introduce a regional structure on RO; RO = URk (i = 

1, ... . , 
2. Obtain the borrowed strength estimate 4? of 40 for 

the entire random field RO using all the observations -n. 
3. Obtain the estimate At of Ai for each region Ri, us- 

ing the local observations E ' and the borrowed strength 
estimate +7? of ?0. 

4. Large values of 

T( = ( d o 
, di (m a x j 

,je(I ,......0 

indicate nonhomogeneity. 
We make the claim that using the statistic T thus ob- 

tained in the test for nonhomogeneity (2) yields an improve- 
ment over the analogous conventionally estimated statistic, 
particularly when the estimates are obtained via maximum 
likelihood. 

For the examples presented in Section 3, the inte- 
grated squared error (ISE) ISE(di, di) = f (di(~) - 

&J ( ))2de is used as the measure of distance, although there 
are numerous other possible choices. 

2.3 Investigation Under Independence 

Consider the case of independent observations. When 
each region Ri has the same density, given by a((; 0), the 
joint likelihood is given by 

r n't no3 

LJ(0) = 1 1 a(i; 0) a (e a) 
i=1 j=1 j=1 

and when the possibly unique parameter vector for each 
region Ri is given by Oi, this joint likelihood is given by 

r n" 

LJ(011 ... ., or) = I| 1 aI o(C; 49i) (6) 
i=1 j=l 

In this case an estimate for Oi is obtained by maximizing 
the regional likelihood 

j=1 
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When it can be assumed that there are common elements 
of the parameter vectors 0', so that O" - (b , A"), the joint 
likelihood (6) becomes 

r nt 

LJ(P OA',..., A r) - zf JJ cJj;e I P A"). (8) 
i=l j7=1 

Under the likelihood (8), it is inefficient to estimate 02 

with 6t = (ib, Vt) obtained by maximizing the regional 
likelihood 

nq, 

L2 (Qo, A) H a(tj; a o, A), (9) 
j=l 

as this ignores information regarding ~b0 available in the 
other regional samples B3 (j 7 i). It does make sense, and 
in fact it is common practice, to estimate W' with 02 

(70, At) obtained by maximizing the joint likelihood (8). 
However, superior estimates can be obtained, under the 

condition of nonorthogonality between b0 and A' (Cox and 
Reid 1987) and for specific values of no, nm with respect to 
the similarity between A" and Ad, by combining the joint 
likelihood estimate ' 0 obtained by maximizing 

no 

Lo (7p , A) = 11 ((S3; V A)' (I 0) 
j=1 

with the regional profile likelihood estimate At obtained by 
maximizing 

n 

L'(A"? I tO) ce(X A'l fO). (I11) 
J=1 

Estimating 02 (?,0 A") via 02 = (?,0,A) obtained using 
(10) and (11) is termed borrowed strength maximum likeli- 
hood. 

Precision in detecting small regions of nonhomogeneity 
requires that the subfields on which densities are estimated 
be small, thus there are insufficient data to develop accept- 
able estimates without borrowing strength. Often, however, 
there will be sufficient data to obtain suitably accurate con- 
strained local estimates A2 given ?0. Thus the borrowed 
strength methodology of constraining the problem of esti- 
mating the local densities to that of estimating the mixing 
coefficients for the subfields can yield superior results. 

2.4 An Issue in the Estimation of ao 

It is necessary to note that in practice, care must be taken 
in estimating the overall field density ca? (Step 2 in the 
methodology described earlier). Samples from r different 
distributions can have an overall distribution indistinguish- 
able from normality, even if each individual distribution is 
a decidedly nonnormal mixture of normals. Thus it is nec- 
essary to perform this initial estimation in such a way as to 
allow for the "overdetermining" of the overall density. As 
an example of such a method, a block-recursive adaptive 
mixtures procedure (Priebe 1994) is utilized in the exam- 
ples herein. We test local blocks of data, in turn, for the 
appropriateness of the current model. If we determine that 

the current mixture model is insufficient in complexity, we 
add additional terms to the mixture. This technique ensures 
that even if the overall density is nearly normal, the estimate 
of this density will more appropriately reflect any potential 
underlying mixture structure. 

It must be noted that the adaptive mixtures algorithm 
is recursive and order dependent. It is possible for different 
orderings to produce significantly different estimates. How- 
ever, in practice the underlying mixture structure for mul- 
tiple randomized orderings is quite similar, and the effect 
of these differences on the performance of the borrowed 
strength procedure is negligible. For the simulation exam- 
ples presented in Section 3, we process the observations by 
the adaptive mixtures algorithm in randomized order with- 
out replacement, and we have empirically verified that dif- 
ferent random orderings produce nearly identical results. 

3. EXAMPLES 

3.1 Nile Example 

For illustrative purposes, let us consider an example in 
which the goal is the detection of a single changepoint. The 
Nile River has been carefully monitored for many years; 
100 yearly observations of the annual volume of discharge 
from 1871 to 1970 were reported by Cobb (1978). There 
have been many parametric approaches, and various non- 
parametric approaches as well. Carlstein (1988) summa- 
rized these and presented a solution of his own. In gen- 
eral, it is well agreed that there is a changepoint in 1898, 
with independent meteorological evidence supporting this 
conclusion. 

If only a single changepoint is being sought, general re- 
gional analysis is not necessary, but borrowing strength may 
still be valuable. Let us assume a single changepoint and 
RO = R1 U R2. Here {&(x)} represents the observations 
available for a", and borrowing strength from the other re- 
gion may be of value if the statistical structure of the two 
regions is sufficiently similar. 

We use the adaptive mixture modeling procedure to ob- 
tain ?b. We develop a normal mixture estimate for {(t(x)}, 
the overall data set of 100 observations, in which the num- 
ber of terms in the mixture model is data driven and the 
estimate is a local maximum of the likelihood surface de- 
termined by the parameter vector ultimately selected. In this 
case we use seven terms. Why seven terms? Adaptive mix- 
tures produces a finite mixture that is sufficiently complex 
to model the data well and at the same time impose more 
structure than a kernel estimator or empirical distribution 
function. Robustness to the particular model produced by 
adaptive mixtures has also been considered. 

Once ?b is obtained, the changepoint is estimated as the 
x in [1871, 19701 that yields the largest ISE between R' 
and R2; T argmaxx &x +, cvt'_ 7- L2, where Rtx- is [1871, 
x] and RX+ is [x + 1, 1970]. That is, A't is estimated 
for each RX- and RX+. The result is T 1898 (see Fig. 1). 
The advantage of borrowing strengthl can be seen if one as- 
sumes for the sake of argument that the seven-term model 
correctly represents the complexity for this data. In this 
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Figure 1. Nile Changepoint Example (cf. Carlstein 1988, Fig. 1). 

case borrowed strength requires estimation of the means 
and variances for a seven-term mixture model, 14 parame- 
ters, based on 100 observations. The remaining 6 parame- 
ters (the mixing coefficients) are then estimated on the 28 
observations [1871, 18981. Utilizing the same model but 
without imposing +b on the local estimation problems re- 
quires estimating all 20 parameters using only 28 observa- 
tions, an estimate that will obviously be inferior. 

Consider now a situation in which there is no precon- 
ceived notion of a single changepoint. To obtain borrowed 
strength units, a regional structure must first be imposed 
on R?, yielding Ri. Nine overlapping regions of 20 ob- 
servations each were chosen: R1 = [1871,1890], R2 = 

[1881,1900], ... ., R = [1951,1970]. g? is estimated as 
before, and the mixing coefficients At are estimated for each 
region Rf of 20 observations. Table 1 shows these values 
for each of the seven terms and each of the nine regions. To 
illustrate, consider the values k for terms 1 and 3. The mix- 
ing coefficients for these terms indicate the ability to detect 
nonhomogeneity. For regions R1 and R2, term 1 has a small 
coefficient (.08 and .05). For regions ki (i = 4, . . , 9), term 
1 has a coefficient greater than or equal to .57. For region 
R3, however, term 1 has an intermediate coefficient of .33. 
Term 3 exhibits the opposite behavior. Again, the coefficient 
of term 3 for region R3 is dissimilar to that for all other 
regions. 

To investigate nonhomogeneity, we obtain the values of 
SJ' = ISE(QI,t i) and investigate the set {Si2)}, the sec- 
ond smallest of these for each given i. The most likely 
candidate for nonhomogeneity is R3 = [1891,1910], as 
3 = argmaxi S 2) This is consistent with the changepoint 

occurring in 1898. Table 2 gives the values of Sj for each 

pair i, j, with S" in bold. This table shows that regions 
_2 

(2) 
R1 and R are similar to one another and different from 
all of the other regions. Region R3 differs from all of the 
other regions, as S3 - .33. Regions k (Z = 4,..., 9) are (2) -in i 49 r 
comparatively similar to one another, with values of SI 
less than or equal to .19. Note, however, that if one had 
no preconceived notion of a single changepoint, then an in- 
vestigation of region R5, the years [191 1, 19301, would be 
in order, because the value S5 .19 is far and away the (2) 
second largest value among the {S9) }. 

3.2 Simulation Example 

We now consider a simulation example, depicted in Fig- 
ure 2, wherein borrowed strength is applied to detect nonho- 
mogeneities in an embedded dependent random field. Con- 
sider two stationary, ergodic random fields f1 and f2, each 
with a known dependency structure and known marginals. 
For this example, we consider a simple dependency. We 
generate two independent and identically distributed fields 
6i with E'(x) - oi + (1 - i)f%2 for i - 1, 2, with 
7rr .4, = 2 = .2, p =N(-2, 1), and P2 = N(2, 9. ) From 
these E', we generate f (x) =NXK1 Zl EYN i (y), where 

Nx = {y: ||x-y|| < K} and a value of K = 2 is used, 
yielding IN,, 5. Then the marginal density for fI (x) is 
known, is identical for all x, and is a mixture of normals. 
Furthermore, because 9i and p2 are the same for both E1 
and E2, the individual terms in the mixtures corresponding 
to the marginals for fI and f2 are the same; that is, there 
is a matching of (mean, variance) pairs between fI and f2. 

The marginal densities of these two fields differ only in 
terms of their mixing coefficients. Figure 2, a and b show 
realizations of fields f1 and f2. 

Table 1. Ai for the Nile Example 

Term 1 Term 2 Term 3 Term 4 Term 5 Term 6 Term 7 

Region R1 .05 .26 .58 0 0 .07 .04 
Region R2 .08 .31 .55 0 0 .05 .01 
Region R3 .33 .19 .37 0 .03 .06 .02 
Region R4 .57 .28 .05 .05 .05 0 0 
Region R5 .68 .05 .10 .05 .11 0 0 
Region R6 .78 .16 0 0 .06 0 0 
Region R7 .77 .19 0 0 .04 0 0 
Region R8 .70 .25 0 0 .04 0 0 
Region R9 .57 .37 .03 0 .03 0 0 
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Table 2. Similarity Matrix (With S(2 in Bold) for the Nile Example 

RF1 R2 R3 R4 R5 R6 R7 R8 R9 

R1 0 .07 .36 .75 .83 .94 .93 .87 .77 
R2 .07 0 .33 .71 .80 .91 .89 .84 .72 
R3 .36 .33 0 .42 .47 .59 .58 .53 .46 
R4 .75 .71 .42 0 .27 .25 .23 .15 .10 
R5 .83 .80 .47 .27 0 .19 .21 .24 .36 
R6 .94 .91 .59 .25 .19 0 .03 .12 .30 
RF7 .93 .89 .58 .23 .21 .03 0 .09 .27 
R8 .87 .84 .53 .15 .24 .12 .09 0 .18 
R9 .77 .72 .46 .10 .36 .30 .27 .18 0 

We use a binary (0, 1) Markov random field to model the 
presence of local nonhomogeneities. Figure 2c shows a real- 
ization of such a field, generated using a Gibbs sampler (Ge- 
man and Geman 1984) with an initial iid Bernoulli (p = .46) 
field and a 24-pixel square neighborhood. This binary field 
m(x) is used to embed f1 and f2 into field f, shown in 
Figure 2d, via f = I{m(x)=1}f1 + I{m(x)=0}f2. Thus the 

random field f depicted in Figure 2d is the union of r = 
5 disjoint regions Ri, and f(x) is identically distributed 
as f2 (x) for x in the "background" region associated with 
I{m(x)=0}, and f(x) is identically distributed as f1 (x) for 
x in the four "anomaly" regions associated with I1m(x)=1}. 
Figure 2e shows the marginal densities for f1, f , and f. 
Note that the marginal for f is nearly identical to that of 
f2, due to the sparseness of m(x). 

Field f meets the criteria for the application of the bor- 
rowed strength scan analysis, and Figure 2, f and g com- 
pare the performance of borrowed strength versus local 
likelihood analysis. These figures depict the results of us- 
ing the borrowed strength scan methodology described ear- 
lier. An 11 x 11-pixel moving window is scanned through- 
out the region. At each location the density is estimated, 
using borrowed strength maximum likelihood on the 121 
observations with a 4'O parameter constraint in the one 
case and standard maximum likelihood on the 121 observa- 
tions in the other case. Each locality statistic-the estimated 

(a) (b) 

... (.....d 

--f ' I ,1 

ii.~~~~~~~~~~~~~~~~~~~~~~~~M - 

(f) (g) 

Figure 2. Embedded Random Fields Simulation Example. (a) Random field f 1; (b) random field f 2; (c) map of nonhomogeneities, a binary Markov 
random field m used to embed f 1 and f2 into f; (d) random field f; (e) probability densities for f 1, f2, and f; (f) nonhomogeneity detections using 
borrowed strength; (g) nonhomogeneity detections using conventional local likelihood. The borrowed strength methodology produces a superior 
detection rate with significantly fewer false detections. 
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(a) ~~~~~~~~~~~~~~~~~~(b) 

(d) 

i _ l ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~A 

(e) (f) 
1.:~~~~~~~~~~~~~~~~~~~.. . ..z ..i. 

Figure 3. Mammographic Analysis Example. (a) Digitized mammogram (enhanced) and radiologist's boundary overlay; (b) local coefficient of 
variation field for (a) with boundary overlay; (c) probability density estimate for healthy tissue; (d) probability density estimate for tumorous tissue; 
(e) detections using borrowed strength; (f) detections using conventional local ilkelihood. The borrowed strength methodology produces a superior 
detection rate with significantly fewer false detections. 

marginal density for a given window-is then compared, in 
terms of ISE, to the overall density, which is assumed to be 
made up mostly of "background." Those scan locations that 
have the largest ISE are considered anomalies, and these lo- 
cations are shown in Figure 2, f and g. 

As can be seen by comparing Figure 2, f and g, with the 
true locations for the anomalies given in Figure 2c, the non- 
homogeneity detections using borrowed strength are quite 
impressive. Each of the three larger anomalies has been de- 
tected. No false detections-detections in regions that are 
identically distributed as background-are obtained. How- 
ever, the smallest anomaly is not detected. This is not sur- 
prising, as the window size used in the scan process directly 
determines the acuity of the detection method for small re- 
gions. Results for the local likelihood are quite poor, with 
numerous false alarms and missed detections. This result is 
despite the fact that the marginal for background, f2, is not 
at all close, as a probability density, to that of the anomalies, 
fI. This being the case, one might naively expect superior 
performance in terms of false detections to come at the ex- 

pense of degraded detection performance. That this is not 
the case can be seen in Figure 2. 

Performance of the techniques for an independently dis- 
tributed version of this simulation are quite similar, with 
the difference being that smaller windows can be used in 
the scan analysis due to the larger effective number of ob- 
servations under independence. 

3.3 Mammographic Image Analysis Example 

Now consider the image analysis example depicted in 
Figure 3. Figure 3a presents a digitized mammogram. In- 
cluded is a radiologist's drawing of the boundary of the 
biopsy-proven tumor. This boundary is considered to be 
"truth" for the purposes of analyzing the relative perfor- 
mance of borrowed strength versus conventional local like- 
lihood scan analysis. Thus RI (the breast tissue) is divided 
into RH (healthy tissue) and RT (tumorous tissue). For this 
image, there are approximately 2,000 tumorous pixels and 
100,000 healthy pixels. However, dependency considera- 
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tions imply that the effective number of observations, as 
compared to an independent sample, is significantly less. 

The local coefficient of variation (u/At) field depicted in 
Figure 3b, rather than intensity, is used throughout this ex- 
ample, as it is well known that pixel brightness cannot be 
used to detect mammographic anomalies, but there is both 
physiological and empirical evidence that "texture," or a 
local roughness measure, is relevant (Hsiao and Sawchuck 
1989; Miller and Astley 1992; Priebe et al. 1994). Local co- 
efficient of variation is perhaps the simplest such measure. 

Figure 3, c and d, give normal mixture model probabil- 
ity density estimates for the marginals in the two regions 
RH and RT. Included is a representation of the location 
in (mean, variance) space of the six terms. (The radius of 
the circles represents the mixing coefficient.) This repre- 
sentation indicates that indeed the mixture model estimates 
have been constrained to be identical in these individual 
term locations, differing only in the mixing coefficients. 
This fact is not at all obvious from examination of the 
densities themselves. Thus a' = (nH/nO)a H + (nT/no )aT, 
where no - nH + nT. The estimate of ao is obtained us- 
ing the adaptive mixtures procedure, and the estimates for 
ao0, a,H and aT are extremely close in terms of both visual 
analysis and ISE to kernel estimates, lognormal approxima- 
tions, and so on, which were obtained for comparison. This 
suggests that-at least for this example-mixture estimates 
with common means and variances can well represent the 
true marginals. This conclusion appears to be borne out in 
general through an ongoing analysis of a large set of similar 
images (Priebe and Marchette 1996). The advantage of the 
mixture estimates is, of course, that they lend themselves 
to a borrowed strength methodology. 

Figure 3, e and f, present the actual performance of the 
scan methodologies, in direct analogy to the analysis per- 
formed in the simulation example (Fig. 2). Again, it is clear 
that the nonhomogeneity detections obtained through bor- 
rowed strength are significantly more accurate than those 
for local likelihood, despite the obvious dissimilarity be- 
tween ao and aT 

It would not be argued that this procedure would be used 
alone to detect anomalies in digital mammography. How- 
ever, it is clear that any analysis of the utility of a texture- 
based scan methodology for aiding in an overall detection 
system will yield unnecessarily pessimistic results unless 
the applicability of borrowing strength is investigated fully. 

4. COMMENTiS 

This article has presented the basic idea that borrowing 
strength can allow for better estimation of the character- 
istics of nonhomogeneous random fields. The idea is mo- 
tivated through image analysis considerations and a para- 
metric methodology is presented that uses profile likelihood 
estimation under finite mixture model assumptions. Simu- 
lation and experimental examples are included that suggest 
that borrowing strength will outperform conventional local- 
area maximum likelihood and provide superior detection of 
subregions of nonhomogeneity. 

[Received January 1995. Revised January 1996.] 
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