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ABSTRACT. We provide a way of expressing the existence of infinite sets in

the first order set theoretic language, which is of the lowest possible logical

complexity.

Let £e be the first order language with identity, based on the membership re-

lation 6, and assume the axioms of Zermelo-Fraenkel (ZF). A formula of Ce is

restricted if it does not contain quantifiers except for the restricted quantifiers

Vz e y and 3x e y. Restricted formulas which, under ZF, are satisfiable, but are

not satisfied by finite sets, are provided by the usual ways of formulating the axiom

of infinity. In fact that a set a is inductive, i.e. contains the empty set and is closed

under the successor operation taking a set b into 6U {b}, can be expressed by the

restricted formula:

3x e aVu e x(u i0 x) A Vz e o3y e aVu e x

W e y(u ey Ax ey A(v ex\/ v = x)).

Note that this formula contains alternations of quantifiers of the form V3V. A

logically simpler example is obtained by expressing that a is a limit ordinal, i.e. a

nonzero nonsuccessor ordinal, through the following restricted formula, which only

involves an alternation of quantifiers of the form V3:

Va: e aVu e x(u e a) A Vx € aVi/ e a(x eyVx = y\/yex)

A3:r e a(x = x) A Vz e a3y e a(x e y).

Restricted formulas of the above kind with two free variables are provided by the

notion of finiteness due to Dedekind, Russell-Whitehead and Tarski (see [2 and 3]).

In fact lib is a 1-1 but nononto function from a into a", "6 is an inductive family of

subset of a and a £ 6", and "6 is a family of subset of a, which does not contain a

maximal element with respect to inclusion" are notions that are readily expressed

in ZF by restricted formulas involving alternations of quantifiers of the forms V3V,

V3, and V3V respectively.

A lower bound on the complexity of the satisfiable but not finitely satisfiable

restricted formulas follows from [1], which gives a decision procedure to test for

any given restricted formula involving only universal quantifiers without nestings

of bound variables (i.e. no subformula of the form Vii e yi ■ ■ -Vxn e ynf, where

some Xi is a y3, is allowed), whether there are sets satisfying it or not. As a by-

product of such a procedure, one has that if a nonnested universal restricted formula

is satisfiable at all, then it is already satisfied by suitable hereditarily finite sets.
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That this reflection property, which immediately extends to the restricted formulas

involving only existential quantifiers, held also for the full class of the restricted

formulas involving only universal quantifiers, was then commonly expected. On

the contrary we have the following example, which shows that the purely universal

restricted formulas having two free variables, with nestings of bound variables of

the lowest possible level, suffice to express the existence of infinite sets.

PROPOSITION (ZF). The following formula <p(a,b) is satisfiable, but it is not

finitely satisfiable; more precisely if either a or b is finite, then p(a, b) does not

hold:

a y£ b Aa £ b Ab £ a AVx e oMu e x(u e b) A Vz G ¿A/u G x(u G a)

A Vz G a(x ^ b) A Vx, y G aVz, w G b(z exAxewAwey^zey)

A Vx, y G 6V2, w G a(z exAxewAwey-+zey).

PROOF. Let /„ and gn be the sequences of sets defined by recursion on oj, such

that /o = 0, gn = {fo,---,fn}, fn+i = {go,---,gn}, and let oj' = {/o,/i, • • •}

and oj" = {go, gi,... }■ It is straightforward to check that a/ and oj" satisfy p. We

prove the rest of our claim by showing that

<p(a, b) -> (oj' Ç a A oj" Ç 6) V (oj" Ç a A oj' Ç b).

Assume that a and b satisfy p. First note that a and b are both nonempty. For,

assume a = 0. Since a / b, b ^ 0. Since a ^ b, 0 0 b. Therefore b contains a

nonempty set c, but then Vz G 6Vu G x(u G a) implies that every element of c is

a member of a, contrary to the assumption a = 0. Thus a / 0. Symmetrically

b ^ 0. Furthermore either 0 G a and {0} G b, or {0} G a and 0 G 6. For, let

c be an element of minimal rank in a. If c ^ 0, let d be any element of c. If d

were different from 0, then every element of d would be a member of a, against

the minimality of c. Therefore c = {0}, from which it follows that 0 e b. On the

other hand if c = 0, as above, one verifies that the only element of minimal rank

in b is {0}, since by the fact that a and b are disjoint, one cannot have 0 G b. Let

us assume, for example, that 0 G a and {0} G 6. By induction on n we now prove

that:

(i) the set of elements of a of rank< 2n is {fo, /i,..., /«},

(ii) the set of elements of b of rank< 2n + 1 is {go, gi,..., g„}.

The case n = 0 follows immediately from our assumption that 0 e a and

{0} G 6. Assume (i) and (ii) hold for n. a must contain some element beside

fo, ■ ■ ■, fn', otherwise a would be equal to g„ and thus a member of b, contrary to

p>(a, b). Let c be an element of a of minimal rank different from /n,... ,/„. Thus

rank(c) > 2n. Every element of an element of c belongs to a and has rank less than

rank(c), and is therefore in {fo, ■ ■ ■, fn}', hence it has rank at most equal to 2n.

Therefore every element of c has at most rank 2n + 1, and, in turn, c has at most

rank 2n + 2. Now we note that rank(c) cannot be 2n+1; otherwise in b there would

be an element of rank 2n, against the fact that go,.. .,gn are the only elements

of b with rank < 2n + 1, and they all have odd rank. Therefore the rank of c is

precisely 2n + 2. This means that c has an element of rank 2n + 1. Since such an

element has to belong to b, it has to coincide with gn. Since for every i < n, g¿ G /„,

fn e gn and gn G c, the penultimate clause in p(a, b) implies that {go,..., gn} Ç c.

Finally c cannot contain any element different from go,...,gn, because all of its
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elements belong to b and have rank < 2n + 1 and (ii) applies. Therefore c = fn+i

and (i) holds for n + 1. Assuming this, a similar argument shows, on the basis of

the induction hypothesis, that also (ii) holds for n-l-1. Clearly from (i) and (ii) it

follows that oj' Ç a, and oj" Ç b. A symmetric argument shows that if 0 G b and

{0} G a, then oj" Ç a and oj' Ç 6.    G

It is rather easy to see that if any of the conjuncts of p is dropped, then there are

hereditarily finite sets satisfying the resulting formula. Furthermore, the number

of free variables cannot be reduced to one. For, suppose a is a set which satisfies

a purely universal restricted formula tp with a single free variable. By the axiom

of foundation there is a finite set 6 = {ao,a-.,...,an} such that ao = 0, for every

i < n, üí e a¿+i, and an = a. The membership relation is clearly extensional on b;

thus the Mostowski collapse of (b, e) is an isomorphism between b and a set which

is transitive and hereditarily finite. The image of a under such an isomorphism is

readily seen to satisfy ip. Finally let us note that 3a3b<p(a, b) is equivalent to the

usual formulation of the axiom of infinity, stating the existence of an inductive set,

over the remaining axioms of ZF. ZF proves the existence of the two sets oj' and oj"

which satisfy p. Conversely, working in ZF-infinity, let us assume that there are

sets a and b such that <p(a, b) holds. In ZF-infinity one can define the well-founded

"class" TV of the natural numbers and, as in the proof of the Proposition, introduce

by recursion on TV two operations F and G, and show that the ranges of F and G

on TV are included in a and b (or b and a) respectively. Since F and G are 1-1 on

TV, by the axiom of replacement it follows that TV is in fact a set; obviously such a

set is inductive. By the above discussion we can therefore claim that 3a3bp>(a,b)

expresses the axiom of infinity in the logically simplest possible way.

REMARK. The formula p above is specified by sets of rank oj. At the price

of using a greater number of free variables, it is easy to build, for every natural

number k, a purely universal restricted formula which is satisfiable, but not by sets

of rank less than w • k. For example, one can use p to obtain first a set, say a, of

rank at least oj, then an additional free variable to characterize {a}, and finally two

more free variables a' and b' to describe sets which are related to a and {a} as oj'

and oj" are related to 0 and {0}. The resulting formula is satisfiable but not by

sets of rank less than oj ■ 2. It would be interesting to know if formulas of this kind

can be built with a bounded number of free variables, as well as whether there are

universal restricted formulas which are satisfiable but not by sets of rank less than

oj2.
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