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Abstract

The conditional variance function in a heteroscedastic, nonparametric regression model is
estimated by linear smoothing of squared residuals. Attention is focussed on local polynomial
smoothers. Both the mean and variance functions are assumed to be smooth, but neither
is assumed to be in a parametric family. The effect of preliminary estimation of the mean
is studied, and a “degrees of freedom” is proposed. The corrected method is shown to be
adaptive in the sense that the variance function can be estimated with the same asymptotic
mean and variance as if the mean function were known. A proposal is made for using standard
bandwidth selectors for estimating both the mean and variance functions. The proposal is
illustrated with data from the LIDAR method of measuring atmospheric pollutants and from
turbulence model computations.

KEY WORDS: Bandwidth; Heteroscedasticity; Kernel Smoothing; Nonparametric Regres-
sion; Smoother Matrix.



1. INTRODUCTION

In regression analysis it is often the case that the homoscedasticity assumption is violated.
An example of this is given in Figure 1(a). The data are taken from Holst et. al (1995), where
local polynomial regression is used for evaluation of the concentration of atmospheric atomic
mercury measured with LIDAR technique (LIght Detection And Ranging, cf. Sigrist (1994)).
In this example the concentration is proportional to the derivative of the mean function, but
because of the severe heteroscedasticity the variance function must be estimated to obtain
a satisfactory bandwidth for the derivative and further to estimate the variance of the total
amount of pollutants in a certain area. In Holst et. al (1995) a parametric model is used for
the variance function.

In other examples, the variance function itself is of interest in its own right. For example,
one of the authors (DR) is collaborating with mechanical engineers at Cornell on the analysis
of data from the Monte Carlo simulation of turbulence by the Pdf method (Pope, 1985). In
this work, one has available the spatial position, velocity, and other properties of simulated
particles. One, of course, needs to estimate quantities such as mean velocity as a function
of position. However, in the study of turbulence the variance of velocity and its derivatives
as a function of position are also essential; see Section 7.2.

In this article we extend local polynomial regression ideas to estimation of the variance
function. As we show in Section 2, our proposal can be generalised to any linear smoother
(e.g. smoothing splines, running means). Nevertheless, we focus on local polynomials be-
cause of their intuitiveness and simplicity. Our theoretical analyses show that the attractive
properties of odd degree local polynomial smoothers, such as design adaptivity and automatic
boundary correction, carry over to variance function estimation.

The literature on nonparametric variance function estimation is rather sparse. Carroll
(1982) developed kernel estimators in the context of linear regression, while Miiller and
Stadtmiiller (1987) and Hall and Carroll (1989) proposed and analysed kernel-type variance
function estimators in the presence of a nonparametric mean function. Fan and Gijbels
(1995) proposed a type of local polynomial variance function estimator as part of their
bandwidth selection procedure.

In Section 2 we formulate a general class of nonparametic variance function estimators,
and obtain local polynomial variance estimators as a special case. Section 3 investigates the
theoretical properties of these estimators. Computational issues are described in Section 4
and extension to multivariate predictors in Section 5. Section 6 contains some illustrations
of the methodology.

The variance function estimator in Section 2 was proposed independently by Mathur
(1995), but the asymptotic theory, computational implementation, and bandwidth selectors
proposed here are not in Mathur.

2. FORMULATION

2.1. A general class of variance function estimators

The local polynomial estimates of variance that we consider in this paper can be defined for
general linear smoothers, so it is worthwhile to start at this level of generality.
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Figure 1: LIDAR data. (a) Raw data (221 observations). (b) Squared residuals from a
preliminary local linear estimate of the mean function with a global bandwidth of 30. (¢)—(d)
Local linear smooth of (b) and bandwidth. (e)-(f) Local linear smooth of (a) and bandwidth
using the variance estimate in panel (¢). (g)—(h) Local linear smooth and bandwidth using
squared residuals from the fit in (e). In panel (g), the dashed curve is the raw smooth and
the solid curve is “degrees of freedom” corrected.



Let (X1,Y7),...,(X,,Y,) be a sample of random pairs that are assumed to satisfy the
heteroscedastic nonparametric regression model:

Yi=m(X;)+e, var(e)=v(X;), i=1,...,n. (1)

where the errors ey, ..., e, are independent zero mean random variables satisfying F(e}) <
o0o. We call m the mean function and v the variance function. We will also let m and v
denote the column vectors containing values of m(X;) and v(X;), 1 < i < n, respectively.
Finally, Y will be used to the denote the n x 1 vector of Y; values.
Let
m = [m(Xy),...,m(X,)]*

be a linear smooth of the (X;,Y;)’s. By this we mean that
m=.SY

for some n x n matrix S, often referred to as the smoother matriz. Examples of linear
smoothers include smoothing splines, regression splines and local polynomials (see e.g. Hastie
and Tibshirani, 1990). It is assumed that S preserves constant vectors in the sense that
S1 = 1 where 1 denotes a vector of ones.

Let S; be the smoother matrix corresponding to an initial smooth of the data and put

r = (Sl —])Y7

the vector of residuals. Then a natural means of estimating v = [v(X}),...,v(X,)]! is to
smooth the squared residuals to obtain S;r?. Here S, is another smoother matrix and r?
contains the squares of the entries of r. It seems reasonable that our estimator should be
unbiased when the errors are homoscedastic, that is v = 0?1 for 0% > 0, and the bias of the
initial smooth S; can be ignored. Under homoscedasticity,

E(SQT2|X1, Ce ,Xn) = SQ[{E(51Y|X1, Ce ,Xn) — m}2 + 0'2(1 + A)]
where
A = diagonal(S; ST —25;)
and diagonal(A) denotes the column vector containing the diagonal entries of the square
matrix A. Since E(S2r?|Xy,...,X,) = 0*(1+ S3A) when S1Y is conditionally unbiased this
motivates the estimator
b= (Sr%) /(1 + SA). (2)

The convention here and throughout is that the vector multiplication and division are

element-wise.

2.2. Relationships with parametric modelling

One can view the class of variance function estimators given by (2) as a generalisation of those
commonly used whether either the mean or variance function are modelled parametrically.
For example, if the mean is modelled linearly:

1/2' = (X/B)Z ‘I‘ 52’ Var(@z) = U(X’L)) L = 17 e ’n7
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where X is an n X p design matrix and 3 is a p x 1 matrix of coefficients, then one should
replace S; by the “hat” matrix R = X (X7 X)~!X?. Using the symmetry and idempotency
of R we obtain the variance function estimator

b= S{(R—1)Y}*/[1 - Sy{diagonal (R)}].
On the other hand, if the homoscedastic nonparametric regression model
Y;=m(X;)+e, var(e) =0 i=1,...,n

is assumed then one should simply average the squared residuals by taking S; = n~'117.
This results in

52 = {YT(Sl . ])T(Sl _ ])Y}/{n + tr(SlslT - 251)}7

which includes variance estimators for nonparametric regression considered by, for example,
Buckley, Eagleson and Silverman (1988).

For the homoscedastic linear regression model the estimator reduces to the familiar

62 =YT(I - R)Y/(n —p).

2.3. Local polynomial variance function estimation

The class of linear smoothers that we concentrate on in this paper are those commonly
referred to as local polynomial smoothers (see e.g Wand and Jones, 1995). The (z,7) entry
of the pth degree local polynomial smoother matrix, S, , is

(Spu)is = €1 {Xp(Xe) W (X0) X, (X0)} 1 X, (X)W (Xi e (3)
where ¢; is the column vector with 1 in the ¢th position and zeroes elsewhere,

1 Xl—l’ (Xl—l’)p

Xi —
Xp(z)=1|: : : and Wy (z) = diag K ( $)
I Xp—a - (X, —a)
where diag; ;,, a; denotes the n x n diagonal matrix with ay,...,a, on the diagonal. Typ-

ically K is a smooth bell-shaped function such as the standard normal density, called the
kernel, and h = h(x) is a scaling parameter, usually referred to as the bandwidth at the point
x.

Using this notation, one can define the local polynomial estimate of v(z) to be

e ) Wi ()X, ()} Xy () Wi o)1
(o) = ot b ) = N Wi () X, (] X, (W, (21

<)

where

r=—-S,n)Y and A = diagonal(S,, 1, ST

P1,h1

- 25p17h1 )

For estimation of v at the observations, this definition is easily seen to be a member of
the class of variance estimators described by (2), with S; = S,, , and Sy = Sp, 1, -
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2.4. Estimation of derivatives of v

As mentioned in the Introduction, some applications require that derivatives of v be esti-
mated. For example, the first two derivatives of v are used in the study of turbulence; see
Section 7.2. As discussed in Ruppert and Wand (1994), local polynomial estimation of the
kth derivative of m is straightforward, and there is no problem extending derivative estima-
tion to v. One needs to use p; > k and then for the second smoother matrix, S;, one merely
replaces el in (3) by k!e;‘fﬂ. The theory in the next section extends easily to derivative
estimation, but for simplicity we only consider the case of estimating v itself.

3. THEORY

In this section we start by showing that it is possible to obtain exact matrix algebraic
expressions for the conditional mean and covariance of v for the general class of variance
function estimators introduced in Section 2.1. In the local polynomial case one can use these
results to obtain meaningful asymptotic approximations.

We retain the convention that multiplication and division of column vectors is element-
wise. For square matrices A and B we avoid confusion between usual matrix multiplication
and element-wise multiplication by using the notation A @ B for the latter (this is some-
times called the Hadamard product of A and B). We let X = {Xy,..., X, } to abbreviate
expectations that are conditional on the predictors. Also, C(U|W) denotes the conditional
covariance matrix of U given W whenever U and W are random vectors.

3.1. General variance function estimators

The following matrices are useful for a concise representation of the bias and covariance of
v
V = diag(v), G = diag{E(c})} and T = diag{E(e})}.

1<i<n 1<i<n

THEOREM 1. Let by = (S1 — I)m denote the bias vector of the smooth Sy. Then

(Sy — v + So{b? + diagonal (S, V ST — 25,V)} — (S2A)v

E(G —v]X) = TTSA (4)
and
C(o|X) = S[{(S1—1) o (St —DHT =3VH{(S1—1)o (S —D)}"
+2(diag b1)(S1 — DG{(S1 — 1) © (S1 — I)}"
+2{(S1 — 1) © (S1 = 1)}G(Sy — I)"(diag by)
+2{(Sy = DV (S = D" o {(Si = DV(S: — D)7}
+4{(Sy = DHV(S1 — DT} o (561 ST/{(1 + S2A)(1 4 S,A)TT.

The proof is given in the Appendix.



The expression for C(v|X’) simplifies considerably if normality of the errors can be as-
sumed:

COROLLARY 1.1. [f the errors ¢; are normally distributed then

o) 2 = V(S = DT} & (51 = DV(S: = 1) + 2h )]
(14 S2A)(1 4 S.A)T '
REMARK 1. The conditional Mean Average Squared Error (MASE) of 0 is defined as
MASE(®) = n™'E Z{ X)Xl .

Noting that
MASE(?) = n || E(?|X) — v||* + tr C(v]X) },
H2 T

where ||z||* = " x, one can use the above results to find exact expressions for MASE(?9) for
any pair of smoother matrices S; and 5,.

3.2. Local polynomial variance function estimators
Let f denote the common density of Xi,..., X, and the function 5 be given by:

n(X;) = var(e?), i1=1 n.

9oy

Define the function

Ky (u) = {|My(w)[/|Np| } K (u)
where N, is the (p + 1) x (p + 1) matrix having (¢, j) entry equal to [ u*~2K(u)du and
M, (u) is the same as NV, with the first column replaced by (1,u,...,u?). K, is a pth order
kernel (Ruppert and Wand 1994).

THEOREM 2. Suppose that x is an intertor point of the support of f, m has p; + 2 con-
tinuous derivatives, v has py + 2 continuous derivatives and f and n are differentiable in a
neighbourhood of x, and that hy,hy — 0, nhy,nhy — 0o, and

{WO 4 (k) = o(hp) (5)
as n — oo. Then for py odd

.U(pz-l-l)(x)

B(ie) - o(@)|) = { [0 Ky (0) du | { I

bt opa)
and, for p even

Bie) — o(@) ) = { [ w Ky () du { fp(+1)((p >+f’1().> T (;j)g)ﬂ } W+ op (W),

In either case
ar{(e) ) = { [ Koy () duf {0 b3 n(2)/ F(2)} + op {(nha) ™'}
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Once again, we defer to proof to the Appendix.

REMARK 2. The leading terms depend only on the bandwidth hs, indicating that the initial
bandwidth h; has only a second-order effect on the asymptotic performance of v(z). If

p1 = p and if Ay is chosen optimally for estimation of m, then hi(plﬂ) and (nhy)~* will be
of the same order as n — oo and both will be op(h5*") so that (5) is satisfied.

REMARK 3. Comparison with Theorem 4.1 of Ruppert and Wand (1994) shows that the
leading bias and variance terms for our local polynomial variance estimator are analogous
to those for the the local polynomial estimator of the mean function. The only difference
is that the asymptotic bias depends on derivatives of v rather than m, and the asymptotic
variance of o(x) is proportional to the variance of the squared errors, rather than the Y;’s.
Asymptotically, © behaves like a local polynomial smooth of the (unobservable) £?’s, i.e., v
can be estimated as well as if m were known, so that there is no loss in asymptotic efficiency
due to estimating m. For this reason, the estimate of the variance function based on squared
residuals is “adaptive” in the sense of Bickel (1982).

REMARK 4. Once could also rework the steps used to prove Theorem 2 for the situation
where z is converging to the boundary of the support of f to show that, for odd p, the
local polynomial variance estimator induces an automatic “boundary kernel-type” correction.
This attractive feature has been pointed out in the mean estimation context by, for example,

Fan and Gijbels (1992), Hastie and Loader (1993) and Ruppert and Wand (1994).

3.3. Bandwidth choice

An important practical problem is the choice of the bandwidths. One may use either local
bandwidths, where hy and hy are functions of z, or global bandwidths that do not depend on
x. For concreteness, let’s assume that the bandwidths are local. Ideally, one would choose
both Ay and hy to minimize the MSE of ¢ at the point . However, this is difficult to do in
practice, since the effects of Ay on the MSE of ¥ are of second order and therefore difficult
to estimate.

Using Theorem 2 and Remark 3, we suggest an alternative strategy that will produce
asymptotically optimal bandwidths. First, use a local bandwidth selector to find asymptoti-
cally optimal h; for estimation of m(z). One could, for example, use the bandwidth selector
of Fan and Gijbels (1995), though in the example of Section 6 we use the Empirical Bias
Bandwidth Selection (EBBS) method of Ruppert (1995). Next, treat the squared residuals
as if they were the squared ¢’s, and apply the same bandwidth selection to estimation of the
mean function of the squared residuals. If one uses p; = py, then (5) will be satisfied.

4. COMPUTATION

Direct computation of v over a grid can be quite expensive, especially if the sample size
is large. For example, if one decides to compute v at the observations then one must deal
with the fact that diagonal(S;57) requires O(n?) operations for exact computation.

A simple way to overcome computational problems such as this is to use binned ap-
proximations. Turlach and Wand (1995) explain how one can apply binning to the type of
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quantities that arise in variance function estimation. Let ¢; < ... < ¢ga; be an equally-spaced
grid over the range of the X;’s and let 6 = (gar — ¢1)/(M — 1) be the gap between successive
grid points. The grid count (¢, d} ) at grid point g,, with respect to linear binning, is given
by

n n

co=) (1 —[67'Xi —g)4 and df =D (1-167"X: — gu])+ Vi

where x4 = max(0,z). Set

L gi—a - (g —a)f .
=] 1 | W)= dieg K (20,
1<e<M h
L gy—x --- (gu — )" -

C = diag (¢;), ¢=(c1,...,ep)’ and & = (dV,...,d5)7".
1<6<M

Then the binned analogue of the smoother matrix is §p7h where

(Spn)eer = €T { X (90) T Wh(g0) O Xp(90)} " X (g) " Wil ge)err,

since it can be easily shown that S maps the ¥ grid counts in d¥ to the vector of binned
smooths at the grid points. The vector of binned estimates of v at the grid points is then

v = (§p27h2r2)/(1 + gpz#mg)
where
7?2/ = dY2 —_ 2(§p17h1 dY)dY + (gpl’hldY)QC and Ag = {Ug —_ 2(§p1,h1 )M}Cg.

Here U;, 1 < ¢ < M denotes the binned approximation to diagonal(S,, SpT1,h1) over the
grid. Its fast computation is described in Section 4 of Turlach and Wand (1995).

5. EXTENSION TO MULTIVARIATE PREDICTORS

In principle, extension of the formulation and theory of the general class of variance
estimators to multivariate predictor variables is straightforward. The expressions for v at
(2) is the same except that the rows of the smoother matrices Sy and Sy correspond to X,’s
that live in higher-dimensional space rather than on the real line. Theorem 1 continues to
hold in the multivariate case.

In the case of local polynomial smoothing, extra notation is required to handle multivari-
ate X;. See, for example, Ruppert and Wand (1994). If the X,’s are d-dimensional then the
kernel K should be a d-variate function and scalings by a positive definite d x d bandwidth
matrix H should be permitted. The weight associated with multivariate local polynomial
smooth is then

Wy(z) = diag K{H'*(X; — z)}.

1<i<n



For the local linear multivariate variance estimator, with bandwidth matrices H; and H,,
one can show that, for = in the interior of the support of f,

B{o(x) — v(x)| X} = L {/ V2K () du} tr{ HyHo ()} + op {tr(Ha)}
and that
var(6(a) 0} = 07 Hal 7 { [ K()? dufn(@)/ () + op o™ Hal72)

where H, is the Hessian matrix of v. This is analogous to the result for estimation of m in
the multivariate context, given by Theorem 2.1 of Ruppert and Wand (1994).

6. PIECEWISE POLYNOMIAL BINNING

In this section, we describe an alternative method that is particularly well suited for
larger data sets, e.g., the turbulence data set of Section 7.2 which has 20,000 observations.
We only describe the implementation for univariate X;.

First the data are binned according to their z-values into ny, disjoint subsets with roughly
equal number of observations per subset (not equal lengths). For the jth bin, 7 = 1, ..., i,
let z; be the mean of the X;’s in that bin. Fit a p;th degree polynomial to the data in the
Jth bin. Let y; be the fitted value of this model at z; and let v; be the residual mean square
from the model. Using the residual mean square induces the proper “degrees of freedom”
correction. Therefore, it m is a p;th degree polynomial and if v is constant on the jth bin,
then y; and v; are unbiased estimators of m(z;) and v(z;).

Because the bins are nonoverlapping, {#1,...,¥n,, } are mutually independent as are
U1y« .., Uy, }. Toestimate m, apply any linear smoother and bandwidth selector combination
desired to the data (z;,y;), and do the same to (z;, v;) to estimate v. No “degrees of freedom”
correction is needed here, since the correction was made at the binning stage.

The idea is to choose npy, and p; so that y; and v; from the binning stage are very
undersmoothed estimators of m(z;) and v(z;), respectively. Thus, the number of observations
per bin should be small, though it must of course be at least p; +2 so that the residual degrees
of freedom is positive and should be at least twice this minimum for good efficiency of .
The correct degree of smoothing is done at the smoothing stage.

Using p; = 1 will give accuracy similar to the popular linear binning technique, while
p1 > 1 will be more accurate than binning techniques now in the literature and will allow a
smaller value of np,.

7. EXAMPLES

7.1. LIDAR data

We now return to the LIDAR data described in Section 1. First we used a local linear
estimate of the mean with a global bandwidth chosen subjectively to equal 30. Squared
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residuals from this fit are in Figure 1(b). In Figure 1(c) we have a local linear smooth of these
squared residuals using the EBBS local bandwidth of Ruppert (1995) and computed on a 50-
point equally spaced grid. The bandwidth itself is in Figure 1(d)—the EBBS method allows
smoothing of the bandwidth with two tuning parameters, MSESPAN and BANDSPAN,
which are both equal to 4 here. This means that an initial bandwidth at each point of the
grid is based on a 9-point moving average of an estimated MSE and the final bandwidth
is a 9-point moving average of the initial bandwidth; see Ruppert (1995) for details. The
bandwidth selector assumes that the ratio of the standard deviation to the mean of the
squared residuals does not depend on x, so the variance function of the squared residuals
need not be separately estimated.

In Figure 1(e) we have a local linear smooth of the data in Figure 1(a), using the EBBS
bandwidth shown in Figure 1(f). This bandwidth is based upon the variance function esti-
mate in Figure 1(c).

The solid curve in Figure 1(g) is the same as the curve in Figure 1(c), except that the
residuals in Figure 1(g) are from the curve in Figure 1(e), not the local linear fit with
a bandwidth equal to 30 as in Figure 1(c). Notice that the two curves appear identical,
showing that the effect of h; on © is minimal. The solid curve in Figure 1(g) and the curve
in Figure 1(c) are not corrected by dividing by (1 + S2A). The dashed curve in Figure 1(g)
is the corrected estimate. The correction is not sizeable, but it does increase the estimated
variance as expected.

The squared residuals in Figure 1(b) suggest that v might be bimodal. However, our
local bandwidth selector chooses bandwidths large enough to smooth away the bimodality,
suggesting that the apparent bimodality is merely a chance phenomenon and, in fact, v is
monotonically increasing.

7.2. Turbulence data

In this example we look at an especially difficult problem because v” must be estimated
at the boundary. In this study, spatial position is reduced to one dimension because the
quantities of interest depend on space in only one direction. We have bivariate data (X;, U;)
where X; is position and U; is velocity of a particle.

These data are part of a “feasibility study” by mechanical engineers at Cornell to see
whether certain quantities of interest can be accurately estimated by the Monte Carlo Pdf
model of velocity. The data do not come from an actual simulation of the Pdf model. Instead,
the mean and variance functions, m and v, were found by Taylor series approximations to the
deterministic Reynolds-stress model. 20,000 values, {X; : 7 = 1,...,20,000}, where taken
uniformly distributed on [0,.1], and at each X, U; was generated from model (1) with ¢;
normally distributed. The idea is that these data will be similar to what would be obtained
if a stochastic simulation of the turbulence model were programmed and run.

The engineers wanted to know if the second derivative of v at the left boundary, e.g.,
(0), could be estimated accurately in the Pdf method. This quantity is of special interest
since it is a boundary condition on turbulent dissipation. The left boundary corresponds
to a real physical boundary so it is not possible to have x negative; this makes estimation
of v”(0) difficult. Although v is only an approximation to the “true” variance function, it

"

11



is the “population” variance function that generated these data. If v”(0) can be estimated
accurately here, the engineers feel that the second derivative of the “true” v can be accurately
estimated later with data from a stochastic simulation of the Pdf model.

We implemented the piecewise polynomial binning described in Section 6 with ny;, = 200
(100 observations/bin) and p; = 2 (piecewise quadratic binning). The residual mean squares
are plotted in Figure 2(a) as a function of z. Figure 2(b) is a plot of a local quadratic
smooth of the data in Figure 7(a) (solid) and the v (dashed). The local bandwidth given in
Figure 2(c) was generated by EBBS (Ruppert 1995) assuming that the variance function of
the v’s is proportional to the square of their mean function. As can be seen in Figure 2(a),
this assumption is, in fact, true since the ¢;’s are in a scale family.

In Figure 2(d) we have 9" (solid) using local cubic smoothing as discussed in Section 2.4
and with the EBBS bandwidth shown in Figure 2(e). Also in Figure 2(d) is v” (dashed).

The engineers concluded that estimation of v”(0) is feasible, but that sample sizes of at
least 20,000 are necessary.
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APPENDIX: PROOFS OF THEOREMS

Proof of Theorem 1
First note that

b=

Sypdiagonal{(S; — I)YYT (S, — )T}
1+ SA '

For the bias we have

Spdiagonal{(S; — I)(mm™ + V)(S; — )T}
1+ 5A
Sy{diagonal (b;b7) + v + diagonal(S; VST —25,V)}
1+ S5A .

E@®|X) =

Direct algebra then leads to the stated result.
The result for C(0|X') depends heavily on:

LEMMA 1. Let Y be a random vector having all entries independent. Define m = E(Y),
V = diag[E{(Y — m)?}], G = diag[E{(Y — m)®}] and T = diag[E{(Y —m)*}]. Then for
any square constant matrix A having the same number of rows as 'Y,
C{(AY)*} = (A® A)(T —3V*)(A ® A)" + 2{diag(Am)AG(A ® A)"
+(A® A)GAT diag(Am)} + 2(AVAT) © (AVAT) + 4(AVAT) © {(Am)(Am)"}.
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Figure 2: Turbulence data. (a) Residual mean squares plotted against bin means of x. (b)
Local quadratic smooth of data in (a) (solid) and v (dashed). (¢) Local EBBS bandwidth used
in (b). (d) Local cubic estimate of v’ using data from (a) (solid) and v" (dashed). (e) Local
EBBS bandwidth used in (d).
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PRrROOF. We will use the tensor notation and results of McCullagh (1987). Let a;; denote
the (¢,7) entry of A. Moments of products of the entries of ¥ will be denoted by & with
appropriate superscripts. For example,

£ = B(Y;Y;) and &Y = B(Y?YYL).
Generalised cumulants will be denoted using partitioned superscript notation. For example,
K = = cum(Y}, Y;) = cov(Y;, Y;) and gHIRE = cum(Y;, Y;, Y. Yo).
Then the (m,n) entry of C{(AY)?} is easily shown to be

C{ AY }mn Z Z Z Z Ui Amg ankanﬁﬁ”Jd

One of the fundamental identities for generalised cumulants, given on p.58 of McCullagh

(1987), states that
Ku,kﬂ — sz,],k,ﬁ 4 /{Z/{j]’k’g + /{:]/{Z’k7£ + /{k/{z,],ﬁ + Kﬁ/{z,],k + /{Z’k/{j]’g + /{Z’Ehj]’k

+rRF R+ KRCRTE kT RFRY 4 kT RERYR

This implies that, because of the mutual independence of the Y;’s,
C{(AY )}, = ZamZ G 2SS (it 02, K59+ 02 gt 9 £
t g

—I—ZE g i Oy Qi O KV KT 4 4ZEZamiamkamankﬁ; kKT,
(] i 7k

It is easily verified that the stated result follows from this.
|

The following lemma shows how covariance matrices are affected by element-wise multipli-
cation. Its proof is quite trivial and is omitted.

LEMMA 2. If a s a constant vector having the same length as Y then
ClaY) = (aaT) ©C(Y).

The result for C(v|X) follows immediately from Lemmas 1 and 2 and the well-known result:
C(AY) = AC(Y)AT.
i

Proof of Theorem 2

For a rth differentiable function ¢ we let ¢ = [¢0)(X;),...,¢")(X,)]¥. We also use the
convention that if U, and W, are n-dimensional random vectors and if ¢, is a sequence of

random variables, then U,, = W, 40,(c,,) means that for each fixed ¢, |U,(:)—Wn ()| = 0,(cn)
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as n — oo and similarly for Op(-). The main stepping-stone for getting from Theorem 1 to
Theorem 2 is:

LEMMA 3. Suppose that the function g has p + 2 continuous derwvatives, that f is dif-
ferentiable and that X,,..., X, are each in the interior of the support of f. Assume that
h=h,—0and nh — 00 asn — oco. Then

(1) Song— g+ hrt! {fupHA )( ) du} 9“’:)),+ op(hPH1) p odd
S PSR du}{%f”;ilff i} onlh) p cn

(2) diagonal {8, x(diag 9)ST,} = ()" { [ Ky (@) du} 9/ £) + op{(nh) 1},
(3) diagonal(S, ;) = Op{(nh)™'},
(4) Spa(diag 9)S,,, = Op{(nh)™"}.

PROOF. Results (1) and (2) are direct consequences of Theorem 4.1 of Ruppert and Wand
(1994). Arguments similar to the ones employed there can be used to establish results (3)
and (4).

|

Theorem 2 can be derived from Theorem 1 by repeated application of Lemma 3. For the
conditional bias, Lemma 3 shows that the dominating term of (4) is (S2 — I)v. Since the
location of the X; is arbitrary, the required result follows immediately.

The conditional variance result requires a little more algebra, but is otherwise just as
straightforward to derive. When the numerator of (5) is expanded out, the dominating
terms are seen to be

So{(T —3V*) 4+ 2V} ST = 5, diag(n) ST

where = [(X1),...,7(X,)]T. Application of (2) of Lemma 3 then leads to the desired
result.

REFERENCES

Bickel, P.J. (1992). On adaptive estimation. Annals of Statistics, 10, 647-671.

Buckley, M.J., Eagleson, G.K. and Silverman, B.W. (1988). The estimation of residual

variance in nonparametric regression. Biometrika, 75, 189-200.

Carroll, R.J. (1982). Adapting for heteroscedasticity in linear models. Annals of Statistics,
10, 1224-1233.

15



Dreeben, T.D., and Pope, S.B. (1995). “Pdf and Reynolds-stress modeling of near-wall
turbulent flows.” In Tenth Symposium on Turbulent Shear Flows, (J. Wyngaard, ed.).
pp- 2.1-2.6.

Fan, J. and Gibjels, 1. (1992). Variable bandwidth and local linear regression smoothers.
Annals of Statistics, 20, 2008-2038.

Fan, J. and Gijbels, 1. (1995). Data-driven bandwidth selection in local polynomial fitting:
variable bandwidth and spatial adaptation. Journal of the Royal Statistical Society,
Series B, 57, 371-394.

Hall, P. and Carroll, R.J. (1989). Variance function estimation in regression: the effect of
estimating the mean. Journal of the Royal Statistical Society, Series B, 51, 3—14.

Hastie, T.J. and Loader, C. (1993) Local regression: automatic kernel carpentry (with dis-
cussion). Statist. Sci., 8, 120-143.

Hastie, T.J. and Tibshirani, R.J. (1990). Generalized Additive Models, New York: Chapman
and Hall.

Holst, U., Hossjer, O., Bjorklund, C., Ragnarsson, P., and Edner, H. (1995). Locally weighted
least squares kernel regression and statistical evaluation of LIDAR measurements, un-
der revision for Environmetrics.

Mathur, A. (1995). On estimation of residual variance function (abstract). In Summaries
of papers presented at the Joint Statistical Meetings, Orlando, Florida, August 13-17,
1995, pp. 279.

McCullagh, P. (1987). Tensor Methods in Statistics, London: Chapman and Hall.

Miiller, H.G. and Stadtmiiller, U. (1987). Estimation of heteroscedasticity in regression
analysis. Annals of Statistics, 15, 610-625.

Pope, S.B. (1985). Pdf methods for turbulent reactive flows. Progress in Energy and Com-
bustion Science, 11, 119-192.

Ruppert, D. (1995). Empirical-bias bandwidths for local polynomial nonparametric regres-
sion and density estimation. In preparation.

Ruppert, D. and Wand, M.P. (1994). Multivariate locally weighted least squares regression.
Annals of Statistics, 22, 1346-1370.

Sigrist, M., editor. Air monitoring by spectroscopic techniques (Chemical Analysis Series,

Vol. 127). Wiley, 1994.

Turlach, B.A. and Wand, M.P. (1995). Fast computation of auxiliary quantities in local poly-
nomial smoothing. The University of New South Wales, Australian Graduate School

16



of Management Working Paper Sertes, 95-009.
(URL http://www.agsm.unsw.edu.au/stats/Working.html)

Wand, M.P. and Jones, M.C. (1995). Kernel Smoothing, London: Chapman and Hall.

17



