SCHOLARSHIP srHARVARD

DASH.HARVARD.EDU

Office for Scholarly Communication

DIGITAL ACCESS 10
HARVARD LIBRARY

An Algebraic Approach
to File Synchronization

The Harvard community has made this
article openly available. Please share how
this access benefits you. Your story matters

Citation Ramsey, Norman and Elod Csirmaz. 2001. An Algebraic Approach
to File Synchronization. Harvard Computer Science Group Technical
Report TR-05-01.

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:23853813

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=An%20Algebraic%20Approach%20to%20File%20Synchronization&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23853813
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

An Algebraic Approach to File Synchronization

Norman Ramsey
Division of Engineering and Applied Sciences
Harvard University
Cambridge, USA

Abstract

We present a sound and complete proof system for
reasoning about operations on filesystems. The proof
system enables us to specify a file-synchronization al-
gorithm that can be combined with several different
conflict-resolution policies. By contrast, previous work
builds the conflict-resolution policy into the specifica-
tion, or worse, does not specify the behavior formally.
We present several alternatives for conflict resolution,
and we address the knotty question of timestamps.

1 Introduction

What is a file synchronizer? Suppose there are multi-
ple replicas of a filesystem; perhaps you have one on a
server, one on a computer at home, and one on a lap-
top. If you make different changes at different replicas,
the replicas no longer contain the same information.
A file synchronizer makes them consistent again, while
preserving changes you made.

Not every set of replicas can be made consistent au-
tomatically. For example, if src/hello.c is created
to say "Hello, world" on one replica and "Hello,
Dolly" on another replica, it is not obvious how to
choose one or the other. In cases like these, the file
synchronizer needs a policy for conflict resolution. Rea-
sonable people might differ about what constitutes a
good policy; some alternatives appear in Section 6.

The behaviors of many synchronizers are not speci-
fied precisely; understanding how they detect and re-
solve conflicts can be difficult. Balasubramaniam and
Pierce (1998) represents a major step forward; it spec-
ifies formal requirements for a file synchronizer, and it
derives an algorithm from those requirements. This al-
gorithm is implemented in the Unison file synchronizer.

Unison’s specification is based on reasoning about
states of the file system before and after synchroniza-
tion. This state-based approach leads to an unnec-
essarily narrow view of conflicts. Balasubramaniam
and Pierce (1998) actually builds the conflict-resolution

Eléd Csirmaz
Mihaly Fazekas Secondary Grammar School
Budapest, Hungary

policy into the specification, making it unclear how
to implement an interesting class of conflict-resolution
policies.

We have taken a different approach to specification of
file synchronizers: instead of reasoning about states, we
reason about the operations that are performed at each
replica. This paper makes the following contributions:

e We present an algebra of filesystem operations, to-
gether with algebraic laws that are helpful both for
reasoning about file synchronization and for imple-
menting synchronizers.

o We show that the laws are sound and complete with
respect to a semantic model of file systems.

e We explain conflict detection and resolution in terms
of our algebra, and we show that our technique de-
tects essentially the same conflicts as the state-based
technique of Balasubramaniam and Pierce (1998).!

e We identify useful properties for conflict-resolution
policies, including the disconnected-repair property,
which a file synchronizer enjoys if a user can repair
conflicts by making changes at a single replica. We
also sketch how to express different policies using
our algebra.

An algebraic approach to synchronization can simplify
the specification, implementation, and user interface of
a file synchronizer. It may also be possible to extend al-
gebraic techniques to other synchronization problems,
such as mail folders or PalmOS databases.

2 Formalizing the problem

We consider the synchronization of n replicas of a
filesystem F', numbered Fi,... ,F,. Initially all repli-
cas are identical: F = F; = --- = F,. At each

LOur technique is actually slightly stronger. That is, if our
technique detects a conflict, the state-based algorithm also de-
tects a conflict, but there are cases in which the state-based algo-
rithm detects a conflict that our model handles without conflict.
These cases are uninteresting, however.

replica, users and programs perform operations on the
filesystem. We write S; for the sequence of operations
performed at replica i. The task of the file synchro-
nizer is to compute, for each replica, a sequence S;
that makes the replicas consistent and accounts for
all the operations performed at each replica. If there
are no conflicts, all replicas reach the same new state
Fpost = ST(S1(F1)) = -+ = S;(Sn(Fr)), where we
take sequences of operations to act as functions on the
state of a filesystem.

If order of operations didn’t matter, we could simply
compute S = S;US;U---US, and let S} = S\ S;. Be-
cause order does matter, however, we have to do more
work. The problem comes from pairs of commands that
don’t commute; if C1;Cs has a different effect from
C5;C1, not all orders are equivalent. The Introduc-
tion contains an example of such a pair of commands;
if ¢, writes "Hello, world" and Cy writes "Hello,
Dolly", the last writer wins.

If operations were totally ordered, the problem might
still be fairly simple; we would have to compute the list
of all operations in the proper order, then arrange for
the state of each replica to be as if that list of opera-
tions had been performed. Operations at an individual
replica are totally ordered, but unfortunately we can’t
order operations between replicas. Even if we could
guarantee consistency of timestamps, we wouldn’t want
to use timestamp ordering, because the agents (users
and programs) that perform operations make decisions
about what operations to perform by consulting only
the states of their local replicas. Agents can’t make
decisions based on the results of operations performed
at remote replicas, even if those actions have already
taken place according to some global clock.

We frame the problem of file synchronization as first
finding the set S of all operations that have been per-
formed, then computing a useful subset of S such that
within the subset, all global orderings that are consis-
tent with the local orderings have the same effect. Us-
ing this subset, we can compute the sequences of com-
mands S;" to be applied at each replica. In more detail,
we can synchronize replicas in three steps:

1. Update detection examines each replica to determine
the sequence of commands S; that have been exe-
cuted at the replica.

2. Reconciliation takes as many commands as possible
from the sequences S; and computes the sequences
S} to be executed at each replica.

3. Conflict resolution takes the leftover, “conflicting”
commands and figures out what to do with them.

Our approach simplifies reasoning about all three steps,
and in the third step it offers a significant advance over
previous work: reasoning about commands makes it
possible to devise several conflict-resolution strategies.

3 A precise model of filesystems

We model a hierarchical filesystem in which paths refer
to files and directories. A path is simply a sequence
of names. We use Greek letters for paths, most com-
monly 7. Following Unix conventions, we use the /
character to separate names in a path, and we write /
for the empty path. We write 7 < « iff 7 is a prefix
of v, i.e., if ¥ = m/a for some path «, which might be
empty. We write # < « if 7 is a proper prefix of 7,
that is, 7 < v and 7 # . In filesystem terms, 7 < v
means that 7 is an ancestor directory of v. If 7 A «v
and v A 7, we say that = and vy are incomparable. It
is a fundamental property of hierarchical file systems
that operations taking place at incomparable paths are
independent.

We write parent(w) for the path that immediately
precedes 7. That is, if 7 is not empty, there is a name n
such that 7 = parent(w)/n. The empty path has no
parent.

We model a working filesystem F' as a partial func-
tion mapping paths to files and directories. We write
F(7) to refer to the file or directory at path 7 in filesys-
tem F'. For the contents of a filesystem, we write

F(m) = FILE(m,z) when path 7 contains a file
with metadata m and

contents .
when path 7 contains a
directory with metadata m.
when filesystem F' contains
nothing at path 7; L is
pronounced “missing.”
Metadata may include permissions, ownership, mod-
ification time, etc., but the metadata of a directory
explicitly does not include information about the di-
rectory’s children; that information is encoded in F'.
We write F'(r) = X when we know F'(7) # L but we
don’t care if we're dealing with a file or a directory.
Our model also includes the broken filesystem, which
we write ' = L, pronounced “broken.” A broken
filesystem models the result of an erroneous command,
e.g., deleting a directory with files under it. Broken
filesystems don’t occur in practice, because the operat-
ing system prevents users from breaking the filesystem.
We use a trivial lattice ordering of filesystems in
which the broken filesystem is the bottom element. We
write the lattice ordering F} C F5, pronounced “Fj ap-
proximates F5.” This relation holds whenever F} = L
or when F; and F5 are pointwise equal functions, i.e.,
Fy # 1 and F> # 1 and Vr.Fy(7) = Fy(7).2 The C re-
lation is a partial order, so two filesystems approximate
each other if and only if they are equal.

2Readers familiar with denotational semantics should note
that our ordering is not the ordering typically used for functions;
in particular, if one working filesystem approximates another,
they are identical.

To explain changes to working filesystems, we write
F{r — X} for the function that is like F', except it
maps 7 to X.

X, ifr=r
F(y), otherwise

F{WHX}(V)Z{

We write childless p(m) iff F'(r) has no descendants,
ie,Vy:m <y = F(y)=L1.

4 An algebra of commands

What commands should we use to model operations on
a filesystem? Because users must understand what a
synchronizer is doing, our algebra of commands should
be consistent with users’ mental models of the ac-
tions they and their agents perform on the filesystem.
Users might imagine performing operations like these:
create(m,X) Create file or directory X at 7.
remove () Remove the file or directory that was
at m.
Change the “base name” of a file or
directory to n, while leaving it in the
same place in the hierarchy.

rename(m,n)

Move 7 to n', also moving all
descendants.

move(m, ")

Change an existing file or directory,
in a way that could be reproduced
mechanically. Because the result can
be reproduced, the operation need
not say what the final state is. An
obvious example is compiling a
source to produce a binary.

derive(m)

edit(m, X) Change an existing file or directory,
leaving it in state X, in a way that
can’t be reproduced mechanically.
The distinction between edit and derive is useful be-
cause a user may wish to specify a behavior like “don’t
synchronize derived files.” We distinguish create from
edit because although both operations have the same
postcondition (file with new metadata and contents),
they have different preconditions, so the distinction
may help detect errors. Accordingly, we specify that
to create an existing file, or to edit a nonexistent file,
leaves the filesystem broken.

These high-level operations may be a good model for
users, but they are not so good for deriving synchro-
nization algorithms. We simplify.

e Conceptually at least, move can subsume rename, as
it does in the Unix system (but not in early versions
of DOS).

e Derive can’t be distinguished from edit without
knowledge about how files are derived. To avoid syn-
chronizing derived files, we would be better off with

remove ()

remove () create(m,Y)

edit(m,Y)

edit(m,Y)

Figure 1: State-transition diagram for a path =

a more general mechanism for making files “invisible
to the synchronizer.” We therefore drop derive.

e Finally, although it is not clear a priori, the move
operation makes it more difficult to reason about
synchronization. The crux of the problem is that
the mowve operation affects two different locations
in the filesystem, whereas the other operations af-
fect only one. Accordingly, we replace move(mw, ")
with the sequence remove(m); create(n'). The Uni-
son synchronizer does the same. (A move can also
be difficult to detect, but that is not sufficient reason
to omit it from the algebra.)

Figure 1 shows how these operations change the con-
tents of a filesystem at path 7. Using the simpler op-
erations simplifies synchronization but complicates a
synchronizer’s user interface. Section 6 explains how
to recover a high-level view for interacting with users.

Precise definitions of the commands

We define the effect of each command as a function
from filesystems to filesystems. Any command applied
to a broken filesystem produces a broken filesystem.
In the language of denotational semantics, every com-
mand is strict in the filesystem. Operationally, once a
filesystem is broken, there is no way to fix it. Figure 2
gives the effects of commands on working filesystems.
The command break is not one we expect to use during
synchronization, but it helps us reason about errors. In
particular, by showing that a sequence of commands is
not equivalent to break, we can show those commands
can be executed without error on at least one filesys-
tem.

We are interested only in filesystems that satisfy the
tree property: every parent must be a directory. For-
mally, if 7 < v and F(y) # L then F(n) = DIr(m) for
some m. The commands in Figure 2 maintain the tree
property as an invariant.

The commands have another property that simpli-
fies reasoning. Each command mentions at most one
path 7, and if a command is applied to a working
filesystem, either it breaks the filesystem or it changes
the filesystem only at .

create(m, X) F =

F{r =D
edit(r,DIR(m)) F = {”H R(

F L
remove () F = {W = Lh

edit(m, FILE(m,z)) FF = {
1

break F =

(m)},

F{7r — FILE(m, z)},

iff F(m) =
otherwise
iff F(r) # L
otherwise

iff F(m) # L A childlessp(m)
otherwise

iff F(7) # L A childlessp(m)
otherwise

L A F(parent(mw)) = DIR(---)

Figure 2: Filesystem operations and their semantics

Algebraic laws

Our synchronization algorithm relies on proofs that dif-
ferent sequences of operations can have the same ef-
fects. We could construct such proofs by using the pre-
cise definitions of the commands in Figure 2, but it is
awkward to reason directly about mathematical func-
tions. This section presents the major technical contri-
bution of this paper: a sound and complete proof sys-
tem for reasoning about sequences of commands. This
proof system appears in Table 1; it consists of algebraic
laws that enable us to rewrite pairs of commands, plus
inference rules for substitution and transitivity, which
enable us to extend the rewriting to larger sequences.

We write commands in a sequence separated by
semicolons. These sequences stand for functions from
filesystems to filesystems, as described by this equa-
tion:

(C1; C2)(F) = Co(CL(F)).

We write S for a sequence of commands, and we write
skip for the empty sequence of commands, i.e., the iden-
tity function on filesystems.

Although we want to reason about equivalence, the
central relation of our algebra is not equivalence but ap-
proximation. To understand why, consider a sequence
of two commands: one that creates a file, and a sec-
ond that removes it. You might think this sequence is
equivalent to skip:

’
create(m, X); remove(w) = skip.

Look again; the initial create operation is not safe on all
file systems. If 7 is already present, or if n’s parent is
not a directory, create(n, S) breaks the filesystem. The
correct relation between these two sequences is this:

create(m, X); remove(w) C skip.

We pronounce S; C Sy as “S; approximates S»,”
sometimes “S, is at least as good as S1.” The in-

tended interpretation is that we can use Sy in place
of S; without breaking more filesystems and without
changing working outcomes. Frequently of course, two
sequences are completely equivalent; we write S; = Ss
as an abbreviation for S; C S A S C S1. Most of the
laws in Table 1 do in fact use equivalence; laws using
approximation are marked with the C symbol.

We have organized Table 1 to show that we have
considered all possible pairs of operations. There are
7 pairs involving break. These pairs lead to laws 37-43.
which are consistent with Figure 2; once a filesystem is
broken, no operation can fix it, and we know nothing
about what happened before it broke.

There are 9 pairs of operations not involving break.
Each such operation mentions exactly one path, and
when we have a pair of paths m; and w2, there are
four cases to be considered depending on the values of
w1 < my and mo < y:

m < me Ty X m How we write my, w2
T T T
T F m, w/m
F T w/n', ™
F F)

These combinations account for 36 pairs of operations
and paths, and for the laws numbered 1-36. Laws 3-6
are further split into D and F forms to account for the
difference in semantics between directories and files.
For example, law 5D says that making 7 a directory
commutes with removing a descendant of 7, but law 5F
says that making 7 a file and then removing a descen-
dant always causes an error.> We summarize the proof
system as follows:

3Either 7 originally had no descendants, in which case trying
to remove one is an error, or it did have descendants, in which
case turning it into a file (as opposed to a directory) is an error.

Commuting or approximating pairs

1. edit(m, X); edit(n/n',Y) = edit(n /7', Y); edit(m, X)
2. edit(m/n',Y); edit(m, X) = edit(m, X); edit(w /7', Y)
3Dc. edit(m, DIR(m)); create(n/n',Y) 1
4Dc. create(w/w',Y); edit(w, DIR(m)) C
edit(mw, DIR(m
)); remove (/7)) =
remove(mw/w'); edit (m
,DIR(m)) =
edit(m, DIR(m
7. edit(m, X); edit(p,Y) = edit(p,Y); edit(m, X)
8. edit(m, X); create(p,Y) = create(p,Y); edit(m, X)
X)

5D. edit(mw, DIR(m

6D. remove(rn/7'); edit(m

13. remove(y); edit(m, X) = edit(w, X); remove(p)
14. remove(y); create(w, X) = create(w, X); remove(p)
15. remove(w); remove(yp) = remove(p); remove(m)

Incorrect pairs

3F. edit(m, FILE(m, x)); create(mw/n",Y) = break
4F. create(n/n',Y); edit(m, FILE(m, x)) = break
5F. edit(m, FILE(m,z)); remove(r/n') = break
16. edit(mw, X); create(w,Y’) = break

17. edit(w/n', X); create(m,Y) = break

18. edit(w/7', X); remove(n) = break

19. create(m, X); edit(w /7', Y) = break

20. create(mw, X); create(w,Y) = break

21. create(mw/n', X); create(m,Y) = break

22. create(m, X); remove(rw/n') = break

S1ESZ SZES3

TRANSITIVITY
S1CSs ()

create(m/n',Y); edit(m, DIR(m)) 28

)); create(m/n’,Y)

, DIR(m)) 30c. edit(m, X); edit(m,Y) C edit(m,Y)

)); remove(m/m")

9. edit(m, X); remove(p) = remove(p); edit(m, X)

10. create(p,Y); edit(mw, X) = edit(w, X); create(p,Y")

11. create(mw, X); create(p,Y) = create(p, Y); create(mw, X)
12. create(mw, X); remove(p) = remove(p); create(m, X

N.B. Paths 7 and ¢ are always incomparable. Where we write /7, n’ is always nonempty.

23. create(mw/n', X); remove(w) = break
24. remove(w); edit(w, X) = break

25. remove(r); edit(w/n', X) = break
26. remove(r); create(n/n', X) = break
27. remove(w/w'); create(m, X) = break
remove(T); remove(w) = break

29. remove(w); remove(mw/n') = break

Simplifying laws

31. edit(m, X); remove(w) = remove(w)
32. create(mw, X); edit(m,Y) = create(w,Y)
33c. create(m, X); remove(w) C skip

34c. remove(w); create(m, X) C edit(m, X)

Break is idempotent

37. break;edit(mw, X) = break
38. break; create(w, X) = break
39. break; remove(w) = break
40. edit(m, X); break = break
41. create(mw, X); break = break
42. remove(r); break = break
43. break; break = break

Remaining pairs

6F. remove(n/7'); edit(m, FILE(m, z))
35. create(m, X); create(m/n’,Y)
36. remove(w/n"); remove(m)

Non-pair laws
BoTtTOoM. break C S for any S
REFLEx1VITY. S C S for any S

S1C S

S8 oL g5, g (SUBSTITUTION)
301, L 5;92;

Table 1: Proof system for the filesystem algebra

Laws 1-2 and 3D-6D say what operations involving
a directory and its descendant commute.

Laws 7-15 say that operations involving incompara-
ble paths commute.

Laws 16-29 and 3F-5F say that operations which
violate preconditions break the filesystem.

Laws 30-34 say when an operation can be combined
with a previous operation.

Pairs 35, 36, and 6F, to which no laws apply, show
significant constraints on non-breaking sequences:
parents must be created before children; children
must be removed before parents; and children must
be removed before a directory can be made into a
file.

e Laws 37-43 say that any sequence containing break
is equivalent to break.

e The non-pair laws say that any sequence is at least
as good as break and any sequence is at least as good
as itself.

e The inference rules say we can apply the laws within
longer sequences, repeatedly if needed.

Every pair law except law 3D can be used as a rewrite
rule from left to right.

Soundness and completeness

The proof system in Table 1 is sound and complete. In-
formally, soundness says that any conclusion we draw
using the proof system is safe, and completeness says

that any conclusion we draw using the underlying se-
mantics can also (nearly) be drawn using the proof sys-
tem.

Formally the soundness result is this:

S1 ES2 = VFleESQF

The proof is straightforward, if a bit tedious, by induc-
tion on the proofs of judgments of the form S; C S5.
We used automatic techniques to check the soundness
of the algebraic laws.

Because of the possibility of commands that break
the filesystem, our completeness result is not exactly
what you might expect. We write S; || Sz (pro-
nounced “S; and S> have a common upper bound”)
iff 35: 51 CSAS2 CS. In other words, Sy || S iff
there is some sequence that is at least as good as both
of them. In situations where neither S; nor Sy breaks
the file system, S7, Sz, and the upper bound all have
the same effect. Our completeness result shows that if
the effect of S; approximates the effect of S2 on every
possible filesystem, the two sequences have a common
upper bound:

The implication is this: if there are two sequences of
commands that have the same effect on every filesys-
tem, we can find a third sequence that’s at least as
good as either of the first two—and therefore has the
same effect on whatever filesystems don’t break. We
sketch the proof here; details will be relegated to an
accompanying technical report.

We divide the proof into two cases. Suppose first
that VF.S1F = L1, that is, S; breaks all filesystems.
By identifying the shortest prefix of S; that has this
property, and by reasoning about the last operation in
that prefix, we can show S; = break, and break C S
holds for any S3, so S; C S; and S is the common
upper bound.

In the interesting case, IF.S51 F # 1, and S1 F C So F
gives S1F = SoF # 1. We define minimal sequences
by considering the sets ps = {S'|S C S'}, and we let
S™m he any sequence in pg of minimal length. (The
set is not empty because it contains S.) We show that
Sy ™MnE = S,™ " F % | and that break does not appear
in either sequence. The proof of completeness has three
main steps.

1. Because there is a filesystem that S;™" and §,™"
do not break, no law mentioning break applies. Be-
cause they are of minimal length, no simplifying law
applies. We conclude that in a minimal sequence,
no path is mentioned more than once.

2. The sequences S;™" and S>™" must contain ex-

actly the same set of commands. The key insight
is that a command mentioning path 7 either breaks
the filesystem or changes it only at 7.

3. By applying commutative laws, we can rewrite
S1™" and S»™™ into a canonical sequence S. We
use the following canonical ordering, which first or-
ders commands by classes and then by pathname
within class.

(a) Commands of the form edit(m, DIR(m)), in any
order determined by 7.

(b) Commands of the form create(w, X), in preorder.
(c) Commands of the form remove(r), in postorder.

(d) Commands of the form edit(m, FILE(m, z)), in any
order determined by .

To rewrite sequences into this form, we may ap-
ply law 4D, so the strongest result we can get is
Sy C S 3853, not equivalence. The canonical se-
quence S may be better than S; and Ss, that is,
it may be correct on more filesystems, but whenever
S1 or Sy works, S works and has exactly the same
effect.

5 Using the algebra

We have applied our algebra to the three steps of file
synchronization: update detection, reconciliation, and
conflict resolution.

Update detection

Typical filesystems don’t keep logs of the operations
that were performed on a filesystem; instead, we have
to look at two states of a filesystem, F; and F), and
find a minimal sequence of operations S; such that
F! = S;(F;). We can do so by visiting all the non-L
paths in each filesystem. As shown in Figure 1, by
comparing F;(r) with F](r), we can decide whether
a create, remove, or edit has taken place. We could
conceivably infer an edit operation for each path that
is populated in both filesystems; this strategy corre-
sponds to the “trivial update detector” mentioned by
Balasubramaniam and Pierce (1998). But this strategy
makes the cost of synchronization proportional to the
size of the filesystem, not the size of what has changed.
To do better, we need to know which paths have iden-
tical values in both filesystems; no edit operations are
needed for such paths.

Unfortunately, in typical use F; represents the state
of the filesystem at the last synchronization, F; rep-
resents the current state, and we may wish not to
keep a copy of F; available indefinitely.* Even if
we keep a copy, comparing contents of files may be
expensive. Accordingly, file synchronizers typically

4Some operating systems, such as Plan 9, use write-once op-
tical disks to make it cheap to reconstruct the state of a past
filesystem (Thompson 1995), but such facilities are not common.

keep a snapshot of F;, which is a copy of F; that
includes directory structure and metadata but omits
the contents of files. That is, the snapshot saves
FILE(m, 1) instead of FILE(m,). An alternative is to
save FILE(m, h(z)), where h is a fingerprinting hash
function (Broder 1993). The assumption is that in
practice, we can avoid examining most contents be-
cause no operation changes the contents of a file with-
out also changing its metadata. The details of exactly
what metadata might change are subtle; for exam-
ple, because Unix filesystems can rename files without
changing their modification times, looking at modifi-
cation time alone can miss updates. Looking at both
modification time and inode number suffices; Section 3
of Balasubramaniam and Pierce (1998) has details.

Once we have decided on the create, remove, and edit
operations that are needed, we can put these operations
into canonical order. Our completeness theorem tells
us that the canonical sequence is at least as good as
what actually happened.

Reconciliation

Balasubramaniam and Pierce (1998) characterizes the
requirements on a synchronizer using two slogans:
(1) propagate all non-conflicting operations and (2) if
operations conflict, do nothing. The value of our ap-
proach is that it enables choices about what to do at
a conflict; our second slogan is therefore (2) save con-
flicting operations for later resolution.

We define conflicting operations using the minimal
sequences found by the update detector. Consider
two commands C;(w) € S; and C;(y) € S;, where
t # 7, and S; and S; are minimal sequences such that
F; = Si(F) and F; = S;(F). We say C;(m) and C;(7)
are conflicting commands iff (C; ¢ S;) A (C; ¢ S;) and
one of the following holds:

o Ci(m);Ci(v) N Cj(v); Ci(m), i.e., the commands do
not commute.

o Ci(m);Cj(vy) = break or C;(v); Ci(w) = break, i.e.,
the commands break every filesystem.

When C; and C> conflict, we write C; @ Cs.

The reconciler takes the sequences Si,...,S, that
are computed to have been performed at each replica.
It computes sequences S*i,...,5*, that make the
filesystems as close as possible. The idea of the algo-
rithm is that a command C' € S; should be propagated
to replica j (included in S7) iff three criteria are met:

e C ¢ 8, ie., C has not already been performed at
replica j

e no commands at replicas other than ¢ conflict with C'

e no commands at replicas other than ¢ conflict with
commands that must precede C'

A command C' must precede command C' iff they ap-
pear in the same sequence S;, C' precedes C in S;, and
they do not commute (C';C' }{ C; C").

To see why we have to worry about conflicts on com-
mands that must precede C, consider this example.
Suppose in the original filesystem F'(7w) = FILE(mg, z).
We got two replicas by performing these commands:

Fy = (edit(m, DIR(m)); create(n /n, FILE(my,, w))) F
F, = edit(w, FILE(m,, 2)) F.

Commands edit(m, DIR(m)) and edit(r, FILE(m,, z))
do not commute, so they are conflicting commands.
Therefore we cannot apply command edit(m, DIR(m))
to replica 2. Because edit(m, DIR(m)) must precede
create(m /n, FILE(m,,,w)), we cannot propagate the
command create(m/n, FILE(m,,, w)) either.

Given our three criteria, the reconciliation algorithm
must be equivalent to the following:

for : € 1..n do
make S7 empty
fori € 1.n do
for j € 1.n do
for every command C € S; do
if C should be propagated to replica j then
append C' to S}

The algorithm is easily modified to compute the sets of
conflicting commands S? as well as the sequences S .

6 Implementation

A prototype

To verify that our algorithms can be implemented and
that they work as we expect, we have written a proto-
type implementation. The program is about 700 lines
of Perl; when blank lines and comments are removed,
under 400 lines remain. The program handles only two
replicas, and it does not modify the filesystem; it sim-
ply computes the sequences S7 and S;. Because it is a
prototype, the program does not use a snapshot of the
filesystem; instead we give it a complete copy of the
original. The prototype also takes a simplified view of
metadata; for example, the metadata for a directory is
reduced to a single bit, which tells whether the program
has permission to write the directory.

We have also started integrating our synchronization
algorithm into the Unison synchronizer.

Scaling up to a real implementation

Although users may have a rich mental model of filesys-
tem operations, it’s easier to develop an effective proof
system and a correct synchronization algorithm if we
keep the algebra small. Still, there is no reason to make

the users suffer. After the synchronizer has computed
the reconciling sequences S; and the conflicting oper-
ations S?, we recommend introducing new operations
to present these sequences to a user.

Collapsing ordered operations

In a minimal sequence, the only ordering constraints
are those imposed by laws 3D, 21, and 29, as well as
the pairs 6F, 35, and 36. Informally, parents must be
created before children, and children must be removed
before parents. We can eliminate ordering constraints
by collapsing create and remove operations into opera-
tions on their parents. The collapsed operations might
be called create subtree, remove subtree, and edit into
subtree. The “collapsed form” of a minimal sequence is
convenient because it enables us to forget about order,
treating the sequence as a set. It should be helpful in a
user interface. Not only is the subtree operation easier
to understand, but if operations must be approved by
users, as in the Unison synchronizer, the collapsed form
makes it impossibe for a user to approve an inconsis-
tent set of operations (e.g., approving the creation of
a file without also approving the creation of its parent
directory).

Explicit move

We recommend introducing move, using the definition
move(m, ') = remove(w); create(n’, X), where X is the
contents of the original filesystem at w. Because the
algebraic laws governing move are complex, we recom-
mend that move be introduced only after reconcilia-
tion, to describe either actions to be taken or conflict-
ing commands. Using move has three benefits.

1. Performance. If an agent at one replica has moved
a file from 7 to 7', the instructions for performing
the same action at other replicas need mention only
the paths m and 7’. If we treat the move operation
as a deletion and creation, the instructions sent to
other replicas must include the full contents of the
file.

There are other solutions to this performance prob-
lem. In particular, if the synchronizer retains a
“fingerprint” that uniquely identifies the contents of
each file (Broder 1993), then one can build a trans-
port layer that avoids sending the contents of any
file whose contents are already available at another
replica. But to realize the performance improve-
ment, the synchronizer must be careful to send the
create operation before the remowve operation, lest
contents that were available be discarded before they
are needed. This ordering may conflict with order-
ings used in the user interface, e.g., lexicographic
ordering by pathname, or ordering by type of oper-
ations at the convenience of the user.

2. Retention of metadata. We wish to be able to syn-
chronize replicas that reside under different operat-
ing systems, such as Windows, Unix, and MacOS.
Because each operating system has different meta-
data, it is in general impossible to preserve meta-
data when sending instructions between replicas un-
der different operating systems. But there is an im-
portant special case, namely, a user running discon-
nected at F; wishes to restructure a directory whose
contents contain metadata representable only at F.
If our algebra includes a move operation, we can
propagate renaming operations from F} to F» with-
out losing metadata that makes sense only at Fy. If
we do not have move, but must rely on create, we
only send back to F, the results of a “best effort”
to represent Fb’s metadata on F, and we are likely
to lose metadata like Windows access-control lists.
(A formal characterization of “best effort” would be
worthwhile, but it is beyond the scope of this paper.)

3. Usability. The most important reason to keep mowve
is to reduce the cognitive burden on users. The Uni-
son synchronizer, for example, first decides on a set
of transactions, then asks its users to approve them.?
If a user is asked to approve a move operation,
the user knows—from purely local information—
that the contents of the renamed file will not be
lost. But if the mowe is split into separate create and
remove operations, these operations may be widely
separated in the list of transactions; and a user want-
ing to be sure the remove is safe must inspect the
entire list.

A move command also eliminates the possibility of
an error in which a user approves the remove but
not the corresponding create, resulting in loss of con-
tents at one replica.

Resolving conflicts

By themselves, algebraic laws don’t tell us what to
do with conflicting commands. Balasubramaniam and
Pierce (1998) derives, from first principles, postcondi-
tions that completely determine a conflict-resolution
policy. Our approach allows more freedom, which en-
ables us to consider requirements for resolving conflicts.
Three assumptions are common to both approaches:

e If there are no conflicts, the replicas are identical
after synchronization.

5Unison’s transactions do not resemble the operations advo-
cated in this paper. Instead, Unison offers three choices: make F}
like F, make F3 like Fy, or do nothing. Interestingly, Unison’s
update-detection algorithm uses the operations in this paper (re-
move, create, edit, and skip), and it suggests a transaction based
on what operation was performed at each replica. To help the
user make a decision, Unison presents these operations in a sim-
plified form. This form does not distinguish create from edit,
and it collapses subtree operations as described above.

e Even in the presence of conflicts, the synchronizer
preserves the knowledge of what changes were made
by users.

e The knowledge of a human being is required to
resolve conflicts. The human being is given the
states F; of the replicas, and the human being re-
solves conflicts by specifying either a new state F)
for each replica or a sequence of commands S'; to
be performed at each replica.® In a state-based ap-
proach, the synchronizer must be capable of estab-
lishing the desired state at each replica.

Balasubramaniam and Pierce (1998) resolves con-
flicts by ignoring conflicting commands. This policy
preserves the information created at each replica, but
that information is available only at the local repli-
cas; disconnected repairs are impossible. We say that a
synchronizer enjoys the disconnected-repair property if,
no matter what the state of any replica, the following
scenario is possible:

1. A synchronization is initiated (by human or other
agency), and the synchronizer runs without human
intervention.

2. The replicas are disconnected.

3. A human being resolves conflicts at one replica, leav-
ing the other replicas unchanged. All information
necessary to resolve conflicts must be present at each
replica.

4. The replicas are reconnected, a second synchroniza-
tion (“resynchronization”) is initiated, and it runs
without human intervention.

5. The two replicas are identical.

If a person is to resolve conflicts, the synchronizer
must tell the person what conflicts have occurred. An
obvious mechanism would be to replicate information
about conflicting commands, and to use a special user
interface that would show this information and would
enable people to resolve conflicts. But a special user
interface may be unnecessary. Suppose instead that
the synchronizer establishes a different postcondition:
After synchronization, all replicas are identical. This
means the synchronizer must somehow encode in the
file system the information from both replicas. This
encoding may be confusing, but the postcondition has
compensating advantages.

e The user can determine the states of all replicas by
examining a single replica.

8Human beings are of course free to write computer programs
that compute new states or commands.

e The user need not remember what conflicts occurred
at the most recent synchronization, because those
conflicts manifest themselves as contents of the file
system.

e The user can make disconnected repairs by mutat-
ing one replica until it reaches a desired state. Work
can then proceed at that replica without resynchro-
nization.

If results from synchronization are to be encoded
in the filesystem, whenever there is a conflict at a
pathname, the synchronizer must preserve, at all repli-
cas, the distinct contents held by that pathname at
each replica. To return to the example from the In-
troduction, hello.c might become hello.c@server,
hello.c@home, and hello.c@laptop. But what hap-
pens to the original pathname, hello.c? We see three
choices:

e Remove the name. This choice makes the conflict
hard to overlook, but it has the disadvantage that
if a pathname disappears, programs that rely on it
may fail. In severe cases, a user may be unable to
log in (e.g., a conflict occurs at /bin/sh).

e Declare one replica the master, and let the pathname
reflect the value at the master replica. A permanent
master could be designated, but it might also be
useful to make the master the replica at which the
synchronization was initiated. The advantage is that
the master replica probably keeps working.

o Let the replica with the latest modification time win.
This choice seems to offer the greatest risk—it may
leave all replicas in unusable states—without any
compensating advantages.

Metadata and modification times

Users have a right to expect that a synchronizer will
propagate a file’s metadata as well as its contents. Most
metadata can be propagated without difficulty, but be-
cause clocks at different replicas may show different
times, propagating modification times can cause prob-
lems. Here are some requirements on timestamps:

1. If the synchronizer thinks two replicas of a file are
identical, those replicas should bear identical times-
tamps. This requirement ensures that the files are
treated as identical by other synchronization tools,
by Make, by find, etc.

2. When copying files from one replica to another, syn-
chronization should not change the relative order of
the timestamps. This requirement preserves the cor-
rect behavior of Make. An early version of Unison
used the time of synchronization as the modification
time, sometimes leading Make to treat obsolete files
as up to date.

3. Timestamps at a single replica should be such that,
if a user waits for one time unit to pass, then modi-
fies or creates a file, that file will bear a modification
time that is greater than the modification time of any
other file at that replica. This requirement is essen-
tial for Make to function correctly. If it is violated
(e.g., because the system clock gets out of whack)
the problem can be difficult to diagnose.

4. The outcome of a synchronization should depend
only on the state of the two file systems being syn-
chronized, not on the time at which the synchroniza-
tion takes place. The argument for this requirement
is that synchronization itself should not be seen as
an operation on the filesystem, only as a way of prop-
agating existing operations.

Requirements 2 and 3 are satisfied if this a more gen-
eral condition holds: If the user performs creation and
modification operations at both replicas, and if these op-
erations are totally ordered, then after the synchronizer
runs, the timestamps on synchronized files respect this
total order. “Totally ordered” means not only ordered
in real time, but ordered up to the ability of the local
system to distinguish the actions. If a user changes
two files 10 milliseconds apart, and time stamps have
a granularity of one second, these two actions are not
totally ordered.

The local clock provides an adequate total ordering
for events at one replica, no matter what rate it runs
at, provided it runs forward. The awful truth is that
there is no way to tell when events at different replicas
should be totally ordered, even when users take care
to order them. As noted in Section 2, even if there
is a global clock, we can’t rely on it, because we can’t
know post hoc whether operations ordered in time were
so ordered intentionally or accidentally.

If there is no consistent global clock, as is typically
the case, the problems get worse; in the presence of
clock skew, the conditions above cannot all be satisfied
simultaneously. For example, if replica F; is running
an hour ahead of replica F>, then changes to files mod-
ified within the last hour cannot be propagated to F5
without either giving them different time stamps or vi-
olating the total ordering. We believe it is better to
give them different time stamps.” If the time skew is
small, it may be even better to freeze synchronization
for a few seconds, allowing the clock at F5 to catch up
with the latest modification time at F;. A formal study
of synchronization in the presence of clock skew might
yield more convincing recommendations.

"Even in this case, a synchronizer might well have to wait
one tick at F» for every file synchronized, in order to respect the
total order without creating any files “newer than now.”

10

7 Related work

Conflict detection

Balasubramaniam and Pierce (1998) phrases update
detection in terms of dirty sets. Using our notation,
the result of update detection applied to original filesys-
tem F' and replica Fj is a set dirty;, which must satisfy
two properties:

e & dirtyy, = Fi(n) =
haven’t changed

F(m), i.e., clean files

o /7' € dirty;, = = € dirty,, i.e., if a path is dirty
its parent is dirty

A dirty set is a safe estimate of paths where changes
have been made; a good update detector computes the
smallest possible dirty set. There is a dirty-set conflict
at path = iff = € dirty; N dirty; and F;(m) # Fj(m)
and either Fj(m) or Fj(m) is a file. (The specification
in Balasubramaniam and Pierce (1998) ignores direc-
tory metadata, so all directories are considered identi-
cal. Unison’s implementation does not ignore directory
metadata.)

We had expected our definition of conflicts, which
uses conflicting commands, to be equivalent to the def-
inition based on dirty sets. It turns out that our defini-
tion is strictly more liberal, but not in a terribly inter-
esting way. The following example shows it is possible
to have a dirty-set conflict without having conflicting
commands. Let the original filesystem and the two
replicas be given by these equations:

F ={/w Dir(m),/d — DIr(m), /d/f — FILE(m,,z)}
F) = (remove(/d/£); remove(/d))F
Fy = (remove(/d/f))F.

The least dirty sets must be

dirtyl = {/7 /dv /d/f}
di?"tyZ = {/7 /dv /d/f}

N.B. /4 € dirty, because replica 1 changed at /d, but
/d € dirty, because /d/f € dirty, and parents of dirty
paths are dirty. We have a dirty-set conflict at /d be-
cause it is dirty in both replicas and Fj(/d) is not a
directory.

Our algebra finds no conflict. S; = remove(/d/f);
remove(/d) and S; = remove(/d/f), so there are no
conflicting commands. In practice, we can safely apply
remove(/d) to replica 2, so we believe this example
should be considered non-conflicting.

To show our algebra is more liberal, we show that
whenever there are conflicting commands, there is a
dirty-set conflict. For consistency with Balasubrama-
niam and Pierce, we assume that all directories have

the same metadata and write simply DIR for directo-
ries. We assume we have unbroken filesystems F, F}, F»
and we have the minimal sequences S; and S; and
the dirty sets dirty; and dirty; from the update detec-
tors. Finally, we assume that the minimal sequences
do not contain unnecessary commands of the form
edit(m, DIR). That is, because all directories have the
same metadata, if F(7) = DIR then the command
edit(m, DIR) must not appear in S; or Ss.

If two commands conflict, one path must precede the
other, since otherwise the commands would commute.
Without loss of generality, we number the replicas to
choose Cy(mw) € S; and Cy(w/7) € Sz, , where # may
be empty, such that C;(w) @ C2(w/7). We prove there
is a dirty-set conflict at path .

Because each sequence S; is of minimal length, we
know that Fi(w) # F(w) and Fy(m/#) # F(n/#).
Therefore = € dirty, and n/# € dirty,. Because dirty
sets are closed under the parent relation, 7/7 € dirty,
means 7 € dirty,. What we have left to show is that
Fi(m) # Fx(m), and in particular either Fj () or Fy(m)
is not a directory.

Suppose that Fi(m) = Fp(w) = DIR. Because S;
is minimal, Cy(w) is the only command in S; that
mentions path 7, and so Fy(m) = (C1(7)F)(7) = DIR.
We conclude that C;(7) must be either create(w, DIR)
or edit(m,DIR). In either case we can be sure that
F(n) # DIR because otherwise edit(m, DIR) could be
removed from S;, contradicting our assumptions. By
assumption, F>(w) = DIR, so there must be a com-
mand in S that mentions m; call it C4(7). By sim-
ilar reasoning C4(7) must be either create(w, DIR) or
edit(m, DIR), and since the replicas have the same ini-
tial and final states at =, in fact Cy(7) = C4(7). But
this forces C4(m) € Sa, which contradicts the assump-
tion that Cy(7) @ Cy(7/7). Therefore Fy(m) and Fy(7)
cannot both be directories.

Similar reasoning shows that Fj(w) # Fz(w), and
therefore we have a dirty-set conflict at .

Other synchronizers

Space limitations preclude a thorough discussion of
other synchronizers here. Commercial file synchroniz-
ers include Microsoft’s Briefcase (Schwartz 1996; Mi-
crosoft 1998) and Leader Technologies’ PowerMerge.
Puma Technologies’ IntelliSync solves a related prob-
lem: synchronizing various kinds of database files used
in handheld and other computers (Puma a; Puma b).
In addition to the Unison synchronizer (Balasubra-
maniam and Pierce 1998), there is an experimental
synchronizer developed by the Rumor project (Rei-
her et al. 1996). Balasubramaniam and Pierce (1998)
discusses some of these synchronizers, as well as con-
nections to research in distributed file systems and
databases. There is also the more recent Reconcile syn-

11

chronizer (Howard 1999).

8 Discussion

Balasubramaniam and Pierce (1998) specifies a file syn-
chronizer by presenting preconditions and postcondi-
tions for the states of two filesystems before and af-
ter synchronization. Although these conditions com-
pletely determine a synchronization algorithm, we hope
to have convinced you that other postconditions might
be equally desirable, or possibly even more desirable.
By reasoning about an algebra of operations instead
of states, we have shown that there can be a family of
specifications for file synchronizers, each of which could
be considered correct. Different members of the fam-
ily might offer different tradeoffs in their treatments of
conflicting commands. Our algebraic approach illumi-
nates the design space.

Our approach also shows additional promise, because
the filesystem algebra is not the only interesting algebra.
For example, the mail systems such as MH use filesys-
tems to hold electronic mail. Directories represent mail
folders, and files represent messages. File names rep-
resent message numbers. The message numbers them-
selves are not important. More precisely, although mes-
sage numbers at an individual replica should not be
changed gratuitously, it might be acceptable to have
different message numbers at different replicas, and it
might be acceptable if message numbers changed as a
result of synchronization.

The mail-folder algebra corresponds not to filesys-
tem operations but to mail-handling commands: rmm,
which removes a message; refile, which moves a mes-
sage between folders; and inc, which accepts delivery
of new messages. Such commands assign message num-
bers and maintain internal invariants, e.g., the integrity
of .mh_sequences. One may also see a rare edit oper-
ation, e.g., to patch botched headers, to reformat un-
readable content created by Microsoft products, etc.
A critical difference in the mail algebra is that messages
should not be identified by pathname, but rather by
contents. For messages that conform to RFC 822, the
value of the Message-Id field can stand in for the con-
tents. Our synchronization algorithm and proof tech-
niques may nevertheless apply to this new algebra.

Existing synchronizers are either ill-specified (as are
many of the commercial tools) or inflexible (Balasub-
ramaniam and Pierce 1998). An algebraic approach
seems to offer a natural and understandable path to
specification and implementation of a file synchronizer,
but the real potential advantages lie in two areas.

e Our algebraic approach leads not to a single syn-
chronization algorithm, but to a family of possible
algorithms. The approach seems especially useful
for exploring different ways of resolving conflicts.

o We hypothesize that an algebraic approach may be
useful for other synchronization problems, such as
synchronizing mail folders, PalmOS databases, or
other kinds of files with internal structure.

In the long run, it may even be possible to build a
synchronizer that is parameterized by an algebra, an
update detector, and a conflict resolver. One could
extend such a synchronizer without having to prove
the whole thing correct; instead, one could limit one’s
effort to proving the soundness of the algebraic laws
and of the update detector.

Acknowledgments

Thanks to Benjamin Pierce for comments on this pa-
per, and also for many stimulating discussions of file
synchronization, especially during ICFP’99. Thanks to
Tony Hoare for suggesting we focus on the refinement
ordering. This work was supported by NSF grant CCR-
0096069 and by the Research Science Institute, which
is sponsored by the Center for Excellence in Education.

References

Balasubramaniam, Sundar and Benjamin C. Pierce.
1998 (October). What is a file synchronizer? In
Proceedings of the 4th Annual ACM/IEEE In-
ternational Conference on Mobile Computing and
Networking (MOBICOM-98), pages 98-108, New
York. See the Unison home page at http://www.
cis.upenn.edu/ bcpierce/unison.

Broder, Andrei. 1993. Some applications of Rabin’s fin-
gerprinting method. In Capocelli, R., A. De San-
tis, and U. Vaccaro, editors, Sequences II: Methods
in Communications, Security, and Computer Sci-
ence, pages 143-152. Springer-Verlag.

Howard, John H. 1999. Reconcile user’s guide. Tech-
nical Report TR99-14, Mitsubishi Electronics Re-
search Lab.

Microsoft. 1998. Microsoft Windows 95: Vision for
mobile computing. http://www.microsoft.com/
windows95/info/w95mobile.htm.

Puma. Designing effective synchronization solutions: A
White Paper on Synchronization from Puma Tech-
nology. http://www.pumatech.com/syncwp.html.

. A white paper on DSX!™ Technology — Data
Synchronization Extensions from Puma Technol-
ogy. http://www.pumatech.com/dsxwp.html.

12

Reiher, P., J. Popek, M. Gunter, J. Salomone, and
D. Ratner. 1996 (June). Peer-to-peer reconcil-
iation based replication for mobile computers.
In Furopean Conference on Object Oriented Pro-
gramming 96 Second Workshop on Mobility and
Replication.

Schwartz, Stu. 1996 (May). The Briefcase—in brief.
Windows 95 Professional. http://www.cobb.com/
w9p/9605/w9Ip9651.htm.

Thompson, Ken. 1995. The Plan 9 file server. In
Plan 9: The Documents, pages 313-320. Murray
Hill, New Jersey: Computing Sciences Research
Center, AT&T Bell Laboratories.

