
An Algebraic Approach
to File Synchronization

The Harvard community has made this
article openly available. Please share how
this access benefits you. Your story matters

Citation Ramsey, Norman and Elöd Csirmaz. 2001. An Algebraic Approach
to File Synchronization. Harvard Computer Science Group Technical
Report TR-05-01.

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:23853813

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=An%20Algebraic%20Approach%20to%20File%20Synchronization&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23853813
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

An Algebrai
 Approa
h to File Syn
hronization

Norman Ramsey

Division of Engineering and Applied S
ien
es

Harvard University

Cambridge, USA

El}od Csirmaz

Mihaly Fazekas Se
ondary Grammar S
hool

Budapest, Hungary

Abstra
t

We present a sound and
omplete proof system for

reasoning about operations on �lesystems. The proof

system enables us to spe
ify a �le-syn
hronization al-

gorithm that
an be
ombined with several di�erent

on
i
t-resolution poli
ies. By
ontrast, previous work

builds the
on
i
t-resolution poli
y into the spe
i�
a-

tion, or worse, does not spe
ify the behavior formally.

We present several alternatives for
on
i
t resolution,

and we address the knotty question of timestamps.

1 Introdu
tion

What is a �le syn
hronizer? Suppose there are multi-

ple repli
as of a �lesystem; perhaps you have one on a

server, one on a
omputer at home, and one on a lap-

top. If you make di�erent
hanges at di�erent repli
as,

the repli
as no longer
ontain the same information.

A �le syn
hronizer makes them
onsistent again, while

preserving
hanges you made.

Not every set of repli
as
an be made
onsistent au-

tomati
ally. For example, if sr
/hello.
 is
reated

to say "Hello, world" on one repli
a and "Hello,

Dolly" on another repli
a, it is not obvious how to

hoose one or the other. In
ases like these, the �le

syn
hronizer needs a poli
y for
on
i
t resolution. Rea-

sonable people might di�er about what
onstitutes a

good poli
y; some alternatives appear in Se
tion 6.

The behaviors of many syn
hronizers are not spe
i-

�ed pre
isely; understanding how they dete
t and re-

solve
on
i
ts
an be diÆ
ult. Balasubramaniam and

Pier
e (1998) represents a major step forward; it spe
-

i�es formal requirements for a �le syn
hronizer, and it

derives an algorithm from those requirements. This al-

gorithm is implemented in the Unison �le syn
hronizer.

Unison's spe
i�
ation is based on reasoning about

states of the �le system before and after syn
hroniza-

tion. This state-based approa
h leads to an unne
-

essarily narrow view of
on
i
ts. Balasubramaniam

and Pier
e (1998) a
tually builds the
on
i
t-resolution

poli
y into the spe
i�
ation, making it un
lear how

to implement an interesting
lass of
on
i
t-resolution

poli
ies.

We have taken a di�erent approa
h to spe
i�
ation of

�le syn
hronizers: instead of reasoning about states, we

reason about the operations that are performed at ea
h

repli
a. This paper makes the following
ontributions:

� We present an algebra of �lesystem operations, to-

gether with algebrai
 laws that are helpful both for

reasoning about �le syn
hronization and for imple-

menting syn
hronizers.

� We show that the laws are sound and
omplete with

respe
t to a semanti
 model of �le systems.

� We explain
on
i
t dete
tion and resolution in terms

of our algebra, and we show that our te
hnique de-

te
ts essentially the same
on
i
ts as the state-based

te
hnique of Balasubramaniam and Pier
e (1998).

1

� We identify useful properties for
on
i
t-resolution

poli
ies, in
luding the dis
onne
ted-repair property,

whi
h a �le syn
hronizer enjoys if a user
an repair

on
i
ts by making
hanges at a single repli
a. We

also sket
h how to express di�erent poli
ies using

our algebra.

An algebrai
 approa
h to syn
hronization
an simplify

the spe
i�
ation, implementation, and user interfa
e of

a �le syn
hronizer. It may also be possible to extend al-

gebrai
 te
hniques to other syn
hronization problems,

su
h as mail folders or PalmOS databases.

2 Formalizing the problem

We
onsider the syn
hronization of n repli
as of a

�lesystem F , numbered F

1

; : : : ; F

n

. Initially all repli-

as are identi
al: F = F

1

= � � � = F

n

. At ea
h

1

Our te
hnique is a
tually slightly stronger. That is, if our

te
hnique dete
ts a
on
i
t, the state-based algorithm also de-

te
ts a
on
i
t, but there are
ases in whi
h the state-based algo-

rithm dete
ts a
on
i
t that our model handles without
on
i
t.

These
ases are uninteresting, however.

1

repli
a, users and programs perform operations on the

�lesystem. We write S

i

for the sequen
e of operations

performed at repli
a i. The task of the �le syn
hro-

nizer is to
ompute, for ea
h repli
a, a sequen
e S

�

i

that makes the repli
as
onsistent and a

ounts for

all the operations performed at ea
h repli
a. If there

are no
on
i
ts, all repli
as rea
h the same new state

F

post

= S

�

1

(S

1

(F

1

)) = � � � = S

�

n

(S

n

(F

n

)), where we

take sequen
es of operations to a
t as fun
tions on the

state of a �lesystem.

If order of operations didn't matter, we
ould simply

ompute S = S

1

[S

2

[� � �[S

n

and let S

�

i

= S nS

i

. Be-

ause order does matter, however, we have to do more

work. The problem
omes from pairs of
ommands that

don't
ommute; if C

1

;C

2

has a di�erent e�e
t from

C

2

;C

1

, not all orders are equivalent. The Introdu
-

tion
ontains an example of su
h a pair of
ommands;

if C

1

writes "Hello, world" and C

2

writes "Hello,

Dolly", the last writer wins.

If operations were totally ordered, the problemmight

still be fairly simple; we would have to
ompute the list

of all operations in the proper order, then arrange for

the state of ea
h repli
a to be as if that list of opera-

tions had been performed. Operations at an individual

repli
a are totally ordered, but unfortunately we
an't

order operations between repli
as. Even if we
ould

guarantee
onsisten
y of timestamps, we wouldn't want

to use timestamp ordering, be
ause the agents (users

and programs) that perform operations make de
isions

about what operations to perform by
onsulting only

the states of their lo
al repli
as. Agents
an't make

de
isions based on the results of operations performed

at remote repli
as, even if those a
tions have already

taken pla
e a

ording to some global
lo
k.

We frame the problem of �le syn
hronization as �rst

�nding the set S of all operations that have been per-

formed, then
omputing a useful subset of S su
h that

within the subset, all global orderings that are
onsis-

tent with the lo
al orderings have the same e�e
t. Us-

ing this subset, we
an
ompute the sequen
es of
om-

mands S

�

i

to be applied at ea
h repli
a. In more detail,

we
an syn
hronize repli
as in three steps:

1. Update dete
tion examines ea
h repli
a to determine

the sequen
e of
ommands S

i

that have been exe-

uted at the repli
a.

2. Re
on
iliation takes as many
ommands as possible

from the sequen
es S

i

and
omputes the sequen
es

S

�

i

to be exe
uted at ea
h repli
a.

3. Con
i
t resolution takes the leftover, \
on
i
ting"

ommands and �gures out what to do with them.

Our approa
h simpli�es reasoning about all three steps,

and in the third step it o�ers a signi�
ant advan
e over

previous work: reasoning about
ommands makes it

possible to devise several
on
i
t-resolution strategies.

3 A pre
ise model of �lesystems

We model a hierar
hi
al �lesystem in whi
h paths refer

to �les and dire
tories. A path is simply a sequen
e

of names. We use Greek letters for paths, most
om-

monly �. Following Unix
onventions, we use the =

hara
ter to separate names in a path, and we write =

for the empty path. We write � �
 i� � is a pre�x

of
, i.e., if
 = �=� for some path �, whi
h might be

empty. We write � �
 if � is a proper pre�x of
,

that is, � �
 and � 6=
. In �lesystem terms, � �

means that � is an an
estor dire
tory of
. If � 6�

and
 6� �, we say that � and
 are in
omparable. It

is a fundamental property of hierar
hi
al �le systems

that operations taking pla
e at in
omparable paths are

independent.

We write parent(�) for the path that immediately

pre
edes �. That is, if � is not empty, there is a name n

su
h that � = parent(�)=n. The empty path has no

parent.

We model a working �lesystem F as a partial fun
-

tion mapping paths to �les and dire
tories. We write

F (�) to refer to the �le or dire
tory at path � in �lesys-

tem F . For the
ontents of a �lesystem, we write

F (�) = File(m;x) when path �
ontains a �le

with metadata m and

ontents x.

F (�) = Dir(m) when path �
ontains a

dire
tory with metadata m.

F (�) = ? when �lesystem F
ontains

nothing at path �; ? is

pronoun
ed \missing."

Metadata may in
lude permissions, ownership, mod-

i�
ation time, et
., but the metadata of a dire
tory

expli
itly does not in
lude information about the di-

re
tory's
hildren; that information is en
oded in F .

We write F (�) = X when we know F (�) 6= ? but we

don't
are if we're dealing with a �le or a dire
tory.

Our model also in
ludes the broken �lesystem, whi
h

we write F = ?, pronoun
ed \broken." A broken

�lesystem models the result of an erroneous
ommand,

e.g., deleting a dire
tory with �les under it. Broken

�lesystems don't o

ur in pra
ti
e, be
ause the operat-

ing system prevents users from breaking the �lesystem.

We use a trivial latti
e ordering of �lesystems in

whi
h the broken �lesystem is the bottom element. We

write the latti
e ordering F

1

v F

2

, pronoun
ed \F

1

ap-

proximates F

2

." This relation holds whenever F

1

= ?

or when F

1

and F

2

are pointwise equal fun
tions, i.e.,

F

1

6= ? and F

2

6= ? and 8�:F

1

(�) = F

2

(�).

2

The v re-

lation is a partial order, so two �lesystems approximate

ea
h other if and only if they are equal.

2

Readers familiar with denotational semanti
s should note

that our ordering is not the ordering typi
ally used for fun
tions;

in parti
ular, if one working �lesystem approximates another,

they are identi
al.

2

To explain
hanges to working �lesystems, we write

Ff� 7! Xg for the fun
tion that is like F , ex
ept it

maps � to X .

Ff� 7! Xg(
) =

(

X; if � =

F (
); otherwise

We write
hildless

F

(�) i� F (�) has no des
endants,

i.e., 8
 : � �
 =) F (
) = ?.

4 An algebra of
ommands

What
ommands should we use to model operations on

a �lesystem? Be
ause users must understand what a

syn
hronizer is doing, our algebra of
ommands should

be
onsistent with users' mental models of the a
-

tions they and their agents perform on the �lesystem.

Users might imagine performing operations like these:

reate(�;X) Create �le or dire
tory X at �.

remove(�) Remove the �le or dire
tory that was

at �.

rename(�; n) Change the \base name" of a �le or

dire
tory to n, while leaving it in the

same pla
e in the hierar
hy.

move(�; �

0

) Move � to �

0

, also moving all

des
endants.

derive(�) Change an existing �le or dire
tory,

in a way that
ould be reprodu
ed

me
hani
ally. Be
ause the result
an

be reprodu
ed, the operation need

not say what the �nal state is. An

obvious example is
ompiling a

sour
e to produ
e a binary.

edit(�;X) Change an existing �le or dire
tory,

leaving it in state X , in a way that

an't be reprodu
ed me
hani
ally.

The distin
tion between edit and derive is useful be-

ause a user may wish to spe
ify a behavior like \don't

syn
hronize derived �les." We distinguish
reate from

edit be
ause although both operations have the same

post
ondition (�le with new metadata and
ontents),

they have di�erent pre
onditions, so the distin
tion

may help dete
t errors. A

ordingly, we spe
ify that

to
reate an existing �le, or to edit a nonexistent �le,

leaves the �lesystem broken.

These high-level operations may be a good model for

users, but they are not so good for deriving syn
hro-

nization algorithms. We simplify.

� Con
eptually at least,move
an subsume rename, as

it does in the Unix system (but not in early versions

of DOS).

� Derive
an't be distinguished from edit without

knowledge about how �les are derived. To avoid syn-

hronizing derived �les, we would be better o� with

PSfrag repla
ements

?

remove

reate

X Y

?

remove(�)

remove(�)

reate(�; Y)

edit(�; Y)

edit(�; Y)

Figure 1: State-transition diagram for a path �

a more general me
hanism for making �les \invisible

to the syn
hronizer." We therefore drop derive.

� Finally, although it is not
lear a priori, the move

operation makes it more diÆ
ult to reason about

syn
hronization. The
rux of the problem is that

the move operation a�e
ts two di�erent lo
ations

in the �lesystem, whereas the other operations af-

fe
t only one. A

ordingly, we repla
e move(�; �

0

)

with the sequen
e remove(�);
reate(�

0

). The Uni-

son syn
hronizer does the same. (A move
an also

be diÆ
ult to dete
t, but that is not suÆ
ient reason

to omit it from the algebra.)

Figure 1 shows how these operations
hange the
on-

tents of a �lesystem at path �. Using the simpler op-

erations simpli�es syn
hronization but
ompli
ates a

syn
hronizer's user interfa
e. Se
tion 6 explains how

to re
over a high-level view for intera
ting with users.

Pre
ise de�nitions of the
ommands

We de�ne the e�e
t of ea
h
ommand as a fun
tion

from �lesystems to �lesystems. Any
ommand applied

to a broken �lesystem produ
es a broken �lesystem.

In the language of denotational semanti
s, every
om-

mand is stri
t in the �lesystem. Operationally, on
e a

�lesystem is broken, there is no way to �x it. Figure 2

gives the e�e
ts of
ommands on working �lesystems.

The
ommand break is not one we expe
t to use during

syn
hronization, but it helps us reason about errors. In

parti
ular, by showing that a sequen
e of
ommands is

not equivalent to break , we
an show those
ommands

an be exe
uted without error on at least one �lesys-

tem.

We are interested only in �lesystems that satisfy the

tree property : every parent must be a dire
tory. For-

mally, if � �
 and F (
) 6= ? then F (�) = Dir(m) for

some m. The
ommands in Figure 2 maintain the tree

property as an invariant.

The
ommands have another property that simpli-

�es reasoning. Ea
h
ommand mentions at most one

path �, and if a
ommand is applied to a working

�lesystem, either it breaks the �lesystem or it
hanges

the �lesystem only at �.

3

reate(�;X)F =

(

Ff� 7! Xg; i� F (�) = ? ^ F (parent(�)) = Dir(� � �)

?; otherwise

edit(�;Dir(m))F =

(

Ff� 7! Dir(m)g; i� F (�) 6= ?

?; otherwise

edit(�;File(m;x))F =

(

Ff� 7! File(m;x)g; i� F (�) 6= ? ^
hildless

F

(�)

?; otherwise

remove(�)F =

(

Ff� 7! ?g; i� F (�) 6= ? ^
hildless

F

(�)

?; otherwise

break F = ?

Figure 2: Filesystem operations and their semanti
s

Algebrai
 laws

Our syn
hronization algorithm relies on proofs that dif-

ferent sequen
es of operations
an have the same ef-

fe
ts. We
ould
onstru
t su
h proofs by using the pre-

ise de�nitions of the
ommands in Figure 2, but it is

awkward to reason dire
tly about mathemati
al fun
-

tions. This se
tion presents the major te
hni
al
ontri-

bution of this paper: a sound and
omplete proof sys-

tem for reasoning about sequen
es of
ommands. This

proof system appears in Table 1; it
onsists of algebrai

laws that enable us to rewrite pairs of
ommands, plus

inferen
e rules for substitution and transitivity, whi
h

enable us to extend the rewriting to larger sequen
es.

We write
ommands in a sequen
e separated by

semi
olons. These sequen
es stand for fun
tions from

�lesystems to �lesystems, as des
ribed by this equa-

tion:

(C

1

;C

2

)(F) = C

2

(C

1

(F)):

We write S for a sequen
e of
ommands, and we write

skip for the empty sequen
e of
ommands, i.e., the iden-

tity fun
tion on �lesystems.

Although we want to reason about equivalen
e, the

entral relation of our algebra is not equivalen
e but ap-

proximation. To understand why,
onsider a sequen
e

of two
ommands: one that
reates a �le, and a se
-

ond that removes it. You might think this sequen
e is

equivalent to skip:

reate(�;X); remove(�)

?

� skip :

Look again; the initial
reate operation is not safe on all

�le systems. If � is already present, or if �'s parent is

not a dire
tory,
reate(�; S) breaks the �lesystem. The

orre
t relation between these two sequen
es is this:

reate(�;X); remove(�) v skip :

We pronoun
e S

1

v S

2

as \S

1

approximates S

2

," or

sometimes \S

2

is at least as good as S

1

." The in-

tended interpretation is that we
an use S

2

in pla
e

of S

1

without breaking more �lesystems and without

hanging working out
omes. Frequently of
ourse, two

sequen
es are
ompletely equivalent; we write S

1

� S

2

as an abbreviation for S

1

v S

2

^ S

2

v S

1

. Most of the

laws in Table 1 do in fa
t use equivalen
e; laws using

approximation are marked with the v symbol.

We have organized Table 1 to show that we have

onsidered all possible pairs of operations. There are

7 pairs involving break . These pairs lead to laws 37{43.

whi
h are
onsistent with Figure 2; on
e a �lesystem is

broken, no operation
an �x it, and we know nothing

about what happened before it broke.

There are 9 pairs of operations not involving break .

Ea
h su
h operation mentions exa
tly one path, and

when we have a pair of paths �

1

and �

2

, there are

four
ases to be
onsidered depending on the values of

�

1

� �

2

and �

2

� �

1

:

�

1

� �

2

�

2

� �

1

How we write �

1

; �

2

T T �; �

T F �; �=�

0

F T �=�

0

; �

F F �; '

These
ombinations a

ount for 36 pairs of operations

and paths, and for the laws numbered 1{36. Laws 3{6

are further split into D and F forms to a

ount for the

di�eren
e in semanti
s between dire
tories and �les.

For example, law 5D says that making � a dire
tory

ommutes with removing a des
endant of �, but law 5F

says that making � a �le and then removing a des
en-

dant always
auses an error.

3

We summarize the proof

system as follows:

3

Either � originally had no des
endants, in whi
h
ase trying

to remove one is an error, or it did have des
endants, in whi
h

ase turning it into a �le (as opposed to a dire
tory) is an error.

4

Commuting or approximating pairs

1. edit(�;X); edit(�=�

0

; Y) � edit(�=�

0

; Y); edit(�;X)

2. edit(�=�

0

; Y); edit(�;X) � edit(�;X); edit(�=�

0

; Y)

3D

v

. edit(�;Dir(m));
reate(�=�

0

; Y) w

reate(�=�

0

; Y); edit(�;Dir(m))

4D

v

.
reate(�=�

0

; Y); edit(�;Dir(m)) v

edit(�;Dir(m));
reate(�=�

0

; Y)

5D. edit(�;Dir(m)); remove(�=�

0

) �

remove(�=�

0

); edit(�;Dir(m))

6D. remove(�=�

0

); edit(�;Dir(m)) �

edit(�;Dir(m)); remove(�=�

0

)

7. edit(�;X); edit('; Y) � edit('; Y); edit(�;X)

8. edit(�;X);
reate('; Y) �
reate('; Y); edit(�;X)

9. edit(�;X); remove(') � remove('); edit(�;X)

10.
reate('; Y); edit(�;X) � edit(�;X);
reate('; Y)

11.
reate(�;X);
reate('; Y) �
reate('; Y);
reate(�;X)

12.
reate(�;X); remove(') � remove(');
reate(�;X)

13. remove('); edit(�;X) � edit(�;X); remove(')

14. remove(');
reate(�;X) �
reate(�;X); remove(')

15. remove(�); remove(') � remove('); remove(�)

In
orre
t pairs

3F. edit(�;File(m;x));
reate(�=�

0

; Y) � break

4F.
reate(�=�

0

; Y); edit(�;File(m;x)) � break

5F. edit(�;File(m;x)); remove(�=�

0

) � break

16. edit(�;X);
reate(�; Y) � break

17. edit(�=�

0

; X);
reate(�; Y) � break

18. edit(�=�

0

; X); remove(�) � break

19.
reate(�;X); edit(�=�

0

; Y) � break

20.
reate(�;X);
reate(�; Y) � break

21.
reate(�=�

0

; X);
reate(�; Y) � break

22.
reate(�;X); remove(�=�

0

) � break

23.
reate(�=�

0

; X); remove(�) � break

24. remove(�); edit(�;X) � break

25. remove(�); edit(�=�

0

; X) � break

26. remove(�);
reate(�=�

0

; X) � break

27. remove(�=�

0

);
reate(�;X) � break

28. remove(�); remove(�) � break

29. remove(�); remove(�=�

0

) � break

Simplifying laws

30

v

. edit(�;X); edit(�; Y) v edit(�; Y)

31. edit(�;X); remove(�) � remove(�)

32.
reate(�;X); edit(�; Y) �
reate(�; Y)

33

v

.
reate(�;X); remove(�) v skip

34

v

. remove(�);
reate(�;X) v edit(�;X)

Break is idempotent

37. break ; edit(�;X) � break

38. break ;
reate(�;X) � break

39. break ; remove(�) � break

40. edit(�;X); break � break

41.
reate(�;X); break � break

42. remove(�); break � break

43. break ; break � break

Remaining pairs

6F. remove(�=�

0

); edit(�;File(m;x))

35.
reate(�;X);
reate(�=�

0

; Y)

36. remove(�=�

0

); remove(�)

Non-pair laws

Bottom. break v S for any S

Reflexivity. S v S for any S

S

1

v S

2

S

2

v S

3

S

1

v S

3

(Transitivity)

S

1

v S

2

S;S

1

;S

0

v S;S

2

;S

0

(Substitution)

N.B. Paths � and ' are always in
omparable. Where we write �=�

0

, �

0

is always nonempty.

Table 1: Proof system for the �lesystem algebra

� Laws 1{2 and 3D{6D say what operations involving

a dire
tory and its des
endant
ommute.

� Laws 7{15 say that operations involving in
ompara-

ble paths
ommute.

� Laws 16{29 and 3F{5F say that operations whi
h

violate pre
onditions break the �lesystem.

� Laws 30{34 say when an operation
an be
ombined

with a previous operation.

� Pairs 35, 36, and 6F, to whi
h no laws apply, show

signi�
ant
onstraints on non-breaking sequen
es:

parents must be
reated before
hildren;
hildren

must be removed before parents; and
hildren must

be removed before a dire
tory
an be made into a

�le.

� Laws 37{43 say that any sequen
e
ontaining break

is equivalent to break .

� The non-pair laws say that any sequen
e is at least

as good as break and any sequen
e is at least as good

as itself.

� The inferen
e rules say we
an apply the laws within

longer sequen
es, repeatedly if needed.

Every pair law ex
ept law 3D
an be used as a rewrite

rule from left to right.

Soundness and
ompleteness

The proof system in Table 1 is sound and
omplete. In-

formally, soundness says that any
on
lusion we draw

using the proof system is safe, and
ompleteness says

5

that any
on
lusion we draw using the underlying se-

manti
s
an also (nearly) be drawn using the proof sys-

tem.

Formally the soundness result is this:

S

1

v S

2

=) 8F:S

1

F v S

2

F:

The proof is straightforward, if a bit tedious, by indu
-

tion on the proofs of judgments of the form S

1

v S

2

.

We used automati
 te
hniques to
he
k the soundness

of the algebrai
 laws.

Be
ause of the possibility of
ommands that break

the �lesystem, our
ompleteness result is not exa
tly

what you might expe
t. We write S

1

k S

2

(pro-

noun
ed \S

1

and S

2

have a
ommon upper bound")

i� 9S : S

1

v S ^ S

2

v S. In other words, S

1

k S

2

i�

there is some sequen
e that is at least as good as both

of them. In situations where neither S

1

nor S

2

breaks

the �le system, S

1

, S

2

, and the upper bound all have

the same e�e
t. Our
ompleteness result shows that if

the e�e
t of S

1

approximates the e�e
t of S

2

on every

possible �lesystem, the two sequen
es have a
ommon

upper bound:

(8F:S

1

F v S

2

F) =) S

1

k S

2

:

The impli
ation is this: if there are two sequen
es of

ommands that have the same e�e
t on every �lesys-

tem, we
an �nd a third sequen
e that's at least as

good as either of the �rst two|and therefore has the

same e�e
t on whatever �lesystems don't break. We

sket
h the proof here; details will be relegated to an

a

ompanying te
hni
al report.

We divide the proof into two
ases. Suppose �rst

that 8F:S

1

F = ?, that is, S

1

breaks all �lesystems.

By identifying the shortest pre�x of S

1

that has this

property, and by reasoning about the last operation in

that pre�x, we
an show S

1

� break , and break v S

2

holds for any S

2

, so S

1

v S

2

and S

2

is the
ommon

upper bound.

In the interesting
ase, 9F:S

1

F 6= ?, and S

1

F v S

2

F

gives S

1

F = S

2

F 6= ?. We de�ne minimal sequen
es

by
onsidering the sets }

S

= fS

0

jS v S

0

g, and we let

S

min

be any sequen
e in }

S

of minimal length. (The

set is not empty be
ause it
ontains S.) We show that

S

1

min

F = S

2

min

F 6= ? and that break does not appear

in either sequen
e. The proof of
ompleteness has three

main steps.

1. Be
ause there is a �lesystem that S

1

min

and S

2

min

do not break, no law mentioning break applies. Be-

ause they are of minimal length, no simplifying law

applies. We
on
lude that in a minimal sequen
e,

no path is mentioned more than on
e.

2. The sequen
es S

1

min

and S

2

min

must
ontain ex-

a
tly the same set of
ommands. The key insight

is that a
ommand mentioning path � either breaks

the �lesystem or
hanges it only at �.

3. By applying
ommutative laws, we
an rewrite

S

1

min

and S

2

min

into a
anoni
al sequen
e S. We

use the following
anoni
al ordering, whi
h �rst or-

ders
ommands by
lasses and then by pathname

within
lass.

(a) Commands of the form edit(�;Dir(m)), in any

order determined by �.

(b) Commands of the form
reate(�;X), in preorder.

(
) Commands of the form remove(�), in postorder.

(d) Commands of the form edit(�;File(m;x)), in any

order determined by �.

To rewrite sequen
es into this form, we may ap-

ply law 4D, so the strongest result we
an get is

S

1

v S w S

2

, not equivalen
e. The
anoni
al se-

quen
e S may be better than S

1

and S

2

, that is,

it may be
orre
t on more �lesystems, but whenever

S

1

or S

2

works, S works and has exa
tly the same

e�e
t.

5 Using the algebra

We have applied our algebra to the three steps of �le

syn
hronization: update dete
tion, re
on
iliation, and

on
i
t resolution.

Update dete
tion

Typi
al �lesystems don't keep logs of the operations

that were performed on a �lesystem; instead, we have

to look at two states of a �lesystem, F

i

and F

0

i

, and

�nd a minimal sequen
e of operations S

i

su
h that

F

0

i

= S

i

(F

i

). We
an do so by visiting all the non-?

paths in ea
h �lesystem. As shown in Figure 1, by

omparing F

i

(�) with F

0

i

(�), we
an de
ide whether

a
reate, remove, or edit has taken pla
e. We
ould

on
eivably infer an edit operation for ea
h path that

is populated in both �lesystems; this strategy
orre-

sponds to the \trivial update dete
tor" mentioned by

Balasubramaniam and Pier
e (1998). But this strategy

makes the
ost of syn
hronization proportional to the

size of the �lesystem, not the size of what has
hanged.

To do better, we need to know whi
h paths have iden-

ti
al values in both �lesystems; no edit operations are

needed for su
h paths.

Unfortunately, in typi
al use F

i

represents the state

of the �lesystem at the last syn
hronization, F

0

i

rep-

resents the
urrent state, and we may wish not to

keep a
opy of F

i

available inde�nitely.

4

Even if

we keep a
opy,
omparing
ontents of �les may be

expensive. A

ordingly, �le syn
hronizers typi
ally

4

Some operating systems, su
h as Plan 9, use write-on
e op-

ti
al disks to make it
heap to re
onstru
t the state of a past

�lesystem (Thompson 1995), but su
h fa
ilities are not
ommon.

6

keep a snapshot of F

i

, whi
h is a
opy of F

i

that

in
ludes dire
tory stru
ture and metadata but omits

the
ontents of �les. That is, the snapshot saves

File(m;?) instead of File(m;x). An alternative is to

save File(m;h(x)), where h is a �ngerprinting hash

fun
tion (Broder 1993). The assumption is that in

pra
ti
e, we
an avoid examining most
ontents be-

ause no operation
hanges the
ontents of a �le with-

out also
hanging its metadata. The details of exa
tly

what metadata might
hange are subtle; for exam-

ple, be
ause Unix �lesystems
an rename �les without

hanging their modi�
ation times, looking at modi�-

ation time alone
an miss updates. Looking at both

modi�
ation time and inode number suÆ
es; Se
tion 3

of Balasubramaniam and Pier
e (1998) has details.

On
e we have de
ided on the
reate, remove, and edit

operations that are needed, we
an put these operations

into
anoni
al order. Our
ompleteness theorem tells

us that the
anoni
al sequen
e is at least as good as

what a
tually happened.

Re
on
iliation

Balasubramaniam and Pier
e (1998)
hara
terizes the

requirements on a syn
hronizer using two slogans:

(1) propagate all non-
on
i
ting operations and (2) if

operations
on
i
t, do nothing. The value of our ap-

proa
h is that it enables
hoi
es about what to do at

a
on
i
t; our se
ond slogan is therefore (2) save
on-

i
ting operations for later resolution.

We de�ne
on
i
ting operations using the minimal

sequen
es found by the update dete
tor. Consider

two
ommands C

i

(�) 2 S

i

and C

j

(
) 2 S

j

, where

i 6= j, and S

i

and S

j

are minimal sequen
es su
h that

F

i

= S

i

(F) and F

j

= S

j

(F). We say C

i

(�) and C

j

(
)

are
on
i
ting
ommands i� (C

j

=2 S

i

)^ (C

i

=2 S

j

) and

one of the following holds:

� C

i

(�);C

j

(
) 6 k C

j

(
);C

i

(�), i.e., the
ommands do

not
ommute.

� C

i

(�);C

j

(
) � break or C

j

(
);C

i

(�) � break, i.e.,

the
ommands break every �lesystem.

When C

1

and C

2

on
i
t, we write C

1

� C

2

.

The re
on
iler takes the sequen
es S

1

; : : : ; S

n

that

are
omputed to have been performed at ea
h repli
a.

It
omputes sequen
es S

�

1

; : : : ; S

�

n

that make the

�lesystems as
lose as possible. The idea of the algo-

rithm is that a
ommand C 2 S

i

should be propagated

to repli
a j (in
luded in S

�

j

) i� three
riteria are met:

� C =2 S

j

, i.e., C has not already been performed at

repli
a j

� no
ommands at repli
as other than i
on
i
t with C

� no
ommands at repli
as other than i
on
i
t with

ommands that must pre
ede C

A
ommand C

0

must pre
ede
ommand C i� they ap-

pear in the same sequen
e S

i

, C

0

pre
edes C in S

i

, and

they do not
ommute (C

0

;C 6 k C;C

0

).

To see why we have to worry about
on
i
ts on
om-

mands that must pre
ede C,
onsider this example.

Suppose in the original �lesystem F (�) = File(m

x

; x).

We got two repli
as by performing these
ommands:

F

1

= (edit(�;Dir(m));
reate(�=n;File(m

w

; w)))F

F

2

= edit(�;File(m

z

; z))F:

Commands edit(�;Dir(m)) and edit(�;File(m

z

; z))

do not
ommute, so they are
on
i
ting
ommands.

Therefore we
annot apply
ommand edit(�;Dir(m))

to repli
a 2. Be
ause edit(�;Dir(m)) must pre
ede

reate(�=n;File(m

w

; w)), we
annot propagate the

ommand
reate(�=n;File(m

w

; w)) either.

Given our three
riteria, the re
on
iliation algorithm

must be equivalent to the following:

for i 2 1::n do

make S

�

i

empty

for i 2 1::n do

for j 2 1::n do

for every
ommand C 2 S

i

do

if C should be propagated to repli
a j then

append C to S

�

j

The algorithm is easily modi�ed to
ompute the sets of

on
i
ting
ommands S

�

i

as well as the sequen
es S

�

i

.

6 Implementation

A prototype

To verify that our algorithms
an be implemented and

that they work as we expe
t, we have written a proto-

type implementation. The program is about 700 lines

of Perl; when blank lines and
omments are removed,

under 400 lines remain. The program handles only two

repli
as, and it does not modify the �lesystem; it sim-

ply
omputes the sequen
es S

�

1

and S

�

2

. Be
ause it is a

prototype, the program does not use a snapshot of the

�lesystem; instead we give it a
omplete
opy of the

original. The prototype also takes a simpli�ed view of

metadata; for example, the metadata for a dire
tory is

redu
ed to a single bit, whi
h tells whether the program

has permission to write the dire
tory.

We have also started integrating our syn
hronization

algorithm into the Unison syn
hronizer.

S
aling up to a real implementation

Although users may have a ri
h mental model of �lesys-

tem operations, it's easier to develop an e�e
tive proof

system and a
orre
t syn
hronization algorithm if we

keep the algebra small. Still, there is no reason to make

7

the users su�er. After the syn
hronizer has
omputed

the re
on
iling sequen
es S

�

i

and the
on
i
ting oper-

ations S

�

i

, we re
ommend introdu
ing new operations

to present these sequen
es to a user.

Collapsing ordered operations

In a minimal sequen
e, the only ordering
onstraints

are those imposed by laws 3D, 21, and 29, as well as

the pairs 6F, 35, and 36. Informally, parents must be

reated before
hildren, and
hildren must be removed

before parents. We
an eliminate ordering
onstraints

by
ollapsing
reate and remove operations into opera-

tions on their parents. The
ollapsed operations might

be
alled
reate subtree, remove subtree, and edit into

subtree. The \
ollapsed form" of a minimal sequen
e is

onvenient be
ause it enables us to forget about order,

treating the sequen
e as a set. It should be helpful in a

user interfa
e. Not only is the subtree operation easier

to understand, but if operations must be approved by

users, as in the Unison syn
hronizer, the
ollapsed form

makes it impossibe for a user to approve an in
onsis-

tent set of operations (e.g., approving the
reation of

a �le without also approving the
reation of its parent

dire
tory).

Expli
it move

We re
ommend introdu
ing move, using the de�nition

move(�; �

0

) = remove(�);
reate(�

0

; X), whereX is the

ontents of the original �lesystem at �. Be
ause the

algebrai
 laws governing move are
omplex, we re
om-

mend that move be introdu
ed only after re
on
ilia-

tion, to des
ribe either a
tions to be taken or
on
i
t-

ing
ommands. Using move has three bene�ts.

1. Performan
e. If an agent at one repli
a has moved

a �le from � to �

0

, the instru
tions for performing

the same a
tion at other repli
as need mention only

the paths � and �

0

. If we treat the move operation

as a deletion and
reation, the instru
tions sent to

other repli
as must in
lude the full
ontents of the

�le.

There are other solutions to this performan
e prob-

lem. In parti
ular, if the syn
hronizer retains a

\�ngerprint" that uniquely identi�es the
ontents of

ea
h �le (Broder 1993), then one
an build a trans-

port layer that avoids sending the
ontents of any

�le whose
ontents are already available at another

repli
a. But to realize the performan
e improve-

ment, the syn
hronizer must be
areful to send the

reate operation before the remove operation, lest

ontents that were available be dis
arded before they

are needed. This ordering may
on
i
t with order-

ings used in the user interfa
e, e.g., lexi
ographi

ordering by pathname, or ordering by type of oper-

ations at the
onvenien
e of the user.

2. Retention of metadata. We wish to be able to syn-

hronize repli
as that reside under di�erent operat-

ing systems, su
h as Windows, Unix, and Ma
OS.

Be
ause ea
h operating system has di�erent meta-

data, it is in general impossible to preserve meta-

data when sending instru
tions between repli
as un-

der di�erent operating systems. But there is an im-

portant spe
ial
ase, namely, a user running dis
on-

ne
ted at F

1

wishes to restru
ture a dire
tory whose

ontents
ontain metadata representable only at F

2

.

If our algebra in
ludes a move operation, we
an

propagate renaming operations from F

1

to F

2

with-

out losing metadata that makes sense only at F

2

. If

we do not have move, but must rely on
reate, we

only send ba
k to F

2

the results of a \best e�ort"

to represent F

2

's metadata on F

1

, and we are likely

to lose metadata like Windows a

ess-
ontrol lists.

(A formal
hara
terization of \best e�ort" would be

worthwhile, but it is beyond the s
ope of this paper.)

3. Usability. The most important reason to keep move

is to redu
e the
ognitive burden on users. The Uni-

son syn
hronizer, for example, �rst de
ides on a set

of transa
tions, then asks its users to approve them.

5

If a user is asked to approve a move operation,

the user knows|from purely lo
al information|

that the
ontents of the renamed �le will not be

lost. But if the move is split into separate
reate and

remove operations, these operations may be widely

separated in the list of transa
tions; and a user want-

ing to be sure the remove is safe must inspe
t the

entire list.

A move
ommand also eliminates the possibility of

an error in whi
h a user approves the remove but

not the
orresponding
reate, resulting in loss of
on-

tents at one repli
a.

Resolving
on
i
ts

By themselves, algebrai
 laws don't tell us what to

do with
on
i
ting
ommands. Balasubramaniam and

Pier
e (1998) derives, from �rst prin
iples, post
ondi-

tions that
ompletely determine a
on
i
t-resolution

poli
y. Our approa
h allows more freedom, whi
h en-

ables us to
onsider requirements for resolving
on
i
ts.

Three assumptions are
ommon to both approa
hes:

� If there are no
on
i
ts, the repli
as are identi
al

after syn
hronization.

5

Unison's transa
tions do not resemble the operations advo-

ated in this paper. Instead, Unison o�ers three
hoi
es: make F

1

like F

2

, make F

2

like F

1

, or do nothing. Interestingly, Unison's

update-dete
tion algorithm uses the operations in this paper (re-

move,
reate, edit, and skip), and it suggests a transa
tion based

on what operation was performed at ea
h repli
a. To help the

user make a de
ision, Unison presents these operations in a sim-

pli�ed form. This form does not distinguish
reate from edit ,

and it
ollapses subtree operations as des
ribed above.

8

� Even in the presen
e of
on
i
ts, the syn
hronizer

preserves the knowledge of what
hanges were made

by users.

� The knowledge of a human being is required to

resolve
on
i
ts. The human being is given the

states F

i

of the repli
as, and the human being re-

solves
on
i
ts by spe
ifying either a new state F

0

i

for ea
h repli
a or a sequen
e of
ommands S

0

�

i

to

be performed at ea
h repli
a.

6

In a state-based ap-

proa
h, the syn
hronizer must be
apable of estab-

lishing the desired state at ea
h repli
a.

Balasubramaniam and Pier
e (1998) resolves
on-

i
ts by ignoring
on
i
ting
ommands. This poli
y

preserves the information
reated at ea
h repli
a, but

that information is available only at the lo
al repli-

as; dis
onne
ted repairs are impossible. We say that a

syn
hronizer enjoys the dis
onne
ted-repair property if,

no matter what the state of any repli
a, the following

s
enario is possible:

1. A syn
hronization is initiated (by human or other

agen
y), and the syn
hronizer runs without human

intervention.

2. The repli
as are dis
onne
ted.

3. A human being resolves
on
i
ts at one repli
a, leav-

ing the other repli
as un
hanged. All information

ne
essary to resolve
on
i
ts must be present at ea
h

repli
a.

4. The repli
as are re
onne
ted, a se
ond syn
hroniza-

tion (\resyn
hronization") is initiated, and it runs

without human intervention.

5. The two repli
as are identi
al.

If a person is to resolve
on
i
ts, the syn
hronizer

must tell the person what
on
i
ts have o

urred. An

obvious me
hanism would be to repli
ate information

about
on
i
ting
ommands, and to use a spe
ial user

interfa
e that would show this information and would

enable people to resolve
on
i
ts. But a spe
ial user

interfa
e may be unne
essary. Suppose instead that

the syn
hronizer establishes a di�erent post
ondition:

After syn
hronization, all repli
as are identi
al. This

means the syn
hronizer must somehow en
ode in the

�le system the information from both repli
as. This

en
oding may be
onfusing, but the post
ondition has

ompensating advantages.

� The user
an determine the states of all repli
as by

examining a single repli
a.

6

Human beings are of
ourse free to write
omputer programs

that
ompute new states or
ommands.

� The user need not remember what
on
i
ts o

urred

at the most re
ent syn
hronization, be
ause those

on
i
ts manifest themselves as
ontents of the �le

system.

� The user
an make dis
onne
ted repairs by mutat-

ing one repli
a until it rea
hes a desired state. Work

an then pro
eed at that repli
a without resyn
hro-

nization.

If results from syn
hronization are to be en
oded

in the �lesystem, whenever there is a
on
i
t at a

pathname, the syn
hronizer must preserve, at all repli-

as, the distin
t
ontents held by that pathname at

ea
h repli
a. To return to the example from the In-

trodu
tion, hello.
 might be
ome hello.
�server,

hello.
�home, and hello.
�laptop. But what hap-

pens to the original pathname, hello.
? We see three

hoi
es:

� Remove the name. This
hoi
e makes the
on
i
t

hard to overlook, but it has the disadvantage that

if a pathname disappears, programs that rely on it

may fail. In severe
ases, a user may be unable to

log in (e.g., a
on
i
t o

urs at /bin/sh).

� De
lare one repli
a the master, and let the pathname

re
e
t the value at the master repli
a. A permanent

master
ould be designated, but it might also be

useful to make the master the repli
a at whi
h the

syn
hronizationwas initiated. The advantage is that

the master repli
a probably keeps working.

� Let the repli
a with the latest modi�
ation time win.

This
hoi
e seems to o�er the greatest risk|it may

leave all repli
as in unusable states|without any

ompensating advantages.

Metadata and modi�
ation times

Users have a right to expe
t that a syn
hronizer will

propagate a �le's metadata as well as its
ontents. Most

metadata
an be propagated without diÆ
ulty, but be-

ause
lo
ks at di�erent repli
as may show di�erent

times, propagating modi�
ation times
an
ause prob-

lems. Here are some requirements on timestamps:

1. If the syn
hronizer thinks two repli
as of a �le are

identi
al, those repli
as should bear identi
al times-

tamps. This requirement ensures that the �les are

treated as identi
al by other syn
hronization tools,

by Make, by find, et
.

2. When
opying �les from one repli
a to another, syn-

hronization should not
hange the relative order of

the timestamps. This requirement preserves the
or-

re
t behavior of Make. An early version of Unison

used the time of syn
hronization as the modi�
ation

time, sometimes leading Make to treat obsolete �les

as up to date.

9

3. Timestamps at a single repli
a should be su
h that,

if a user waits for one time unit to pass, then modi-

�es or
reates a �le, that �le will bear a modi�
ation

time that is greater than the modi�
ation time of any

other �le at that repli
a. This requirement is essen-

tial for Make to fun
tion
orre
tly. If it is violated

(e.g., be
ause the system
lo
k gets out of wha
k)

the problem
an be diÆ
ult to diagnose.

4. The out
ome of a syn
hronization should depend

only on the state of the two �le systems being syn-

hronized, not on the time at whi
h the syn
hroniza-

tion takes pla
e. The argument for this requirement

is that syn
hronization itself should not be seen as

an operation on the �lesystem, only as a way of prop-

agating existing operations.

Requirements 2 and 3 are satis�ed if this a more gen-

eral
ondition holds: If the user performs
reation and

modi�
ation operations at both repli
as, and if these op-

erations are totally ordered, then after the syn
hronizer

runs, the timestamps on syn
hronized �les respe
t this

total order. \Totally ordered" means not only ordered

in real time, but ordered up to the ability of the lo
al

system to distinguish the a
tions. If a user
hanges

two �les 10 millise
onds apart, and time stamps have

a granularity of one se
ond, these two a
tions are not

totally ordered.

The lo
al
lo
k provides an adequate total ordering

for events at one repli
a, no matter what rate it runs

at, provided it runs forward. The awful truth is that

there is no way to tell when events at di�erent repli
as

should be totally ordered, even when users take
are

to order them. As noted in Se
tion 2, even if there

is a global
lo
k, we
an't rely on it, be
ause we
an't

know post ho
 whether operations ordered in time were

so ordered intentionally or a

identally.

If there is no
onsistent global
lo
k, as is typi
ally

the
ase, the problems get worse; in the presen
e of

lo
k skew, the
onditions above
annot all be satis�ed

simultaneously. For example, if repli
a F

1

is running

an hour ahead of repli
a F

2

, then
hanges to �les mod-

i�ed within the last hour
annot be propagated to F

2

without either giving them di�erent time stamps or vi-

olating the total ordering. We believe it is better to

give them di�erent time stamps.

7

If the time skew is

small, it may be even better to freeze syn
hronization

for a few se
onds, allowing the
lo
k at F

2

to
at
h up

with the latest modi�
ation time at F

1

. A formal study

of syn
hronization in the presen
e of
lo
k skew might

yield more
onvin
ing re
ommendations.

7

Even in this
ase, a syn
hronizer might well have to wait

one ti
k at F

2

for every �le syn
hronized, in order to respe
t the

total order without
reating any �les \newer than now."

7 Related work

Con
i
t dete
tion

Balasubramaniam and Pier
e (1998) phrases update

dete
tion in terms of dirty sets. Using our notation,

the result of update dete
tion applied to original �lesys-

tem F and repli
a F

i

is a set dirty

i

, whi
h must satisfy

two properties:

� � =2 dirty

i

=) F

i

(�) = F (�), i.e.,
lean �les

haven't
hanged

� �=�

0

2 dirty

i

=) � 2 dirty

i

, i.e., if a path is dirty

its parent is dirty

A dirty set is a safe estimate of paths where
hanges

have been made; a good update dete
tor
omputes the

smallest possible dirty set. There is a dirty-set
on
i
t

at path � i� � 2 dirty

i

\ dirty

j

and F

i

(�) 6= F

j

(�)

and either F

i

(�) or F

j

(�) is a �le. (The spe
i�
ation

in Balasubramaniam and Pier
e (1998) ignores dire
-

tory metadata, so all dire
tories are
onsidered identi-

al. Unison's implementation does not ignore dire
tory

metadata.)

We had expe
ted our de�nition of
on
i
ts, whi
h

uses
on
i
ting
ommands, to be equivalent to the def-

inition based on dirty sets. It turns out that our de�ni-

tion is stri
tly more liberal, but not in a terribly inter-

esting way. The following example shows it is possible

to have a dirty-set
on
i
t without having
on
i
ting

ommands. Let the original �lesystem and the two

repli
as be given by these equations:

F = f= 7! Dir(m); =d 7! Dir(m); =d=f 7! File(m

x

; x)g

F

1

= (remove(=d=f); remove(=d))F

F

2

= (remove(=d=f))F:

The least dirty sets must be

dirty

1

= f=; =d; =d=fg

dirty

2

= f=; =d; =d=fg

N.B. =d 2 dirty

1

be
ause repli
a 1
hanged at =d, but

=d 2 dirty

2

be
ause =d=f 2 dirty

2

and parents of dirty

paths are dirty. We have a dirty-set
on
i
t at =d be-

ause it is dirty in both repli
as and F

1

(=d) is not a

dire
tory.

Our algebra �nds no
on
i
t. S

1

= remove(=d=f);

remove(=d) and S

2

= remove(=d=f), so there are no

on
i
ting
ommands. In pra
ti
e, we
an safely apply

remove(=d) to repli
a 2, so we believe this example

should be
onsidered non-
on
i
ting.

To show our algebra is more liberal, we show that

whenever there are
on
i
ting
ommands, there is a

dirty-set
on
i
t. For
onsisten
y with Balasubrama-

niam and Pier
e, we assume that all dire
tories have

10

the same metadata and write simply Dir for dire
to-

ries. We assume we have unbroken �lesystems F; F

1

; F

2

and we have the minimal sequen
es S

i

and S

j

and

the dirty sets dirty

i

and dirty

j

from the update dete
-

tors. Finally, we assume that the minimal sequen
es

do not
ontain unne
essary
ommands of the form

edit(�;Dir). That is, be
ause all dire
tories have the

same metadata, if F (�) = Dir then the
ommand

edit(�;Dir) must not appear in S

1

or S

2

.

If two
ommands
on
i
t, one path must pre
ede the

other, sin
e otherwise the
ommands would
ommute.

Without loss of generality, we number the repli
as to

hoose C

1

(�) 2 S

1

and C

2

(�=�̂) 2 S

2

, , where �̂ may

be empty, su
h that C

1

(�)�C

2

(�=�̂). We prove there

is a dirty-set
on
i
t at path �.

Be
ause ea
h sequen
e S

i

is of minimal length, we

know that F

1

(�) 6= F (�) and F

2

(�=�̂) 6= F (�=�̂).

Therefore � 2 dirty

1

and �=�̂ 2 dirty

2

. Be
ause dirty

sets are
losed under the parent relation, �=�̂ 2 dirty

2

means � 2 dirty

2

. What we have left to show is that

F

1

(�) 6= F

2

(�), and in parti
ular either F

1

(�) or F

2

(�)

is not a dire
tory.

Suppose that F

1

(�) = F

2

(�) = Dir. Be
ause S

1

is minimal, C

1

(�) is the only
ommand in S

1

that

mentions path �, and so F

1

(�) = (C

1

(�)F)(�) = Dir.

We
on
lude that C

i

(�) must be either
reate(�;Dir)

or edit(�;Dir). In either
ase we
an be sure that

F (�) 6= Dir be
ause otherwise edit(�;Dir)
ould be

removed from S

1

,
ontradi
ting our assumptions. By

assumption, F

2

(�) = Dir, so there must be a
om-

mand in S

2

that mentions �;
all it C

0

2

(�). By sim-

ilar reasoning C

0

2

(�) must be either
reate(�;Dir) or

edit(�;Dir), and sin
e the repli
as have the same ini-

tial and �nal states at �, in fa
t C

1

(�) = C

0

2

(�). But

this for
es C

1

(�) 2 S

2

, whi
h
ontradi
ts the assump-

tion that C

1

(�)�C

2

(�=�̂). Therefore F

1

(�) and F

2

(�)

annot both be dire
tories.

Similar reasoning shows that F

1

(�) 6= F

2

(�), and

therefore we have a dirty-set
on
i
t at �.

Other syn
hronizers

Spa
e limitations pre
lude a thorough dis
ussion of

other syn
hronizers here. Commer
ial �le syn
hroniz-

ers in
lude Mi
rosoft's Brief
ase (S
hwartz 1996; Mi-

rosoft 1998) and Leader Te
hnologies' PowerMerge.

Puma Te
hnologies' IntelliSyn
 solves a related prob-

lem: syn
hronizing various kinds of database �les used

in handheld and other
omputers (Puma a; Puma b).

In addition to the Unison syn
hronizer (Balasubra-

maniam and Pier
e 1998), there is an experimental

syn
hronizer developed by the Rumor proje
t (Rei-

her et al. 1996). Balasubramaniam and Pier
e (1998)

dis
usses some of these syn
hronizers, as well as
on-

ne
tions to resear
h in distributed �le systems and

databases. There is also the more re
ent Re
on
ile syn-

hronizer (Howard 1999).

8 Dis
ussion

Balasubramaniamand Pier
e (1998) spe
i�es a �le syn-

hronizer by presenting pre
onditions and post
ondi-

tions for the states of two �lesystems before and af-

ter syn
hronization. Although these
onditions
om-

pletely determine a syn
hronization algorithm, we hope

to have
onvin
ed you that other post
onditions might

be equally desirable, or possibly even more desirable.

By reasoning about an algebra of operations instead

of states, we have shown that there
an be a family of

spe
i�
ations for �le syn
hronizers, ea
h of whi
h
ould

be
onsidered
orre
t. Di�erent members of the fam-

ily might o�er di�erent tradeo�s in their treatments of

on
i
ting
ommands. Our algebrai
 approa
h illumi-

nates the design spa
e.

Our approa
h also shows additional promise, be
ause

the �lesystem algebra is not the only interesting algebra.

For example, the mail systems su
h as MH use �lesys-

tems to hold ele
troni
 mail. Dire
tories represent mail

folders, and �les represent messages. File names rep-

resent message numbers. The message numbers them-

selves are not important. More pre
isely, althoughmes-

sage numbers at an individual repli
a should not be

hanged gratuitously, it might be a

eptable to have

di�erent message numbers at di�erent repli
as, and it

might be a

eptable if message numbers
hanged as a

result of syn
hronization.

The mail-folder algebra
orresponds not to �lesys-

tem operations but to mail-handling
ommands: rmm,

whi
h removes a message; refile, whi
h moves a mes-

sage between folders; and in
, whi
h a

epts delivery

of new messages. Su
h
ommands assign message num-

bers and maintain internal invariants, e.g., the integrity

of .mh sequen
es. One may also see a rare edit oper-

ation, e.g., to pat
h bot
hed headers, to reformat un-

readable
ontent
reated by Mi
rosoft produ
ts, et
.

A
riti
al di�eren
e in the mail algebra is that messages

should not be identi�ed by pathname, but rather by

ontents. For messages that
onform to RFC 822, the

value of the Message-Id �eld
an stand in for the
on-

tents. Our syn
hronization algorithm and proof te
h-

niques may nevertheless apply to this new algebra.

Existing syn
hronizers are either ill-spe
i�ed (as are

many of the
ommer
ial tools) or in
exible (Balasub-

ramaniam and Pier
e 1998). An algebrai
 approa
h

seems to o�er a natural and understandable path to

spe
i�
ation and implementation of a �le syn
hronizer,

but the real potential advantages lie in two areas.

� Our algebrai
 approa
h leads not to a single syn-

hronization algorithm, but to a family of possible

algorithms. The approa
h seems espe
ially useful

for exploring di�erent ways of resolving
on
i
ts.

11

� We hypothesize that an algebrai
 approa
h may be

useful for other syn
hronization problems, su
h as

syn
hronizing mail folders, PalmOS databases, or

other kinds of �les with internal stru
ture.

In the long run, it may even be possible to build a

syn
hronizer that is parameterized by an algebra, an

update dete
tor, and a
on
i
t resolver. One
ould

extend su
h a syn
hronizer without having to prove

the whole thing
orre
t; instead, one
ould limit one's

e�ort to proving the soundness of the algebrai
 laws

and of the update dete
tor.

A
knowledgments

Thanks to Benjamin Pier
e for
omments on this pa-

per, and also for many stimulating dis
ussions of �le

syn
hronization, espe
ially during ICFP'99. Thanks to

Tony Hoare for suggesting we fo
us on the re�nement

ordering. This work was supported by NSF grant CCR-

0096069 and by the Resear
h S
ien
e Institute, whi
h

is sponsored by the Center for Ex
ellen
e in Edu
ation.

Referen
es

Balasubramaniam, Sundar and Benjamin C. Pier
e.

1998 (O
tober). What is a �le syn
hronizer? In

Pro
eedings of the 4th Annual ACM/IEEE In-

ternational Conferen
e on Mobile Computing and

Networking (MOBICOM-98), pages 98{108, New

York. See the Unison home page at http://www.

is.upenn.edu/~b
pier
e/unison.

Broder, Andrei. 1993. Some appli
ations of Rabin's �n-

gerprinting method. In Capo
elli, R., A. De San-

tis, and U. Va

aro, editors, Sequen
es II: Methods

in Communi
ations, Se
urity, and Computer S
i-

en
e, pages 143{152. Springer-Verlag.

Howard, John H. 1999. Re
on
ile user's guide. Te
h-

ni
al Report TR99-14, Mitsubishi Ele
troni
s Re-

sear
h Lab.

Mi
rosoft. 1998. Mi
rosoft Windows 95: Vision for

mobile
omputing. http://www.mi
rosoft.
om/

windows95/info/w95mobile.htm.

Puma. Designing e�e
tive syn
hronization solutions: A

White Paper on Syn
hronization from Puma Te
h-

nology. http://www.pumate
h.
om/syn
wp.html.

. A white paper on DSX

tm

Te
hnology { Data

Syn
hronization Extensions from Puma Te
hnol-

ogy. http://www.pumate
h.
om/dsxwp.html.

Reiher, P., J. Popek, M. Gunter, J. Salomone, and

D. Ratner. 1996 (June). Peer-to-peer re
on
il-

iation based repli
ation for mobile
omputers.

In European Conferen
e on Obje
t Oriented Pro-

gramming '96 Se
ond Workshop on Mobility and

Repli
ation.

S
hwartz, Stu. 1996 (May). The Brief
ase|in brief.

Windows 95 Professional. http://www.
obb.
om/

w9p/9605/w9p9651.htm.

Thompson, Ken. 1995. The Plan 9 �le server. In

Plan 9: The Do
uments, pages 313{320. Murray

Hill, New Jersey: Computing S
ien
es Resear
h

Center, AT&T Bell Laboratories.

12

