
An Algebraic Approach
to File Synchronization

The Harvard community has made this
article openly available. Please share how
this access benefits you. Your story matters

Citation Ramsey, Norman and Elöd Csirmaz. 2001. An Algebraic Approach
to File Synchronization. Harvard Computer Science Group Technical
Report TR-05-01.

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:23853813

Terms of Use This article was downloaded from Harvard University’s DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=An%20Algebraic%20Approach%20to%20File%20Synchronization&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23853813
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

An Algebrai Approah to File Synhronization

Norman Ramsey

Division of Engineering and Applied Sienes

Harvard University

Cambridge, USA

El}od Csirmaz

Mihaly Fazekas Seondary Grammar Shool

Budapest, Hungary

Abstrat

We present a sound and omplete proof system for

reasoning about operations on �lesystems. The proof

system enables us to speify a �le-synhronization al-

gorithm that an be ombined with several di�erent

onit-resolution poliies. By ontrast, previous work

builds the onit-resolution poliy into the spei�a-

tion, or worse, does not speify the behavior formally.

We present several alternatives for onit resolution,

and we address the knotty question of timestamps.

1 Introdution

What is a �le synhronizer? Suppose there are multi-

ple replias of a �lesystem; perhaps you have one on a

server, one on a omputer at home, and one on a lap-

top. If you make di�erent hanges at di�erent replias,

the replias no longer ontain the same information.

A �le synhronizer makes them onsistent again, while

preserving hanges you made.

Not every set of replias an be made onsistent au-

tomatially. For example, if sr/hello. is reated

to say "Hello, world" on one replia and "Hello,

Dolly" on another replia, it is not obvious how to

hoose one or the other. In ases like these, the �le

synhronizer needs a poliy for onit resolution. Rea-

sonable people might di�er about what onstitutes a

good poliy; some alternatives appear in Setion 6.

The behaviors of many synhronizers are not spei-

�ed preisely; understanding how they detet and re-

solve onits an be diÆult. Balasubramaniam and

Piere (1998) represents a major step forward; it spe-

i�es formal requirements for a �le synhronizer, and it

derives an algorithm from those requirements. This al-

gorithm is implemented in the Unison �le synhronizer.

Unison's spei�ation is based on reasoning about

states of the �le system before and after synhroniza-

tion. This state-based approah leads to an unne-

essarily narrow view of onits. Balasubramaniam

and Piere (1998) atually builds the onit-resolution

poliy into the spei�ation, making it unlear how

to implement an interesting lass of onit-resolution

poliies.

We have taken a di�erent approah to spei�ation of

�le synhronizers: instead of reasoning about states, we

reason about the operations that are performed at eah

replia. This paper makes the following ontributions:

� We present an algebra of �lesystem operations, to-

gether with algebrai laws that are helpful both for

reasoning about �le synhronization and for imple-

menting synhronizers.

� We show that the laws are sound and omplete with

respet to a semanti model of �le systems.

� We explain onit detetion and resolution in terms

of our algebra, and we show that our tehnique de-

tets essentially the same onits as the state-based

tehnique of Balasubramaniam and Piere (1998).

1

� We identify useful properties for onit-resolution

poliies, inluding the disonneted-repair property,

whih a �le synhronizer enjoys if a user an repair

onits by making hanges at a single replia. We

also sketh how to express di�erent poliies using

our algebra.

An algebrai approah to synhronization an simplify

the spei�ation, implementation, and user interfae of

a �le synhronizer. It may also be possible to extend al-

gebrai tehniques to other synhronization problems,

suh as mail folders or PalmOS databases.

2 Formalizing the problem

We onsider the synhronization of n replias of a

�lesystem F , numbered F

1

; : : : ; F

n

. Initially all repli-

as are idential: F = F

1

= � � � = F

n

. At eah

1

Our tehnique is atually slightly stronger. That is, if our

tehnique detets a onit, the state-based algorithm also de-

tets a onit, but there are ases in whih the state-based algo-

rithm detets a onit that our model handles without onit.

These ases are uninteresting, however.

1

replia, users and programs perform operations on the

�lesystem. We write S

i

for the sequene of operations

performed at replia i. The task of the �le synhro-

nizer is to ompute, for eah replia, a sequene S

�

i

that makes the replias onsistent and aounts for

all the operations performed at eah replia. If there

are no onits, all replias reah the same new state

F

post

= S

�

1

(S

1

(F

1

)) = � � � = S

�

n

(S

n

(F

n

)), where we

take sequenes of operations to at as funtions on the

state of a �lesystem.

If order of operations didn't matter, we ould simply

ompute S = S

1

[S

2

[� � �[S

n

and let S

�

i

= S nS

i

. Be-

ause order does matter, however, we have to do more

work. The problem omes from pairs of ommands that

don't ommute; if C

1

;C

2

has a di�erent e�et from

C

2

;C

1

, not all orders are equivalent. The Introdu-

tion ontains an example of suh a pair of ommands;

if C

1

writes "Hello, world" and C

2

writes "Hello,

Dolly", the last writer wins.

If operations were totally ordered, the problemmight

still be fairly simple; we would have to ompute the list

of all operations in the proper order, then arrange for

the state of eah replia to be as if that list of opera-

tions had been performed. Operations at an individual

replia are totally ordered, but unfortunately we an't

order operations between replias. Even if we ould

guarantee onsisteny of timestamps, we wouldn't want

to use timestamp ordering, beause the agents (users

and programs) that perform operations make deisions

about what operations to perform by onsulting only

the states of their loal replias. Agents an't make

deisions based on the results of operations performed

at remote replias, even if those ations have already

taken plae aording to some global lok.

We frame the problem of �le synhronization as �rst

�nding the set S of all operations that have been per-

formed, then omputing a useful subset of S suh that

within the subset, all global orderings that are onsis-

tent with the loal orderings have the same e�et. Us-

ing this subset, we an ompute the sequenes of om-

mands S

�

i

to be applied at eah replia. In more detail,

we an synhronize replias in three steps:

1. Update detetion examines eah replia to determine

the sequene of ommands S

i

that have been exe-

uted at the replia.

2. Reoniliation takes as many ommands as possible

from the sequenes S

i

and omputes the sequenes

S

�

i

to be exeuted at eah replia.

3. Conit resolution takes the leftover, \oniting"

ommands and �gures out what to do with them.

Our approah simpli�es reasoning about all three steps,

and in the third step it o�ers a signi�ant advane over

previous work: reasoning about ommands makes it

possible to devise several onit-resolution strategies.

3 A preise model of �lesystems

We model a hierarhial �lesystem in whih paths refer

to �les and diretories. A path is simply a sequene

of names. We use Greek letters for paths, most om-

monly �. Following Unix onventions, we use the =

harater to separate names in a path, and we write =

for the empty path. We write � � i� � is a pre�x

of , i.e., if = �=� for some path �, whih might be

empty. We write � � if � is a proper pre�x of ,

that is, � � and � 6= . In �lesystem terms, � �

means that � is an anestor diretory of . If � 6�

and 6� �, we say that � and are inomparable. It

is a fundamental property of hierarhial �le systems

that operations taking plae at inomparable paths are

independent.

We write parent(�) for the path that immediately

preedes �. That is, if � is not empty, there is a name n

suh that � = parent(�)=n. The empty path has no

parent.

We model a working �lesystem F as a partial fun-

tion mapping paths to �les and diretories. We write

F (�) to refer to the �le or diretory at path � in �lesys-

tem F . For the ontents of a �lesystem, we write

F (�) = File(m;x) when path � ontains a �le

with metadata m and

ontents x.

F (�) = Dir(m) when path � ontains a

diretory with metadata m.

F (�) = ? when �lesystem F ontains

nothing at path �; ? is

pronouned \missing."

Metadata may inlude permissions, ownership, mod-

i�ation time, et., but the metadata of a diretory

expliitly does not inlude information about the di-

retory's hildren; that information is enoded in F .

We write F (�) = X when we know F (�) 6= ? but we

don't are if we're dealing with a �le or a diretory.

Our model also inludes the broken �lesystem, whih

we write F = ?, pronouned \broken." A broken

�lesystem models the result of an erroneous ommand,

e.g., deleting a diretory with �les under it. Broken

�lesystems don't our in pratie, beause the operat-

ing system prevents users from breaking the �lesystem.

We use a trivial lattie ordering of �lesystems in

whih the broken �lesystem is the bottom element. We

write the lattie ordering F

1

v F

2

, pronouned \F

1

ap-

proximates F

2

." This relation holds whenever F

1

= ?

or when F

1

and F

2

are pointwise equal funtions, i.e.,

F

1

6= ? and F

2

6= ? and 8�:F

1

(�) = F

2

(�).

2

The v re-

lation is a partial order, so two �lesystems approximate

eah other if and only if they are equal.

2

Readers familiar with denotational semantis should note

that our ordering is not the ordering typially used for funtions;

in partiular, if one working �lesystem approximates another,

they are idential.

2

To explain hanges to working �lesystems, we write

Ff� 7! Xg for the funtion that is like F , exept it

maps � to X .

Ff� 7! Xg() =

(

X; if � =

F (); otherwise

We write hildless

F

(�) i� F (�) has no desendants,

i.e., 8 : � � =) F () = ?.

4 An algebra of ommands

What ommands should we use to model operations on

a �lesystem? Beause users must understand what a

synhronizer is doing, our algebra of ommands should

be onsistent with users' mental models of the a-

tions they and their agents perform on the �lesystem.

Users might imagine performing operations like these:

reate(�;X) Create �le or diretory X at �.

remove(�) Remove the �le or diretory that was

at �.

rename(�; n) Change the \base name" of a �le or

diretory to n, while leaving it in the

same plae in the hierarhy.

move(�; �

0

) Move � to �

0

, also moving all

desendants.

derive(�) Change an existing �le or diretory,

in a way that ould be reprodued

mehanially. Beause the result an

be reprodued, the operation need

not say what the �nal state is. An

obvious example is ompiling a

soure to produe a binary.

edit(�;X) Change an existing �le or diretory,

leaving it in state X , in a way that

an't be reprodued mehanially.

The distintion between edit and derive is useful be-

ause a user may wish to speify a behavior like \don't

synhronize derived �les." We distinguish reate from

edit beause although both operations have the same

postondition (�le with new metadata and ontents),

they have di�erent preonditions, so the distintion

may help detet errors. Aordingly, we speify that

to reate an existing �le, or to edit a nonexistent �le,

leaves the �lesystem broken.

These high-level operations may be a good model for

users, but they are not so good for deriving synhro-

nization algorithms. We simplify.

� Coneptually at least,move an subsume rename, as

it does in the Unix system (but not in early versions

of DOS).

� Derive an't be distinguished from edit without

knowledge about how �les are derived. To avoid syn-

hronizing derived �les, we would be better o� with

PSfrag replaements

?

remove

reate

X Y

?

remove(�)

remove(�)

reate(�; Y)

edit(�; Y)

edit(�; Y)

Figure 1: State-transition diagram for a path �

a more general mehanism for making �les \invisible

to the synhronizer." We therefore drop derive.

� Finally, although it is not lear a priori, the move

operation makes it more diÆult to reason about

synhronization. The rux of the problem is that

the move operation a�ets two di�erent loations

in the �lesystem, whereas the other operations af-

fet only one. Aordingly, we replae move(�; �

0

)

with the sequene remove(�); reate(�

0

). The Uni-

son synhronizer does the same. (A move an also

be diÆult to detet, but that is not suÆient reason

to omit it from the algebra.)

Figure 1 shows how these operations hange the on-

tents of a �lesystem at path �. Using the simpler op-

erations simpli�es synhronization but ompliates a

synhronizer's user interfae. Setion 6 explains how

to reover a high-level view for interating with users.

Preise de�nitions of the ommands

We de�ne the e�et of eah ommand as a funtion

from �lesystems to �lesystems. Any ommand applied

to a broken �lesystem produes a broken �lesystem.

In the language of denotational semantis, every om-

mand is strit in the �lesystem. Operationally, one a

�lesystem is broken, there is no way to �x it. Figure 2

gives the e�ets of ommands on working �lesystems.

The ommand break is not one we expet to use during

synhronization, but it helps us reason about errors. In

partiular, by showing that a sequene of ommands is

not equivalent to break , we an show those ommands

an be exeuted without error on at least one �lesys-

tem.

We are interested only in �lesystems that satisfy the

tree property : every parent must be a diretory. For-

mally, if � � and F () 6= ? then F (�) = Dir(m) for

some m. The ommands in Figure 2 maintain the tree

property as an invariant.

The ommands have another property that simpli-

�es reasoning. Eah ommand mentions at most one

path �, and if a ommand is applied to a working

�lesystem, either it breaks the �lesystem or it hanges

the �lesystem only at �.

3

reate(�;X)F =

(

Ff� 7! Xg; i� F (�) = ? ^ F (parent(�)) = Dir(� � �)

?; otherwise

edit(�;Dir(m))F =

(

Ff� 7! Dir(m)g; i� F (�) 6= ?

?; otherwise

edit(�;File(m;x))F =

(

Ff� 7! File(m;x)g; i� F (�) 6= ? ^ hildless

F

(�)

?; otherwise

remove(�)F =

(

Ff� 7! ?g; i� F (�) 6= ? ^ hildless

F

(�)

?; otherwise

break F = ?

Figure 2: Filesystem operations and their semantis

Algebrai laws

Our synhronization algorithm relies on proofs that dif-

ferent sequenes of operations an have the same ef-

fets. We ould onstrut suh proofs by using the pre-

ise de�nitions of the ommands in Figure 2, but it is

awkward to reason diretly about mathematial fun-

tions. This setion presents the major tehnial ontri-

bution of this paper: a sound and omplete proof sys-

tem for reasoning about sequenes of ommands. This

proof system appears in Table 1; it onsists of algebrai

laws that enable us to rewrite pairs of ommands, plus

inferene rules for substitution and transitivity, whih

enable us to extend the rewriting to larger sequenes.

We write ommands in a sequene separated by

semiolons. These sequenes stand for funtions from

�lesystems to �lesystems, as desribed by this equa-

tion:

(C

1

;C

2

)(F) = C

2

(C

1

(F)):

We write S for a sequene of ommands, and we write

skip for the empty sequene of ommands, i.e., the iden-

tity funtion on �lesystems.

Although we want to reason about equivalene, the

entral relation of our algebra is not equivalene but ap-

proximation. To understand why, onsider a sequene

of two ommands: one that reates a �le, and a se-

ond that removes it. You might think this sequene is

equivalent to skip:

reate(�;X); remove(�)

?

� skip :

Look again; the initial reate operation is not safe on all

�le systems. If � is already present, or if �'s parent is

not a diretory, reate(�; S) breaks the �lesystem. The

orret relation between these two sequenes is this:

reate(�;X); remove(�) v skip :

We pronoune S

1

v S

2

as \S

1

approximates S

2

," or

sometimes \S

2

is at least as good as S

1

." The in-

tended interpretation is that we an use S

2

in plae

of S

1

without breaking more �lesystems and without

hanging working outomes. Frequently of ourse, two

sequenes are ompletely equivalent; we write S

1

� S

2

as an abbreviation for S

1

v S

2

^ S

2

v S

1

. Most of the

laws in Table 1 do in fat use equivalene; laws using

approximation are marked with the v symbol.

We have organized Table 1 to show that we have

onsidered all possible pairs of operations. There are

7 pairs involving break . These pairs lead to laws 37{43.

whih are onsistent with Figure 2; one a �lesystem is

broken, no operation an �x it, and we know nothing

about what happened before it broke.

There are 9 pairs of operations not involving break .

Eah suh operation mentions exatly one path, and

when we have a pair of paths �

1

and �

2

, there are

four ases to be onsidered depending on the values of

�

1

� �

2

and �

2

� �

1

:

�

1

� �

2

�

2

� �

1

How we write �

1

; �

2

T T �; �

T F �; �=�

0

F T �=�

0

; �

F F �; '

These ombinations aount for 36 pairs of operations

and paths, and for the laws numbered 1{36. Laws 3{6

are further split into D and F forms to aount for the

di�erene in semantis between diretories and �les.

For example, law 5D says that making � a diretory

ommutes with removing a desendant of �, but law 5F

says that making � a �le and then removing a desen-

dant always auses an error.

3

We summarize the proof

system as follows:

3

Either � originally had no desendants, in whih ase trying

to remove one is an error, or it did have desendants, in whih

ase turning it into a �le (as opposed to a diretory) is an error.

4

Commuting or approximating pairs

1. edit(�;X); edit(�=�

0

; Y) � edit(�=�

0

; Y); edit(�;X)

2. edit(�=�

0

; Y); edit(�;X) � edit(�;X); edit(�=�

0

; Y)

3D

v

. edit(�;Dir(m)); reate(�=�

0

; Y) w

reate(�=�

0

; Y); edit(�;Dir(m))

4D

v

. reate(�=�

0

; Y); edit(�;Dir(m)) v

edit(�;Dir(m)); reate(�=�

0

; Y)

5D. edit(�;Dir(m)); remove(�=�

0

) �

remove(�=�

0

); edit(�;Dir(m))

6D. remove(�=�

0

); edit(�;Dir(m)) �

edit(�;Dir(m)); remove(�=�

0

)

7. edit(�;X); edit('; Y) � edit('; Y); edit(�;X)

8. edit(�;X); reate('; Y) � reate('; Y); edit(�;X)

9. edit(�;X); remove(') � remove('); edit(�;X)

10. reate('; Y); edit(�;X) � edit(�;X); reate('; Y)

11. reate(�;X); reate('; Y) � reate('; Y); reate(�;X)

12. reate(�;X); remove(') � remove('); reate(�;X)

13. remove('); edit(�;X) � edit(�;X); remove(')

14. remove('); reate(�;X) � reate(�;X); remove(')

15. remove(�); remove(') � remove('); remove(�)

Inorret pairs

3F. edit(�;File(m;x)); reate(�=�

0

; Y) � break

4F. reate(�=�

0

; Y); edit(�;File(m;x)) � break

5F. edit(�;File(m;x)); remove(�=�

0

) � break

16. edit(�;X); reate(�; Y) � break

17. edit(�=�

0

; X); reate(�; Y) � break

18. edit(�=�

0

; X); remove(�) � break

19. reate(�;X); edit(�=�

0

; Y) � break

20. reate(�;X); reate(�; Y) � break

21. reate(�=�

0

; X); reate(�; Y) � break

22. reate(�;X); remove(�=�

0

) � break

23. reate(�=�

0

; X); remove(�) � break

24. remove(�); edit(�;X) � break

25. remove(�); edit(�=�

0

; X) � break

26. remove(�); reate(�=�

0

; X) � break

27. remove(�=�

0

); reate(�;X) � break

28. remove(�); remove(�) � break

29. remove(�); remove(�=�

0

) � break

Simplifying laws

30

v

. edit(�;X); edit(�; Y) v edit(�; Y)

31. edit(�;X); remove(�) � remove(�)

32. reate(�;X); edit(�; Y) � reate(�; Y)

33

v

. reate(�;X); remove(�) v skip

34

v

. remove(�); reate(�;X) v edit(�;X)

Break is idempotent

37. break ; edit(�;X) � break

38. break ; reate(�;X) � break

39. break ; remove(�) � break

40. edit(�;X); break � break

41. reate(�;X); break � break

42. remove(�); break � break

43. break ; break � break

Remaining pairs

6F. remove(�=�

0

); edit(�;File(m;x))

35. reate(�;X); reate(�=�

0

; Y)

36. remove(�=�

0

); remove(�)

Non-pair laws

Bottom. break v S for any S

Reflexivity. S v S for any S

S

1

v S

2

S

2

v S

3

S

1

v S

3

(Transitivity)

S

1

v S

2

S;S

1

;S

0

v S;S

2

;S

0

(Substitution)

N.B. Paths � and ' are always inomparable. Where we write �=�

0

, �

0

is always nonempty.

Table 1: Proof system for the �lesystem algebra

� Laws 1{2 and 3D{6D say what operations involving

a diretory and its desendant ommute.

� Laws 7{15 say that operations involving inompara-

ble paths ommute.

� Laws 16{29 and 3F{5F say that operations whih

violate preonditions break the �lesystem.

� Laws 30{34 say when an operation an be ombined

with a previous operation.

� Pairs 35, 36, and 6F, to whih no laws apply, show

signi�ant onstraints on non-breaking sequenes:

parents must be reated before hildren; hildren

must be removed before parents; and hildren must

be removed before a diretory an be made into a

�le.

� Laws 37{43 say that any sequene ontaining break

is equivalent to break .

� The non-pair laws say that any sequene is at least

as good as break and any sequene is at least as good

as itself.

� The inferene rules say we an apply the laws within

longer sequenes, repeatedly if needed.

Every pair law exept law 3D an be used as a rewrite

rule from left to right.

Soundness and ompleteness

The proof system in Table 1 is sound and omplete. In-

formally, soundness says that any onlusion we draw

using the proof system is safe, and ompleteness says

5

that any onlusion we draw using the underlying se-

mantis an also (nearly) be drawn using the proof sys-

tem.

Formally the soundness result is this:

S

1

v S

2

=) 8F:S

1

F v S

2

F:

The proof is straightforward, if a bit tedious, by indu-

tion on the proofs of judgments of the form S

1

v S

2

.

We used automati tehniques to hek the soundness

of the algebrai laws.

Beause of the possibility of ommands that break

the �lesystem, our ompleteness result is not exatly

what you might expet. We write S

1

k S

2

(pro-

nouned \S

1

and S

2

have a ommon upper bound")

i� 9S : S

1

v S ^ S

2

v S. In other words, S

1

k S

2

i�

there is some sequene that is at least as good as both

of them. In situations where neither S

1

nor S

2

breaks

the �le system, S

1

, S

2

, and the upper bound all have

the same e�et. Our ompleteness result shows that if

the e�et of S

1

approximates the e�et of S

2

on every

possible �lesystem, the two sequenes have a ommon

upper bound:

(8F:S

1

F v S

2

F) =) S

1

k S

2

:

The impliation is this: if there are two sequenes of

ommands that have the same e�et on every �lesys-

tem, we an �nd a third sequene that's at least as

good as either of the �rst two|and therefore has the

same e�et on whatever �lesystems don't break. We

sketh the proof here; details will be relegated to an

aompanying tehnial report.

We divide the proof into two ases. Suppose �rst

that 8F:S

1

F = ?, that is, S

1

breaks all �lesystems.

By identifying the shortest pre�x of S

1

that has this

property, and by reasoning about the last operation in

that pre�x, we an show S

1

� break , and break v S

2

holds for any S

2

, so S

1

v S

2

and S

2

is the ommon

upper bound.

In the interesting ase, 9F:S

1

F 6= ?, and S

1

F v S

2

F

gives S

1

F = S

2

F 6= ?. We de�ne minimal sequenes

by onsidering the sets }

S

= fS

0

jS v S

0

g, and we let

S

min

be any sequene in }

S

of minimal length. (The

set is not empty beause it ontains S.) We show that

S

1

min

F = S

2

min

F 6= ? and that break does not appear

in either sequene. The proof of ompleteness has three

main steps.

1. Beause there is a �lesystem that S

1

min

and S

2

min

do not break, no law mentioning break applies. Be-

ause they are of minimal length, no simplifying law

applies. We onlude that in a minimal sequene,

no path is mentioned more than one.

2. The sequenes S

1

min

and S

2

min

must ontain ex-

atly the same set of ommands. The key insight

is that a ommand mentioning path � either breaks

the �lesystem or hanges it only at �.

3. By applying ommutative laws, we an rewrite

S

1

min

and S

2

min

into a anonial sequene S. We

use the following anonial ordering, whih �rst or-

ders ommands by lasses and then by pathname

within lass.

(a) Commands of the form edit(�;Dir(m)), in any

order determined by �.

(b) Commands of the form reate(�;X), in preorder.

() Commands of the form remove(�), in postorder.

(d) Commands of the form edit(�;File(m;x)), in any

order determined by �.

To rewrite sequenes into this form, we may ap-

ply law 4D, so the strongest result we an get is

S

1

v S w S

2

, not equivalene. The anonial se-

quene S may be better than S

1

and S

2

, that is,

it may be orret on more �lesystems, but whenever

S

1

or S

2

works, S works and has exatly the same

e�et.

5 Using the algebra

We have applied our algebra to the three steps of �le

synhronization: update detetion, reoniliation, and

onit resolution.

Update detetion

Typial �lesystems don't keep logs of the operations

that were performed on a �lesystem; instead, we have

to look at two states of a �lesystem, F

i

and F

0

i

, and

�nd a minimal sequene of operations S

i

suh that

F

0

i

= S

i

(F

i

). We an do so by visiting all the non-?

paths in eah �lesystem. As shown in Figure 1, by

omparing F

i

(�) with F

0

i

(�), we an deide whether

a reate, remove, or edit has taken plae. We ould

oneivably infer an edit operation for eah path that

is populated in both �lesystems; this strategy orre-

sponds to the \trivial update detetor" mentioned by

Balasubramaniam and Piere (1998). But this strategy

makes the ost of synhronization proportional to the

size of the �lesystem, not the size of what has hanged.

To do better, we need to know whih paths have iden-

tial values in both �lesystems; no edit operations are

needed for suh paths.

Unfortunately, in typial use F

i

represents the state

of the �lesystem at the last synhronization, F

0

i

rep-

resents the urrent state, and we may wish not to

keep a opy of F

i

available inde�nitely.

4

Even if

we keep a opy, omparing ontents of �les may be

expensive. Aordingly, �le synhronizers typially

4

Some operating systems, suh as Plan 9, use write-one op-

tial disks to make it heap to reonstrut the state of a past

�lesystem (Thompson 1995), but suh failities are not ommon.

6

keep a snapshot of F

i

, whih is a opy of F

i

that

inludes diretory struture and metadata but omits

the ontents of �les. That is, the snapshot saves

File(m;?) instead of File(m;x). An alternative is to

save File(m;h(x)), where h is a �ngerprinting hash

funtion (Broder 1993). The assumption is that in

pratie, we an avoid examining most ontents be-

ause no operation hanges the ontents of a �le with-

out also hanging its metadata. The details of exatly

what metadata might hange are subtle; for exam-

ple, beause Unix �lesystems an rename �les without

hanging their modi�ation times, looking at modi�-

ation time alone an miss updates. Looking at both

modi�ation time and inode number suÆes; Setion 3

of Balasubramaniam and Piere (1998) has details.

One we have deided on the reate, remove, and edit

operations that are needed, we an put these operations

into anonial order. Our ompleteness theorem tells

us that the anonial sequene is at least as good as

what atually happened.

Reoniliation

Balasubramaniam and Piere (1998) haraterizes the

requirements on a synhronizer using two slogans:

(1) propagate all non-oniting operations and (2) if

operations onit, do nothing. The value of our ap-

proah is that it enables hoies about what to do at

a onit; our seond slogan is therefore (2) save on-

iting operations for later resolution.

We de�ne oniting operations using the minimal

sequenes found by the update detetor. Consider

two ommands C

i

(�) 2 S

i

and C

j

() 2 S

j

, where

i 6= j, and S

i

and S

j

are minimal sequenes suh that

F

i

= S

i

(F) and F

j

= S

j

(F). We say C

i

(�) and C

j

()

are oniting ommands i� (C

j

=2 S

i

)^ (C

i

=2 S

j

) and

one of the following holds:

� C

i

(�);C

j

() 6 k C

j

();C

i

(�), i.e., the ommands do

not ommute.

� C

i

(�);C

j

() � break or C

j

();C

i

(�) � break, i.e.,

the ommands break every �lesystem.

When C

1

and C

2

onit, we write C

1

� C

2

.

The reoniler takes the sequenes S

1

; : : : ; S

n

that

are omputed to have been performed at eah replia.

It omputes sequenes S

�

1

; : : : ; S

�

n

that make the

�lesystems as lose as possible. The idea of the algo-

rithm is that a ommand C 2 S

i

should be propagated

to replia j (inluded in S

�

j

) i� three riteria are met:

� C =2 S

j

, i.e., C has not already been performed at

replia j

� no ommands at replias other than i onit with C

� no ommands at replias other than i onit with

ommands that must preede C

A ommand C

0

must preede ommand C i� they ap-

pear in the same sequene S

i

, C

0

preedes C in S

i

, and

they do not ommute (C

0

;C 6 k C;C

0

).

To see why we have to worry about onits on om-

mands that must preede C, onsider this example.

Suppose in the original �lesystem F (�) = File(m

x

; x).

We got two replias by performing these ommands:

F

1

= (edit(�;Dir(m)); reate(�=n;File(m

w

; w)))F

F

2

= edit(�;File(m

z

; z))F:

Commands edit(�;Dir(m)) and edit(�;File(m

z

; z))

do not ommute, so they are oniting ommands.

Therefore we annot apply ommand edit(�;Dir(m))

to replia 2. Beause edit(�;Dir(m)) must preede

reate(�=n;File(m

w

; w)), we annot propagate the

ommand reate(�=n;File(m

w

; w)) either.

Given our three riteria, the reoniliation algorithm

must be equivalent to the following:

for i 2 1::n do

make S

�

i

empty

for i 2 1::n do

for j 2 1::n do

for every ommand C 2 S

i

do

if C should be propagated to replia j then

append C to S

�

j

The algorithm is easily modi�ed to ompute the sets of

oniting ommands S

�

i

as well as the sequenes S

�

i

.

6 Implementation

A prototype

To verify that our algorithms an be implemented and

that they work as we expet, we have written a proto-

type implementation. The program is about 700 lines

of Perl; when blank lines and omments are removed,

under 400 lines remain. The program handles only two

replias, and it does not modify the �lesystem; it sim-

ply omputes the sequenes S

�

1

and S

�

2

. Beause it is a

prototype, the program does not use a snapshot of the

�lesystem; instead we give it a omplete opy of the

original. The prototype also takes a simpli�ed view of

metadata; for example, the metadata for a diretory is

redued to a single bit, whih tells whether the program

has permission to write the diretory.

We have also started integrating our synhronization

algorithm into the Unison synhronizer.

Saling up to a real implementation

Although users may have a rih mental model of �lesys-

tem operations, it's easier to develop an e�etive proof

system and a orret synhronization algorithm if we

keep the algebra small. Still, there is no reason to make

7

the users su�er. After the synhronizer has omputed

the reoniling sequenes S

�

i

and the oniting oper-

ations S

�

i

, we reommend introduing new operations

to present these sequenes to a user.

Collapsing ordered operations

In a minimal sequene, the only ordering onstraints

are those imposed by laws 3D, 21, and 29, as well as

the pairs 6F, 35, and 36. Informally, parents must be

reated before hildren, and hildren must be removed

before parents. We an eliminate ordering onstraints

by ollapsing reate and remove operations into opera-

tions on their parents. The ollapsed operations might

be alled reate subtree, remove subtree, and edit into

subtree. The \ollapsed form" of a minimal sequene is

onvenient beause it enables us to forget about order,

treating the sequene as a set. It should be helpful in a

user interfae. Not only is the subtree operation easier

to understand, but if operations must be approved by

users, as in the Unison synhronizer, the ollapsed form

makes it impossibe for a user to approve an inonsis-

tent set of operations (e.g., approving the reation of

a �le without also approving the reation of its parent

diretory).

Expliit move

We reommend introduing move, using the de�nition

move(�; �

0

) = remove(�); reate(�

0

; X), whereX is the

ontents of the original �lesystem at �. Beause the

algebrai laws governing move are omplex, we reom-

mend that move be introdued only after reonilia-

tion, to desribe either ations to be taken or onit-

ing ommands. Using move has three bene�ts.

1. Performane. If an agent at one replia has moved

a �le from � to �

0

, the instrutions for performing

the same ation at other replias need mention only

the paths � and �

0

. If we treat the move operation

as a deletion and reation, the instrutions sent to

other replias must inlude the full ontents of the

�le.

There are other solutions to this performane prob-

lem. In partiular, if the synhronizer retains a

\�ngerprint" that uniquely identi�es the ontents of

eah �le (Broder 1993), then one an build a trans-

port layer that avoids sending the ontents of any

�le whose ontents are already available at another

replia. But to realize the performane improve-

ment, the synhronizer must be areful to send the

reate operation before the remove operation, lest

ontents that were available be disarded before they

are needed. This ordering may onit with order-

ings used in the user interfae, e.g., lexiographi

ordering by pathname, or ordering by type of oper-

ations at the onveniene of the user.

2. Retention of metadata. We wish to be able to syn-

hronize replias that reside under di�erent operat-

ing systems, suh as Windows, Unix, and MaOS.

Beause eah operating system has di�erent meta-

data, it is in general impossible to preserve meta-

data when sending instrutions between replias un-

der di�erent operating systems. But there is an im-

portant speial ase, namely, a user running dison-

neted at F

1

wishes to restruture a diretory whose

ontents ontain metadata representable only at F

2

.

If our algebra inludes a move operation, we an

propagate renaming operations from F

1

to F

2

with-

out losing metadata that makes sense only at F

2

. If

we do not have move, but must rely on reate, we

only send bak to F

2

the results of a \best e�ort"

to represent F

2

's metadata on F

1

, and we are likely

to lose metadata like Windows aess-ontrol lists.

(A formal haraterization of \best e�ort" would be

worthwhile, but it is beyond the sope of this paper.)

3. Usability. The most important reason to keep move

is to redue the ognitive burden on users. The Uni-

son synhronizer, for example, �rst deides on a set

of transations, then asks its users to approve them.

5

If a user is asked to approve a move operation,

the user knows|from purely loal information|

that the ontents of the renamed �le will not be

lost. But if the move is split into separate reate and

remove operations, these operations may be widely

separated in the list of transations; and a user want-

ing to be sure the remove is safe must inspet the

entire list.

A move ommand also eliminates the possibility of

an error in whih a user approves the remove but

not the orresponding reate, resulting in loss of on-

tents at one replia.

Resolving onits

By themselves, algebrai laws don't tell us what to

do with oniting ommands. Balasubramaniam and

Piere (1998) derives, from �rst priniples, postondi-

tions that ompletely determine a onit-resolution

poliy. Our approah allows more freedom, whih en-

ables us to onsider requirements for resolving onits.

Three assumptions are ommon to both approahes:

� If there are no onits, the replias are idential

after synhronization.

5

Unison's transations do not resemble the operations advo-

ated in this paper. Instead, Unison o�ers three hoies: make F

1

like F

2

, make F

2

like F

1

, or do nothing. Interestingly, Unison's

update-detetion algorithm uses the operations in this paper (re-

move, reate, edit, and skip), and it suggests a transation based

on what operation was performed at eah replia. To help the

user make a deision, Unison presents these operations in a sim-

pli�ed form. This form does not distinguish reate from edit ,

and it ollapses subtree operations as desribed above.

8

� Even in the presene of onits, the synhronizer

preserves the knowledge of what hanges were made

by users.

� The knowledge of a human being is required to

resolve onits. The human being is given the

states F

i

of the replias, and the human being re-

solves onits by speifying either a new state F

0

i

for eah replia or a sequene of ommands S

0

�

i

to

be performed at eah replia.

6

In a state-based ap-

proah, the synhronizer must be apable of estab-

lishing the desired state at eah replia.

Balasubramaniam and Piere (1998) resolves on-

its by ignoring oniting ommands. This poliy

preserves the information reated at eah replia, but

that information is available only at the loal repli-

as; disonneted repairs are impossible. We say that a

synhronizer enjoys the disonneted-repair property if,

no matter what the state of any replia, the following

senario is possible:

1. A synhronization is initiated (by human or other

ageny), and the synhronizer runs without human

intervention.

2. The replias are disonneted.

3. A human being resolves onits at one replia, leav-

ing the other replias unhanged. All information

neessary to resolve onits must be present at eah

replia.

4. The replias are reonneted, a seond synhroniza-

tion (\resynhronization") is initiated, and it runs

without human intervention.

5. The two replias are idential.

If a person is to resolve onits, the synhronizer

must tell the person what onits have ourred. An

obvious mehanism would be to repliate information

about oniting ommands, and to use a speial user

interfae that would show this information and would

enable people to resolve onits. But a speial user

interfae may be unneessary. Suppose instead that

the synhronizer establishes a di�erent postondition:

After synhronization, all replias are idential. This

means the synhronizer must somehow enode in the

�le system the information from both replias. This

enoding may be onfusing, but the postondition has

ompensating advantages.

� The user an determine the states of all replias by

examining a single replia.

6

Human beings are of ourse free to write omputer programs

that ompute new states or ommands.

� The user need not remember what onits ourred

at the most reent synhronization, beause those

onits manifest themselves as ontents of the �le

system.

� The user an make disonneted repairs by mutat-

ing one replia until it reahes a desired state. Work

an then proeed at that replia without resynhro-

nization.

If results from synhronization are to be enoded

in the �lesystem, whenever there is a onit at a

pathname, the synhronizer must preserve, at all repli-

as, the distint ontents held by that pathname at

eah replia. To return to the example from the In-

trodution, hello. might beome hello.�server,

hello.�home, and hello.�laptop. But what hap-

pens to the original pathname, hello.? We see three

hoies:

� Remove the name. This hoie makes the onit

hard to overlook, but it has the disadvantage that

if a pathname disappears, programs that rely on it

may fail. In severe ases, a user may be unable to

log in (e.g., a onit ours at /bin/sh).

� Delare one replia the master, and let the pathname

reet the value at the master replia. A permanent

master ould be designated, but it might also be

useful to make the master the replia at whih the

synhronizationwas initiated. The advantage is that

the master replia probably keeps working.

� Let the replia with the latest modi�ation time win.

This hoie seems to o�er the greatest risk|it may

leave all replias in unusable states|without any

ompensating advantages.

Metadata and modi�ation times

Users have a right to expet that a synhronizer will

propagate a �le's metadata as well as its ontents. Most

metadata an be propagated without diÆulty, but be-

ause loks at di�erent replias may show di�erent

times, propagating modi�ation times an ause prob-

lems. Here are some requirements on timestamps:

1. If the synhronizer thinks two replias of a �le are

idential, those replias should bear idential times-

tamps. This requirement ensures that the �les are

treated as idential by other synhronization tools,

by Make, by find, et.

2. When opying �les from one replia to another, syn-

hronization should not hange the relative order of

the timestamps. This requirement preserves the or-

ret behavior of Make. An early version of Unison

used the time of synhronization as the modi�ation

time, sometimes leading Make to treat obsolete �les

as up to date.

9

3. Timestamps at a single replia should be suh that,

if a user waits for one time unit to pass, then modi-

�es or reates a �le, that �le will bear a modi�ation

time that is greater than the modi�ation time of any

other �le at that replia. This requirement is essen-

tial for Make to funtion orretly. If it is violated

(e.g., beause the system lok gets out of whak)

the problem an be diÆult to diagnose.

4. The outome of a synhronization should depend

only on the state of the two �le systems being syn-

hronized, not on the time at whih the synhroniza-

tion takes plae. The argument for this requirement

is that synhronization itself should not be seen as

an operation on the �lesystem, only as a way of prop-

agating existing operations.

Requirements 2 and 3 are satis�ed if this a more gen-

eral ondition holds: If the user performs reation and

modi�ation operations at both replias, and if these op-

erations are totally ordered, then after the synhronizer

runs, the timestamps on synhronized �les respet this

total order. \Totally ordered" means not only ordered

in real time, but ordered up to the ability of the loal

system to distinguish the ations. If a user hanges

two �les 10 milliseonds apart, and time stamps have

a granularity of one seond, these two ations are not

totally ordered.

The loal lok provides an adequate total ordering

for events at one replia, no matter what rate it runs

at, provided it runs forward. The awful truth is that

there is no way to tell when events at di�erent replias

should be totally ordered, even when users take are

to order them. As noted in Setion 2, even if there

is a global lok, we an't rely on it, beause we an't

know post ho whether operations ordered in time were

so ordered intentionally or aidentally.

If there is no onsistent global lok, as is typially

the ase, the problems get worse; in the presene of

lok skew, the onditions above annot all be satis�ed

simultaneously. For example, if replia F

1

is running

an hour ahead of replia F

2

, then hanges to �les mod-

i�ed within the last hour annot be propagated to F

2

without either giving them di�erent time stamps or vi-

olating the total ordering. We believe it is better to

give them di�erent time stamps.

7

If the time skew is

small, it may be even better to freeze synhronization

for a few seonds, allowing the lok at F

2

to ath up

with the latest modi�ation time at F

1

. A formal study

of synhronization in the presene of lok skew might

yield more onvining reommendations.

7

Even in this ase, a synhronizer might well have to wait

one tik at F

2

for every �le synhronized, in order to respet the

total order without reating any �les \newer than now."

7 Related work

Conit detetion

Balasubramaniam and Piere (1998) phrases update

detetion in terms of dirty sets. Using our notation,

the result of update detetion applied to original �lesys-

tem F and replia F

i

is a set dirty

i

, whih must satisfy

two properties:

� � =2 dirty

i

=) F

i

(�) = F (�), i.e., lean �les

haven't hanged

� �=�

0

2 dirty

i

=) � 2 dirty

i

, i.e., if a path is dirty

its parent is dirty

A dirty set is a safe estimate of paths where hanges

have been made; a good update detetor omputes the

smallest possible dirty set. There is a dirty-set onit

at path � i� � 2 dirty

i

\ dirty

j

and F

i

(�) 6= F

j

(�)

and either F

i

(�) or F

j

(�) is a �le. (The spei�ation

in Balasubramaniam and Piere (1998) ignores dire-

tory metadata, so all diretories are onsidered identi-

al. Unison's implementation does not ignore diretory

metadata.)

We had expeted our de�nition of onits, whih

uses oniting ommands, to be equivalent to the def-

inition based on dirty sets. It turns out that our de�ni-

tion is stritly more liberal, but not in a terribly inter-

esting way. The following example shows it is possible

to have a dirty-set onit without having oniting

ommands. Let the original �lesystem and the two

replias be given by these equations:

F = f= 7! Dir(m); =d 7! Dir(m); =d=f 7! File(m

x

; x)g

F

1

= (remove(=d=f); remove(=d))F

F

2

= (remove(=d=f))F:

The least dirty sets must be

dirty

1

= f=; =d; =d=fg

dirty

2

= f=; =d; =d=fg

N.B. =d 2 dirty

1

beause replia 1 hanged at =d, but

=d 2 dirty

2

beause =d=f 2 dirty

2

and parents of dirty

paths are dirty. We have a dirty-set onit at =d be-

ause it is dirty in both replias and F

1

(=d) is not a

diretory.

Our algebra �nds no onit. S

1

= remove(=d=f);

remove(=d) and S

2

= remove(=d=f), so there are no

oniting ommands. In pratie, we an safely apply

remove(=d) to replia 2, so we believe this example

should be onsidered non-oniting.

To show our algebra is more liberal, we show that

whenever there are oniting ommands, there is a

dirty-set onit. For onsisteny with Balasubrama-

niam and Piere, we assume that all diretories have

10

the same metadata and write simply Dir for direto-

ries. We assume we have unbroken �lesystems F; F

1

; F

2

and we have the minimal sequenes S

i

and S

j

and

the dirty sets dirty

i

and dirty

j

from the update dete-

tors. Finally, we assume that the minimal sequenes

do not ontain unneessary ommands of the form

edit(�;Dir). That is, beause all diretories have the

same metadata, if F (�) = Dir then the ommand

edit(�;Dir) must not appear in S

1

or S

2

.

If two ommands onit, one path must preede the

other, sine otherwise the ommands would ommute.

Without loss of generality, we number the replias to

hoose C

1

(�) 2 S

1

and C

2

(�=�̂) 2 S

2

, , where �̂ may

be empty, suh that C

1

(�)�C

2

(�=�̂). We prove there

is a dirty-set onit at path �.

Beause eah sequene S

i

is of minimal length, we

know that F

1

(�) 6= F (�) and F

2

(�=�̂) 6= F (�=�̂).

Therefore � 2 dirty

1

and �=�̂ 2 dirty

2

. Beause dirty

sets are losed under the parent relation, �=�̂ 2 dirty

2

means � 2 dirty

2

. What we have left to show is that

F

1

(�) 6= F

2

(�), and in partiular either F

1

(�) or F

2

(�)

is not a diretory.

Suppose that F

1

(�) = F

2

(�) = Dir. Beause S

1

is minimal, C

1

(�) is the only ommand in S

1

that

mentions path �, and so F

1

(�) = (C

1

(�)F)(�) = Dir.

We onlude that C

i

(�) must be either reate(�;Dir)

or edit(�;Dir). In either ase we an be sure that

F (�) 6= Dir beause otherwise edit(�;Dir) ould be

removed from S

1

, ontraditing our assumptions. By

assumption, F

2

(�) = Dir, so there must be a om-

mand in S

2

that mentions �; all it C

0

2

(�). By sim-

ilar reasoning C

0

2

(�) must be either reate(�;Dir) or

edit(�;Dir), and sine the replias have the same ini-

tial and �nal states at �, in fat C

1

(�) = C

0

2

(�). But

this fores C

1

(�) 2 S

2

, whih ontradits the assump-

tion that C

1

(�)�C

2

(�=�̂). Therefore F

1

(�) and F

2

(�)

annot both be diretories.

Similar reasoning shows that F

1

(�) 6= F

2

(�), and

therefore we have a dirty-set onit at �.

Other synhronizers

Spae limitations prelude a thorough disussion of

other synhronizers here. Commerial �le synhroniz-

ers inlude Mirosoft's Briefase (Shwartz 1996; Mi-

rosoft 1998) and Leader Tehnologies' PowerMerge.

Puma Tehnologies' IntelliSyn solves a related prob-

lem: synhronizing various kinds of database �les used

in handheld and other omputers (Puma a; Puma b).

In addition to the Unison synhronizer (Balasubra-

maniam and Piere 1998), there is an experimental

synhronizer developed by the Rumor projet (Rei-

her et al. 1996). Balasubramaniam and Piere (1998)

disusses some of these synhronizers, as well as on-

netions to researh in distributed �le systems and

databases. There is also the more reent Reonile syn-

hronizer (Howard 1999).

8 Disussion

Balasubramaniamand Piere (1998) spei�es a �le syn-

hronizer by presenting preonditions and postondi-

tions for the states of two �lesystems before and af-

ter synhronization. Although these onditions om-

pletely determine a synhronization algorithm, we hope

to have onvined you that other postonditions might

be equally desirable, or possibly even more desirable.

By reasoning about an algebra of operations instead

of states, we have shown that there an be a family of

spei�ations for �le synhronizers, eah of whih ould

be onsidered orret. Di�erent members of the fam-

ily might o�er di�erent tradeo�s in their treatments of

oniting ommands. Our algebrai approah illumi-

nates the design spae.

Our approah also shows additional promise, beause

the �lesystem algebra is not the only interesting algebra.

For example, the mail systems suh as MH use �lesys-

tems to hold eletroni mail. Diretories represent mail

folders, and �les represent messages. File names rep-

resent message numbers. The message numbers them-

selves are not important. More preisely, althoughmes-

sage numbers at an individual replia should not be

hanged gratuitously, it might be aeptable to have

di�erent message numbers at di�erent replias, and it

might be aeptable if message numbers hanged as a

result of synhronization.

The mail-folder algebra orresponds not to �lesys-

tem operations but to mail-handling ommands: rmm,

whih removes a message; refile, whih moves a mes-

sage between folders; and in, whih aepts delivery

of new messages. Suh ommands assign message num-

bers and maintain internal invariants, e.g., the integrity

of .mh sequenes. One may also see a rare edit oper-

ation, e.g., to path bothed headers, to reformat un-

readable ontent reated by Mirosoft produts, et.

A ritial di�erene in the mail algebra is that messages

should not be identi�ed by pathname, but rather by

ontents. For messages that onform to RFC 822, the

value of the Message-Id �eld an stand in for the on-

tents. Our synhronization algorithm and proof teh-

niques may nevertheless apply to this new algebra.

Existing synhronizers are either ill-spei�ed (as are

many of the ommerial tools) or inexible (Balasub-

ramaniam and Piere 1998). An algebrai approah

seems to o�er a natural and understandable path to

spei�ation and implementation of a �le synhronizer,

but the real potential advantages lie in two areas.

� Our algebrai approah leads not to a single syn-

hronization algorithm, but to a family of possible

algorithms. The approah seems espeially useful

for exploring di�erent ways of resolving onits.

11

� We hypothesize that an algebrai approah may be

useful for other synhronization problems, suh as

synhronizing mail folders, PalmOS databases, or

other kinds of �les with internal struture.

In the long run, it may even be possible to build a

synhronizer that is parameterized by an algebra, an

update detetor, and a onit resolver. One ould

extend suh a synhronizer without having to prove

the whole thing orret; instead, one ould limit one's

e�ort to proving the soundness of the algebrai laws

and of the update detetor.

Aknowledgments

Thanks to Benjamin Piere for omments on this pa-

per, and also for many stimulating disussions of �le

synhronization, espeially during ICFP'99. Thanks to

Tony Hoare for suggesting we fous on the re�nement

ordering. This work was supported by NSF grant CCR-

0096069 and by the Researh Siene Institute, whih

is sponsored by the Center for Exellene in Eduation.

Referenes

Balasubramaniam, Sundar and Benjamin C. Piere.

1998 (Otober). What is a �le synhronizer? In

Proeedings of the 4th Annual ACM/IEEE In-

ternational Conferene on Mobile Computing and

Networking (MOBICOM-98), pages 98{108, New

York. See the Unison home page at http://www.

is.upenn.edu/~bpiere/unison.

Broder, Andrei. 1993. Some appliations of Rabin's �n-

gerprinting method. In Capoelli, R., A. De San-

tis, and U. Vaaro, editors, Sequenes II: Methods

in Communiations, Seurity, and Computer Si-

ene, pages 143{152. Springer-Verlag.

Howard, John H. 1999. Reonile user's guide. Teh-

nial Report TR99-14, Mitsubishi Eletronis Re-

searh Lab.

Mirosoft. 1998. Mirosoft Windows 95: Vision for

mobile omputing. http://www.mirosoft.om/

windows95/info/w95mobile.htm.

Puma. Designing e�etive synhronization solutions: A

White Paper on Synhronization from Puma Teh-

nology. http://www.pumateh.om/synwp.html.

. A white paper on DSX

tm

Tehnology { Data

Synhronization Extensions from Puma Tehnol-

ogy. http://www.pumateh.om/dsxwp.html.

Reiher, P., J. Popek, M. Gunter, J. Salomone, and

D. Ratner. 1996 (June). Peer-to-peer reonil-

iation based repliation for mobile omputers.

In European Conferene on Objet Oriented Pro-

gramming '96 Seond Workshop on Mobility and

Repliation.

Shwartz, Stu. 1996 (May). The Briefase|in brief.

Windows 95 Professional. http://www.obb.om/

w9p/9605/w9p9651.htm.

Thompson, Ken. 1995. The Plan 9 �le server. In

Plan 9: The Douments, pages 313{320. Murray

Hill, New Jersey: Computing Sienes Researh

Center, AT&T Bell Laboratories.

12

