
Considering Power Variations of DVS Processing Elements
for Energy Minimisation in Distributed Systems

Marcus T. Schmitz
Dept. of Electronics and Computer Science

University of Southampton
Southampton, SO17 1BJ, United Kingdom

m.schmitz@ecs.soton.ac.uk

Bashir M. Al-Hashimi
Dept. of Electronics and Computer Science

University of Southampton
Southampton, SO17 1BJ, United Kingdom

bmah@ecs.soton.ac.uk

ABSTRACT
Dynamic voltage scaling (DVS) is a powerful technique to re-
duce power dissipation in embedded systems. Some efficient
DVS algorithms have been recently proposed for the energy
reduction in distributed system. However, they achieve the
energy savings solely by scaling the system task with re-
spect to the timing constraints, while neglecting that power
varies among the tasks executed by DVS processing elements
(DVS-PEs). In this paper we investigate the problem of
considering DVS-PE power variations dependent on the ex-
ecuted tasks, during the synthesis of distributed embedded
systems and its impact on the energy savings. Unlike pre-
vious approaches, which minimise the energy consumption
by exploiting the available slack time without considering
the PE power profiles, a new and fast heuristic for the volt-
age scaling problem is proposed, which improves the voltage
selection for each task dependent on the individual power
dissipation caused by that task. Experimental results show
that energy reductions with up to 80.7% are achieved by
integrating the proposed DVS algorithm, which considers
the PE power profiles, into the co-synthesis of distributed
systems.

1. INTRODUCTION
Power dissipation has become a major issue in embedded
system design, due to reliability and battery life time in
portable application. One technique to tackle the problem
of power consumption is dynamic voltage scaling [19], which
reduces the power dissipation P by dynamically scaling the
supply voltage Vdd and operational frequency f of the em-
bedded processor [3, 10, 14] according to the system require-
ments. The power dissipation and the operational frequency
are expressed by the following equations:

Pdyn = CL ·N0→1 · f · V 2
dd (1)

f = k · (Vdd − Vt)2/Vdd (2)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSS’01,October 1-3, 2001, Montréal, Qúebec, Canada.
Copyright 2001 ACM 1-58113-418-5/01/00010 ...$5.00.

where CL is the switching capacitance, N0→1 denotes the
switching activity, k is a circuit dependent constant and Vt
is the circuit threshold voltage.

There has been extensive research on DVS algorithms
with early research focused on single processor systems ex-
ecuting independent tasks [11, 21]. Recently DVS has also
been applied to distributed embedded systems. In [9] a
task scheduling algorithm based on a list scheduling with
dynamic re-calculation of priorities is presented. The al-
gorithm attempts to find optimised and feasible schedules
by assigning priorities based on the average energy dissipa-
tion. If no feasible schedule is found the priorities of the
tasks on the critical path are increased and the tasks are re-
scheduled. The scheduling algorithm presented in [16] aims
at a power-conscious joint scheduling of periodic task graphs
and aperiodic tasks, which employs DVS and dynamic power
management to achieve energy efficiency. They optimise a
pre-ordered schedule by distributing the flexibility in the
schedule more evenly. These algorithms show that DVS can
be applied to distributed embedded systems.

In all of the reported scaling algorithms for distributed
systems [9, 16] the PE power consumption of different tasks
is neglected during the voltage selection. However, modern
VLSI designs make extensive use of low power techniques
like, e.g., gated clocks [5], and the PEs in distributed sys-
tems are often of heterogeneous nature [20]. Certainly, this
results in a PE power profiles, which show power variations.
In [13, 17, 18] it was shown that the consideration of PE
power variations of the executed task is important from the
energy reduction point of view. They proposed suitable DVS
algorithms for single DVS-PE systems. However, the trend
of embedded systems implementations is going towards dis-
tributed systems [20].

The aim of this paper is to investigate the problem of con-
sidering DVS processor power variations dependent on tasks,
during the synthesis of distributed embedded systems and
its impact on energy savings. A new off-line scaling heuris-
tic is proposed, which is sufficiently fast enough (polynomial
time complexity) to permit its use during the design space
exploration phase of the co-synthesis process, further reduc-
ing the energy dissipation by optimising the scheduling and
mapping of the specification tasks towards DVS usability.

The remainder of the paper is organised as follows. Sec-
tion 2 motivates the consideration of PE power variations
among tasks, using an illustrative example. In Section 3
the specification model is given and the variable power DVS
problem is formulated. Section 4 presents a constructive

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/283975349?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

τ0

τ2

1τµs

µs

µs

τ 3

θ4

τ4
=16

θ3=15

p=
20

Figure 1: Task graph example

task WCET (µs) Power (mW) Mapping

τ0 1.5 85 PE0
τ1 3.0 20 PE1
τ2 7.5 15 PE1
τ3 1.5 80 PE1
τ4 1.5 100 PE0

τ0 → τ1 0.5 5 CL0
τ3 → τ4 1.0 5 CL0

Table 1: Exaction times, power dissipations, and
mapping of tasks and communications

heuristic to solve the variable power DVS problem. In Sec-
tion 5 experimental results are given, which demonstrate
the necessity of considering PE power variations. Section 6
presents some conclusions.

2. MOTIVATIONAL EXAMPLE
This section addresses why PE power variations among tasks
in distributed systems need to be considered in order to re-
duce the system energy consumption. This is illustrated by
the following simple example. Fig. 1 gives a system specifi-
cation using a task graph (TG), with two hard deadlines
at 15µs and 16µs. The period between two invocations
of the task graph is 20µs. The worst-case execution times
(WCET), the nominal power dissipations and the mapping
of each task and communication are shown in Table 1.

Scheduling the given specification on a distributed system
consisting of two PEs (PE0 and PE1) connected by a link
(CL0), could result in the feasible schedule (executing tasks
at nominal supply voltage) given in Fig. 2. Using the exe-
cution values in Table 1 the dynamic energy dissipation of
the system can be calculated as 577.5nJ . Obviously, task τ3
and τ4 finish execution before their deadlines are exceeded,
leaving a slack of 1µs, which can be used to reduce the en-
ergy dissipation through supply voltage scaling and hence
reducing the power dissipated by the tasks. Lets consider
two cases for the identification of scaling voltages: First,
when the voltage selection process neglects the individual
PE power dissipation and second, when the power profile is
taken into account in order to refine the voltage schedule.

One approach to optimise the energy dissipation, which
neglects the power profile, is to distribute the slack time
evenly among the tasks (similar to [16]), as shown in Fig. 3(a).
Each task execution in this example is extended by a fac-
tor of 14.5/13.5 = 1.074, since the total execution times
(both path of the TG) account for 13.5µs and the slack is
1µs. Thereby the new execution times can be calculated as

τ0
τ4

τ1 τ2

τ3

PE1

t

Slack

PE0

CL0

P
(mW)

(s)

1Vdd () = 3.30Vτ

2Vdd () = 3.30Vτ

3Vdd () = 3.30Vτ

Vdd () = 5.00Vτ
0Vdd () = 5.00Vτ

4

Slack

E = 577.5nJ

1.5 13.5

12.5 14 15 162 5
µ

Figure 2: Tasks execution at nominal supply voltage

t0 = 1.61µs, t1 = 3.22µs, t2 = 8.56µs, t3 = 1.61µs, and
t4 = 1.61µs. According to this execution times the sup-
ply voltages of PE0 and PE1 can be reduced to 4.79V and
3.16V , respectively, using Equation (2). This values were
calculate taking into account the different maximal supply
voltages Vmax and threshold voltages Vt of PE0 (Vmax =
5V, Vt = 1.2V) and PE1 (Vmax = 3.3V, Vt = 0.8V). Using
the new execution times, the individual task power dissipa-
tions can be reduced to P0 = 72.57mW , P1 = 17.08mW ,
P2 = 12.81mW , P3 = 85.42mW , and P4 = 85.38mW , as
calculated by Equation (1). This results in a total energy
dissipation E = 530.3nJ , a reduction of 8.2%.

Now consider the second case when the PE power dissi-
pation dependent on tasks is considered during the voltage
selection. Intuitively, the tasks τ0,τ3 and τ4 will reduces
the energy dissipation more than the tasks τ1 and τ2, when
voltage scaled, due to their high power consumption and
therefore should be extended more then the remaining tasks.
Fig. 3(b) shows an improved voltage schedule. This sched-
ule was generated using the scaling algorithm introduced
later in Section 4. To demonstrate the principle behind the
proposed approach it is necessary to give the following defi-
nition.

Definition 1. We define an energy gradient ∆tτ as the
difference between the energy dissipation of task τ with the
execution time t and the reduced energy dissipation (due to
voltage and clock scaling) of the same task, when extended
by a time quantum ∆t. Formally:

∆Eτ = Eτ (t)− Eτ (t+ ∆t) (3)

where Eτ (t) and Eτ (t+ ∆t) are calculated using Equations
(1) and (2). �

For a simple illustration of the proposed method the time
quantum ∆t is set to 0.1µs. Based on this time quantum
an energy gradient ∆Eτ can be calculated for all tasks, us-
ing Equation (3). The resulting energy gradients are ∆E0 =
127.5nJ−117.9nJ = 9.60nJ , ∆E1 = 2.34nJ , ∆E2 = 1.56nJ ,
∆E3 = 8.99nJ , and ∆E4 = 11.3nJ . Obviously, the task
with the highest energy gradient ∆Eτ will improve the to-
tal energy dissipation by the highest amount and therefore
this task is extended by ∆t; in our case task τ4. Due to the

τ3

τ1

τ0
τ4

τ2
τ1

τ3

τ2

τ4τ0

(b) Voltage scheduling of the proposed approach
allowing for power variations

(a) Voltage scheduling assuming constant
power of tasks

PE1

t

PE0

CL0

P E = 530.3nJ(mW)

(s)

1Vdd () = 3.16Vτ

2Vdd τ

3Vdd () = 3.16Vτ

Vdd τ
0Vdd () = 4.79Vτ

4 () = 4.79V

 () = 3.16V

µ
161513.39

13.491.61

2.11 5.33

PE1

t

PE0

CL0

P
(mW)

(s)

1Vdd () = 3.30Vτ

2Vdd () = 3.30Vτ

3Vdd () = 2.72Vτ

Vdd () = 4.11Vτ
0Vdd () = 4.35Vτ

4

E = 469.4nJ

1.9

2.4 5.4

13.9

12.9 15 16
µ

Figure 3: Voltage schedules showing reduced energy consumption

non-linear relationship of execution time and power dissipa-
tion, the energy gradient needs to be re-calculate after each
extention of a task. This is ∆E4 = 9.65nJ for task τ4 in the
first iteration. Based on these observations, tasks with the
highest energy gradient are iteratively extended until no fur-
ther extention is possible due to hard deadline constraints.
This results in the schedule shown in Fig. 3(b), which reveals
a total energy dissipation of 469.4nJ , a reduction of 18.7%.
Although using a simple example, this clearly indicates the
advantage of voltage scaling methods, which take the power
profile into account during supply voltage optimisation.

3. MODEL SPECIFICATION AND PROB-
LEM FORMULATION

Specifications of typical embedded systems are often rep-
resented by a task graph model. These are directed acyclic
graphsGS(T , C) where T = {τ0, τ1, . . . , τN} represent tasks,
C = {γij = (τi, τj , χij)} represent precedence constraints
and data dependencies (also called communications) between
two tasks (τi, τj), and χij indicates the data amount to be
transfered. Tasks might be associated with a hard deadline
θi by which its execution must be finished, in order to ful-
fil feasibility requirements. The target architecture, repre-
sented by a directed graph GA(P,L), consists of processing
elements π ∈ P (e.g. general purpose processors, ASIPs,
DVS-µPs, etc.) and communication links (CL) λ ∈ L (e.g.
point-to-point connections, busses, etc.). For each task/PE
and communication/CL combination, properties like execu-
tion time and power dissipation are given beforehand. These
values are either based on previous design experience or on
sophisticated estimation techniques [2, 15].

3.1 Power Variation DVS Problem
Unlike previous approaches, which identify supply voltages
for each task execution without the consideration of the dis-
sipated power, our optimisation problem involves a refined
voltage selection for each task, dependent on the individual

power dissipation caused by task execution. The problem
can be stated as followed:

Find for all DVS-PE mapped tasks τ ∈ TDVS of the sys-
tem specification a single scaling voltage Vdd (between
the threshold voltage Vt and the nominal supply voltage
Vmax), under consideration of the individual power dissi-
pations Pmax(τ) and worst case execution time tmin(τ),
such that the dynamic energy dissipation EΣ is minimised
and no deadline and precedence constraints are violated.

Therefore, minimise

EΣ =
∑

τ∈TDVS

Pmax(τ) · tmin(τ)

V 2
max(τ)

· V 2
dd(τ) (4)

subject to

Vt(τ) < Vdd(τ) ≤ Vmax(τ),∀τ ∈ TDV S (5)

limiting the applicable supply voltages range. Further, no
hard deadline violation can be tolerated in order to yield
feasibility and therefore

tS(τ) + texe(τ) ≤ θ(τ),∀τ ∈ Td (6)

where tS denotes the task start time and Td is the set of
all hard deadline tasks. The execution time function texe :
T → R

+ follows equation (tmin(τ) · Vdd(τ) · (Vmax(τ) −
Vt(τ)2))/((Vdd(τ) − Vt(τ))2 · Vmax(τ)), which can be de-
rived from Equation (2). Furthermore, the execution order
of the tasks and communications must be respected and is
expressed as follows:

tS(γ) + tcom(γ) ≤ tS(τ),∀τ ∈ T , γ ∈ Cin(τ) (7)

where tcom presents the communication time of communica-
tion event γ and Cin is the set of all ingoing edges of task τ .
In addition, no execution overlap on any resource ε ∈ (P∪L)
is permitted and therefore the execution intervals i, formed
by the start and end times of events, are not allowed to
intersect, as given formally in Equation (8).

τ0

τ1

τ 3

τ2

τ4

2,4

0,1

Figure 4: Mapped and scheduled task graph with
pseudo communication tasks and edges

i(εn) ∩ i(εm) = ∅,∀(εn, εm) (8)

Note that the power dissipation Pmax(τ) of each task
given in Equation (4) is not constant, but might vary from
task to task, unlike in previous approaches. A constructive
heuristic to solve this optimisation problem is presented in
Section 4.

4. PROPOSED POWER VARIATION (PV)
DVS ALGORITHM

Allowing the PE power variations among tasks makes it dif-
ficult to identify suitable scaling voltages for the tasks such
that the energy dissipation is minimised. Recently, a hybrid
global/local search strategy [1] has been proposed to find
optimised execution voltages for each task. While this for-
mulation of the problem might be applied to consider power
variations among tasks, its implementation using a genetic
algorithm combined with a local search will lead to pro-
hibitively large computational time (with reported times of
20 minutes of 28 node task graphs) hindering a efficient ex-
ploration of the system level design space, when used in the
inner most loop of the co-synthesis. The aim of this section
is to introduce a new voltage scaling algorithm capable of
identifying refined scaling voltages by considering the indi-
vidual power dissipation based on the executed task. The
presented algorithm is sufficiently fast enough to permit its
use during the design space exploration phase to allow the
optimisation of the scheduling and mapping towards DVS
usability. The proposed scaling algorithm has a polynomial
time complexity of O(m · n(3n+ e+ n logn)), with n = |T |
and e = |C|. The factor m depends on the ∆tmin and is
introduced to capture the fact that tasks mind be extended
more than once. However, this time complexity is a worst
case estimation, which is unlikely to be reached due to the
progressively elimination of extendable tasks during the op-
timisation run.

Fig. 5 gives the pseudocode of the proposed voltage scal-
ing algorithm. Its input consists of the specification task
graph GS , a mapping of tasks to the architecture, a sched-
ule of tasks and communications, architectural information
(e.g. execution time and power dissipation of tasks), and the
minimum extention time ∆tmin (defined to prevent insignif-
icant small extentions, which would slow down the DVS al-
gorithm). Initially (line 01), the specification task graph is
transformed into a mapped and scheduled task graph (MSTG)
to capture the mapping and scheduling information into the
task graph. This is carried out in two steps. First, commu-
nications between different PEs are converted into pseudo

Algorithm: PV DVS OPTIMISATION

Input: - task graph GS(T , C)
- mapping and schedule
- architectural information
- minimum extention time ∆tmin

Output: - energy optimised voltages Vdd(τ)
- dissipated dynamic energy E

01: GS y MSTG
02: QE ← ∅

03: for all (τ ∈ Td) {∆td(τ) := θ(τ)− tE(τ)}
04: for all (τ ∈ T) {calculate tε}
05: for all (τ ∈ T) {if tε ≥ ∆tmin then QE := QE + τ}
06: ∆t = min tε

|QE |
, if ∆t < ∆tmin then ∆t = ∆tmin

07: for all (τ ∈ QE) {calculate ∆E(τ)}
08: reorder QE in decreasing order of ∆E
09: while (QE 6= ∅) {
10: select task τ∆Emax ∈ QE
11: t(τ∆Emax) := t(τ∆Emax) + ∆t
12: update Eτ∆Emax
13: for all (τ ∈ T) {update tS , tE and tε}
14: for all (τ ∈ QE)

{if (tε(τ) < ∆tmin) ∨ (Vdd(τ) ≤ Vt(τ))
then QE := QE − τ}

15: ∆t = min tε
|QE |

, if ∆t < ∆tmin then ∆t = ∆tmin
16: for all (τ ∈ QE) {update ∆E(τ)}
17: reorder QE in decreasing order of ∆E
18: }
19: for all (τ ∈ T) {return Vdd(τ)}
20: return EΣ

21: MSTG y GS

Figure 5: Pseudocode of the proposed variable
power DVS algorithm (PV-DVS)

communication tasks to allow an unification of communi-
cations and tasks. Second, for each successive execution of
tasks on same resources a pseudo edge is introduced between
the these two tasks [4], if it does not already exists. In this
way it becomes possible to easily and fast traverse the task
graph in the chronological correct order by using a breadth
first search algorithm (linear time complexity). An example
MSTG is shown in Fig. 4, which is the transformed version
of the task graph given in Fig. 1, for the schedule of Fig. 2.
The next step (line 02) initialises the extentable task queue
QE . This is followed (line 03) by the computation of the
deadline slacks ∆td of all deadline tasks τ ∈ Td. Having de-
termined these slacks the algorithm can now proceed (line
04) to identify extendable tasks and calculate their maximal
expendability tε. This is done in a reversed breadth-first
search manner. All task extendable by at least ∆tmin are
added to the queue of extendable tasks QE (line 05). Next
(line 06), the extention time ∆t is computed as the minimal
extention time found in QE , divided by the number of ele-
ments in QE . If ∆t is smaller then ∆tmin it is set to ∆tmin to
avoid unnecessary optimisation runs, which would increase
m in the complexity function O. In the last two steps of the
initialisation phase (line 07–08) the energy gradients ∆E for
all extendable tasks are calculated and the extendable task
queue QE is reordered in decreasing order of the energy gra-
dients. The energy gradient value reflects the energy gain
if a particular task is extended by ∆t. Therefore it is this
energy gradient that allows the algorithm to identify the

List Scheduling

Task mapping

Component allocation

DVS optimised design

Component
Library

Functional
Specification

G
en

et
ic

 A
lg

or
ith

m
Dynamic Voltage Scheduling

G
en

et
ic

 A
lg

or
ith

m

Partitioning

us
er

 d
riv

en
 o

pt
im

is
at

io
n

Architecture selection

Voltage scaling

(PV−DVS)

Figure 6: Typical system level co-synthesis including
DVS

tasks which will result in the highest energy reduction and
therefore an improved voltage selection is possible. The fol-
lowing loop (line 09) is repeated until no extendable tasks
are left. In each iteration a single task with the highest en-
ergy reduction gradient ∆E (the first task in the queue) is
picked out of the the extendable task queue (line 10). This
task is then (line 11) extended by ∆t and its energy value is
updated (line 12). Since the extention of the task might in-
fluence successor tasks, the extention needs to be propagated
through the task graph (line 13). This is done by traversing
all nodes and edges of the MSTG from the extended task to
the end tasks, using a breadth-first search algorithm. In the
next step (line 14) inextensible tasks are removed from the
extendable task queue QE when either, their extendabilty
tε is smaller then ∆tmin, or now further voltage reduction is
possible due to the limited supply voltage range. After this
(line 15), the extention time ∆t is recalculated and all en-
ergy gradients of extendable task are recomputed (line 16).
Since the energy gradients might have change the queue QE
is reordered (line 17). If no extendable tasks are left the
algorithm finishes by returning the scaled voltages (line 19)
and the total dissipated energy (line 20). Furthermore, the
MSTG is transformed back into a ”normal” TG, in order to
allow for the next scheduling optimisation step, which leads
to a different assignment of pseudo edges.

5. EXPERIMENTAL RESULTS
This section demonstrates through the use of benchmark ex-
amples that the consideration of PE power variations leads
to energy savings in distributed embedded systems. The de-
sign flow outlined in Fig. 6, along with the proposed DVS al-
gorithm, have been implemented using C++ on a Pentium-
III/750 PC with 128MB RAM running the Linux operating
system. Scheduling and mapping are optimised using tech-
niques based on genetic algorithms similar to the reported
approaches in [7] and [8]. However, unlike [8] we do not
applied a hole filling technique in the list scheduler, which
tries to fill idle times with suitable task, since such idle times
are exploited by the DVS technique. Due to the space re-
striction we can not give a detailed elucidation here. The
six benchmarks we use here are partly (hou) from literature

[12] and partly (tgff) generated by TGFF [6]. The allocated
components for the hou examples are the optimised architec-
tures given in [12] (DVS extended), while for the tgff graphs
an architecture was chosen randomly, with 2 to 4 PEs, such
that feasible schedules and mappings could be generated.
All results given here represent average values obtained by
10 optimisation runs.

Table 2 gives the results of three experiments using the
above mentioned benchmarks of various complexity (i.e. num-
ber of tasks and edges). The first experiment (I) shows a
comparison between a DVS approach, which neglectes the
power variations (EVEN; similar to [16]) and the proposed
approach (PV), which takes the power profile into account
during the voltage selection. Both, techniques are applied
to identical mappings of the tasks and the schedules are gen-
erated by a mobility based list scheduling algorithm. The
heading EEV /Emax refers to the ratio of the reduced en-
ergy dissipation (neglecting power variations) EEV and the
energy dissipation at nominal supply voltage Emax. It is
seen that for all benchmarks the energy dissipation could be
reduced. For example, in the case of tgff1 the energy dissi-
pation is reduced to 53.8%, compared to the system running
at nominal voltage. Similar, the heading EPV /Emax shows
the ratio between the reduced energy dissipation EPV using
the proposed DVS algorithm and the energy dissipation at
nominal supply voltage Emax, reflecting the energy saving
achieved by the proposed approach. It can be observed that
in all cases the introduced technique was able to further
reduce the power consumption of the system. For bench-
mark tgff1 the energy dissipation could be reduced to 29.3%
of the initial power consumption. This is a further reduc-
tion of 24.5%, when compared to the DVS technique which
neglects the power profile. Although the introduced DVS
technique shows a computational overhead due to its itera-
tive extention of tasks the optimisation was carried out in
less 0.2s for all examples.

While the employment of the proposed DVS heuristic re-
duces energy when compared to power neglecting DVS ap-
proaches, further savings can be achieved when the heuristic
is combined with a scheduling optimisation. This is shown
in column of Table 2. This column gives a comparison be-
tween the energy dissipations of a GA based scheduling (GS)
EGS and a mobility based scheduling (MS) EMS , both using
the proposed PV-DVS algorithm. It can be observed that
the GA based list scheduling was able to improve the energy
dissipation in 5 out of 6 cases when compared to mobility
based list scheduling, with reductions of up to 35.7% (tgff3
on top of the results given in the first experiment (I) of Ta-
ble 2. The computational times for this experiments varied
between 0.14s and 32.61s, for the GA based list scheduling.

The last experiment (III) is concered with the optimised
mapping of tasks to PEs such that DVS can be further ex-
ploited and hence the energy dissipation is further reduced.
Table 2 shows the results of this experiment in the Col-
umn Mapping, which gives the ratio between the mapping
and scheduling optimised energy dissipation EMGSPV based
on the proposed PV-DVS algorithm, and the energy dissi-
pation EMGSmax of the mapping and scheduling optimised
implementations running at nominal supply voltage. Over-
all energy reductions of up to 80.7% (tgff4) are achieved.
Certainly, the improved results require longer computional
times, which are located between 2s and 3070s, compared
to 1.58 and 77.24s when no DVS is considered.

Benchmark No. of DVS (I) Scheduling (II) Mapping (III)
Example tasks/edges EVEN PV

EEV /Emax EPV /Emax EGS/EMS EMGS/EMGSmax

tgff1 8/9 0.538 0.293 0.990 0.279
tgff2 26/43 0.962 0.859 0.942 0.718
tgff3 40/77 0.772 0.448 0.643 0.452
tgff4 20/33 0.950 0.871 0.999 0.193
hou 20/29 0.927 0.781 0.776 0.585

hou clust 8/7 0.794 0.714 1.000 0.622

Table 2: Experimental results of various benchmarks used for DVS, scheduling, and mapping optimisation

6. CONCLUSION
This paper has addressed the problem of energy minimisa-
tion in distributed embedded systems including DVS pro-
cessing elements. It has been shown that it is unnecessary
to assume that PE power is constant during the execution of
task. Indeed, by considering the power variations of the PEs
during the synthesis further energy savings can be achieved.
A new heuristic taking into account the PE power variations
based on the executed task has been proposed and its capa-
bility to identify suitable scaling voltages has been shown.
Experimental results demonstrate that combining the pro-
posed scaling heuristic with a genetic algorithm based de-
sign space exploration yields to substantially reduced (up to
80.7%) energy dissipations. The energy savings have been
achieved in moderate computational time due to the poly-
nominal time complexity of the proposed scaling algorithm.

Acknowledgements
The authors gratefully acknowledge Petru Eles for useful
comments and suggestions on this paper. They also wish to
acknowledge EPSRC for funding this research project.

7. REFERENCES
[1] N. Bambha, S. Bhattacharyya, J. Teich, and

E. Zitzler. Hybrid Global/Local Search Strategies for
Dynamic Voltage Scaling in Embedded
Multiprocessors. In Proc. CODES, pages 243–248,
April 2001.

[2] C. Brandolese, W. Fornaciari, F. Salice, and D. Sciuto.
Energy Estimation for 32 bit Microprocessors. In
Proc. CODES, pages 24–28, May 2000.

[3] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W.
Brodersen. A Dynamic Voltage Scaled Microprocessor
System. IEEE Journal of Solid-State Circuits,
35(11):1571–1580, November 2000.

[4] P. Chretienne, E. G. Coffman, J. K. Lenstra, and
Z. Liu. Scheduling Theory and its Applications. John
Wiley & Sons, 1995.

[5] S. Devadas and S. Malik. A Survey of Optimization
Techniques Targeting Low Power VLSI Circuits. In
Proc. DAC, pages 242–247, 1995.

[6] R. Dick, D. Rhodes, and W. Wolf. TGFF: Task
Graphs for free. In Proc. CODES, pages 97–101,
March 1998.

[7] R. P. Dick and N. K. Jha. MOGAC: A Multiobjective
Genetic Algorithm for Hardware-Software
Co-Synthesis of Distributed Embedded Systems. IEEE
Trans. on CAD, 17(10):920–935, Oct 1998.

[8] M. Grajcar. Genetic List Scheduling Algorithm for
Scheduling and Allocation on a Loosely Coupled
Heterogeneous Multiprocessor System. In Proc. DAC,
pages 280–285, 1999.

[9] F. Gruian and K. Kuchcinski. LEnS: Task Scheduling
for Low-Energy Systems Using Variable Supply
Voltage Processors. In Proc. ASP-DAC, pages
449–455, Jan 2001.

[10] V. Gutnik and A. Chandrakasan. Embedded Power
Supply for Low-Power DSP. IEEE Trans. on VLSI
Systems, 5(4), 425–435 1997.

[11] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B.
Srivastava. Power Optimization of Variable-Voltage
Core-Based Systems. IEEE Trans. on Computer-Aided
Design, 18(12):1702–1714, Dec 1999.

[12] J. Hou and W. Wolf. Process Partitioning for
Distributed Embedded Systems. In Proc. CODES,
pages 70 – 76, March 1996.

[13] T. Ishihara and H. Yasuura. Voltage Scheduling
Problem for Dynamically Variable Voltage Processors.
In Proc. ISLPED, pages 197–202, 1998.

[14] A. Klaiber. The Technology behind Crusoe
Processors, January 2000. http://www.transmeta.com.

[15] Y.-T. S. Li, S. Malik, and A. Wolfe. Performance
Estimation of Embedded Software with Instruction
Cache Modeling. In Proc. ICCAD, pages 380–387,
Nov. 1995.

[16] J. Luo and N. K. Jha. Power-conscious Joint
Scheduling of Periodic Task Graphs and Aperiodic
Tasks in Distributed Real-time Embedded Systems. In
Proc. ICCAD, pages 357–364, Nov 2000.

[17] A. Manzak and C. Chakrabarti. Variable Voltage Task
Scheduling for Minimizing Energy or Minimizing
Power. In Proc. Internation Conference on Acoustics,
Speech, and Signal Processing, pages 3239–3242, 2000.

[18] T. Okuma, T. Ishihara, and H. Yasuura. Real-Time
Task Scheduling for a Variable Voltage Processor. In
Proc. ISSS, pages 24–29, 1999.

[19] M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced CPU energy. In Proc. USENIX
Symposium on Operating Systems Design and
Implementation (OSDI), pages 13–23, 1994.

[20] W. H. Wolf. Hardware/Software Co-Design of
Embedded Systems. In Proceedings of the IEEE, pages
967–989, July 1994.

[21] F. Yao, A. Demers, and S. Shenker. A scheduling
model for reduced CPU energy. In IEEE Symposium
on Foundations of Comp. Science, pages 374–382,
1995.

