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Abstract. Recent publications in statistical gas distribution modelling have proposed algorithms that model mean and
variance of a distribution. This paper argues that estimating the predictiveconcentration variance entails not only a gradual
improvement but is rather a significant step to advance the field. This is, first, since the models much better fit the
particular structure of gas distributions, which exhibit strong fluctuations with considerable spatial variations as a result of
the intermittent character of gas dispersal. Second, because estimating the predictive variance allows to evaluate the model
quality in terms of the data likelihood. This offers a solution to the problem of ground truth evaluation, which has always
been a critical issue for gas distribution modelling. It also enables solid comparisons of different modelling approaches, and
provides the means to learn meta parameters of the model, to determine when the model should be updated or re-initialised, or
to suggest new measurement locations based on the current model. Wealso point out directions of related ongoing or potential
future research work.
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1. INTRODUCTION

Gas distribution modelling (GDM) is the task of deriving
a truthful representation of the observed gas distribution
from a set of spatially and temporally distributed mea-
surements. It is very challenging mainly since in many
realistic scenarios gas is dispersed by turbulent advec-
tion, which creates a concentration field of fluctuating,
intermittent patches of high concentration [1].

We can distinguish two types of GDM approaches:
model-based and model-free. Model-based approaches
infer the parameters of an analytical gas distribution
model from the measurements. In principle, Computa-
tional Fluid Dynamics (CFD) models can be applied,
which solve the governing equations numerically. They
are, however, computationally very expensive, become
intractable for higher resolutions in typical real world
settings and depend sensitively on accurate knowledge
of the environment state (boundary conditions), which
is not available in practical situations. Many model-
based approaches were developed for atmospheric dis-
persion [2]. Such models typically cannot efficiently in-
corporate sensor information on the fly and do not pro-
vide a sufficient level of detail. This is important since
critical gas concentrations often have a local character in
complex settings. Simpler analytical models such as [3]
often rest on rather restrictive assumptions.

In this paper, we consider a class of model-free ap-
proaches, which create a statistical model of the observed
gas distribution. In a pure form, thesestatistical ap-
proaches to distribution modellingtreat input data as ran-
dom variables and derive a statistical description with-

out making strong assumptions on the functional form of
the distribution. This includes that they do not assume
certain environmental conditions (such as a uniform air-
flow, for example). Statistical approaches offer comple-
mentary strengths compared to model-based approaches:
they do not rely on the validity of the underlying phys-
ical model, can provide a higher resolution, are compu-
tationally less expensive and generally less demanding
in terms of the required knowledge about the state of
the environment. Most of the available algorithms, dis-
cussed in Sec. 2, create a two dimensional spatial model
that represents time-constant structures in the gas distri-
bution in terms of the distribution mean. Three recently
proposed approaches, introduced in Sec. 2.1, model not
only the mean but also the variance of the distribution.
In the following, we argue that this entails a significant
improvement for statistical gas distribution modelling.

2. STATISTICAL GDM

This section reviews statistical GDM methods developed
for mobile robots and tested at small scales.

A common approach to creating a representation of a
time-averaged concentration field is to acquire measure-
ments using a fixed grid of gas sensors over a prolonged
period of time and to map average [3] or peak [4] con-
centrations obtained to the given grid approximation of
the environment. Consecutive measurements with a sin-
gle sensor were used in [5]. To make predictions at lo-
cations different from the measurement points, bi-cubic
interpolation was applied in the case of equidistant mea-
surements and triangle-based cubic interpolation in the
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case of non-equidistant measurements. A problem with
such interpolation methods is that there is no means of
“averaging out” instantaneous response fluctuations. Re-
sponse values that were measured very close to each
other appear independently in the gas distribution map
and thus the representation tends to get more and more
jagged while new measurements are added.

Histogram methods reflect the spatial correlation of
concentration measurements to some degree by the quan-
tization into histogram bins. The 2-d histogram proposed
in [6] accumulates the number of “odor hits” received
in an area assigned to the histogram bins. Odor hits are
counted whenever the response of a gas sensor exceeds a
defined threshold. Disadvantages of this method include
the dependency on bin size and selected threshold, that a
perfectly even coverage of the inspected area is required,
and that only binary information is used and so useful
information is discarded.

Kernel extrapolation distribution mapping (Kernel
DM) is inspired by non-parametric estimation of density
functions using a Parzen window and can be seen as an
extension of histogram methods. The concentration field
is represented in the form of a grid map. Spatial inte-
gration is carried out by convolving sensor readings and
modelling the information content of the point measure-
ments with a Gaussian kernel [7].

2.1. Gaussian Process Mixture GDM

None of the methods discussed so far models concen-
tration fluctuations. The enhanced Kernel DM+V algo-
rithm [8], detailed in Sec. 2.2, also estimates the observed
distribution variance. Another method that predicts mean
and concentration variance uses Gaussian process mix-
ture (GPM) models [9]. It treats GDM as a regression
problem. Two components of the GPM represent back-
ground signal and areas of high concentration. The com-
ponents of the mixture model and a gating function, that
decides to which component a data point belongs, are
learned using Expectation Maximization. In contrast to
Kernel DM+V, the model is represented directly using
the training data. Because it requires the inversion of
matrices that grow with the number of training samples
n, the computational complexity of learning the GPM is
O(n3). This is addressed in [9] by adaptive sub-sampling
of the observations to obtain a sparse training set. Simi-
larly to Kernel DM+V, the dependency between nearby
locations is modelled in the GPM approach by a radially
symmetric, squared exponential covariance function.

2.2. Kernel DM+V

For the illustrating examples in Sec. 3 we use Kernel
DM+V [8] to compute distribution models. The perfor-
mance of this algorithm was found to be level with the

GPM approach [9, 8] (see Sec. 3.2) but has the advan-
tages of simplicity, lower computational complexity, and
that it is more generally applicable.

Kernel DM+V uses a uni-variate Gaussian weighting
functionN to represent the importance of measurement
r i obtained at locationxi with respect to the measurement
statistics over time at grid cellk. First, two temporary
grid maps are computed –Ω(k) by integrating importance
weights andR(k) by integrating weighted readings:

Ω(k) = ∑n
i=1N (|xi −x(k)|,σ),

R(k) = ∑n
i=1N (|xi −x(k)|,σ) · r i .

(1)

Here, x(k) denotes the center of cellk and the kernel
width σ is a parameter of the algorithm. The integrated
weightsΩ(k) are used for normalisation of the weighted
readingsR(k) (thus even coverage is not necessary) and
to compute a further mapα(k), which estimates the con-
fidence in the obtained estimates. The confidence map is
used to compute the mean concentration estimater(k) as

α(k) = 1−e−(Ω(k))2/σ2
Ω

r(k) = α(k) R(k)

Ω(k) +{1−α(k)}r0

(2)

wherer0 represents the mean concentration estimate for
cells where we do not have sufficient information from
nearby readings, indicated by a low value ofα(k). Cur-
rently, we setr0 to be the average over all sensor read-
ings. The scaling parameterσ2

Ω defines a soft margin for
values ofΩ(k). Similarly to the distribution mean map,
Eq. (2), the variance mapv(k) is computed fromvariance
contributionsintegrated in a further temporary mapV(k)

V(k) = ∑n
i=1N (|xi −x(k)|,σ)(r i − r(k(i)))2,

v(k) = α(k) V(k)

Ω(k) +{1−α(k)}v0

(3)

wherek(i) is the cell closest to the measurement point
xi , andv0 is an estimate of the distribution variance in
regions far from measurement points, computed here as
the average over all variance contributions.

3. GDM EVALUATION

Ground truth evaluation has always been a critical is-
sue for gas distribution modelling with mobile robots.
The capability to identify hidden parameters, for exam-
ple the location of the gas source, has been used to test
gas distribution models. However, the distance of the dis-
tribution maximum to the gas source can only serve as a
rough approach to validate the distribution model. Con-
sidering only fixed measurement points, a feasible exper-
imental set-up would be to use a stationary grid of gas
sensors and to compare the model derived from all but



one or a few sensors with the measurements of the left
out sensors. We apply a similar method here and create
the model using a sub-set of measurements obtained with
a mobile robot and compare the model predictions with
unseen measurements also obtained with the robot.

In our experiments the robot followed a sweeping tra-
jectory. It was driven at a maximum speed of 5 cm/s
and periodically stopped at pre-defined points, constantly
acquiring measurements at a rate of 0.8 Hz. The gas
source was a small cup filled with ethanol. Apart from
a SICK laser range scanner for pose correction, the robot
was equipped with a Sensirion SHT11 digital humid-
ity/temperature sensor and six Figaro gas sensors en-
closed in an aluminum tube, actively ventilated through a
fan. The tube was horizontally mounted at the front side
of the robot at a height of 34 cm (see Fig. 1). We consider
only the output of one TGS 2620 sensor here.

An obvious way to measure how well unseen measure-
ments are predicted by the distribution model is to com-
pute the average prediction error. Due to the large fluc-
tuations of the instantaneous gas distribution, however,
this measure of model quality is not particularly suitable
for gas distribution modelling. A gas distribution model
should represent the time-averaged concentrationandthe
expected fluctuations. These properties are both captured
by the negative log predictive density (NLPD), which is
a standard criterion to evaluate distribution models. Un-
der the assumption of a Gaussian posteriorp(r i |xi), the
NLPD of unseen measurementsD = {r1, ..., rn} acquired
at locations{x1, ...,xn} is computed as

NLPD= −1
n ∑i∈D log{p(r i |xi)} =

1
2n ∑i∈D

{

logv̂(xi)+ (r i−r̂(xi))
2

v̂(xi)

}

+ 1
2 log(2π).

(4)

An estimate of the predictive variance is required to com-
pute the NLPD. The importance of including the pre-
dictive variance into the criterion for the quality of gas
distribution models can be seen in Fig. 1, which shows
a comparison of a gas and a temperature model created
from measurements recorded with a mobile robot along
a sweeping path. The plots in the left part of the figure
were created by computing the distribution model up to
a certain time and comparing it to the true unseen values
(red circles). Model predictions are indicated as predic-
tive mean±3×predicted standard deviation. This com-
parison demonstrates that gas distribution models typi-
cally exhibit more pronounced spatial variance variations
while the information is mainly located in the predictive
mean in case of the temperature distribution model.

3.1. Learning meta parameters

As an example of an algorithm that provides an esti-
mate of the predictive variance we use Kernel DM+V. It
depends mainly on the meta-parameters kernel widthσ

and cell sizec. Based on the NLPD defined in Eq. (4), we
learn these meta parameters by dividing the samplesD

into disjoint setsDtrain andDtest and determine optimal
values of the model parameters by cross-validation on
Dtrain, keepingDtest for evaluation. Since we use Kernel
DM+V we have ˆv(xi) = v(k(i)), r̂(xi) = r(k(i)) in Eq. (4).

3.2. Comparison of GDM Approaches

In the same way, in which we evaluate a fixed distri-
bution model depending on its meta parameters, we can
compare different GDM approaches by comparing the
respective NLPD for unseen measurements. Since the
goal is to maximize the likelihood of unseen data, we
will prefer models that minimise the NLPD. Tab. 1 shows
a NLPD comparison of the GPM method (see Sec. 2.1)
with Kernel DM+V (see Sec. 2.2) based on data sets from
three different environments in which the robot carried
out a sweeping movement consisting of two full sweeps
(for details see [9]). The first sweep was used for training
and the second sweep (in opposite direction) for testing.
As a preliminary result from this investigation we find

that GPM and Kernel DM+V offer a comparable perfor-
mance for gas distribution modelling in the considered
environments. This gives Kernel DM+V a slight edge be-
cause it scales better to larger numbersn of data samples
(having complexityO[n· (σ

c )2] compared toO[n3]) and
the fact that the learning procedure is simpler.

Efficient approaches to GDM will probably apply
some form of sub-sampling in a first stage. Again, the
predictive variance via the NLPD allows for a meaning-
ful comparison of different sub-sampling strategies.

3.3. Time-dependent GDM

A crucial assumption that we make when building sta-
tionary statistical models is that the statistical descrip-
tion is learned from measurements that are generated by
a time-constant random process. It is clear that this as-
sumption is not generally valid. We can address this is-
sue in several ways. Regression approaches such as GPM
could be extended by the dimension of time. The Ker-
nel DM+V algorithm that is based on the idea of density
estimation could be extended by recency weights or a
method that detects when and how to change the time-
window over which the distribution model is computed.
A measure such as the NLPD does not only allow to
compare different approaches to time-dependent GDM,

TABLE 1. Comparison of Kernel DM+V and GPM.

Dataset NLPD, GPM NPLD, Kernel DM+V

3-rooms -1.54 -1.44
corridor -1.60 -1.81
outdoor -1.77 -1.75



FIGURE 1. Comparison between gas and temperature model recorded with a robotalong a sweeping path (shown on the right
side). The models are visualised in terms of concatenated predictions of the next 60s of unseen measurements based on the model
computed from all the measurements before (best viewed in color).

it also provides a means to detect when the time-window
has to be modified and to decide how. An efficient solu-
tion might be a “lazy update” mechanism. The quality of
the current distribution map could be continuously evalu-
ated on new sensor readings and updated only if the data
likelihood drops significantly. An update could also be
compared to a model computed from fewer, more recent
samples only. By eventually selecting this map, the rep-
resentation could follow slow distribution changes over
time. However, the main benefit of such an approach
would be in efficiency of the algorithm since it would still
not be possible to extrapolate on time-dependent trends.

3.4. Sensor Planning

A statistical distribution model can be considered
good ortruthful if it explains the measurements, which
were used to build the model, and predicts new observa-
tions well. To obtain a truthful representation, we need to
consider asufficientnumber of measurements. To quan-
tify this requirement, we can again use the NLPD to com-
pute internal consistency (how well are training data ex-
plained) and predictive power of the model (how well are
unseen measurements predicted).

A related question is at which locations the next mea-
surements should be carried out in order to obtain a good
model in minimum time. Again, the NLPD can be used
to compare different sensing strategies regarding their
suitability for gas distribution modelling. Further, the
predictive variance is an important ingredient for tech-
niques that suggest new measurement locations based on
the current model (sensor planning). Appropriate sensor
planning strategies need to be evaluated and it is to be
expected that they will employ a cost function, which
prioritises measurements in areas with high uncertainty,
high concentration or high variance.

4. CONCLUSIONS

This paper argues that recently proposed gas distribution
modelling algorithms (see Sections 2.1 and 2.2) entail

more than a gradual improvement by providing an esti-
mate of the predictive concentration variance. First, es-
timating the predictive variance captures the particular
structure of gas distributions, which exhibit strong fluc-
tuations with considerable spatial variations as a result
of the intermittent character of gas dispersal. Accord-
ingly, it is important to consider this feature of gas distri-
butions for model evaluation. A second substantial step
forwards is thus that the predictive variance allows to
compute the negative log predictive density (NLPD) as a
more meaningful measure to evaluate distribution mod-
els. The NLPD offers a solution to the problem of ground
truth evaluation, which has always been a critical issue
for gas distribution modelling. It not only enables solid
comparisons of different modelling and sensor planning
approaches, but also provides the means to learn meta
parameters of the model, to determine when the model
should be updated or re-initialised, or to suggest new
measurement locations based on the current model.
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