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Abstract 

In this paper, two popular types of neural network models (radial base function (RBF) and multi-layered feed-forward 
(MLF) networks) trained by the generalized delta rule, are tested on their robustness to random errors in input space. A method 
is proposed to estimate the sensitivity of network outputs to the amplitude of random errors in the input space, sampled from 
known normal distributions. An additional parameter can be extracted to give a general indication about the bias on the net- 
work predictions. The modelling performances of MLF and RBF neural networks have been tested on a variety of simulated 
function approximation problems. Since the results of the proposed validation method strongly depend on the configuration 
of the networks and the data used, little can be said about robustness as an intrinsic quality of the neural network model. 
However, given a data set where ‘pure’ errors from input and output space are specified, the method can be applied to select 
a neural network model which optimally approximates the nonlinear relations between objects in input and output space. The 
proposed method has been applied to a nonlinear modelling problem from industrial chemical practice. Since MLF and RBF 
networks are based on different concepts from biological neural processes, a brief theoretical introduction is given. 

1. Introduction 

In the last five years there has been a tremendous 

‘hype’ about neural networks. Most publications ap- 
peared in fields of multivariate calibration, classifica- 
tion, temporal pattern recognition, signal processing, 
control image processing, data compression and 
knowledge processing [ 1,2]. Neural networks are 
mainly used as nonlinear function approximators and 

* Corresponding author. 

classifiers. They are nonparametric and generally lit- 
tle knowledge has to be incorporated in the mod- 
elling process. 

Although neural network theory is based on the 
concept of biological neural processes, criticism has 
arisen claiming that traditional methods for statistics 
and pattern recognition can replace neural networks 
or should at least be as effective. Next to that neural 
networks are often criticized for their lack of pre- 
dictability. Little theory has been developed for the 
estimation of confidence intervals on network predic- 
tions, which often makes the method unacceptable for 
industrial applications. 
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The main reason for this criticism is probably 
based on the fact that neural networks are frequently 
applied on problems which could also be solved by 
traditional statistical methods. Since these traditional 

techniques are easy to apply and theoretically better 
founded, they should be preferred. 

However, neural networks still offer solutions 
which cannot be as well obtained by conventional 
methods. Especially when adaptive algorithms are 
required and a lot of training or calibration samples 

are available (e.g. process control), neural networks 
can offer good solutions. 

Since the introduction of neural networks in 
chemistry, a considerable number of papers has 
emerged in various chemical magazines, showing 
powerful modelling performances in situations where 
no analytical model could be derived. Neural net- 
works are able to model any relation to the desired 
degree of accuracy without any knowledge about the 
internal relations within the data. 

Special attention has to be payed to the bias-vari- 
ance trade-off. The root mean squared error (RMSE) 
consists of a bias and variance term which work in 
opposite directions. Overtraining the neural networks 
will cause a decrease in bias (accuracy) but there is 
no real gain since the precision of future network 
predictions will be very poor. This phenomenon is in 
‘the neural network society’ also known as the mem- 
ory effect. An optimal compromise between bias and 
variance can be obtained by computational expensive 
crossvalidation procedures. 

Still, after applying crossvalidation or leave-one- 
out methods (LOOM), little can be said about the 
predictability of the neural models in terms of confi- 
dence intervals. In most chemical applications, sig- 
nals are disturbed by pink noise or interference noise 
from environmental sources [3]. Hence, the obtained 
neural network model trained with the noisy data 
patterns will also contain some uncertainty, propor- 
tional to the observational noise. So the variance of 
output errors depends on the observational noise em- 
anating from the apparatus or environment and the 
‘noise’ in the model. 

Prior empirical studies about the effect of the 
numbers of layers in a neural network indicated that 
the predictive ability decreases proportionally with 
the number of layers, since errors are accumulated 
through the network layers. It has originally been 

proven by the mathematician Kolmogorov [4] that any 
continuous function can be implemented exactly by a 
three-layered feed-forward neural network having k 
input units, (2k + 1) hidden units in the middle layer, 

and m units in the top layer. Hence, the enhance- 
ment of the capacity of a neural network should be 
carried out in one single layer by increasing the 
number of hidden units. Consequently, in this paper, 
three-layered network structures have been used. 

As previously mentioned in this text, little theory 
has been derived for the estimation of confidence in- 
tervals on network predictions. If no analytical solu- 
tion can be derived, the predictive ability can be esti- 
mated by Monte Carlo (MC) simulations. During 
these simulations, the deviation of the total error in 
the computed output as a result of deviations in input 
space is investigated. Input errors are sampled from 
known distributions and propagated to the output of 
the network. The weights of the network can also 
contain some uncertainty. Consequently, these weight 
errors need also to be known in order to estimate the 
prediction errors of the neural model. However, sta- 
tistically, little can be said about weight errors since 

the generalized delta learning rule does not yield re- 
producible weights as a result of multiple local min- 
ima in the error hyperplane and different training 
conditions. In this work, the assumption has been 
made that the weight errors do not contribute to the 
neural model. This firm assumption does not allow us 
to use the validation method for quantitative pur- 
poses. However, if the weight errors (model noise) 
are small, good qualitative judgements about the 
neural network model can be obtained. 

In Section 3, a method based on Monte Carlo 
simulations is presented, for estimating error proba- 
bility density functions (PDFs) of output units of ra- 
dial base function (RBF) and multi-layered feed-for- 
ward (MLF) neural network models. Trained neural 
networks (with ‘infinite’ precision) have been used. 
The MC simulations have been repeated for a num- 
ber of decreasing noise amplitudes, covering the 
range of interest. The initial input errors are chosen 
by sampling from predefined and, speaking chemi- 
cally, representative input error distributions. The in- 
put distributions are generated using prior informa- 
tion about pure errors obtained from replicated mea- 
surements. The MC simulations are used in order to 
quantify the sensitivity of output units to the ampli- 
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tude of random input errors. Note that only the am- 
plitude of the random input errors is addressed (de- 
noted by the symbol fl) and that all input errors are 
controlled by this one factor. 

The relevance of these experiments becomes ap- 
parent when inverse simulations are carried out. This 
means that PDFs of input variables are estimated for 
a given PDF of the output units. Inverse simulations 
can be used in order to optimize experiments with 
respect to precision criteria. Hence, variables can be 
identified which are responsible for poor predictions. 

2. Theory 

2.1. Feed-forward networks 

Both MLF and RBF networks are known to be able 
to approximate any continuous function to some de- 
gree of accuracy [5-81. 

The choice of a specific type of neural network for 
function approximation problems depends on a vari- 
ety of factors and is usually related to the available 
prior information, desired accuracy and tractability of 
the network. In this paper, the robustness to the input 
errors for both types of networks is investigated as an 
additional quality factor for a neural network model. 

For both networks, the network topology (i.e. 
number of layers) has been configured identically. 
This way, at least the number of network parameters 
and the size of the network remains comparable. The 
basic differences between the two methods are to be 
found in the activation or base functions. The feed- 
forward structure of both types of neural networks is 
depicted in Fig. 1, where x = (x,, x2, . . . , x,>~ and 

h =(h,, h,, . ..) /z,)~ represent an input vector and 

the hidden units respectively. The output of the net- 
work can be computed by a linear combination of 
base functions or hidden units, specified by h. The 
base functions or hidden units are discussed in the 
following two sections. 

Both RBF and MLF can be trained by means of 
gradient descent methods [9,10]. For the MLF net- 
work, gradient descent methods like the generalized 
delta learning rule have become mandatory, based on 
the fact that the MLF parameters appear in a nonlin- 
ear fashion. However, good results have been ob- 
tained by training based on optimization methods like 
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Fig. 1. The feed-forward structure of MLF and RBF neural net- 

work models. The weight matrix ( W) is used to calculate the in- 

put of the neurons in the hidden layer denoted by h, by means of 

the product x7 W, and the Euclidean distance /Ix - W,ll respec- 

tively. In the latter case, the matrix W contains the centers for the 

radial base functions. The network output is obtained by a linear 

combination of the output of the hidden units or base functions 

weighted by the matrix A. 

simulated annealing [11,12] and genetic algorithms 
[13]. Also modifications of the generalized delta 
learning rule and training methods based on ex- 
tended Kalman filters [14] have shown good conver- 
gence properties. 

In contrast to MLF, the parameters of the RBF 
network can be adjusted by linear learning methods 
like Kohonen or Hebbian learning. Linear parameter 
adaption yields faster learning and higher probability 
to converge to the global minimum. The Kohonen 
learning rule has the additional advantage that the 
parameters of the RBF network can be adjusted lo- 
cally. This means that only the parameters of the 
best-matching base function are adapted without dis- 
torting the other parameters. These properties make it 
possible to learn new objects without forgetting the 
old ones. Since no distortion of neighbouring param- 
eters is allowed, the training time will be shortened 
significantly. 

In order to establish a uniform notation for the 
whole text, let x = (xi,) represent the input pattern 
matrix formed by vectors in the d-dimensional input 
space, yi E [w the corresponding desired output (target 
output) and E, the response computed for the net- 
work. This way, the function f to be approximated 
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can be considered as a set of N data points in input 
space [Wd such that f(x,) = y, for i = 1, 2, . . . , N. 
During training, the network tries to approximate yj 
as close as possible. 

Also the importance of reducing the training time is 
sometimes overstated since the computational power 
of the current generation of computers is satisfactory 
to obtain neural network models within acceptable 

time. 

2.2. The MLF network 
2.3. The RBF network 

The backpropagation training rule for MLF neural 
networks as described in the classical paper by 
Rumelhart et al. [2], has attracted a great deal of in- 

terest in recent years and has been successfully used 
in a large variety of applications [10,1_5]. As far as the 
network topology is concerned, it is possible to have 
several hidden layers, connections that skip over lay- 
ers and lateral or even recurrent connections. Al- 
though these advanced topics are important, they tend 
to obfuscate the simplicity of the algorithm. Hence, 
the primary description of the MLF network assumes 
a three-layered feed-forward topology with only one 
hidden layer containing sigmoidal shaped activation 
functions, as is shown in Fig, 1. The input and out- 
put neurons only act as flow-through units. The 
equation for each output unit of the MLF network is 
given by 

j=l 

where Wj represents the connection weights between 
the input and hidden layer, XT the transpose of input 
vector x, and hj the coefficients assigned to the lin- 
ear combination of the hidden units. 

The activation function e(x) can be any continu- 
ous function for which a derivative can be obtained, 
such as the hyperbolic tangent or the sigmoid func- 
tion which is defined by 

@WY) = 1+ exp;xTW 
1 I> 

Faster convergence properties have been claimed 
by optimizing the shape of the activation function. 
For instance, the adaption of the temperature factor of 
the sigmoid activation function simultaneously with 
the weights by means of the generalized delta learn- 
ing rule can reduce the required training time signifi- 
cantly. However, prior knowledge about the active 
area of the activation function is required in order to 
be able to scale the input variables into this range, 

In this section only a brief explanation about RBF 
network topology and mathematics is given. For the 
theoretical backgrounds the reader is referred to e.g. 
Refs. [6,8-10,16,17]. RBF networks consist gener- 
ally of a three-layered feed-forward structure. The 
input layer has, like any other network, no calcula- 
tion power and merely distributes the input informa- 

tion to the kernel functions. In this case, the parame- 
ters to be adjusted are the centroids of the kernel 
functions (represented by c,) and the scaling factors 
(T,. The output units are calculated by a linear com- 
bination or a weighted sum of the kernel functions, 
according to 

y, = c A, @,(llx; - c,ll) 
j= I 

The most common kernel is the Gaussian radial base 
function, given by 

@j(llxi - cjll) = expj -II-r, - C,ll’/~,‘) 

Fig. 1 can be used as a graphical representation of the 
RBF neural network when W, is substituted by cj. 
The width factor uj represents a distance scaling 
parameter that determines the proportion of the input 
space where the jth RBF will have significant non- 
zero response. The location of the centroids of the 
kernel j is obtained by vector cj. If a, is fixed, net- 
work training yields the optimal weights Aj and a 
vector cj. It is also possible to train the scaling pa- 
rameters simultaneously or in a successive phase by 
means of the generalized delta learning rule [lo]. If 
uj is fixed, prior information about the data is re- 
quired since the response in input space is deter- 
mined by the scaling parameters. Small values for uj 
exhibit local responses. However, if u, is increased, 
interpolation starts to occur within the range of the 
training data. If u, is further increased, extrapola- 
tion outside of the training data is possible. 

The Euclidean distance is generally used as a dis- 
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tance measure for the input objects to the centroid. 
However, other metrics have also been successfully 
applied. 

2.4. Robustness analysis 

The goal of the robustness analysis is to find a 
measure for the effect of random noise in input space 
on the random deviations emerging on the output 
units. In this section, a procedure for the quantifica- 
tion of robustness of MLF and RBF models is dis- 
cussed. 

The probability density functions of the errors 
emerging on the output units can be estimated by 
Monte Carlo error sampling. For instance, when a 

two-layered network is considered, the errors Ax,~ 
and AW,, are sampled from the normal distributions 

Ax,, EN(C), ak), AW,, E N(O, akl) (5) 

with zero mean and variance u*. Note that the er- 
rors sampled from these distributions can have both 
a positive or a negative sign. The index for the data 
patterns or objects is denoted by i, k for the input 

variables and 1 for the hidden units, in correspon- 
dence with Fig. 1. 

Distributional information about input and output 
(pure) errors (experimental conditions, measurement 
noise) can be estimated by replicated experiments. It 
is more difficult to get distributional information 
about weight errors since the network does not al- 
ways converge to the same minimum as a result of 
different initiations and local minima. 

The variance of the predicted output errors can be 
obtained by propagating the errors through the net- 
work: 

AY,=Y,-+,[(x,+Ax)(W+AW)] (6) 

Ay,=yi-JI(x;W+AxW+x;AW+AxAW) 

(7) 

In Section 1 the problems of estimating the weight 
errors have already been addressed. A simplification 
has been used by setting the weight errors to zero 
(omitting the last two terms in Eq (7)) so only the 
errors in input space are considered. Although the re- 
sults of the robustness procedure are affected by 

Fig. 2. Variance of an output unit as a function of the noise amplitude factor (0). In this example the first output unit for the Yarn data 

(Table 3, Section 4.2) has been used. The distribution of the objects specified by the dots is almost identical for every amplitude level, 

revealing that the position in input space does not severely affect the sensitivity ( p,) to input noise. Note that the offset factor ( PO) is on 

the right side of the figure at R = 1 (original distribution). 
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omitting the model noise, the results can still be used 
for a qualitative judgement about the neural models. 

The Monte Carlo sampling scheme can be carried 

out for a number of (decreasing) noise amplitudes as 
is shown in Fig. 2. The followed procedure is ex- 
plained in more detail in Fig. 3. 

The noise-amplitude factor has been used to in- 
crease the amount of noise from zero (infinite nar- 
row distributions) to the distributions originally used 

(0 = 1). Since the required number of MC simula- 
tions is proportional with the dimension of the simu- 
lation space, R was kept smaller than one, in order 
to avoid a tremendous increase of computation time. 
For this reason the noise-amplitude factor might also 
be considered as a ‘noise-attenuation’ factor. The 
sensitivity of the output units to the noise-amplitude 
factor can be obtained by means of ordinary least 
squares (OLS) regression of the logarithm of the pre- 

STEP I INITIATION 

A Define the input err01 distribution N(O,aj 

for each j-th variable Use prmr 

information from replicated experunents. 

B Flil I” an array wth attenuation factors 

(9) in mcreasing order (e.g [O..l]) in order 

10 regulare the distributions 

STEP II. SIMULATIONS 

Jar Attenuation Factor_lndex r-i to Number Of Factors 

For Simulation_Run=I ro Number-.Of Runs 

I. Generate ‘noisy’ mput patterns 

usmg informatwn from A and 

amplitude factor Sl from B. 

(example, 

n=lx(l), x(2), , xfK)l’+Q[Ax(l). A$?), , AxfKJ]’ 

whereas Ax, E K(O,u,J ) 

2 Propagate the simulated pattern5 

to the output of the network 

End 

Calculate the variance for each output unit at 

the now factor II 

End 

STEP Ill. REGRESSION 

Model the vhr~ance as a function of the noise amphtude factor. 

Fig. 3. The three steps to quantify the sensitivity of the output variables to the amplitude of noise on input patterns 
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dieted error against the logarithm of the noise-ampli- 
tude factor (0) given by 

log(var( AY,>) = PO + P1 log( fl> (8) 

The offset parameter PO gives an indication of the 
pure output errors, averaged over all the objects. The 
slope, represented by parameter PI, contains infor- 
mation about the sensitivity to the amount of noise in 
input space. 

Certain assumptions have to be made. The sensi- 
tivity of the output units can vary for each location 
in input space. However, the sensitivities for all the 
positions in input space are assumed to be equal. 
From Fig. 2 it can be concluded that the position in 
input space defined by the objects has more effect on 
the estimated ‘pure’ error than on the sensitivity. 
Thus, applying OLS regression, an indication about 
‘pure’ errors and sensitivity averaged over the total 
input space can be obtained. This still does not give 
us information about the predictability of the net- 
work in terms of confidence bands which is in agree- 
ment with Ref. [18]. However, it provides a valida- 
tion tool to judge the probability of false estimations 
when noisy input patterns are offered to the network. 

3. Materials and methods 

The programs required for creating RBF and MLF 
neural network models and the robustness analysis 
have been developed in Matlab 4.2TM, which is a 
computing environment for high-performance nu- 
meric computation and visualisation. The Matlab 
programs have been executed on various Spare-10TM 

workstations. On these computers, a training proce- 
dure for a MLF network (Yarn data, Section 4.2.1) 
containing nine hidden units, took about 50 s execu- 
tion time, whereas the robustness analysis took ap- 
proximately 30 min on a Solaris Spare-10TM work- 
station. Since the RBF models contained more base 
functions, the execution time increased up to a factor 
three. 

Error backpropagation using the gradient descent 
method [2] was used in all cases to train the network 
weights. Batch training was applied (i.e. propagating 
all data simultaneously through the network) to speed 
up the training and to avoid the dependency of the 
delta learning rule on the sequence of the input pat- 
tern vectors. 

4. Experimental 

Both MLF and RBF neural networks were trained 
for resolving a series of simulated function approxi- 

mation problems from Sekulic et al. [19]. The data, 
generated by the additive, interactive, complex and 
transformed data models, have originally been used 
for testing the modelling capabilities of MARS (mul- 
tivariate adaptive regression splines). Additional to 
the original smooth simulated data sets, a noisy data 
set was included for each type of data in order to test 
the generalization ability of the network models. 
Once the networks had been trained, the robustness 
analysis was applied. 

Next to that, a data set from chemical practice was 
used for modelling the relation between physical 
structure and mechanical properties of yarns [20]. 
Since statistical information about the input and out- 
put errors were available, the predictive ability could 
be verified. 

Among all the possibilities, both networks were 
configured identically with respect to the learning 
rates, network topology and the training method in 
order to make a reasonable comparison. 

Besides that, the Kohonen learning rule was used 
to initialize the RBF network, i.e. adapting the cen- 
troids. In our case, better models were obtained and 
a more founded comparison with the MLF network 
was possible. The required number of network pa- 
rameters was estimated by means of crossvalidation 
procedures. Parsimonious models were obtained in 
this way and overtraining effects were avoided. 

The neural models were validated by means of the 
root mean squared error of prediction (RMSEP) 
computed only in the test data sets. When the net- 
work consists of multiple output, the overall RMSE 
(or RMSEP for predictions) which represents the 
norm of the various output units, has been used. The 

formulas for the prediction errors are 

d N (fpk-ypk)2 
&= c 

p=l N 
(9) 

E overall = J 5: (10) 
k=l 

where M represents the number of output variables. 
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In this paper, the network parameters of both types 
of networks have been adapted by means of a gradi- 
ent descent method like the generalized delta learn- 
ing rule. In contrast to MLF, RBF parameters are 
adapted in a linear fashion. As a result of the linear 
parameter adjustment and the concept of narrow re- 

ceptive fields of the basis functions, RBF is suited for 
faster learning. Since training affects only a small 
neighbourhood of the interpolating function, previ- 
ously learning paths of the function are not cor- 
rupted. 

[0, l] to the additive, interactive, complex and trans- 
formed data models as described by Sekulic et al. 
[19]. A general formula for these models is 

y=AF(x,,x,) +E (11) 

where x1 and x2 represent the two factors of the fac- 
torial design. In accordance with Ref. [19], additional 
scaling parameters and an amplitude factor A are in- 

cluded. 

However, the required number of radial basis 
functions is proportional to the distribution of the data 
objects in input space and moreover the complexity 
of the data used. Especially when high-dimensional 
data are used, many radial base functions are re- 
quired, resulting in extensive slow learning net- 
works. Simulation studies for function approximation 
problems have shown the superiority of RBF to MLF 
when low-dimensional input spaces are used [9]. 

Similar to the procedure outlined above, noisy data 
sets were generated. Here, a small amount of noise 
sampled from a normal distribution E, E N( p, 
o/100) was added to the smooth data sets, yielding 
an error ratio of approximately 1%. 

Both the smooth and noisy data sets, representing 
the additive, interactive, complex and transformed 
data models, were used to compare the robustness of 
RBF and MLF networks. 

4.1. Simulated data 

The test sets, each containing 500 objects, were 
composed by uniform random sampling from input 
space and feeding these objects to the various data 
models as is illustrated for the complex data model 
in Fig. 4. 

4.1.1. Data description 4.1.2. Results 

The training sets were generated by feeding a grid 
of 121 knots or a 11’ factorial design over the range 

The results of the MLF and RBF models are sum- 

marized in Table 1. For all the data models, the num- 

3.5 

3 

2.5 

g2 

E 
8 1.5 
> 

1 

0.5 

0 
1 

1 

Fig. 4. The complex data model as defined by Ref. [191. The input patterns for the test set (randomly selected in the input space) are denoted 
by the dots. 
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ber of hidden units or base functions and the root 
mean squared errors of calibration (RMSE) and pre- 
diction (RMSEP) are included. 

mechanical properties to industrial process condi- 
tions. 

The prediction errors denoted by the root mean 
squared error of prediction (RMSEP), as shown in 
Table 1, indicate that especially the highly nonlinear 
data are generally better modelled by the RBF net- 
work. In addition to that, the RBF models perform 
equally for every simulated data model. In this case, 
the disadvantage of the RBF models is that they need 
more hidden units or base functions to establish the 
neural model. In addition to that, it needs to be em- 

phasized that our experience indicates that RBF net- 
works, trained by the generalized delta learning rule, 
generally suffer more from convergence problems 
than MLF networks and more effort has to be in- 
vested to train the network. 

The most important characteristics of the physical 

structure are the crystallinity, size and orientation of 
the molecules. In total, 11 structure quantities were 
measured. The mechanical yarn properties were de- 
scribed by five parameters containing information 
about tensile strength, energy, absorbance, elonga- 
tion and modulus. For theoretical backgrounds and 
information about the measurements and experimen- 
tal conditions, the reader is referred to Ref. [20]. 

4.2. Practice data 

The data consisted of 294 yarns. From these data, 
50 test yarns were selected for evaluating the predic- 
tive ability of the neural models during training. From 
a crossvalidation procedure for estimating the re- 
quired number of hidden units it appeared that 8 hid- 
den units for the MLF network and 26 base functions 
for the RBF network yielded the best models with 
respect to the bias-variance trade-off. 

4.2.1. Data description 

A data set from chemical practice by De Weijer et 
al. [20] was used for modelling the relationship be- 
tween physical structure and mechanical properties of 
industrial poly(ethylene terephthalate) yarns. In his 
paper, De Weijer describes how MLF networks were 
applied to model the dependency of the thermal and 

The experimental conditions, for making the neu- 
ral models, were kept identical to the original paper, 
i.e. the input values were scaled between - 1 and 1, 
and the output values were scaled between 0 and 1. 

4.2.2. Results 
Both MLF and RBF networks were applied in or- 

der to model the physical structure and mechanical 

Table 1 

The root mean squared errors of calibration (RMSE) and prediction (RMSEP) for the (additive, interactive, complex, transformed and expo- 

nentially transformed) simulated data. The optimal number of hidden units (HU), estimated by crossvalidation, is also specified 

Simulated data 

Data model MLF 

HU RMSE RMSEP 

RBF 

HU RMSE RMSEP 

Additive 
Smooth 7 

Noise 7 

interactive 
Smooth 6 
Noise 6 

Complex 
Smooth 7 
Noise 7 

Transformed 
Smooth 7 

Noise 7 

Exponentially transformed 
Smooth 5 

Noise 4 

0.0328 0.0233 8 0.0352 0.0304 

0.0337 0.0244 10 0.0297 0.0250 

0.0886 0.0774 10 0.0287 0.0235 
0.0428 0.0371 9 0.0346 0.0294 

0.2014 0.1882 10 0.0536 0.0384 
0.1994 0.1815 10 0.0588 0.0431 

0.0241 0.0190 10 0.0455 0.0368 
0.0206 0.0213 10 0.0372 0.0310 

0.0368 0.0321 9 0.0385 0.0319 
0.0458 0.0408 10 0.0372 0.0310 
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Table 2 

The percentage explained variance (PEV) and the root mean 

squared error of prediction (RMSEP) for all the output variables 

of the MLF and RBF network models (Yarn data) 

Practice data 

Property 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

MLF model RBF model 

PEV (o/o) RMSEP PEV (%) RMSEP 

95.85 0.0828 94.88 0.0920 

65.35 0.2234 66.82 0.2186 

96.39 0.1192 96.10 0.1239 

92.76 0.1226 93.59 0.1153 

92.77 0.1415 93.13 0.1380 

92.33 0.1569 92.89 0.1511 

97.37 0.0701 96.32 0.0829 

93.04 0.1057 92.66 0.1085 

78.83 0.2422 79.73 0.2370 

93.39 0.1241 93.52 0.1229 

59.38 0.2179 59.08 0.2187 

properties of industrial yarns, from the paper of De 
Weijer et al. [20]. In Table 2 the percentage of ex- 
plained variance (PEV) and the RMSEP values for the 
eleven mechanical properties are presented. From 
crossvalidation it appeared that the MLF models re- 
quired 8 hidden units, whereas the RBF model needed 
up to 26 hidden units (base functions) to reach a 
comparable degree of accuracy. In agreement with the 
previous results, the MLF network is better capable 
to create parsimonious models with respect to the 
RMSE and the size of the network. 

Table 3 

However, Table 3 reveals some interesting prop- 
erties of the RBF network. The output units of the 
RBF model are generally more robust to input noise 
for most of the mechanical properties, which is in ac- 

cordance with Ref. [lo]. Also a better estimation of 
the ‘pure’ output errors can be observed. 

5. Discussion and conclusion 

In this paper, we have proposed a method to test 
the robustness properties of two different types of 
neural networks (radial base function (RBF) and 
multi-layered feed-forward (MLF) networks) applied 
to a data set obtained from industrial chemical prac- 
tice. The method can be used as a qualitative valida- 
tion tool to investigate the sensitivity of network out- 
puts to the amplitude of random errors in input space. 
Since the results of the robustness analysis depend on 
the data and the network configuration used, no gen- 
eral information can be extracted about intrinsic ro- 
bustness properties. Besides that, prior knowledge 
about pure errors in input and output space is re- 
quired. In the experimental section of this paper, the 
robustness procedure has been applied on Yarn data 
[20] modelled by RBF and MLF neural networks. 

An appealing feature of RBF networks is that the 
network parameters have physical meanings in con- 
trast to MLF networks. The weights connected be- 

The results of the robustness analysis (Yarn data). The original pure errors for the 11 output variables are included in order to compare them 

with the offset coefficients (PO) of the MLF and RBF neural models. The sensitivity of the output units to the amplitude of input noise is 

denoted by PI 

Practice data 

Property Pure error MLF model 

PO 

RBF model 

PO 

1 

2 

3 

4 

5 
6 
7 

8 

9 

10 

11 

0.0472 

0.1596 

0.0927 

0.0918 

0.1064 

0.1370 
0.0798 

0.0808 

0.1100 
_ 

0.3276 

0.0524 1.0011 0.0579 1.0007 
0.0810 1.0011 0.1032 0.9999 
0.0476 1.0043 0.0830 1.0011 
0.0512 1.0003 0.0550 0.9996 
0.0539 1.0000 0.0537 1.0010 
0.0444 I .0049 0.0897 1.0018 
0.0439 1.0032 0.0626 1.0007 
0.0644 1.0010 0.0677 1 .OOo3 
0.0918 1.0009 0.1054 0.9993 
0.0533 1.0002 0.0548 1.0007 
0.0467 1.0023 0.0539 1.0019 
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tween the base function and the variable represent the 
coordinates of the centre of a group of objects. The 
output weights are used to realize a weighted sum of 
center positions. In this way, a specific subdomain in 
the data space can be selected. The scaling parameter 
u is used to adapt the narrowness of the Gaussian- 
shaped functions. 

The RBF network falls between a nearest neigh- 
bour matcher and a regression technique. The scaling 
parameter u can be used to regulate the behaviour of 
the network. Narrow Gaussian distributions make it 
possible to approximate linear or nonlinear correla- 

tions in an N-dimensional space. It is obvious that the 
RBF network needs much more base functions for 
function approximation than for classifications prob- 
lems. When the network is applied for classification, 
higher values for (T are more common. The radial 
base functions are then used as centroids for a group 

of objects in a hyperspace. Note that one cluster can 
be distributed over various base functions. A linear 
combination of base functions pointing to the same 
class enables a better discrimination between differ- 
ent classes. 

For simulated function approximation problems 

used in this paper, MLF outperforms RBF, i.e. parsi- 
monious models are obtained with lower prediction 
errors (Table 1). However, both types of networks 
still remain comparable. 

On the yarn data, a robustness analysis has been 
carried out. Table 3 shows that the RBF model is 

generally more robust for input noise. Also, the in- 
tercept gives a better approximation of the pure er- 
rors. This allows us to conclude that the RBF model 
has better robustness properties than MLF models. 

The study includes a restricted comparison of the 
speed and convergence properties for both types of 
networks. With the simulated data used for function 
approximation in various models, linear and nonlin- 
ear, using crossvalidation procedures to avoid the 
overtraining effect, there are no big differences be- 
tween MLF and RBF networks. Both converge ap- 
proximately in the same range, but MLF models were 
computationally less expensive than RBF, which 
however is not a big problem taking into account the 
power of modern computers. 

On the other hand, the RBF models for yarn data 
appeared to be more robust than the MLF networks 
obtained. Summarizing, the choice of a particular 

type of network depends on the problem one tries to 
resolve, the available computational power and the 
goal pursued. 

Acknowledgements 

The authors wish to acknowledge A.P. de Weijer 
for handing out background information and valu- 
able suggestions about the yarn data. A. Bos and W. 
Melssen are acknowledged for the fruitful discus- 
sions about neural network theory. 

This research work is financially supported by the 
Dutch Foundation for Chemical Research (SON) on 
behalf of the Dutch Organisation for Scientific Re- 
search (NWO). 

References 

[I] P.K. Simpson, Artificial Neural Systems, Pergamon Press, 

1990. 

[2] D.E. Rumelhart, J.L. McClelland and the PDP Research 

Group, Parallel Distributed Processing. Explorations in the 

Microstructure of Cognition. Vol 1. Foundations, MIT Press, 

Cambridge, MA, 1986. 

[3] H.C. Smit, Specification and estimation of noisy analytical 

signals. Part I. Characterization, time invariant filtering and 

signal approximation, Chemom. Intell. Lab. Syst., 8 (1990) 

15-27. 
[4] R. Hecht-Nielsen, Neurocomputing, Addison-Wesley, Read- 

ing, MA, 1990. 

[s] K. Hornik, M. Stinchcombe and H. White, Multilayered 

feed-forward networks are universal approximators, Neural 

Networks, 2 (1089) 359-366. 

[6] J. Moody and C.J. Darken, Fast learning in networks of lo- 

cally-tuned processing units, Neural Computation, 1 (19891 

281-294. 

[7] P. Cardaliaguet and G. Euvrard, Approximation of a function 
and its derivative with a neural network, Neural Networks, 5 

(1992) 207-220. 

[8] J. Park and I.W. Sandberg, Universal approximation using 

radial basis function networks, Neural Computation, 3 (19911 

246-257. 
[9] D.A. White and D.A. Sofge, Handbook of Intelligent Con- 

trol 

1111 

1121 

trol, Van Nostrand Reinhold, New York, 1992. 
A. Bos, Artificial neural networks as a tool in chemometrics, 

PhD thesis, University Twente, Enschede, 1993. 

S. Kirkpatrick, J. Gelatt and M.P. Vecchi, Optimization by 

simulated annealing, Science, 220 (1983) 671- 680. 

D. Burshtein, Neural network training using the simulated 

annealing method, in Proceedings of the World Congress on 

Neural Networks, Vol. 3, Lawrence Erlbaum, Hillsdale, 1993, 

pp. 397-400. 



60 E.P.P.A. Derks et al. /Chemometrics and Intelligent Laboratory Systems 28 (1995) 49-60 

[13] J.D. Schaffer, D. Whitley and L.J. Eshelman, Combinations 
of genetic algorithms and neural networks: A survey of the 

state of the art, in the Proceedings of COGANN-92, IEEE 

Computer Society, Los Alamitos, CA, 1992, pp. l-13. 

[14] I. Youji and H. Sakai, real-time learning algorithm for a 

multilayered neural network based on the extended Kalman 

filter, IEEE Trans. Signal Process., 40 (1992) 959-966. 

[15] J.R.M. Smits, Exploring the possibilities of applying artificial 

neural networks on problems in analytical chemistry, PhD 

thesis, Catholic University Nijmegen, Nijmegen, 1993. 

[16] D.S. Broomhead and D. Lowe, Multivariable functional in- 

terpolation and adaptive networks, Complex Syst., 2 (1988) 

321-355. 

[17] M.J.D. Powell, Radial base functions for multivariable inter- 

polation, a review, presented at the IMA Conference, RMCS, 
Shrivenham, 1985. 

[18] J.A. Leonard, M.A. Kramer and L.H. Ungar, A neural net- 

work architecture that computes its own reliability, Comput. 

Chem. Eng., 16 (1992) 819-836. 

[19] S. Sekulic and B. Kowalski, Mars: a tutorial, Journal of 

Chemometrics, 4 (1992) 199-216. 

[20] A.P. de Weijer, L. Buydens. G. Kateman and H.M. Heuvel, 

Neural networks used as a soft-modelling technique for quan- 

titative description of the inner relation between physical 

structure and mechanical properties of poly(ethylene tere- 

phthalate) yarns, Chemom. Intell. Lab. Syst., 16 (1992) 77- 

86. 


