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Abstract

A nonlinear realization of super W∞ algebra is shown to exist through a consistent

superLax formulation of super KP hierarchy. The reduction of the superLax operator gives

rise to the Lax operators for N = 2 generalized super KdV hierarchies, proposed by Inami

and Kanno. The Lax equations are shown to be Hamiltonian and the associated Poisson

bracket algebra among the superfields, consequently, gives rise to a realization of nonlinear

super W∞ algebra.
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It has been known since the inception of Zamolodchikov, Fateev and Lykyanov’s [1]

nonlinear realization of extended conformal symmetry that Wn algebra incorporates in its

calssical limit the Hamiltonian structure of nonlinear integrable systems viz., generalized

KdV hierarchy [2]. Subsequently, there were important attempts to classify conformal

field theory via the Hamiltonian structure of generalized KdV hierarchies [3]. The role of

the generalized KdV hierarchies became apparent later when it was seen that equations

of motion and symmetries in quantum 2D gravity and noncritical string theory at least

with c < 1 can be formulated in terms of integrable nonlinear equations of KdV type.

(There is an exhustive literature in this direction; for example see [4]). Since all the KdV

hierarchies are contained into the larger integrable system viz., KP hierarchy [5] it has

been conjectured [6] that it may provide a universal framework exhibiting the underlying

structure of 2D quantum gravity. In this connection and also from the point of view Lie

algebra, the algebraic structure of the large n limit of Wn algebra namely, W1+∞ and W∞

has been probed within the framework of KP hierarchy [7]. These are universal W algebras

containg all the conformal spins. All these algebras have so far been linear Lie algebras.

However, owing to the ambiguity inherent in the large n limits, a nonlinear realization of

universal W algebra, Ŵ∞ has been constructed and identified with the second Hamiltonian

structure of KP hierarchy [8].

Later on, Manin and Radul [9] provided a consistent supersymmetric extention of the

KP hierarchy and subsequently the physically relevant even parity superLax formulation

of super KP hierarchy containing linear universal W algebra (super W1+∞) has been

developed [10]. While linear N = 2 universal super W algebra [10] was shown to exist,

Inami and Kanno [11, 12] have shown that N = 2 super KdV hierarchies can arise in

association with affine Lie algebras. This is an important step towards N = 2 super

analogue of Drinfeld Sokolov formulation [2]. Clearly, it hints that, as a generalization of

Inami and Kanno’s work [11, 12], there must be a consistent N = 2 superLax formulation

of super KP hierarchy which should be Hamiltonian with respect to super Gelfand Dikii

bracket of second kind and should reduce to the Lax operators, considered in [12] under

siutable reduction. This observation, in fact, enables us to show the existence of a nonlinear

realization of super W∞ algebra through super KP formulation.
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In this letter we formulate an even parity superLax operator which, under suitable

reductions, becomes isomorphic to the Lax operators of N = 2 super KdV hierarchies

[12]. Subsequently, we show that a consistent superLax formulation corresponding to this

superLax operator leads to N = 2 super KP hierarchy. We also show the Lax euqations are

Hamiltonian. For this purpose, we obtain the Poisson bracket algebra among the coefficient

fields corresponding to the superLax operator following Gelfand Dikii method. We observe

that the full Poisson bracket algebra has N = 2 superconformal algebra as a subalgebra and

the bosonic and fermionic componets of the superfields carry correct conformal weights.

As a consequence, we claim that the full Poisson bracket algebra among the superfields

gives rise to a realization of N = 2 nonlinear super W∞ algebra.

We begin with the even parity superLax operator of the form

L = D2 +
∞
∑

i=0

ui−1(X)D−i (1)

where, D is the superderivative with D2 = d
dx

and ui−1(X) are superfields in X = (x, θ)

space, θ being Grassman odd coordinate. The grading of ui−1(X) is |ui−1| = i so that

u2i−1 are bosonic superfields whereas u2i are fermionic ones.

The interesting consequence of the choice of the superLax operator (1) is that under

suitable choice of reduction it reduces to the superLax operator for generalized N = 2

KdV hierarchies, proposed by Inami and Kanno. Let us first define the nth. reduction of

L as

L̃n = Ln
>0 (2)

where, ‘> 0’ implies the +ve part of Ln without D0 term. Using definition (2) for the

superLax operator (1), L̃n can be expressed in the following general form

L̃n = Ln
>0 = D2n +

2n−2
∑

i=1

U
(n)
i Di (3)

In (3) we have used super Liebnitz rule [9] for multiplication of the operators L and the

superfields U
(n)
i are functions of ui−1(X) and their superderivatives. L̃n in (3) is precisely

the superLax operator considered in [12]. For example, for n = 2

L̃2 = D4 + 2u−1D
2 + 2u0D (4)

3



which is precisely N = 2 super KdV Lax operator [11]. Similarly, for n = 3

L̃3 = D6 + 3u−1D
4 + 3u0D

3 + 3(u1 + u
[2]
−1 + u2

−1)D
2 + 3(u2 + u

[2]
0 + 2u−1u0)D (5)

is isomorphic to the Lax operator corresponding to N = 2 super Boussinesq hierarchy [11].

Notice that we have chosen the reduction prescription as in definition (2), since D0 term

is absent in the superLax operators (3, 4, 5), considered in [11, 12]. This observation is, in

fact, a compelling evidence to propose the superLax operator in (1) as a right candidate

for describing N = 2 super KP hierarchy.

It is clear from (4, 5) that the presence of the superfield u−1 in (1) is essential to obtain

superLax operators for N = 2 generalized super KdV hierarchies by reduction. Hence u−1

must have nontrivial dynamics. In order to have nontrivial flow of u−1 for each time tn

we now define the Lax equation as

dL

dtn
= [Ln

>0, L] (6)

We will show later that the presence of u−1 renders the Gelfand Dikii Poisson bracket of

second kind local whereas the absence of u−1 field makes the same nonlocal [13].

We give below first three evolution equations which follow from (1) and (6).

dui−1

dt1
=u

[2]
i−1 (7a)

dui−1

dt2
=2u

[2]
i+1 + u

[4]
i−1 + 2u−1u

[2]
i−1 + 2u0u

[1]
i−1 − 2

[

i+ 1

1

]

uiu
[1]
−1 − 2(1 + (−1)i)u0ui

+ 2
i−1
∑

m=0

[

i

m+ 1

]

(1−)i+[−m

2
]ui−m−1u

[m+1]
0

+ 2

i−1
∑

m=0

[

i+ 1

m+ 2

]

(1−)[
m

2
]ui−m−1u

[m+2]
−1 (7b)

dui−1

dt3
=3u

[2]
i+3 + 3u

[4]
i+1 + u

[6]
i−1 + 6u−1u

[2]
i+1 + 3u−1u

[4]
i−1

− 3

[

i+ 3

1

]

ui+2u
[1]
−1 + 3

[

i+ 3

2

]

ui+1u
[2]
−1 + 3

[

i+ 3

3

]

uiu
[3]
−1

− 3(1 + (−1)i)u0ui+2 + 3u0u
[1]
i+1 − 3(−1)iu0u

[2]
i + 3u0u

[3]
i−1

+ 3

[

i+ 2

1

]

(−1)iui+1u
[1]
0 − 3

[

i+ 2

2

]

(−1)iuiu
[2]
0
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+ 3(u1 + 2u
[2]
−1 + u2

−1)u
[2]
i−1 − 3

[

i+ 1

1

]

ui(u1 + u
[2]
−1 + u2

−1)
[1]

+ 3(u2 + 2u−1u0 + u
[2]
0 )u

[1]
i−1 − 3(1 + (−1)i)(u2 + 2u−1u0 + u

[2]
0 )ui

− 3

i−1
∑

m=0

[

i+ 3

m+ 4

]

(−1)[
m

2
]ui−m−1u

[m+4]
−1

− 3
i−1
∑

m=0

[

i+ 2

m+ 3

]

(−1)i+[−m

2
]ui−m−1u

[m+3]
0

+ 3
i−1
∑

m=0

[

i+ 1

m+ 2

]

(−1)[
m

2
]ui−m−1(u1 + u

[2]
−1 + u2

−1)
[m+2]

+ 3

i−1
∑

m=0

[

i

m+ 1

]

(−1)i+[−m

2
]ui−m−1(u2 + 2u−1u0 + u

[2]
0 )[m+1] (7c)

With the identification of t1 = x and t2 = y, (7a) resembles the consistency condition,

whereas (7b) becomes constraint equation. The time variables, therefore, may be identified

as t3, t4, .... etc.

Let us now look for the t3 time evolution (first time evolution) equations for the

superfields u−1 and u0. We may eliminate all other fields from the equations of motion of

u−1 and u0 in (7c) by using the constraint (7b). As a consequence, however, the equations

of motion for u−1 and u0 become nonlocal and have the form

du−1

dt3
=

1

4
u
[6]
−1 −

1

2
(u3

−1)
[2] +

3

2
(u0u

[1]
−1)

[2] +
3

4

d2u
[−2]
−1

dy2

+
3

2
u
[2]
−1

du
[−2]
−1

dy
−

3

2
u
[1]
−1

du
[−2]
0

dy
− 3u0

du
[−1]
−1

dy
+ 3u0

du
[−2]
0

dy
(8a)

du0

dt3
=

1

4
u
[6]
0 +

3

2
(u0u

[1]
0 )[2] −

3

2
(u0u

[2]
−1)

[2] −
3

2
(u0u

2
−1)

[2]

+
3

4

d2u
[−2]
0

dy2
+

3

2
(u0

du
[−2]
0

dy
)[1] +

3

2
u
[2]
0

du
[−2]
−1

dy
+

3

2
u0

du−1

dy
(8b)

The higher time evolution of this hierarchy also have similar nonlocal terms involving y

derivate only.

If we further demand that the superfields are independent of y coordinate the evolution

equations of u−1 and u0 become local and reduce to the equations,

du−1

dt3
= −

[

u
[6]
−1 + 3(u

[1]
−1u0)

[2] −
1

2
(u3

−1)
[2]

]

(9a)
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and
du0

dt3
= −

[

u
[6]
0 − 3(u0u

[1]
0 )[2] −

3

2
(u0u

2
−1)

[2] + 3(u0u
[2]
−1)

[2]

]

(9b)

after rescaling of u−1 = −1
2u−1, u0 = −1

2u0 and t3 = −1
4 t3. (9) are the evolution equations

for N = 2 super KdV system [11].

Moreover, we show that (7) contain KP equation in the bosonic limit. For this purpose,

let us first write down the superfields in the component forms as

u2i−1(X) =ub
2i−1(x) + θu

f
2i−1(x) (10a)

u2i(X) =u
f
2i(x) + θub

2i(x) (10b)

where, b and f denote fermion and boson respectively. In particular, it follows from (7)

that the equation of motion of ub
0(x) have the following form

3

4

d2ub
0(x)

dy2
=

d

dx

(

dub
0(x)

dt3
−

1

4

d3ub
0(x)

dx3
− 3ub

0(x)
dub

0(x)

dx

)

(11)

after setting the fermionic components of the superfields and ub
−1(x) field to zero. (11)

is, indeed, the KP equation [14]. Thus the set of equations (7) is nothing but the super

KP equation. In addition, we have shown that (7) reduce to N = 2 super KdV equations

(9). Hence, this suggests that (1) and (6) describe the dynamics of N = 2 super KP

hierarchy. Now, it remains to show that the Poisson bracket algebra among the superfields

corresponding to (1) and (6) has N = 2 superconformal algebra as a subalgebra.

To show that the Lax equations (6, 7) are Hamiltonian, we first calculate the Poisson

bracket algebra among the coefficient fields ui−1(X) following the method of Gelfand and

Dikii. The super Gelfand Dikii bracket is defined as

{FP (L), FQ(L)} = −Tr [{L(PL)− − (LP )−L}Q] (12)

where, P,Q are auxiliary fields (analogous to the super Volterra operators in the case of

super KdV system). We choose P,Q in the form

P =

∞
∑

j=−2

Djpj ; Q =

∞
∑

j=−2

Djqj (13)
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with the grading |pj | = |qj | = j so that the linear functional FP (L) (and similarly FQ(L))

becomes

FP (L) = Tr(LP ) =
∞
∑

i=0

∫

dX(−1)i+1ui−1(X)pi−1(X) (14)

Consequently the L.H.S. of (12) becomes

{FP (L), FQ(L)} =

∞
∑

i,j=0

∫

dX

∫

dY (−1)i+jpi−1(X) {ui−1(X), uj−1(Y )} qj−1(Y ) (15)

Notice that (15) does not involve terms like p−2 and q−2 since the superfields in (1) starts

from u−1(X). To ensure this consistency we have to show that R.H.S. of (12) sets the

coefficients of p−2 and q−2 identically zero. This needs the coefficient of D term in the

VP (L) to be zero, where VP (L) is defined by

VP (L) = L(PL)− − (LP )−L.

The above condition thus leads to the constraint

p−1(X) = −

∞
∑

r=0

r−1
∑

m=0

[

r − 1

m+ 1

]

(−1)m(r+1) (pr−1(X)ur−m−2(X))
[m−1]

(16)

In particular, vanishing of the coefficient of D term ensures that R.H.S. of (12) is inde-

pendent of q−2. Now by using the constraint (16) we can make the coefficient of p−2 zero.

We remark that the origin of the constraint (16) is due to the absence of D term in the

superLax operator (1) itself. Finally, we obtain the Poisson bracket algerba among the
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superfields by using the relations (12)-(16). Thus we have

{uj−1(X), uk−1(Y )} =
[

−

j+1
∑

m=0

[

j + 1

m

]

(−1)j(k+m+1)+[m
2
]uj+k−mDm

+

k+1
∑

m=0

[

k + 1

m

]

(−1)jm+(k+1)(m+1)Dmuj+k−m

+

j−1
∑

m=0

k−1
∑

l=0

([

j

m+ 1

] [

k

l + 1

]

−

[

j − 1

m

] [

k − 1

l

])

(−1)j(m+1)+k+l+[m
2
]

uj−m−2D
m+l+1uk−l−2

+
k−1
∑

n=0

k−n−1
∑

l=0

[

k − n− 1

l

]

(−1)j(n+l)+(l+1)(n+k+1)un−1D
luj+k−n−l−2

−

j+k−n−l−1
∑

m=0

k−1
∑

n=0

k−n−1
∑

l=0

[

j − 1

m

] [

n+ l − 1

l

]

(−1)j(m+n+l+k+1)+n(l+1)+[m
2
]

uj+k−m−n−l−2D
m+lun−1

]

∆(X − Y )

(17)

Next we define the Hamiltonians, Hn as

Hn =
1

n

∫

dXsRes(Ln)(X) (18)

for n = 1, 2, 3, ... etc. Here ‘sRes′ means superresidue,i.e. the coefficient of D−1. To check

that first few equations, (7) satisfy Hamilton’s equation

dui−1(X)

dtn
= {ui−1(X), Hn} (19)

we give explicit form of first three Hamiltonians

H1 =

∫

dXu0

H2 =

∫

dX(u2 + u−1u0)

H3 =

∫

dX(u4 + 2u2u−1 + 2u1u0 + u0u
[1]
0 + u−1u

[2]
0 + u0u

2
−1)

(20)

For example, for n = 1, (19) becomes

dui−1(X)

dt1
= (−1)i

∫

dY {ui−1(X), u0(Y )} (21)
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Now by using (17) we have from (21)

dui−1(X)

dt1
= u

[2]
i−1(X)

which is nothing but (7a). Similarly for n = 2, 3 we have verified by using (17), (19) and

(20) that Hamilton’s equations exactly match with (7b,c).

A few remarks about the Poisson bracket algebra (17) are in order.

(i) The first three terms in algebra are manifestly antisymmetric, but the last two terms

are not apparently antisymmetric. This causes obstruction in proving Jacobi identity

in a covariant fashion by using the manifestly antisymmetry property and cyclicity in the

indices. We have, however, checked for k = 0, 1, 2, 3 and arbitrary j and also for j = 0, 1, 2, 3

and arbitrary k that Poisson brackets are, indeed, antisymmetric. For convenience, we

display the explicit expressions of these Poisson brackets below. From (17) the Poisson

brackets between k = 0, 1, 2, 3 and arbitrary j are given by

{uj−1(X), u−1(Y )} =
(

−uj + (−1)jDuj−1

−

j+1
∑

m=0

[

j + 1

m

]

(−1)j(m+1)+[m
2
]uj−mDm

)

∆(X − Y ) (22a)

{uj−1(X), u0(Y )} =
(

D2uj−1

−

j
∑

m=0

[

j + 1

m+ 1

]

(−1)j(m+1)+[−m

2
]uj−mDm+1

)

∆(X − Y ) (22b)

{uj−1(X), u1(Y )} =
(

−uj+2 + (−1)jDuj+1 −D2uj + (−1)jD3uj−1 + (−1)ju0uj−1

− u−1uj − uj−1Du−1 + (−1)ju−1Duj−1 −

j+1
∑

m=0

[

j + 1

m

]

(−1)j(m+1)+[m
2
]uj+2−mDm

−

j
∑

m=0

[

j

m

]

(−1)j(m+1)+[−m

2
]
(

uj−mDmu−1 − (−1)juj−m−1D
mu0

)

)

∆(X − Y )

(22c)
{uj−1(X), u2(Y )} =

(

2D2uj+1 +D4uj−1 − (−1)ju0uj + u0Duj−1 − uj−1D
2u−1

+ u−1D
2uj−1 −

j
∑

m=0

[

j + 1

m+ 1

]

(−1)[−
m

2
]
(

uj+2−mDm+1 + uj−mDm+1u−1

)

+

j
∑

m=0

[

j

m

]

(−1)j+[m
2
]uj−mDmu0 −

j−1
∑

m=0

[

j

m+ 1

]

(−1)[−
m

2
]uj−m−2D

m+2u0

)

∆(X − Y )

(22d)
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It also follows from (17) that the Poisson brackets between j = 0, 1, 2, 3 and arbitrary k

have the form

{u−1(X), uk−1(Y )} = (−uk − uk−1D

+

k+1
∑

m=0

[

k + 1

m

]

(−1)(k+1)(m+1)Dmuk−m

)

∆(X − Y ) (23a)

{u0(X), uk−1(Y )} =
(

−(−1)kuk−1D
2

−
k

∑

m=0

[

k + 1

m+ 1

]

(−1)kmDm+1uk−m

)

∆(X − Y ) (23b)

{u1(X), uk−1(Y )} =
(

−uk+2 − uk+1D + ukD
2 + uk−1D

3 + uk−1u0

− uku−1 − uk−1Du−1 + (−1)ku−1Duk−1 +

k+1
∑

m=0

[

k + 1

m

]

(−1)(k+1)(m+1)Dmuk+2−m

−

k
∑

m=0

[

k

m

]

(−1)k (u−1D
muk−m − (−1)mu0D

muk−m−1)

)

∆(X − Y )

(23c)
{u2(X), uk−1(Y )} = −(−1)k

(

2uk+1D
2 − uk−1D

4 − uku0 − uk−1Du0 + uk−1D
2u−1

− u−1D
2uk−1 +

k
∑

m=0

[

k + 1

m+ 1

]

(

Dm+1uk+2−m + u−1D
m+1uk−m

)

+
k

∑

m=0

[

k

m

]

u0D
muk−m −

k−1
∑

m=0

[

k

m+ 1

]

(−1)mu0D
m+2uk−m−2

)

∆(X − Y )

(23d)

It is now easy to see that (22a) is antisymmetric to (23a) and so on. We have also checked

that Jacobi identities are satisfied for the above cases.

(ii) The algebra is local. This enables us to associate it with a superconformal algebra.

To make contact the algebra (17) with extended N = 2 superconformal algebra, viz. super

W∞ algebra, we first consider the Poisson bracket algebra between the superfields u−1(X)

and u0(X). From (17) we have

{u−1(X), u−1(Y )} = (−2u0(X)− u−1(X)DX +DXu−1(X))∆(X − Y )

{u0(X), u−1(Y )} =
(

−DXu0(X)− u−1(X)D2
X

)

∆(X − Y )

{u−1(X), u0(Y )} =
(

−u0(X)DX +D2
Xu−1(X)

)

∆(X − Y )

{u0(X), u0(Y )} =
(

u0(X)D2
X +D2

Xu0(X)
)

∆(X − Y )

(24)
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which is closed and hence is a subalgebra of the full algebra (17). To show that (24) has

N = 2 superconformal structure it is useful to write (24) in terms of component fields by

using (10). If we further redifine the fields as

T = ub
0 −

1

2
(ub

−1)
′, U = ub

−1, G+ = u
f
0 , G− = u

f
0 − u

f
−1 (25)

the algebra (24) in terms of T, U,G+ and G− becomes

{T (x), T (y)} = (2T (y)∂y + T ′(y)) δ(x− y)

{T (x), U(y)} = (U(y)∂y + U ′(y)) δ(x− y)

{

T (x), G±(y)
}

=

(

3

2
G±(y)∂y + (G±)′(y)

)

δ(x− y)

{

G±(x), U(y)
}

= ±G±(y)δ(x− y)

{

G+(x), G−(y)
}

=

(

T (y)− U(y)∂y −
1

2
U ′(y)

)

δ(x− y)

{

G±(x), G±(y)
}

= {U(x), U(y)} = 0

(26)

(26) is nothing but the classical analogue of N = 2 superconformal algebra.

(iii) Let us now calculate the Poisson bracket of the componet fields ub
2i−1, u

b
2i, u

f
2i−1 and

u
f
2i with the energy momentum tensor T, defined in (25). It follows from (10) and (17)

that

{

T (x), ub
2i−1(y)

}

=
(

(i+ 1)ub
2i−1(y)∂y + (ub

2i−1(y))
′

−

i−2
∑

m=0

(−1)m
(

i

m+ 2

)

ub
2i−2m−3(y)∂

m+2
y

−
1

2

i−1
∑

m=0

(−1)m
(

i

m+ 1

)

ub
2i−2m−3(y)∂

m+2
y

)

δ(x− y) (27a)

{

T (x), ub
2i(y)

}

=
(

(i+ 2)ub
2i(y)∂y + (ub

2i(y))
′

−

i−2
∑

m=0

(−1)m
(

i+ 1

m+ 2

)

ub
2i−2m−2(y)∂

m+2
y

+
1

2

i−1
∑

m=0

(−1)m
(

i+ 1

m+ 1

)

ub
2i−2m−1(y)∂

m+2
y

)

δ(x− y) (27b)

{

T (x), uf
2i−1(y)

}

=

(

(i+
3

2
)uf

2i−1(y)∂y + (uf
2i−1(y))

′

11



−

i−2
∑

m=0

(−1)m
(

i

m+ 2

)

u
f
2i−2m−3(y)∂

m+2
y

+
1

2

i−1
∑

m=0

(−1)m
(

i

m+ 1

)

u
f
2i−2m−3(y)∂

m+2
y

)

δ(x− y) (27c)

{

T (x), uf
2i(y)

}

=

(

(i+
3

2
)uf

2i(y)∂y + (uf
2i(y))

′

−
i−2
∑

m=0

(−1)m
(

i+ 1

m+ 2

)

u
f
2i−2m−2(y)∂

m+2
y

)

δ(x− y) (27d)

It is now evident from (27) that ub
2i−1, u

b
2i and u

f
2i−1, u

f
2i are respectively bosonic and

fermionic conformal fields with respect to the energy momentum tensor T, introduced in

(25).

Hence we cliam that the Poisson bracket algebra (17) is a nonlinear realization of

super W∞ algebra. Notice that similar situation has been observed in the case of Gelfand

Dikii bracket of second kind for the bosonic KP hierarchy [8].

To conclude, the superLax operator (1), indeed, corresponds to N = 2 super KP

hierarchy. The Poisson bracket algebra, we have obtained following Gelfand Dikii method,

gives rise to a nonlinear realization of super W∞ algebra. In alalogy with bosonic KP

hierarchy [8] we believe this algebra may be realized as universal super W∞ algebra.
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