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Abstract

We obtain a �ve-step approximation to the quasiperiodic dynamic

scaling function for experimental Rayleigh-B�enard convection data.

When errors are taken into account in the experiment, the f(�) spec-

trum of scalings is equivalent to just two of these �ve scales. To over-

come this limitation, we develop a robust technique for extracting the

scaling function from experimental data by reconstructing the dynam-

ics of the experiment.

1 Introduction

The most complete invariant description of a chaotic dynamical system is

the dynamical scaling function [1] which provides scale factors that allow

the reconstruction of the dynamics and the direct evaluation of its ergodic

measures. Given the scaling function one can calculate all other invariant

quantities (long time averages) describing the dynamical system, such as the

spectrum of singularities f(�) or the correlation functions. Thus, the scal-

ing function is the quantity of choice for characterizing a particular chaotic

dynamical system. Theoretically the scaling function has been computed

for the period-doubling and quasiperiodic transitions to chaos. Because of

the completeness of the scaling function, a comparison between theoretical

and experimental scaling function is a much more rigorous test of universal-

ity than is commonly demonstrated with the f(�) spectrum of singularities.
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Despite the importance of constructing the scaling function from experimen-

tal data, few attempts have been made and these have not been convincing

[2]. The di�culty lies in the sensitivity of the scaling function to varia-

tions in parameters such as can come from experimental noise or drift and

in the proper de�nition of the scaling function, none of which have been

addressed in experimental data analysis. We explain here how to overcome

these di�culties and give the �rst de�nitive comparison of experimental and

theoretical scaling functions for the quasiperiodic transition to chaos.

Why have previous attempts to extract the scaling function failed? There

are basically two reasons: The �rst is that the universal scaling function

has to be computed not from any map, but from the universal function that

satis�es the Cvitanovi�c-Feigenbaum functional equation [3]. Experimentally

the universal function is not available, but it can be approximated from its

de�nition by considering not the map obtained from the data, but one of

its iterates. The second reason is that the scaling function is very sensitive

to variations in the control parameters and these variations can never be

completely eliminated. Numerical studies with the sine circle map show that

large variations can be expected in the scaling function if the parameters

are not exactly tuned to the quasiperiodic state. Here we will show how

to approximate the behavior of the universal function by considering only

orbit points close to the critical point, and how variation of parameters can

be controlled by reconstructing the dynamics of the system.

The circle map scaling function is a generalization of Shenker's contrac-

tion rate � [4] to all points in the neighborhood of the inection point of the

circle map. Shenker's � measures the rate of exponential contraction of the

close return distances of the inection point of the circle map. We focus on

the scaling function for circle maps, as it is a common case in physical sys-

tems, arising generically when two oscillators are non-linearly coupled. We

use the sine circle map for numerical comparisons and obtain experimental

data from a hydrodynamical experiment: Rayleigh-B�enard convection in a

3

He-superuid-

4

He mixture. This system, which closely approximates clas-

sical thermal convection, has been extensively studied in the quasiperiodic

regime [5, 6, 7].

The universality theory for circle maps is of wide interest because it

occurs whenever two oscillators are nonlinearly coupled (the frequency of

oscillation depends on the amplitude). If the coupling is strong, the sys-

tem will go chaotic, but for any coupling there will be mode-locking. This

was �rst reported by Christian Huyghens in 1665 when he described how

clocks set on a shelf would synchronize the motion of their pendula [8]. The
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Figure 1: Mode locking occurs for typical vector �elds on a torus. If a harmonic

oscillator with irrational frequency is slightly perturbed, the winding trajectory will

form periodic orbits.

phase space of the two oscillators is composed of their amplitudes and phases

and is thus four dimensional. In general, the oscillators are dissipative and

therefore the study of their long term behavior may be reduced to the study

of limit cycle sets. In the simplest case one of the oscillators has a �xed

frequency and is driving the other oscillator, and the phase space may be

reduced to the motion on the two-dimensional surface of a torus. On this

torus there is a vector �eld that determines the motion. If it where a har-

monic oscillator, then the vector �eld would be a set of vectors all pointing in

the same direction, as the vector �eld (a) in �gure 1. The typical frequency

of oscillation is an irrational number (the rationals have measure zero), and

the system winds around the torus ergodically. As the orbit winds around,

it comes arbitrarily close to any point it has already visited. If we add a

perturbation to this oscillator (vector �eld (b) in the �gure), as we do when

we couple it nonlinearly to another oscillator, then whenever there is a close

return of the orbit to previously visited points there is a chance that the

orbit will close on itself and be a periodic orbit | the system would be

mode-locked. Peixoto [9] proved that this is the general case by showing

that a typical vector �eld on a torus is mode-locked.

Here we show a non-trivial physical realization of the mode-locking phe-

nomenon. Peixoto's theorem applies to a two-dimensional dynamical sys-

tem, but our analysis of the experimental data will show that the phe-

nomenon is also observed in a system that is described by a partial di�eren-

tial equation (Navier-Stokes equation) and therefore potentially an in�nite

dimensional dynamical system. The experiment is not used as an analog

computer to simulate equations that are known to have mode-locking. A

detailed analysis of the parameter space of the experimental system shows
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that it is not globally equivalent to the sine circle map [5]. There are non-

chaotic regions in the experiment that do not occur in a simple circle map.

This is not an unusual situation for higher dimensional maps that have in-

variant circles (see, for example Wang et al. [10]).

This paper is organized by �rst presenting a review (section 2) of the

major features of the dynamical scaling function, emphasizing connections

to physically obtainable data sets (either by experiment or numerical simu-

lation). Next, in section 3, a brief description of the experiment is given. In

section 4, we present the results of our data analysis, illustrating potential

di�culties using numerical simulation, but concentrating on obtaining a re-

liable scaling function for experimental data. Our summary and conclusions

are contained in section 5.

2 Scaling functions

Fractals are complicated sets to describe. As a consequence several possible

descriptions have been proposed, with varying degrees of completeness. The

coarsest description of a fractal is its fractal dimension. It gives an idea of

how many small boxes of �xed size are needed to cover the set. The closer

the fractal dimension is to the embedding dimension, the closer it appears to

be a �gure of non-zero measure. A more detailed description of the fractal

is given by the spectrum of singularities, the f(�) curve, or equivalently, the

generalized dimensions D

q

. The f(�) curve generalizes the fractal dimen-

sion by decomposing the fractal set into self-a�ne fractals (which are not

multifractals) indexed by � and for each � gives its fractal dimension. Most

fractals encountered in physics have this multitude of scales and a parabola-

shaped f(�) curve. The f(�) curve has more information than the fractal

dimension, as it describes the decomposition of the fractal set. Despite the

in�nite number of fractal dimensions it contains, it is still not possible to

reconstruct the fractal from the f(�) curve | f(�) is not a complete de-

scription of the fractal. One might argue that a complete description of the

fractal is not desirable, because it would be too complicated and because

in principle the dynamical system that generated the fractal already pro-

vides a complete description. Such a complicated description would not be

useful for comparing experiments to theories. Such an argument would be

correct if there where no structure to a fractal, but there is. Fractals that

occur in physical system are seldom arbitrary, and are usually described by

a smooth presentation function, or equivalently a scaling function. It was
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Feigenbaum who observed that there is a hierarchical structure to the de-

scriptions of a fractal that can be explored to create a function | the scaling

function | which can be easily approximated by a simple function. By a

simple function we mean a function that has a good approximation in terms

of a basis of computable functions. For example, most f(�) curves can be

very well approximated (to less than 1%) by a parabola, and therefore are

well approximated by three numbers and the basis functions 1, x, and x

2

.

The scaling function would be of little practical value if it were not well

approximated in a simple basis, step functions in this case.

There are many routes that lead to an explanation of what a scaling

function is and how to compute it. The shortest is by breaking away from

the historical development and considering �rst the presentation function of

a fractal. The presentation function is a simple chaotic dynamical system

(hyperbolic, unlike the circle map) that generates the fractal and is closely

related to the de�nition of fractals of Hutchinson [11] and the iterated dy-

namical systems introduced by Barnsley and collaborators [12]. From the

presentation function one can derive the scaling function, but we will not

do it in the most elegant fashion, rather we will develop the formalism in a

form that is directly applicable to the experimental data.

In the upper part of �gure 2 we have the successive steps of the con-

struction similar to the middle third Cantor set. The construction is done

in levels, each level being formed by a collection of segments. From one level

to the next, each \parent" segment produces smaller \children" segments

by removing the middle section. As the construction proceeds, the segments

better approximate the Cantor set. In the �gure not all the segments are

the same size, some are larger and some are smaller, as is the case with

multifractals. In the middle third Cantor set, the ratio between a segment

and the one it was generated from is exactly 1=3, but in the case shown in

the �gure the ratios di�er from 1=3. If we went through the last level of

the construction and made a plot of the segment number and its ratio to its

parent segment we would have a scaling function, as indicated in the �gure.

A function giving the ratios in the construction of a fractal is the basic idea

for a scaling function. Much of the formalism that we will introduce is to be

able to give precise names to every segments and to arrange the \lineage"

of segments so that the children segments have the correct parent. If we do

not take these precautions, the scaling function would be a \wild function",

varying rapidly and not approximated easily by simple functions.

To describe the formalism we will use a variation on the quadratic map

that appears in the theory of period doubling. This is because the combi-
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Figure 2: Construction of the steps of the scaling function from a Cantor set. From

one level to the next in the construction of the Cantor set the covers are shrunk,

each parent segment into two children segments. The shrinkage of the last level of

the construction is plotted and by removing the gaps one has an approximation to

the scaling function of the Cantor set.

natorial manipulations are much simpler for this map than they are for the

circle map. The scaling function will be described for a one dimensional

map F as shown in �gure 3. Drawn is the map

F (x) = 5x(1� x) (1)

restricted to the unit interval. We will see that this map is also a presentation

function.

It has two branches separated by a gap: one over the left portion of the

unit interval and one over the right. If we choose a point x at random in the

unit interval and iterate it under the action of the map F , equation (1), it

will hop between the branches and eventually get mapped to minus in�nity.

An orbit point is guaranteed to go to minus in�nity if it lands in the gap.

The hopping of the point de�nes the orbit of the initial point x: x 7! x

1

7!

x

2

7! � � �. For each orbit of the map F we can associate a symbolic code.

The code for this map is formed from 0s and 1s and is found from the orbit

by associating a 0 if x

t

< 1=2 and a 1 if x

t

> 1=2, with t = 0; 1; 2; : : :.

Most initial points will end up in the gap region between the two branches.

We then say that the orbit point has escaped the unit interval. The points
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Figure 3: A Cantor set presentation function. The Cantor set is the set of all

points that under iteration do not leave the interval [0; 1]. This set can be found

by backwards iterating the gap between the two branches of the map. The dotted

lines can be used to �nd these backward images. At each step of the construction

one is left with a set of segments that form a cover of the Cantor set.

that do not escape form a Cantor set C (or Cantor dust) and remain trapped

in the unit interval for all iterations. In the process of describing all the

points that do not escape, the map F can be used as a presentation of the

Cantor set C, and has been called a presentation function by Feigenbaum

[13].

How does the map F \present" the Cantor set? The presentation is done

in steps. First we determine the points that do not escape the unit interval

in one iteration of the map. These are the points that are not part of the

gap. These points determine two segments, which are an approximation to

the Cantor set. In the next step we determine the points that do not escape

in two iterations. These are the points that get mapped into the gap in one

iteration, as in the next iteration they will escape; these points form the two

segments �

(1)

0

and �

(1)

1

at level 1 in �gure 3. The processes can be continued

for any number of iterations. If we observe carefully what is being done, we

discover that at each step the pre-images of the gap (backward iterates) are

being removed from the unit interval. As the map has two branches, every

point in the gap has two pre-images, and therefore the whole gap has two

pre-images in the form of two smaller gaps. To generate all the gaps in the

Cantor set one just has to iterate the gap backwards. Each iteration of the
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gap de�nes a set of segments, with the n-th iterate de�ning the segments

�

(n)

k

at level n. For this map there will be 2

n

segments at level n, with the

�rst few drawn in �gure 3. As n!1 the segments that remain for at least

n iterates converge to the Cantor set C.

The segments at one level form a cover for the Cantor set and it is

from a cover that all the invariant information about the set is extracted

(the cover generated from the backward iterates of the gap form a Markov

partition for the map as a dynamical system). The segments f�

(n)

k

g at

level n are a re�nement of the cover formed by segments at level n � 1.

From successive covers we can compute the trajectory scaling function, the

spectrum of scalings f(�), and the generalized dimensions.

To de�ne the scaling function we must give labels (names) to the seg-

ments. The labels are chosen so that the de�nition of the scaling function

allows for simple approximations. As each segment is generated from an

inverse image of the unit interval, we will consider the inverse of the pre-

sentation function F . Because F does not have a unique inverse, we have

to consider restrictions of F . Its restriction to the �rst half of the segment,

from 0 to 1=2, has a unique inverse, which we will call F

�1

0

, and its restric-

tion to the second half, from 1=2 to 1, also has a unique inverse, which we

will call F

�1

1

. For example, the segment labeled �

(2)

(0; 1) in �gure 3 is

formed from the inverse image of the unit interval by mapping �

(0)

, the

unit interval, with F

�1

1

and then F

�1

0

, so that the segment

�

(2)

(0; 1) = F

�1

0

�

F

�1

1

�

�

(0)

��

. (2)

The mapping of the unit interval into a smaller interval is what determines

its label. The sequence of the labels of the inverse maps is the label of the

segment:

�

(n)

(�

1

; �

2

; : : : ; �

n

) = F

�1

�

1

� F

�1

�

2

� � � �F

�1

�

n

�

�

(0)

�

.

The scaling function is formed from a set of ratios of segments length.

We use j � j around a segment �

(n)

(�) to denote its size (length), and de�ne

�

(n)

(�

1

; �

2

; : : : ; �

n

) =

j�

(n)

(�

1

; �

2

; : : : ; �

n

)j

j�

(n�1)

(�

2

; : : : ; �

n

)j

.

We can then arrange the ratios �

(n)

(�

1

; �

2

; : : : ; �

n

) next to each other as piece-

wise constant segments in increasing order of their binary label �

1

; �

2

; : : : ; �

n

8



so that the collection of steps scan the unit interval. As n ! 1 this col-

lection of steps will converge to the scaling function. In section 4 we will

describe the limiting process in more detail, and give a precise de�nition on

how to arrange the ratios.

The construction we gave for the scaling function cannot be used for

the circle map or the quadratic map (the map ax(1 � x), a < 4) because

neither is hyperbolic. The essential point of the construction of Feigenbaum

and collaborators was to realize that there is a way of re-writing these maps

so that they are e�ectively hyperbolic. In both cases a universal function

is constructed, and from it the scaling function or a presentation function

can be computed. The universal function can be computed from the circle

map f . Assuming that the map f has an inection point at 0, Shenker [14]

observed that if we compose f with itself a Q

n

Fibonacci number of times

and choose a suitable value for � we can approach the universal function g

�

n

f

Q

n

(�

�n

x)! g(x) (3)

as x ! 0 and n ! 1. From this relation we discover that the universal

function satis�es a functional equation

Tg(x) = �g(�g(�

�2

x)) (4)

(the usual functional equation uses the function �g). We interpret the x! 0

condition as stating that the universality results hold at the origin. The

n ! 1 condition we interpret from the combinatorics of the circle map as

meaning that we must iterate the map until the orbit lands close to the

origin. For the computation of the scaling function we do not need, in

principle, to restrict ourselves to the inection point, as the scaling function

is invariant under smooth di�eomorphism and also the action of the circle

map itself. So if we use an image of the inection point under the action

of the map, we should be able to compute the scaling function. This would

be correct if we could also take the n ! 1 limit, but in practice data

sets are limited. It is then no longer true that the scaling function can be

computed at any image of the inection point. A scaling function computed

at an image converges more slowly than the scaling function computed at

the origin. In section 4 we will give a procedure that e�ectively computes

the scaling function from the universal function by using only iterates of the

circle map.
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3 Experiment

The experiment that provided the data for the analysis presented here has

been well studied in the quasiperiodic regime using an apparatus that is de-

scribed in detail elsewhere [5, 6, 7]. Here we give the essential features of the

experimental data and discuss how the data are prepared for the calculation

of the dynamical scaling function. The system is thermal convection in a

3

He-superuid-

4

He mixture which approximates a classical convecting uid

with low Prandtl number. In some region of parameter space quasiperiodic,

mode-locked, and chaotic states are observed. These states are the result

of two internal oscillatory modes and not the result of external forcing. To

study a quasiperiodic/mode-locking system one must vary two parameters

independently. For this system, the two parameters are the temperature

di�erence across the uid layer and the mean temperature of the uid. The

range of rotation numbers that can be accessed by varying these parame-

ters is from about 1/8 to 1/6. The canonical golden-mean rotation number,

�

g

= (

p

5� 1)=2 � 13=21 does not fall within this range but there are many

rotation numbers with the proper golden mean tail (asymptotic series of 1s

in rational approximant series) that are in that range. For the purposes

of testing universality of the quasiperiodic transition to chaos any of these

rotation numbers is equivalent. The experimental data we use is centered

around the golden-mean-tail irrational (3�

p

5)=2. The strict golden mean

has the advantage of making the \best" use of the data, as the data require-

ments in terms of stability and precision do increase for rotation numbers

other than the strict golden mean.

The data are time sequences of temperature oscillations of the convective

ow �eld measured at a local point in space. To the extent that this is a low

dimensional dynamical system, measurement at a single point completely

characterizes the state of the system. The data are used to reconstruct

the phase-space dynamics using standard delay-coordinate embedding tech-

niques [15, 16]. Poincar�e sections are produced by interpolating the inter-

sections of the phase-space trajectories with a plane. For a quasiperiodic

attractor, the section will �ll up a smooth curve di�emorphic with a circle.

In �gure 4 we show a Poincar�e section for a state very near criticality (as de-

�ned in circle map descriptions of the quasiperiodic transition). Each point

in the section has a time ordering according to its relative position in the

time sequence and a space ordering that relates the nearest neighbor points

along the Poincar�e section. The correspondence between the time and space

ordering is determined by the rotation number and also sets the sequence
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Figure 4: Poincar�e cross section from the reconstructed ow.

of close return times for the dynamics. Another e�ective action of the dy-

namics on this curve is to partition the curve into segments that connect

nearest-neighbor points. It is these segments that form the set which obeys

multifractal scaling and from which we will construct the scaling function.

Rather than considering the Poincar�e section, we can make a further sim-

pli�cation by constructing a one-dimensional mapping of arc length along

the curve. Such a mapping, for the data in �gure 4, is shown in �gure 5, and

is clearly a one-dimensional map very similar to a sine circle map. For more

subcritical parameters, such maps constructed from data show all the simple

features of a sine circle map [7]. Practical considerations that arise for ex-

perimental data used to construct a multifractal description of the attractor

(fractal dimension, f(�) spectrum, etc.) are the precision with which one

can de�ne a rotation number, the degree of random noise in the signal, and

the stability of the state against drift in the parameters. In these experi-

ments the signal to noise ratio was about 1000 : 1 and the rotation number

could be determined to about 5 parts in a million. The most important

factor which limited the data was drift in the operating parameter of the

system. This caused changes in the rotation rate with time and, although

very small, had extremely deleterious e�ects on the extraction of a scaling

function for reasons discussed in the next section. In general the analysis

for determining the scaling function is more demanding on the quality of

the data than for averaged multifractal quantities because one is comparing
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Figure 5: Return map reconstructed from �gure 4 using arc length. The dots are

the data points and the solid curve the reconstructed dynamics as explained at the

end of section 4.

the ratios of individual segments as opposed to the averaging over many

segments that de�nes the f(�) spectrum. In the next section we extract

a scaling function for the quasiperiodic transition to chaos by reconciling

the limitations of the experimental data with the correct de�nition of the

scaling function. In particular, the proper limits must be observed. We

demonstrate these methods on numerical sine circle map data to illustrate

the pitfalls of scaling function analysis.

4 The practice of circle map scaling functions

In this section we will use the concepts developed earlier about scaling func-

tions and adapt them to the requirements of circle maps and the realities of

experimental data. We will have two types of di�culties. The simplest to

overcome are those related to the combinatorics of the circle map, as it is

not as simple as that of period-doubling maps. In the case of the circle map

at a golden-mean-tail rotation number, not every segment gets sub-divided

into two children segments; some do and others do not. The de�nition we

adopt here for the scaling function matches that used by Feigenbaum in his

presentation function article for circle maps [3], except that we use forward

iterates. The other type of di�culties are associated with trying to deter-
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mine the exact point where the data should be collected. We will conclude

that it is not possible to collect the data reliably at the irrational rota-

tion number and will therefore reconstruct the dynamics of the system as a

function of one parameter in the vicinity of the irrational rotation number.

In a numerical or laboratory experiment, owing to �nite precision, the

winding number is never an irrational, and the best that can be obtained

is a rational approximant. In this case the map is locked into a periodic

orbit and the range of parameters that have this frequency form a section

of an Arnold tongue. The approximants are formed from truncations of the

continued fraction expansion of the irrational winding number and form a

series of fractions P

n

=Q

n

. For example, if

� =

1

a

1

+

1

a

2

+

1

a

3

+ � � �

= ha

1

; a

2

; a

3

; : : :i (5)

then the approximants to the golden mean �

g

= (

p

5� 1)=2 = h1; 1; 1; : : :i

are:

h1i =

1

1

; h1; 1i=

1

2

; h1; 1; 1i=

2

3

; : : : (6)

The numbers Q

n

are necessary to de�ne the scaling function, and for the

golden mean rotation number they are the Fibonacci numbers (Q

0

= 1,

Q

1

= 2, Q

2

= 3, Q

n

= Q

n�1

+ Q

n�2

). On the critical line, at the irrational

winding number, one considers the �rst Q

n

points of the orbit. These points

delimit segments �

(n)

s

along the circle, grouped in a series of levels, indexed

by n. For the distorted loop from the experiment we calculate the separation

of points using arc length along the curve. For the sine circle map the angular

separation is used. The ratio of these segments is used to de�ne the scaling

function. In �gure 6 the �rst 13 points of the irrational golden mean orbit

are used to delimit the segments at level 3. The segments �

(n)

s

are found by

iterating with the map the endpoints of segments �

(n)

0

. Because all points

are obtained from the same orbit, the segments from previous levels can

also be constructed from knowledge of the �rst 13 points, as indicated in

�gure 6. Notice that the ratio trick of reference [17] cannot be used, as all

the di�erent levels are computed at �xed parameters of the map, as required

by the experiment.

The scaling function is built from a series of piecewise constant steps of

height �

(n)

s

placed in ascending order of the integer s (which indexes the
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Figure 6: Arrangement of the segments used in constructing the scaling function.

The endpoints of the segments �

(n)

k

are the points indicated on the top line, and

their ratios �

(n)

i

are de�ned in equation 7. The levels n are indicated to the side.

steps) and rescaled to span the unit interval. The scaling �

(n)

s

is given by

the ratio between the size of the segment j�

(n+1)

s

j and its parent segment:

�

(n)

s

=

j�

(n+1)

s

j

j�

(n)

�(s;Q

n

)

j

, (7)

where Q

n

is the Fibonacci number of segments that are used at level n. The

function �(s; Q) is the parent index function which in the simple case of the

golden-mean returns s � Q if s � Q and s otherwise. In �gure 6, we have

shown which segments to compare to compute the scalings �

(0)

s

, �

(1)

s

, and

�

(2)

s

at di�erent levels. Formulas for other rotation numbers are given in

the appendix of reference [7]. The scaling function is a function of the unit

interval into itself. In terms of the step function � (�(x) = 1 if x > 0 and 0

otherwise):

�(t) =

X

s

�

(n)

s

�(t � t

(n)

s

)�(t

(n)

s+1

� t) , (8)

where the t

(n)

s

are where the discontinuities of the scaling function occur.

The summation runs over a Q

p

Fibonacci number of them, and the value of

p depends on the level of approximation to the universal scaling function.
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For the simple case of a �ve-step scaling function they are: t

(n)

0

= 0, t

(n)

1

=

Q

n�3

=Q

n

, t

(n)

2

= Q

n�2

=Q

n

, t

(n)

3

= Q

n�1

=Q

n

, and t

(n)

4

= (Q

n�3

+Q

n�1

)=Q

n

;

the general case can be worked out by expanding t in a Fibonacci basis.

To obtain a universal scaling function two limits must be considered. First

n ! 1, in which the scalings �

(n)

s

go to their limiting values. In this

limit more and more of the points of the irrational orbit are considered, and

the segments �

(n)

s

get closer and closer to the inection point of the circle

map. Second p ! 1, in which the number of terms of the sum goes to

in�nity. The �rst limit (n ! 1) takes the scaling function to its universal

form, whereas the second (p ! 1) adds detail to the function. The limit

towards detail cannot be taken before the limit towards universality. For

experimental data the limit towards universality corresponds to considering

a sequence of periodic orbits that approach the irrational one (tongue width

going to zero), and the detailing limit corresponds to considering a larger

number of levels.

One practical consequence of the double limit is that one cannot use

the smallest possible region determined by a periodic orbit as the segments

for the scaling function. From numerical simulations we observe that the

convergence is improved if we use only the �rst Q

j

points of a Q

k

> Q

j

periodic orbit in computing the ratios. For example, in an orbit of Q

k

=

17711 if we compute the scaling function with segments at level 8 the �rst

step of the �ve-step scaling function is at 0:48, close to its limiting value

of 0:468, whereas if we compute the scaling function with segments at level

16 the same step is at 0:62, close to its trivial value. Notice that this

implies that there are considerably fewer steps in the scaling function than

would be expected from the experimental data set. In the scaling function

we compute from experimental data we only consider the �ve-step scaling

function. This is the largest number of scales we could extract given how

closely we had approximated universality. As is illustrated in �gure 7(a),

the �ve-step theoretical scaling function is already a close approximation to

the universal limiting function.

As criticality is approached the scaling function goes from trivial behav-

ior to behavior that characterizes golden mean criticality. In any experiment

the rotation number is not exactly a golden-mean tail and the amount of

data is not in�nite, so for an experimentally determined scaling function

the transition from the trivial case to the critical case is smooth instead of

abrupt. This is analogous to the transition of the f(�) spectrum [18]. The

e�ects of �nite orbits and inaccuracies in the control parameters can be seen
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Figure 7: The numerical and experimental scaling functions compared to the limit-

ing universal scaling function. In (a) the �ve-step numerical approximation in gray

is laid over the limiting scaling function in black. The two functions agree at the

left end of the large steps. In (b) the �ve-step experimental approximation in gray

is laid over the same limiting function. The error bars for the experimental curve

can be found in table 1.

in the scaling function. For a sub-critical orbit, if only the �rst few points

of the orbit are used, then the scaling function resembles the critical sine

circle map scaling function, but as more points of the orbit are considered

the scaling function attens out, creating the apparent contradiction that

as more data is considered, less \accuracy" is obtained.

In �gure 8 we have plotted several �ve-scale scaling functions for the

sine circle map for a sub-critical value of the control parameter. The scaling

functions di�er by the number of points considered from the orbit. If only

a few initial points are considered the scaling function resembles the critical

one, but as more of the orbit is taken into account, the non criticality of the

map becomes evident. Similar behavior is observed with the experimental

data. The scaling function obtained resembles the theoretical curve as long

as the orbits are short, but as longer orbits are considered the experimental

scaling function di�ers from the predicted one.

A similar phenomenon happens if we deviate from the superstable point

along the critical line. In this case the scaling function is distorted away from

the theoretical result, but still appears to be critical. In �gure 9 we have

plotted three scaling functions. One is for a rotation number smaller (below)
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Figure 8: Several scaling functions computed at a small distance from the irrational

winding number. The topmost curve is the theoretical curve and the next uses only

the �rst few points of the orbit, whereas the bottommost uses around a quarter of

the points.
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Figure 9: Scaling functions along the away from the superstable point along the

critical line. The plots show that large errors may occur when the system is not

kept at the superstable point.

the superstable point and the other is for a rotation number larger (above)

than the superstable point. Notice that there can be large variations in the

values of the scales. This points out the importance of being at exactly the

superstable point in computing the scaling function.

A straightforward application of the scaling function de�nition would

consist of choosing a large-Q periodic orbit (a high order rational approx-

imant to the golden mean) and using the smallest intervals at the largest

level of an orbit to compute the scaling function. This disregards the order

of the limits mentioned earlier. Such an approach was used previously, in

combination with averaging, to reduce noise [2], and it fails because the con-

vergence of ratios of intervals to their universal limit is nonuniform over the

entire orbit and because averaging of noise does not improve uncertainty

in the exact experimental winding number (in particular for drift in the

control parameter, which we discuss later on). Explicit demonstration of

the inuence of noise on calculating the scaling function will be presented

elsewhere [19].

Another problem with a straightforward application of the scaling func-

tion de�nition is that segments approach their universal limit di�erently

for di�erent sections of the periodic orbit. Because the universality of the

quasiperiodic scaling function stems from the self-similarity of any map un-
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Figure 10: Segments around the inection point. This is an expanded view of the

points around the segment from 0 to 8. The extra points indicated in the top line

are from the �rst 144 points of the orbit (the 89=144 approximant). Notice that

the arrangement of the segments is the same as in �gure 6.

der composition and rescaling in the neighborhood of a cubic inection point

(the Cvitanovi�c-Feigenbaum functional equation), convergence is most rapid

in the vicinity of this point. This translates in the computation of the scaling

function into considering only segments around the inection point, that is,

not all the segments around the circle can be used as indicated in �gure 6.

We accomplish this by considering the iterates of an initial segment not un-

der the actual map F , but of one of its iterates, F

(k)

= F �� � ��F , composed

Q

k

times. In �gure 10 we have enlarged the region between the orbit points

0 and 8 of �gure 6 and indicated the endpoints of the segments that would

be used in computing the scaling function. The points of a 144=233 period

orbit are plotted, but at most the �rst 89 points are used, which is three

levels up from the bottom. This corrects the de�nition explained with the

aid of �gure 6.

In an experiment the circle map is not given analytically, and there is no

direct way of determining the inection point. We use the empirical criterion

of Wang et al. [10]. It consists of observing that the inection point, if it

exists, is an endpoint of �

(n)

0

which should be the largest segment at a

given level. Although it is not essential that the segment containing the

inection point be used as �

(n)

0

, the convergence is fastest if the segments
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are organized around it. Plotting the return map or its derivative is not a

method for determining the inection point, as it may be absent in a map

within an Arnold tongue [10, 20].

The �nal point that must be considered is experimental in nature and

does not arise in numerical simulations. In order to obtain a reasonable

scaling function one must be at a superstable orbit within a mode-locked

tongue (in practice close to the middle of the tongue). In an experiment, the

data set closest to the irrational winding number at the critical line is usually

chosen. The closer the system is to the irrational winding number, the longer

the orbit that can be obtained and the longer its control parameters must be

kept locked within an Arnold tongue. But the width of a tongue decreases as

the period of the orbit increases, and the longest orbit is obtained when the

tongue width is below the resolution of the apparatus. In practice, for the

narrowest tongues the system will jump between several mode-locked states

as the control parameters are kept �xed within experimental resolution.

To avoid this instability in the mode-locked state, orbits of shorter period

should be considered. The experimentalist is then faced with the choice

of either stable, short, and less converged orbits; or uctuating, long, and

better converged orbits. The reconstruction of the dynamics [21], described

next, achieves an optimal compromise between these constraints and allows

signi�cant improvements over the direct evaluation of the scaling ratios.

To reconstruct the dynamics we determine two data sets that are close

by in parameter space and on opposite sides of the golden-mean rotation

number. We proceed to determine an interpolated map from each �nite set

of experimental points using a least-squares cubic spline �t which is then

iterated to determine its winding number. We then interpolate between the

two maps to obtain the superstable point within one of the intermediate

mode-locked tongue. (Because the two maps used for interpolation are close

together, we use linear interpolation between their ordinates.) As a con-

sistency check on our interpolation scheme we have computed the rate of

contraction � of the Arnold tongues as the golden mean is better approxi-

mated. It is measured to be 2.8, to be compared with the prediction of 2.83

from the renormalization group for the circle map [4].

From the superstable interpolated map the �ve-step scaling function is

computed. With the interpolation method we can determine periods of

lengths limited only by the computer, but we have been careful not to use

periods that lead to average segment sizes that are smaller than the segments

from the data. If this precaution is not taken the method will generate

orbits whose universality class is dictated by the nature of the interpolating
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scale limiting experimental direct

�

0

0.468 0:45� 0:04 0.42

�

1

0.407 0:41� 0:05 0.36

�

2

0.700 0:65� 0:03 0.70

�

3

0.781 0:75� 0:03 0.54

�

4

0.794 0:74� 0:05 0.59

Table 1: Five step scaling functions: limiting value, experimental value obtained

with reconstruction, and directly without reconstruction.

spline. The scaling function of the map reconstructed from the data is

given in table 1 and plotted in �gure 7(b). For comparison the theoretical

scaling ratios for the universality class of the sine circle map, and the scaling

function computed without the reconstruction process are also given. The

theoretical scaling ratios were computed from a 832040=1346269 orbit of

the sine circle map. The tabulated reconstructed scaling function is not the

result of averaging over several data sets, but computed from a single long

orbit. The errors are estimated based on several di�erent rotation numbers

with golden mean behavior. The e�ects of not being exactly at the irrational

rotation number can be seen in the direct scaling function: the �rst three

scales are in good agreement, but the �nal two, where small errors have

accumulated, are not.

5 Conclusions

What have we gained in our analysis relative to, for example, computing

an f(�) spectrum? First we know that the dynamics are correct because

the construction of the scaling function requires constructing the symbolic

dynamics of the map whereas the spectrum does not distinguish between

fractal sets with the same statistics but di�erent dynamics [22]. Second, we

have extracted three scales beyond the f(�) spectrum [23]. Thus by extract-

ing �ve scaling ratios that agree within 10% with the theoretical predictions

we have made the most stringent test to date of quasiperiodic universality.

In summary, it is possible to extract a scaling function from experimental

data only if the orbit points around the inection point are considered and

if the parameters of the system are adjusted to be at the irrational winding

number. Experimentally both constraints are interconnected and can be
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resolved by reconstructing the dynamics.
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