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HARMONIC ANALYSIS OF FRACTAL MEASURES

Palle E.T. Jorgensen and Steen Pedersen

Abstract. We consider affine systems in Rn constructed from a given integral in-

vertible and expansive matrix R, and a finite set B of translates, σbx := R−1x + b;
the corresponding measure µ on R

n is a probability measure and fixed by the selfsim-
ilarity µ = |B|−1

∑

b∈B
µ ◦σ−1

b
. There are two a priori candidates for an associated

orthogonal harmonic analysis : (i) the existence of some subset Λ in R
n such that

the exponentials {eiλ·x}λ∈Λ form an orthogonal basis for L2(µ); and (ii) the exis-

tence of a certain dual pair of representations of the C∗-algebra ON where N is the
cardinality of the set B. (For each N , the C∗-algebra ON is known to be simple;
it is also called the Cuntz-algebra.) We show that, in the “typical” fractal case, the

naive version (i) must be rejected; typically the orthogonal exponentials in L2(µ)
fail to span a dense subspace. Instead we show that the C∗-algebraic version of an

orthogonal harmonic analysis, viz., (ii), is a natural substitute. It turns out that

this version is still based on exponentials eiλ·x, but in a more indirect way. (See
details in Section 5 below.) Our main result concerns the intrinsic geometric features
of affine systems, based on R and B, such that µ has the C∗-algebra property (ii).

Specifically, we show that µ has an orthogonal harmonic analysis (in the sense (ii)) if
the system (R,B) satisfies some specific symmetry conditions (which are geometric
in nature). Our conditions for (ii) are stated in terms of two pieces of data: (a)

a unitary generalized Hadamard-matrix , and (b) a certain system of lattices which
must exist and, at the same time, be compatible with the Hadamard-matrix. A par-
tial converse to this result is also given. Several examples are calculated, and a new
maximality condition for exponentials is identified.

1. Introduction

The present paper continues work by the coauthors in [JP3–6], and it also pro-

vides detailed proofs of results announced in [JP4]. In addition we have new results

going beyond those of the announcement [JP4]. We consider a new class of self-

similarity fractals X̄, each X̄ with associated fractal selfsimilar measure µ, such

that L2(µ) has an orthogonal harmonic analysis in the sense of C∗-algebras (see

(ii) below). This possibility is characterized with geometric axioms on the pair
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(X̄, µ). It is known since [St3–4] that µ is typically singular (in the fractal case),

and that in general only an asymptotic Plancherel type formula can be expected in

the sense of [Bes]. Our present approach is based instead on C∗-algebra theory. In

particular, we use the C∗-algebras ON of Cuntz [Cu], and we give the orthogonal

decompositions in terms of a dual pair of representations of ON where N denotes

the number of translations in the affine system which determines µ.

For an orthogonal harmonic analysis, the following three possibilities appear a

priori as natural candidates:

(i) the existence of a subset Λ in Rn such that the exponentials eλ(x) := eiλ·x

(indexed by λ ∈ Λ) form an orthogonal basis in L2(µ);

(ii) the existence of a dual system of representations of some C∗-algebra ON say,

(N = the cardinality of B), such that one representation is acting affinely in

x-space, and the other (dually) in frequency-space (where the frequency variable

is represented by λ in the above exponentials eiλ·x); and finally

(iii) one might base the harmonic analysis on an orthogonal basis of polynomials

in n variables obtained from the monomials xα := xα1
1 xα2

2 · · · xαn
n (where α =

(α1, . . . , αn) is a multi-index, αi = 0, 1, 2, . . . , 1 ≤ i ≤ n), by the familiar Gram-

Schmidt algorithm.

But it is immediate that both of the possibilities (i) and (iii) lack symmetry

in the variables x and λ. Moreover, it turns out that (i) must be ruled out also

for a more serious reason. We show in Sections 6–7 below that, for the “typical”

fractal measures µ, none of the orthogonal sets {eλ} in L2(µ) will in fact span

a dense subspace. Specifically, there is a canonical maximally orthogonal {eλ}

system such that a finite set of “translates” (details in Section 5) of it does give us

a dense subspace. It is this extra operation (i.e., “spreading out” the orthogonal
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exponentials) which leads to our dual pair of representations of the algebra ON .

It also turns out that case (ii) is a natural extension of our orthogonality con-

dition, studied earlier in [JP2] for L2(Ω), now with Ω some subset in Rn with

finite positive Lebesgue measure, and L2(Ω) considered as a Hilbert space with the

restricted Lebesgue measure. For the case, when Ω is further assumed open and

connected, we showed, in [JP2] and [Pe], that (i) holds (i.e., there is a set Λ such

that {eλ}λ∈Λ forms an orthogonal basis in L2(Ω)) iff the corresponding symmetric

operators {
√
−1 ∂

∂xj
}nj=1, defined on C∞

c (Ω), have commuting selfadjoint operator

extensions acting in L2(Ω). It is well known that extension theory for symmetric

operators is given by von Neumann’s deficiency spaces. But, even when individual

selfadjoint extensions exist for commuting symmetric operators, such extensions

are typically non-commuting. Hence, we expect that, also for our L2(µ) analysis,

there will be distinct symmetry conditions and selfadjointness conditions.

For our present case, the pair (R,B) is specified as above, the affine maps are

given by σbx = R−1x+ b, and indexed by points b in the finite set B. We get the

measure µ, and the Hilbert space L2(µ), by a general limit construction which we

show must start with some L2(Ω) example as discussed. But, for L2(µ), we show

that the analogous symmetry condition is related to a certain lattice configuration in

Rn (see Lemma 4.1 below), whereas the analogous selfadjointness now corresponds

to a spectral pairing between B and a second subset L in R
n, of same cardinality,

such that the N by N matrix {eib·ℓ}, (for b ∈ B, ℓ ∈ L), forms a so-called unitary

generalized Hadamard matrix , see [SY]. Then this matrix, together with the lattice

configuration leads to a dual pair of representations, as sketched above and worked

out in detail below. The two representations will act naturally on L2(µ) and provide
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a non- commutative harmonic analysis with a completely new interpretation of the

classical time- frequency duality (see e.g., [HR]), of multivariable Fourier series.

When our “symmetry” condition is satisfied, we get a dual pair of self-similar

measures, µB and µL, and this pair is used in the proof of our structure theorem.

Many examples are given illustrating when the “symmetry” holds and when it

doesn’t. A connection is made to classical spectral duality, see e.g., [JP1–3].

2. Basic Assumptions

We consider affine operations in R
n where n is fixed; the case n = 1 is also

included, and the results are non-trivial and interesting also then. A system s

in Rn will consist of a quadruple (R,B,L,K) where R ∈ GLn(R), B and L are

finite subsets in Rn, and both of them are assumed to contain the origin O in Rn;

finally K is a lattice in Rn, i.e., a free additive group with n generators. It will be

convenient occasionally to identify a fixed lattice with a matrix whose columns are

then taken to be a set of generators for the lattice in question. It is known that

generators will always form a linear basis for the vector space (see e.g., [CS]); and

it follows that the matrix is then in GLn(R).

With the assumptions (to be specified), it turns out that we may apply Hutchin-

son’s theorem [Hu] to the affine system {σb}b∈B given by

σbx := R−1x+ b, x ∈ R
n (2.1)

There is a unique probability measure µ on R
n satisfying

µ = |B|−1
∑

b∈B

µ ◦ σ−1
b , (2.2)



HARMONIC ANALYSIS OF FRACTAL MEASURES 5

which amounts to the condition

∫

f dµ = |B|−1
∑

b

∫

f ◦ σb dµ (2.3)

for all µ-integrable functions f on Rn. For the matrix R, we assume that some

positive integral power of it has all eigenvalues in {λ ∈ C : |λ| > 1}, and we refer

to this as the expansive property for R. (It is actually equivalent to the same

condition for R itself.) The use of [Hu] requires the so called open-set- condition

which turns out to hold when our system s has a symmetry property which we

proceed to describe. We then also have the following compact subset X̄, defined as

the closure (in R
n) of the set of vectors x with representation

x =

∞∑

i=0

R−ibi, bi ∈ B. (2.4)

If |B| < |detR|, where |B| denotes the cardinality of B, then the fractal dimension

of X̄ will be less than the vector space dimension n of the ambient R
n. (See e.g.,

[Ke] for details on this point.) In general, the measure µ is supported by X̄, and

we may identify L2(µ) with L2(X̄, µ) as a Hilbert space. We will refer to X̄ as

the “fractal” even in the cases when its dimension may in fact be integral, and the

“fractal” representation will be understood to be (2.4). Occasionally, we will write

X̄(B) to stress the digit-set B.

3. Generalized Hadamard Matrices

The two sets B and L from the system came up in our previous work (see [JP2–

4] and [JP6]) on multivariable spectral theory . The condition we wish to impose on

two sets B,L amounts to demanding that the corresponding exponential matrix

(
ei2πb·ℓ

)
(3.1)
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is generalized Hadamard , see [SY]. The term b · ℓ refers to the usual dot-product in

Rn. It will be convenient to abbreviate the matrix entries as, 〈b, ℓ〉 := ei2πb·ℓ. Since

0 ∈ B and 0 ∈ L by assumption, one column, and one row, in the matrix (〈b, ℓ〉)BL

consists of a string of ones. Let the matrix be denoted by U : We say that it is

generalized Hadamard if the two sets B and L have the same cardinality, N say,

and if

U∗U = NIN . (3.2)

It follows from this that then also UU∗ = NIN . (This is just saying, of course, that

the complex N by N matrix, N−1/2U is unitary in the usual sense.)

We noted in [JP6] that the harmonic analysis of type (ii) is based on this kind of

Hadamard matrices. (The matrices also have an independent life in combinatorics.)

It turns out that the matrices are known for N up to N = 4. We will show, in

Section 7 below, that this then leads to a classification of the simplest affine fractals

(as specified) such that the analysis (ii) exists. We say that two matrices U of the

form (3.2) are equivalent , if N is the same for the two matrices, and if one arises

from the other by multiplication on the left, or right, with a permutation matrix, or

with a unitary diagonal matrix. We now list below (without details) the inequivalent

cases of type (3.2) for N ≤ 4. (For higher N , such a classification is not known.)

After our present preprint was circulated, we learned that the N ≤ 4 classification

had also been found independently, see references [Cr] and [Wer]. The purpose of

our examples in Section 7 is to show how the equivalence classes of (3.2) lead to

distinct examples of fractal measures µ, and how the different U -matrices lead to

different dual pairs of representations.

We will postpone to a later paper a rigorous classification of the different systems
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(R,B), and of the corresponding type (ii) harmonic analysis of L2(µ). But we feel

that the N ≤ 4 examples are sufficiently interesting in their own right. They also

serve to illustrate the technical points in our (present) two main theorems.

Notice the 2π factor in the exponential (3.1) above. It is put in for technical

convenience only.

Remark 3.1. If we pick the string of ones as first row and first column, then the

possibilities for U when N = 2 are

(
1 1
1 −1

)

; (3.3)

for N = 3,





1 1 1
1 ζ ζ̄
1 ζ̄ ζ



 (3.4)

where ζ is a primitive 3rd root of 1; and for N = 4,






1 1 1 1
1 1 −1 −1
1 −1 u −u
1 −1 −u u




 (3.5)

where |u| = 1, up to equivalence for generalized Hadamard matrices, see e.g. [SY].

4. Selfadjoint Systems

Corresponding to the affine mappings (2.1) for a given system s = (R,B,L,K)

we have

τℓ(t) := R∗t+ ℓ, t ∈ R
n (4.1)

and the inverses

τ−1
ℓ (t) := R∗

−1

(t− ℓ) (4.2)
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where the translations for (4.2) are given by the vectors

b′ := −R∗−1

(ℓ), as ℓ varies over L. (4.3)

Here R is an n by n matrix as specified above, B and L are finite subsets in Rn

both containing O, and K is a rank n lattice. The invariance R(K) ⊂ K will be

assumed, and we summarize this by the notation K ∈ lat(R).

We introduce the dual system s◦ defined by s◦ = (R∗, B′, L′,K◦) where K◦ is

the dual latttice,

B′ := −R∗−1

(L) (4.4)

and

L′ := −R(B) (4.5)

The system s is said to be symmetric if

R(B) ⊂ K, (4.6)

and if K ∈ lat(R); and it is said to be selfadjoint if both s and s◦ are symmetric.

(Also notice that, in general, we have s◦◦ = s when s is an arbitrary system.)

(The definitions are analogous to familiar ones for closed operators S with dense

domain in Hilbert space, see e.g., [Fu]: the operator S is said to be symmetric if

S ⊂ S∗, where S∗ denotes the adjoint, and the inclusion refers to inclusion of graphs.

It follows that S is selfadjoint , i.e., S = S∗, iff both S and S∗ are symmetric.)

We shall need the fact that B embeds into the of coset space R−1(K)/K when

additional orthogonality is assumed:

Lemma 4.1. Consider a system s = (R,B,L,K) in Rn with the matrix R, the

two finite subsets B and L in Rn, and a lattice K as described above. Assume that
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L ⊂ K◦ and that the two conditions (3.2), i.e., that Hadamard property, and (4.6)

hold, where K◦ is the dual lattice in Rn. Then it follows that different points in B

represent distinct elements in the finite group R−1(K)/K.

Proof. Suppose b 6= b′ in B. Then
∑

ℓ∈L〈ℓ, b − b′〉 = 0 using (3.2). But, for all

k ∈ K, we also have
∑

ℓ∈L〈ℓ, k〉 = |L|, and it follows that b − b′ /∈ K; i.e., the

R−1(K)/K cosets are distinct. �

We shall assume in the following that our given system is of Hadamard type,

i.e., that |B| = |L| and that the matrix (3.1) formed from (B,L) is generalized

Hadamard, see (3.2) above.

The following lemma is also simple but useful.

Lemma 4.2. A given system s = (R,B,L,K) in Rn is selfadjoint if and only if

the following three conditions hold:

(i) K ∈ lat(R),

(ii) R(B) ⊂ K, and

(iii) L ⊂ K◦.

Proof. A calculation shows that K ∈ lat(R) holds iff K◦ ∈ lat(R∗). For the system

s◦ to be symmetric, we need R∗(B′) ⊂ K◦, and that is equivalent to (iii) by virtue

of formula (4.4). So both s and s◦ are symmetric precisely when (i)–(iii) hold. �

Remark 4.3. (Classical Systems) In [JP2], we considered the following spectral

problem for measurable subsets Ω ⊂ Rn of finite positive Lebesgue measure, i.e.,

0 < m(Ω) < ∞ where m = mn denotes the Rn- Lebesgue-measure: Let Ω be given,

when is there a subset Λ ⊂ Rn s.t. the exponentials

eλ(x) = 〈λ, x〉 = ei2πλ·x, (4.7)
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indexed by λ ∈ Λ, form an orthonormal basis in L2(Ω) with inner product

m(Ω)−1

∫

Ω

f(x)g(x) dx ? (4.8)

The problem (in its classical form) goes back to [Fu], and it is motivated by a

corresponding one for commuting vector fields on manifolds with boundary, see also

[Jo1–2], [Pe], and [JP2].

We showed that the general problem may be “reduced” (by elimination of “triv-

ial” systems) to a special case when the pair (Ω,Λ) is such that the polar

Λ◦ = {t ∈ R
n : 〈t, λ〉 = 1, ∀λ ∈ Λ} (4.9)

is a lattice in Rn, say K := Λ◦, and the natural torus mapping Rn → Rn/K is then

1-1 on Ω.

In this case, there is a system s = (R,B,L,K) which is self-adjoint and of

Hadamard type. Moreover the set Λ (called the spectrum) may be taken as

Λ = L+ R∗K◦. (4.10)

Pairs (Ω,Λ) with the basis-property are called spectral pairs; the “reduced” ones

where Λ may be brought into the form (4.10) (with L 6= {0}, i.e., |L| > 1) are called

simple factors. We showed in [JP6] that more general ones may be built up from

the simple factors.

The following easy fact will be used below: Let K1 and K2 be lattices, and let

K̃1 and K̃2 be corresponding matrices. Then we have the lattice inclusion K1 ⊂ K2

if and only if the matrices factor: K̃1 = K̃2M with M ∈ Matn(Z) where Matn(Z)

denotes the ring of integral n by n matrices, i.e., M = (mij)
n
i,j=1 with mij ∈ Z.
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This observation allows us to take advantage of the Noetherian property of the ring

Matn(Z). A minimal choice for K subject to conditions is then always well defined.

For a given lattice K, the dual lattice is denoted K◦ and given by

K◦ := {s ∈ R
n : s · k ∈ Z, ∀k ∈ K}

If K̃ is a matrix for K, then the inverse transpose, i.e., (K̃tr)−1 will be a matrix

for K◦.

When R ∈ GLn(R) is given, we denote by lat(R) the set of all lattices K in Rn

such that R(K) ⊂ K. For the matrices, that reads K̃−1RK̃ ∈ Matn(Z). This fact

will be used in the paper; it implies for example that |detR| is the index of K in

R−1(K). It is known (see e.g., [CS] or [JP6]) that, if lat(R) 6= ∅, then detR ∈ Z.

(Remark: If R is not in diagonal form, i.e.,







r 0 . . . 0
0 r . . . 0
...

...
. . .

...
0 0 . . . r







= rIn for r ∈ Z, then

there are lattices K not in lat(R).)

The standing assumption which is placed on R is referred to as the expansive

property: We assume that, for some p ∈ N, all the eigenvalues {λj} of Rp satisfy

|λj | > 1. Recall, R has real entries, but the eigenvalues may be complex. For

emphasis, we will denote the transpose of R by R∗, even though it is the same as

Rtr. (Note that the assumption on the eigenvalues of Rp for some positive power p

is equivalent to the same condition on R itself, i.e., to the condition for p = 1.)

5. Iteration Systems

In this paper, we shall study fractals (in the sense of (2.4) above) with a high

degree of symmetry; and show that these fractals are precisely those which may be

built from systems s = (R,B,L,K) which are selfadjoint , of Hadamard-type, and
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where the lattice K is chosen as minimal relative to the three conditions (i)–(iii)

in Lemma 4.1. In describing our limit systems (typically fractals), we show again

that the Hadamard condition (3.2) is the central one.

Motivated by (4.10), we form the set L(L) consisting of all (finite) sums

ℓ0 + R∗ℓ1 +R∗
2

ℓ2 + · · ·+ R∗
m

ℓm (5.1)

when m varies over {0, 1, 2, . . . } and ℓi ∈ L. Using (4.1), also notice that L(L) is

made from iterations

τℓ0(τℓ1(· · · (τℓm(0)) · · · )). (5.2)

The set Λ in (4.10) is
⋃{τℓ(K◦) : ℓ ∈ L}. We shall also need the corresponding

iterations,

⋃

m

{τℓ0 ◦ · · · ◦ τℓm(K◦) : ℓi ∈ L}. (5.3)

For a given string (ℓ0, . . . , ℓm), the set in (5.3) will be denoted K◦(ℓ0, . . . , ℓm).

Definition 5.1. We say that K◦ formed from a given system s = (R,B,L,K) is

total if the functions {es : s ∈ K◦} ⊂ L2(µ) span a subspace which is dense in the

Hilbert space L2(µ) defined from the Hutchinson measure µ, see (2.3).

Both of our main results will have the total property for K◦ as an assumption.

The way to test it in applications is to rely on our earlier paper [JP2] about spectral

pairs, i.e., subsets Ω, and Λ, in Rn such that Ω has finite positive n-dimensional

Lebesgue measure, and the exponentials {eλ : λ ∈ Λ} form an orthogonal basis for

L2(Ω). We show that, for every such pair, the set

K := Λ◦ = {ξ ∈ R
n : ξ · λ ∈ Z, ∀λ ∈ Λ}

is a lattice. Analogously to the situation in Lemma 4.1 above, we also show in

[JP2] that the set Ω in a spectral pair embeds in the torus Rn/K. We identify a
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special class of spectral pairs, called simple factors which produce two finite sets

B, L ⊂ Rn, and a matrix R with K ∈ lat(R) such that the system s = (R,B,L,K)

satisfies the conditions from section 4 above. Our present paper is motivated by

getting “invariants” for simple factors from iteration of the affine maps (see (2.1)

and (4.1) above). In [JP6] we further study the converse problem of reconstructing

simple factors from “fractal” iteration limit-objects. In any case, the fractal limit

X̄(B) from (2.4) will also be embedded in the torus Rn/K. When equipped with

Haar-measure L2(Rn/K) has the exponentials {eλ : λ ∈ K◦} as an orthogonal

basis. In testing for our totality condition relative to L2(µ), we can then use that

X̄(B) is the support of µ, and then apply Stone-Weierstrass to {eλ}λ∈K◦ when

viewed as a subset of C(X̄(B)).

We shall say that L(L) is maximal if {eλ : λ ∈ L(L)} is orthogonal in L2(µ) and

(considering t ∈ Rn) if

whenever 〈et, eλ〉µ = µ̂(λ− t) = 0 for all λ ∈ L(L), then t ∈ L(L). (5.4)

We have used the transform µ̂ given by

µ̂(s) =

∫

es dµ =

∫

ei2πs·x dµ(x) for s ∈ R
n. (5.5)

We say that the system s is Λ-orthogonal, if the functions {eλ : λ ∈ Λ} are or-

thogonal in L2(µ), here Λ is given by (4.10), i.e., Λ = L + R∗K◦. (See also (5.6)

below.)

We are now ready for the

Theorem 5.2. Let s = (R,B,L,K) be a selfadjoint system in R
n, and assume

(i) K◦ is total;
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(ii) L(L) is maximal in L2(µ); and

(iii) s is Λ-orthogonal, i.e., the points in Λ from (4.10) are orthogonal for ℓ 6= ℓ′

in Λ.

Then it follows that s is of Hadamard type; i.e., |B| = |L| and the B/L-matrix U

satisfies (3.2).

Proof. Condition (i) states that the orthogonal complement of {es : s ∈ K◦} in

L2(µ) is zero. Notice that condition (iii) is equivalent to:

µ̂(ℓ− ℓ′ +R∗s) = 0, ∀ℓ 6= ℓ′ in L, ∀s ∈ K◦. (5.6)

If we set

B(t) := |B|−1
∑

b∈B

〈b, t〉, ∀t ∈ R
n; (5.7)

then (2.4) implies the factorization:

µ̂(t) = B(t)µ̂(R∗
−1

t). (5.8)

For distinct points ℓ and ℓ′ in L we claim that

R∗−1

(ℓ− ℓ′) /∈ K◦.

Assuming the contrary, there would be some s ∈ K◦ such that ℓ− ℓ′ = R∗s. From

the orthogonality property (5.6) (see Definition 5.1), we then get

µ̂(0) = µ̂(ℓ− ℓ′ −R∗s) = 〈eℓ, eℓ′+R∗s〉µ = 0

contradicting µ̂(0) = 1.

Since L(L) ⊂ K◦, the point t := R∗−1

(ℓ− ℓ′) is not in L(L). From the maximal

property (5.4), we conclude that there is some λ ∈ L(L) such that

〈et, eλ〉µ 6= 0.
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This term works out to

µ̂(R∗−1

(ℓ− ℓ′)− λ)( 6= 0).

From the orthogonality (Definition 5.1), we also have:

0 = µ̂(ℓ− ℓ′ −R∗λ) = B(ℓ− ℓ′)µ̂(R∗−1

(ℓ− ℓ′)− λ)

where the last factor is non-zero. It then follows that B(ℓ− ℓ′) = 0.

Recall, for u, v ∈ Rn, the notation 〈u, v〉 := ei2πu·v. Then the vectors {〈·, ℓ〉} are

indexed by points ℓ ∈ L, and we showed that they are orthogonal when viewed as

elements in ℓ2(B).

It follows that |L| ≤ |B| where the symbol | · | denotes cardinality. We claim that

they are equal. For suppose the contrary, viz., |L| < |B|. Then pick coefficients

kb ∈ C, not-all zero, indexed by b ∈ B, such that

∑

b∈B

kb〈b, ℓ〉 = 0, ∀ℓ ∈ L. (5.9)

For every s ∈ K◦ and ℓ ∈ L, consider t := ℓ+R∗s; and define

f :=
∑

b∈B

k̄bχ(b+R−1(X̄)) (5.10)

where χ denotes “indicator function”, the subscript is a b-translate, and finally X̄ is

the B-fractal. (Recall, details below, it is compact, and satisfies X̄ = B+R−1(X̄),

with

µ((b+ R−1(X̄)) ∩ (b′ +R−1(X̄))) = 0 for all b 6= b′ in B.) (5.11)

Note, (5.11) is a consequence of the totality of K◦ and the following observation:

if b and c are in B and b+R−1x = c+R−1y, then R(b− c) = y− x; it now follows
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from Lemma 4.1 that x ∈ y +K. But then

〈f, et〉µ =

∫

Rn

f(x)et(x) dµ(x)

=
∑

b∈B

kb

∫

R−1(X̄)

et(b+ x) dµ(x)

=
∑

b∈B

kb

∫

R−1(X̄)

〈ℓ+R∗s, b+ x〉 dµ(x)

=

(
∑

b∈B

kb〈ℓ, b〉
)

︸ ︷︷ ︸

(5.9)

∫

R−1(X̄)

et dµ (5.12)

(where we use (5.11) and Lemma 5.3 below), and

〈R∗s, b〉 = 〈s,Rb〉 = 1.

The last fact is from axiom (4.6) which makes Rb ∈ K. It follows (from (5.9)) that

f is in the orthogonal complement of {eℓ+R∗s} as ℓ varies over L, and s over K◦.

But from (i), we know that this is a total set of vectors in L2(µ), so the function

f must vanish identically, µ-a.e. If the coefficients {kb} are not all zero, this would

contradict (5.11), (2.3), and the basic properties of the Hutchinson measure µ.

From the contradiction, we conclude that |L| = |B|; which is to say, both con-

ditions on the matrix (〈b, ℓ〉)b,ℓ, indexed by B × L, to be of generalized Hadamard

type, are satisfied. We have |L| = |B| = N . If the matrix is denoted U , then

UU∗ = U∗U = NIN (5.13)

where IN denotes the identity matrix in N variables, and U∗ is the transpose

conjugate. To define it, it is convenient to use a common index labeling, e.g.,

{1, 2, . . . ,N}. �
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Remark. Note that if we assume B is a subset of a set of representations for

R−1K/K, then (5.11) follows from an application of [Ke, Theorem 10] and a re-

lated result in [Ma]. (See also [Ba-Gr] for related work.) The Kenyon-Madych

result applies in the present context since the mapping from the set of all finite B-

strings (b1, . . . , bm) with m varying in N, bi ∈ B, into
∑

i R
ibi ∈ K is 1-1. This

follows by induction and use of our orthogonality assumptions. To use [Ke]–[Ma],

we then extend B so as to get a full set of residue classes R−1(K)/K.

Question. Does either of the following two conditions imply the other: (i) K◦ is

total, (ii) B is a subset of a set of representatives for the quotient (R−1K)/K ?

In the calculation (5.12) above, the following lemma was used. (It is needed

because we do not know if, in general, µ is a Hausdorff-measure.)

Lemma 5.3. Under the assumptions of Theorem 5.2, it follows that

∫

σbX̄

f(x) dµ(x) =

∫

R−1X̄

f(x+ b) dµ(x)

for all b in B and f in L2(µ).

Proof. The claim is equivalent to having

µ(σb∆) = µ(R−1∆)

for all µ-measurable sets ∆ ⊂ Rn and all b in B; which in turn is equivalent to

µ(σb∆) = µ(σc∆) (5.14)

for all µ-measurable ∆, and all b and c in B. The last equivalence used the assump-

tion that 0 ∈ B. By regularity, it suffices to consider the case where ∆ is a closed

set.
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Let ∆ be a closed subset of X̄(B) = X̄, and choose Bk ⊂ Bk = B × · · · × B (k

terms) such that

(b1, . . . , bk, bk+1) ⊂ Bk+1 ⇒ (b2, . . . , bk+1) ∈ Bk,

and such that

∆ =
∞⋂

k=1

Ek,

where

Ek =
⋃

(b1,... ,bk)∈Bk

σb1 · · · σbkX̄.

The first condition means that (Ek) is a descreasing sequence of compact sets.

It follows (analogously to (5.11)) that the overlaps in the definition of Ek are µ-

null-sets. Hence, to prove the lemma, it suffices to show that

µ(σb1 · · · σbkX̄) = µ(σc1 · · · σckX̄)

for all (b1, . . . , bk), (c1, . . . , ck) in Bk.

First note that, for any Borel set ∆, and any b in B, we have

µ(∆) = |B|−1
∑

c∈B

µ(σ−1
c ∆) ≥ |B|−1µ(σ−1

b ∆),

and hence µ(σb∆) ≥ |B|−1µ(∆). From this inequality, and (5.11), it follows further

that

µ(X̄) = µ(
⋃

b∈B

σbX̄) =
∑

b∈B

µ(σbX̄) ≥ µ(X̄),

and therefore that µ(σbX̄) = |B|−1µ(X̄). Assuming

µ(σb2 · · · σbkX̄) = |B|−k+1µ(X̄),
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it follows (analogously to the above), that

µ(σb1σb2 · · · σbkX̄) = |B|−kµ(X̄). (5.15)

Hence, by induction, (5.15) is true for all positive integers k, and all b1, . . . , bk in

B. This completes the proof of the lemma. �

Note also (heuristically) that (5.14) is a consequence of (5.11), and that

µ(σb∆) = lim
k→∞

∑

b1,... ,bk

|B|−1χσb∆(σb1 · · · σbkx)

= lim
k→∞

∑

b1,... ,bk

|B|−1χ∆((σb2 · · · σbkx) +Rb1 − Rb)

where x in X̄ is arbitrary. However, the first equality requires that χσb∆ is contin-

uous. We refer to [Fa, p. 121] for further details on this point.

We conclude with the following lemma which is both basic and general; in fact it

holds in a context which is more general than where we need it. Such more general

contexts occur, e.g., in [St4], [Mat], [MOW], and [Od], (among other places). But

we will still restrict the setting presently to where it is needed below for our proof

of Theorem 6.1.

Lemma 5.4. Let (R,B) be an affine system in Rn (see details in Section 2) with

R expansive and B ⊂ Rn a finite subset. Let B be given by (5.7), and let µ be

the probability measure from (2.2). We are assuming the property (5.11). Let

N := {t ∈ R
n : B(t) = 0}. Then, for the roots of µ̂, we have

{t ∈ R
n : µ̂(t) = 0} =

∞⋃

k=0

R∗k

(N ).

Proof. We have (5.8) by virtue of [JP6, Lemma 3.4], and it follows that µ̂(t) = 0

when t ∈ R∗k

(N ) for some k ∈ {0, 1, . . . }. From the assumed expansivity of R, we
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also know that the corresponding infinite product formula is convergent, see [JP6,

(3.13)]. In fact limk→∞ µ̂(R∗
−k

t) = 1, for all t ∈ Rn. This is from continuity of µ̂,

and the limit, R∗
−k

t → 0. Now consider,

µ̂(t) =
k−1∏

j=0

B(R∗−j

t)µ̂(R∗−k

t),

and suppose µ̂(t) = 0. Pick k (sufficiently large) s.t., µ̂(R∗−k

t) 6= 0. (This is

possible by continuity, and the fact that µ̂(0) = 1). We conclude, then that, for

some j, 0 ≤ j < k, R∗−j

t ∈ N ; and this is the assertion of the lemma. �

6. Orthogonal Exponentials

We keep the standing assumptions on the quadruple s = (R,B,L,K) which

determine a system in Rn. In particular, the matrix R is assumed expansive (see

section 2), the sets B and L in Rn are finite both containing 0. We will assume

now that s is selfadjoint and of Hadamard type. We say that the system s is

irreducible if there is no proper linear subspace V ⊂ Rn (i.e., of smaller dimension)

which contains the set B, and which is invariant under R, i.e., Rv ∈ V for all

v ∈ V . If such a proper subspace does exist, we say that s is reducible. In that

case, it is immediate that the fractal X̄(B) from (2.4) is then contained in V . All

the examples in Section 7 below can easily be checked to be irreducible. But the

following example in R2 is reducible, and serves to illustrate the last conclusion

from our theorem in the present section: Let R =

(
2 1
0 2

)

, B =

{(
0
0

)

,

(
1
2
0

)}

,

L =

{(
0
0

)

,

(
1
0

)}

, K = Z2; and V =

(
R

0

)

, i.e., the x-axis in R2. Then a

direct calculation shows that X̄(B) =

(
I
0

)

, where I = [0, 1] is the unit-interval on
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the x-axis; and the Hutchinson measure µ is the product measure λ1 ⊗ δ0 where

λ1 is the restriction to I of the one-dimensional Lebesgue measure, and δ0 is the

point-0-Dirac measure in the second coordinate. For the set L(L) from (5.1), we

have,

L(L) =
{(

n
N(n)

)

: n = 0, 1, 2, . . .

}

,

n represented by finite sums, n =
∑

j≥0 2
jǫj , ǫj ∈ {0, 1}, andN(n) =

∑

j>0 j2
j−1ǫj .

We will show below that if K◦ is total then in the “fractal case”, i.e., when

N = |B| = |L| is smaller than |detR|, and when s is irreducible, then L(L) is

maximally orthogonal, and s is Λ-orthogonal. Recall µ is the Hutchinson measure,

see (2.3), L(L) is the set given by (5.1); and finally the properties regarding the

two sets K◦ and L(L) refer to the corresponding exponentials es, when s is in the

respective sets, and each

es(x) = 〈s, x〉 = ei2πs·x (6.1)

is considered a vector (alias function on Rn) in the Hilbert space L2(µ) = L2(X̄, µ).

We refer to Definition 5.1 and Theorem 5.2 for further details. Recall that the

total property (iii) in Theorem 5.2 amounts to the Λ-orthogonality, including the

assertion

µ̂(ℓ− ℓ′ + R∗s) = 0 (6.2)

for all ℓ 6= ℓ′ in L and all s ∈ K◦. But if s is selfadjoint and of Hadamard type,

then (6.2) follows immediately from (5.8), which is the functional equation of the

transform µ̂, see also (5.5).

The purpose of the present section is twofold. First we show that Theorem

5.2 has a partial converse, and secondly that the technical conditions from our

two theorems 5.2 and 6.1 amount to the dual pair condition (see Section 1) for
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representations of the C∗- algebra ON . This is for systems s = (R,B,L,K) as

specified where the two given finite sets B and L in Rn are assumed to have the

same cardinality N , i.e., |B| = |L| = N . Our recent paper [JP6] further details

how the representation duality relates to our present assumptions. But we shall

summarize the essentials here for the convenience of the reader. The Cuntz-algebra

ON (see [Cu]) is known to be given universally on N generators {si} and subject

only to the relations:

s∗i sj = δij1 and
∑

i

sis
∗
i = 1 (6.3)

This means that, if a finite set of N operators Si say, acting on some Hilbert space

H say, are known to satisfy the relations (6.3), then there is a unique represention

ρ of ON , acting by bounded operators on H, such that ρ(si) = Si for all i; or,

equivalently, ρ(a)f = âf for all a ∈ ON and all f ∈ H, where the operator â is

given by the same expression in the Sis as a is in the si-generators.

For a given system s = (R,B,L,K), there is then the possibility of making a

representation duality based on the exponentials ei2πt·x in (6.1), and treating the

two vector-variables x and t symmetrically: The pair (R,B) gives one affine system

σbx = R−1x + b (b ∈ B) in the x-variable; and the dual system (R∗, L) given by

τℓt = R∗t+ ℓ (ℓ ∈ L); a second one now acting in the t-variable. See (2.1) and (4.1)

above. To be able to generate the asserted representation pair we need to specify

{τℓ}ℓ∈L for enough values of t such that the corresponding functions et(x) := ei2πt·x

span a dense subspace in L2(µ). But it turns out that other conditions must

be met as well: For the two affine systems {σb}b∈B and {τℓ}ℓ∈L, the question is

if we can associate operator systems {Sb} and {Tℓ} of 2N operators acting on

L2(µ), each system satisfying (6.3), and the operators collectively defined from the
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exponentials ei2πt·x as specified. When this is so, we have an (orthogonal) dual pair

of representations of ON acting on L2(µ), and conversely. Then it turns out that,

for each pair (b, ℓ), the operator S∗
bTℓ is a multiplication operator, see (6.6) below.

Theorem 6.1. Let s = (R,B,L,K) be a system in Rn and assume that s is

selfadjoint and of Hadamard type. Assume further that K◦ is total (with a minimal

choice for K), and that |B| < |detR|, and let µ be the corresponding measure (see

(2.3)) with support X̄. Then s is Λ-orthogonal and carries a dual pair of Cuntz

representations (with ON acting on L2(µ) for both representations). If s is also

irreducible, then L(L) is maximally orthogonal.

Proof. Let N = |B| = |L| and note that from [JP6] (Theorem 4.1) we get a dual

pair of representations {Sb}b∈B and {Tℓ}ℓ∈L of the Cuntz algebra ON , see also [Cu]

and [Ar], acting on L2(µ) and given by the respective formulas:

S∗
b f = N−1/2f ◦ σb for f ∈ L2(µ), b ∈ B (6.4)

Tℓes = eτℓ(s) for s ∈ K◦ and ℓ ∈ L. (6.5)

Moreover S∗
bTℓ is the multiplication operator Mbℓ on L2(µ) given by

Mbℓf = N−1/2(eℓ ◦ σb)f for f ∈ L2(µ). (6.6)

It follows from [JP6, Theorem 4.1] that for ℓ and ℓ′ in L

T ∗
ℓ Tℓ′ = δℓℓ′I and

∑

ℓ∈L

TℓT
∗
ℓ = I (6.7)

Here we use the Kronecker delta notation

δℓℓ′ =

{
1 if ℓ = ℓ′

0 if ℓ 6= ℓ′,
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and I denotes the identity operator in the Hilbert space L2(µ).

It follows then from (6.6) that the vectors eℓ+R∗s, s ∈ K◦, are mutually orthog-

onal in L2(µ) for distinct values of ℓ, i.e., for ℓ 6= ℓ′ in L. For more details on this

point, we refer to sections 3–4 in [JP6]. For

λ =

n∑

j=0

R∗
j

ℓj , (6.8)

we have

Tℓ0Tℓ1 · · ·Tℓne0 = eλ. (6.9)

Let λ =
∑n

j=0 R
∗
j

ℓj , and κ =
∑m

j=0 R
∗
j

kj , where the ℓj ’s and kj ’s are in L.

Then eλ and eκ are orthongonal in L2(µ) except in the cases where m ≤ n, and

ℓj = 0 for j > m, and where m ≥ n and kj = 0 for j > n. In the exceptional

cases, it follows from (6.9) and T0e0 = e0 that eλ = eκ. To prove the orthogonality

assertion above, note that

〈eλ, eκ〉µ = 〈Tℓ0Tℓ1 · · · Tℓne0, Tk0
Tk1

· · · Tkm
e0〉

is = 0, unless ℓ0 = k0, because T ∗
k0
Tℓ0 = 0 if k0 6= ℓ0. If k0 = ℓ0, then T ∗

k0
Tℓ0 = I,

and we can repeat the argument on ℓ1 and k1. It remains to consider the case where

n > 0 and m = 0; in this case, we will use the identity, T0e0 = e0, to write

〈eλ, eκ〉µ = 〈Tℓ0Tℓ1 · · · Tℓne0, T0e0〉µ = 0

and we conclude that 〈eλ, eκ〉µ = 0 unless ℓ0 = ℓ1 = · · · = ℓn = 0.

It follows that the map,

(ℓ0, . . . , ℓn) 7→
n∑

j=0

R∗
j

ℓj ∈ L(L) (6.10)
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is 1–1 on the set of finite sequences (ℓ0, . . . , ℓn−1, ℓn) with n a nonnegative integer,

the ℓj ’s in L, and ℓn 6= 0.

The assumption that s be irreducible is now imposed, and we show that L(L)

has the stated maximality property: We show that, if t ∈ Rn and 〈eλ, et〉µ = 0

for all λ ∈ L(L), then it follows that t ∈ L(L). We shall do this by contradiction,

assuming the t /∈ L(L). We shall use the functional equation (5.8) for µ̂, recalling

that

〈eλ, et〉µ = µ̂(t− λ). (6.11)

We shall also use that for every s ∈ Rn there is some ℓ ∈ L such that B(ℓ− s) 6= 0.

This follows from the formula (5.7) for B(·), and from the Hadamard property (3.2)

which is now assumed.

As a special case of (5.8), we get

0 = µ̂(t− ℓ0 − R∗ℓ1) = B(t− ℓ0)µ̂(R
∗
−1

t− R∗
−1

ℓ0 − ℓ1).

Picking ℓ0 ∈ L s.t. B(t− ℓ0) 6= 0, we get

0 = µ̂(R∗
−1

t− R∗
−1

ℓ0 − ℓ1 −R∗ℓ2)

= B(R∗−1

t− R∗−1

ℓ0 − ℓ1)µ̂(R
∗−2

t−R∗−2

ℓ0 −R∗−1

ℓ1 − ℓ2).

Picking ℓ1 ∈ L s.t.

B(R∗
−1

t−R∗
−1

ℓ0 − ℓ1) 6= 0,

we conclude next that

µ̂(R∗
−2

t− R∗
−2

ℓ0 −R∗
−1

ℓ1 − ℓ2) = 0,

and we continue by induction, determining ℓ0, ℓ1, . . . ∈ L such that the points

sp := R∗
−p

ℓ0 + · · · +R∗
−1

ℓp−1 + ℓp
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are in the dual fractal set X̄(L), see (6.2) above. When N < |detR|, we may pick,

inductively, the “digits” ℓi such that the differences

R∗
−p

t− sp (6.12)

are distinct as p varies, but

µ̂(R∗
−p

t− sp) = 0 and B(R∗
−(p−1)

t− sp−1) 6= 0.

Notice that the analytically extended transform

µ̂(z) =

∫

ei2πz·x dµ(x) (6.13)

is entire analytic on Cn, where for z = (z1, . . . , zn) ∈ Cn, z ·x = z1x1+ · · ·+znxn is

the usual dot-product. Hence its zeros cannot accumulate. But the “dual attractor”

X̄(L) (see (7.2)) is compact in Rn so there a subsequence spi
with limit spi

→ s ∈

X̄(L), and

0 = lim
pi

µ̂(R∗
−pi

(t)− spi
) = µ̂(−s) = µ̂(s)

contradicting that the roots of µ̂(·) must be isolated (see (6.12)), even isolated in

Cn. The contradiction completes the proof, and we conclude that L(L) is maximal.

If only a finite number of the “digits” ℓj are nonzero, then, using the contractive

property of R∗
−1

, we see that the sequences R∗
−p

(t), and sp, both converge to zero

as p → ∞, contradicting that µ̂(0) = 1, since λ → µ̂(λ) is continuous on Rn.

Claim 1. The set B is a subset of a set of representatives for R−1(K)/K.

Proof of Claim. From the self-adjointness of s we have RB ⊂ K (by Lemma 4.2).

Therefore, B ⊂ R−1K. If b and b′ are distinct and both in B, and if b ∈ b′ + K,

then et(b+x) = et(b
′ +x) for all x ∈ R−1X̄ (all t ∈ K◦), contradicting the totality

of K◦ in L2(µ).
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Claim 2. The finite set L is a subset of a set of representatives for K◦/R∗K◦.

Proof of Claim. By Lemma 4.2, L ⊂ K◦. If ℓ and ℓ′ are in L, and ℓ = ℓ′ +R∗γ for

some γ ∈ K◦, then

〈b, ℓ〉 = 〈b, ℓ′ +R∗γ〉

= 〈b, ℓ′〉〈Rb, γ〉

= 〈b, ℓ′〉

where the last equality used Lemma 4.2 again. But this contradicts the Hadamard-

property, unless γ = 0. Considering,

xp = R∗
−p

t− (R∗
−p

ℓ0 + · · · +R∗
−1

ℓp−1 + ℓp) , and

yp = R∗p

xp = t− (ℓ0 + R∗ℓ1 + · · · +R∗p

ℓp) ,

and letting P = {p : ℓp 6= 0}; then we showed above that P is infinite, and that

p ∈ P → yp is a 1–1 map. Hence {yp : p ∈ P} is infinite. �

Remark 6.2. For the reducible example (in R2) mentioned in the beginning of the

present section, we note that all the conditions of the first part of Theorem 6.1

are satisfied. We also described the set L(L) of orthogonal exponentials for the

example. But the maximality condition is not satisfied relative to L2(µ). Indeed,

for the transform µ̂(s) from (5.5), we have, with s = (s1, s2) ∈ R2,

µ̂(s) =

{

eis1π sin(s1π)
s1π

if (s1 6= 0)
1 if s1 = 0.

It follows that the identity from (5.4) will be satisfied whenever t = (t1, t2) ∈ R
2

is such that t1 ∈ Z−, i.e., negative and integral. (Specifically, µ̂(λ − t) = 0 for

∀λ ∈ L(L).) From the calculation of L(L), we note that such points t = (t1, t2)

will not be in the set L(L); and so the maximality condition is not satisfied for the

example.
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7. Examples

7.1 Background Material. We now give examples to illustrate the conditions in

Theorems 5.2 and 6.1. Since the generalized Hadamard matrices are known up to

N = 4, the examples we give are “typical” for the possibilities when N ≤ 4, and it is

likely that there is a classification; but as it is unclear what is the “correct” notion

of equivalence for systems s = (R,B,L,K) we will postpone the classification issue

to a later paper. Note that the examples occur in pairs, one for s and a dual one

for s◦. Also note that each s will correspond to a spectral pair (Ω,Λ) as well as

a selfsimilar iteration limit , typically a “fractal” X̄ with a selfsimilar measure µ.

When the given system s is selfadjoint , then there will in fact be a pair of “fractals”

occurring as iteration limits, a selfsimilar µ from the affine system:

σbx = R−1x+ b leading to X̄ = X̄(B) (7.1)

defined from s, and also

τ−1
ℓ (t) = R∗−1

(t− ℓ) leading to X̄(L), (7.2)

and defining the corresponding dual selfsimilar measure µ′. Recall both µ and µ′

are probability measures on Rn; µ is determined by (2.2), and µ′ by:

µ′ = |L|−1
∑

ℓ∈L

µ′ ◦ τℓ, (7.3)

see also (7.1)–(7.2) and Lemma 4.1 for more details on the dual pair of affine

systems.

Our examples below will be constructed from the matrices (3.3)–(3.5) which we

listed in section 3. In fact, we shall supply a group of examples for each of the
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generalized Hadamard matrices N = 2, N = 3, and N = 4, all the examples will be

symmetric and of Hadamard type; but some will not be selfadjoint. In fact, when

considering s = (R,B,L,K) we shall fix the first three R, B, and L, but allow

variations in the lattice. When we insist on the Hadamard type, we shall see that,

in some familiar fractal- examples, it will then not be possible to choose any lattice

K such that the corresponding system s = s(−,K) is selfadjoint. We will then say

that the system is not self-adjoint; it turns out that the obstruction is a certain

integrality condition; and, when it is not possible to find a lattice consistent with

both selfadjointness and Hadamard type, then it will typically be a simple, case by

case computation, and we shall be very brief with detailed calculations. (It will be

immediate that each of the examples in the list is irreducible; see section 6.)

7.2 Group 1 Examples. We take N = 2; the matrix is (3.3), and the examples

are illustrated with subsets of the line, i.e., n = 1, for Rn. First, take R = 4, i.e.,

multiplication by the integer 4; the sets B and L will be B = {0, 1/2}, L = {0, 1},

and lattice K = Z. The (Ω,Λ) spectral pair will be as follows:

Ω = [0, 1/4] ∪ [1/2, 3/4], (i.e., the union of two intervals);

Λ = {0, 1} + 4Z, (i.e., two residue systems modulo 4, see (4.10) above for the

general case)

X̄ = iteration fractal, see Figure A, fractal dimension D = ln 2
ln 4

= 1/2, see the

affine system (2.2), and also more details on µ in Section 2 of [JP6].

It is easy to check that with this choice for R, B, L, and K, the corresponding

system s is selfadjoint and of the Hadamard type. For this particular example,

there are only two choices for K such that the corresponding system sK = s(−,K)

is selfadjoint. They are K = Z and K = 2Z. But the following modification,
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corresponding to the classical middle-third-Cantor set, will only be symmetric; not

selfadjoint: With

R = 3,

B = {0, 2/3}, and

L = {0, 3/4},

we have the Hadamard type, c.f., (3.2); but there is no lattice K in R which makes

the corresponding system sK selfadjoint (Graphic illustration, Figures A and 1).

7.3 Group 2 Examples. We take N = 3; the matrix is (3.4), and the examples

are illustrated with subsets of the plane R2. Take

R =

(
6 0
0 6

)

,

B =

{(
0

0

)

,

( 1
2

0

)

,

(
0
1
2

)}

,

L =

{(
0

0

)

,±ℓ

}

where ℓ =
2

3

(
1

−1

)

,

K = 3Z2, i.e., multiples of the unit-lattice in 2 dimensions, equivalently

points in R
2 of the form

(
3m

3n

)

where m,n ∈ Z.

The corresponding system will be selfadjoint of Hadamard type. If K is instead

taken to be the lattice generated by the two vectors
(
1
1

)
and

(
0
3
2

)
(which turns out

to yield K ⊂ L◦), then there is a corresponding spectral pair (Ω,Λ) where Ω is

a suitable union of scaled squares in the plane, and the corresponding spectrum

satisfies Λ◦ = K. But with this K, the iteration system sK will not have K◦

total in L2(µ). In all, there are only three distinct choices, in this case, for lattices

K in R2 such that the corresponding system sK = s(−,K) is selfadjoint: They
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are given by the respective matrices 3I2,

(
3 0
3 3

2

)

, and

(
1 0
1 3

2

)

with inclusions

K1 ⊂ K2 ⊂ K3 for the lattices. The fractal dimension of X̄ is

D =
ln 3

ln 6
≃ .61.

(Graphic illustrations, Figures 2–9.)

7.4 Group 3 Examples. We take N = 4; the matrix is (3.5) corresponding to

u = −1, and the examples are illustrated with solid sets, i.e., pictures in 3-space

R3. Take

R =





2 0 0
0 2 0
0 0 2



,

B =











0
0
0



,





− 1
2
0
0



,





0
− 1

2
0



,





0
0
− 1

2










,

L =











0
0
0



,





−1
−1
0



,





−1
0
−1



,





0
−1
−1










,

K = Z
3 = K◦ (i.e., selfduality).

It is convenient to summarize the choices for R, B, L and K as follows:

R = 2I3,

B = −1

2
I3, and

L = −





1 1 0
1 0 1
0 1 1



,

where

I3 =





1 0 0
0 1 0
0 0 1
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is the unit-matrix. The choices for the lattice K are subjected to the conditions

in Lemma 4.1. It turns out that the choice K = Z3 is the minimal one such that

the system sK = s(−,K) is selfadjoint ; and there is also a unique maximal choice

for K with sK selfadjoint, viz., K = L◦ where L◦ is given by (7.4) below. (Since

L is symmetric, the matrix for the lattice L◦ is L−1.) The lattice L◦ has matrix

represented by the inverse

L−1 = −1

2





1 1 −1
1 −1 1
−1 1 1



 . (7.4)

The corresponding system s = (R,B,L,K) is selfadjoint of Hadamard type.

If the choice for K = Z3 is replaced by K = L◦, then (the modified) s is still

selfadjoint: Notice that K = Z3 is the minimal choice for K (subject to (i)–(iii)

in Lemma 4.1); and K = L◦ is the maximal one. This means that K◦ = Z3 is

maximal among the possible choices for K◦; and this K◦ is total, see Definition

5.1.

7.5 Dual Pairs. The fractal dimension is D = ln 4
ln 2 = 2 which is integral, but less

than the dimension (viz., 3) of ambient R3. The fractal for the system s arises from

scaling iteration of the set Ω = union of 4 cubes, see the figure (Figure B). For

the dual system, Ω◦ is instead the union of tetrahedra resulting in a 3-dimensional

Sierpinski gasket, same fractal dimension D = 2, but with angles 60◦ rather than

90◦. The sketch is Figures 10–17, see also [Sch] for more details; it is the Eiffel

tower construction, (maximal strength with least use of iron.)

The corresponding planar Sierpinski-gasket corresponding to R =

(
2 0
0 2

)

, B =

1
2
I2, and L = 2

3

(
1 −1
−1 1

)

, does not have a lattice choice for K which makes the
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associated system s = (R,B,L,K) in R2 selfadjoint. The fractal dimension is

D = ln 3
ln 2 ≈ 1.58.

For the matrix (3.5) with primitive 4th roots of 1 (e.g., u = i), there is also a

realization in R3: We may take R = 2I3, B = 1
2I3, and L =





1
2

1 3
2

1 0 1
3
2

1 1
2



 will give

a system of Hadamard type in 3-space, but again there is no lattice choice for K

in R
3 such that the corresponding sK is selfadjoint. (Graphic illustrations, Figures

10–17.)

8. Concluding Remarks

The operators {Tℓ} from (6.5) and (6.7) may also be used in the definition of an

endomorphism θ on a certain C∗-algebraic ON -crossed product, U say. It is given

by,

θ(A) =
∑

ℓ∈L

TℓAT
∗
ℓ , for A ∈ U ,

and clearly, θ(A∗) = θ(A)∗, and θ(AB) = θ(A)θ(B) for all A,B ∈ U. Contin-

uous versions, also called endomorphism-semigroups, have been studied recently

by Arveson and Powers, see e.g., [Ar]. As spectral-invariants for these, Arveson

has proposed (in [Ar]) a Cuntz-algebra construction which is based on Wiener-

Hopf techniques, and which is inherently continuous, in fact with R+ used as index

for the generators in place of the usual finite (or infinite) discrete labeling set

{1, . . . ,N}. For our present B/L duality project with dual fractals, X̄(B) and

X̄(L); we plan (in a sequel paper) to study an analogous C∗- algebra construction

which is generated by X̄(L) in place of R+, but still modelled on Arveson’s Wiener-

Hopf approach. It appears that such an X̄(L)-fractal-based C∗-algebra will serve
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as a spectral-invariant for our B/L Hadamard-systems which are only symmetric,

but generally not selfadjoint (relative to some choice of lattice K, see Section 7

above).

The spectral-invariant question is an important one, and in our case we produce

the dual representation pair (6.4) and (6.5) as a candidate. But representations {Sb}

of ON in the form (6.4), without a paired dual representation {Tℓ}, cf. (6.6), are

present for iteration systems which are much more general than the affine fractals

studied here. As a case in point we mention Matsumoto’s [Mat] recent analysis of

(von Neumann type) cellular automata (details in [MOW] and [Od]); it is based on

an S-representation which is given by a formula similar to our (6.4) above. There

is also an associated endomorphism with an entropy that can be computed; but we

stress that for these (and many other) iteration systems, there is typically not a

dualitly based on exponentials eiλ·x and typically not a second {Tℓ}- representation

such that the two form a dual pair in any natural way.

We have studied the class of spectral systems s = (R,B,L,K) in Rn with special

view to the selfadjoint ones which are also of Hadamard type, see Lemma 4.1.

(When s is given in this class, the two setsB and L then have the same cardinality; it

will be denoted N for convenience in the following comments.) It is important (but

elementary) that this class of systems is closed under the tensor- product operation;

i.e., if s1 and s2 are systems in Rn1 and Rn2 respectively, then the two properties

(selfadjointness and Hadamard type) carry over to the system s1 ⊗ s2 in Rn1+n2 =

Rn1 × Rn2 .

If the Hilbert spaces for the respective systems are L2(µi), i = 1, 2; then the

Hilbert space for s1 ⊗ s2 is L2(µ1 ⊗ µ2), and the measure µ1 ⊗ µ2 is the unique

probability measure on Rn1×Rn2 which scales the affine tensor operations of s1⊗s2,
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see (2.3) above. The set B for s1 ⊗ s2 is B1 × B2, and the matrix-operation is,

(b1, b2) 7→ (R1b1, R2b2). In verifying the Hadamard property (3.2) for s1 ⊗ s2, we

use the important (known) fact that the class of generalized Hadamard matrices

is closed under the tensor-product operation, i.e., that U1 ⊗ U2 satisfies (3.2) with

order N = N1N2 if the individual factors Ui, i = 1, 2, do with respective orders Ni,

i = 1, 2.

We say that a system s is irreducible if it does not factor “non-trivially” s ≃

s1 ⊗ s2; and we note that the examples above from Section 7 are all irreducible in

this sense. (In fact this irreducibility notion is different from that of Section 6, but

the examples are irreducible in both senses.)

The spectral geometry for regions in Rn has a long history, see e.g., [Bo-Gu],

[CV], [Ge], and [Gu-St]. But, so far, the Laplace operator has played a favored

role despite the known incompleteness for the correspondence between the geome-

try of the given domain and the spectrum of the corresponding Laplace operator.

The approach in [De] is based instead on a multitude of second order differential

operators, but the spectral correspondence is still incomplete there. Our present

approach leads to a complete spectral picture and is based instead on a system of

first order operators. For the fractal case however, the differential operators have

no analogue.

While our simultaneous eigenfunctions are based, at the outset, on a commu-

tative operator system, our spectral invariant derives instead from a dual pair of

representations of a certain non-abelian (in fact simple) C∗-algebra.

Self-similar limit constructions have received much recent attention, starting with

[Hu], and then more recently, see e.g., [Ba-Gr], [Ed], [Ma], and [Ke]. These results

seem to stress the geometry and the combinatorics of the infinite limits, and not
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the spectral theory. Our present emphasis is a direct spectral/geometry- correspon-

dence; and we also do not in [JP6] impose the strict expansivity assumption (which

has, so far, been standard almost everywhere in the literature). Furthermore, we

wish to stress that the sets Ω ⊂ Rn which occur in our present spectral pairs are

more general than the self-reproducing tiles (SRT) which were characterized in [Ke,

Theorem 10]. However, Kenyon’s SRT’s can be shown to satisfy our conditions, al-

though our class is properly larger ; not only because of the expansivity assumption,

but also because of the combinatorics, see [Jo-Pe5] for details. Further work on

these interconnections is also in progress.
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