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Abstract

The QCD corrections to electroweak parameters depend on the renormalization
scheme and scales used to define the top-quark mass. We analyze these dependences
for the W -boson mass predicted via ∆r to O(ααs) and O(αα2

s) in the on-shell and MS
schemes. These variations provide us with a hint on the magnitude of the unknown
higher-order QCD effects and contribute to the theoretical error of the prediction.

PACS numbers: 12.15.–y, 11.15.Me, 12.15.Lk, 14.65.Ha

1 Introduction

It is well known that strong-interactions effects on the vacuum-polarization functions of the
electroweak gauge bosons play a significant rôle in present and future high-precision tests of
the standard model (SM) [1,2,3,4]. In perturbative calculations to O(ααs) [5,6,7,8], these
effects arise from the type of two-loop diagrams where one virtual gluon is exchanged within
a quark loop inserted into an electroweak-gauge-boson line. Since the top quark is by far the
heaviest established elementary particle, with a pole mass of Mt = (180 ± 12) GeV [9], the
leading high-Mt terms, of O(GFM

2
t ), are particularly important. As for oblique corrections,

i.e., those which arise from the gauge-boson vacuum polarizations, these terms together with
their quantum-chromodynamical (QCD) corrections are all concentrated in ∆ρ = 1 − 1/ρ,
where ρ is the familiar parameter introduced in Ref. [10]. The leading-order QCD corrections
to ∆ρ have been known for several years [6,7]; those of next-to-leading order have recently
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been calculated [11] and found to be relatively large, having indeed a non-negligible impact
on ongoing precision tests of the SM. It is of great phenomenological interest to estimate the
residual theoretical uncertainty of the QCD corrections to ∆ρ and other basic electroweak
parameters such as ∆r [12]. This is the motivation for the present paper.

QCD-improved analyses of electroweak parameters [1,2,3,4,5,6,7,8] are usually carried
out using the pole definition of the top-quark mass. This directly corresponds to the mass
parameter which is presently being extracted with the Fermilab Tevatron [9] and will be
with the CERN Large Hadron Collider (LHC) and future e+e− linear colliders, since, in the
propagation of the t and t̄ quarks between their production and decay vertices, configurations
near their mass shells are kinematically favoured. As a matter of principle, however, this
mass convention is arbitrary, and we might as well adopt another one. For, if all orders of
the perturbation expansion were taken into account, the final result should not depend on
the selected scheme. Yet, this no longer holds true if the perturbation series is truncated.
In general, the finite-order results also depend on the renormalization scales of the quark
masses. It is generally believed that the scheme and typical scale variations may be used to
estimate the theoretical uncertainty due to the unknown higher-order corrections.

In this paper, we shall pay special attention to ∆r [12], which parameterizes the non-
photonic corrections to the muon lifetime and allows us to indirectly determine the W -
boson mass for given values of the top-quark and Higgs-boson masses. Using two popular
definitions of quark mass in QCD, namely the pole mass and the mass of the modified
minimal-subtraction (MS) scheme [13], we shall quantitatively analyze the scheme and scale
dependences of the MW prediction at next-to-leading order in QCD, and so estimate the
residual theoretical error on MW from QCD sources. Our evaluation of ∆r will make full
use of the present knowledge of higher-order corrections, so that the extracted MW values
should be reliable within the quoted errors. Confrontation of these values with the future
high-precision measurements of MW at the Tevatron and the CERN Large Electron-Positron
Collider (LEP2), in connection with a reduced error on Mt, will allow us to pin down the
mass of the SM Higgs boson and to facilitate the search for it.

At this point, a few comments on the so-called tt̄ threshold effects [14,15] are in order. The
study of these effects was an attempt to estimate the dominant higher-order QCD corrections
to ∆ρ and other oblique electroweak parameters prior to their diagrammatical computation
[11]. This approach was based on the assumption that the bulk of the QCD corrections
arises from the ladder diagrams of multi-gluon exchange in the tt̄ system. The absorptive
parts of these diagrams can be resummed in the non-relativistic approximation, producing
a prominent enhancement of the tt̄ excitation curve in the threshold region along with a
lowering of its onset. This treatment naturally takes into account the finite lifetime of the
top quark as well. The real parts of the diagrams were then found via dispersion relations
with subtractions derived from Ward identities. The fact that the explicit O(α2

sGFM
2
t )

calculation of ∆ρ [11] nicely agrees with the rough tt̄-threshold estimate [14]—in fact, it
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comfortably lies within the errors quoted in Ref. [14]—may be viewed as some posterior
justification of this method. However, the good agreement is, to some extent, fortuitous,
since approximately 30% of the O(α2

sGFM
2
t ) correction is due to double-triangle diagrams

[11], which are beyond the scope of Ref. [14]. Therefore and for other reasons given in
Ref. [16], we shall take the point of view that, at the present time, the result of Ref. [11]
represents the most reliable description of the QCD corrections to ∆ρ beyond the leading
order, and that the residual theoretical uncertainty may be assessed by analyzing scheme
and scale variations.

This paper is organized as follows. In Section 2, we shall translate existing on-shell (OS)
results for the gauge-boson vacuum polarizations in O(ααs) [7] to the MS scheme of quark-
mass renormalization. Furthermore, we shall take a look inside the renormalization-group
(RG) structure of the QCD expansion of ∆ρ to O(α2

sGFM
2
t ) [11]. In Section 3, we shall

quantitatively analyze the scheme and scale dependences of theMW value predicted from the
analysis of ∆r to leading and next-to-leading order in QCD. Our conclusions concerning the
theoretical uncertainty in MW of QCD origin are summarized in Section 4. The Appendix
contains some general relations which may be used to implement the scale dependence of the
QCD coupling and mass in the MS scheme, and to switch between the MS and OS schemes.

2 Formalism

We shall work in the electroweak OS renormalization scheme, which uses the fine-structure
constant, α, and the physical particle masses as basic parameters, and define c2w = 1− s2w =
M2

W/M2
Z [12,17]. Our analysis of ∆r will be based on Refs. [1,2,3]. Following Refs. [2,3], we

shall use the decomposition

∆r = ∆α− c2w
s2w

∆ρ(1−∆α) + ∆rrem, (1)

where ∆α embodies the contributions from the charged leptons and the first five quark
flavours that drive the fine-structure constant from the Thomson limit to the Z-boson scale,
∆ρ is the top-quark-induced shift in the ρ parameter [10] written with the Fermi constant,
GF , and ∆rrem is devoid of large logarithmic and power-like terms of fermionic origin. We
would like to point out that, unlike ∆ρ, ∆rrem must be written in terms of α, since it
is via ∆r that GF is introduced into the SM [1,2,3,12]. To our knowledge, all existing
analyses to O(ααs) of ∆r and other oblique electroweak parameters with a non-trivial quark-
mass dependence, i.e., other than ∆ρ, employ the pole definition of quark mass in QCD
[1,2,3,4,5,6,7,8]. In the following, we shall describe how these calculations may be converted
to other schemes of mass renormalization in QCD, in particular to the MS scheme.

The relevant quantities in this context are the transverse gauge-boson vacuum polariza-
tions induced by a pair of quarks, with pole masses M1 and M2. Adopting the conventions
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of Ref. [7], we may write the vector and axial-vector parts as

ΠV,A(s,M1,M2) =
Nc

3
ΠV,A

0 (s,M1,M2) + a
NcCF

4
ΠV,A

1 (s,M1,M2) +O(a2), (2)

where s is the square of the external four-momentum, Nc = 3, CF = (N2
c − 1) /(2Nc) =

4/3, and a = αs/π. We shall employ dimensional regularization in n = 4 − 2ǫ space-time
dimensions and introduce a ’t Hooft mass, µ, to keep the coupling constants dimensionless.
We shall suppress terms containing γE − ln(4π), where γE is Euler’s constant. These terms
may be retrieved by substituting µ2 → 4πe−γEµ2. In the MS scheme [13], they are subtracted
along with the poles in ǫ. For later use, we list the lowest-order functions appearing in Eq. (2)
[18]:

4π2ΠV,A
0 (s,M1,M2) =

(

1

ǫ
+ ln

µ2

M1M2

)

[

s− 3

2
(M1 ∓M2)

2
]

+

[

1 +
1

s

(

−M2
1 +M2

2

2
± 3M1M2

)

− (M2
1 −M2

2 )
2

2s2

]√
λ arcosh

M2
1 +M2

2 − s

2M1M2

+
M2

1 −M2
2

2s

[

(M2
1 −M2

2 )
2

2s
∓ 3M1M2

]

ln
M2

1

M2
2

+
5

3
s−M2

1 −M2
2 ± 6M1M2

−(M2
1 −M2

2 )
2

2s
+O(ǫ), (3)

where λ = [s− (M1 +M2)
2] [s− (M1 −M2)

2]. Equation (3) is valid for s < (M1 − M2)
2.

It may be analytically continued to other values of s by observing that s comes with an
infinitesimal, positive imaginary part, i.e., s → s+ iε. Specifically,

√
λ arcosh

M2
1 +M2

2 − s

2M1M2

= −
√
−λ arccos

M2
1 +M2

2 − s

2M1M2

= −
√
λ

(

arcosh
s−M2

1 −M2
2

2M1M2

− iπ

)

. (4)

The general formulae for ΠV,A
1 (s,M1,M2) are somewhat lengthy [8]. Fortunately, the finite-

mass effects inO(ααs) on the oblique electroweak parameters (with the well-known exception
of ∆α) due to the first five quark flavours are exceedingly small [7,8], so that, beyond O(α),
we may safely neglect all quark masses, except for Mt. In this approximation, the mass-
dependent cases may be cast into the form [7]

π2

M2
ΠV

1 (s,M,M) = RX1 + V1(R) +O(ǫ),

π2

M2
ΠA

1 (s,M,M) = RX1 + Y1 + A1(R) +O(ǫ),
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π2

M2
ΠV,A

1 (s,M, 0) =
1

4
(XX1 + Y1) + F1(X) +O(ǫ), (5)

where V1, A1, and F1 are finite functions of R = (s/4M2) and X = s/M2, and [8,19]

X1 =
1

2ǫ
+ L− 4ζ(3) +

55

12
,

Y1 =
3

2ǫ2
+

1

ǫ

(

3L+
11

4

)

+ 3L2 +
11

2
L+ 6ζ(3) +

9

2
ζ(2)− 11

8
, (6)

with L = ln(µ2/M2). Here, ζ is Riemann’s zeta function, with values ζ(2) = π2/6 and
ζ(3) ≈ 1.202 057.

The quantities in Eq. (5) refer to the OS scheme, i.e., they contain the contributions which
emerge from the respective one-loop seed diagrams by inserting the OS mass counterterm,
δM = m0 −M , where m0 is the bare quark mass, in all possible ways. The resulting shifts
in ΠV,A

1 may conveniently be constructed from ΠV,A
0 through the variation

a
NcCF

4
δΠV,A

1 (s,M1,M2) =
Nc

3

2
∑

i=1

δMi
∂

∂Mi
ΠV,A

0 (s,M1,M2). (7)

For later use, we list the OS mass counterterm [20]:

δM

M
=−aCF

(

µ2eγE

M2

)ǫ

Γ(1 + ǫ)
3− 2ǫ

4ǫ(1− 2ǫ)
+O(a2)

=−aCF

[

3

4ǫ
+

3

4
L+ 1 + ǫ

(

3

8
L2 + L+

3

8
ζ(2) + 2

)

+O(ǫ2)
]

+O(a2), (8)

where Γ is Euler’s Gamma function and L is defined below Eq. (6).
In other mass renormalization schemes, m0 is differently split into the renormalized mass,

m, and the counterterm, δm, i.e.,

m0 = M + δM = m+ δm, (9)

where δm differs from δM by some finite amount. In general, m depends on the renormal-
ization scale, µ, and on the QCD gauge parameter. Of all possible schemes, the MS scheme
is singled out because there δm just collects the ǫ poles in Eq. (8). Furthermore, the MS
mass is gauge independent, as is M [20]. We may translate Eq. (2) to some other scheme by
replacing Mi with mi and adjusting the mass counterterms. The latter generates the shift

a
NcCF

4
∆ΠV,A

1 (s,m1, m2) =
Nc

3

2
∑

i=1

(Mi −mi)
∂

∂mi
ΠV,A

0 (s,m1, m2), (10)
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where we have used Eq. (9). Notice that Eq. (10) does not require knowledge of the O(ǫ)
terms of ΠV,A

0 .
In the following, we shall take m to be the MS mass. From Eq. (8), we may read off that

M = m
[

1 + aCF

(

3

4
l + 1

)

+O(a2)
]

, (11)

where l = ln(µ2/m2). The O(a2) term of Eq. (11) is written out in Eq. (30). With the help
of Eqs. (3), (10), and (11), we may now convert Eq. (5) to the MS scheme. The resulting
expressions emerge from Eq. (5) by replacing M , R, X , X1, Y1, V1(R), A1(R), and F1(X)
with m, r = (s/4m2), x = s/m2,

X1 =
1

2ǫ
+ l − 4ζ(3) +

55

12
,

Y 1 =
3

2ǫ2
− 5

4ǫ
− 3

2
l2 − 5

2
l + 6ζ(3) + 3ζ(2)− 75

8
,

V 1(r) = V1(r) + (3l + 4)



− arcsin
√
r

r
√

1/r − 1
+ 1



 ,

A1(r) = A1(r) + (3l + 4)



2

√

1

r
− 1 arcsin

√
r − 1



 ,

F 1(x) = F1(x) +
1

4
(3l + 4)

[(

1− 1

x2

)

ln(1− x)− 1

x

]

, (12)

respectively, where l is defined below Eq. (11). The last three lines of Eq. (12) are valid for
0 ≤ r, x ≤ 1, the range relevant for the evaluation of electroweak parameters. Expressions
appropriate for other values of r and x may be obtained with ease by analytic continuation
as described in Ref. [21]. The following special cases frequently occur in applications:

V 1(0) = V1(0) = 0,

V
′

1(0) = V ′

1(0)−
2

3
(3l + 4),

A1(0) = A1(0) + 3l + 4,

F 1(0) = F1(0) +
1

8
(3l + 4). (13)

In the remainder of this section, we shall discuss the incorporation of three-loop QCD
corrections [11,22] in Eq. (1). In Ref. [11], the O(α2

sGFM
2
t ) term of ∆ρ has been calculated

using both the OS and MS definitions of quark mass in QCD. In Ref. [22], the O(αα2
s)

correction to ∆rrem has been expanded in powers of M2
Z/M

2
t , and the first two terms of this

expansion have been presented both in the OS and MS schemes. It is instructive to rewrite
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the results of Ref. [11] in such a way that the RG origin of the logarithmic terms as well
as the interrelation between the OS and MS versions are explicitly displayed. This may be
achieved with the help of Eqs. (22) and (30) for nf = 6 active quark flavours and leads to

∆ρ = NcXt

[

1 + aR1(1 + aβ0L) + a2R2 +O(a3)
]

≈ 3Xt

[

1− 2.859 912 a
(

1 +
7

4
aL
)

− 14.594 028 a2 +O(a3)
]

, (14)

∆ρ̄ = Ncxt

{

1 + a
[

2γ0l + r1
(

1 + a(β0 + 2γ0)l
)]

+ a2
[

γ0(β0 + 2γ0)l
2 + 2(−2γ2

0 + γ1)l + r2
]

+O(a3)
}

≈ 3xt

{

1 + a
[

2l − 0.193 245
(

1 +
15

4
al
)]

+ a2
(

15

4
l2 +

11

4
l − 3.969 560

)

+O(a3)
}

,

(15)

with

r1 = R1 + 2CF ,

r2 = R2 + CF (2R1 − 4γ0 + CF ) + 2K0, (16)

where Xt = (GFM
2
t /8π

2
√
2), xt = (GFm

2
t/8π

2
√
2), and L and l are defined below Eqs. (6)

and (11), respectively. The first three coefficients of the beta function and the quark-mass
anomalous dimension of QCD are listed in Eqs. (20) and (21), respectively, and K0 is defined
in Eq. (29). The genuine information on the QCD correction to ∆ρ is carried by R1 [6,7]
and R2 [11] or, equivalently, by r1 [23] and r2 [11].

In the OS scheme, all µ dependence originates in the renormalization of a, while the MS
scheme has m as an additional source of µ dependence. So far, we have used a common
renormalization scale, µ, for a and m. In the following, we shall abandon this restriction
and distinguish between coupling and mass renormalization scales, µc and µm. We shall
henceforth use the symbol µc in the OS expressions. In order to disentangle µc and µm in
the MS formulae, we first replace µ with µm and then substitute

a(µm) = a(µc)

[

1− a(µc)β0 ln
µ2
m

µ2
c

+O(a2)

]

, (17)

which follows from Eq. (22). Finally, we expand the resulting expressions in powers of a(µc)
and truncate these expansions beyond the order under consideration.

In the next section, we shall estimate the QCD-related theoretical uncertainty in MW by
studying the scheme and scale dependences of the ∆r analysis. In order for our estimate
to be meaningful, we shall have to judiciously choose the central values and widths of the
scale intervals. It is natural to define the central values of µc and µm in such a way that
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there the radiative corrections are devoid of logarithmic terms. Looking at Eqs. (14) and
(15), we are thus led to set µc = ξcMt in the OS scheme, and µc = ξcµ̄t and µm = ξmµ̄t,
where µ̄t = mt(µ̄t), in the MS scheme. Here, ξc and ξm are variable numbers of order unity.
A closed expression for µ̄t in terms of Mt may be found in Eq. (31).

3 Numerical analysis

We are now in a position to quantitatively explore the scheme and scale dependences of
the MW prediction on the basis of ∆r. Our starting point is the OS analysis of Ref. [2],
which includes the dominant corrections beyond one loop, of O(ααs) [7], O(G2

FM
4
t ) [24],

and O(G2
FM

2
WM2

H) [1,2,25]. Here, we extend this analysis to O(αα2
s) by accommodating the

respective corrections to ∆ρ [11] and ∆rrem [22] in Eq. (1). Furthermore, we update our
input parameters according to Refs. [26,27,28,29]. In particular, we use the combined LEP1

value MZ = 91.1887 GeV [27], the value ∆α
(5)
had = 0.0280 [28] for the hadronic contribution to

∆α, and the world average α(5)
s (MZ) = 0.118 [29]. For the purpose of studying the scheme

and scale dependences of ∆r, we may assume that MH , Mt, and α(6)
s (Mt) are precisely

known. Unless stated otherwise, we choose MH = 300 GeV [27] and Mt = 180 GeV [9].
We compute α(6)

s (Mt) at three loops in two steps. First, we scale α(5)
s (µc) from µc = MZ to

µc = Mt via Eq. (23) with nf = 5. Then, we cross the flavour threshold at µc = Mt using
the matching condition (32). For Mt = 180 GeV, we so obtain α(6)

s (Mt) = 0.1071. In order
for our findings concerning the scheme and scale dependences to be meaningful, it is crucial
that we consistently evaluate α(6)

s (µ), mt(µ), and µ̄t to the order that we consider at a time.
For the analysis of ∆r to O(αα2

s), we first compute α(6)
s (µ) using Eq. (23) for nf = 6 with the

O(α3
s) terms in the denominator omitted. Then, we insert this value together with α(6)

s (Mt)
and mt(Mt), which we extract from Eq. (28), into Eq. (25) to obtain mt(µ). We evaluate µ̄t

by means of Eq. (31). If we calculate ∆r to O(ααs), then we correspondingly discard the
O(α2

s) terms in Eqs. (23), (28), and (31) and employ Eq. (24) instead of Eq. (25).
In Table 1, we investigate the scheme dependence of the MW prediction via ∆r to O(ααs)

and O(αα2
s) within the ranges 160 GeV ≤ Mt ≤ 210 GeV and 60 GeV ≤ MH ≤ 1 TeV. For

the time being, we suppress the logarithmic terms of RG origin by choosing ξc = ξm = 1. For
this choice, the MS values are always in excess of the the respective OS numbers, i.e., the
QCD corrections are less negative in the MS scheme. In Fig. 1, we display this excess as a
function of MH for Mt = 168, 180, and 192 GeV [9] both in O(ααs) and O(αα2

s). We observe
that the scheme dependence increases both with Mt and MH . For the Mt and MH intervals
considered in Table 1, it ranges from 4.7 to 13.2 MeV in O(ααs) and from 2.2 to 10.3 MeV
in O(αα2

s). As expected, it is significantly reduced as we pass from O(ααs) to O(αα2
s).

For Mt = 180 GeV, the reduction amounts to 51% (28%) for MH = 60 GeV (1 TeV). In
Table 1, we also list the values of µ̄t in O(αs) and O(α2

s). In O(α2
s), they lie by a roughly

8



Table 1: MW predicted for various values of Mt and MH via ∆r to O(ααs) and O(αα2
s)

in the OS and MS schemes with ξc = ξm = 1. For reference, also the MW values evaluated
without perturbative QCD corrections are given. Also µ̄t is listed. All masses are given in
GeV.

Mt µ̄t MH MW

O(αs) O(α2
s) w/o QCD O(αs) OS O(αs) MS O(α2

s) OS O(α2
s) MS

160 153.1 151.5 60 80.398 80.343 80.348 80.332 80.335
300 80.295 80.240 80.245 80.229 80.232
1000 80.199 80.143 80.150 80.133 80.137

170 162.7 161.1 60 80.468 80.407 80.413 80.396 80.398
300 80.362 80.302 80.309 80.290 80.294
1000 80.265 80.204 80.212 80.193 80.198

180 172.3 170.6 60 80.540 80.474 80.480 80.462 80.464
300 80.433 80.367 80.374 80.354 80.359
1000 80.334 80.268 80.276 80.255 80.261

190 182.0 180.2 60 80.616 80.544 80.550 80.530 80.534
300 80.506 80.434 80.443 80.420 80.426
1000 80.405 80.333 80.343 80.319 80.327

200 191.6 189.7 60 80.695 80.616 80.624 80.602 80.605
300 80.582 80.504 80.513 80.489 80.496
1000 80.479 80.400 80.412 80.386 80.395

210 201.2 199.3 60 80.777 80.692 80.700 80.676 80.680
300 80.661 80.576 80.587 80.560 80.568
1000 80.555 80.470 80.483 80.454 80.465

constant amount of 10 GeV below the respective Mt values. This may also be seen from
Eq. (31), where, in the case of top, the coefficients of αs(Mt)/π and [αs(Mt)/π]

2 are −4/3
and −6.458 784, respectively. To assess the significance of the scheme and scale dependences
relative to the overall QCD effect on MW , we also include in Table 1 the respective MW

values evaluated with the (perturbative) QCD corrections switched off. Of course, we cannot

reliably eliminate the intrinsic non-perturbative QCD corrections contained in ∆α
(5)
had, i.e.,

without introducing a significant dependence on the poorly-known light-quark masses.
In the remainder of this section, we shall stick to the central values Mt = 180 GeV and

MH = 300 GeV, and consider scale variations with 1/8 ≤ ξc, ξm ≤ 8. In Table 2 and Fig. 2,
we study the µc dependence of MW to O(ααs) and O(αα2

s) in the OS scheme. Obviously,
the scale dependence is dramatically reduced, from 33.7 MeV to 11.1 MeV, i.e. by 67%, if
the O(αα2

s) correction is taken into account. This should be compared with the shifts in MW

9



Table 2: MW (in GeV) predicted for Mt = 180 GeV and MH = 300 GeV via ∆r to O(ααs)
and O(αα2

s) in the OS scheme with ξc variable.

ξc MW [GeV]

O(αs) O(α2
s)

1/8 80.346 80.351
1/4 80.354 80.351
1/2 80.361 80.352
1 80.367 80.354
2 80.372 80.357
4 80.376 80.359
8 80.379 80.362

induced by the QCD corrections to O(ααs) and O(αα2
s) for µc = Mt, which are −66.1 MeV

and −78.6 MeV, respectively, as may be seen from Table 1. It is interesting to note that
2.4 MeV, i.e., 19%, of the difference between the O(ααs) and O(αα2

s) evaluations of MW

is due to the three-loop correction to ∆rrem [22]. The O(αα2
s) evaluation exhibits a local

minimum at ξc = 0.176. This is the point advocated by the principle of minimal sensitivity
(PMS) [30]. The O(ααs) and O(αα2

s) curves cross over at ξc = 0.183, the point of fastest
apparent convergence (FAC) [31]. In the OS analysis of ∆ρ to O(α2

sGFM
2
t ) with nf = 5,

these points occur at ξc = 0.224 and ξc = 0.264, respectively [32]. We note in passing that
the application of the Brodsky–Lepage–Mackenzie (BLM) [33] scale-setting criterion to ∆ρ
leads to ξc = 0.154 [11,32,34], which had been anticipated in the pioneering work of Ref. [34]
prior to the advent of the O(α2

sGFM
2
t ) calculation of ∆ρ [11].

In Table 3 and Fig. 3, we investigate how the O(ααs) and O(αα2
s) calculations of MW

in the MS scheme depend on µc and µm. We notice that the µc dependence is rather feeble
for µm ≈ µ̄t. This may be understood by observing that the coefficient of αs(µc)/π in the
QCD expansion of ∆ρ̄ in Eq. (15) is then greatly suppressed [23]. In Fig. 3, the points of
minimal sensitivity, i.e., with zero tangents, are marked with “x.” They are saddle points
and gathered in a small strip around µm = µ̄t. Their (ξc, ξm) coordinates are (2.732, 1.024) in
O(ααs) and (0.133, 0.853) and (7.127, 1.147) in O(αα2

s). For fixed ξc < 1, the O(ααs) value
of MW varies quite strongly with ξm, by 185.4 MeV for ξc = 1/8. This has to be compared
with the shift in MW due to the O(ααs) correction for ξc = ξm = 1, which only is 58.6 MeV
in size (see Table 1). Of course, such an extreme variation cannot be interpreted as the
uncertainty due to the neglect of higher-order QCD corrections. This rather tells us that
our choice of the ξm interval width is not judicious in this case. Fortunately, the O(αα2

s)
calculation is much more stable under scale variations. Here, the overall fluctuation is just
25.7 MeV, while the QCD-induced shift in MW for ξc = ξm = 1 is 73.8 MeV in magnitude
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Table 3: MW (in GeV) predicted for Mt = 180 GeV and MH = 300 GeV via ∆r to O(ααs)
(upper entries) and O(αα2

s) (lower entries) in the MS scheme with ξc and ξm variable.

ξc\ξm 1/8 1/4 1/2 1 2 4 8
1/8 80.256 80.304 80.343 80.374 80.399 80.421 80.441

80.365 80.360 80.357 80.357 80.357 80.357 80.357
1/4 80.290 80.325 80.352 80.374 80.392 80.407 80.421

80.349 80.352 80.355 80.358 80.361 80.363 80.366
1/2 80.318 80.342 80.360 80.374 80.386 80.395 80.404

80.343 80.349 80.354 80.358 80.362 80.366 80.369
1 80.342 80.356 80.366 80.374 80.380 80.386 80.390

80.344 80.350 80.355 80.359 80.363 80.366 80.368
2 80.362 80.368 80.372 80.374 80.376 80.377 80.378

80.347 80.352 80.356 80.359 80.362 80.364 80.366
4 80.379 80.378 80.377 80.375 80.372 80.370 80.369

80.353 80.356 80.358 80.360 80.361 80.362 80.363
8 80.394 80.387 80.381 80.375 80.369 80.364 80.360

80.360 80.360 80.360 80.360 80.360 80.360 80.359

(see Table 1). However, this variation is still approximately 2.3 times as large as the one in
the corresponding OS calculation.

Since it is hard to extract precise numbers from the contour plots in Fig. 3, we list in
Table 4 the maximum deviations of the MS evaluations of MW to O(ααs) and O(αα2

s) within
the variable range 1/ξmax ≤ ξc, ξm ≤ ξmax from the respective values for ξc = ξm = 1. For
completeness, we also list the corresponding numbers for the OS analyses to O(ααs) and
O(αα2

s) of Fig. 2. It is interesting to observe that, before the appearance of the O(αα2
s)

corrections in Eq. (1) [11,22], the uncertainty due to the lack of these terms could have been
estimated from the scale variation of the O(ααs) OS (MS) calculation with ξmax = 4 (2.1).
Thus, we may expect that similar scale variations will also yield meaningful results in the
next order.

The separation of µc and µm is perhaps not so easy to motivate on physical grounds. In
Fig. 4, we analyze the scale dependence of the MS calculation of MW to O(ααs) and O(αα2

s)
identifying µc = µm = ξµ̄t. We observe that the O(ααs) analysis is very unstable for ξ ≪ 1.
For ξ = 1/8, we have MW = 80.256 GeV (see Table 3), which is way below the MW range
considered in Fig. 4. On the other hand, the O(αα2

s) curve nicely oscillates around the MW

value at ξ = 1, with a band-width of 13.5 MeV. In this one-dimensional analysis, the PMS
points appear at ξ = 1.601 in O(ααs) and at ξ = 0.280 and ξ = 2.898 in O(αα2

s). They are
indicated by “o” in the contour plots of Fig. 3. There is one point of FAC within Fig. 4, at
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Table 4: Maximum deviations (in MeV) of the MW values predicted for Mt = 180 GeV and
MH = 300 GeV via ∆r to O(ααs) and O(αα2

s) in the OS and MS schemes with 1/ξmax ≤
ξc, ξm ≤ ξmax from the respective values for ξc = ξm = 1.

log2 ξmax ∆MW [MeV]

O(αs) OS O(αs) MS O(α2
s) OS O(α2

s) MS
1/2 +2.5 +4.5 +1.2 +1.9

−2.8 −5.2 −1.1 −2.4
1 +4.9 +11.4 +2.4 +3.6

−5.8 −14.4 −2.1 −5.0
3/2 +7.0 +20.8 +3.7 +5.3

−9.0 −28.6 −2.9 −7.4
2 +9.1 +32.9 +5.0 +6.9

−12.6 −49.4 −3.4 −10.0
5/2 +10.9 +48.0 +6.2 +8.4

−16.6 −78.6 −3.6 −12.8
3 +12.7 +66.5 +7.5 +9.8

−21.0 −118.8 −3.6 −16.0

ξ = 0.413. Another one is located at ξ = 8.358. The BLM criterion only applies to µc, but
not to µm, so that its implementation in our MS analysis is ambiguous [35].

4 Conclusions

In this paper, we have extended an existing calculation of ∆r in the OS scheme [2,3] to
next-to-leading order in QCD by incorporating new three-loop results [11,22]. We have then
converted this analysis to the MS scheme of quark-mass renormalization in QCD. Armed
with these results, we have analyzed the scheme and scale dependences of the MW value
predicted for given values of Mt (pole mass) and MH . We have verified that both scheme
and scale dependences are considerably reduced if the next-to-leading-order QCD corrections
are taken into account. For Mt = 180 GeV and MH = 300 GeV, the scheme dependence
at the central renormalization point, ξc = ξm = 1, is reduced from 7.5 MeV to 4.8 MeV
(see Table 1 and Fig. 1). The scale dependences within the interval 1/4 ≤ ξc, ξm ≤ 4 are
decreased from 21.7 MeV to 8.4 MeV in the OS scheme and from 82.2 MeV to 16.9 MeV in
the MS scheme (see Tables 2, 3, 4 and Figs. 2, 3).

Although the numbers presented here are uniquely determined by the generally accepted
rules of perturbation theory, their interpretation in terms of a QCD-related theoretical un-
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certainty in MW allows for a certain amount freedom. Nevertheless, we shall propose an
algorithm to extract a central value and an error of MW . If we adopt the point of view that
the OS and MS analyses represent two independent theoretical determinations of MW with
their individual errors, then we may combine them assuming Gaussian statistics as we usu-
ally do with independent experimental measurements [26]. It is plausible and conservative
to identify the error in each scheme with the absolute of the maximum deviation of MW in
the interval 1/ξmax ≤ ξc, ξm ≤ ξmax from the central value, at ξc = ξm = 1. This will leave
room for the reader to select his preferred value of ξmax. For illustration, we shall again
assume that Mt = 180 GeV and MH = 300 GeV. The OS and MS central values of MW

and the respective errors may then be read off from Tables 2, 3, and 4. For ξmax = 4, we so
obtain (80.367±0.012) GeV to O(ααs) and (80.355±0.004) GeV to O(αα2

s). We would like
to point out that the O(αα2

s) central value is encompassed by the O(ααs) error, and that,
in each order, the OS and MS central values lie within the error. This reassures us of the
soundness of our procedure. The corresponding results for other values of ξmax may be seen
from Fig. 5. It is clear that this approach does not make sense if ξmax is so small that the
scale variations of the OS and MS calculations do not overlap.

Apart from the theoretical uncertainty due to the lack of knowledge of QCD corrections
to ∆r beyond three loops, which we have estimated here, there is another source of QCD-
related error, namely the one connected with ∆α

(5)
had, which is extracted from experimental

data of e+e− → hadrons via a dispersion relation [28,36]. In Ref. [28], this error has been
estimated to be ±0.0007, which, for Mt = (180 ± 12) GeV and 60 GeV ≤ MH ≤ 1 TeV,
translates into an error of approximately ±13 MeV in MW . Other recent determinations of
∆α

(5)
had [36] agree with the result of Ref. [28] within less than two standard deviations of the

latter.
Finally, we would like to mention that the lack of knowledge of three-loop and subleading

two-loop electroweak corrections to ∆r represents another source of theoretical error on the
MW determination from the measured muon lifetime. The magnitude of the recently calcu-
lated O(G2

FM
2
t M

2
W ) correction to ∆ρ [37] indicates that the still uncontrolled O(G2

FM
2
t M

2
W )

term of ∆r might have the potential to jeopardize the accuracy of the indirect MW determi-
nation. The study of the scheme and scale dependences of the dominant two-loop electroweak
corrections provides us with a clue to the size of higher-order electroweak effects [38].
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A Appendix

In this Appendix, we shall provide a few general relations which are useful for implementing
the µ dependence of the QCD coupling constant and the quark masses in the MS scheme.
We shall take the colour gauge group to be SU(Nc); CF = (N2

c − 1)/(2Nc) and CA = Nc

are the Casimir operators of its fundamental and adjoint representations, respectively, and
TF = 1/2 is the trace normalization of its fundamental representation. We shall keep the
number of active quark flavours, nf , arbitrary. The RG equations for the so-called couplant,
a(µ) = αs(µ)/π, and m(µ) may be found, e.g., in Ref. [39]. For the reader’s convenience, we
list them here:

da

d lnµ
= β(a) = −a2

[

β0 + β1a + β2a
2 +O(a3)

]

, (18)

d lnm

d lnµ
= −γm(a) = −a

[

γ0 + γ1a+ γ2a
2 +O(a3)

]

, (19)

where [40]

β0 =
1

4

(

11

3
CA − 4

3
TFnf

)

,

β1 =
1

16

(

34

3
C2

A − 4CFTFnf −
20

3
CATFnf

)

,

β2 =
1

64

(

2857

54
C3

A + 2C2
FTFnf −

205

9
CFCATFnf −

1415

27
C2

ATFnf +
44

9
CFT

2
Fn

2
f

+
158

27
CAT

2
Fn

2
f

)

(20)

are the first three coefficients of the Callan-Symanzik beta function and [20,41]

γ0 =
3

4
CF ,

γ1 =
1

16

(

3

2
C2

F +
97

6
CFCA − 10

3
CFTFnf

)

,

γ2 =
1

64

{

129

2
C3

F − 129

4
C2

FCA +
11413

108
CFC

2
A + C2

FTFnf [48ζ(3)− 46]

+CFCATFnf

[

−48ζ(3)− 556

27

]

− 140

27
CFT

2
Fn

2
f

}

(21)
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are the first three coefficients of the quark-mass anomalous dimension. Here, ζ is Riemann’s
zeta function, with value ζ(3) ≈ 1.202 057. Our aim is to evaluate a = a(µ) and m = m(µ)
for µ arbitrary, assuming that their values, a0 = a(µ0) and m0 = m(µ0), are known at some
starting scale, µ0.

Beyond the leading order, Eq. (18) cannot be exactly solved for a. A perturbative solution
reads

a = a0

[

1− a0β0ℓ+ a20ℓ(β
2
0ℓ− β1) + a30ℓ

(

−β3
0ℓ

2 +
5

2
β0β1ℓ− β2

)

+O(a40ℓ
4)
]

, (22)

where ℓ = ln(µ2/µ2
0). The leading logarithms in Eq. (22) may be resummed by writing [42]

a =
a0

1 + a0ℓ [β0 + a0β1 + a20(−β0β1ℓ/2 + β2)]
. (23)

We recover the exact leading-order solution of Eq. (18) by discarding the terms of O(a20) in
the denominator of Eq. (23).

Knowing the µ dependence of a, it is sufficient to obtain m as a function of a. Dividing
Eq. (19) by Eq. (18), we obtain a differential equation which may be exactly solved for m,
given the coefficients of β and γm to a certain order. The exact solutions to leading and
next-to-leading orders read

m =m0

(

a

a0

)γ0/β0

, (24)

m =m0

(

a

a0

)γ0/β0

(

β0 + aβ1

β0 + a0β1

)γ1/β1−γ0/β0

, (25)

respectively. A perturbative solution of Eq. (19) similar to Eq. (22) is given by

m =m0

{

1− a0γ0ℓ+ a20ℓ
[

γ0
2
(β0 + γ0)ℓ− γ1

]

+ a30ℓ

[

−γ0

(

β2
0

3
+

β0γ0
2

+
γ2
0

6

)

ℓ2

+

(

β0γ1 +
β1γ0
2

+ γ0γ1

)

ℓ− γ2

]

+O(a40ℓ
4)

}

, (26)

where ℓ is defined below Eq. (22). By iterating Eq. (26), we may generate a closed expression
for the mass parameter µ̄ = m(µ̄) in terms of a and m for µ arbitrary:

µ̄ =m

{

1 + aγ0l + a2l
[

γ0
2
(β0 + γ0)l − 2γ2

0 + γ1

]

+ a3l

[

γ0

(

β2
0

3
+

β0γ0
2

+
γ2
0

6

)

l2

+

(

−3β0γ
2
0 + β0γ1 +

β1γ0
2

− 2γ3
0 + γ0γ1

)

l + 4γ3
0 − 4γ0γ1 + γ2

]

+O(a4l4)

}

, (27)
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where l = ln(µ2/m2). The right-hand side of Eq. (27) is manifestly RG invariant through
O(a3).

In the remainder of this section, we shall consider QCD with one massive quark and
nf − 1 massless flavours. The relation between the pole mass, M , and m(M) at next-to-
leading order is given by [20,43]

M

m(M)
= 1 + a(M)CF + a2(M)K0 +O(a3), (28)

where [43]

K0 = CF

[

3

4
ζ(2)− 3

8

]

+ C2
F

[

3

4
ζ(3) + ζ(2)

(

−3 ln 2 +
15

8

)

+
121

128

]

+CFCA

[

−3

8
ζ(3) + ζ(2)

(

3

2
ln 2− 1

2

)

+
1111

384

]

+ CFnf

[

−ζ(2)

4
− 71

192

]

≈ 17.151 430− 1.041 367nf . (29)

Here, ζ(2) = π2/6 and the value of ζ(3) is listed below Eq. (21). Using Eq. (28) along with
Eqs. (22) and (26), we may express M entirely in terms of MS parameters, viz.

M =m
{

1 + a(γ0l + CF ) + a2
[

γ0
2
(β0 + γ0)l

2 +
(

−2γ2
0 + γ1 + CF (β0 + γ0)

)

l − 2γ0CF

+K0

]

+O(a3l3)
}

, (30)

where l is defined below Eq. (27). The right-hand side of Eq. (30) is RG invariant through
O(a2) as it must be. Substituting Eq. (28) into Eq. (27) evaluated at µ = M , we obtain a
closed expression of µ̄ in terms of M [44],

µ̄ = M
{

1− a(M)CF + a2(M) [CF (2γ0 + CF )−K0] +O(a3)
}

. (31)

In Eqs. (28), (30), and (31), a refers to nf quark flavours, i.e., a = a(nf ). Finally, we list
the matching condition for a at the heavy-flavour threshold, µ = M . It follows from the
decoupling relation found in Ref. [39] and reads

a(nf )(M) = a(nf−1)(M)
{

1 +
[

a(nf−1)(M)
]2
TF

(

15

16
CF − 2

9
CA

)

+O(a3)
}

. (32)
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Adel and F.J. Ynduráin, Madrid University Report No. FTUAM 95–2, hep–ph/9502290
(February 1995).]; M.C. Gonzalez-Garcia, F. Halzen, and R.A. Vázquez, Phys. Lett. B
322, 233 (1994).

[16] B.A. Kniehl, in Reports of the Working Group on Precision Calculations for the Z
Resonance, edited by D.Yu. Bardin, W. Hollik, and G. Passarino, CERN Yellow Report
No. 95–03 (March 1995) p. 299.

[17] K-I. Aoki, Z. Hioki, R. Kawabe, M. Konuma, and T. Muta, Prog. Theor. Phys. Suppl.
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FIGURE CAPTIONS

Figure 1: Difference (in MeV) between the MS and OS evaluations of MW via ∆r to O(ααs)
(dashed lines) and O(αα2

s) (solid lines) with ξc = ξm = 1 as a function of MH for Mt = 168,
180, and 192 GeV. Upper curves correspond to larger Mt values.

Figure 2: µc dependence of the OS evaluation of MW (in GeV) via ∆r to O(ααs) (dashed
line) and O(αα2

s) (solid line) for Mt = 180 GeV and MH = 300 GeV.

Figure 3: µc and µm dependences of the MS evaluation of MW via ∆r to (a) O(ααs) and
(b) O(αα2

s) for Mt = 180 GeV and MH = 300 GeV. The contours of constant deviation
(in MeV) from the value at ξc = ξm = 1 (marked by +) are shown in the (log2 ξc, log2 ξm)
plane. The saddle points in this plane are marked with “x;” the maxima and minima on the
diagonal ξc = ξm are marked with “o.”

Figure 4: µc dependence of the MS evaluation of MW (in GeV) via ∆r to O(ααs) (dashed
line) and O(αα2

s) (solid line) with µc = µm for Mt = 180 GeV and MH = 300 GeV.

Figure 5: Central values and QCD-related errors of MW (in GeV) evaluated via ∆r to
O(ααs) (dashed lines) and O(αα2

s) (solid lines) with 1/ξmax ≤ ξc, ξm ≤ ξmax for Mt =
180 GeV and MH = 300 GeV as a function of ξmax.
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