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Nonlinear σ Model Treatment of Quantum Antiferromagnets in a Magnetic Field

B. Normand, Jordan Kyriakidis, and Daniel Loss
Departement für Physik und Astronomie, Universität Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland.

(February 15, 2018)

We present a theoretical analysis of the properties of low-dimensional quantum antiferromagnets
in applied magnetic fields. In a nonlinear σ model description, we use a spin stiffness analysis, a
1/N expansion, and a renormalization group approach to describe the broken-symmetry regimes of
finite magnetization, and, in cases of most interest, a low-field regime where symmetry is restored by
quantum fluctuations. We compute the magnetization, critical fields, spin correlation functions, and
decay exponents accessible by nuclear magnetic resonance experiments. The model is relevant to
many systems exhibiting Haldane physics, and provides good agreement with data for the two-chain
spin ladder compound CuHpCl.

PACS numbers: 75.10.Jm, 75.30.Cr, 75.40.Cx

I. INTRODUCTION

The importance of low-dimensional spin systems in re-
vealing fundamental quantum mechanical properties has
been recognized since Haldane’s conjecture1 concerning
the effects of quantum fluctuations in integral- and half-
integral-spin antiferromagnetic (AF) chains. The key
quantity is the topological term arising from the quan-
tum spin phase, and similar considerations have since
been extended to anisotropic and higher-order interac-
tions, higher dimensions (planes), and coupled chains
(spin ladders), largely driven by materials and experi-
ment. Magnetic flux within a sample can alter the effec-
tive spin magnitude, and features visible in an applied
field include spin gaps and magnetization plateaus.2

Recent progress in metalloorganic synthesis has fur-
nished new classes of low-dimensional antiferromagnets
(AF) whose small exchange constants make their full
magnetization response, including saturation, accessible
to laboratory fields. The measured magnetization curves
of some such materials, thought to be prototypical quan-
tum magnets, in fact exhibit certain features which are
rather classical. Examples on which experimental inter-
est has focused are the Haldane (S = 1) chain NENP,3

the planar system CFTD,4 and the two-chain spin lad-
der CuHpCl.5,6 We will focus on the ladder geometry of
CuHpCl, the best-characterized sample in recent litera-
ture.
We consider the quantum AF system in an exter-

nal magnetic field using the nonlinear σ model (NLsM).
While this widely-applied treatment is in fact semiclassi-
cal, being truly valid only in the limit of large on-site spin
S, it has in the past formed the basis for many funda-
mental deductions concerning the quantum limit of an-
tiferromagnetic spin systems7–9. We will demonstrate
here its validity in the case of all effectively integral-spin
quantum systems in appreciable magnetic fields, and pro-
vide justification for this result in terms of suppression of
quantum fluctuations by the field. Such systems display
an ideal quantum phase transition, driven by the applied
field, between a disordered regime with gapped spin exci-

tions at low field and a quasi-long-range ordered regime
with gapless excitations at higher field.
This model presents an ideal example of symmetry

breaking in condensed matter systems. The O(3) symme-
try of the spin Hamiltonian, and of its low-energy descrip-
tion in terms of the NLsM, is broken on a purely classical
level. However, at low fields this symmetry is completely
restored by strong quantum fluctuations, a well-known
property of the NLsM, which has been used to illus-
trate the effect of asymptotic freedom (or “confinement
of excitations”).10 In contrast, quantum fluctuations may
be suppressed by fields which are sufficiently strong but
remain experimentally accessible, with the consequence
that the full O(3) symmetry cannot be restored, and the
spin system is reduced to the lower XY or O(2) symme-
try. This XY symmetry, in the plane perpendicular to
the applied field direction, remains sufficient that there
can be no true long range order, but instead a quasi-
long-range order characterized by spin-spin correlation
functions which decay in space-time with a power law
form.
The outline of this paper is as follows. In Sec. II we de-

rive the form of the NLsM in a magnetic field, using the
geometry of the two-chain ladder system. With a view to
experimental comparison we include magnetic saturation
by applying a total-spin constraint. In Sec. III we analyze
the spin stiffness of the model, which allows us to deduce
the general behavior, correlation length, spin gap and
critical field at zero temperature, and also the effects of fi-
nite temperature and system size. In Sec. IV we consider
the 1/N expansion, which is well suited for describing the
low-field, disordered regime. Sec. V contains an exten-
sive renormalization group (RG) study of the model over
the entire field range. We derive the coupled RG equa-
tions for the 1+1-dimensional (1+1d) system and present
their general solution. This allows us to show how the
equations return the physics of symmetry-breaking and
-restoration in the previous paragraph, and to discuss
the issue of renormalization and gauge-invariance. We
compute in Sec. VI the magnetization of the model us-
ing a high-field expansion, and in Sec. VII calculate spin
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FIG. 1. Representation of two-chain ladder system and co-
ordinate axes. J = Jx is the intrachain and J ′ = 2Jy the
interchain exchange coupling.

correlation functions for the low- and high-field regimes.
In Sec. VIII we compare our results with experimental
data from magnetization and nuclear magnetic resonance
(NMR) spin-relaxation measurements. Sec. IX summa-
rizes our conclusions, and discusses the variety of systems
and physical problems to which the formalism is applica-
ble.

II. NONLINEAR σ MODEL

We consider the ladder geometry of the compound
CuHpCl.5 The Hamiltonian for the system in a magnetic
field b = g̃µBB may be written as

Ĥ =
∑

i;m=1,2

(
J Ŝm,i · Ŝm,i+1 + J ′Ŝ1,i · Ŝ2,i + b · Ŝm,i

)
,

(2.1)

where J is the superexchange interaction between spins
in each chain and J ′ the interchain, or ladder “rung”,
interaction. We choose Nx-site chains with periodic
boundary conditions in both directions, and the geom-
etry shown in Fig. 1, such that Jx = J , Jy = J ′/2,

B = (0, 0, B), and Ŝm,Nx+i = Ŝm,i. Following the stan-
dard procedure in the derivation of the NLsM,1,11–14 the
coherent-state representation of the spin Ŝm,i is written
as SΩm,i ≃ S[(−1)i+mnm,i+alm,i], where nm,i is a stag-
gered spin (the Néel vector) with unit magnitude, and
lm,i describes the spin fluctuations perpendicular to nm,i.
On proceeding to the continuum limit, the Hamiltonian
is expressed in coherent-state representation as

H =

∫
dr


1

2
S2

∑

j=x,y

Jj

[
(∂jn)

2
+ 4l2

]
− S

a
l · b


 .

(2.2)

The full Euclidean action SE = SWZ+
∫ β
0 dτH in space

r = (x, y) and inverse temperature τ (β = 1/kBT ) con-
tains a Berry-phase, or Wess-Zumino, term whose origin
lies in the solid angle subtended by the fluctuating quan-
tum spin phases:

SWZ = i
S

a2

∫
dτ dr

[
φ̇− al · (n ∧ ṅ)

]
+ 4πiS (P1 + P2) .

(2.3)

Here, φ is the azimuthal angle, and P1 = P2 =
(1/4π)

∫
dτ dx (n ∧ ṅ) · ∂xn are topological terms which

give the Pontryagin index on each chain when ∂yn = 0,
as is the case in a ladder of only two chains.15 The last
term in Eq. (2.3) is therefore i(4πP1)2S, demonstrating
that the system will have integral-spin characteristics for
any value of S, and the topological term may thus be
ignored.16,17

Integrating out the fluctuations l about the staggered
spin configuration of n, subject to the orthogonality con-
straint n · l = 0, yields the classical solution14,18

lcl =
1

4aSJ̄
{i (n ∧ ṅ) + [b− n (b · n)]} , (2.4)

where J̄ = Jx+ Jy. Finally, the corresponding action for
the quasi-one-dimensional (1D) ladder system, in 1+1
Euclidean dimensions denoted by µ, is

SE =
1

2g

∫
dτ dx

{
(∂µn)

2 −
[
b2 − (n · b)2

]

+ 2ib · (n ∧ ṅ)
}
, (2.5)

where g = (2/NyS)
√
J̄/Jx is the bare coupling constant,

and the integral over τ is from zero to LT = cβ, with

c = 2Sa
√
JxJ̄ the effective spin-wave velocity. (We use

h̄ = 1 throughout.) Summation over µ is implied in the
square. We have left explicit the number of chains Ny
in the ladder. For CuHpCl we have that Jy > Jx and
Ny = 2, whence the rung coupling may be treated as
effectively rigid. The form of the NLsM in an external
field given by Eq. (2.5) has been derived previously,11

and its implications considered in the low-field limit.18

We will examine in this work its properties at all field
strengths.
The action (2.5) may be cast in a physically more

transparent form by expressing the staggered spin in
spherical coordinates, n = (sin θ cosφ, sin θ sinφ, cos θ).
From the resulting Lagrangean density

LE =
1

2g

{[(
φ̇+ ib

)2
+ (∂xφ)

2

]
sin2 θ + (∂µθ)

2

}
(2.6)

one observes that the field induces a hard-axis anisotropy
through the term (n · b)2, which makes the spins tend
to align with the Néel vector n in the plane normal to
b. For strong fields, deviation of n from this plane is
small, and expansion to quadratic order in ϑ = θ − π/2
is valid. Taking the field along the z-axis, we find that
the Lagrangean

LE =
1

2g

{[(
φ̇+ ib

)2
+ (∂xφ)

2

]

− ϑ

[
∂2µ +

(
φ̇+ ib

)2]
ϑ

}
(2.7)



separates into contributions from in-plane and out-of-
plane fluctuations in the high-field regime, |b| > φ̇ ≡ ω.
We will use Eq. (2.7), and return to the condition for its
validity, below.
Finally, for a real magnetic system with small spin

quantum number S, application of a sufficiently large
magnetic field will cause total spin alignment, or satu-
ration, with a maximum magnetization given by Ms =
g̃µBSNs, where Ns (= NxNy here) is the total number
of sites in the system. This effect is not contained in the
NLsM (Eq. (2.5)) discussed above, where S is required
to be large (semi-classical). Furthermore a saturation of
the spin would correspond to large |l| and small |n|, ren-
dering invalid the expansion of S (below Eq. (2.1)). We
will include saturation by placing a limit, corresponding
to the desired experimental spin magnitude, on the spin
component (Sz) projected along the field. By this tech-
nique, the full spin vector remains primarily in the plane,
justifying the treatment of the uniform spin component
|l| as a small variable.
The succeeding experimental comparison (Sec. VIII)

will be simplified by treating Ms as a simple cutoff,
but we describe here briefly this systematic inclusion
of saturation in the model by the application of a con-
straint on the total spin. In addition to the constraints
n · l = 0 on the uniform and staggered spin compo-
nents, and n2 = 1 on the magnitude of the staggered
spin, we introduce a further constraint enforcing conser-
vation of spin. For a field applied along the z axis, the
conserved quantity is the z-component of the total spin

Sz ≡ 〈{Ω}|Ŝz|{Ω}〉 → S
∫
dx lz, where the continuum

limit is taken in the final step. While the previous con-
straints are purely local, in that they must be enforced at
each spacetime point, the spin constraint is local in time
but global in space. All of the constraints are treated by
inserting (functional) delta functions into the measure of
the propagator, in the form

〈{Ω}b| e−βH |{Ω}a〉

=

∫
Dn(x, τ)

∫
Dl(x, τ) e−fC[n,l]e−SE[n,l], (2.8)

where the function fC[n, l] specifies the constraints using
Lagrange multipliers. Integrating over the fluctuating
spin field l, which is now constrained, and over all the
Lagrange multipliers, one obtains the Euclidean action

S[n] = SWZ +
1

2g

∫
dτ dx (∂µn)

2

− 1

2g

∫
dτ

(D[n] + 2iNsσ)
2

A[n]
− SNsβbσ, (2.9)

where D[n] =
∫
dx (n∧ ṅ)z and A[n] =

∫
dx (1−n2

z), and
we have introduced the scaled spin σ = Sz/(SNs), −1 ≤
σ ≤ 1. In this action the field b is coupled only linearly to
the spin σ, as in ferromagnetic systems, and in contrast
to Eq. (2.5), where it appears quadratically. This linear
coupling is a direct consequence of the spin constraint,

xy

z B

FIG. 2. Ladder system with twisted staggered moment.

and one may recover the previous action (Eq. (2.5)) by
allowing σ to fluctuate in time, relaxing the condition
|σ| ≤ 1, and integrating over σ(τ). Evaluation of the
partition function with saturation, requires summing the
constrained action (Eq. (2.9)) over all degrees of freedom,
which include the allowed values of |Sz | ≤ NsS. This
procedure limits M to Ms at large fields, and provides
a consistent description of a second phase transition, to
saturation, which occurs at high fields. In Secs. III-V
we will concentrate on the symmetry-breaking quantum
phase transition (Sec. I), which occurs at a lower field
on the order of the zero-field gap (below), and so the
discussion there will not involve further consideration of
the spin constraint.

III. SPIN STIFFNESS

To gain initial insight into the effect of the magnetic
field, we consider the spin stiffness of the ladder system
using the method of Ref. 19.20 We take (Fig. 2) the stag-
gered spin configuration to be subject to a twist ψ in the
plane, n(τ, 0) = (1, 0, 0) and n(τ, L) = (cosψ, sinψ, 0).
This is conveniently represented by n = R(x)σ, where
R is a matrix for rotation by ψx/L about the z axis, and
σ = σ(τ, x) a 3-component vector with value (1, 0, 0) at
the spatial endpoints. The cross-term in (∂µn)

2 and the
third term in Eq. (2.5) are total derivatives in x and τ
respectively, and will be discarded for the present pur-
poses. This is equivalent to considering only paths with
no winding in Euclidean space, and gives the action the
form

SE =
1

2g

∫
dτ dx

{
(∂µσ)

2
+

(
ψ2

L2
− b2

c2

)(
1− σ2

3

)}
.

(3.1)

To 1-loop order in g, the spin stiffness is given by

ρs =
1

2
cL

∂2F

∂ψ2

∣∣∣∣
ψ=0

=
cL

2LT

∂2

∂ψ2

∣∣∣∣
ψ=0

{
LLT
2g

[
ψ2

L2
− b2

c2

]



+
1

2
Tr ln

[
k2 − ψ2

L2
+
b2

c2

]}

= ρ0s

[
1− g

LLT

∑

k

1

k2 + (b/c)2

]
, (3.2)

where ρ0s = c/2g is the classical (bare) value, and the sum
includes both quantum and thermal (through the finite
“length” LT ) corrections to first order in g.
We consider first the low-temperature, or “quantum”

regime LT ≫ L. We evaluate the summation between the
spatial limits π/L and π/a (this change to open boundary
conditions does not affect the result), and introduce the
“magnetic length”

Lm = πc/b (3.3)

to obtain the expression

ρs = ρ0s

[
1 +

g

2π
ln

(
a/L+

√
(a/L)2 + (a/Lm)2

(1 +
√
1 + (a/Lm)2)

)]
.

(3.4)

The system length L in Eq. (3.4) may be substituted by
a correlation length ξ, beyond which segments of the lad-
der behave independently, and ξ then computed from the
condition ρs = 0. We emphasize that ρs is to be consid-
ered as a local stiffness, meaningful only on length scales
L ≤ ξ. In the zero-field limit (Lm → ∞) one obtains the

result ξ0 = Aae2π/g = AaeαπS , where α =
√
Jx/J̄ intro-

duces a dependence on the ladder coupling constants,17

and A is a nonuniversal constant of order unity which
depends on the integration cutoff. The general solution
can be expressed as

ξ(B) = 2L∗
m/[1− (L∗

m/Lm)
2]

≡ ξ0/[1− (B/B∗)2], (3.5)

from which we see that the correlation length ξ(B) di-
verges at a critical field B∗, where L∗

m = a sinh(2π/g).
For fields B < B∗, the system has only short-
range correlations, and the finite correlation length

may be written as ξ(B) = aeαπS̃ , where S̃ =
S
[
1− (g/2π) ln

(
1− (L∗

m/Lm)
2
)]

is a growing value of
the effective spin. There is no spontaneous breaking of
the O(3) spin symmetry. For B > B∗, the field en-
forces a long-ranged correlation throughout the system,21

and it is most convenient to write the spin stiffness as
ρs = ρ0s [1− (g/2π) ln(1 + Lm/a)], a quantity which re-
covers the bare value ρ0s as B → ∞. Finally, at the
transition B∗, it is clear from Eq. (3.5) that the diverg-
ing correlation length corresponds to the closing of a gap
∆ ∼ ξ−1 to spin excitations with the form

∆ ∝ 1− (B/B∗)2 . (3.6)

This situation is summarized in Fig. 3. While ∆ is the
gap to all fluctuations in the low-field regime where O(3)

BB*0

ρs
0

sρ

ξ
-1

~∆

ξ0
-1

FIG. 3. Schematic behavior of spin stiffness and correlation
length, or spin gap, with applied field.

spin symmetry is maintained, we note that at high fields
not all the modes are gapless. In this regime (strictly
B ≫ B∗) the symmetry is lowered to O(2), and while in-
plane (φ) fluctuations (Eq. (2.7)) are massless, excitation
modes (ϑ) in the direction of the field, or out of the plane
it enforces, are gapped with “mass” b.
We may further employ the spin stiffness as a means

of characterizing the behavior of a system of finite size
L, and at finite temperatures, for different values of the
magnetic field. This is essentially a matter of comparing
the corresponding length scales L,LT and Lm

19. We
present results for the cases of i) weak and ii) strong fields
in the following three regimes: a) quantum, i) Lm, LT ≫
L and ii) LT ≫ L ≫ Lm, b) classical renormalized, i)
Lm, L ≫ LT and ii) L ≫ LT ≫ Lm, and c) classical, i)
Lm, L ≫ a ≫ LT and ii) L ≫ Lm, a ≫ LT . Following
Ref. 19 we quote the stiffness in dimensionless units of
ρs/c = (1/2g)(ρs/ρ

0
s). For weak fields we find

ρs
c

=





1
4π ln

[
ξo
2

(
1
L +

√
1
L2 + 1

L2
m

)]
, Lm, LT ≫ L

(ξB(T )−min[L,Lm])/12LT , Lm, L≫ LT
(ξcl − L)/12LT , Lm, L≫ a≫ LT .

(3.7)

ξ0 denotes the quantum correlation length defined above,
ξcl = 6LT /g is the classical correlation length, and

ξB(T ) =
3LT
π

[
ln

(
C

ξ0
2LT

√
1 +

√
1 + (LT /Lm)2

)]
,

(3.8)

with C ∼ O(1) another nonuniversal constant, contains
the renormalizing effect of quantum fluctuations on ξcl.
These results are all directly analogous to the zero-field
case,19 with the field entering as a quadratic correction
where relevant. In a strong applied field (ii),



ρs
c

=





1
4π ln

[
ξo(

√
1+(Lm/L)2)

Lm+
√
a2+L2

m

]
, LT ≫ L≫ Lm

(ξT (B) − Lm)/12LT , L≫ LT ≫ Lm
(ξcl − Lm)/12LT , L≫ Lm, a≫ LT ,

(3.9)

where now the renormalized classical correlation length
has the field-dominated form

ξT (B) =
3LT
π

[
ln

(
C
ξ0
Lm

√√
1 + (Lm/LT )2 + Lm/LT

)]
.

(3.10)

The general characteristic of all the above results is a log-
arithmic dependence of the spin stiffness on the length
scales of system size, temperature, and field where quan-
tum fluctuations are important, turning to a power-law
dependence in the classical regime. In the high-field sit-
uation the scale Lm of the field replaces LT as the de-
termining parameter (cf. Eqs. (3.7, 3.9)). Equivalent
results for finite systems may also be deduced from the
1/N expansion, which we consider in the following sec-
tion.
We will later compute the magnetization M =

∂F/∂B|ψ=0, both in the thermodynamic limit and for
systems of finite size, from the same type of free energy
as in Eq. (3.2). This undertaking is simplified in the light
of insight gained from 1/N and RG analyses, and is thus
deferred to Sec. VI. At this point we note only that the
magnetization calculated in this framework is not zero
in the low-field regime, as would be required of a sys-
tem with a spin gap and no broken symmetry. This is a
consequence of the approximation, implicit in Eq. (2.7)
and in deriving the free energy F (b) (Eq. (3.2)), that the

field b be large on the scale of |φ̇|. We may neverthe-
less conclude that analysis of the spin stiffness itself is
qualitatively revealing of many properties of the system.

IV. 1/N EXPANSION

To address the situation in the weak-field regime, we
adopt instead a 1/N expansion,10 which is expected to be
appropriate in describing spin-gap phases. Here the stag-
gered spin n is assumed to exist in anN -dimensional spin
space, in which only the direction nz is selected by the
magnetic field, and a controlled expansion may in princi-
ple be performed in the small quantity 1/N to compute
fluctuation corrections to the saddle-point solution. The
relevant parts of the action are (cf. Eq. (3.1))

SE =
1

2g

∫
dτ dx

[
(∂µn)

2 − b̄2
(
1− n2

z

)
− iλ

(
n2 − 1

)]
,

(4.1)

where b̄ denotes b/c, and the constraint that the spin n

have unit magnitude is made explicit with the Lagrange

multiplier iλ. Integration over n and taking the func-
tional derivative of the resultant effective action with re-
spect to λ yield an equation for the saddle-point value of
the Lagrange multiplier,

1

g
= (N − 1)

∑

k

1

k2 + iλ
+
∑

k

1

k2 + iλ+ b̄2
, (4.2)

in which the B-field term is found to appear only at
O(1/N). iλ appears as a mass, or cutoff term in mo-
mentum integrations, and is thus an upper length scale
for cooperative processes in the system, or simply a cor-
relation length (inverse excitation gap). Thus by writing
the saddle-point solution as iλ = c2π2/ξ(B)2, and car-
rying out the summation at low T from 0 to π/a, this
correlation length is determined from

1 = − g

2π
ln



(

a/ξ

1 +
√
1 + (a/ξ)2

)N−1

×
( √

(a/ξ)2 + (a/Lm)2

1 +
√
1 + (a/ξ)2 + (a/Lm)2

)]
, (4.3)

which should be compared with ρs = 0 emerging from
Eq. (3.4).
In the weak-field regime, ξ ≪ Lm, one finds

ξ ≃ (1/2)ae2π/Ng[1 + (a2/8NL2
m)e

4π/g]. (4.4)

This is an O(1/N) correction to the previous result,
but there is also a difference of a power of 1/N in
the exponent. Taking the field derivative, the result
∂b(cπ/ξ)

2 = −2b/N ensures that the magnetization con-
tribution from the k summation terms in F are identi-
cally zero to O(1/N). At the same order, the field deriva-
tive of the k-independent term b2+c2π2/ξ2 is 2b(1−1/N).
The behavior required of a gapped system is obtained in
the weak-field regime on making the well-known identi-
fication, deduced by comparison with exact RG results
(see Ref. 10 and below) N → N − 2. Returning to the
physical situation of the O(3) magnet, the magnetization
is zero at all fields B < B∗. The saddle-point solution for
ξ(B) (4.3) becomes precisely that deduced from Eq. (3.4)
(up to a negligible term retained from a lower cutoff),
with the same field B∗ for divergence of ξ. For the O(3)
case we thus deduce the expected gapped state, with no
breaking of spin rotational symmetry.
For completeness, we note the strong-field results

of the 1/N treatment. When the magnetic length
is small (Lm ≪ ξ), the correlation length ξ ≃
(1/2)ae2π/g(N−1)(a/Lm)

1/(N−1) has a direct field depen-
dence. The magnetization is given to leading order by
M ≃ −C + 2bL2

m/[(N − 1)ξ2]. The quantity appearing
in these expressions is not N but N − 1, indicating again
the lowering of symmetry in the field direction above a
finite critical field B∗. However, these high-field results
are not meaningful in the O(3) case.



In summary, the spin stiffness and 1/N techniques
taken together yield a consistent picture at both weak
and strong magnetic fields. However, while the Ansatz
N → N − 2 has been applied previously,10 and leads to
consistency between the results of this and the previous
section, it cannot be taken to be entirely satisfactory. For
this reason we proceed by applying the RG technique to
the model of Eq. (2.5).

V. RENORMALIZATION GROUP

We consider next a renormalization-group (RG) study
of the NLsM in an applied field. This approach yields
meaningful results over the full parameter range. We
adopt a standard Wilson momentum-shell treatment,
further details of which are presented in App. 1. In brief,
the action in the form

SE =
1

2g

∫ LT

0

dτ

∫ L

0

dx [(∂µn)
2 − b̄2(1 − n2

z) + 4ib̄nxṅy]

(5.1)

may be reexpressed in terms of variables φ, representing
in-plane fluctuations of n, and

√
gσz = nz, representing

out-of-plane fluctuations. The latter is chosen to facili-
tate a perturbative expansion in g, which yields

LE = 1
2g

(
A′ − b̄2

)
− 1

2σz(−∂
2
µ + b̄2 −A′)σz +O(g).

(5.2)

A′ = (∂µφ)
2 + 2ib̄φ̇ denotes in-plane fluctuation terms,

which, because φ(τ, x) is assumed to vary slowly, can be
taken to be a small constant (no fast Fourier modes) in
the momentum shell γΛ < |k| < Λ (γ → 1) around the
finite upper cutoff Λ = π/a set by the lattice length scale.
By expanding in A′, the form of Eq. (5.2) is recovered,
but with new coefficients g(a′) and b̄(a′)2 given at 1-loop
order by

1

g(a′)
=

1

g0
− Tr′

1

−∂2µ + b̄2
, (5.3)

b̄(a′)2 = b̄20 − g0Tr
′ ln
(
−∂2µ + b̄20

)
. (5.4)

The integrals represented by the partial traces (Tr′) are
performed over an isotropic momentum shell in 1+1d,
with ΛT = Λ. Alterations arising from considering in-
stead a rectangular momentum shell, with separate inte-
gration over space and inverse temperature, would affect
only non-universal prefactors.
Inspection of the equation (5.3) for renormalization of

the coupling constant g indicates already the effect of the
field. Performing the momentum-shell integral yields

g0
g(a′)

= 1− g0
4π

ln
1 + (a/Lm)

2

(a/a′)2 + (a/Lm)2
(5.5)

for a ≤ a′ ≤ L = min[L,LT ], assuming (see below)
that the flow of Lm is at most weak. For weak fields
Lm ≫ L we see that g0/g(L) = 1 − (g0/2π) ln(L/a),
i.e. g is renormalized by the full effects of quantum
fluctuations. For strong fields L ≫ Lm ≫ a, we have
g0/g(L) = 1 − (g0/2π) ln(Lm/a), and the coupling con-
stant g is independent of the system length scale L. In
this case renormalization is weak, and for very strong
fields Lm ≪ a it vanishes (g0/g(L) = 1), demonstrating
the suppression of quantum fluctuation effects by high
fields.
Following the standard RG procedure, we define the

flow parameter l = ln(a′/a), whence dl = da/a. Tak-
ing the derivative with respect to l of Eqs. (5.3,5.4), we
obtain the differential form of the coupled RG equations

dg

dl
=
g2

2π

1

1 + β̄2
, (5.6)

dβ̄2

dl
= 2β̄2 − g

2π
ln
(
1 + β̄2

)
. (5.7)

These represent an extension of the usual RG equations
to include a magnetic field B, contained in β̄ = a′b̄(a′) (=
a′b(a′)/c). Eq. (5.6) is the conventional “β-equation”,
the terminology given to the renormalization of the cou-
pling constant, but with an additional field term in the
denominator. Clearly, a strong field restricts flow to the
strong-coupling (disordered) limit, and, as observed in
the previous paragraph, acts to suppress quantum fluc-
tuation effects. This points to a “deconfinement of ex-
citations” at suitably high field. Eq. (5.7) expresses the
renormalization of the magnetic field term b = g̃µBB
with dynamical exponent z = 1 (from the first term,
which arises purely from the presence of a′ in the quan-
tity β), but with additional, logarithmic suppression of
this flow at strong field and coupling (second term).
At this point some commentary is in order regarding

the above RG equations. The NLsM in the presence of
a magnetic field may be expressed in the gauge theoretic
form22,23

L =
c

2g

[
1

c2

(
∂τnα +

ig̃µB
h̄

ǫαβγBβnγ

)2

+ (∂xnα)
2

]
,

(5.8)

with the field term g̃µBB/c in the role of a gauge poten-
tial. From this it has been argued23 that the field term
should scale only with temperature (the z = 1 behavior
of the first term in Eq. (5.7)), and cannot be renormal-
ized separately, for example by interactions, as this would
violate the gauge invariance. This scaling hypothesis
stands in contrast to the result (Eq. (5.7)) of the Wilson
momentum-shell RG approach taken above, where the
second term indeed gives a field renormalization, albeit
one which is logarithmically weak. However, the present
situation is not unique: similar breakdown of this scal-
ing occurs in other cases, particular examples being the
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Fermi liquid and the Luttinger liquid, also considered in
Ref. 23, where there is a temperature-independent renor-
malization of the field term.24,25 We note also that on
taking into account magnetic saturation (Sec. II) in the
present model, additional field terms would arise which
preclude the use of a gauge-invariance argument. Finally,
the qualitative features of the discussion are not affected
by the logarithmic term in Eq. (5.7), because its field
renormalization is weak.
In analyzing the content of the RG equations (5.6,5.7),

we concentrate first on the fixed points, in order to obtain
a qualitative picture of the RG flow diagram. Seeking a
fixed point by a weak-field expansion around β̄∗ = 0, we
find

dg

dl
≃ g2

2π
,

d ln β̄2

dl
= 2− d ln g

dl
, (5.9)

which may be solved to yield

g0
g

= 1− g0
2π
l, β̄ = β̄0e

l
(
1− g0

2π
l
)1/2

. (5.10)

The fixed point (g∗, β̄∗) = (∞, 0) is evidently stable if the
flow is stopped at l∗ = 2π/g0. The system will flow to
this strong-coupling regime if the starting value β̄0 is suf-
ficiently small. The length scale L∗ = ael∗ at which the
flow stops may be compared with the spatial and ther-
mal dimensions (L,LT ) of the system to calculate directly
the effects of finite size and temperature (cf. Sec. III).
At strong fields (β̄ → ∞), dg/dl = 0, or g = g0, and sim-
ilarly d ln β̄2 = 2dl, from which it follows that b̄(l) = b̄0,
i.e. in this regime neither the coupling nor the field is
renormalized.
The RG equations (5.6,5.7) may be solved numerically

in the form

∂x

∂l
=

−1

l(1 + l2y2)
,

∂y

∂l
=

−1

2xyl3
ln(1 + l2y2), (5.11)

where x = 2π/g is the inverse coupling constant and
y = ab̄ corresponds to the field variable b/c only. Solu-
tion leads to the flow diagram in Fig. 4, which has the
following interpretation. The regime (i) of weak initial
B-field is the strong-coupling phase, with confinement of
(gapped) excitations. Here, the assumption (underlying
the perturbative RG treatment) of small g becomes in-
consistent, but one may still deduce the critical length
scale L∗, and that the magnetization M = 0. In this re-
gion O(3)-symmetry is restored by quantum fluctuations,
which may thereby be considered as “screening” the mag-
netic field. In contrast, the regime (ii) of strong initial
B-field corresponds to weak coupling, where g and b̄ are
only weakly renormalized. Here, the excitations are de-
confined on a length scale ξ̄(B) whose flow is governed by
B. In this region, quantum fluctuations are suppressed
by the magnetic field, and the broken O(3) symmetry
cannot be restored.
The properties of the broken- and unbroken-symmetry

phases may be further contrasted by considering the cor-
relation length ξ in each regime. This is a physical quan-
tity and so does not change under the RG flow, whence
dξ/da′ = 0 and

∂g

∂l

∂ξ

∂g
+
∂β̄2

∂l

∂ξ

∂β̄2
+ ξ = 0. (5.12)

At low fields, we find that −∂ξ/ξ ≃ 2π∂g/g, which has
the solution ξ0 = ξe2π(1/g0−1/g). If one assumes that
ξ → a (the bare lattice constant), as the system flows to
the strong-coupling limit (1/g0 → 0), then ξ0 = ae2π/g0

returns the same, finite physical correlation length as in
the previous analyses. For high values of the initial field
we have −2∂ξ/ξ ≃ ∂β̄2/β̄2, which leads to the relation
ξ0 = ξL/a (b̄0 is invariant) under the RG flow. Thus, for
any finite ξ during the flow, the bare correlation length
ξ0 is the system size L or LT , corresponding to the quasi-
long-range order expected of an XY system in one spatial
dimension.
Before concluding our RG analysis, we also consider

its qualitative predictions for the system magnetization,
a measurable quantity. This may be calculated as

M =
g̃µBa

c

∂F

∂β̄0
=
g̃µBa

c

(
∂β̄

∂β̄0

∂F

∂β̄
+

∂g

∂β̄0

∂F

∂g

)
. (5.13)

Once again, for weak fields we find that ∂g/∂β̄0 = 0

and ∂β̄/∂β̄0 = el
√
1− g0l/2π, where the latter expres-

sion will introduce the characteristic length scale L of the
short-range correlated phase. Now for any F (b̄) analytic
in b̄,

M(B0) ∼
√
1− g0

2π
ln

L
a
, (5.14)

from which it is clear that the magnetizationM(B0) van-
ishes in the scaling limit L → L∗ corresponding to strong
coupling (i.e. for all b̄0 sufficiently close to the fixed-point



value b̄0 = 0. Within linear response, this vanishing of
the magnetization M = χ⊥B corresponds to the vanish-
ing of the susceptibility χ⊥ ∼ ln(ξ/L) as the length of the
system increases into the disordered state.18 Hence the
RG framework returns a zero magnetization in the regime
where quantum fluctuations ensure no spontaneous sym-
metry breaking. At high fields the magnetization is fi-
nite, but its saturation in the physical system limits the
useful information which can be deduced from the above
approach without inclusion of the saturation constraint
(Sec. II).

VI. MAGNETIZATION

We compute the magnetization from the Lagrangean
LE of Eq. (2.7), which has separate contributions from
in- and out-of-plane spin fluctuations. The calculation
is valid in the regime |b| > φ̇ ≡ ω quoted in Sec. II,
and is thus effectively a high-field expansion. ω denotes
the energy of excitations of the system, which may be
taken to be spin waves (ω = ck) in the gapless regime.
The magnetization is given by M = g̃µB∂F/∂b, with
F = −β−1 lnZ obtained from the partition function Z =∫
DϑDφ exp(−SE). Within the approximations specified

below Eq. (2.7), the separable nature of LE gives the
resultM =Mo+Mi. The out-of-plane contributionMo is
purely dynamical, in the sense that ϑ fluctuations appear
only in the form (1/2g)ϑG−1ϑ. We may write G−1 =
G−1

0 −X , with the bare propagator given by G−1
0 = b2−

∂2τ−∂2x and the corrections byX = φ̇2+2ibφ̇. In the high-

field regime |φ̇/b| is small, so that contributions from X
may be neglected. The appropriate piece of the partition
function is readily evaluated as

Mo =
β

2

∑

k

1√
b2 + c2k2

coth
(

1
2β
√
b2 + c2k2

)
. (6.1)

The assumption of an excitation spectrum linear up to
the zone boundary is easily altered, for example to a sinu-
soidal form ωk = | sin ka| within the Brillouin zone, which
gives rise only to small numerical corrections. Working
consistently to lowest order in the small parameter c/b,
and in limit of low T , we find that this contribution is
simply a constant, Mo =

1
2Nxg̃µB, which corresponds to

a spatially uniform state. Small corrections of the form
M ′
o ∼ B lnB arise for either type of dispersion.
Treatment of the in-plane variables φ at finite temper-

atures is more involved. We first represent the relevant
part of the Lagrangean as

L̃E =
1

2g

[
−b2 − φ(∂2τ + ∂2x)φ + 2ibφ̇

]
− ib

βL
TrG0φ̇,

(6.2)

to separate the term quadratic in b which gives the classi-
cal, linear magnetization. A full treatment of φ ∈ [0, 2π]

involves decompactification to the interval −∞ < φ̃ <∞
and restoration of periodicity by summation of the par-
tition function over all winding number sectors m ∈ Z.
The phase is represented by φ(x, τ) = φ̃(x, τ)+ 2πmτ/β,

with φ̃ a periodic function of the inverse temperature
(φ̃(x, τ + β) = φ̃(x, τ)). This form takes into account
the possibility of windings in the space of τ , whereas
windings in x may be safely neglected for a large system
(L ≫ LT ). On expanding the action, noting that all

terms
∫ β
0 dτ

˙̃
φ vanish (integral of total derivative), and

discarding all terms independent of b for the purposes of
computing the magnetization, we obtain the correspond-
ing partition function

Z̃ = C0 exp

{
−Nsb

2

8J̄

} +∞∑

m=−∞
exp

{
Nsπ

2

2J̄β
m2 + i2παm

}
.

(6.3)

Here C0 is a constant and α = Nsb/4J̄ − Nx ln(ǫ +√
1 + ǫ2)/2ǫ, with ǫ = πc/ab, arises from the φ-linear

terms in Eq. (6.2). Because ǫ is a small parameter in the
approximation we employ, the second term in α simplifies
to Nx/2; this is also the origin of the results for Mo and
M ′
o. The sum over m in Eq. (6.3) is simplified on recog-

nizing that Z̃ may be represented by the θ3 function,31

in terms of which the (logarithmic) b-derivative yields

Mi = −g̃µB
{
Nsb

4J̄
+

2πNs
4J̄β

∞∑

m=1

(−1)m
sin(2παm)

sinh(Nsπ2m/2J̄β)

}
.

(6.4)

The latter term is a sawtooth form, shown as the quan-
tity Mf in Fig. 5(a), which is periodically extended from
the interval −1/2 < α < 1/2 to all of α. When super-
imposed on the linear part contained in the first term
of Eq. (6.4), Mf gives the step-like form shown in Fig.
5(b). The width of the steps scales as 1/Ns, so we see that
Mf is the finite-size correction to the linear magnetiza-
tion. Such effects are of considerable interest in molecular
magnets, where the small number of atoms gives rise to
well-defined steps.14 However, Mf becomes indiscernible
as the system size is taken to the thermodynamic limit,
which is the condition we investigate below. In closing
this section, we note that evaluation of the magnetization
in the NLsM for weak fields b, and particularly around
B∗, remains an open problem. Experimental comparison
for this regime (Sec. VIII) is facilitated by the knowledge
(Secs. III-V) that M = 0 below B∗.

VII. SPIN CORRELATION FUNCTIONS

Correlation functions describing the nature of the spin
order may be calculated directly in the NLsM framework
from
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〈T̂τ Ŝi(x, τ)Ŝj(0, 0)〉 = (−1)xS2〈ni(x, τ)nj(0, 0)〉
+(aS)2〈li(x, τ)lj(0, 0)〉, (7.1)

and used to compare the properties of the system at low
and high fields. T̂τ is the ordering operator in imagi-
nary time. In the low-field regime where full symmetry
is retained, the gap ∆ to all spin excitations results in
exponentially decaying spin correlations, reflecting the
short-range nature of the quantum disordered phase.
Above the critical field, as discussed previously, the

gap closes and the low-energy features are described by
an XY model for the plane normal to the field. The cor-
relation functions in this regime are discussed in detail
in App. 2. Because the quantities 〈nz(x, τ)nz(0, 0)〉 and
〈l+(x, τ)l−(0, 0)〉 (l± denotes lx ± ily) depend directly
on the gapped, out-of-plane fluctuations in ϑ, these re-
main short-ranged. However, 〈lz(x, τ)lz(0, 0)〉 is propor-
tional to ∂2τ 〈φ(x, τ)φ(0, 0)〉, which leads to a power-law
(or “quasi-long-ranged”) decay of the correlation func-
tion parallel to the field direction,

〈T̂τ Ŝz(x, τ)Ŝz(0, 0)〉 =
B̃

8πg

[
a2

(x − iτ)2
+

a2

(x+ iτ)2

]
.

(7.2)

We have omitted here a constant term proportional
to the square of the local magnetization. Similarly,
〈n+(x, τ)n−(0, 0)〉 = 〈exp(iφ(x, τ) − iφ(0, 0))〉, which
gives

〈T̂τ Ŝ+(x, τ)Ŝ−(0, 0)〉 = C̃(−1)x
(

a2

x2 + τ2

)(g/4π)

, (7.3)

a separate power-law form for the correlation function
perpendicular to the field direction. B̃ and C̃ are con-
stants. The results for the long-ranged parts of both lon-
gitudinal and transverse correlation functions are very

similar to those of a Luttinger-liquid description of the
gapless, broken-symmetry phase.32 The correlation ex-
ponent in Eq. (7.3) has a direct dependence on the bare
coupling constant, and may be identified as an effective
Luttinger-liquid exponent

K̃ =
π

2g
=
πS

2

√
Jx
J̄

= 0.42. (7.4)

This quantity is independent of the field, and in the
NLsM approach is rather close to the constant value32

K̃ = 1/2 given by bosonization for all ladder systems.

VIII. COMPARISON WITH EXPERIMENT

We turn to a comparison between the preceeding
physical ideas and experiments performed on the two-
chain, S = 1/2 spin ladder material CuHpCl. The
magnetization5 illustrates the transition from the gapped
regime of unbroken symmetry, and the nature of the
broken-symmetry phase, while nuclear magnetic reso-
nance (NMR) measurements of spin relaxation rates33

reveal some characteristics of the spin correlation func-
tions in both types of ground state.
From Sec. VI, the magnetization takes the simple form

M = −g̃µBNs(b/4J̄) +Mo +O(1/NyS), (8.1)

where Mo (Eq. (6.1)) becomes constant for the low tem-
peratures of most interest. While the linear term is al-
ways present, we have shown in Secs. IV and V that below
a threshold field B∗, where the system has a spin gap, it
is canceled by the corresponding correlation-length term.
As discussed in Sec. II, above an upper threshold (Bc2)
the magnetization will saturate at the value Ms. Here
we will for clarity treat saturation as a simple cutoff,
rather than pursuing the more complex but fully system-
atic method of Sec. II, which will be discussed elsewhere.
Because the transition at Bc2 is from an XY phase with
strongly suppressed quantum fluctuations to a fully po-
larized state with a spin-wave description, an exact treat-
ment is of less interest in the current context. Finally,
the O(1/NyS) term is included in Eq. (8.1) as a reminder
that large corrections are to be expected in any quanti-
tative comparison of a “highly quantum” (small NyS)
magnetic system with the semiclassical NLsM.
Specializing to the parameters of CuHpCl, the ex-

change constants deduced from magnetization and sus-
ceptibility measurements5,6 are J ′/kB = 13.2K and J/kB
= 2.4K, whence J̄/µB = 13.3T and Jx/µB = 3.6T. Tak-
ing the simplest case of constant Mo, and the lower crit-
ical field Bc1 for onset where M(Bc1) = 0, we obtain
Bc1 = J̄/g̃µB = 6.6T. The saturation field Bc2 is given
fromM(Bc2) =Ms as Bc2 = (4S/g̃µB)J̄ = 13.3T. These
values agree well with a linear extrapolation of the mag-
netization data at the lowest temperature in Ref. 5, which
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FIG. 6. Computed magnetization for the spin ladder sys-
tem CuHpCl (see text). Circles are data from Ref. [5].

yields Bc1 = 6.8T and Bc2 = 13.7T. The computed mag-
netization is shown in Fig. 6, where the dashed line in-
dicates the validity limit (|b| >∼ cπ/a) of the calculation.
The NLsM prediction of linear magnetization appears

closer to the data than a repulsive boson model21,34 and
other purely 1D approaches, such as bosonization32 and
simulations on a single ladder34 (or a Haldane chain,35

which has the same universality class), all of which pre-
dict square-root cusps at Bc1 and Bc2 not evident in the
data.5 For a temperature T = 0.42K ∼ ∆/25 this form
should be visible in the pure, 1d system34. This may
be indicative of a weak interladder coupling, which also
causes the real material to display 3D order at interme-
diate B and low T . The gradient of the linear region can
be written as

χ⊥
NLσM =

1

Ns

(
NsS

4J̄S − 2J̄/Ny

)

= χ⊥
AF

(
1

1− 1/(2NyS)

)
, (8.2)

where χ⊥
AF = (g̃µB)

2/4J̄a2 is the Néel susceptibility per
unit volume, the result for a classical antiferromagnet
with effective exchange coupling J̄ . The last term ex-
presses the deviation from classical behavior as a func-
tion of spin magnitude and the number of coupled chains.
That the magnetization adopts such a quasi-classical
form in the broken-symmetry regime, at least in systems
with no topological term, may be ascribed in part to
suppression of quantum fluctuations by the field (effec-
tive beyond Bc1), and possibly also to the presence of
higher-dimensional couplings.
Further commentary is in order concerning the agree-

ment between the NLsM results and experiment. The
semiclassical model has recently been used with consid-
erable success, also for the field response, of small (spa-
tially uniform) systems with rather small S.36 However,
the apparent convergence of theory and experiment for
the “maximally quantum” case of NyS = 1 in CuHpCl is
in fact a somewhat fortuitous consequence of the param-

eter ratio J/J⊥. The magnetization computed as above
is valid for large B, and unlike the correlation length or
gap is not sensitive to the coupling constants. Thus the
model predictions for the isotropic ladder (J/J ′ = 1),
and for the Haldane chain (also NyS = 1), are little dif-
ferent from the above, whereas the known results have
much smaller gapped regions. Thus we stress again that
the main value of the current approach lies in its quali-
tative features. From this and other work,36 it appears
that NyS > 3 is sufficient for the NLsM to provide quan-
titative accuracy, although the gap is then very small.
The experimental comparison gives additional perspec-

tive on the utility of the spin stiffness and 1/N treat-
ments (Secs. III and IV). We deduce from L∗

m that
B∗ = 0.32J̄/g̃µB = 4.2T, a value rather lower than Bc1
above, and emphasize that in the regime between B∗ and
Bc1 neither treatment is reliable. Following the RG anal-
ysis, the field scale b̄∗ from the numerical solution gives
B∗ = 1.6T, although prefactor corrections (above) can
be expected.
The other category of experiments performed on CuH-

pCl is the measurement of NMR spin relaxation rates,
which probe the spin-spin correlation functions discussed
in Sec. VII. The experimental observable is the spin-
lattice relaxation rate, given in d dimensions by

1

T1
= lim

ω→0

2kBT

h̄ω

∑

ij

∫
ddq

(2π)d
Fij(q)χij(q, ω, T ), (8.3)

in which Fij are hyperfine coupling constants. This is
obtained from the dynamic susceptibility

χij(q, ω, T ) = −i
∫
dt dx eiωt+iq·x

×Θ(t)
〈[
Ŝi(x, t), Ŝj(0, 0)

]〉
T
, (8.4)

which in turn makes contact with the results of Sec. VII.
By straightforward scaling, spin-spin correlation func-

tions
〈
T̂τ Ŝi(x, τ)Ŝj(0, 0)

〉
decaying exponentially in

1+1d space correspond to relaxation rates which are ex-
ponentially activated in temperature, for T below the
characteristic energy scale ∆. This is observed in exper-
iments for fields B < Bc1.

33 Similarly, power-law spatial
decays correspond to thermal power laws in relaxation
rates: by performing separate Fourier transformations on
x− iτ and x+ iτ and extracting the energy-dependence
in the long-wavelength limit (k → 0), if

〈T̂τ Ŝi(x, τ)Ŝj(0, 0)〉 ∝ δij(x
2 + τ2)−α (8.5)

then

1/T1 ∝ T (2α−2)+1, (8.6)

whence from Eqs. (7.2,7.3) the relaxation rate for the
ladder system is

1

T1

∣∣∣∣
ladder

= A‖T +B⊥T
−g/2π−1. (8.7)



A‖ and B⊥ are constants related to the hyperfine cou-
pling. An identical result was obtained in the Luttinger-
Liquid formulation of Ref. 32. In addition to the acti-
vated form in the gapped regimes at B < Bc1 and B >
Bc2, the experimental measurements of 1/T1

33 show clear
power-law divergence in the intermediate field regime,
fully consistent with expectations (Sec. VII) based on a
model of symmetry breaking by the effect of the field
on quantum fluctuations. However, because the data33

cover at most one decade in temperature, while typically
3-4 decades are required to identify the exponent within
meaningful bounds, we may not attempt to make any
quantitative deductions (Eq. (7.4)) concerning the cou-
pling constant g.

IX. SUMMARY

In conclusion, the nonlinear σ model description of
quantum antiferromagnets in an external field provides
a versatile framework for illustrating the breaking and
restoration of symmetries. The case of O(3) spins has a
variety of physical realizations, which illustrate clearly
the transition from the gapped, short-range ordered
phase where full spin symmetry is maintained by quan-
tum fluctuations, to a gapless, quasi-long-range ordered
regime where the O(3) symmetry is reduced to O(2) by
the field.
The foregoing analysis is not restricted to CuHpCl,

but applies to any system with a trivial topological term∑
i Pi (Eq. (2.3)). We comment here on its application

to materials in two other classes. CFTD4 is a planar
S = 1

2 Heisenberg AF, of a type studied extensively in
connection with the high-temperature superconductivity
problem,8 and known9 to have AF order at T = 0. In an
applied field one expects linear magnetization character-
istics with the Néel susceptibility, beginning at B = 0,
but not saturating because the superexchange interaction
J = 9.4meV is beyond the reach of laboratory fields.
Magnetization results on further recently-synthesized,
planar Cu compounds with significantly smaller exchange
constants37 may show evidence of a logarithmic approach
to saturation, as expected from spin-wave theory for a
purely 2d system, and obtainable in the NLsM by inclu-
sion of the total spin contraint as in Sec. II. The cases of
most interest are those exhibiting the physics of the Hal-
dane gap. The primary example is the S = 1 AF chain,
of which NENP is considered a prototypical case (but for
the complication of a large single-ion anisotropy). The
present study yields the same qualitative features of a
gapped regime with zero magnetization, followed by ap-
proximately linear behavior towards saturation (which
could not be achieved), as in experiment.3 Quantitative
accord with experimental transition fields, and numerical
simulations,35 does not match that of Sec. VIII for CuH-
pCl. Finally, there has been considerable recent interest
in the possibility of field-induced magnetization plateaus

in certain systems: in a NLsM approach these may be
expected, for example in S > 1 chains, when the field
strength is such that the projected in-plane spin |Sn⊥| is
of integer amplitude, leading to a gapped phase.
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APPENDIX A: RENORMALIZATION GROUP
EQUATIONS

The appendix presents the derivation of the integral
forms (5.3,5.4) of the RG equations for the coupling con-
stant and field. We begin with the Lagrangean for the
NLsM in a magnetic field in the form of Eq. (5.1),

LE =
1

2g
[(∂µn)

2 − b̄2(1− n2
z) + 4ib̄nxṅy], (A1)

where the parameters are defined in Secs. II and III, and
the last term is obtained by partial integration of one
component of the cross product. The staggered magneti-
zation satisfies |n|2 = 1 and (Sec. II) lies predominantly
in the (x, y) plane, so that we may choose |nz| ≪ 1 and

specify the components of n by (nx =
√
1− n2

z cosφ,

ny =
√
1− n2

z sinφ, nz), with 0 ≤ φ < 2π. Using these
variables, the cross product term gives nxṅy − nyṅx =

(1− n2
z)φ̇, and the gradient term becomes

(∂µn)
2 = (∂µnz)

2 + (1 − n2
z)(∂µφ)

2 +
(nz∂µnz)

2

1− n2
z

. (A2)

On making the substitution nz =
√
gσz , where the cou-

pling constant g is taken to be a small parameter (weak-
coupling expansion), the Lagrangean (A1) is exactly rep-
resented as

LE = 1
2g (1− gσ2

z)[(∂µφ)
2 + 2ib̄φ̇− b̄2] + 1

2 (∂µσz)
2

+
1

2

g

(1− gσ2
z)
(σz∂µσz)

2. (A3)

With the definition A′ = (∂µφ)
2 + 2ib̄φ̇, LE may be ex-

panded in the power series in g

LE = 1
2g [A

′ − b̄2] + 1
2 (∂µσz)

2 − 1
2 (σz)

2[A′ − b̄2]

− 1
2g(σz∂µσz)

2 + 1
2g

2σ2
z(σz∂µσz)

2 +O(g3). (A4)

We proceed to one-loop order by neglecting those terms
O(g) and higher, and by following the Wilson RG tech-
nique of integrating out states of higher momenta around
a finite upper cutoff.38,12,13 In this process the renormal-
izing effect of the fast Fourier modes of σz is taken into



account, whereas the slow variable φ(τ, x) and its (small)
derivative terms give no contribution at high momenta.
We compute the quantity

I =

∫
Dσz(k)e

− 1
2

∫
dx

[
1
2g (A

′−b̄2)+σz(−∂2

µ−A′+b̄2)σz+O(g)

]

(A5)

in the isotropic momentum shell γΛ < |k| < Λ, where
γ < 1 and Λ = π/a. Evaluation of the Gaussian integral
yields

I =
∏

γΛ<|k|<Λ

√
2π

k2 −A′ + b̄2
e
− 1

2g [A
′−b̄2]

= e−
1
2Tr

′ ln(−∂2

µ−A′+b̄2) e
− 1

2g [A
′−b̄2]

, (A6)

in which the small quantity A′ permits the expansions

Tr′ ln(−∂2µ −A′ + b̄2) = Tr′ ln(−∂2µ + b̄2) (A7)

−Tr′
[

1

−∂2µ + b̄2
A′
]
+O(A′)2

and

Tr′
[

1

−∂2µ + b̄2
A′
]
≃ Tr′

[
1

−∂2µ + b̄2

]
A′. (A8)

Substituting these results into the original Lagrangean
LE (A4) returns the new, effective Lagrangean on renor-
malized lattice length scale a′,

Leff =
1

2

(
1

g0
− Tr′

1

−∂2µ + b̄2

)
A′

+
1

2
(∂µσz)

2 − 1

2
(σz)

2[A′ − b̄2]

−1

2

(
1

g0
b̄2 − Tr′ ln(−∂2µ + b̄2)

)
. (A9)

Finally, by comparison of Leff with LE , we may identify
the renormalized coupling and magnetic field terms as
expressed in Eqs. (5.3,5.4).

APPENDIX B: SPIN CORRELATION
FUNCTIONS

In this appendix we present the calculation of spin-spin
correlation functions, in real space and inverse tempera-
ture, for the gapless, high-field phase of the NLsM. The
latter part of Sec. VII illustrates the transformation of
these quantities for comparison with experiment. It is
apparent from Eq. (7.1) that four such functions must
be considered, corresponding to correlations of the stag-
gered and uniform spin components in directions parallel
(i, j = z) and perpendicular (i, j = ±) to the field. We

reexpress the spin components n and l in terms of the
angles ϑ and φ (Sec. II), for which the propagators are
known.
The parallel response function for the staggered spin

components is computed using

〈nz(x)nz(0)〉 =
∫

Dnnz(x)nz(0)e
−S[n], (B1)

where nz = cos θ = sinϑ ≃ ϑ for small angular deviations
from the plane determined by the field. One expects the
linear expansion to be valid for the lowest-order form
of the correlation function, and may use it also in the
approximation

∫
D(cosϑ) ≃

∫
Dϑ. Now

〈nz(x, τ)nz(0, 0)〉 =
∫

Dϑϑ(x)ϑ(0)exp
{
− 1

2gϑ ·G−1
0 ϑ

}

= lim
j→0

δ

δjx

δ

δj0

∫
Dϑexp

{
− 1

2gϑ ·G−1
0 ϑ+ j · ϑ

}
, (B2)

in which ϑ denotes a vector representing states at all
x = (τ, x), G−1

0 = −∂2µ + b̄2 is the matrix propagator
for modes of ϑ, and the current j(x) is taken to zero at
the end of the calculation. Evaluation of the Gaussian
integral yields

lim
j→0

δ

δjx

δ

δj0
exp

{
1
2g j ·G0j

}
= gG0(x,0), (B3)

from which the propagator component is given by reso-
lution into plane wave states according to

G0(x,0) = 〈x| 1

−∂2µ + b̄2
|0〉 = 1

LLT

∑

k

eik·x

k2 + b̄2
, (B4)

where k = (ωn, k). For the interesting limit of large dis-

tance (b̄
√
x2 + τ2 > 1), we conclude that the correlation

function

〈nz(x, τ)nz(0, 0)〉 =
Ã√

b̄
√
x2 + τ2

e−b̄
√
x2+τ2

, (B5)

where Ã is a constant, has the exponentially decaying
form in space and inverse temperature expected from its
origin in the gapped, out-of-plane excitations.
The other component of the parallel response function

is18

〈lz(x)lz(0)〉 = 〈lclz (z)lcl−(0)〉

+
g

4c

1

LLT

∑

q

eiq·x (1− 〈nz(x)nz(0)〉) . (B6)

The latter term is a quantum correction arising from
the constraint l · n = 0, which is unaffected by the
field, and has the value (g/4c)(δx,0 − 〈(nz(0))2〉), i.e.

is a local quantity which contributes only to a constant
proportional to the square of the local magnetization.
From Eq. (2.4), the expression for lclz may be simpli-
fied by noting that the field term b = (0, 0, bz) selects



nz, which in turn introduces ϑ, and thus only expo-
nentially decaying contributions. The remaining term is
(n ∧ ṅ)z = φ̇ sin2 ϑ ≃ φ̇ only. With the exception of fur-
ther constant terms (〈n2

z(0)〉), which are neglected both
here and in Eq. (7.2), we may restrict our considerations
to

(aS)2〈lz(x)lz(0)〉 = − 1

(4J̄)2
〈φ̇(x)φ̇(0)〉

=
1

(4J̄)2
∂2τ 〈φ(x)φ(0)〉. (B7)

We see now that we are dealing only with the gapless, in-
plane modes, which can be expected to give a power-law
correlation function at long distances, and the treatment
is identical to the Luttinger liquid. By the same tech-
nique as above (Eqs. (B2,B3)), the correlation function
for the azimuthal angles is given by

〈φ(x)φ(0)〉 = 2gB̃G̃0(x,0), (B8)

with propagator G̃0 = −∂2µ for in-plane modes, and B̃
a constant. Use of the result (expressed in rectangular
coordinates with c retained explicitly)

c

LLT

∑

ω,k 6=0

ω2

k2 + (ω/c)2
eikx+iωτ =

c3

2π

x2 − c2τ2

[x2 + c2τ2]2

=
c3

4π

[
1

(x − icτ)2
+

1

(x+ icτ)2

]
(B9)

leads directly to Eq. (7.2). The prefactor is obtained
from the identity c/2J̄ = a/g, while further identifica-

tion of π/2g with K̃ (7.4) yields the result of Ref. 32.
Because we are not interested in finite-size properties for
discussing the asymptotic behavior of correlation func-
tions, we ignore the zero modes (Eq. (B9)) occurring
in the Luttinger liquid. Their presence is connected with
decompactification of φ and the associated winding num-
ber (Sec. VI), and their treatment discussed in Ref. 39.
Moving to the correlation functions normal to the ap-

plied field, that for the staggered spin components has
the simple form

Ξ = 〈n+(x)n−(0)〉 = 〈exp(iφ(x) − iφ(0))〉. (B10)

Defining the function j(x′) = δ(x − x′) − δ(x′), and us-

ing the equalities G̃0(x,x) = G̃0(0,0) and G̃0(x,0) =

G̃0(0,x), permits one to write

Ξ =

∫
Dφ exp

{
− 1

2gφ · G̃−1
0 φ+ ij · φ

}

= (DetG̃−1
0 )−1/2 exp

{
− 1

2gj · G̃0j
}

= C′ exp
{
−g[G̃0(0,0)− G̃0(x,0)]

}
, (B11)

where C′ is a constant. The propagators are evaluated
as above, to give

G̃0(0,0) =
1

LLT

∑

k 6=0

1

k2
=

1

2π
ln

(L
a

)
, (B12)

and

G̃0(x,0) =
1

LLT

∑

k 6=0

eik·x

k2
= − 1

4π
ln

(
(2π)2(x2 + τ2)

L2

)
,

(B13)

both of which are cut off by the system length scale
(Sec. V) L = min[L,LT ]. Finally,

〈n+(x)n−(0)〉 = C̃

(L
a

)− g
2π
(
x2 + τ2

L2

)− g
4π

, (B14)

for altered constant C̃, returns the result in Eq. (7.3).
That this is the only power-law contribution to
〈S+(x)S−(0)〉 is easily seen from

〈lcl+(x)lcl−(0)〉 = 〈eiφ(x)−iφ(0)ϑ̇(x)ϑ̇(0)〉
= −〈eiφ(x)−iφ(0)〉[∂2τ 〈ϑ(x)ϑ(0)〉], (B15)

whose dependence on ϑ guarantees an exponential decay
of correlations.
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