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Exciton/free-carrier plasma in GaN-based quantum wells:
Scattering and screening
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The degree of ionisation of a two-dimensional electron-hole plasma is calculated in the low-density
(Boltzmann) limit. The electron-hole interaction is considered for all states: optically active and
inactive, bound and unbound. The theory is applied to exciton/free-carrier plasma in GaN-based
quantum wells at room temperature.

Room-temperature operation of blue quantum-well lasers, based on GaN [1] or ZnSe [2], is no longer a novelty.
However, the nature of lasing in wide-gap semiconductors and quantum wells has not yet been completely understood.
The large exciton binding energy in wide-gap semiconductors and quantum wells favours excitonic gain processes for
which no satisfactory theoretical treatment exists [3]. A knowledge of the balance between excitons and free carriers
is crucial in determining the dominant gain process. It is known that a naive application of the Mott criterion for the
metal-insulator transition as well as the use of a single-bound-state law of mass action are insufficient, as screening of
excitons by the electron-hole plasma and strong scattering of particles within the plasma both play a crucial role [4].
For a consistent description of the electron-hole plasma at a temperature which is higher then the exciton binding

energy, bound states and unbound scattering states should be treated on the same footing. In what follows we present
such a consistent treatment for the purely two-dimensional (2D) case in the low-density (Boltzmann) limit.
Following an approach applied in 3D to nuclear matter [5], an ionic plasma [6], and the electron-hole system in

excited semiconductors [4], we divide the total electron (hole) density between two terms:

na = n0

a + ncorr
a . (1)

The first term n0

a is the density of uncorrelated quasiparticles with renormalized energies. Only this term should
be taken for the screening radius calculation [4]. All correlation effects both in the bound and continuum states are
incorporated into the second term ncorr

a which is called the correlated density. The lower index in Eq. (1) is a species
index, a = e for electrons and a = h for holes.
In the low-density limit there is no need to go beyond two-particle correlations. This allows us to separate clearly

the role of the inter-particle Coulomb interaction from the phase-space filling effects. It is tempting to relate ncorr
a

and n0

a by a simple law of mass action with the single exciton bound state energy reduced by screening [3,7]. The
main shortcoming of this approach is a disregard of the strong scattering of unbound carriers. A complete account
of scattering states as well as all (optically active and inactive) bound states requires the calculation of a two-body
partition function which involves summation over all two-particle states. In the low-density (non-degenerate) limit,
for which there is no Pauli blocking, a 2D analogue of the modified mass action law reads

ncorr
a =

∑

b

n0

an
0

b

2πh̄2

µabkBT
Zab , (2)

where µab = mamb/(ma+mb) is the reduced effective mass, and Zab is the two-body interaction part of the partition
function. Note that due to charge-neutrality the total electron-hole density ne = nh = n is independent of species,
whereas n0

e 6= n0

h and ncorr
e 6= ncorr

h if the electron and hole have different masses.
The electron-hole part of the partition function which exhibits bound states (excitons) is given by

Zeh =
∑

m,ν

exp(−βEm,ν) +
1

π

∫

∞

0

(

∞
∑

m=−∞

dδm(k)

dk

)

exp

(

−β
h̄2k2

2µeh

)

dk , (3)

where β = 1/(kBT ), mh̄ is the projection of the angular momentum onto the axis normal to the plane of 2D motion
(m = 0,±1,±2, . . .), h̄2k2/2µeh is the energy of the relative motion of the unbound (scattered) electron and hole,
k is the absolute value of the relative motion momentum, δm(k) are the 2D scattering phase shifts introduced in
the standard way [8], Em,ν are the bound-state energies (index ν enumerates bound states with given m), and the
double sum in the first term ranges only over bound states. Equation (3) is the 2D analogue of the Beth-Uhlenbeck
formula [9], and it is derived [10] in the same fashion as in the 3D case [11]. The scattering term in the right-hand side
of Eq.(3) gives the contribution to Zeh of the electron-hole attraction in the continuum part of the energy spectrum.
The electron-electron and hole-hole parts of the partition function Zee and Zhh contain the scattering term only.
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Equations (1-3) provide a consistent description of the ionisation degree, defined as α = n0

e/(n
0

e+ncorr
e ). Technically

the most difficult problem is to calculate the binding energies and scattering phase shifts in a screened Coulomb
potential. We use for this purpose the variable-phase method [12] known from scattering theory. In this method
the scattering phase shift and the function defining bound-state energies can be obtained as a large distance limit of
the phase function, which satisfies the first-order, nonlinear Riccati equation originating from the radial Schrödinger
equation.
In this paper we model the screened Coulomb interaction in a 2D plasma by the well-known Thomas-Fermi expres-

sion for a statically screened Coulomb potential [8]:

Vs(ρ) = ∓e2

ǫ

∫

∞

0

qJ0(qρ)

q + qs
dq = ∓e2

ǫ

{

1

ρ
− π

2
qs[H0(qsρ)− Y0(qsρ)]

}

, (4)

where qs is the 2D screening wavenumber (which depends on temperature and carrier density), ǫ is the static
dielectric constant of the semiconductor, J0(x), Y0(x), and H0(x) are the Bessel functions of the first and of the
second kind and the Struve function. The upper sign in Eq. (4) is for electron-hole attraction, the lower sign is for
electron-electron or hole-hole repulsion. Being the long-wavelength static limit of the random phase approximation
for a purely 2D case, Eq. (4) is the simplest model for the screened Coulomb potential in 2D. Nevertheless, this
expression reflects the fact that the statically screened potential in 2D decreases at large distances slower than in
the 3D case. Despite numerous realistic corrections, Eq. (4) remains the most widely used approximation for the
2D screening, especially for the screened exciton problem. The variable-phase method application to scattering and
bound states in the screened Coulomb potential (4) is described in detail in our recent paper [13]. The method is
especially effective for calculation of shallow-state binding energies and low-energy scattering phase shifts. Applying
the variable phase method together with a 2D analogue of the Levinson’s theorem [14], we have found that with
decreasing qs several bound states with different angular momenta appear simultaneously at certain integer values
of 1/(qsa

∗), where a∗ is the effective (excitonic) Bohr radius. This degeneracy is different from the well-known
degeneracy of the unscreened 2D exciton states. In the low-density limit (qsa

∗ → 0) the number of bound states
oscillates around 1/(qsa

∗) with the period and amplitude of oscillations proportional to 1/
√
qsa∗. Then, using

the expression for the Thomas-Fermi 2D screening wavenumber qs for a two-component non-degenerate electron-hole
plasma [15], qsa

∗ = 4π (Ry∗/kBT ) (n
0

ea
∗2 + n0

ha
∗2), Ry∗ being the excitonic Rydberg, one can find the ratio of the

free-carrier density to the total density. For a model semiconductor with me = mh, this ratio is equal to 2/3 in the
low-density limit. This result is different from the single-bound-state law of the mass action, which gives a complete
ionisation of bound states (α → 1) in the same limit.
Figure 1 shows the results from the calculation of the electron-hole part of the partition function, Zeh, which

contains both the bound state sum and the scattering phase shift integral. In this figure Zeh is plotted as a function
of the inverse screening wave number 1/qs measured in units of the effective Bohr radius a∗. The temperature is
given in units of the bulk excitonic Rydberg Ry∗.
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FIG. 1. The electron-hole part of the partition function, Zeh versus the screening length 1/qs for two values of kBT/Ry∗.
Solid lines show the bound state contributions Zbound only. Dashed lines correspond to the total partition function with
scattering states included.

To emphasize the role of scattering we show on the same plot the bound-state sum, Zbound =
∑

m,ν exp(−βEm,ν),
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which exhibits jumps whenever new bound states appear. These jumps become higher with increasing screening
length 1/qs since several bound states appear simultaneously [13]. A proper account of scattering eliminates these
unphysical jumps.
We calculated the density dependence of the degree of ionisation α in the 2D low-density (Boltzmann) limit

for kBT = 1 Ry∗, which roughly corresponds to GaN at room temperature. Over a wide range of pair densities,
0.01 < na∗2 < 0.1, α is almost independent of density, and it increases outside this range. The minimal value of the
degree of ionisation, αmin ≈ 0.34, corresponds to na∗2 ≈ 0.04 (n ≈ 5× 1012cm−2 for GaN). Even at the relatively
high densities of 1012 cm−2 we find that there is a single bound state having a binding energy of the order of kBT
which is available to participate in excitonic lasing.
We also calculated the second virial coefficient of the dilute 2D electron-hole plasma in GaAs and GaN-based

quantum wells at room temperature. These calculations show a striking difference between a strongly correlated
exciton/free-carrier plasma in GaN and a nearly ideal electron-hole gas in GaAs.
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