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NMR is emerging as a valuable testbed for the investigation of foundational ques-

tions in quantum mechanics. The present paper outlines the preparation of a class

of mixed states, called pseudo-pure states, that emulate pure quantum states in the

highly mixed environment typically used to describe solution-state NMR samples. It

also describes the NMR observation of spinor behavior in spin 1/2 nuclei, the simula-

tion of wave function collapse using a magnetic field gradient, the creation of entangled

(or Bell) pseudo-pure states, and a brief discussion of quantum computing logic gates,

including the Quantum Fourier Transform. These experiments show that liquid-state

NMR can be used to demonstrate quantum dynamics at a level suitable for laboratory

exercises.
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1 Introduction

The fundamental physics of NMR is again, 50 years after its discovery, the subject of much

discussion. The impetus behind this recent interest is the dramatic potential of quantum

information processing (QIP) [9991], particularly quantum computing, along with the real-

ization that liquid-state NMR provides an experimentally accessible testbed for developing

and demonstrating these new ideas [02-91, 12, 1999, 1].

Most descriptions of quantum information processors have focused on the preparation,

manipulation, and measurement of a single quantum system in a pure state. The appli-

cability of NMR to QIP is somewhat surprising because, at finite temperatures, the spins

constitute a highly mixed state, as opposed to the preferred pure state. However, NMR

technology applied to the mixed state ensemble of spins (the liquid sample) does offer sev-

eral advantages. Decoherence, which plays a detrimental role in the storage of quantum

information, is conveniently long (on the order of seconds) in a typical solution sample, and

it acts on the system by attenuating the elements of the density matrix and rarely mixes

them. NMR spectrometers allow for precise control of the spin system via the application

of arbitrary sequences of RF excitations, permitting the implementation of unitary transfor-

mations on the spins. Effective non-unitary transformations are also possible using magnetic

field gradients. The gradient produces a spatially varying phase throughout the sample, and

since the detection over the sample is essentially a sum over all the spins, phase cancellations

from spins in distinct positions occur. These characteristics of NMR enable the creation of

a class of mixed states, called pseudo-pure states, which transform identically to a quantum

system in a pure state[9993].

NMR does have several noteworthy disadvantages. A single density matrix cannot be
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associated with a unique microscopic picture of the sample, and the close proximity of the

spins prevents the study of non-local effects. Additionally, the preparation of pseudo-pure

states from the high temperature equilibrium state in solution NMR entails an exponential

loss in polarization. [39991]

In this paper, we review the results of a number of simple NMR experiments demon-

strating interesting quantum dynamics. The experiments illustrate spinor behavior under

rotations, the creation and validation of pseudo-pure states, their transformation into “en-

tangled” states, and the simulation of wave function collapse via gradients. Additionally,

the implementations of basic quantum logic gates are described, along with the Quantum

Fourier Transform.
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2 The Spin System

The experiments were performed on the two-spin heteronuclear spin system, 13C-labeled

chloroform (13CHCl3), thereby eliminating the use of shaped RF pulses. The 13C (I) and

the 1H (S) nuclei interact via weak scalar coupling, and the Hamiltonian for this system is

written as

H = ωIIz + ωSSz + 2πJIzSz, (1)

where ωI and ωS are the Larmor frequencies of the 13C and 1H spins respectively and J <<

|ωI − ωS| is the scalar coupling constant.

In the standard model of quantum computation, the quantum system is described by a

pure state. However, liquid-state NMR samples at room temperature are in highly mixed

states, requiring the state of the system to be described by the density operator. In a liquid

sample, the inter-molecular interactions are, for most practical purposes, averaged to zero

so that only interactions within a molecule are observable; in other words, the sample can

be thought of as an ensemble of quantum processors, each permitting quantum coherence

within but not between molecules. For the purposes of this paper, the large density matrix

of size 2N × 2N , where N is the number of spins in the sample, may be replaced by a much

smaller density matrix of size 2n ×2n, where n is the number of distinguishable spin-1
2

nuclei

in the molecule. In the high temperature regime (ǫ = h̄γIBo

2kT
∼ O(10−6)) the equilibrium

density operator for the ensemble is

ρ = e−H/kT

Z
≈ 1

4
1 + 1

4
ǫρdev = 1

4
1 + 1

4
ǫ

(

Iz +
γS

γI

Sz

)

, (2)

where the relative value of the gyromagnetic ratios is γS/γI ∼ 4.
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From the above, it is clear that at room temperature a spin system cannot be prepared

in a pure state. However, it is possible to prepare a pseudo-pure state that transforms like

a pure state. Also, notice that since the identity part of the density operator is invariant

under unitary transformations, it is the deviation part of the density operator, that holds the

information on the spin dynamics. Henceforth in this paper, the deviation density matrix

will be simply referred to as the density matrix. The density operator is often written in the

product operator basis formed by the direct product of individual spin operators[451999, 1].

The product operator technique is used throughout this paper to express the dynamics of

the spin system. Furthermore, if n spins are coupled to one another, any arbitrary unitary

operation can be composed from a series of RF pulses, chemical shift evolution and scalar

coupling evolutions. [64999, 1]
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3 Preparation of Pseudo-Pure States

Before describing the creation of the pseudo-pure state, it is convenient to begin with a

system of equal spin populations. This is achieved by applying the pulse sequence

[

π

2

]I,S

x

→
(

1

4J

)

→
[

π

2

]I,S

y

→
(

1

4J

)

→
[

π

2

]I,S

−x

→ [grad(z)] , (3)

to the equilibrium density matrix, resulting in

1

4
1 +

ǫ

4

(

1 + γS

γI

)

(Iz + Sz), (4)

which has a balanced spin population. Because the eigenvalue structure of this density matrix

is different from that of thermal equilibrium, there is no unitary transformation which could

transform one to the other. The non-unitary gradient (where the non-unitarity refers to

the spatial average over the phases created by the gradient) at the end of the above pulse

sequence makes this transformation possible. Figure 1 shows a spectrum obtained after

applying this sequence.

Since the identity part of the equalized density matrix is unaffected by unitary transfor-
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mations and undetectable in NMR, only the deviation density matrix,

Iz + Sz =

|0I0S〉 |0I1S〉 |1I0S〉 |1I1S〉

〈0I0S|

〈0I1S|

〈1I0S|

〈1I1S|































1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 -1































,

(5)

which represents the excess magnetization aligned with the external magnetic field, is of

interest. The above matrix representation has been made in the eigenbasis of the unperturbed

Hamiltonian, and here the rows and columns have been labeled explicitly to avoid ambiguity.

In the subsequent matrix expressions, the labels will be dropped.

QIP requires the ability to create and manipulate pure states. NMR systems, however,

are in a highly mixed state at thermal equilibrium. While single spin manipulation is not

feasible in NMR, Cory et. al. [2, 3999, 5] have developed a technique by which the equilibrium

state is turned into a pseudo-pure state. Such a state can be shown to transform identically

to a true pure state as follows: according to the rules of quantum mechanics, a unitary

transformation U maps the density matrix ρ to ρ′ = UρU†. Thus an N -spin density matrix

of the form ρ = (1 + |ψ〉〈ψ|)/2N is mapped to

1 + (U|ψ〉)(U|ψ〉)†
2N

. (6)

This shows that the underlying spinor |ψ〉 is transformed one-sidedly by U just as a spinor

which describes a pure state would be.
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After equalizing the spin population from the thermal equilibrium state (eq. (5)), the

application of
[

π

4

]I,S

x

→
(

1

2J

)

→
[

π

6

]I,S

y

→ [grad(z)] (7)

results in the pseudo-pure state (neglecting the initial identity component)

√

3

32
1 +

√

3

8
(Iz + Sz + 2IzSz) =

√

3

2































1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0































. (8)

Figure 2 shows a series of spectra confirming the preparation of a pseudo-pure state.
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4 Spinor Behavior

Particles of half-integral spin have the curious property that when rotated by 2π, their wave

functions change sign while a 4π rotation returns their phase factors to their original value.

The change in the sign of the wavefunction is not observable for a single particle, but it can

be seen through an interference effect with a second “reference spin.” Spinor behavior, as

this effect is called, was first experimentally measured using neutron interferometry [781999,

1] and later using NMR interferometry [99991].

The following simple experiment describes how the spinor behavior can be seen in chlo-

roform, where the spinor behavior of 13C is correlated with the 1H nuclei as a multiplicative

phase factor. Consider the unitary transformation

U =































1 0 0 0

0 cos
(

φ

2

)

0 − sin
(

φ

2

)

0 0 1 0

0 sin
(

φ

2

)

0 cos
(

φ

2

)































= e−iφIy(
1
2
−Sz). (9)

As explained in section 6, this can be viewed as a rotation by φ of the 13C conditional on

the 1H being in the down state. This can be implemented via the pulse sequence

[

φ

2

]I

y

→
[

π

2

]I

x

→
[

φ

2πJ

]

→
[

π

2

]I

−x

. (10)

Application of this pulse sequence to the state 2IzSx, where the spinor behavior of the I-spin
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is revealed by its correlation to the S-spin, results in

2 cos(φ/2)IzSx + 2 sin(φ/2)IxSx. (11)

It can be clearly seen that when φ = 2π the initial state gains a minus sign, but when

φ = 4π the state returns to its initial value. The state 2IzSx is made observable under

the evolution of the internal hamiltonian previously defined and can be created from the

equalized equilibrium state (eq. 4) using the sequence

[

π

2

]I

x

→ [grad(z)] →
[

π

2

]S

x

→
(

1

2J

)

. (12)

Figure 3 shows the spectra for several values of φ = 0, 2π, and 4π.
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5 Entangled States

The Einstein-Podolski-Rosen (EPR) [012999, 2] paradox, concerning the spatial correlations

of two entangled quantum systems, is perhaps the most famous example of quantum dy-

namics that is incompatible with a classical view. An entangled state is one that cannot be

factored into the product of the individual particle wavefunctions. As a result, the state of

one particle is necessarily correlated with the state of the other, and these correlations differ

from those allowed by classical mechanics. Entanglement in quantum mechanics is normally

raised to explore aspects of non-local effects and hidden variable theories. Due to the close

proximity of nuclear spins and the fact that the ensemble is in a highly mixed state, the

NMR measurements discussed below do not address these issues. Nevertheless, we can use

the ability of liquid state NMR to simulate strong measurement to show that the behavior

of an entangled state is inconsistent with a simple classical picture.

The entangled state |ψ〉 = 1√
2
(|00〉 + |11〉), otherwise known as a Bell state, is given by

the density matrix

ρBell = 1
2

(

1
2
1 + 2IzSz + 2IxSx − 2IySy

)

. (13)

The above state can be prepared directly from the pseudo-pure ground state |00〉 by the

transformation

U ≡ e−iIxSyπ (14)

which is implemented by the pulse sequence

[

π

2

]S

−x

→
[

π

2

]I

y

→
(

1

2J

)

→
[

π

2

]I

−y

→
[

π

2

]S

x

. (15)
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Readout pulses can then be used to verify the creation of this Bell state, as shown in Fig 4.

One of the advantages of working with an ensemble is that we can introduce a pseudo-

random phase variation accross the sample to simulate the decoherence that accompanies

strong measurement. A pseudo-random phase variation in a given basis can be achieved by

rotating the preferred axis to the z-axis and then applying a magnetic field gradient followed

by the inverse rotation. This leads to the pulse sequence

[

π

2

]I

y

→ [grad(z)] → [π]Sy → [grad(z)] →
[

π

2

]I

−y

. (16)

It can be shown that such a measurement also “collapses” the S spin along this direction.

Thus, half the magnetization is along the +x-axis and the other half is along the -x-axis

leaving zero magnetization in the y–z plane. This is verified in our experiment by applying

a series of readout pulses to confirm the creation of the 2IxSx state which corresponds to

“collapsing” the pseudo-pure Bell state along the x-axis. The experimental results are shown

in Fig 5.

An incoherent mixture of entangled states is easily generated by the pulse sequence

[

π

2

]S

90◦
→
(

1

2J

)

→
[

π

2

]I

135◦
→
(

1

2J

)

→
[

π

2

]S

90◦
(17)
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applied to ρeq (Eq. 4), yielding the reduced density matrix

ρf =































0 0 0 −1−i√
2

0 0 0 0

0 0 0 0

−1+i√
2

0 0 0































. (18)

Suppose one wishes to measure the polarization of spin I along the x–axis and spin S

along the z–axis. One possibility is to use selective RF pulses to rotate the desired axis (x in

this case) to the z–axis, apply a z-gradient, and then rotate back to the x–y plane to observe

the induction signal as in Eq. 16. Alternatively, one could rotate the desired measurement

axis of one of the spins to the z–axis, rotate the other spin to the x–y plane and then spin-

lock the sample on resonance. In this latter case the inhomogeneities in the RF pulse and

background field serve to effectively remove any signal perpendicular to the desired axis, and

the induction signal is the same as in the first case. Thus for example, if a measurement

along y for spin I and along x for spin S were required, observing the induction signal after

the sequence
[

π

2

]S

x

− [spinlock]Ix . (19)

Because one of the spins remains along the z–axis while the receiver is in phase with the

other, the measured signals are anti-phase. The spectrographic traces shown in Figs. 6a-

d indicate the results of the measurements Tr (4IxSyρf ), Tr (4IySxρf ), Tr (4IySyρf), and

Tr (4IxSxρf ), respectively. The traces show the Fourier-transformed induction signal read on

the 13C channel, with absorptive peaks in phase along either the +x– or +y–axis, depending
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on which axis the carbon nucleus was spin-locked. Notice that Fig. 6(d) shows the same

anti-phase signal as the other spectra, but “flipped” by 180◦.

The results of the four plots, taken together, show a simple inconsistency compared to a

model of only two uncorrelated classical magnetic dipoles. The product of the four traces

has an overall factor of −1, yet each magnetic moment is measured twice so that their signals

should cancel. Each measurement is assumed to record either the x or y polarization if each

dipole is measured independently of the state of the other.
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6 Quantum Logic Gates

NMR provides a means whereby it is possible to analyze experiments as building blocks

for a quantum information processor (QIP). Because spin 1
2

particles can have two possible

orientations (up or down), it is natural to associate spin states with computational bits.

Further, NMR experiments can be viewed as performing computations on these quantum

bits (qubits).

6.1 Pulse Sequences As Logic Gates

Suppose we wanted to implement the controlled-NOT (c-NOT, or also XOR) gate, common

in computer science, using NMR techniques. A c-NOT gate performs a NOT operation on

one bit, conditional on the other bit being set to 1. The action of a c-NOT gate is summarized

by the truth table

Ainput Binput Aoutput Boutput

F (up) F (up) F (up) F (up)

F (up) T (down) F (up) T (down)

T (down) F (up) T (down) T (down)

T (down) T (down) T (down) F (up),
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where the True and False values have been associated with up spins and down spins, respec-

tively. The above truth table corresponds to a unitary transformation that implements

|00〉 → |00〉

|01〉 → |01〉

|10〉 → |11〉

|11〉 → |10〉.

(20)

In a weakly coupled two-spin system, a single transition can be excited via application

of the propagator,

U = e−ı
1
2

Sx(1−2Iz)ωt =































1 0 0 0

0 1 0 0

0 0 cos ωt
2

−ı sin ωt
2

0 0 ı sin ωt
2

cos ωt
2































, (21)

which for a perfect ωt = π rotation becomes (to within a phase factor)

U =































1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0































. (22)

It is clear that exciting a single transition in an NMR experiment is the same as a c-NOT

operation from computer logic. In NMR terms, the action of the c-NOT gate is to rotate one

spin, conditional on the other spin being down. Figure 7 shows the result of performing a
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c-NOT on ρeq. While NMR is certainly capable of implementing the c-NOT operation as is

done on a classical computer, that alone does not demonstrate any of the quantum dynamics.

Gates implemented on a quantum information processor which have no classical counterpart

are of much more interest. An example of such a gate is the single-spin Hadamard transform,

H = 1√
2











1 1

1 −1











= e
i

(

1
2
−

Ix+Iz√
2

)

π
, (23)

which takes a spin from the state |0〉 into the state 1√
2
(|0〉 + |1〉). This is just a π rotation

around the vector 45o between the x and z axes. A spectrum demonstrating the application

of the Hadamard transform to the equilibrium state ρeq is shown in figure 8. The c-NOT

and single-spin rotations can be combined to generate any desired unitary transformation,

and for this reason they are referred to as a universal set of gates. [69991]

Analysis of conventional NMR experiments in terms of quantum information processing

has led to a great deal of insight into areas such as the dynamics of pulse sequences for logic

gates [29992], and the effective Hamiltonian for exciting a single transition [39992].

6.2 The Quantum Fourier Transform

One of the most important transformations in quantum computing is the Quantum Fourier

Transform (QFT). The QFT is a necessary component of Shor’s algorithm, which allows the

factorization of numbers in polynomial time[49992], a task which no classical computer can

achieve (so far as is known). Essentially, the QFT is the discrete Fourier transform which,
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for q dimensions, is defined as follows

QFTq|a〉 →
1√
q

q−1
∑

c=0

exp(2πiac/q)|c〉 (24)

This transform measures the input amplitudes of |a〉 in the |c〉 basis. Notice how the quantum

Fourier transform on |0〉 will create an equal superposition in the |c〉 basis, allowing for

parallel computation. In matrix form the two-qubit QFT transformation QFT2, is expressed

as

QFT2 =
1

2































1 1 1 1

1 i −1 −i

1 −1 1 −1

1 −i −1 i































. (25)

As formulated by Coppersmith [59992], the QFT can be constructed from two basic unitary

operations; the Hadamard gate Hj (Eq. 23), operating on the jth qubit and the conditional

phase transformation Bjk, acting on the jth and kth qubits, which is given by

Bjk =































1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiθjk































= eiθjk
1

2
(1−2Iz) 1

2
(1−2Sz) (26)
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where θjk = π
2k−j . The two-qubit QFT, in particular, can be constructed as

QFT2 = H0B01H1 (27)

The Bjk transformation can be implemented by performing the chemical shift and coupling

transformations shown in Eq. 26. Figure 9 shows the implementation of the QFT on a two

spin system. The spectra show the 90o phase shifts created after the QFT application.
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7 Conclusion

Several basic but important concepts relevant to QIP are illustrated by experiments on a

liquid-state ensemble NMR quantum information processor. While pure quantum mechan-

ical states are not achievable here, the creation and application of pseudo-pure states is

demonstrated. Tests of spinor behavior and entanglement are also described, illustrating

quantum mechanical dynamics. Finally, building blocks (the Hadamard, c-NOT, and QFT)

for a more complicated quantum computer are also introduced.
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Below are the Captions for the Figures.

1. At room temperature, the equilibrium state of chloroform molecules in solution is

described by γIIz + γSSz. In order to create a pseudo-pure state from the equilibrium

state, it is convenient to start with an equalized magnetization for I and S. Since the

ratio of γI to γS is a factor of four, then the spectra of I and S following a π
2

pulse

should reflect the 4:1 ratio in the peak heights (figure (a)). In order to compensate for

the different electronics in the two channels, the gains of the channels were manually

calibrated to produce the desired 4:1 ratio in signal intensity. After this, the pulse

sequence discussed in the text was applied. A subsequent π
2

read out pulse results in

the spectrum of figure (b). The peaks have equal intensity, confirming the creation of

the state γI+γS

2
(Iz + Sz).

2. Once the pseudo-pure state ρpp = Iz + Sz + 2IzSz has been prepared, we use readout

pulses to generate a series of spectra confirming that the desired state has been created.

This is done by applying π
2
|Sy , π

2
|Iy, and π

2
|I,S
y read pulses on the pseudo-pure state. The

results are shown in figures (a)-(c), respectively, on both the carbon and hydrogen

channels. The signature of the appropriate terms in ρpp is seen from the three sets of

spectra generated.

3. The state 2IzSx correlates the spinor behavior of spin I to the reference spin S. The

propagator U = e−iφIy(
1
2
−Sz) then rotates all the I spins coupled to the down S spins

by the angle φ about the y-axis. Applying U to the density matrix 2IzSx creates the

state 2 cos(φ/2)IzSz + 2 sin(φ/2)IxSx, where only the first (antiphase) state is made

observable by evolution under the internal Hamiltonian. When φ = 0, the state is of
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course 2IzSx, as shown in figure (a). When φ = 2π, this state is inverted, contrary to

common intuition. The resulting spectrum is shown in figure (b). Only when φ = 4π

does the antiphase state return to its original state as seen in the spectrum (c). These

spectra clearly demonstrate the spinor behaviour of spin 1
2
.

4. The pseudo-pure Bell state, ρBell = 2IzSz + 2IxSx − 2IySy, created by the application

of the propagator, U = eiIxSyπ on the pseudo-pure state discussed above can be verified

by applying a series of readout pulses on ρBell. Using the read pulses π
2
|Sy , π

2
|Sx , π

2
|Iy, and

π
2
|Ix on ρBell, figures (a)-(d), respectively, and observing the resulting spectra on both

the I and S channels confirms both the signature and the individual terms of ρBell.

5. We simulate a strong measurement (one that collapses the wave function along a pre-

ferred basis or axis) on a Bell State using magnetic field gradients. An x-measurement

on the I-spin is imitated by applying a selective x-gradient to it. Since the two spin state

is entangled, this measurement necessarily collapses the S-spin along the x-direction.

Subsequent measurements confirm that both I and S spins have transformed identically

and that they are aligned along the x-axis. This was verified by observing the creation

of the 2IxSx state where in (a) we observe immediately after the “strong measurement”

in both channels and see zero signal as expected. In (b) we show that π
2

pulses along

the x-axis has no effect and in (c) we verify that a π
2
|Sy pulse indeed creates an anti-

phase signal on the carbon channel and a π
2
|Iy pulse creates an antiphase signal on the

hydrogen channel.

6. Strong Measurements After EPR Preparation. All four measurements are made on

the Carbon (1st spin) channel, and show the expected anti-phase correlation. (a)
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Measurement of correlation IySx, in phase along the +y direction. (b) Measurement

of correlation IxSy, in phase along the +x direction. (c) Measurement of correlation

IySy, in phase along the +y direction. (d) Measurement of correlation IxSx, in phase

along the +x direction. Note that the last spectrum is “flipped,” or inverted, with

respect to the other three.

7. The above spectra show the implementation of a controlled-NOT (c-NOT) gate on the

equilibrium state of 13C-chloroform. The spectrum on the right represents the readout

on the I spins, and the spectrum on the left is the readout on the S spins. Both spectra

have the expected appearance and confirm the creation of the state Iz + 2IzSz, the

expected state after application of the c-NOT.

8. The Hadamard gate H is a one bit gate that can be geometrically interpreted as

a π rotation about the 1√
2
(x + z) axis. If the net magnetization is along the +y

direction then the Hadamard gate should simply rotate it to the −y direction (figure

(a)). However, since any π rotation about an axis in the x-z plane performs the same

transformation, H was also applied to an initial +x magnetization. The result (figure

(b)) shows how the magnetization was sent to the z-axis, as expected.

9. The two-qubit QFT was implemented by applying a Hadamard gate on the first spin,

a conditional phase operator, and a Hadamard on the second spin. A Hadamard gate

can be performed by a simple combination of three pulses: π
4
|x − π|y − π

4
|−x. Because

it was performed on the thermal state, the initial Hadamard was simplified to a π/2y

pulse. The conditional phase change operator, B01, was implemented by delay 2 and

pulses 3 to 6, where pulses 4 to 6 are a π/4 z-rotation. The final Hadamard gate
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was implemented by the three pulses labeled 7. The phase difference of each peak on

the spectra shows the two-bit QFT’s ability to separate input states by 90 degrees.

After the application of the QFT, the spins were phase shifted by 45 degrees and were

allowed to evolve for a time 1/4J in order to bring out the phase differences.
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