ON THE MINIMAL PROPERTY OF THE FOURIER PROJECTION

BY
E. W. CHENEY ${ }^{1}$), C. R. HOBBY ${ }^{1}$)
P. D. MORRIS $\left({ }^{2}\right)$, F. SCHURER $\left({ }^{3}\right)$ AND D. E. WULBERT $\left({ }^{2}\right)$

Denote by C the Banach space of all continuous, 2π-periodic, real-valued functions defined on $[-\pi, \pi]$, the norm being given by the equation $\|f\|=\max |f(x)|$. Denote by P_{n} the subspace of C consisting of all trigonometric polynomials of degree $\leqq n$. Any bounded linear operator $A: C \rightarrow P_{n}$ such that $A p=p$ for all $p \in P_{n}$ is a projection of C onto P_{n}. The Fourier projection is such an operator; it is defined by an equation $F_{n} f=\Sigma\left\langle f, p_{k}\right\rangle p_{k}$, where $p_{0}, \ldots, p_{2 n}$ is any basis for P_{n} which is orthonormal with respect to the inner-product $\langle f, g\rangle=\int_{-\pi}^{\pi} f g$.

It was proved by Lozinski [6] that the Fourier projection is a minimal projection of C onto P_{n}. In other words, the inequality $\left\|F_{n}\right\| \leqq\|A\|$ is valid for every projection A of C onto P_{n}. This property of F_{n} has been discussed by other authors [3, p. 254], [4, p. 154], and [1], and it has been an open question whether any other minimal projection from C onto P_{n} exists. It is proved below that F_{n} is the only such projection.

The following conventions are used throughout the paper. An integral written simply $\int f$ or $\int f(t) d t$ stands for $(1 / 2 \pi) \int_{-\pi}^{\pi} f(t) d t$. For each point $x \in[-\pi, \pi]$, an evaluation functional \hat{x} is defined by the equation $\hat{x} f=f(x), f$ being an arbitrary member of C. The shift operator T_{s} is defined by $\hat{x} T_{s} f=f(x+s)$.

Several elementary results from Fourier analysis are required. If A is any projection of C onto P_{n} then $F_{n}=\int T_{-s} A T_{s} d s$. This means that for each x and for each $f, \hat{x} F_{n} f=\int \hat{x} T_{-s} A T_{s} f d s$. This equation of Berman [1] yields at once the inequality $\left\|F_{n}\right\| \leqq\|A\|$. The Fourier projection can be expressed as an integral operator as follows: $\hat{x} F_{n} f=\int D_{n} T_{x} f$, where D_{n} (the Dirichlet kernel) is given by:

$$
D_{n}(t)=1+2 \sum_{k=1}^{n} \cos k t=\sin \left(n+\frac{1}{2}\right) t / \sin \frac{1}{2} t .
$$

Theorem. If A is a projection of C onto P_{n} such that $\|A\| \leqq\left\|F_{n}\right\|$ then $A=F_{n}$.
Proof. The proof of this theorem depends on a number of lemmas. We first show that the theorem follows from Lemmas 1, 2, and 3. We next prove Lemmas 1

[^0]and 2 and show that Lemma 3 will follow from Lemma 4. This portion of the paper uses the techniques of analysis. Lemma 4 is equivalent to the statement that a certain specific polynomial of degree $2 n$ does not have a root which is a primitive $(2 n+1)$ th root of unity. We next show that Lemma 4 follows from Lemmas 5 and 6. Lemma 5 essentially states that if $g(x)$ is a polynomial of degree $2 n$ which has a primitive $(2 n+1)$ th root of unity as a root, then a certain combination of the coefficients of g must be zero. In our case the combination of coefficients is too complicated to calculate directly. It is sufficient, however, to show that the combination of coefficients is nonzero modulo an appropriate prime q, and this is the path we follow. Finally, Lemma 6 assures us of the existence of an appropriate prime.

Suppose that the theorem is false. That is, suppose that there exists a minimal projection A different from F_{n}. Write Berman's equation in the form

$$
F_{n}=\frac{\alpha+\pi}{2 \pi}\left[\frac{1}{\alpha+\pi} \int_{-\pi}^{\alpha} T_{-s} A T_{s} d s\right]+\frac{\pi-\alpha}{2 \pi}\left[\frac{1}{\pi-\alpha} \int_{\alpha}^{\pi} T_{-s} A T_{s} d s\right] .
$$

This expresses F_{n} as a convex linear combination of two minimal projections: for brevity we write $F_{n}=\theta A_{1}+(1-\theta) A_{2}$, where $0<\theta<1$. The parameter α is selected so that $A_{1} \neq F_{n}$. For the second adjoints of the operators, it is clear that $F_{n}^{* *}=\theta A_{1}^{* *}$ $+(1-\theta) A_{2}^{* *}$. Henceforth, we write $F_{n}^{* *}$ and $A_{i}^{* *}$ simply as F_{n} and A_{i}. This device serves to extend the operators to a domain which includes all bounded measurable functions (${ }^{4}$). By Lemma 1, (proved below)

$$
\begin{aligned}
\left\|F_{n}\right\|=\hat{x} F_{n} T_{-x} \sigma & =\theta \hat{x} A_{1} T_{-x} \sigma+(1-\theta) \hat{x} A_{2} T_{-x} \sigma \\
& \leqq \theta\left\|A_{1}\right\|+(1-\theta)\left\|A_{2}\right\|=\left\|F_{n}\right\| .
\end{aligned}
$$

This shows that $\hat{x} A T_{-x} \sigma=\left\|F_{n}\right\|$, where A denotes either A_{1} or A_{2}. Here σ denotes $\operatorname{sgn} D_{n}$, the sign of D_{n}.

Assertion. Each functional $\hat{x} A$ is absolutely continuous with respect to Lebesgue measure. For simplicity let $x=0$. Then $\hat{O} A \sigma=\left\|F_{n}\right\|$. Let J be an interval on which σ is +1 . We claim that $\delta A f \geqq 0$ if $f \leqq 0$ on J and $f=0$ off J. Indeed, if this is false, then there exists an $f \in C$ for which $\|f\|=1, f \leqq 0$ on $J, f=0$ off J, and $\hat{O} A f<0$. Then $\|\sigma-f\|=1$ and a contradiction results: $\|A\| \geqq\|\hat{O} A\| \geqq \hat{O} A(\sigma-f)=\left\|F_{n}\right\|-\hat{O} A f>\left\|F_{n}\right\|$. In the same way, if J is an interval on which σ is -1 then $\hat{O} A f \leqq 0$ for every f such that $f \geqq 0$ on J and $f=0$ off J. Now let S be any set of (Lebesgue) measure zero, and let h be its characteristic function. It is to be proved that $\hat{O} A h=0$. It is sufficient to establish this under the additional assumption that S is contained in an interval J on which σ is constant, because the entire interval $[-\pi, \pi]$ is the union of a finite number of such subintervals. Suppose for definiteness that σ is

[^1]+1 on J. Then $\hat{O} A h \geqq 0$ by the previous analysis. Hence $0=\int D_{n} h=\hat{O} F_{n} h=\theta \hat{O} A_{1} h$ $+(1-\theta) O_{2} h \geqq 0$, and $O A h=0$.

Since the range of A is P_{n}, A has a representation in the form $A f=\sum \phi_{i}(f) p_{i}$, where $\left\{p_{0}, \ldots, p_{2 n}\right\}$ is a basis for P_{n}, and $\phi_{i} \in C^{*}$. If h is the characteristic function of a set of measure zero (and if ϕ_{i} is extended to operate on all bounded measurable functions), then $0=\hat{x} A h=\sum \phi_{i}(h) p_{i}(x)$. By linear independence, $\phi_{i}(h)=0$ for all i. This proves that each functional ϕ_{i} is absolutely continuous with respect to Lebesgue measure. By the Radon-Nikodym Theorem there exist functions $h_{i} \in L^{1}[-\pi, \pi]$ such that $\phi_{i}(f)=\int f h_{i}$ for all $f \in C$. Thus A is of the form

$$
\hat{x} A f=\int K(x, t) f(t) d t
$$

where $K(x, t)=\sum h_{i}(t) p_{i}(x)$.
From previous equations and Lemma 1 we have

$$
\|\hat{x} A\|=\int|K(x, t)| d t=\hat{x} A T_{-x} \sigma=\int K(x, t) \sigma(t-x) d t .
$$

Since σ is almost everywhere of magnitude 1 , we conclude that for all x and for almost all $t, K(x, t) \sigma(t-x) \geqq 0$. Since these arguments are valid for both A_{1} and A_{2}, we obtain integral representations (and kernels K_{1}, K_{2}) for both. It follows that $D_{n}(t-x)=\theta K_{1}(x, t)+(1-\theta) K_{2}(x, t)$. Since $K_{i}(x, t) \sigma(t-x) \geqq 0$ for almost all t and $\left|D_{n}\right| \leqq 2 n+1$, we see that $\left|K_{i}(x, t)\right| \leqq(2 n+1) /[\theta(1-\theta)]$. Thus for fixed $x, K_{i}(x, \cdot)$ is a bounded L^{1}-function, and hence an element of $L^{2}[-\pi, \pi]$.

Now let v be any root of D_{n}, and put $g(x, t)=K(x-v, t)$. Then g (or possibly $-g$) satisfies the hypotheses of Lemma 2. From that lemma, we obtain $g(t, t)=0$ for almost all t, or in terms of $K, K(t-v, t)=0$ for almost all t. Thus, for almost all t, the trigonometric polynomial $K(x, t)$ has roots (in $x)$ at the roots of $D_{n}(t-x)$. Since these $2 n$ roots determine an element of P_{n} exactly except for a factor, we must have $K(x, t)=\beta(t) D_{n}(t-x)$ for an appropriate $\beta \in L^{2}[-\pi, \pi]$. Clearly $\beta \geqq 0$. Let $\alpha=\beta-1$.

If $p \in P_{n}$ then $A p=p$ and consequently $p(x)=\hat{x} A p=\int p \cdot(1+\alpha) \cdot T_{-x} D_{n}=$ $\hat{x} F_{n}(p+\alpha p)$. This proves that $F_{n}(\alpha p)=0$ for all $p \in P_{n}$. If $q \in P_{n}$ then $0=\langle q, \alpha p\rangle$ $=\langle q p, \alpha\rangle$. Since $q p$ ranges over all of $P_{2 n}$, we conclude that $\alpha \perp P_{2 n}$.

Next we observe that $\alpha \perp T_{x}\left|D_{n}\right|$ for all x. This follows from the equation $\left\|F_{n}\right\|=\|\hat{x} A\|=\int|K(x, t)| d t=\int\left|(1+\alpha) \cdot T_{-x} D_{n}\right|=\left\|F_{n}\right\|+\int \alpha \cdot T_{-x}\left|D_{n}\right|$.
Since $\alpha \in L^{2}[-\pi, \pi]$ we have $\alpha=\sum_{k=-\infty}^{\infty} c_{k} e_{k}$, where $e_{k}(x)=e^{i k x}$. Also let $\left|D_{n}\right|=\sum d_{k} e_{k}$. Then $T_{x}\left|D_{n}\right|=\sum d_{k} e_{k}(x) e_{k}$. Since α is orthogonal to this function, we have $\sum c_{k} d_{k} e_{k}(x)=0$. Hence $c_{k} d_{k}=0$ for all k. But $\alpha \perp P_{2 n}$, and hence $c_{k}=0$ for $|k| \leqq 2 n$. By Lemma $3, d_{k} \neq 0$ when $|k|>n$, and hence $c_{k}=0$ for $|k|>n$. Hence $c_{k}=0$ for all k. It follows that $\alpha=0, \beta=1, K(x, t)=D(t-x)$, and $A=F_{n}$. Thus the proof will be complete as soon as we verify Lemmas 1,2 , and 3.

Lemma 1. Let T be a bounded linear operator from C into P_{n}, and let x be a point. If there exists an element $g \in L^{1}$ such that $\hat{x} T f=\int g f$ for all $f \in C$ then $\hat{x} T^{* *} f=\int g f$ for all bounded measurable f.

Proof. Let L_{b}^{∞} denote the normed linear space of bounded measurable functions with supremum norm. Let $\phi(f)=\int g f$, and let w denote the $w\left(L_{b}^{\infty}, C^{*}\right)$-topology on L_{b}^{∞}. We shall prove that ϕ and $\hat{x} T^{* *}$ are w-continuous extensions of $\hat{x} T$, and that C is w-dense in L_{b}^{∞}. If f_{i} is a net in L_{b}^{∞} such that $f_{i} \rightarrow 0(\bmod w)$ then $\left\langle g, f_{i}\right\rangle \rightarrow 0$ because $\langle g, \cdot\rangle \in C^{*}$. Thus ϕ is w-continuous. Since the adjoint of any bounded operator is continuous in the two weak* topologies, [2, p. 478], we see that $T^{* *}$ is $w\left(C^{* *}, C^{*}\right)-w\left(C^{* *}, C^{*}\right)$-continuous. Since $f_{i} \in C^{* *}, T^{* *} f_{i} \rightarrow 0$ in the $w\left(C^{* *}, C^{*}\right)$-topology. Since $\hat{x} \in C^{*}, \hat{x} T^{* *} f_{i} \rightarrow 0$. Thus $\hat{x} T^{* *}$ is w-continuous. By Goldstine's Theorem [2, p. 424], C is $w\left(C^{* *}, C^{*}\right)$-dense in $C^{* *}$. Hence it is also \dot{w}-dense in L_{b}^{∞}.

Lemma 2. Let g be a bounded function of two variables such that for each x, $g(x, \cdot) \in L^{1}[-\pi, \pi]$, and for each $t, g(\cdot, t) \in P_{n}$. Let $\delta>0$, and assume that for each x and for almost all $t \in(0, \delta), g(x, x-t) \leqq 0 \leqq g(x, x+t)$. Then $g(x, x)=0$ for almost all x.

Proof. Assume that the conclusion is false. Without loss of generality, let $g(x, x)>0$ on a set of positive measure. Then for some $\varepsilon>0, g(x, x) \geqq 2 \varepsilon$ on a set of positive measure. By the regularity of Lebesgue measure, there is a closed set S of positive measure such that $g(x, x) \geqq 2 \varepsilon$ for all $x \in S$. Since $g(\cdot, t)$ forms a bounded set in P_{n}, there exists a common modulus of continuity for all these functions. Hence there is a number $\theta>0$ such that $g(z, x) \geqq \varepsilon$ whenever $x \in S$ and $x \leqq z \leqq x+\theta$. Let $T=\{(z, x): x \in S$ and $x \leqq z \leqq x+\theta\}$. Let f denote the characteristic function of T. By the Fubini Theorem $\int g f=\iint g(x, t) f(x, t) d t d x$, the integral on the left being over the square $[-\pi, \pi]^{2}$. Since $g \geqq \varepsilon$ on T, and T has measure $\theta \mu(S)>0$, we have $\int g f>0$. Hence there is an x for which $\int g(x, t) f(x, t) d t>0$. Since $f(x, t)$ $=0$ if $t>x$ or $t<x-\delta$, we have $\int_{x-\delta}^{x} g(x, t) f(x, t) d t>0$. But this is not possible since by hypothesis $g(x, t) \leqq 0$, for almost all t in $(x-\delta, x)$.

Lemma 3. If the Fourier series of $\left|D_{n}\right|$ is $\sum_{k=-\infty}^{\infty} d_{k} e_{k}$ then $d_{k} \neq 0$ when $|k|>n$.
Proof. Since $\left|D_{n}\right|$ is periodic and even, we have

$$
d_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|D_{n}(t)\right| e^{-i k t}=\frac{1}{\pi} \int_{0}^{2 \pi}\left|\sum_{j=0}^{n} \cos j t\right| \cos k t d t .
$$

Here the prime indicates that the term corresponding to $j=0$ is to be halved. Since $D_{n}(t)=\sin \left(n+\frac{1}{2}\right) t / \sin \frac{1}{2} t$, it changes sign at each of the points $t_{1}, \ldots, t_{2 n}$, where $t_{v}=v \pi /\left(n+\frac{1}{2}\right)$. Hence

$$
\begin{aligned}
d_{k} & =\frac{1}{\pi} \sum_{v=0}^{2 n}(-1)^{v} \int_{t_{v}}^{t_{v+1}} \sum_{j=0}^{n} \prime \cos j t \cos k t d t \\
& =\frac{1}{2 \pi} \sum_{v=0}^{2 n}(-1)^{v} \int_{t_{v}}^{t_{v+1}} \sum_{j=0}^{n}[\cos (k+j) t+\cos (k-j) t] d t .
\end{aligned}
$$

Now assume that $k>n$ so that $k+j \neq 0$ and $k-j \neq 0$. Then

$$
\begin{aligned}
d_{k} & =\frac{1}{2 \pi} \sum_{j=0}^{n} \sum_{v=0}^{2 n}(-1)^{v}\left[\frac{\sin (k+j) t}{k+j}+\frac{\sin (k-j) t}{k-j}\right]_{t_{v}}^{t_{v+1}} \\
& =\frac{1}{2 \pi} \operatorname{Im} \sum_{j=0}^{n} \sum_{v=0}^{2 n}(-1)^{v}\left[\frac{\beta^{(k+j)(v+1)}-\beta^{(k+j) v}}{k+j}+\frac{\beta^{(k-j)(v+1)}-\beta^{(k-j) v}}{k-j}\right]
\end{aligned}
$$

where $\beta=e^{i \pi /(n+1 / 2)}$. After carrying out the v-summation and replacing $\beta^{2 n+1}$ by 1 we obtain

$$
\begin{aligned}
d_{k} & =\frac{1}{\pi} \operatorname{Im} \sum_{j=0}^{n}\left[\frac{\beta^{k+j}-1}{(k+j)\left(\beta^{k+j}+1\right)}+\frac{\beta^{k-j}-1}{(k-j)\left(\beta^{k-j}+1\right)}\right] \\
& =\frac{1}{\pi} \operatorname{Im} \sum_{j=-n}^{n} \frac{\beta^{k+j}-1}{(k+j)\left(\beta^{k+j}+1\right)} \\
& =\frac{1}{\pi} \operatorname{Im} \sum_{j=k-n}^{k+n} \frac{\beta^{j}-1}{j\left(\beta^{j}+1\right)} \\
& =\frac{1}{\pi} \operatorname{Im} \sum_{j=k-n}^{k+n} \frac{1}{j}\left(1-\frac{2}{\beta^{j}+1}\right) \\
& =\frac{-2}{\pi} \operatorname{Im} \sum_{j=k-n}^{k+n} \frac{1}{j\left(\beta^{j}+1\right)}=\frac{-1}{\pi} \sum_{j=k-n}^{k+n} \frac{1}{j}\left(\frac{1}{\beta^{j}+1}-\frac{1}{\beta^{-j}+1}\right) \\
& =\frac{1}{\pi} \sum_{j=k-n}^{k+n} \frac{1}{j} \cdot \frac{\beta^{j}-1}{\beta^{j}+1} .
\end{aligned}
$$

The proof is completed by an appeal to Lemma 4.
Lemma 4. If k and n are positive integers then

$$
\begin{equation*}
\sum_{v=k}^{k+2 n} \frac{1}{v} \frac{\beta^{v}-1}{\beta^{v}+1} \neq 0 . \tag{1}
\end{equation*}
$$

Proof. We first note that the term in (1), involving the unique v such that $2 n+1$ divides v, is zero. Hence this term may be deleted from the summation. Let $d(v)=(v, 2 n+1)$, the greatest common divisor of v and $2 n+1$. Since β is a primitive $(2 n+1)$ th root of unity, β^{v} is a primitive $((2 n+1) / d(v))$ th root of unity. We set $s(v)=(2 n+1) / d(v)-1$ and note that $\beta^{v}-1=-\left(\beta^{v}+1\right) \sum_{t=1}^{s(v)}\left(-\beta^{v}\right)^{t}$.

Thus if (1) fails to hold we must have

$$
\begin{equation*}
\sum_{v=k ; 2 n+1 \mid v}^{k+2 n} \frac{1}{v} \sum_{t=1}^{s(v)}\left(-\beta^{v}\right)^{t}=0 \tag{2}
\end{equation*}
$$

Using only the relation $\beta^{2 n+1}=1$ we rewrite (2) as

$$
\begin{equation*}
\sum_{i=0}^{2 n} d_{i} \beta^{i}=0 . \tag{3}
\end{equation*}
$$

where for each i

$$
d_{i}=\sum_{v=k ; 2 n+1 \mid v}^{k+2 n} \frac{\delta_{i}(v)}{v}
$$

and

$$
\begin{aligned}
\delta_{i}(v) & =0, \quad \text { if there is no } t \in\{1, \ldots, s(v)\} \text { satisfying } v t \equiv i(2 n+1) \\
& =-1, \quad \text { if the solution } t \in\{1, \ldots, s(v)\} \text { to } v t \equiv i(2 n+1) \text { is odd } \\
& =1, \quad \text { if the solution is even. }
\end{aligned}
$$

It is a consequence of Lemma 5 (below) that a certain combination of the d 's is equal to zero. In order to apply Lemma 5 we first factor $2 n+1$. Suppose $2 n+1$ $=p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{r}^{n_{r}}$ where the p_{i} are distinct primes. Let $m_{j}=\prod_{i \neq j} p_{i}^{n_{i}}$. The greatest common divisor of $\left\{m_{j}: j=1, \ldots, r\right\}$ is 1 , therefore there exist integers c_{j} such that $\sum c_{j} m_{j}=1$. Now let $a_{j}=\beta^{c, m_{j}}$. Clearly $\beta=a_{1} a_{2} \cdots a_{r}$. Moreover, since β is a primitive $(2 n+1)$ th root of unity, each a_{j} is a primitive $p_{j}^{n j}$ th root of 1 . For each i, let i_{j} denote the element of $0,1, \ldots, p_{j}^{n}-1$ which is congruent i modulo $p_{j}^{n_{j}}$. Then $\beta^{i}=a_{1}^{i_{1}} a_{2}^{i_{2}} \cdots a_{r}^{i_{r}}$, and we can write (3) as

$$
\begin{equation*}
\sum_{0 \leqq i_{j}<p_{j}^{n_{j}-1: j=1, \ldots . r}} b_{\left(i_{1}, \ldots, i_{r}\right.} a_{1}^{i_{1}} \cdots a_{r}^{i_{r}}=0, \tag{4}
\end{equation*}
$$

where $b_{\left(i_{1}, \ldots, i_{r}\right)}$ denotes the (unique) d_{i} for which $\beta^{i}=a_{1}^{i_{1}} \cdots a_{r}^{i_{r}}$. We see from Lemma 5 that (4) implies

$$
\begin{equation*}
\sum_{s=0}^{r}(-1)^{s} D_{s}=0, \tag{5}
\end{equation*}
$$

where D_{s} is the sum of those coefficients b, whose vector subscripts (i) have exactly s nonzero entries and (ii) are such that if $i_{j} \neq 0$ then $i_{j}=p_{j}^{n_{j}-1}$. We will complete the proof of Lemma 4 by showing that (5) is a contradiction.

We see from (3) that each D_{s} is a sum of terms $\delta_{i}(v) / v$. Suppose that we can find a prime q such that if q^{m} is the highest power of q which divides an element of $S=\{k, k+1, \ldots, k+2 n\}$ then,
(i) there is a unique $\mu \in S$ which is divisible by q^{m}, say $\mu=q^{m} \mu_{0}$, and
(ii) this μ is not divisible by $2 n+1$.

Then, for each $v \in S$, the reduced form of q^{m} / v will have a denominator prime to q. Moreover, $q^{m} / v \equiv 0$ (modulo q) except when $v=\mu$, and $q^{m} / \mu=1 / \mu_{0} \equiv \equiv 0$ (q). If (5) holds, then, in particular,

$$
\begin{equation*}
\sum_{s=0}^{r}(-1)^{s} q^{m} D_{s} \equiv 0(q) \tag{7}
\end{equation*}
$$

The only terms in the left-hand side of (7) which are nonzero modulo q are the terms $\delta_{i}(\mu) / \mu_{0}$. We shall count the number of summands $\delta_{i}(\mu) / \mu$ in D_{s} for which
$\delta_{i}(\mu)$ is nonzero. We are only concerned with $s \neq 0$ since it is clear from (3) that $D_{0}=0$. Suppose that the greatest common divisor of μ and $2 n+1$ is $p_{1}^{m_{1}} p_{2}^{m_{2}} \cdots p_{r}^{m_{r}}$. Clearly, $0 \leqq m_{j} \leqq n_{j}$. Since $2 n+1$ does not divide μ we know that $m_{i}<n_{i}$ for some $i \in\{1, \ldots, r\}$. There is no loss of generality if we suppose that $m_{1}<n_{j}$ for $i=1, \ldots, h$, and $m_{j}=n_{j}$ for $j>h$. We claim that the number of summands $\delta_{i}(\mu) / \mu$ in D_{s} for which $\delta_{i}(\mu) \neq 0$ is exactly $C_{h, s}$. [We set $C_{h, s}=0$ when $s>h$ otherwise $C_{h, s}=\binom{h}{s}$.] By the definition of D_{s}, we are only concerned with those i such that $\beta^{i}=a_{1}^{i_{1}} \cdots a_{r}^{i_{r}}$ where exactly s of the i_{j} are nonzero and each i_{j} is either 0 or $p_{j}^{n_{j}-1}$. Furthermore, $\delta_{i}(\mu)$ is nonzero if and only if there is a solution x to the congruence $\mu x \equiv i(2 n+1)$. Hence $\delta_{i}(\mu)$ is nonzero if and only if the greatest common divisor of μ and $2 n+1$ divides i. If we have $i_{j}=p_{j}^{n_{j}-1}$ for some $j>h$ then clearly $p_{j}^{n_{j}}$ does not divide i, hence $(\mu, 2 n+1) \nmid i$ and it follows that $\delta_{i}(\mu)=0$. On the other hand, if $i_{j}=0$ for every $j>h$ and if i_{j} is either $p_{j}^{n_{j}-1}$ or 0 for $j \leqq h$, then i is divisible by $(\mu, 2 n+1)$ and it follows that $\delta_{i}(\mu) \neq 0$. We have shown that $\delta_{i}(\mu) / \mu$ makes a nonzero contribution to D_{s} if and only if $\beta^{i}=\alpha^{i_{1}} \cdots \alpha_{r}^{i_{r}}$ where exactly s of the i_{j} are $p_{j}^{n_{j}-1}$, $j \in\{1, \ldots, h\}$, and all other i_{j} are zero. There are clearly exactly $C_{h, s}$ such values of i.

We have shown that the left-hand side of (7) consists, modulo q, of $N=C_{h, 1}$ $+C_{h, 2}+\cdots+C_{h, n}$ terms each of which is congruent $\pm 1 / \mu_{0}$. If (7) holds then there must be a sum of N terms ± 1 which is either 0 or a nonzero multiple of q. Since $N=2^{h}-1$ is odd, the sum cannot be zero or a multiple of 2 . If q is greater than N then clearly the sum cannot be a nonzero multiple of q. That is, (6) is a contradiction if $q=2$ or if $q>2^{h}$. Since $h \leqq r$ and $2 n+1$ involves r distinct primes we see that the proof is complete if $q=2$ or if $q>2 n+1$. We now appeal to Lemma 6. If μ is the (unique) element of S which is divisible by a maximal power of 2 , and if $2 n+1$ does not divide μ, then we take $q=2$ and the proof is complete. On the other hand, if $2 n+1$ divides μ we let q be the prime p of Lemma 6 . Then $q>2 n+1$ and q divides $v \in S$ where v is not a multiple of $2 n+1$. The pair q, v clearly satisfies (6). Thus the proof is again complete.

Lemma 5. Suppose that $p_{1}, p_{2}, \ldots, p_{r}$ are distinct primes, and $n_{1}, n_{2}, \ldots, n_{r}$ are positive integers, and that a_{i} is a primitive $p_{i}^{n_{n}}$ th root of unity for $i=1,2, \ldots, r$. Let $b_{\left(1_{1}, \ldots, i_{r}\right)}$ be rational numbers such that

$$
\sum b_{\left(i_{1}, \ldots, i_{r}\right)} a_{1}^{i_{1}} \cdots a_{r}^{i_{r}}=0,
$$

where we sum over $0 \leqq i_{1}<p_{1}^{n_{1}}, \ldots, 0 \leqq i_{r}<p_{r}^{n_{r}}$. Then

$$
\sum_{s=0}^{r}(-1)^{s} D_{s}=0
$$

where D_{s} is the sum of those coefficients b whose vector subscripts $\left(i_{1}, \ldots, i_{r}\right)$ have exactly s nonzero entries and are such that if $i_{j} \neq 0$, then $i_{j}=p_{j}^{n_{j}-1}$.

Proof. The proof is by induction on r. The following argument provides the
induction step and at the same time serves as the proof for $r=1$. For each $j=0, \ldots, p_{1}^{n_{1}}-1$ we set

$$
C_{j}=\sum b_{\left(j, i_{2}, \ldots, i_{r}\right)} a_{2}^{i_{2}} \cdots a_{r}^{i_{r}},
$$

where $0 \leqq i_{2}<p_{2}^{n_{2}}, \ldots, 0 \leqq i_{r}<p_{r}^{n_{r}}$. Let $g(x)$ be the polynomial $\sum_{j=0}^{p_{1}^{n_{1}-1}} C_{j} x^{j}$. Then $g\left(a_{1}\right)=0$ and hence $g(x)$ is divisible by the minimal polynomial $t(x)$ for a_{1} over $F=\Gamma\left(a_{2}, \ldots, a_{r}\right)$, where Γ denotes the rational numbers. Since a_{1} is a primitive $p_{1}^{n_{1}}$ th root of unity, its minimal polynomial over F is the same as its minimal polynomial over Γ, [Kronecker, Werke, Vol. 1, Leipzig, 1895, p. 85] namely,

$$
t(x)=1+x^{p_{1}^{n_{1}-1}}+x^{2 p_{1}^{n_{1}-1}}+\cdots+x^{\left(p_{1}-1\right) p_{1}^{n_{1}-1}} .
$$

We know that $g(x)=t(x) h(x)$, where $h(x)$ is a polynomial over F of degree

$$
\operatorname{deg}(g(x))-\operatorname{deg}(t(x))
$$

Hence

$$
\operatorname{deg}(h(x)) \leqq\left(p_{1}^{n_{1}}-1\right)-\left(p_{1}-1\right) p_{1}^{n_{1}-1}=p_{1}^{n_{1}-1}-1 .
$$

Letting h_{0} denote the constant term of $h(x)$, we see that the coefficients of 1 , $x^{p_{1}^{n_{1}-1}}, x^{2 p_{1}^{n_{1}-1}}, \ldots, x^{\left(p_{1}-1\right) p_{1}^{n_{1}-1}}$ in $t(x) h(x)$ are all equal to h_{0}. Therefore,

$$
C_{0}=C_{p_{1}^{n-1}}=\cdots=C_{\left(p_{1}-1\right) p_{1}^{n_{1}-1}}=h_{0}
$$

In particular, $C_{0}-C_{p_{1}^{n-1}}=0$, that is

$$
\begin{equation*}
\sum\left(b_{\left(0, i_{2}, \ldots, i_{r}\right)}-b_{\left(p_{1}^{n_{1}-1, i_{2}}, \ldots, i_{r}\right)}\right) a_{2}^{i_{2}} \cdots a_{r}^{i_{r}}=0 \tag{8}
\end{equation*}
$$

where $0 \leqq i_{2}<p_{2}^{n_{2}}, \ldots, 0 \leqq i_{r}<p_{r}^{n_{r}}$. In particular, if $r=1$, then $b_{(0)}=b_{\left(p_{1}^{n_{1}-1}\right)}$, which proves the lemma for $r=1$.

Remark. One can easily modify the proof of Lemma 5 to obtain additional relations on the coefficients of a polynomial of degree $\leqq m-1$ which has an m th root of unity as a root. We actually proved that $C_{i}=C_{i+p_{1}^{n_{1}-1}}=C_{i+2 p_{1}^{n_{1-1}}}=\cdots$, but we only used the case for $i=0$. The natural generalization of Lemma 5 yields a system of linear equations which can be used to determine the coefficients of the minimal polynomial for a m th root of unity.

Lemma 6. Let $S=\{k, k+1, \ldots, k+2 n\}$ where n and k are positive integers. Let μ be the (unique) element of S which is divisible by a maximal power of 2 . Then
(i) $2 n+1$ does not divide μ, or
(ii) $2 n+1$ divides μ and there is a prime $p>2 n+1$ and an element $v \neq \mu$ of S such that p divides v.

Proof (${ }^{5}$). First, suppose that $2 n+1$ is an element of S. Then $2 n+1$ cannot

[^2]divide μ unless $2 n+1=\mu$. Since μ is even this completes the proof for $2 n+1 \in S$. Thus we may suppose that $k>2 n+1$.

There is nothing to prove unless $2 n+1$ divides μ. If 2^{m} is the highest power of 2 dividing μ, then $2^{m+1}>2 n+1$, since 2^{m+1} does not divide any element of S. By the theorem of Sylvester and Schur (see [5]) there is a prime $p>2 n+1$ such that p divides some element of S. If p divides v where $v \neq \mu$ then there is nothing to prove. Thus we may suppose that $\mu=(2 n+1) 2^{m} p \mu_{0}$ where μ_{0} is an integer. Therefore, $\mu>(2 n+1)^{3} / 2$, hence $k+2 n>(2 n+1)^{3} / 2$. We suppose that the lemma is false. Then μ is the only element of S which is divisible by a prime greater than $2 n+1$. For each prime $p_{i} \leqq 2 n+1$ we let $p_{i}^{\alpha(i)}$ denote the highest power of p_{i} which divides $C_{k+2 n, 2 n+1}$. It follows that

$$
C_{k+2 n, 2 n+1} \leqq \mu \Pi p_{i}^{\alpha(i)} .
$$

As was shown in [5], $p_{i}^{\alpha(i)} \leqq k+2 n$. Let $d=d(n)$ denote the number of primes which do not exceed $2 n+1$. Then

$$
C_{k+2 n, 2 n+1} \leqq \mu(k+2 n)^{d} \leqq(k+2 n)^{d+1} .
$$

For each $t=1, \ldots, 2 n$, we have $(k+2 n) /(2 n+1)<(k+2 n-t) /(2 n+1-t)$, therefore

$$
\left(\frac{k+2 n}{2 n+1}\right)^{2 n+1}<(k+2 n)^{d+1}
$$

If $n \geqq 4$, then $d(n) \leqq n$. Therefore, $(k+2 n)^{n}<(2 n+1)^{2 n+1}$ for $n \geqq 4$. Using $(k+2 n)$ $>(2 n+1)^{3} / 2$ we have a contradiction for $n \geqq 4$.
The remaining cases ($n=1,2,3$) can be disposed of by routine arguments. We shall sketch the proof for $n=3$. Recall that we are only concerned with the situation where (i) $k>2 n+1$, and where (ii) μ is divisible by $2^{m}, 2 n+1$, and by every prime $p>2 n+1$ which divides an element of S.

When $2 n+1=7$, the six elements of $S-\{\mu\}$ have no prime factors other than 2,3 , and 5 . Let v_{1} and v_{2} denote, respectively, the elements of S divisible by maximal powers of 3 and 5 . Let $T=S-\left\{\mu, v_{1}, v_{2}\right\}$, and let t denote the product of elements of T. Then T contains at least four elements, each of which is greater than 7 (since $k>2 n+1$). Therefore $t>7^{4}$. This is a contradiction since one can show that $t \leqq 2^{4} \cdot 3^{2} \cdot 5$. We show, for example, that 2^{5} does not divide t. Since $\mu \notin T$ and μ is divisible by the maximal power of 2 , we know that no element of T is a multiple of 8 . At most one element of T can be a multiple of 4 , and at most two additional elements of T are divisible by 2 . Thus t is not divisible by 2^{5}. Similar arguments show that t is not divisible by 3^{3} or by 5^{2}.

The cases for $2 n+1=3,5$ can be handled by arguments similar to the above.
Added in Proof. Since the submission of this manuscript the doctoral dissertation of P. V. Lambert [7] has come to our attention. Dr. Lambert has shown that if C is taken to be the complex-valued continuous 2π-periodic functions, then any minimal projection onto the nth order trigonometric polynomials is necessarily
real. Thus the minimal norm projection is also unique in this case. Among many other results Dr. Lambert gives examples of compact Abelian groups for which the natural (Fourier) projections onto subspaces generated by characters are not unique, although minimal.

References

1. D. L. Berman, On the impossibility of constructing a linear polynomial operator furnishing an approximation of the order of best approximation, Dokl. Akad. Nauk SSSR 120 (1958), 143-148. (Russian)
2. N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
3. M. Golomb, Lectures on theory of approximation, Argonne National Laboratory, Argonne, Ill., 1962.
4. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, New York, 1962.
5. P. Erdös, A theorem of Sylvester and Schur, J. London Math. Soc. 9 (1935), 282-288.
6. S. M. Lozinski, On a class of linear operators, Dokl. Akad. Nauk SSSR 61 (1948), 193-196. (Russian)
7. P. V. Lambert, Minimum norm projections on the linear spaces of finite sets of characters, Dissertation, Free University of Brussels, 1968.
8. ——, Réalité des projecteurs de norme minimum sur certains espace de Banach, Acad. Roy. Belg. Bull. Cl. Sci. (5) 58 (1968), 91-100.

University of Texas,
Austin, Texas
University of Washington,
Seattle, Washington
The Pennsylvania State University,
University Park, Pennsylvania
Technical University Eindhoven, Eindhoven, Netherlands

[^0]: Received by the editors October 1, 1968.
 $\left({ }^{1}\right)$ Supported by the Air Force Office of Scientific Research.
 $\left.{ }^{(2}\right)$ Supported by the National Science Foundation.
 $\left.{ }^{(3}\right)$ Supported by a NATO Science Fellowship, granted by the Netherlands Organization for the Advancement of Pure Research (Z.W.O.).

[^1]: $\left({ }^{4}\right)$ Throughout this paper, "measurable sets" and "measurable functions" are understood to be Borel sets and Borel functions. Also Lebesgue measure is understood to be restricted to the Borel sets.

[^2]: $\left({ }^{5}\right)$ This proof was suggested by a paper of Erdös [5]. We are indebted to John Selfridge for calling our attention to [5].

