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Denote by C the Banach space of all continuous, 27r-periodic, real-valued

functions defined on [ - n, n], the norm being given by the equation |/|| =max|/(x)|.

Denote by F„ the subspace of C consisting of all trigonometric polynomials of

degree ^«. Any bounded linear operator A: C->Pn such that Ap=p for all

p ePn is a projection of C onto Fn. The Fourier projection is such an operator; it

is defined by an equation Fnf= 2 </, pk}Pk, where p0,..., p2n is any basis for Fn

which is orthonormal with respect to the inner-product (.f,g} = j1„fg.

It was proved by Lozinski [6] that the Fourier projection is a minimal projection

of Conto F„. In other words, the inequality ||F„|| ^ ||^|| is valid for every projection

A of C onto F„. This property of Fn has been discussed by other authors [3, p. 254],

[4, p. 154], and [1], and it has been an open question whether any other minimal

projection from C onto F„ exists. It is proved below that Fn is the only such

projection.

The following conventions are used throughout the paper. An integral written

simply ¡f or \f(t)dt stands for (l¡2n)¡^^ f(t) dt. For each point xe [ — -n, v],

an evaluation functional x is defined by the equation xf=f(x),f being an arbitrary

member of C. The shift operator Fs is defined by xTsf=f(x + s).

Several elementary results from Fourier analysis are required. If A is any pro-

jection of C onto Pn then Fn = J T_SATS ds. This means that for each x and for

each/ xFnf=( xT_sATsfds. This equation of Berman [1] yields at once the

inequality ||F„|| 5j \\A\\. The Fourier projection can be expressed as an integral

operator as follows: xFnf=¡ DnTxf where Dn (the Dirichlet kernel) is given by:

n

D„(t) = 1+2 2 cos kt = sin(n+$)tlsin$t.
k=l

Theorem. If A is a projection of C onto Pn such that \A\-¿ ||F„|| then A=Fn.

Proof. The proof of this theorem depends on a number of lemmas. We first

show that the theorem follows from Lemmas 1, 2, and 3. We next prove Lemmas 1
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and 2 and show that Lemma 3 will follow from Lemma 4. This portion of the

paper uses the techniques of analysis. Lemma 4 is equivalent to the statement that

a certain specific polynomial of degree 2« does not have a root which is a primitive

(2«+ l)th root of unity. We next show that Lemma 4 follows from Lemmas 5 and 6.

Lemma 5 essentially states that if g(x) is a polynomial of degree 2« which has a

primitive (2«+l)th root of unity as a root, then a certain combination of the

coefficients of g must be zero. In our case the combination of coefficients is too

complicated to calculate directly. It is sufficient, however, to show that the com-

bination of coefficients is nonzero modulo an appropriate prime o, and this is the

path we follow. Finally, Lemma 6 assures us of the existence of an appropriate

prime.

Suppose that the theorem is false. That is, suppose that there exists a minimal

projection A different from Fn. Write Berman's equation in the form

Fn = Z+Z [4- f   T.SATS ds) +=£? M- T T_SATS ds] •

This expresses Fn as a convex linear combination of two minimal projections: for

brevity we write Fn=6A1 + (l — d)A2, where 0< d< 1. The parameter a is selected

so that A1 5¿F„. For the second adjoints of the operators, it is clear that F** = 6A**

+ (l — 6)A**. Henceforth, we write F** and Af* simply as Fn and At. This device

serves to extend the operators to a domain which includes all bounded measurable

functions (4). By Lemma 1, (proved below)

|Fn|| = xFnT_xa = exAiT-xa + (\-S)xAJ,_s<i

^ filial+(l-fl)Ma|| = ||FJ.

This shows that xAT_xa= ||Fn|], where A denotes either Ay or A2. Here a denotes

sgn Dn, the sign of Dn.

Assertion. Each functional xA is absolutely continuous with respect to Lebesgue

measure. For simplicity let x = 0. Then ÔAo= \\Fn\\. Let J bean interval on which a

is +1. We claim that ÔAf^ 0 if f¿ 0 on J and /= 0 off J. Indeed, if this is false, then

there exists an fe C for which |/| = 1, /^0 on J, /=0 off /, and OAf<0. Then

I a -/|| = 1 and a contradiction results: \\A\\^\\ÔA\\^ÔA(o-f)=\\Fn\\-ÔAf> \\Fn\\.

In the same way, if J is an interval on which o is — 1 then ÔAfSO for every/

such that/^0 on J and/=0 off F Now let S be any set of (Lebesgue) measure

zero, and let « be its characteristic function. It is to be proved that OAh = 0. It is

sufficient to establish this under the additional assumption that S is contained in

an interval J on which a is constant, because the entire interval [—w, -n] is the

union of a finite number of such subintervals. Suppose for definiteness that a is

(4) Throughout this paper, "measurable sets" and "measurable functions" are understood

to be Borel sets and Borel functions. Also Lebesgue measure is understood to be restricted to

the Borel sets.
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+ 1 on J. Then ÔAh > 0 by the previous analysis. Hence 0 = | Dnh = ÔFnh = 6ÔAxh

+ (l-6)ÔA2h^0, and ÔAh = 0.

Since the range of A is Pn, A has a representation in the form Af= 2 <t>i(f)Pu

where {/?0,..., p2n} is a basis for Pn, and <f¡ e C*. If h is the characteristic function

of a set of measure zero (and if <f>¡ is extended to operate on all bounded measurable

functions), then 0 = xAh = ^<f>i(h)pi(x). By linear independence, <f>t(h) = 0 for all i.

This proves that each functional <f>t is absolutely continuous with respect to

Lebesgue measure. By the Radon-Nikodym Theorem there exist functions

hi eLx[-TT, tt] such that ^¡(/) = J/n( for all/e C. Thus A is of the form

xAf=  [K(x, t)f(t) dt

where K(x, 0 = 2 K(f)P¿x).

From previous equations and Lemma 1 we have

\\xA\\ =  [\K(x, 0| dt = xAT_xo =  ¡K(x, t)a(t-x) dt.

Since a is almost everywhere of magnitude 1, we conclude that for all x and for

almost all t, K(x, t)o(t—x)^0. Since these arguments are valid for both Ax and A2,

we obtain integral representations (and kernels Kx, K2) for both. It follows that

P>n(t-x) = dKx(x, t) + (l-6)K2(x, t). Since Kt(x, t)o(t-x)^0 for almost all I and

|Z>n|S2n+l, we see that \KAx, t)\ ^(2n + l)/[0(l-0)]. Thus for fixed x, KAx, ■)

is a bounded L^function, and hence an element of L2[-tt, tt-].

Now let v be any root of Dn, and put g(x, t)=K(x—v, t). Then g (or possibly

— g) satisfies the hypotheses of Lemma 2. From that lemma, we obtain g(t, t) = 0

for almost all t, or in terms of K, K(t — v, t) = 0 for almost all I. Thus, for almost

all I, the trigonometric polynomial K(x, t) has roots (in x) at the roots of Dn(t—x).

Since these 2n roots determine an element of Pn exactly except for a factor, we must

have K(x,t) = ß(t)Dn(t-x) for an appropriate ßeL2[-ir, tt]. Clearly ß^O. Let

ot=0-l.

If pePn then Ap=p and consequently p(x) = xAp=j p(l+a)T_xDn =

xFn(p + ap). This proves that Fn(ap) = 0 for all pePn. If qePn then 0 = <<7, a/?>

= (qp, a). Since £//? ranges over all of F2n, we conclude that a _|_ P2n.

Next we observe that a J_ F^Z),,! for all x. This follows from the equation

||Fn|| = l&ll =J |tf(*. 01 *-/ 1(1 +«)-F_xZ)n| = ||FJ +/a.r_,|D.|.
Since aeL2[ — tr,7r] we have a = 2"= - «o ckete, where ek(x) = eikx. Also let

|-On|=2^fcefc- Then Tx\Dn\=Jidkek(x)ek. Since a is orthogonal to this function,

we have 2 <v4efc(x)=0. Hence ckdk=0 for all k. But a J_ P2n, and hence cfc = 0

for \k\ fí2n. By Lemma 3, dk=£0 when |Ar| >n, and hence cfc=0 for \k\ >n. Hence

ck = 0 for all k. It follows that a=0, ß=l, K(x, t) = D(t-x), and A = Fn. Thus the

proof will be complete as soon as we verify Lemmas 1, 2, and 3.
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Lemma 1. Let T be a bounded linear operator from C into Pn, and let x be a point.

If there exists an element geL1 such that xTf=\ gf for allfe C then xT**f=\ gf

for all bounded measurable f.

Proof. Let F™ denote the normed linear space of bounded measurable functions

with supremum norm. Let <j>(f) = ¡ gf and let w denote the w(L™, C*)-topology

on F™. We shall prove that <j> and xT** are w-continuous extensions of xT, and

that Cis w-dense inF™. If/ is a net inF£° such that/ -> 0 (mod w) then <g,/¡> -*■ 0

because <g, •> e C*. Thus <f> is w-continuous. Since the adjoint of any bounded

operator is continuous in the two weak* topologies, [2, p. 478], we see that

T** is w(C**, C*)-w(C**, C*)-continuous. Since / e C**, F**/-^0 in the

w(C**, C*)-topology. Since x e C*, xT**f -> 0. Thus XT** is w-continuous. By

Goldstine's Theorem [2, p. 424], C is w(C**, C*)-dense in C**. Hence it is also

vv-dense in F£°.

Lemma 2. Let g be a bounded function of two variables such that for each x,

g(x, ■)eL1[ — TT,n], and for each t, g(-, t) ePn. Let 8>0, and assume that for each

x and for almost all t e (0, 8), g(x, x—t)^0^g(x, x + t). Then g(x, x) = 0for almost

all x.

Proof. Assume that the conclusion is false. Without loss of generality, let

g(x, x)>0ona set of positive measure. Then for some e>0, g(x, x)ä2e on a set

of positive measure. By the regularity of Lebesgue measure, there is a closed set >S

of positive measure such that g(x, x) ^ 2e for all x e S. Since g( ■, t) forms a bounded

set in Fn, there exists a common modulus of continuity for all these functions.

Hence there is a number 9 > 0 such that g(z, x) ä e whenever x e S and x S z ^ x + 9.

Let T={(z, x) : x e S and x^z^x+9}. Let/denote the characteristic function of

T. By the Fubini Theorem J gf=¡¡ g(x, t)f(x, t) dt dx, the integral on the left

being over the square [ — -n, -nf. Since g^e on T, and F has measure 9p(S)>0,

we have j gf>0. Hence there is an x for which j" g(x, t)f(x, t) dt>0. Since/(x, /)

= 0 if t>x or t<x— 8, we have Jx_ó g(x, t)f(x, t) dt>0. But this is not possible

since by hypothesis g(x, 0 = 0, for almost all t in (x—8, x).

Lemma 3. If the Fourier series of\Dn\ is 2?= -«> dkek then ¿k/0 when \k\ >«.

Proof. Since \Dn\ is periodic and even, we have

i   c i r2R   i

¿k = f        \Dn(t)\e-™=V-\       2'cosJ' cos kt dt.

Here the prime indicates that the term corresponding toy'=0 is to be halved. Since

Fn(í) = sin (« + £)i/sin \t, it changes sign at each of the points tu..., t2n, where

tv=VTT¡(n + {). Hence

1    X^ 1 "ST"* /
dk = - 2_ (~ly \        ¿_ cos jt cos kt dt

^ v=0 Jtv j = 0

= T- 2 (-1)" f" + l 2' [cos (/c+y)i +cos (/:-y)/] ¿f.
Z7T u=0 >>tv 1=0
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Now assume that k>n so that k-yj^O and k—j^O. Then

ri        1   VVc    u.\ñ*(k+j)t   sin (k-m'y + i
d«-2rr&éoK      }i      k+j      +       k-j      i

where ß = ei*lln + ll2\ After carrying out the t>-summation and replacing /}2n+1 by 1

we obtain

l T    ^, r     ßk+i-i ßk-i-i

4 = -Im 2 [r>. , ,v«t(, ^ +(fc+jTX^'+l)'(*-./)</*-'+1)
n ßk + J_l

= -Im   >
TT . ■'-',¿í„(fc+Z)<P*+'+l)

= ̂ ImX/WTT)

_2 k + »      ^j^ _i    k + n    1   .     j 1       \

*■     i-ti-nzOS'+D"  *■ ,¿„71^+1  jS-^+ij

The proof is completed by an appeal to Lemma 4.

Lemma 4. If k and n are positive integers then

k + 2n i   qv      ,

ro Urn*0-
Proof. We first note that the term in (1), involving the unique v such that 2n+1

divides v, is zero. Hence this term may be deleted from the summation. Let

d(v) = (v, 2n+1), the greatest common divisor of v and 2n+ 1. Since ß is a primitive

(2n+l)th root of unity, ß" is a primitive ((2n+l)/d(v))th root of unity. We set

s(v) = (2n+l)ld(v)-l and note that /3s-1= -(jS^+l) 2t = i (-ß")'.

Thus if (1) fails to hold we must have

k + 2n i    s(D)

(2) 2     i 2 i-FY = o

Using only the relation ß2n+1 = l we rewrite (2) as

2n

2
i-o

(3) 2 4? = °-
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where for each i
k + 2n       s /„\

4-    2   *-¥
v = fc;2n + l|u     "

and

8t(v) =     0,    if there is no te {I,.. .,s(v)} satisfying vt = /(2«+l)

= - 1,    if the solution t e {1,..., 5(f)} to vt = i(2n+ 1) is odd

=     1,   if the solution is even.

It is a consequence of Lemma 5 (below) that a certain combination of the ¿'s

is equal to zero. In order to apply Lemma 5 we first factor 2«+ 1. Suppose 2« +1

=Pi1Pz2' ■ -Pr' where the />¡ are distinct primes. Let mj=T\i^ip^i. The greatest

common divisor of {m¡ : j= 1,..., r} is 1, therefore there exist integers c¡ such that

2 cjmj=l. Now let ai = j8cim>. Clearly ß = a1a2■ ■ -ar. Moreover, since ßis aprimitive

(2« + l)th root of unity, each a¡ is a primitive p^'th root of 1. For each i, let i}

denote the element of 0, I,.. .,p"—l which is congruent / modulo pf. Then

ßi = ai^ai^ ■ ■ ■ a\T, and we can write (3) as

(4) 2 K.W«!1 • • • a'r   = 0>
OSi¡<pp-l:i=l....,r

where b(h.w denotes the (unique) ¿4 for which ß% = a^ ■ ■ ■ a\r. We see from

Lemma 5 that (4) implies

(5) 2(-\yDs = o,
s = 0

where Ds is the sum of those coefficients b, whose vector subscripts (i) have

exactly 5 nonzero entries and (ii) are such that if i^O then ij=p^''1. We will

complete the proof of Lemma 4 by showing that (5) is a contradiction.

We see from (3) that each Ds is a sum of terms S^y)/^. Suppose that we can find

a prime 0 such that if qm is the highest power of 0 which divides an element of

S={k,k+l,.. .,k + 2n} then,

(i) there is a unique p. e S which is divisible by qm, say p. = qmp0, and

(6)
(ii) this p. is not divisible by 2«+1.

Then, for each ve S, the reduced form ofqm/v will have a denominator prime to 0.

Moreover, qm¡v=0(moduloq) except when v = p., and qmlp.= lfpo^0 (q). If (5)

holds, then, in particular,

(7) 2 (-OVA = 0(<7).
s = 0

The only terms in the left-hand side of (7) which are nonzero modulo q are the

terms S((/¿)//¿o- We shall count the number of summands S¡(/-t)//n in Ds for which
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8¡(/x) is nonzero. We are only concerned with s^O since it is clear from (3) that

Z>0 = 0. Suppose that the greatest common divisor of p. and 2n+ 1 is p^p^2- ■ -p?*.

Clearly, 0^mf^nf. Since 2n+l does not divide p. we know that m{<ni for some

i e{l,..., /•}. There is no loss of generality if we suppose that m,<n¡Tor i'=l,..., n,

and m, = nj for j>h. We claim that the number of summands 8¡(/x)//x in Ds for which

8¡(/u)^0 is exactly ChtS. [We set ChjS = 0 when s>h otherwise ChtS = Q).] By the

definition of Ds, we are only concerned with those i such that ßi = ai11- ■ -a'r' where

exactly s of the i¡ are nonzero and each i¡ is either 0 or/?"'"1. Furthermore, 8¡(p)

is nonzero if and only if there is a solution x to the congruence itjc = i'(2n + l).

Hence 8¡(p) is nonzero if and only if the greatest common divisor of ¡x and 2n +1

divides i. If we have 4=/?",_1 for some j>h then clearly p]' does not divide i,

hence (/x, 2n+ l)f i and it follows that 8¡(it) = 0. On the other hand, if /';=0 for

every j>h and if i¡ is either /?"'_1 or 0 for/'an, then / is divisible by (/x, 2n+ 1)

and it follows that 8¡(^)^0. We have shown that 8¡(/x)//m makes a nonzero con-

tribution to Ds if and only if ßi = aii- ■ -a1; where exactly s of the i¡ are pf'1,

j e {1,..., h), and all other i¡ are zero. There are clearly exactly CÄi, such values of i.

We have shown that the left-hand side of (7) consists, modulo q, of N=Cn,x

+ Cfc,2+ • ■ ■ + Chih terms each of which is congruent ± l/ii0. If (7) holds then there

must be a sum of A terms ± 1 which is either 0 or a nonzero multiple of q. Since

N=2h— 1 is odd, the sum cannot be zero or a multiple of 2. If q is greater than A

then clearly the sum cannot be a nonzero multiple of q. That is, (6) is a contra-

diction if q = 2 or if q>2h. Since hSr and 2n+l involves r distinct primes we see

that the proof is complete if q = 2 or if q>2n+l. We now appeal to Lemma 6.

If ii is the (unique) element of S which is divisible by a maximal power of 2, and if

2n+ 1 does not divide /tx, then we take q = 2 and the proof is complete. On the other

hand, if 2n +1 divides /x we let q be the prime p of Lemma 6. Then q > 2n +1 and q

divides v e S where v is not a multiple of 2n +1. The pair q, v clearly satisfies (6).

Thus the proof is again complete.

Lemma 5. Suppose that px,p2,.. .,p, are distinct primes, andnx, n2,..., nr are

positive integers, and that a¡ is a primitive pf'th root of unity for i=l, 2,..., r. Let

bUl.¡r) be rational numbers such that

26«i.iA ' ' ■ <' = 0,

where we sum over 0 ^ ix <p\i,..., 0 ¿ ir </??'. Then

2 (-im = o,
s = 0

where Ds is the sum of those coefficients b whose vector subscripts (ix,..., ir) have

exactly s nonzero entries and are such that if i^O, then ij=p"'~1.

Proof. The proof is by induction on r. The following argument provides the
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induction step and at the same time serves as the proof for r=l. For each

y'=0,.. ^pl1 — 1 we set

Ci = 2è«.'2.w4a •••<#>

where 0-¿i2<p¥,..., 0^ir<p?r. Let g(x) be the polynomial 2/ÎV1 Cpc*. Then

g(a1) = 0 and hence g(x) is divisible by the minimal polynomial t(x) for ax over

F=T(a2,..., ar) ,where Y denotes the rational numbers. Since ax is a primitive

/?nith root of unity, its minimal polynomial over F is the same as its minimal

polynomial over T, [Kronecker, Werke, Vol. 1, Leipzig, 1895, p. 85] namely,

t(x) = l+x^1-1 + X2""1'1 + ■ ■ • +x(Pl-1)î'ï1"1.

We know that g(x) = t(x)h(x), where h(x) is a polynomial over F of degree

deg(g(x))-deg(i(x)).

Hence

deg(«(x)) Ú (Pï'-O-Oi-IM1-1 =pp-1-l.

Letting «0 denote the constant term of h(x), we see that the coefficients of 1,

x"*1"1, x2""1"1,..., ^Pi-1^"1"1 in t(x)h(x) are all equal to «0. Therefore,

C0   =   Cpnl-1   = ■ ■ ■ =   C(Pl_1)pnl-l   =   «0.

In particular, Co-Cp;i-i=0, that is

(8) 2(V¡2.w-ftöp-M,.ir)K2---aír = 0,

where 0^/2</jg2,..., 0i¡/r <p?. In particular, if r=l, then /j(0) = /j(pni-i,, which

proves the lemma for r= 1.

Remark. One can easily modify the proof of Lemma 5 to obtain additional

relations on the coefficients of a polynomial of degree ^m— 1 which has an wth

root of unity as a root. We actually proved that Ci = Ci + p5i-i = Ci + 2p"i-i= • ■ -,

but we only used the case for / = 0. The natural generalization of Lemma 5 yields

a system of linear equations which can be used to determine the coefficients of the

minimal polynomial for a «ith root of unity.

Lemma 6. Let S={k, k+l,..., k + 2n} where n and k are positive integers. Let

p. be the (unique) element of S which is divisible by a maximal power of 2. Then

(i) 2« + 1 does not divide p., or

(ii) 2« +1 divides p. and there is a prime p>2n + l and an element v^pofS such

that p divides v.

Proof (5). First, suppose that 2« +1 is an element of S. Then 2« +1 cannot

(5) This proof was suggested by a paper of Erdös [5]. We are indebted to John Selfridge

for calling our attention to [5].
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divide tt unless 2n+ 1 =/x. Since tt is even this completes the proof for 2n +1 e S.

Thus we may suppose that k>2n + l.

There is nothing to prove unless 2n +1 divides tt. If 2m is the highest power of 2

dividing /x, then 2m + 1>2n + l, since 2m + 1 does not divide any element of 5. By

the theorem of Sylvester and Schur (see [5]) there is a prime p>2n+ 1 such that /?

divides some element of S. If/? divides v where v^p. then there is nothing to prove.

Thus we may suppose that tt = (2n + I )2m/?ti0 where tt0 is an integer. Therefore,

/x> (2n + 1 )3/2, hence k + 2n>(2n + 1 )3/2. We suppose that the lemma is false. Then

/x is the only element of S which is divisible by a prime greater than 2n+ 1. For

each prime /?¡¿2n+l we let pfn denote the highest power of/?¡ which divides

Ck+2n.2n+i- It follows that

Cfc + 2n,2n+l  = A1! IF"    •

As was shown in [5], pf(i)t=k + 2n. Let d=d(n) denote the number of primes which

do not exceed 2n+ 1. Then

Ck + 2n.2n+i S Li(k + 2n)d Ï (k + 2n)d + 1.

For each I = 1,..., 2n, we have (A: + 2«)/(2n + 1 ) < (k + 2n-1)/(2n +1 -1), therefore

(k + 2n\2n + 1      .,    „ .rf + 1

\2n-Vl)        < *+2">-"-

If ne4, then d(n)^n. Therefore, (k + 2n)n<(2n+l)2n + 1 for n^4. Using (k + 2n)

>(2n+l)3/2 we have a contradiction for n^4.

The remaining cases (n=l, 2, 3) can be disposed of by routine arguments. We

shall sketch the proof for n = 3. Recall that we are only concerned with the situation

where (i) k>2n + 1, and where (ii) it is divisible by 2m, 2n+l, and by every prime

p>2n+l which divides an element of S.

When 2n+ 1 =7, the six elements of .S-{tt} have no prime factors other than

2, 3, and 5. Let vx and v2 denote, respectively, the elements of 5 divisible by maximal

powers of 3 and 5. Let T=S—{tt, vx, v2}, and let t denote the product of elements

of F. Then F contains at least four elements, each of which is greater than 7 (since

k>2n+l). Therefore l>74. This is a contradiction since one can show that

t S 24 ■ 32 ■ 5. We show, for example, that 25 does not divide t. Since fi$T and tt is

divisible by the maximal power of 2, we know that no element of F is a multiple

of 8. At most one element of F can be a multiple of 4, and at most two additional

elements of F are divisible by 2. Thus t is not divisible by 2s. Similar arguments

show that I is not divisible by 33 or by 52.

The cases for 2n+ 1 =3, 5 can be handled by arguments similar to the above.

Added in Proof. Since the submission of this manuscript the doctoral dissertation

of P. V. Lambert [7] has come to our attention. Dr. Lambert has shown that if C

is taken to be the complex-valued continuous 277-periodic functions, then any

minimal projection onto the nth order trigonometric polynomials is necessarily
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real. Thus the minimal norm projection is also unique in this case. Among many

other results Dr. Lambert gives examples of compact Abelian groups for which

the natural (Fourier) projections onto subspaces generated by characters are not

unique, although minimal.
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