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ABSTRACT 

We use Monte Carlo methods to study the properties of the bootstrap Breusch-Godfrey test 

for autocorrelated errors in two versions a) by bootstrapping under the null hypothesis, 

restricted and b) by bootstrapping under the alternative hypothesis, unrestricted. We use the 

residual bootstrap for the bootstrap-BG test. Our analysis regarding the size of the test reveals 

that both bootstrap tests have actual sizes that lie close to the nominal size, with the restricted 

being better. Regarding the power of the test we find that with bootstrapping under the 

alternative hypothesis, the unrestricted bootstrap test has the greater power in small samples. 
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1. Introduction 

 

The history of autocorrelation tests dates back to the paper by Durbin and Watson (1950), 

who introduced their now classic test for autocorrelated errors in a regression model. 

However, the Durbin-Watson (D-W) statistic tests only for autocorrelation of the first order, 

and it is not valid in dynamic models (Maddala, 1995).  

  

One alternative that has been suggested is to use the Breusch-Godfrey (BG) test. This test, 

introduced by Breusch (1978) and Godfrey (1978), is easy to apply, applicable in the presence 

of lagged dependent variables, valid for very general hypotheses about the serial correlation in 

the errors, and is asymptotically equivalent to the Lagrange Multiplier (LM) test. Kiviet 

(1986) used Monte Carlo methods to compare different LM, Wald and LR alternatives for 

dynamic single equation models, and showed that using standard F-tests in the second 

equation was to be preferred. Edgerton and Shukur (1999), who studied the properties of 

various generalizations of the test in a system perspective, also found that using a system-wise 

Rao’s F-test (proposed by Rao, 1973) leads to superior properties when testing for 

autocorrelation. 

 

In both the last named papers and generally when we study the small sample properties of a 

test procedure by comparing different tests, two aspects are of prime importance: 

a)  finding the test that has actual size closest to the nominal size, and given that (a) holds; 

b)  finding the test that has the greatest power. 

In most cases, however, the distributions of the test statistic we use are known only 

asymptotically, and unfortunately, unless the sample size is very large indeed, the tests may 

not have the correct size and inferential comparisons and judgements based on them might be 

misleading.  

 

One way to deal with this situation that has emerged in recent years is to use the bootstrap 

technique. However, using this technique for testing autocorrelation is not new. Davidson 

and MacKinnon (1996) applied it to test for autocorrelation of the first order in a dynamic 

model. Morey and Wang (1985) bootstrapped the Durbin-Watson test as did Jeong and 

Chung (2001). These three studies all show the superiority of the bootstrap technique in finite 

samples. 
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The issue of bootstrapping a test statistic, even if it is well studied, is not trivial. One of the 

basic problems is deciding how to resample the data, and whether to resample under the null 

hypothesis or under the alternative hypothesis. In this paper, by using the Monte Carlo 

procedure we will investigate the properties of the bootstrap-BG test procedure in two 

different cases, first by bootstrapping under the null hypothesis (that is, bootstrapping the 

restricted model) and bootstrapping under the alternative hypothesis (that is, bootstrapping the 

unrestricted model). We will use mainly the Residual Bootstrap (RB) to study the properties 

of the BG test procedure when the errors are IID. 

  

The rest of the paper is organized as follows: Section 2 presents a review of the BG-test. In 

Section 3 we introduce the data, the model and the methodology. Section 4 presents the 

estimated results concerning the size of the tests, while Section 5 presents the estimated 

results concerning the power of the tests. Finally, we give a short summary and conclusion in 

Section 6. 

 

2. Breusch-Godfrey Test 

 

Consider the general single equation dynamic model 
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where  and et are , Xt is , b is  and T denotes the number of 

observations. 

ty ( 1)T × ( )T m× ( 1)m ×

  

Equation (1) is called the primary regression. The BG test is performed by first calculating the 

least squares residuals  from this regression, where Y is the  

matrix of endogenous variables, and Z I  is the  matrix of exogenous, 

constant and lagged endogenous variable. These residuals are then used in the following 

auxiliary equation: 
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The BG test is now performed by testing the hypothesis . 0 1: 0GH ψ ψ= = =
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Now we denote by  the vector of estimated residuals from the unrestricted regression (2), 

and by  the equivalent vector of residuals from the restricted regression with H0 imposed. 

Defining the matrix of cross-products of these residuals as  

Ûδ

ˆ
Rδ

ˆ ˆ
U Uδ δ′=S U

R

−

 (3a) 

 and  

ˆ ˆ
R Rδ δ′=S ,  (3b) 

the Wald, Likelihood Ratio and Lagrange Multiplier test statistics are given by 

1(tr 1)U RW τ −= S S , (4a) 

lnLR Uτ= , and (4b) 

1(1 tr )R ULM τ −= − S S , (4c) 

where UR SS detdet=U  and t is the rows of e . The above statistics are all asymptotically 

 distributed under the null hypothesis, where  is the number of restrictions imposed 

by H0.  

ˆ

)(2 pχ p

 
Note again that all the above statistics have been defined from the auxiliary regression (2), 

estimated using T observations.  

 
The F test statistic has the usual form:  
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3. The Monte Carlo Experiment 

 

The Monte Carlo experiment was performed by generating data according to (1), estimating 

the auxiliary regression (2), and then calculating the test statistics 4a-4d defined in Section 2. 

For simplicity and without loss of generality, we use just one exogenous variable and one 

lagged residual in equation (2). That is, we estimate the auxiliary equation: 

1 1 1 1ˆy +t t t tA BX Γ y ψ− −= + + +e tδ  (2a) 

The  errors of (1) are NID(0,1). tu
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For each model we performed 10,000 replications for the calculation of the sizes, and 1000 

for the power functions.  

The distribution of the exogenous variables that we use is the following fairly general type of 

simple AR(1) generating process: 
2

1 (0, )t t t tX X NIDφ ε ε σ−= + ∼  (5) 

The parameter of the exogenous AR process φ   is 0.50, the same for the dynamic parameter 

g   = 0.50, and the numbers of observations are 25, 50 and 100. 

 

3.1 The P-value plots 

 

The conventional way to report the results of a Monte Carlo experiment is to tabulate the 

proportion of how many times the null hypothesis is rejected in repeated samples under 

conditions where the null is true.  

 

Concerning the significance levels to be used when judging the properties of the tests, 

different authors have put forward reasons for using both larger and smaller significance 

levels. Maddala (1992) suggests using significance levels of as much as 25% in diagnostic 

testing, while MacKinnon (1992) suggests going in the other direction.  

 

To reduce this problem, in this study we use mainly graphical methods that may provide more 

information about the size and the power of the tests. We use the simple graphical methods 

developed and illustrated by Davidson and MacKinnon (1997) that are easy to interpret, the 

“P-value plot” to study the size, and the “Size-Power curves” to study the power of the tests. 

The graphs, the P-value plots and Size-Power curves are based on the empirical distribution 

function, EDF of the P-values, denoted as . ( )F x j

 

3.2 Bootstrap-critical values, bootstrapping the restricted model 

 

As mentioned in the introduction, in most cases the distributions of the test statistics that we 

use are known only asymptotically. As a result, the tests may not have the correct size, and 

inferential comparisons and judgments based on them might be misleading. However, by 
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using bootstrap technique we can improve the critical values so that the true size of the test 

approaches its nominal value. 

 

It is often assumed that the errors are normally distributed, but for our experiment, even if we 

have simulated error terms that are NID(0,1), we assume only that the errors are IID. In that 

case the simplest method is to bootstrap the residuals. Suppose the original estimation yields 

residuals . Then we obtain bootstrap error terms by resampling with replacement 

from the leverage-adjusted residuals: 

1 2ˆ ˆ ˆ, , , Te e e…
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                             (6)   

where h Z . Each element of each vector of bootstrap errors is one of the 

leverage-adjusted residuals, chosen at random with probability 1/T.  

( ) 1
t t Z−′ ′= Z Z

 
As early as Freedman’s (1984) paper, if the model is dynamic, it is customary to generate the 

recursively. That is, we generate the bootstrap samples as follows: 

     

*
ty

(1) We estimate the test statistic as described in Section 2a, (4), which we call . Ts

(2) We use the adjusted OLS residuals 
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(3) We then calculate the test statistics  as described in Section 2, equations 4a-4d.  Ts
*

(4) Repeating this step Νb times and taking the (1-α):th quintile of the bootstrap distribution 

of , we obtain the α - level “bootstrap critical values” ( ), and, finally, we then reject Ho 

if .  

Ts
*

Ts ≥

ctα
*

ctα
*

 

Among papers that advocate this approach are those of Horowitz (1994), Shukur and 

Mantalos (1997a) and Mantalos and Shukur (1998), whereas Davidson and MacKinnon 

(1996) advocate the estimate of the P-value. 
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A bootstrap estimate of the P-value for testing is P*{ }, and this is the approach that 

we use to study the size of the bootstrap test with the assistance of the “P-value plot”. As for 

Ν

Ts
* ≥ Ts

b, which is the size of the bootstrap sample used to estimate bootstrap critical values, 

Horowitz (1994) uses Νb =100, while Davidson and Mackinnon (1996) use Νb =1000 to 

estimate the P-value. In our study we use Νb = 200. 

 

3.3 Bootstrap-hypothesis testing, bootstrapping the unrestricted model 

 

One of the important considerations for generating the  is to impose the null hypothesis on 

the model from which we generate the . However, some authors, including Jeong and 

Chung (2001), argue for bootstrapping under the alternative hypothesis. “Let the data speak” 

is their basic bootstrap principle. In our case we resample the data as follows: 

*
ty

*
ty

 

(1) We calculate first the least squares residuals  from the primary regression. These 

residuals are then used in the following auxiliary equation: 

t̂e

1 1 1 1ˆ+ et t t ty A BX Γ y ψ− −= + + + tδ   

to estimate the coefficient 1ψ̂  and hence the studentized “pivot” = (Ts 1ψ̂ )/ , where  is the 

estimate variance of 

ˆTσ 2ˆTσ
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(2) We use the adjusted OLS residuals 
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(3) We then repeat step (1) to calculate the bootstrap coefficient *
1ψ̂  and then the  

Ts
* =( *

1ψ̂ - 1ψ̂ )/ , where (  is the estimated- variance of *ˆTσ * 2ˆ )Tσ *
1ψ̂ . 
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(4) Repeating this step Νb times we estimate that the P-value for testing is P*{ }, and 

this is the approach that we use to study the size of the bootstrap test with the assistance of the  

Ts
* ≥ Ts

“P- value plot”. The Νb here is 200. 

 

4. Analysis of the Size 

 

In this section we present the results of our Monte Carlo experiment concerning the size of the 

bootstrap tests. 

 

For the P-value plots, if the distribution used to compute the  is correct, each of the 

should be distributed uniformly on (0,1). Therefore the resulting graph should be close to 

the line. Furthermore, to judge the reasonableness of the results we use a 95% confidence 

interval for the actual size ( ) as : 

ps

ps

45o

0π
N

)1(  2 00
0

πππ −
± , where N is the number of Monte 

Carlo replications. Results that lie between these bounds will be considered satisfactory. For 

example, if we consider a nominal size of 5%, we define a result as reasonable if the 

estimated size lies between 4.46% and 5.44%. 

 

The P-value plots also make it possible and easy to distinguish between tests that 

systematically over-reject or under-reject, and tests that reject the null hypothesis about the 

right proportion of the time. 

 

Figure 1 shows the truncated P-value plots for the actual size of the bootstrap, the F and the 

Wald tests, using 25, 50 and 100 observations. Looking at these curves, it is not difficult to 

make the inference that the bootstrap test performs adequately, as it lies inside the confidence 

bounds. The same holds for the F-test, as it also lies inside the confidence bounds. However, 

using the asymptotic critical values, the Wald test seems to show a slight tendency to over-

reject the null hypothesis.  
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Figure 1 P-value plot, Parametric vs. Bootstrap Tests 
Figure 1a 25 Observations 

 
Figure 1b 50 Observations 

 
Figure 1c 100 Observations 

 
Dot line: Confidence interval 
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Figure 2 P-value plot, Restricted vs. Unrestricted Bootstrap Tests 
Figure 2a 25 Observations 

 
Figure 2b 50 Observations 

 
Figure 2c 100 Observations 

 
Dot line: Confidence interval 
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The superiority of the bootstrap test, concerning the size of the tests, is for most F-Tests 

negligible but for most Wald tests considerable, and this is more noticeable in small samples, 

25 and 50. 

 

Figure 2 shows the truncated P-value plots up to 10% for the actual size of the restricted and 

unrestricted bootstrap tests. We truncated up to 10% to facilitate the comparison between two 

well-performed bootstrap tests. However, as we see, there is a small difference between the 

restricted and unrestricted bootstrap tests at the significance levels of as much as 5%, the 

unrestricted bootstrap lying on the upper bounds or just outside the bound for 100 

observations, with the restricted lying inside the bounds. Note also that all four bootstrap tests 

(Wald, LRE, LM and F-test) have identical results in the restricted case, while in the 

unrestricted case we use only the studentized “pivot” bootstrap-t test.  

 

To summarize the results concerning the size of the test, we find that the bootstrap tests 

perform adequately in all samples, while the restricted bootstrap is just a little better than the 

unrestricted bootstrap method in large samples. 

 
 
5. Analysis of the Power of the Tests 

 

In this section we analyse the power of the Wald and bootstrap tests using sample sizes of 25, 

50 and 100 observations. The power function is estimated by calculating the rejection 

frequencies in 1000 replications using the value ρ = 0.4.  

 

We used the Size-Power Curves to compare the estimated power functions of the alternative 

test statistics. This proved to be quite adequate, because those tests that gave reasonable 

results regarding size usually differed very little regarding power. We followed the same 

process as for the size investigation (see Section 4) to evaluate the EDFs denoted by , 

by using the same sequence of random numbers as that which we used to estimate the size of 

the tests.  

( )F x j
⊕

 

Using Size-Power Curves to plot the estimated power functions against the nominal size. 

While plotting the estimated power functions against the true size, that is  against (F x j
⊕ )
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(F x j ) , we have the Size-Power Curves on a correct size-adjusted basis. Figure 3 shows the 

results of using the Size-Power Curves. We see that the unrestricted bootstrap test method is 

now superior not only against the Wald test but also against the restricted bootstrap. The most 

interesting result is that the superiority is much more noticeable in small samples. We also see 

a sample effect: the larger the sample, the larger is the power of the tests. Finally, as the 

sample size increases, the power difference decreases, showing that the Wald test has higher 

power than the restricted bootstrap.  

 

However, when using the Size-Power Curves on a correct size-adjusted basis, the situation is 

different concerning the power of the Wald and the restricted bootstrap. Now the Wald, 

F-Test and restricted bootstrap tests share the same power as we see in Figure 4. But it still 

holds that the unrestricted bootstrap exhibits higher power than the other tests. 

 

The conclusion to our power investigation is that, generally, the unrestricted bootstrap test 

performs better than the parametric tests and the restricted bootstrap tests in all samples, and 

that its superiority to the other tests is much more obvious with small samples.  
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Figure 3 Size-Power Curves for Restricted vs. Unrestricted Bootstrap Tests 

Figure 3a 25 Observations 

 
Figure 3b 50 Observations 

 
Figure 3c 100 Observations 
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Figure 4: Size-Power Curves on a correct size-adjusted basis  
Figure 4a 25 Observations 

 
Figure 4b 50 Observations 

 
Figure 4c 100 Observations 
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6. Conclusions and Brief Summary  

 

Let us summarize the results of our investigation. The purpose of this study has been to study 

the BG- autocorrelation test in a single equation dynamic model. We tested for 

autocorrelation of the first order, testing the hypothesis: , by using the bootstrap 

technique in two ways: 

0 1:H ψ = 0

I) The restricted bootstrap test was used, in which we approximated the distribution of 

the test statistic, generating more robust critical values for our test statistic. 

II) On the other hand, by the unrestricted bootstrap test, we approximated the distribution 

of the parameter (coefficient) 1ψ . 

In both cases it does not matter whether or not we know the nature of the theoretical 

distribution of the parameter estimator or the theoretical distribution of the test statistic. What 

matters is that the bootstrap technique well approximates those distributions.  

 

The conclusion to our investigation is that both bootstrap tests have an actual size that lies 

close to the nominal size and, given that the unrestricted model has the greatest power, it 

makes sense to choose the bootstrap from the unrestricted model ahead of the other tests, 

especially in small samples. 

 

The difference between the two methods is that in the restricted (I) case we estimate and test 

indirectly the parameter (coefficient) 1ψ , through a test statistic, while in the unrestricted (II) 

case we estimate and test directly the parameter (coefficient) 1ψ . This second method has an 

advantage over the restricted (I) case, considering the power of the test in small samples. In 

large samples, however, the tests show a tendency to have the same power.  

Moreover, while the restricted bootstrap test method can be easily generalized and is valid for 

a very general hypothesis about the serial correlation in the errors, not only in a single 

equation but also in systems of equations in the way that we have described. The unrestricted 

bootstrap, on the other hand, is not as clear as the restricted bootstrap test method, in the sense 

of generalizing the method for being valid for a very general hypothesis about the serial 

correlation in the errors and so we need to make further investigations. Even so, this cannot 
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diminish the fact that the unrestricted bootstrap test method is a powerful tool for testing the 

presence of autocorrelation of the first order in dynamic models. 

 

In this paper we have studied the estimated size and power of the parametric and bootstrap 

tests by bootstrapping data under the null hypothesis (restricted bootstrap test) and under the 

alternative (unrestricted bootstrap test). Regarding the size of the test, we used Monte Carlo 

methods to investigate the properties of the tests using 10,000 replications per model, and we 

used the P-value plots to investigate the size of the tests. We found that the bootstrap tests 

perform better in small samples, while the restricted bootstrap is just a little better than the 

unrestricted bootstrap method in large samples.  

 

When we consider the power results by studying the Size-Power Curves, even by studying the 

Size-Power Curves on a correct size-adjusted basis, the unrestricted model has the greater 

power. Finally, all tests share the same power, or the difference is very small for large 

samples. 
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