
AT&T TECHNICAL DOCUMENT TD-59VNB8 1

Preliminary Measurements on the Effect of Server
Adaptation for Web Content Delivery

Balachander Krishnamurthy, Craig Wills, Yin Zhang

Abstract—The phrase “time-to-glass” has been used to de-
scribe the delay between the user’s browser click and the
rendering of the response from a Web server on the user’s
screen. A Web site has a strong incentive to reduce this time-
to-glass to retain users who may otherwise lose interest and
leave the site. Our work reports on a measurement study
carried out from diverse client sites around the world with
various levels of connectivity to the Internet. The study mea-
sured the impact of a variety of Web server actions for re-
ducing the time-to-glass for retrieving content from a canon-
ical Web site under our control. Our work examines vari-
ous aspects affecting a client (such as low bandwidth or high
latency) in the context of a suite of server actions, ranging
from selecting a lower quality version of the resource to al-
tering the manner of content delivery or varying server pol-
icy to keep connections open longer. We examined a large
proxy log and extracted a subset of popular pages with di-
verse characteristics to construct our canonical site. By
studying numerous performance related factors in a single
unified framework and examining both individual actions
as well as combination of actions, this first such study shows
the efficacy of various server actions. Our results show that
some actions have less impact than previously thought while
others have significant impact for a class of clients with par-
ticular connectivity characteristics.

I. INTRODUCTION

In earlier work we presented a way to characterize Web
client’s connectivity information [3]. A Web client may
experience poor performance due to low bandwidth, high
latency, network congestion, delay at intermediaries be-
tween the client and server, etc. A server can take reme-
dial actions such as selecting a lower quality version of
the resource for delivery or by altering the manner of con-
tent delivery. In this followup work, we present early mea-
surement results on the actual latency reduction for a wide
class of real and geographically dispersed set of clients.

Earlier research work has examined Web performance
from the viewpoint of individual improvements in reduc-
ing user-perceived latency or load on the network. The set
of ideas includes compression and delta encoding [5], the

Krishnamurthy and Zhang are with AT&T Labs–Research, Florham
Park, NJ, USA. Wills is with Worcester Polytechnic Insti-
tute, Worcester, MA, USA.email:

�
bala,yzhang � @research.att.com,

cew@cs.wpi.edu. Contact author: Balachander Krishnamurthy, Fax:
973-360-8077, 180 Park Avenue, Florham Park, NJ 07932.

use of content distribution networks [1], examining impact
of various protocol variations of HTTP [2] and bundling
resources [8]. What these works have in common is the
use of a single idea to explore impact on Web performance.
Each of these pieces of research differ in their evaluation
environment in the sense that they use different method-
ologies, workloads, and validation techniques.

There are three key differences in this work:
1. We examine multiple performance related factors in a
single unified framework.
2. We examine a set of single actions that a server can take
to improve performance as well as a meaningful combina-
tion of actions.
3. We use a canonical set of container documents with var-
ious distributions of embedded objects in terms of number
and size. This approach allows the results of our work to
be applied by a wide variety of sites to test the potential
improvement of clients that visit them.

We explore the impact of various potential performance
improvements by an active measurement testbed consist-
ing of clients with different connectivity sending requests
to a small number of Web servers under our control. Hav-
ing control over the Web server and content allows us to
examine the different performance components in an au-
tomated fashion. By downloading the canonical container
document set via clients with different connectivity capa-
bilities, we can measure the actual improvement as a result
of various server actions. The following summarizes the
server actions we investigate in this work for improving
the response time for clients.

� Altering the Content. Given a range of content variants,
a server could choose a reduced version for poorer clients,
by including fewer, if any, embedded objects or by includ-
ing “thinner” variants of embedded images.

� Using a Content Distribution Network (CDN). In cases
where the round-trip latency between client and Web site
server is high, the use of CDNs by the Web site may yield
lower response time for the client [1].

� Altering Manner of Delivery of Content. The content
can be compressed with a suitable compression algorithm.
The server can also bundle the embedded objects into a
single resource, which can be retrieved by clients to avoid
multiple rounds of requests to fetch the objects [8]. This

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/283611296?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AT&T TECHNICAL DOCUMENT TD-59VNB8 2

technique can be combined with compression to reduce the
size of the bundle.

� Maintaining Persistent Connections. In HTTP/1.1, con-
nections between a client and a server can persist beyond
a single request-response exchange. If a server knows that
a client has poor connectivity, it might wish to keep the
connection open longer than usual to ensure that the client
does not pay the overhead of having to tear down and set
up a new connection.

II. METHODOLOGY

We want to investigate actions that a Web server can
take to reduce download time for a client. While dynamic
generation of Web content can take a nontrivial amount
of time, the generation is under control of the server and
can be improved independent of content delivery. The fre-
quency and amount that content changes can significantly
affect the usefulness of caching and delta encoding, but
these techniques are only relevant for repeat accesses by a
client or cluster of clients for a page. For now, we focus
on characterizing pages based on the amount of content of
a page because these affect the first access by a client for
the page. We plan to consider frequency and amount of
change in future work.

To characterize the amount of content for a page we
examine the number of bytes in the container object, the
number of embedded objects and the total number of bytes
for the embedded objects. These three characteristics are
used to classify pages in our work. We are interested in
investigating which server actions are the most effective
in reducing download times for different combinations of
characteristics that a page may have.

Using these characteristics to classify Web page con-
tents, the first part of our work was to identify Web con-
tent that covered the “space” of these characteristics. We
wanted to populate a canonical test site with realistic con-
tent that we know is requested by clients. This test site
would be used by clients to retrieve content in the context
of different server actions.

We used recent (December 2001) proxy logs from a
large manufacturing company with well over a 100,000
users. We only examined requests to the container object
of a page by looking for HTML URLs and selected the
1000 most popular pages. We used a Web page retrieval
tool in April 2002 to download each container object and
embedded objects (frames, layers, cascading style sheets,
javascript code and images) to determine the size of these
objects. Objects referenced as a result of executing em-
bedded javascript code were not considered.

From the initial list, 641 URLs containing one or more
embedded objects were successfully retrieved. We used

the 33% and 67% percentile values to create a small,
medium and large value range for each characteristic.
These ranges are shown in Table I. Using these three
ranges for each of the three characteristics defines a to-
tal of 27 “buckets” for the classification of an individual
page.

TABLE I
RANGES FOR EACH PAGE CHARACTERISTIC

Characteristic Small Medium Large
Container Bytes 0-12K 12K+-30K 30K+
of Embedded Objects 1-6 7-22 23+
Embedded Bytes 0-20K 20K+-55K 55K+

Using these ranges we determined the percentage of
pages that fell in each bucket. These are shown in Table II.
The table shows that 20% of these pages have a small num-
ber of container bytes, a small number of embedded ob-
jects and a small number of embedded bytes. 7% of the
pages fall in the medium range for each characteristic and
14% fall in the large range for each characteristic.

TABLE II
PERCENTAGE OF PAGES IN EACH CHARACTERISTIC

BUCKET BASED ON POPULAR PAGES FROM PROXY LOG

Embedded Bytes
Small Medium Large

Embedded Cont. Bytes Cont. Bytes Cont. Bytes
Objects S M L S M L S M L
Small 20 6 2 4 1 0 0 0 0
Medium 2 3 1 5 7 8 2 5 3
Large 0 0 0 1 2 4 1 8 14

As a comparison we also looked at the home pages of
131 popular [4] Web sites using the same bucket ranges
as defined in Table I. The percentage of home pages with
characteristics defined in Table I is shown in Table III. In
general, these pages have a larger number of embedded ob-
jects and bytes than the popular pages from the company
proxy log. In terms of the project, this distribution sim-
ply indicates that the effect of server actions for more em-
bedded content is of greater interest for popular site home
pages.

While the percentage of pages in each bucket is inter-
esting we primarily defined the ranges so that we could
identify pages that spanned the space of all possible char-
acteristics. To do this we selected two representative pages
from within each bucket of the proxy log pages shown in
Table II. In buckets containing many pages we tried to se-

AT&T TECHNICAL DOCUMENT TD-59VNB8 3

TABLE III
PERCENTAGE OF PAGES IN EACH CHARACTERISTIC

BUCKET BASED ON HOME PAGES FROM POPULAR SITES

Embedded Bytes
Small Medium Large

Embedded Cont. Bytes Cont. Bytes Cont. Bytes
Objects S M L S M L S M L
Small 7 1 0 3 1 0 0 0 0
Medium 1 0 3 7 11 5 3 3 4
Large 0 0 0 0 3 12 7 11 18

lect two pages that were representative of characteristics
within the bucket. Given that some buckets contain only
one (2 buckets) or no page (4 buckets) we were able to
select 44 pages to cover the space of characteristics.

The contents of these 44 pages were downloaded to files
at a test site using the Web utility wget [7]. The utility
automatically localizes links to embedded and traversal
links, although it does not identify objects such as style
sheets and javascript objects. These had to be additionally
downloaded and in cases where 302 Found (redirection)
responses were encountered, URLs in the container object
were changed to match the downloaded name.

Once the content for the 44 test pages was ready on the
test site, additional objects were created in preparation for
testing the various server actions. A compressed version of
each container object was created using the gzip utility. All
of the embedded objects for each page were bundled into a
single bundled object. A separate compressed bundle ob-
ject was created using gzip. To test the effect of offloading
embedded content from a server to a CDN, we crawled the
content of a Web site known to use a major CDN1 and cat-
aloged a large number of objects along with sizes served
by this CDN. We then matched each object at our test site
with a similar size CDN-served object. These CDN-served
matched objects were used to emulate the downloading of
embedded content from a CDN server rather than the test
site server.

We installed the test site on two relatively unloaded
servers: www.cs.wpi.edu located on the East Coast of
the U.S. and www.icir.org located on the West Coast.
For client testing, we used httperf [6], to make automated
retrievals to the test server and CDN site for testing of the
various server actions. While retrieval using a real browser
might be more realistic in measuring “time-to-glass,” the
use of httperf allows us to automate and control the re-
trieval under various conditions.

�
We did not use the AT&T CDN to avoid appearance of bias.

III. EXPERIMENTS

Just as we deliberately chose Web content for our test
Web site to include a variety of characteristics, we located
clients with different connectivity characteristics to the test
sites. We tested from clients in six locations:
1. att: AT& Labs–Research, New Jersey, USA,
2. de: Saarbruecken University in Germany,
3. isdn: home user in New Jersey, USA connected via a
128Kbps ISDN line,
4. modem: home user in New Jersey, USA connected via
a 56Kbps dialup modem,
5. uk: London, England via a dedicated 56Kbps line, and
6. au: University of Melbourne, Australia.

We used measured round-trip time (RTT) and through-
put to characterize the network connectivity characteris-
tics between these clients and our test sites. The round
trip time was determined using the average TCP connec-
tion setup time for the first object retrieval of each httperf
test. We computed the average throughput for retriev-
ing each of the bundle objects in the test site. We used
these objects because they contained a larger number of
bytes. The round-trip times and throughput for each of our
client/server pairs are shown in Figure 1. Note: the att.wpi
pair has a RTT of 9ms with a throughput of 462.6KB/sec.

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120 140

R
ou

nd
-T

rip
 T

im
e

(m
s)

Throughput (KB/sec)

att.icir

att.wpi(462.6)

de.icir

de.wpi
isdn.icir

isdn.wpi

modem.icir

modem.wpi

uk.icir

uk.wpi

au.icir

au.wpi

Fig. 1. Client/Server Connectivity

For a client, a set of tests for different server actions was
run four times spaced over 24 hours with results shown be-
ing the average of these four time periods. Note: The uk
client took so long to run the set of tests that only one set
was run. We used the retrieval of a page from a test site
using up to four parallel non-persistent HTTP/1.0 connec-
tions as a baseline measure because it requires no partic-
ular server actions. We refer to this approach as para-1.0.
A real browser may begin retrieving embedded objects be-
fore retrieval of the container object is finished. However,

AT&T TECHNICAL DOCUMENT TD-59VNB8 4

httperf does not begin retrieving the embedded objects un-
til the container object has been retrieved. This separation
does allow us to consider the effect of an action such as
compression to reduce retrieval time of the container ob-
ject independent of the effect of actions to reduce retrieval
time for the embedded objects.

Using para-1.0 as a baseline we studied the relative ef-
fect of each of these server actions where the container
object is retrieved first:
1. compress—retrieve container object in compressed
form and embedded objects (uncompressed) using up to
four parallel HTTP/1.0 connections
2. serial-1.1—serialized requests are made for embedded
objects using up to two persistent HTTP/1.1 connections
3. pipe-1.1—pipelined requests made for embedded ob-
jects using a single persistent HTTP/1.1 connection
4. cdn—embedded objects retrieved from a CDN server
using up to four parallel HTTP/1.0 connections
5. bundle—retrieve a single bundle of embedded objects.
6. baseonly—retrieve the container object, but no embed-
ded objects. This action is intended to measure the po-
tential response time savings for removing all embedded
content.
7. halfobject—retrieve (top) half of the embedded objects
using up to four parallel HTTP/1.0 connections; intended
to examine the effect of removing some embedded objects
from the container object.
8. halfembed—retrieve the top half of each embedded ob-
ject; an action derived from the results of the para-1.0 re-
trieval that assumes it takes half the time to retrieve the
data of each embedded object; intended to examine the ef-
fect of creating thinner versions of each embedded object.

Many of these actions can also be used in conjunction
with each other. For example, we examined the impact
of compressing the bundle object (bundle.gz) or using the
CDN to serve the bundle object (cdnbundle). These two
combinations are included in the results. In addition, the
compression of the container object can be combined with
any of the other actions for a cumulative effect. In our re-
sults, we note when such a combination leads to significant
performance improvements.

Actions add to the costs of the server. The server has to
create and store thinner variants of some objects; it must
generate or pre-compute and store compressed or bundled
content. These costs however can be amortized across
multiple requests.

IV. RESULTS

The results from our tests show a clear distinction be-
tween client/server pairs with relatively low throughput
(uk, modem and isdn) and those with high throughput (att,

au and de) to the two servers. There is less distinction
based on the RTT between client and server. We use the
throughput distinction in organizing the results.

A. Low Throughput Clients

Table IV shows the results for the isdn.wpi client/server
pair. The table shows the results of actions for 8 of the 27
buckets of content mix shown in Tables II and III. These
buckets represent 71% and 74% of the actual pages for the
respective data sets. Space limitations prevent showing re-
sults for all 27 buckets. The top row in the table shows the
average time in seconds to retrieve a page with the given
mix of content. The remaining actions are divided into
lossless, which do not change the content served to the
client, and lossy, which change the content served.

The results show that the time to retrieve a page with
large container page, a large number of embedded objects
and a large number of embedded bytes is 10.49 seconds.
Subsequent lines in the table show the relative percentage
improvement if the various actions are taken. For empha-
sis on significant differences, only server actions that yield
greater than 20% (’+’) improvement for the majority of
buckets are shown. Those yielding greater than 50% im-
provement are shown with ’++’. Thus using a compressed
version of the container object for this bucket saves 20-
50% of the 10.49 seconds.

Overall the results show that compression of the con-
tainer object has a significant effect for buckets with larger
container objects, but the other lossless actions do not have
significant effects and are not shown in the table. The com-
bination of first bundling then compressing the embedded
objects also leads to a significant improvement in down-
load time. The action of serving only the container object
yields a significant cost savings of greater than 50% for all
content mixes. Serving only half of the embedded objects
also has a significant effect, but trying to reduce the size of
embedded objects while still serving the same number of
objects has little positive effect.

Table V shows the results for the uk.icir pair, a low
throughput, high latency client/server pair. Despite the dif-
ference in throughput and sharp contrast in latency, the
relative impact of server actions is similar to isdn.wpi.
Overall results for the other client/server pairs with low
throughput shown in Figure 1 are similar. In particular,
the use of a CDN for all of these client/server pairs did
not yield at least 20% improvement because any latency
reductions between a client and chosen CDN server rela-
tive to the test site server did not overcome the bandwidth
constraints of the client.

AT&T TECHNICAL DOCUMENT TD-59VNB8 5

TABLE IV
ISDN.WPI—ACTIONS WITH SIGNIFICANT IMPROVEMENTS OVER PARA-1.0 (+: 20-50%, ++: � 50%)

Container Bytes-Embedded Objects-Embedded Bytes
Action S-S-S S-M-M M-M-M M-M-L M-L-L L-M-M L-L-M L-L-L
para-1.0 1.35s 3.50s 4.73s 7.13s 8.95s 6.27s 7.32s 10.49s
compress + + + +
bundle.gz + + + + + + +
baseonly ++ ++ ++ ++ ++ ++ ++ ++
halfobject + + + + + + +

TABLE V
UK.ICIR—ACTIONS WITH SIGNIFICANT IMPROVEMENTS OVER PARA-1.0 (+: 20-50%, ++: � 50%)

Container Bytes-Embedded Objects-Embedded Bytes
Action S-S-S S-M-M M-M-M M-M-L M-L-L L-M-M L-L-M L-L-L
para-1.0 6.76s 16.84s 22.96s 36.15s 42.94s 30.47s 33.01s 50.46s
compress + + + +
bundle.gz + + + + + + + +
baseonly ++ ++ ++ ++ ++ + ++ ++
halfobject + + + + + +

B. High Throughput Clients

Table VI shows results for the att.icir client/server pair,
which has high throughput. Unlike the low throughput
clients, the relative improvement for compression is not
significant, but the impact of actions such as the pipelining,
use of a CDN and bundling have a significant effect, par-
ticularly for buckets with more content. For the att client,
the RTT to the CDN server is approximately one-fourth of
the value to the icir server with a throughput five times as
much.

Table VII shows results for the au.wpi client/server pair
with relatively high throughput but a much longer latency.
Despite these differences, the tone of the results is the same
as shown in Table VI. For this client, the relative RTT and
throughput performance to the CDN server relative to the
WPI server is an order of magnitude.

The other high throughput client/server pairs shown in
Figure 1 yield similar results, although the impact for a
CDN serving embedded objects is not a significant im-
provement for the att.wpi pair. This result is because the
RTT from client to CDN server is actually larger than that
between client and the WPI server.

V. CONCLUSIONS AND ONGOING WORK

This is the first study that we are aware to look at the
impact of server actions for a variety of content and client
conditions where each action is measured on a common

platform. We are also able to evaluate the cumulative ef-
fect of two or more actions. Administrators of high vol-
ume websites can benefit from our results by examining
their content mix to see how different actions will benefit
their clients. The summary of the results of our work thus
far is:

� Compression of HTML content is not universally use-
ful. We did not find that compression had a signifi-
cant effect on reducing response time for well-connected
clients. Compression is an effective action when the client
is bandwidth-constrained.

� The CDN was useful for improving performance
of well-connected clients, but not so for bandwidth-
constrained clients even when it provided a lower RTT for
clients. This result extends what we found in [1]. Note
that these comparisons were made with relatively unloaded
servers.

� Persistent connections with serialized requests do not
provide a significant performance improvement under a
wide variety of client/content conditions.

� Persistent connections when combined with pipelining
are only significant for high bandwidth clients.

� Bundling content, like pipelining, has some use particu-
larly for better connected clients. Using CDNs to serve
bundles is also a good idea for well-connected clients.
Compressed bundles can have a significant effect for all
types of clients.

� In terms of lossy actions, removing embedded objects

AT&T TECHNICAL DOCUMENT TD-59VNB8 6

TABLE VI
ATT.ICIR—ACTIONS WITH SIGNIFICANT IMPROVEMENTS OVER PARA-1.0 (+=20-50%, ++= � 50%)

Container Bytes-Embedded Objects-Embedded Bytes
Action S-S-S S-M-M M-M-M M-M-L M-L-L L-M-M L-L-M L-L-L
para-1.0 0.69s 1.29s 1.29s 1.40s 2.82s 1.48s 2.05s 3.01s
pipe-1.1 + + + ++ + ++ ++
cdn + ++ ++ ++ ++ + ++ ++
bundle + + ++ + + ++
bundle.gz + + + ++ + + ++
cdnbundle + ++ ++ ++ ++ ++ ++ ++
baseonly + ++ ++ ++ ++ ++ ++ ++
halfobject + + + + + + +

TABLE VII
AU.WPI—ACTIONS WITH SIGNIFICANT IMPROVEMENTS OVER PARA-1.0 (+=20-50%, ++= � 50%)

Container Bytes-Embedded Objects-Embedded Bytes
Action S-S-S S-M-M M-M-M M-M-L M-L-L L-M-M L-L-M L-L-L
para-1.0 1.46s 3.09s 3.61s 3.87s 7.00s 4.02s 5.65s 7.41s
pipe-1.1 + ++ + + ++ + ++ ++
cdn + ++ ++ ++ ++ ++ ++ ++
bundle + + ++ + + +
bundle.gz + + + ++ + ++ ++
cdnbundle + ++ ++ ++ ++ ++ ++ ++
baseonly ++ ++ ++ ++ ++ ++ ++ ++
halfobject + + + + + + +

has a significant effect in all cases. However, reducing the
quality of embedded objects without reducing the number
does not yield a significant improvement under most cir-
cumstances.

� Client connectivity, not latency, matters for determining
which actions have significant performance effects. Our
results are consistent for clients with similar connectivity
despite large variations in latency.

In ongoing work, we are examining the cost to the
clients for dealing with the modified content sent by the
server. Amortization is feasible for clients behind a proxy
but individual clients may have to absorb the cost for each
modified response. In the case of decompression, most
clients are already capable of handling it and prior work [5]
has shown that decompression costs are insignificant. The
costs of unbundling and other actions require additional
investigation. We are also looking at other possible server
actions that matter for repeat accesses for a pages (such
as delta encoding) and policies regarding cachability of
objects. We are currently incorporating our results in a
Web server prototype that characterizes clients according
to their connectivity and takes an appropriate action in the

case of a client experiencing poor response.

REFERENCES

[1] Balachander Krishnamurthy, Craig Wills, and Yin Zhang. On the
use and performance of content distribution networks. In Proceed-
ings of the ACM SIGCOMM Internet Measurement Workshop, San
Francisco, November 2001.

[2] Balachander Krishnamurthy and Craig E. Wills. Analyzing Factors
that influence end-to-end Web performance. In Proc. World Wide
Web Conference, May 2000.

[3] Balachander Krishnamurthy and Craig E. Wills. Improving Web
Performance by Client Characterization Driven Server Adaptation.
In Proceedings of the World Wide Web Conference”, May 2002.

[4] Media metrix, March 2002. www.mediametrix.com.
[5] Jeffrey C. Mogul, Fred Douglis, Anja Feldmann, and Balachan-

der Krishnamurthy. Potential benefits of delta encoding and data
compression for HTTP. In Proc. ACM SIGCOMM, August 1997.

[6] D. Mosberger and T. Jin. httperf—a tool for measuring web server
performance. In Proceedings of WISP ’98, Madison, WI, June
1998.

[7] Wget. www.gnu.org/software/wget/wget.html.
[8] Craig E. Wills, Mikhail Mikhailov, and Hao Shang. N for the price

of 1: Bundling web objects for more efficient content delivery. In
Proceedings of the Tenth International World Wide Web Confer-
ence, Hong Kong, May 2001.

