
Abstract
The issue logic of a dynamically-scheduled superscalar processor
is a complex mechanism devoted to start the execution of multiple
instructions every cycle. Due to its complexity, it is responsible for
a significant percentage of the energy consumed by a
microprocessor. The energy consumption of the issue logic
depends on several architectural parameters, the instruction issue
queue size being one of the most important. In this paper we
present a technique to reduce the energy consumption of the issue
logic of a high-performance superscalar processor. The proposed
technique is based on the observation that the conventional issue
logic wastes a significant amount of energy for useless activity. In
particular, the wake-up of empty entries and operands that are
ready represents an important source of energy waste. Besides,
we propose a mechanism to dynamically reduce the effective size
of the instruction queue. We show that on average the effective
instruction queue size can be reduced by a factor of 26% with
minimal impact on performance. This reduction together with the
energy saved for empty and ready entries result in about 90.7%
reduction in the energy consumed by the wake-up logic, which
represents 14.9% of the total energy of the assumed processor.

Keywords: Issue logic; energy consumption; low power;
adaptive hardware.

1. Introduction

Power consumption has become an important concern in
processor design. More than 95% of current microprocessors
produced today are used in embedded systems, so low power
requirements are nowadays critical[30]. Mobile systems need an
extremely efficient use of the energy due to their limited battery
life, which is not expected to experience drastic increases in the
near future. On the other hand, high performance microprocessors
have to deal with heat dissipation and high current peak problems.
This impose very expensive cooling systems with an increasing
relative cost with respect to the total chip cost. For actual cooling
systems and technology, beyond 50 Watt of total dissipation, the
cost of dissipating a further Watt becomes superlinear, and may
soon reach an unreasonable cost [27]. Besides, several failure
mechanisms such as thermal runaway, gate dielectric, junction
fatigue, electro-migration diffusion, electrical-parameter shift and
silicon interconnections fatigue become significantly worse as
temperature increases [28]. As an example of the current trend in
power consumption, current microarchitectures such as the Alpha
21364 and PowerPC 704 dissipate about 85 and 100 Watt
respectively [31]. Another important question is that the growing
demand of multimedia functionalities for computer systems [16]

require an increasing computing power, which sometimes is
achieved through higher clock frequencies and more sophisticated
architectural techniques, with an obvious impact on power
consumption.

With the fast increase in design complexity and reduction in
design time, new generation CAD tools for VLSI design like
PowerMill [13] and QuickPower [12] are crucial to evaluate the
energy consumption at different points of the design, helping to
make important decisions early in the design process. The
importance of a continuous feedback between the functional
system description and the power impact requires better and faster
evaluation tools and models to introduce changes rapidly through
various design scenarios. Recent research has shown how
architectural power estimation tools like SimplePower [36],
Wattch [6] and Architectural Power Evaluation [7] can accurately
estimate the power consumption of a whole microprocessor with
a reasonable overhead and accuracy.

In this paper we first evaluate the energy consumed by the
different parts of a superscalar processor through the Architectural
Power Evaluation tool [7], which is a detailed cycle-level
simulator that includes both performance and power consumption
estimation techniques. This analysis demonstrates that one of the
critical components for power consumption in modern superscalar
processors is the part devoted to extract parallelism from
applications at run time. In particular, the wake-up function,
which analyzes data dependencies of the program through an
associative search in the instruction queue, is the main power
consuming part of the issue logic. This is reflected in a high
complexity circuit and high logic activity. For a typical
microarchitecture the instruction queue and its associated issue
logic are responsible for about 25% of the total power
consumption on average. This observation motivates an analysis
of the effectiveness of a large instruction queue.

We first note that both empty entries and ready entries
consume energy for doing a useless activity: the former do not
contain any valid data whereas the latter are known to be ready, so
they do not need to be checked by the wake-up logic. Besides, we
observe that the instruction queue must be large if its size is fixed
and high performance is desired for a wide range of applications.
However, different applications may require different queue sizes,
as already pointed out by other authors [2]. In addition, the queue
size requirements may significantly vary during the execution of
a program. Based on these observations, we propose a technique
to dynamically resize the instruction queue according to the
characteristics of the dynamic instruction stream. This technique
reduces the effective size of the instruction queue by about 26%
on average. We show that these mechanisms reduce the energy
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consumption of the wake-up logic by about 90% with respect to a
fixed size instruction queue, while the performance is hardly
affected.

The rest of this paper is organized as follows. Section 2
reviews previous work. Section 3 describes the experimental
framework. Section 4 analyzes the energy consumption of a
typical superscalar processor. Section 5 presents the proposed
techniques to reduce energy consumption and section 6 evaluates
their performance. Finally, section 7 summarizes the main
conclusions of this work.

2. Related work

A large number of techniques for low power have been proposed
in the literature. The problem has been attacked from different
standpoints, ranging from a high-level perspective, such as the
operating system, to the circuit and technology level. Two main
objectives of the low power research area are the peak power
reduction, (i.e. reducing the maximum power dissipated by the
die), and the total energy reduction for a given workload.

Power consumption in CMOS technology is quadratic with
voltage supply and linear with switching capacitance and activity.
Orchestrated methods to scale voltage and frequency
simultaneously can be really effective to drastically reduce the
power requirements of microarchitectures. As examples, Intel
StrongARM SA-110 [11] and Transmeta Crusoe [14] use
combinations of these techniques to considerably reduce power
consumption.

Another example used in commercial products is the TAU
(Thermal Assist Unit) of the PowerPC G3 and G4 family, where
an interrupt is generated based on a programmable thermal
threshold [25]. This causes an instruction flow reduction between
instruction cache and the instruction buffer in order to decrease the
temperature of the chip. Typically, voltage and frequency scaling
or interruption-based power-aware techniques are managed by the
operating system or the applications. Recent studies [5] have
investigated adaptive thermal management and power-conscious
dynamically reconfiguration engines for high-performance
microprocessors.

Today’s CPU designers also use conditional clocking or clock
gating to disable parts of the architecture when their activity is not
useful [6].

A comprehensive evaluation of the trade-offs between power
and performance of different architectural paradigms can be found
in [18]. In that work, the authors study the effect of different
architectural models on power consumption, starting from a non
pipelined to an aggressive superscalar architecture.

Many research works have focused on reducing power
consumption in cache memories [29][1][19][20], which is a
critical component for power consumption, especially in the
embedded microprocessor world.

Other works have proposed to reduce the speculative activity
of a processor in order to avoid useless activity. For instance, by
means of a confidence estimator for branch predictions, the
processor may decide not to speculate on branches that are hard to
predict [21].

Albonesi presents a study of the influence of the size of several
architectural structures on IPC, clock rate and the power

requirements [3][2]. Marculescu proposes a mechanism to
dynamically adapt the fetch and execution bandwidth based on a
profiling at the basic-block level [22].

Code and data compression [24][15][8] can reduce activity in
memories and buses although they introduce the overhead of
decompressing tasks.

Some compiler techniques can also be found in the literature.
For instance, instruction scheduling approaches [9] can be used to
avoid large current peaks in the execution core of high
performance processors.

3. Experimental Framework

In this section we present the framework used to estimate the
performance and power consumption of a typical superscalar
processor. For this purpose, we have used the Architectural Power
Evaluation tool [7] based on the SimpleScalar simulator [4], with
extensions to compute the energy spent every cycle.

3.1.  Power Consumption Estimation Model

The Architectural Power Evaluation tool [7] considers the
processor microarchitecture partitioned into 32 blocks, each
corresponding to a basic functional block and a circuit block. The
internal connections of blocks are modeled as components of the
blocks. The power consumption of the interconnections among
blocks is not considered since it is usually a negligible part of the
total power consumption. Every block is divided in subparts,
depending on the hardware implementation, and the simulator
counts the number of times that each subpart is used along the
program execution. The power consumption of each subpart is
characterized by the following three parameters: power density,
area occupied and circuit type. Five different types of circuits are
considered: memory, static logic, dynamic logic, PLA and clock
distribution1.

In the model, the power characterization of a digital
synchronous functional block of the microarchitecture is based on
the assumption that the power spent in a given cycle is
proportional to the activity of the block, the power density of the
block and the given area. The power computation of a given block
j in a given cycle i is computed through the following expression:

Where k represents each subpart of block j; α is the activity of
each subpart (activity is represented by the value 1 and inactivity
by 0); A, APD and IPD are the area, the active power density, and
the inactive power density of each subpart respectively. The power
density parameters are usually calculated from SPICE circuit
simulations. The area of the different blocks can be obtained from
soft core vendors and from VLSI textbooks. Well-known VLSI
scaling techniques can be applied to extrapolate area and power
density for newer process technologies.

In this process we assume a 0.18 µm CMOS technology. Other
physical characteristics of the different blocks of the architecture
can be found elsewhere [7] [17].

1. Note that clock distribution, which is one of the main sources of con-
sumption, is included in the consumption of each block
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This kind of architecture partitioning and modeling ensures a
good power estimation accuracy at architectural level, allowing
architects to have a quite detailed power map of the
microarchitecture. Low level design tools usually compute power
consumption with excellent accuracy but require the complete
HDL description and the circuit design. Furthermore, the
simulation cost is a few orders of magnitude bigger compared to
an RTL simulator, being not acceptable for exploring a
high-complexity circuit such as a whole superscalar
microprocessor, and given the typically large architectural design
space.

3.2. Benchmarks

For this study we have randomly selected a subset of the Spec95
benchmarks (applu, swim, tomcatv, wave, su2cor, hydro2d, perl,
li, m88ksim, vortex, compress and gcc). We have simulated 100
million of instructions after skipping the initial 100 million of
instructions for each of them. The benchmarks were compiled
with the Compaq/Alpha compiler with -O4 optimization flag.

3.3.  Architectural Model and Parameters

A typical superscalar microarchitecture is considered in this work.
The main parameters of the microarchitecture are described in
Table 1. We assume an instruction window composed of an
instruction queue and a reorder buffer that are organized as FIFO
queues. Decoded instructions are inserted in both queues at
dispatch time in program order. Instructions leave the instruction
queue when they are issued and free their reorder buffer entries
when they commit. In each entry, the instruction queue contains
the operation code and the instruction source operands if available
or the tags that uniquely identify them otherwise. It also contains
a ready bit for each tag and a valid entry flag. Each reorder buffer
entry holds the instruction program counter, the destination-
register operand tag, and a bit that indicates whether the
instruction has been executed. Program counter is used to maintain
precise exception and the tag is used to identify the destination
operand. We assume a microarchitecture where the results of
instructions are kept in the reorder buffer until they are committed.
Then, they are copied into the architectural register file. This is the
approach used by some commercial microprocessors such as the
Pentium III [10].

The number of entries of the instruction queue and reorder
buffer are assumed the same for the baseline configuration and is
experimentally determined in order not to be a bottleneck for the
microprocessor. Figure 1 shows the average IPC for different sizes
of the instruction queue and reorder buffer ranging from 16 to
1281. We can see that FP programs in general experience a
significant benefit for every increase of the instruction window up
to 128 entries whereas integer programs reach a plateau for 64
entries. Since we assume an instruction queue that is shared by
both integer and FP instructions, we set its size to 128 entries. It is
surprising that the li benchmark experiences a slight decrease in
performance when the number of entries is increased from 8 to 16.
This may happen in some cases due to several reasons. For
instance, a larger instruction queue may imply more instructions
issued from wrong paths. In some other cases, delaying the issue
of some instructions may be beneficial (an eager issuing policy is
known not to be optimal).

Parameter Configuration

Fetch width 4 instructions

I-cache L1 128KB, direct mapped, 32 byte line, 1 cycle hit
time, 3 cycle miss penalty

Branch Predictor Hybrid with 1K entry Gshare, 8bit global history,
2K entry bimodal and 1K entry selector

Decode/Rename and
Retire width 4 instructions

Instruction queue size 128

Functional units 4 intALU,4 fpALU
1 int mul/div, 1 fp mul/div

Issue Mechanism Out of order issue, store forwarding
oldest ready first selection policy

D-cache L1
128KB, 4-way set associative,
32 byte line, 1 cycle hit time,

3 cycle miss penalty

I/D-cache L2

1MB, 4-way set associative,
64 byte line, 3 cycle hit time,

64 bytes bus bandwidth to main memory, 16
cycles first chunk, 2 cycles interchunk

Table 1: Architectural configuration

1. For this experiment, we executed only 50 million of instructions per pro-
gram.
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Figure 1: IPC for different instruction window sizes.
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4. Energy Breakdown

The energy consumption breakdown for the different blocks of the
microprocessor is shown in Tables 2 and 3 for FP and integer
programs respectively. The evaluation reveals that a significant
part of the energy is spent by the instruction queue and its
associated issue logic. This component is responsible for about
one fourth of the total energy consumption. The reorder buffer is
another important contributor to power consumption, with a share
that is similar to the instruction queue. Note that the reorder buffer
is used to store results and thus, it is also used to read source

operands. This reading and writing activity is responsible for this
high energy demands, whereas the energy consumed by the
commit activity is much lower. The contribution of the cache
memory, including the first level instruction and data cache (L1
Icache and L1 Dcache) and the second level unified cache (unified
L2 cache), is close to another fourth of the total. The cache
memory represents the largest part of the chip in terms of area.
However, its power density and activity factor are smaller than
other parts such as the issue logic. In particular, the first level
caches have a low miss rate for the majority of applications and
thus, very few accesses are performed to the second level. For this

Applu Swim Tomcatv Wave Su2cor Hydro2d Avg(%)

Inst. Decode 340.9 336.5 351.1 341.9 344.2 349.9 2.8

BTB 143.3 119.7 195.7 149.5 156.4 187.3 1.3

TLB 63.5 53.0 86.7 66.2 69.3 82.9 0.5

L1 I-cache 677.2 565.4 924.5 706.6 738.9 855.0 5.9

L1 D-cache 621.0 518.5 847.8 647.9 677.7 811.6 5.5

L2 cache 1353.9 1130.4 1848.3 1412.6 1477.4 1769.4 12.0

Rename table 1627.9 1672.3 1725.5 1668.8 1724.7 1738.0 13.5

Inst. queue 3124.8 3136.2 3282.9 3160.8 3170.8 3269.5 25.2

ROB 3429.4 3445.7 3394.5 3489.7 3221.5 3348.8 27.1

Int FU 111.6 109.2 110.2 112.3 103.3 108.4 0.9

FP FU 147.7 144.9 145.8 148.6 136.7 143.4 1.2

I/O logic 244.2 203.8 333.4 254.8 266.5 319.1 2.2

Other parts 189.3 180.1 214.9 192.7 200.8 242.3 1.9

Total 12075.8 11615.8 13461.4 12352.6 12288.3 13225.8 100

Table 2: Energy consumption for floating point programs in mJoule

Perl Li M88ksim Vortex Compress Gcc Avg(%)

Inst. decode 345.9 334.6 335.2 346.6 333.9 349.3 2.8

BTB 164.5 114.9 107.7 169.4 108.8 109.1 1.1

TLB 72.9 50.9 47.7 75.0 48.2 84.2 0.5

L1 I-cache 777.3 542.9 509.0 800.2 514.1 897.9 5.4

L1 D-cache 712.8 497.9 466.8 733.8 471.4 823.4 5.0

L2 cache 1490.0 1040.8 1017.7 1412.6 1477.4 1795.2 11.1

Rename table 1812.1 1879.0 1742.0 1999.8 1027.8 1773.8 13.8

Inst. queue 3351.5 3420.2 3214.9 3645.3 3106.2 2906.2 26.5

ROB 3247.0 3227.3 3315.5 3558.2 3225.7 3499.9 27.1

Int FU 105.2 100.3 104.1 114.3 103.1 109.2 0.9

FP FU 139.2 132.8 137.8 151.3 136.4 144.5 1.1

I/O logic 280.0 195.8 183.5 288.5 185.3 323.8 2.0

Other parts 267.6 227.9 178.1 364.6 403.7 549.9 2.7

Total 12766.8 11765.6 11360.4 13659.7 11142.2 13366.5 100

Table 3: Energy consumption for integer programs in mJoule
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reason, the static consumption is a significant component of the
energy spent by the second level cache.

Finally, note that the energy breakdown is quite similar for the
different programs in spite of their different instruction mix. This
is due to the fact that most instructions activate the same blocks of
the microarchitecture (e.g. all instructions are fetched, decoded,
renamed, issued, and committed using the same circuit blocks).
Memory instructions are an exception since they are the only
instructions that access the data cache. As we can observe in Table
2 and Table 3, the power consumption of the cache memory shows
a significant variation across the different programs.

Increasing the issue width of superscalar processors is an
obvious approach to increasing performance (provided that other
parts of the processor are scaled accordingly). Most current
superscalar processors can issue up to four instructions per cycle
but there are already announcements of future microprocessors
such as the HAL Sparc64 V [26] that will be able to issue up to
eight instructions per cycle. In order to be effective, an increase of
the issue width must be accompanied by an increase of the
instruction queue size. Some studies suggest that the size of the
instruction window must grow more than linearly with respect to
the issue width [33]. In addition, the die area of the instruction
queue grows more than linearly with respect to the number of
entries [35] and the issue width [2]. Thus, we may expect that the
relative contribution of the issue logic to the power consumption
will grow in future microprocessors.

These results are consistent with some data published for real
microprocessors. As an example, the study of Wilcox and Manne
[34] about the power consumption of Alpha 21264 shows that the
IBox (instruction issue component) has the highest overall power
demands and power density of the whole processor and that the
issue function represents about 50% of it. They also present the
power distribution estimation for the Alpha 21464, where the issue
logic will be responsible for the 46% of the total power
consumption in the whole chip.

4.1. Detailed Analysis of the Instruction Queue

The previous section showed that the power consumption of the
instruction queue represents an important part of the total power
consumption and this contribution is likely to augment in future
generation microprocessors. The energy consumed by the
different entries of the instruction queue is homogeneous.
However, we show in this section that the contribution of each
entry to the processor performance is very different. The logical
structure of the instruction queue is described in Figure 2. We
consider the instruction queue implemented as a circular FIFO

without collapsing. That is, if an instruction in the middle of the
queue is issued, its corresponding entry becomes empty but is not
recovered until the head pointer reaches it. Collapsing makes a
more effective use of the instruction queue but is much more
energy demanding since collapsing implies a shift of all the entries
between the tail and the empty entry. A detailed hardware
implementation of the instruction queue can be found in [23]. The
global structure is designed as a set of CAM cells (see Figure 3).
The two basic functions involved in the instruction issue stage are
wake-up and select. In addition, the instruction queue is accessed
in order to write any new dispatched entry and to read any issued
instruction. Among these activities, the wake-up activity is the
most energy consuming. On average, for the assumed architecture,
it represents 63% of the total power consumption of the instruction
queue, which represents 16.3% of the total power consumption of
the processor (see Tables 2 and 3). Therefore, in this work we
focus on techniques to reduce the dynamic power consumption of
the wake-up logic.

Every cycle the wake-up logic broadcasts the result tags
through the result buses to all the entries and each entry compares
them with their tags to find a match. The conventional approach to
build the issue logic is power-inefficient due to the following three
observations. The first observation is that the part of the
instruction queue from the tail to the head (clockwise) is
completely empty and thus does not provide any performance
benefit. We refer to this part as the empty area. However, the
wake-up logic is also activated for these entries. Second, inside the
full area there are empty entries that correspond to instructions
already issued but not yet recovered due to the non-collapsing
feature but the wake-up logic also operates for them. Finally, note
that the entries of the instruction queue can have zero, one or two
operands ready. A conventional issue logic keeps trying to
wake-up each operand of an instruction even after a match has
been found and thus, the operand is ready.

We have quantified the contribution of each of these three
sources of energy waste. The first two columns in Table 4 show
the average number of entries in the full area of the instruction
queue and the average number of empty entries in the full area
respectively. The third column presents the energy consumption
wasted by both the empty area and the empty entries in the full
area. The fourth column shows the energy wasted by trying to
wake-up operands that are ready. All percentages are relative to
the energy consumption of the wake-up logic.

We note that on average the full area consists of just 58 out of
the 128 entries and 26 of these entries are empty. Empty entries

full area

empty area

HEAD
POINTER

TAIL
POINTER

Figure 2: The instruction queue.
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Figure 3: Instruction queue entry.
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consume 74.9% of the total energy consumed by the wake-up
logic. Furthermore, the unnecessary wake-up for ready operands
contributes with an additional 14% of energy waste. In total,
88.9% of the energy consumed by the wake-up logic is wasted in
these useless activities.

The second observation is that at a given point in time, some
parts of the instruction queue may provide a very small benefit in
terms of performance even if they are not empty. This is due to the
following reasons:

• In periods of the execution with much parallelism, only a
subpart of the instruction queue, specially the oldest part, is
enough to provide as many instructions as the issue width.

• In periods of execution with little parallelism, some parts of
the instruction queue, specially the youngest part, hardly
provide any useful instruction ready to be executed.

To provide evidence of this claim we have logically divided
the instruction queue in four parts of 32 entries each. The first part
is the oldest part and the fourth part is the youngest one. In every
portion of the instruction queue we have counted the number of
useful (i.e. committed) instructions that are issued along the

execution of the program. The results are shown in Figure 4. First,
we observe that the number of instructions issued from the
youngest part of the instruction queue represent a very low
percentage of the total number of useful instructions. This
percentage is somewhat higher for the second and third portions.
Finally, we can observe that most of the useful instructions are
issued from the oldest part of the instruction queue.

In addition, the contribution to IPC (instructions committed
per cycle) of a given part of the instruction queue is different for
each program, but it varies even for the same program along the
time. For instance, Figure 5 shows the number of useful
instructions per cycle that are issued from the youngest half part of
the instruction queue, for the applu program during 15 million of
cycles. We can observe that during some periods of time the
contribution to IPC of the youngest part of the queue is negligible
whereas in some other periods it is as high as one instruction per
cycle.

To summarize, a large instruction queue is needed to achieve
high performance, but the mechanism devoted to find ready
instructions for execution is very power-inefficient because every
cycle it consumes a large amount of energy just to check entries
that hardly contribute to performance or do not contribute at all. In
general, the instructions of the youngest part of the queue are the
least useful from a performance standpoint but their usefulness
varies for different programs and along the execution of the same
program. We can see that there are periods of time when the
youngest part of the instruction queue hardly contributes with any
useful instruction whereas in other periods its contribution is high.

5. Reducing the Energy Consumption of the
Issue Logic

In this section we present a design of the issue logic that
significantly reduces its energy consumption with a negligible
impact on performance. This design is based on the observations
drawn in the previous section.

5.1. Disabling the Wake-up for Empty Entries

The first optimization we propose is to dynamically disable the
wake-up function for the empty entries of the instruction queue.
These include all entries in the empty area and empty entries in the
full area.

Average
size of

full area
(entries)

Empty
entries
in full
area

Energy
wasted

by empty
entries

(%)

Energy
wasted

by ready
opnd.
(%)

Total
energy
waste
(%)

Applu 93 44 61.8 17.8 79.6

Swim 114 66 62.6 22.2 84.8

Tomcatv 63 29 73.4 14.7 88.1

Wave 103 61 67.2 16.4 83.6

Su2cor 53 19 73.2 15.9 89.1

Hydro2d 49 21 77.6 12.6 90.2

Perl 30 11 84.9 8.8 93.7

Li 25 5 84.3 9.6 93.9

M88ksim 49 9 68.5 18.7 87.3

Vortex 67 27 68.5 18.4 86.9

Compress 25 8 86.8 7.5 94.3

gcc 21 9 90.6 5.5 96.1

Avg 58 26 74.9 14 88.9

Table 4: Statistics for the conventional wake-up logic.

applu swim tomcatv wave su2cor hydro2d
0

20

40

60

80

p
er

ce
n

ta
ge

perl li m88ksim vortex compress gcc
0

20

40

60

80

first part 
second part 
third part 
fourth part 

Figure 4: Distribution of useful instructions issued from the four parts of the instruction queue. Each part corresponds to 32 entries.
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The basic idea is to “gate off” the tag comparisons for all the
empty entries. As described above, each instruction queue entry is
a CAM cell, which is typically implemented through dynamic
logic [37] as shown in Figure 6. Every cycle each match line is
precharged and then it is conditionally discharged depending on
the values of the tag stored in the cell and the tag forwarded
through the corresponding result tag bus. Disabling the precharge
will practically save all dynamic energy consumption. Disabling
the precharge for empty entries can be achieved adding and AND
gate to the precharge signal. The inputs of this gate are the original
precharge signal and the valid bit that indicates whether an entry
is empty. The output will drive the precharge transistors of every
match line. Note that for each operand, there are as many match
lines as number of result tag buses. This scheme avoids the energy
consumption of all the empty entries, which represent about 74.9%
of the total energy consumption of the issue logic as shown in
Table 4 and 12.3% of the energy consumed by the whole
processor. In fact, the savings will be a bit lower if we take into
account the energy consumption of the additional logic, the static
energy consumption of the gated CAM cells, and the energy
consumed by the tag buses, but these components are relatively
low.

5.2. Disabling the Wake-up for Ready Operands

The second proposed optimization allows to disable the wake-up
activity for those operands that are already marked as ready. A
conventional issue logic keeps on trying to wake-up each ready
operand until the instruction is selected for execution, which is
obviously a useless activity. Note that in particular, the time since

the first operand becomes ready until the instruction is selected
can be large.

Disabling this unneeded activity is accomplished again by
disabling the precharge operation for all the match lines of ready
operands. In this case, the precharge signal is computed as the
AND of the original precharge and the bit that indicates whether
the operand is ready.

5.3. Dynamic Resizing of the Instruction Queue

In order to exploit the fact that the youngest part of the window
provides almost no additional performance for some periods of
time, we propose a technique to dynamically resize the instruction
queue. The objective is to obtain almost the same IPC as the
conventional scheme, but with a lower energy consumption. The
basic idea is to implement a run-time mechanism that adapts the
size of the instruction queue based on the contribution of the
youngest part of the queue to performance. The resizing of the
queue is implemented by introducing a limit in the number of
entries in the full area, and dynamically adjusting this limit. By
reducing the maximum size of the full area, the number of empty
entries will increase and the energy will be reduced by the
wake-up disabling mechanism described in the previous section.

On the other hand, this resizing should be made in such a way
that the performance of the processor is hardly affected by it. In
other words, the size of the instruction queue should be reduced
when the youngest part hardly contributes to performance and
should be increased when there are expectations that the additional
part may produce a noticeable improvement of the instruction
execution rate.

For reducing the size of the instruction queue, we propose to
monitor the contribution of the youngest part of the queue (a chunk
of a determined size), and to measure how much these entries
contribute to the IPC. If their contribution is negligible, the
instruction queue size is reduced.

On the other hand, the size of the instruction queue is
increased periodically if it is smaller than its maximum size. Then,
it is measured whether this increase provides some benefit in
performance, and if not, its size is reduced again to its previous
value. Below we detailed the implementation of this mechanism.

The instruction queue is divided into sixteen equal parts of
eight entries each. We refer to each part as a portion. In addition to
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the usual head and tail pointers, there is an additional pointer that
is referred to as the limit pointer (see Figure 7). It determines the
furthest point that the tail pointer can reach. In other words, once
the tail pointer is equal to the limit pointer, no additional
instructions are allowed to be dispatched to the instruction queue.
The part of the queue between the head and the tail pointers is
called the full area; the part between the tail and the limit pointers
is referred to as the empty area; finally, the part of the queue
between the limit and the head pointers is called the disabled area.
Initially the limit pointer is set to the same value as the head
pointer (i.e. the allowed capacity of the instruction queue is set to
its maximum value).

During normal conditions, the limit pointer is updated with the
same offset used to update the head pointer. When a resize action
is performed, an offset corresponding to the size of one portion is
added to or subtracted from the limit pointer.

Each entry of the reorder buffer is extended with an additional
bit that indicates whether the instruction has been issued from the
youngest portion of the instruction queue. When the instruction is
dispatched, this bit is set to zero and when the instruction is issued,
the bit is set if the instruction is in the current youngest portion of
the instruction queue, i.e. the portion just below the limit pointer.
Every time an instruction that commits has this bit set, a counter is
increased. This counter is examined every certain number of
cycles (we refer to this parameter as quantum) and if it does not
reach a given threshold, the instruction queue size is reduced by
one portion. Besides, the size of the instruction queue is
augmented by an additional portion every five quantums, if it is
smaller than the maximum size. The evaluation of committed
instructions in the added portion during the next quantum will

reveal whether the contribution of the additional portion to IPC is
higher than the threshold. If it is not, the instruction queue size will
be reduced by one portion at the end of the next quantum.

In order to determine appropriate values for the quantum and
threshold, we performed a sensitivity analysis with different
values1. The main results are depicted in Figure 8. The left-hand
side figure shows the IPC and the right-hand side one shows the
average number of entries in the full area averaged for the whole
benchmark suite. Regarding IPC we can observe that a 1000-cycle
quantum outperforms the other two quantums for thresholds 0.015
and 0.025, and achieves a similar result for threshold 0.05.
Besides, thresholds 0.015 and 0.025 achieve similar IPCs whereas
threshold 0.05 incurs in a significant IPC degradation. On the
other hand, decreasing the quantum increases the resizing
capability since the mechanism reacts sooner to the varying
requirements of the program. We can also observe that the higher
the threshold the better the resizing capabilities. Based on these
observations, a 1000-cycle quantum and a threshold equal to 0.025
IPC seem a good trade-off between performance and resizing
capability. This means that the contribution of the youngest
portion of the queue must be greater than 25 instructions every
1000 cycles in order not to be cut-off (note that a single integer
counter and comparator is required by the control logic). We have
observed that this trend also holds for most individual programs
despite of their different features. We may thus expect that the
selected parameter values are adequate for a large range of
applications. Alternatively, one could develop a technique to
dynamically adjust these parameters but this may likely be useful
only for few applications.

6. Performance Results

In this section we present a performance study of the proposed
mechanism. Table 5 shows some performance statistics for each
benchmark as well as the average among them. The first column
shows the IPC for the conventional fixed-size instruction queue
configuration. The next column shows the IPC of the dynamic
resizing scheme. The third column shows the difference in IPC
between the fixed-size and the dynamic resizing schemes. The
next column shows the difference in IPC in percentage with
respect to the IPC of the fixed-size configuration. Finally, the last
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column shows the average size of the instruction queue (i.e. the
size of the full area).

We can observe that the dynamic resizing scheme reduces the
size of the instruction queue by 26% on average (i.e. 58 – see
Table 4 – to 43 entries). The size reduction is significant for all
programs and goes up to 46% for applu and 52% for gcc. At the
same time, this important reduction on the queue size has a
negligible impact on performance. The IPC decreases by less than
3% for every program and about 1.7% on average.

Table 6 shows the wake-up energy consumption savings when
the dynamic resizing scheme is used. The first column lists the
percentage of energy saving due to empty entries. The second
column shows the savings due to ready operands. The next column
lists the total energy savings with respect to the energy spent by the
wake-up logic, and the last column shows the savings relative to
the total energy consumption of the processor. We can observe
that the energy consumption of the wake-up logic is drastically
reduced. The reduction is as large as 95.6% for individual
programs, and on average, it is reduced by 90.7%. This represents
an average saving of 14.9% of the total power consumption of the
processor. The main sources of energy reduction are empty entries
and ready operands. Once these optimizations are applied, the
dynamic resizing technique reduces the remaining energy
consumption by 16% on average.

7. Summary

In modern superscalar processors, one of the main energy
consuming parts is the hardware devoted to issuing instructions
out-of-order. This consumption is likely to increase in the future
since energy consumption is almost proportional to both the
number of entries in the instruction queue and the issue width, and
we may expect an increase of these two factors in future
microarchitectures if we extrapolate the observed trend in the
recent past.

Conventional issue schemes are very power inefficient
because they perform much unneeded activity, are too rigid and do
not adapt to the varying features of different programs and
different parts the same program. We have shown that some parts
of the instruction queue have a varying contribution to
performance, which ranges from significant to null.

In this work we have proposed a mechanism in order to disable
useless activity of the issue logic. In particular, the proposed
technique gates-off the wake-up for entries that are empty or
operands that are ready. Besides, we have proposed a technique to
dynamically resize the instruction queue according to the varying
parallelism exhibited by the instruction stream. This reduces the
number of valid entries in the queue, and increases the savings
provided by gating-off the wake-up for empty entries. The results
for a typical superscalar microprocessor show that these
mechanisms reduce the energy consumed by the wake-up logic by
90.7%, which represents a 14.9% saving of the total energy
consumed by the processor. This is achieved with a minimal
impact on performance since IPC is degraded by just 1.7%.
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