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Abstract.Muon colliders and neutrino factories are attractive options for future facilities

aimed at achieving the highest lepton-antilepton collision energies and precision measure-

ments of Higgs boson and neutrino mixing matrix parameters. The facility performance

and cost depend on how well a beam of muons can be cooled. Recent progress in muon

cooling design studies and prototype tests nourishes the hope that such facilities could be

built starting in the coming decade. The status of the key technologies and their various

demonstration experiments is summarized. Prospects “post-P5” are also discussed.

1 Introduction: Why Muon Colliders are Obviously Best—and Why Not

Muon colliders offer the only way to study matter with well-understood leptonic probes both at com-

parable and at smaller distances than those accessible to the LHC. However, despite the obvious muon

advantages at high energies, linear or circular electron–positron colliders are currently under serious

consideration to follow up the discovery of the Higgs boson, while muon colliders are not. Muon

advantages stem mainly from its 200-times greater mass:

(1) Radiative processes (inversely proportional to the fourth power of lepton mass) are greatly sup-

pressed, enabling the use of storage rings and compact recirculating accelerators (Fig. 1).

(2) So are the “beamstrahlung” interactions that limit e+e−-collider luminosity as energy increases [1].

(3) The smaller size of a muon collider (Fig. 2) eases the siting issues and suggests that the cost may

be less as well.

(4) The cross-section ratio for s-channel lepton–antilepton annihilation to scalar bosons, σμ/σe =

(mμ/me)
2 = 4.3 × 104, gives the muon collider unique access to precision Higgs measurements [2–5].

For example, at the ≈ 125GeV/c2 mass measured by ATLAS and CMS [6], only a muon collider can
directly observe the (4MeV) width and lineshape of a Standard Model Higgs boson [2] (Fig. 3 left).

(5) Furthermore, should the Higgs have closely spaced partner states at higher mass, only a muon

collider has sufficient mass resolution to distinguish them (Fig. 3 right). (This is a possible feature of

supersymmetry as well as other new-physics scenarios.)
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Figure 1. Neutrino factory and muon collider conceptual block diagrams. The two types of facilities share a

number of elements in common (high-power, medium-energy “Proton Driver” and MW-capable target, muon

cooling, muon acceleration and storage rings) and, up through the “Initial Cooling,” are nearly identical.

(6) For the highest lepton energies the muon collider has by far the least operating cost of any proposed

approach, and (because of the lack of beamstrahlung) the highest luminosity within 1% of the energy

peak (Fig. 4).

Of course, linear e+e− colliders have received enormous attention and resources in recent decades,
bringing them to a state of substantial technological readiness. And, due to their 2.2 μs lifetime,

muons must be cooled using novel technology before they can be accelerated to collider energy.

This lifetime disadvantage has delayed the general acceptance of muon colliders, inhibiting the R&D

process required to demonstrate that the disadvantage can be overcome.

2 Neutrino Factories

On the other hand, their O(μs) lifetime and simple, well-understood, purely leptonic decay dynamics
make muons ideal sources for neutrino beams of unprecedented purity and precision. This realization

led to the neutrino factory idea [7], which has now been brought to the brink of feasibility by the IDS-

NF project [8]. On the list of “go/no-go” feasibility demonstrations, only the Muon Ionization Cooling

Experiment [9] (MICE) remains to be completed; its progress and prospects are discussed below.

Figure 5 shows that the neutrino factory has the best precision of any proposed facility for measuring

the CP-asymmetry parameter δ of the PMNS neutrino mixing matrix, with sensitivity rivaling that in

the quark sector—a reasonable sensitivity goal in order to probe the GUT-scale physics that may link

the quark and lepton sectors. Its capability for precision measurement of the PMNS matrix gives the
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Figure 2. Sizes of various proposed colliders compared with FNAL site. Unlike the others, a muon collider with

�s �3 TeV f ts on existing sites.

Figure 3. (left) Example of Higgs resonance scan using s-channel production in a muon collider Higgs Factory;

(right) resolving scalar and pseudoscalar supersymmetric Higgs partners at a higher-energy muon collider for

two possible values of the supersymmetric parameter tan� [4]. (R is the the collision energy spread.)

neutrino factory the best reach for f nding possible new physics beyond three-f avor mixing. It is thus

the logical follow-on facility to LBNF.

3 MASS Facility Staging Plan

The Muon Accelerator Staging Study [10] (part of the US national Muon Accelerator Program,

MAP [11]) has outlined a scenario of neutrino factory and muon collider construction, presumed
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Figure 4. (left) Luminosity within 1% of peak �+�− energy, and (right) luminosity per unit wall-plug power, for
various proposed collider technologies and lepton choices.

to be at Fermilab, with successive upgrades, wherein each step is reasonably affordable and brings

improved physics reach.

(1) The plan starts with the proposed nuSTORM [12] pion-injected muon storage ring short-baseline

experiment, aimed at a definitive test of the sterile-neutrino interpretation of the results from LSND,

MiniBooNE, reactor experiments, etc., as well as precision neutrino cross-section measurements in

the energy range crucial to LBNF. NuSTORM requires no new technology and no R&D, so could be

built immediately. It will afford the opportunity to develop instrumentation for, and experience with,

muon storage ring neutrino sources which will be applicable to successor neutrino factories.

(2) The next step, NuMAX, is an initial long-baseline neutrino factory at Fermilab optimized for a

detector at the Sanford Underground Research Facility (SURF) in South Dakota, with physics reach

exceeding that of LBNF (Fig. 5). NuMAX is conceived to start without muon cooling and with a

sub-megawatt beam and target.

(3) The follow-on, NuMAX+, facility adds a limited amount of muon cooling and higher-power beam

and target, for more than an order-of-magnitude increase in neutrino intensity.

Beyond these neutrino-oriented facilities, a series of muon colliders could be built, including:

(4) A Higgs Factory muon collider delivering > 104 Higgs events per year with exquisite energy

resolution.

(5) A multi-TeV muon collider (
√
s <∼ 10 TeV) offering the best performance and least cost and power

consumption of any lepton collider in this energy range (Fig. 4).
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Figure 5. (left) Comparison of CP-violation reach of proposed future neutrino facilities, in terms of the fraction

of the range of the CP-violating phase δ of the PMNS neutrino mixing matrix over which it can be measured to a

given precision, and (right) comparison of precision achievable in measuring δ vs. its true value. Of all proposed

future neutrino facilities, the neutrino factory is seen to have the best CP reach as well as the best precision on δ.

Of course, depending on future physics discoveries and world-wide HEP funding exigencies, the

elements of this scheme may not all be built, or not all at Fermilab, and not necessarily in this order.

This is also recognized as a rather ambitious plan, extending as it does some 20 to 30 years or more

into the future. We consider below how it could be viewed in light of the P5 recommendations [13].

The following sections provide a brief overview of these muon facilities as well as some flavor

of the R&D that has been pursued in order to bring them closer to fruition. A more extensive and

detailed review may be found in [14].

4 Technical Challenges

Muon storage-ring facilities present four main technical challenges requiring novel solutions: (1) pro-

ducing enough muons; (2) cooling the muon beams to enable high intensity and luminosity; (3) rapidly

accelerating the beams; and (4) storage-ring designs that can deliver small enough β∗ at the collision
points—or alternatively, the needed neutrino-beam pointing and timing characteristics—while cop-

ing with the high rate of decay electrons. Solutions have been devised for all four of these challenges.

While space constraints prevent a detailed discussion, we here briefly comment on each.

Muon production

An issue potentially limiting the collider luminosity or neutrino flux that can be achieved is the pro-

duction of muons in sufficient quantity. The only method that appears suitable is production and decay

of low-energy (< 1GeV) pions via fixed-target collisions of a megawatt-scale proton beam. Carbon

targets have been discussed for beam power up to about 1MW [15]. For the one-to-several MW range,

a free mercury-jet target has been shown feasible by the MERIT experiment, conducted in 2007 at

CERN [16]. Much subsequent work has gone into optimizing the configuration of the target region

and the solenoids (with up to 3GJ stored energy) that serve to capture the produced pions and their

decay muons [17, 18]. Recent concept drawings are shown in Fig. 6.
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Figure 6. Sketch of Target System concept: (left) <∼ 1MW version, with C target [15]; (right) 4MW version, with

Hg-jet target and Hg-pool beam dump [18].

Muon cooling

Muon cooling is introduced in some detail in the next section. It is required in order to achieve the

luminosity goals for a muon collider, and it is cost-effective for a neutrino factory in that it allows the

apertures of the acceleration systems to be reduced. Although earlier neutrino factory work assumed

only transverse cooling, recent work has emphasized the utility of muon cooling in all six phase-

space dimensions in order to optimize the facility design as a whole by allowing the proton linac to

be efficiently reused for the muon beam [19].

It is important to distinguish the six-dimensional cooling factor of several million required in order

to achieve high collider luminosity from the much more modest ∼ 10 to 50 cooling factor that suffices
for a high-intensity neutrino factory. Indeed, a neutrino factory built initially with no muon cooling

whatsoever is competitive with proposed future facilities based on neutrinos from pion decay (see

Fig. 5). This is one reason why a staged approach such as that discussed above is sensible.

Rapid muon acceleration

To ensure adequate muon survival (<∼ 10% decay losses), acceleration must occur at high average

gradient. At the low energy (120MeV kinetic) that is optimal for ionization cooling, only a linac

has sufficient performance. Once the muons have been accelerated to a few GeV, there is sufficient

time dilation for recirculating accelerators (with substantially lower costs per GeV) to be used: RLAs,

FFAGs, and rapid-cycling synchrotrons, as schematically indicated in Fig. 1. These technologies are

challenging to implement for muon applications since, even after cooling, emittances are larger than

those in electron and proton machines. At lower energies solenoid focusing is therefore preferred.

At higher energy, “dogbone” RLAs (with quadrupole focusing) ease switchyard design compared to

the more conventional racetracks [20]. The number of passes through each RLA can be increased by

means of pulsed quadrupoles [21], and further cost-efficiency can be achieved via two-pass arcs [22].

At the highest energies rapid-cycling synchrotrons become favorable. These might employ novel

fast-ramping (∼ kHz) dipoles, with thin, grain-oriented steel laminations [23] or “hybrid” laminations
composed of Si steel with FeCo pole tips [24]. A design has been studied in which such pulsed mag-
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nets alternate with fixed-field 8 T superconducting dipoles, accelerating muons from 30 to 750GeV

in two rings each the size of the Tevatron1 [25, 26].

Storage-ring design

A neutrino factory requires an oblong (“racetrack”) storage ring, with long straight sections that direct

decay neutrinos towards near and far detectors. A series of designs have been developed at various

energies, starting in the earliest feasibility studies [27, 28]. Most recently, the IDS-NF study [8]

worked out a design for a 10GeV decay ring, which can easily be scaled to the 5GeV that is optimal

for the Fermilab–SURF baseline.

On the other hand, a muon collider storage ring should have minimal straight sections and be as

small as possible, in order to maximize the number of turns made by the muons, and hence the number

of collisions before they decay. This calls for high bending field; 10 T is typical. Designs have been

worked through for a 125GeV Higgs Factory [29] with 4MeV energy spread (δE/E ≈ 0.003%) at
the IP and for 1.5 [30] and 3.0 TeV [31] collision energies. These employ magnets enclosing tungsten

beam-pipe liners in order to absorb decay electrons. At the highest energies care must be taken in

order to limit the radiation exposure of people living near locations where the “neutrino pancake” due

to muon decays in the ring intersects the earth’s surface. Thus in the 3 TeV design, combined-function

magnets are used in the arcs instead of quadrupoles in order to have bending field everywhere.

5 Muon Cooling

A key ingredient in most of the muon facilities discussed here is muon cooling—an area in which

there has been important recent progress. Established (electron, stochastic, and laser) beam-cooling

methods take minutes to hours and so are ineffective on the microsecond timescale of the muon

lifetime. However, the muon’s penetrating character enables rapid cooling via ionization energy

loss [32, 33]. At sufficiently high energy (e.g., a Higgs Factory or higher-energy muon collider),

optical stochastic cooling [34, 35] can also be considered and may enable higher luminosity or re-

duced energy spread. (So-called “frictional” cooling has also been considered [36] but appears to be

inapplicable to high-intensity stored muon beams and high-luminosity colliders.)

An ionization-cooling channel comprises energy absorbers and radio-frequency (RF) accelerating

cavities placed within a suitable focusing magnetic lattice. In the absorbers the muons lose both

transverse and longitudinal momentum, and the RF cavities restore the lost longitudinal momentum.

In this way, the large initial divergence of the muon beam can be reduced. Within an energy-absorbing

medium, normalized transverse emittance depends on path length s as [33]

dεn

ds
≈ − 1

β2

〈
dEμ

ds

〉
εn

Eμ

+
1

β3
β⊥(0.014)2

2EμmμLR
, (1)

where βc is the muon velocity, Eμ the muon energy in GeV, mμ its mass in GeV/c
2, β⊥ the lattice

betatron function, and LR the radiation length of the medium. A portion of this cooling effect can

be transferred to the longitudinal phase plane (“emittance exchange") by placing suitably shaped

absorbers in dispersive regions of the lattice [33], by using momentum-dependent path-length within

flat absorbers, or within a homogeneous absorber that fills the lattice [37]. (Longitudinal ionization

cooling per se, which would entail operation at momenta above the minimum of the ionization curve,

so as to have negative feedback in energy, is impractical due to energy-loss straggling [33]).

1whose circumference was 6.3 km.
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Figure 7. Three-dimensional cutaway rendering of MICE apparatus (see text) as originally envisioned: individ-

ual muons entering at lower left are measured by time-of-flight (TOF) and Cherenkov counters and a solenoidal

tracking spectrometer; then, in cooling section, alternately slowed in LH2 absorbers and reaccelerated by RF cav-

ities, while focused by a lattice of superconducting solenoids; then remeasured by a second solenoidal tracking

spectrometer, and their muon identity confirmed by TOF detectors and calorimeters. The cooling section includes

three pairs of small “focus coil" magnets surrounding the absorbers and two large “coupling coil” magnets sur-

rounding the RF cavities, comprising one complete lattice cell of the Feasibility Study-II initial cooling lattice,

plus one additional absorber and focus-coil pair for symmetry.

The two terms of Eq. 1 represent, respectively, muon cooling by energy loss and heating by mul-

tiple Coulomb scattering. Setting them equal approximates the equilibrium value of the emittance,

εn,eq, at which the cooling rate reaches zero, and beyond which a given lattice cannot cool. Since the

heating term scales with β⊥/LR, to achieve a low εn,eq requires low β⊥ at the absorbers. Superconduct-
ing solenoids, which can give β⊥ << 1m, are thus the focusing element of choice. Likewise, low-Z

absorber media are favored, the best being hydrogen (approximately twice as effective for cooling as

the next best materials, helium and LiH [38]).

It is the absorbers that cool the beam, but for typical “real-estate” accelerating gradients

(≈ 10MeV/m, to be compared with 〈dEμ/ds〉 ≈ 30 MeV/m for liquid hydrogen [39]), it is the RF

cavities that determine the length of the cooling channel (see e.g. Fig. 7). The achievable RF gradi-

ent thus determines how much cooling is practical before an appreciable fraction of the muons have

decayed. High-gradient vacuum RF cavities (normal-conducting due to the magnetic field in which

they must operate) for muon cooling are under development, as is an alternative approach: cavities

pressurized with hydrogen gas, thus combining energy absorption and reacceleration [40]. In the first

cooling stages the large size of the uncooled beam requires relatively low RF frequency. As the beam

is cooled, focal lengths must be shortened in order to reduce the equilibrium emittance, and cavity

frequencies and gradients can be increased. Goals are >∼ 15MV/m at 201MHz in ≈ 2 T fields, and
≈ 25MV/m at 805MHz in ≈ 3 T. Despite early evidence that breakdown limits cavity performance
in high magnetic fields, promising results on meeting these goals are now coming from work at the

Fermilab MuCool Test Area (MTA) [41].
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Figure 8. Plot of emittance evolution path in longitudinal and transverse planes for representative muon collider

cooling scenarios, showing, in blue, the path without a “dual-use” linac and, in orange, that with such a linac. In

the dual-use linac scenario [19], the relativistic part of the Proton Driver H− linac is reused for medium-energy
muon acceleration.

In the cooling term of Eq. 1, the fractional decrease in normalized emittance is proportional to the

fractional energy loss, thus (at 200MeV/c) cooling in one transverse dimension by a factor 1/e requires

∼ 50% energy loss and replacement. Ionization cooling thus favors low beam momentum, despite the
relativistic increase of muon lifetime with energy, due to the increase of dE/ds for momenta below

the ionization minimum [39], the greater ease of beam focusing, and the lower accelerating voltage

required. Most muon-cooling designs have therefore used momenta in the range 150−400MeV/c.
This is also the momentum range in which the pion-production cross section from thick targets tends

to peak and is thus optimal for muon production as well as cooling. The cooling channel of Fig. 7, for

example, is optimized for a mean muon momentum of 200MeV/c.

Muon collider cooling scenarios

Figure 8 shows the emittance evolution in a typical muon collider cooling scenario. The muon beam

emerging from decays of pions produced at the target is captured in solenoids, and bunched and

“phase-rotated” in order to reduce its energy spread at the expense of increased length [42]. The

bunches then proceed to the initial 6D cooling channel, a candidate for which is the so-called “FOFO

Snake” [43] (Fig. 9 top), which is designed to cool both positive and negative muons simultaneously

but has limited capability to reach low β⊥. Following Initial Cooling the μ+ and μ− bunches will
need to be separated for further 6D cooling, then recombined and coalesced before acceleration and

storage; candidate designs to carry out these operations exist [44].

In Fig. 8, the red point at ≈ 1.5mm longitudinal emittance is the cooling output point for a Higgs
Factory, which needs exquisite energy resolution and, hence, the minimum achievable longitudinal

emittance. This is estimated to be limited (in the “VCC” design, at least) to ≈ 1.5mm due to space-
charge effects [45]. Two cooling approaches (HCC and VCC) have been shown effective in simulation

studies aimed at reaching that output point. The VCC (“Vacuum Cooling Channel”) evolved from

the “Guggenheim” scheme employing helical channels with bending radii large compared to their
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Figure 9. Schematic diagrams of (top) FOFO Snake cooling channel section; (bottom-left) VCC cooling channel

section, with superconducting coils in yellow, RF cavities in brown, and wedge absorbers in magenta; (bottom-

right) schematic of HCC cooling channel section, with coils in yellow, cavities in orange, and RF feeds in salmon.

channel bore, the dipole field components being supplied by tilted thin-lens superconducting solenoid

coils [46]. (The Guggenheim evolved from cooling rings [47], which were shown to work but had

injection-kicker issues.) The realization that engineering such a structure would be challenging led

to the current VCC scheme (Fig. 9 left), which has very similar simulated performance but in a more

straightforward beamline geometry [48].

The competing HCC (“Helical Cooling Channel”) design [37] (Fig. 9 right) is a helical struc-

ture with bore diameter comparable to the bend radius, and is designed to operate with high-pressure

gaseous hydrogen distributed throughout. The HCC is believed to work at lower longitudinal emit-

tance than the VCC [49], which might enable a Higgs Factory with even lower energy spread. Addi-

tional innovative features of the HCC include RF cavities incorporating dielectric-ring loading for size

reduction and helical solenoid magnets composed of current rings that follow the helical paths of the

muons [50]. While pressurized cavities suppress breakdown [51], loading of the cavity by ionization

electrons was anticipated to be problematic in pure hydrogen. A dedicated R&D program at the MTA

showed that doping the hydrogen with a percent-level admixture of dry air suffices to suppress this

plasma loading, allowing operation at muon collider intensities [52].

Final Cooling

For a multi-TeV muon collider, the longitudinal emittance at the Higgs Factory cooling output point

is much smaller than necessary, while the transverse emittance is too large for the desired O(1034)
luminosity. This emittance mismatch is alleviated via “Final Cooling,” in which the muon energy is

EPJ Web of Conferences

03019-p.10



�������	

������	����

�������

���������	


������	����

�������

�����
����
��

�����
����
�����
�� ���
�����
�

Figure 10. Generic schematic for MICE Final Cooling Demonstration, containing three gaps into which RF

cavities and/or absorbers may be placed.

allowed to fall in order to take advantage of the rising dE/dx curve at low energy, and the cooling-

channel equilibrium emittance is further reduced by means of small-bore 30–40T solenoids enclosing

LH2 absorbers [53]. Such magnets appear to be feasible and are being developed by NHMFL [54]

among others [55]. Alternatives to Final Cooling have also been discussed, incorporating, e.g., “Para-

metric Ionization Cooling” [56] or a “potato slicer” emittance exchanger [57].

6 MICE

The Muon Ionization Cooling Experiment, after delays associated with building large superconduct-

ing magnets to be cooled by closed-cycle cryocoolers, is on track to take first measurements with

absorbers in the beam in 2015. One “lesson learned” (which was already obvious to the experts some

years ago) is to use large helium refrigerators in any real cooling channel—although this option

was unavailable to us at Rutherford Appleton Laboratory (RAL), where MICE is sited. A second

is to move to higher RF frequency so as to reduce the transverse size of components. Simulation

studies have now shown that 325MHz RF cavities (rather than the 201MHz ones used in MICE)

have sufficient aperture, even at the large O(10π) mm·rad RMS normalized transverse emittance of an
early-stage muon cooling lattice. A third lesson is to avoid whenever possible large (“coupling coil”)

superconducting magnets surrounding the cavities (see Fig. 7), and cooling lattices without such coils

have now been developed and shown to deliver good performance [48].

The principle of MICE has been to develop very precise emittance measurement techniques, with

a low enough beam intensity that each muon can be tracked individually, so as to avoid the need

for a long and expensive cooling section. Thus MICE as originally proposed [9] (Fig. 7) included

just one lattice cell of the 201MHz lattice from Neutrino Factory Feasibility Study-II [28]. As of

this (Oct., 2014) writing, with the US “P5” committee having recommended an early termination of

MICE [13], a new and simpler lattice is being devised in order to obviate the need for the coupling

coils. A generic diagram of the new arrangement, shown in Fig. 10, is more reminiscent of recent

lattice designs, such as that of the IDS-NF [8], than of the Study II design. Preliminary simulation

studies indicate a transverse cooling factor on the order of several percent, easily measurable in MICE

given the 0.1% emittance resolution provided by the scintillating-fiber tracking systems [58] of the

input and output solenoidal spectrometers. The MICE ionization cooling demonstration using the

arrangement of Fig. 10 is now scheduled for data-taking by 2017.

7 Conclusions and Perspective

The muon collider/neutrino factory intellectual journey has been an exciting and a fascinating one,

starting from the earliest suggestions [59], accruing important innovations [60], and culminating in

the sophisticated simulation studies of today [48]. Indeed, we have reached a point at which the
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muon collider and neutrino factory concepts, a priori seemingly unlikely, now increasingly appear

feasible. Moreover, the neutrino factory has been shown to be the most powerful way to study the

only non-Standard Model physics that is definitively established, neutrino oscillation.

Should LHC discover a new scale of phenomena above 1 TeV, a muon collider will be the obvious

way to study it with precision.2 Absent such discovery, construction of a large-scale stored-muon

facility may be farther off in the future, with a neutrino factory the likely follow-on (some two decades

hence) to LBNF. The work briefly summarized and cited here will have paved the way to these future

machines. Smaller-scale implementations of cooled muon beams have also been discussed [61] and

might proceed on other grounds.

Following nearly two decades of inspired work by the Muon Collaboration, the Neutrino Factory

andMuon Collider Collaboration [62],3 Muons, Inc. [63], theMuon Collider Task Force [64], and now

the Muon Accelerator Program, the P5 committee has recommended the termination of this effort—

albeit, with possible support for ongoing concept (though not technology) development through the

DOE’s General Accelerator R&D program. The quest to do more with muons remains close to the

hearts of its devotees, and physics soon to be discovered may yet have the last word.
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