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Hierarchical linear regression and related techniques, such as commonality analy- 
sis, path analysis, and linear structural equation models with mediator variables, are 
often used to determine the extent to which the influence of an exogenous variable 
on a dependent variable, A, is "unique" to this exogenous variable, or "shared 
with" another predictor variable, B. The authors formally show that shared and 
unique effects are related to the partial correlation between A and B controlling for 
the exogenous variable. We discuss the implications of this property of hierarchical 
linear regression with a special consideration of the role of chronological age in 
developmental psychology and warn against the uncritical use of hierarchical linear 
regression procedures. 

A central goal in science is to identify connections 
among variables and to determine the directions of 
causality. The systematic manipulation of antecedent 
conditions in well-controlled experimental settings is 
a powerful tool to achieve this end. However, in the 
life sciences, many variables of fundamental theoret- 
ical importance resist direct experimental control. For 
instance, age, gender, and general intelligence cannot 
be randomly assigned to people. As a consequence, 
experimental methods need to be complemented by 
potentially less powerful research tools, such as quasi- 
experiments, experimental simulations, and correla- 
tional techniques (Baltes, Reese, & Nesselroade, 
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1988). Paradoxically, this necessary retreat to weaker 
(or at least more complex) methods does not weaken 
our desire to identify connections and determine 
causes. Often, the resulting mismatch between weak 
methods and strong causal intentions tends to produce 
an undue tendency to attribute more causal force to 
the results of statistical analyses than they actually 
deserve. A good example in this context concerns the 
confirmation bias associated with the interpretation of 
structural models (cf. Breckler, 1990; MacCallum, 
Wegener, Uchino, & Fabrigar, 1993). Here, a satis- 
factory model fit is often taken as strong support for 
the theoretically assumed causal structure, in part be- 
cause competing models, which, for empirical or 
mathematical reasons, fit the data equally well, are not 
given sufficient attention. 

Within the general linear model, the goal of this 
article is to highlight the risks of overinterpretation 
associated with hierarchical linear regression proce- 
dures. Hierarchical linear regression is often used to 
determine the extent to which the predictive link of 
the exogenous variable (i.e., the more distal predictor) 
to the dependent variable is reduced after statistical 
control of individual differences in a more proximal 
predictor, or mediator variable. For instance, re- 
searchers interested in relations among chronological 
age (exogenous variable), perceptual speed (mediator 
variable), and reasoning (dependent variable) may use 
hierarchical linear regression analysis to conclude that 
a certain percentage--say, 70%--of  the age-related 

218 



EFFECT DECOMPOSITION IN LINEAR REGRESSION 219 

variance in reasoning is "shared with" perceptual 
speed. Conversely, they may conclude that 30% of the 
variance in reasoning predicted by chronological age 
is "unique" to age. But what does such a result ac- 
tually mean? Does it mean that age differences in 
reasoning are predicted to 70% by age differences in 
perceptual speed? Or does it mean that age differences 
in reasoning are predicted by individual (and not 
solely age-related) differences in perceptual speed? If 
only the latter is true, how can it be that a quantity that 
is age-re la ted--age differences in reasoning-- is  
shared with a quantity that encompasses all of the 
variance in perceptual speed related to reasoning, in- 
cluding its age-partialed component? 

The goal of this article is to answer these questions. 
Through formal analysis, we demonstrate that the 
magnitude of shared and unique effects in hierarchical 
linear regression depends on the partial correlation 
between the mediator variable and the dependent vari- 
able controlling for the exogenous variable. In deriv- 
ing, illustrating, and discussing this finding, we focus 
on chronological age as an exogenous variable. Albeit 
admittedly arbitrary, this emphasis seems justified, 
because chronological age is an important exogenous 
variable that escapes direct experimental control 
(Baltes et al., 1988). Furthermore, given our substan- 
tive research interest in life-span developmental psy- 
chology (Baltes, Lindenberger, & Staudinger, 1997; 
Lindenberger & Baltes, 1995, 1997; Lindenberger et 
al., in press), we hope that our decision to discuss 
statistical issues in terms of age will help overcome 
the current overreliance of developmental psychology 
on cross-sectional data sets analyzed with hierarchical 
linear regression. 

Overv iew 

The remainder of this article is divided into five 
major sections. In the Method section we first provide 
a description of hierarchical linear regression. To this 
end, we distinguish three variables: the exogenous 
variable, age; the mediator variable, B; and the de- 
pendent variable, A. Then we define the ratio of 
shared over simple effects (i.e., the proportion of age- 
related variance in A "shared with" B), termed SOS, 
as the critical parameter, introduce an analytic model 
to decompose  SOS into age-re la ted  and age- 
orthogonal variance components (i.e., into variance 
components represented by variables that are either 
related or unrelated to age), and formally derive SOS 
as a function of the age relations of A and B as well as 

the partial correlation between A and B controlling for 
age. In the subsequent section we illustrate the impli- 
cations of our formal analysis with some numerical 
examples and demonstrate its generalizability to re- 
lated statistical procedures such as path analysis, 
structural models with mediator variables, common- 
ality analysis, and the quasi-partial correlation coef- 
ficient introduced by Salthouse (1994). After that we 
summarize and further discuss our findings and end 
with a plea for methodological pluralism. 

Method 

Problem Definition: The Hierarchical Linear 
Regression Procedure 

In hierarchical linear regression, a series of linear 
regression analyses is performed to determine the ex- 
tent to which a given predictor variable uniquely ac- 
counts for individual differences in the dependent 
variable. The Appendix illustrates the two-predictor 
case using the linear regression procedure of a widely 
distributed statistics package (i.e., SPSS-X, 1988). As 
before, we distinguish the exogenous variable, age; 
the mediator variable, B; and the dependent vari- 
able, A. 

In the first analysis, age alone is entered into the 
linear regression equation to determine its simple ef- 
fect on A. ~ In a second analysis, B is entered alone to 
determine its simple effect on A. In a third analysis, 
both age and B are entered into the equation to deter- 
mine the total effect of age and B on A. After that, the 
simple effect of B is subtracted from the total effect to 
determine the unique effect of age, that is, the com- 
ponent of the effect of age on A that is unrelated to 
Variable B. (Note that most statistical packages di- 
rectly deliver unique effects when variables are en- 
tered in a stepwise fashion. Thus, the unique effect of 
age on A is identical to the R 2 increment observed 
when age is entered into the linear regression equation 
after B.) 

The unique effect of age is then subtracted from the 
simple effect of age to yield the shared effect of age 
and B on A. Finally, SOS of age on A represent the 
proportion of age-related variance in A that is shared 

Throughout this article, the term effect is used to refer to 
variance components (e.g., the amount of variance in Vari- 
able A predicted by Variable B) as well as to expression 
derived on the basis of such components, such as differ- 
ences between variance components and variance ratios. 
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with B. For instance, if age accounts for 12% of the 
variance in A (simple effect of age), B for 15% of the 
variance (simple effect of B), and age and B together 
for 20% (total effect of age and B), then the unique 
effect of age is 5% (i.e., 20 - 15), and the effect of age 
shared with B is 7% (i.e., 12 - 5). Thus, the compu- 
tation of SOS of age on A indicates that 58% (i.e., 
7/12 x 100) of the age-related variance in A is "shared 
with" (e.g., collinear with, predicted by, correlation- 
ally connected to) B. 

An advantage of SOS is that they directly indicate 
the degree to which a given variable is, according to 
the logic of hierarchical linear regression, indepen- 
dently related to the dependent variable: The greater 
SOS, the smaller the independent contribution of a 
given variable to individual differences in the depen- 
dent variable. For instance, an SOS of 1.0 indicates 
that shared and simple effects are of equal magnitude, 
which means that all of the predictive variance of the 
critical variable is shared with other predictors and 
that the variable has no unique effects on A. In con- 
trast, an SOS of 0.0 indicates that unique and simple 
effects are of equal magnitude, which means that none 
of the predictive variance of the critical variable is 
shared with other predictors. Finally, an SOS in the 
negative range indicates that unique effects are larger 
than simple effects and thereby points to the presence 
of suppressor effects (cf. Cohen & Cohen, 1983, pp. 
90, 145; Pedhazur, 1982, pp. 208-211). 

Statistical Background 

We now express SOS as a function of the age re- 
lation of A, or, the age relation of B, 13; and the partial 
correlation between A and B controlling for age, 
rAB.age, o r  partial. First, we derive the formula for the 
spuriousness model, in which A and B are exclusively 
related to each other through age (i.e., partial = 0). 
Afterward, we release this constraint as we move to 
the general model. 

Our derivation of SOS as a function of or, 13, and 
partial is informed by the work of Dawid on condi- 
tional independence (Dawid, 1979a, 1979b; cf. Cox & 
Wermuth, 1996; Dempster, 1972; for the general 
theory of linear regression, cf. Kendall & Stuart, 
1973). Dawid (1979a) also introduced the notation _1_ 
to refer to the orthogonality, or stochastic indepen- 
dence, of two variables. 

In the following, variables are assumed to obey to 
multivariate normal law. Under such conditions, lin- 
ear independence and orthogonality are equivalent. 
Note, however, that our conclusions do not depend on 
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Figure 1. The spuriousness model. 

multivariate normality but are also correct under the 
weaker assumption of linearity. 2 

Spuriousness Model 

Consider three variables A, B, and age--with a 
mean of 0 and a standard deviation of 1. Figure 1 
displays the interrelations among the three variables 
according to the spuriousness model. The magnitude 
of the influence of age on A and B is expressed by two 
parameters, et and 13, respectively. Because all three 
variables are normed, ct and 13 can be interpreted as 
standardized linear regression coefficients, ranging 
from -1 to 1. In addition, A and B both have speci- 
ficities represented by two unobserved variables, X 
and Y, respectively. These specificities reflect error 
variance, specific variance, or any possible combina- 
tion thereof. 

The spuriousness model meets the following con- 
ditions of orthogonality, or independence: 

age ± X, age ± Y, X ± Y (1) 

Thus, it is assumed that: (a) age is independent of 
X, (b) age is independent of Y, and (c) X is indepen- 
dent of E Because independence is a symmetric prop- 
erty (cf. Dawid, 1979a), the reverse is also true, that 
is: (a') X is independent of age, (b') Y is independent 
of age, and (c') Y is independent of X. The name of the 
model is meant to highlight the fact that the relation 
between A and B is spurious in the sense that the two 
variables are related to each other through age alone. 

Note that the three orthogonality conditions sys- 
tematically differ in status: The two orthogonality 
conditions age ± X and age I y represent definitional 

2 The equations derived in the following two sections 
were also programmed using the AlgebraicRules procedure 
of Mathematica (Wolfram, 1994). A copy of the program is 
available from the authors (P/Stter & Lindenberger, 1996). 
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properties of  the model that cannot be falsified by 
data. In contrast, the orthogonality constraint X .k Y is 
falsifiable. For instance, in the linear case, X _k Y is 
violated if the partial correlation between A and B is 
different from 0 (i.e., if partial ~ 0). 

The variances of  A and B can be decomposed as 
follows: 

O'a 2 = e~ 2 + O'2X = ~X 2 + 1 - OL 2 (2) 

cr 2 = 132 + ~r~. = 132 + 1 - [32 (3) 

The simple effect of  age on A corresponds to the 
square of  the standardized linear regression coeffi- 
cient: 

~ge = a2" (4) 

To exclude the discussion of  irrelevant special 
cases, we will assume that a is always unequal to 0. 

The simple effect of  B on A corresponds to the 
square of  the correlation between A and B. Because X 
_1_ Y, the general formula (see Equation 9) reduces to 
the square of  the product of  the path coefficients re- 
lating age to A and B: 

4 = ~2132. (5) 

When looking at Figure 1, this expression makes 
intuitive sense because Variables A and B are linked 
to each other exclusively through age. 

Next, we need to express the total effects of  age and 
B on A. Because A and B are conditionally indepen- 
dent given age (e.g., A and B are related through age 
alone), we have: 

4 e ,  e = et2" (6) 

Equations 6 and 4 are identical, reflecting the fact 
that the total effects of  age and B on A are identical to 
the simple effect of  age if X _1_ E The unique effect of  
age on B is obtained by subtracting Equation 5 from 
Equation 6: 

~unique age = {3/-2 -- 0t2132 = O£2 (1 - ~2 ) ,  (7) 

Finally, SOS of  age on A under conditions of  spu- 
riousness, termed SOSx±r. result as the difference be- 
tween simple and unique over simple effects: 

S O S x d _  Y = [ ~ 2  -- (Or2 (1 - 132))]/0/.2 = 132. ( 8 )  

Another way to arrive at the same result proceeds 
from the observation that the correlation between A 
and B is identical with the shared effect of  age and B 
on A if X _1_ Y. Therefore, when ct 2 132 represents the 
shared effects of  variables age and B on A, and when 

Ot 2 represents the simple effect of  age on A, then ~2 
132]Ot2 = 132 represents SOS. 

Thus, we can conclude that SOS of  age on A are 
equal to the square of  the standardized linear regres- 
sion coefficient of  B on age, if the partial correlation 
between A and B controlling for age is 0. To provide 
an example, if et = .20, 13 = .90, and rA.B.ag e = 
partial ---- 0, the proportion of  age-related variance in 
A shared with B equals .81. Likewise, given that the 
structure of  our model is symmetric with respect to A 
and B (cf. Dawid, 1979a), the proportion of  age- 
related variance in B shared with A equals .04. There- 
fore, 81% of the age-related variance in A is shared 
with B, and 4% of  the age-related variance in B is 
shared with A. 

The results obtained with the spuriousness model 
are encouraging in two ways. First, the square of  a 
standardized linear regression coefficient is a param- 
eter with well-known statistical properties. For in- 
stance, this parameter is known to vary between 0 and 
1. Thus, SOS are easily interpretable whenever cor- 
relations among variables on which an exogenous 
variable (e.g., age) exerts its influence are reduced to 
0 after controlling for the influence of  this exogenous 
variable. In this context, it is important to note that 
SOSx±r is entirely based on exogenous-variable vari- 
ance (e.g., variance related to age); variance compo- 
nents of  variables X and Y, which are defined to be 
orthogonal to the exogenous variable, are not impli- 
cated in this expression. This observation may seem 
tautological, but we will soon see that it is not. 

General Model 

In this section we derive the formula for SOS for 
the general case, that is, we release the orthogonality 
constraint X ± Y. The resulting general model is dis- 
played in Figure 2. The only difference between this 
model and spuriousness model consists in the intro- 
duction of  a bidirectional path between X and Y and 
the corresponding coefficient partial to represent the 

Figure 2. The general model. 
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partial correlation between A and B after controlling 
for age. 

As before, the simple effect of  age is ct e. The 
simple effect of  B is: 

= (5 [3 + COVxr) 2, (9) 

where COVxr is the covariance between X and Y. This 
covariance can also be written as a function of 5, [3, 
and the partial correlation between A and B control- 
ling for age (i.e., partial): 

COVxr = ~/(1 - 52) (1 - 132) partial. (10) 

Following standard results 3 (cf. Rao, 1965, Chapter 
4g), the total effect of age and B on A is: 

rage,2 B = a2 + covEr/(1 _ [32). (11) 

The unique effect of age is obtained by subtracting 
Equation 9 from Equation 11. Finally, SOS of Age on 
A for the general case, termed SOSg . . . . .  t, result as the 
difference between simple and unique over simple 
effects: 

SOSgeneral  : 1 /52  [52[32 at" 25[3 COVxy 
_ (132/(1 _ [32)) cov2r]. (12) 

Using Equation 10, we obtain: 

SOSgen~ = [32 + [2[3 ~/(1 - 52) (1 - [32) partial]/et 
+ [32 partial 2 _ ([32 partial 2) / 52, (13) 

which can also be expressed as follows: 

SOSgeneral = 1/~ge [ 4  -- (1 -- ~g~)partial2]. (14) 

As becomes apparent by inspection of Equation 13, 
SOSg . . . .  4, the expression for the computation of SOS 
derived on the basis of  the general model, consists of  
two parts. The first part, [32, is identical to the expres- 
sion obtained for the spuriousness model. However,  
the second part of  the expression is more complex and 
cannot be reduced to age-related variance components 
of A or B (i.e., 5 or [3), because it contains a quadratic 
function of partial (i.e., the partial correlation be- 
tween A and B controlling for age). Thus, in contrast 
to SOSx± r, S O S g  e . . . .  1 is influenced by variance com- 
ponents represented by variables that are orthogonal 
to the exogenous variable. In the following section we 
illustrate the implications of this finding. 

I l lust ra t ion and Appl i ca t ion  to Re la ted  
Stat ist ical  P rocedures  

Influence o f  Partial on SOS 

The effect of partial on the magnitude of SOSg . . . .  ~1 
is substantial. This is seen in Figure 3, in which we 

continuously varied partial from -1  to 1 across nine 
different combinations of  5 and [3. In each of the three 
panels, [3 was fixed at one of three levels (.25, .50, or 
.75), and 5 assumed values of  either .25, .50, or .75. 
The nine resulting functions depict the magnitude of 
SOSgeneral as a function of partial. 

As illustrated by Figure 3, the statistical properties 
of  SOSgeneral  a s  a function of 5, [3, and partial can be 
summarized in five points: (a) SOSgeneral  reduces to 
SOSx± r when partial is zero; (b) with increasingly 
negative values of  partial, SOSg~n~ral quickly ap- 
proaches 0 and eventually becomes negative; (c) 
when 5 and [3 are equal in magnitude, SOSg . . . . .  1 in- 
creases with increasingly positive values of  partial 
and reaches unity when partial equals 1; (d) when 5 
is greater than [3, SOSg~ner~l increases with increas- 
ingly positive values of  partial but does not reach 
unity; (e) when [3 is greater than 5, then SOSgeneral  
rapidly approaches, and eventually reaches, unity with 
increasingly positive values of partial and then de- 
creases as a function of further increments in partial. 

Connection to Related Statistical Procedures 

To further illustrate the influence of partial on both 
hierarchical linear regression in the narrow sense and 
on other statistical techniques that use the logic of  
hierarchical linear regression, we again consider the 
influence of partial when 5 equals .25 and [3 equals 
.75 (see the thick line in Panel C of Figure 3). This 
condition is not uncommon, because it corresponds to 
an empirical situation in which we want to know 
whether a variable with a strong age relation (i.e., B) 
mediates most or all of  the age-related variance of a 
variable with a weaker age relation (i.e., A). With 
partial = 0, we obtain SOS = SOSxi  r = [32 = .56 
and conclude that 56% (i.e., .752 x 100) of  the age- 
related variance in A is shared with B. In the range in 
which partial is larger than 0 but smaller than .23, 
small increments in partial lead to drastic increments 
in SOS. SOS is equal to 1.0 when partial equals .23. 
After having reached this maximum, further incre- 
ments in partial lead to decrements in SOS. SOS is 
again at .56 when partial equals .46. Finally, with 
partial = .57, SOS is 0, and with even larger values 
of  partial, SOS becomes negative. 

3 Specifically, r 2 can be expressed as 1 - (1/pAA), where 
pAA is the element of the inverse of the correlation matrix of 
A, B, and age pertaining to A (cf. Rao, 1965). 
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Partial Correlation 

The four panels of  Figure 4 further illustrate the 
dependency of  SOS on partial and demonstrate how 
this dependency affects the outcome of  hierarchical 
linear regression analyses and related statistical pro- 
cedures. As for the thick line in Panel C of  Figure 3, 
the age relations of  A and B are held constant at r = 
cx = .250 and r = 13 = .750, respectively. Partial 
(i.e., the partial correlation between A and B, control- 
ling for age) is varied at the four levels discussed 
before: Panel A, partial = .000; Panel B, partial = 
.228; Panel C, partial = .455; Panel D, partial = 
.572. As a consequence, the simple correlation be- 
tween A and B also increases from left to right: Panel 
A, r = .188; Panel B, r = .335; Panel C, r = .479; 
Panel D, r = .554. Because the age relations of  A and 
B remain constant over the four cases, the simple 
effects of  age on A are always equal to the square of  
oL = .250, that is, simple,g e = .063. In contrast, the 
simple effects of  B on A, which are identical to the 
square of  the correlation between A and B, vary as a 
function of  partial. 

Hierarchical linear regression and path anal- 
ysis. Panel A of  Figure 4 exemplifies a situation in 
accordance with the spuriousness model, because par- 
tial is 0. This fact expresses itself in two ways: (a) The 
unique effect of  B on A is 0 (hierarchical linear re- 
gression proper) and (b) the path from B to A is 0 
(path analysis). Note that the shared effect of  B and 
age on A is not O, because the two variables are related 
to each other through their respective age relations. In 
fact, on the basis of  the spuriousness model, we al- 
ready know that the magnitude of  the shared effect is 
equal to the square of the multiplied age paths, that is, 
(.250 x .750) 2 = .035. Accordingly,  SOS of  age on A 
is .035/.063 = .563, which, as we know from Equa- 
tion 8, is equal to f32. (Throughout, slight numeric 
deviations are due to rounding error.) 

In Panel B of  Figure 4, partial is increased from 
.000 to .228-- the  point at which, according to Equa- 
tions 12-14, unique effects of  age on A are 0. As can 
be expected, both the unique effects of  B and the 

Figure 3. SOSge ,~  as a function of ~, 13, and partial. 
SOSg . . . . .  t refers to the proportion of age-related variance in 
A shared with B. Within each of the three panels, 13 is fixed 
at a given level (Panel A: 13 = .25, Panel B: 13 = .50, Panel 
C: 13 = .75), a is varied across the same three levels, and 
partial varies continuously from -1 to 1. The figure dem- 
onstrates the substantial influence of partial on the magni- 
tude of SOSgen~r~v The figures display only positive values 
of SOSg . . . .  at. 
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A 

.750 

.000 

Correlations Age A 
A .250 
B .750 .188 

Unique B 0.000 
Unique Age 0.027 
Shared Age, B 0.035 
Total 0.063 
Quasi-partial 0.433 
SOS 0.563 
Partial 0.000 

B C D 

Age A Age A Age A 
A .250 A .250 A .250 
B .750 .335 B .750 .479 B .750 .554 

0.050 0.194 0.306 
0.000 0.027 0.063 
0.063 0.035 0.000 
0.t 12 0.267 0.369 
0.631 0.611 0.000 
t .000 0.563 0.500 
0.228 0.455 0.572 

Figure 4. Illustration of the quadratic influence of the partial correlation between A and B 
controlling for age on hierarchical regression and related statistical procedures. Path coeffi- 
cients were freely estimated using generalized least squares estimation. Correlations = 
first-order correlations among age, B, and A; Unique B = unique effect of B on A; Unique 
Age = unique effect of age on A; Total = effect of B and age on A; Quasi-partial = 
quasi-partial correlation coefficient (cf. Salthouse, 1994); SOS = shared over simple effects 
of age on A; Partial = partial correlation between B and A controlling for age. 

shared effects of  age and B are now larger than with 
partial = .000. In the corresponding path model, the 
absence of  unique age effects expresses itself as a path 
coefficient of  0 for the direct path from age to A. The 
shared effect of  age and B on A now corresponds to 
the square of  the age ---) B and B --4 A paths, that is, 
(.750 x .337) 2 = .250. Given that the unique effect of  
age on A is 0, shared and simple effects of  age are 
equal in magnitude, and SOS is 1.000. If  researchers 
using hierarchical linear regression or path analysis 
had collected data of  this kind, they would conclude 
that all of  the age-related variance in A is predicted 
by B. 

After  partial = .228, further increments in partial 
lead to decrements in SOS (see also the thick line in 
Panel C of  Figure 3). This is illustrated in Panel C of  
Figure 4. With  partial = .00 (Panel A), SOS is .563. 

With partial = .455 (Panel C), SOS is again .563, 
which illustrates the nonlinear (i.e., quadratic) relation 
of  SOS to partial. The same symmetry is reflected in 
the path diagram: The path from age to A is now equal 
in magnitude but opposite in sign to the path observed 
with partial = .000 (which, in turn, was equal to the 
simple correlation between age and A). 

In Panel D, partial is increased to a value of  .572. 
As a consequence, the shared effect of  age and B on 
A is reduced to 0, which means that SOS is 0 as well. 
When we look at the path model, we notice that the 
two paths on A diverge even more than in Panel C. 
Both in Panels C and D, the hierarchical linear regres- 
sion procedure reveals a suppressor constellation in 
the sense that B suppresses variance in A (negative 
suppression; cf. Conger, 1974). 

Linear structural equation models with mediator 
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variables. In all panels of Figure 4, the three vari- 
ables age, B, and A are depicted with squares and 
circles. This notation follows McArdle (1994) and is 
meant to indicate that the analysis of SOS presented in 
this article is equally valid for observed and latent 
variables. That is, to the extent that structural models 
based on latent variables embody the logic of hierar- 
chical linear regression, they are subject to the same 
statistical laws as hierarchical linear regression pro- 
cedures based on observed variables. 

We agree with others that structural models based 
on latent variables often lead to more generalizable 
(e.g., unbiased) representations of psychological con- 
structs and construct relations than methods based on 
observed variables (Hertzog, 1996; Meredith, 1993). 
In the present context, however, the latent character of 
construct representations in linear structural equation 
models is less crucial than another property of struc- 
tural models: In contrast to a predominantly explor- 
atory use of hierarchical linear regression (as in com- 
monality analysis; see below), a structural model 
forces researchers to explicitly represent a theory- 
based expectation about the causal structure of the 
data. 

Of course, there is nothing fundamentally wrong 
with estimating standardized direct and indirect ef- 
fects on the basis of linear structural equation models 
with mediator variables of the kind represented in 
Figure 4. However, when doing so, it has to be kept in 
mind that all interpretations based on such models are 
conditional on the truth of the mediation assumption. 
Thus, the interpretability of the absolute and relative 
magnitude of direct and indirect effects in such a 
model rests entirely on the basic assumption of the 
model--namely, that the mediator variable does in 
fact act as a mediator of the causal effect of the ex- 
ogenous variable on the dependent variable. The de- 
gree of statistical model fit does not help in this re- 
gard, because the model may fit the data perfectly, 
even after constraining direct effects of the exogenous 
variable on the dependent variable to 0, but the me- 
diation assumption may still be wrong. To back up the 
plausibility of the mediation assumption, one has to 
provide converging evidence about the mechanisms 
by which the mediator is alleged in theory to have a 
causal effect on the dependent variable. Such con- 
verging evidence can be gathered in many different 
ways and includes experimental manipulation of the 
relevant mechanisms, more precise (e.g., mechanism- 
specific or process-pure) measurement, as well as the 
use of statistical methods and research designs that are 

better suited to test assumptions about causality (see 
below) .4 

Commonality analysis. In contrast to linear struc- 
tural equation models with mediator variables, com- 
monality analysis is an exploratory data-analytic pro- 
cedure. It consists of  a coordinated series of  
hierarchical linear regression analyses to achieve a 
complete effect decomposition into unique and shared 
components (cf. Pedhazur, 1982). In the two-predictor 
case, this decomposition involves three effects: the 
unique effect of age, the shared effect of B and age, 
and the unique effect of B. So far, we did not consider 
the unique effect of B, because it was not needed to 
compute SOS of age on A. As is seen in Figure 4, the 
increase in partial leads to an increase in the unique 
effect of B on A. Figure 4 also illustrates that the three 
effects sum to yield the total proportion of explained 
variance in A, which also increases with increasing 
partial. Obviously, a larger partial correlation be- 
tween A and B controlling for age implies a stronger 
association between these two variables and results in 
a larger proportion of explained variance. 

In our view, the scientific value of commonality 
analysis depends on its use. It is clearly problematic to 
carry out a commonality analysis, inspect the magni- 
tude of shared and unique variance components, and 
then design a structural model in which variables with 
relatively large unique effects occupy the mediator 
position and variables with relatively large shared ef- 
fects occupy the exogenous-variable position. In do- 
ing so, researchers surrender themselves to the com- 
plexities of SOS, and the resulting structural model 
lacks a theoretical basis. On the more positive side, 
however, commonality analysis provides a good gen- 
eral overview of the degree of collinearity among a set 
of predictors and the magnitude of suppressor effects. 
If  many of the shared variance components are nega- 
tive, this implies that many of the unique effects are 
larger than the corresponding simple effects, which is 
always indicative of suppression. (Note, however, that 
suppression can already be present when unique ef- 
fects are smaller than or equal to simple effects; see 
Panels C and D of Figure 4.) However, if all shared 
variance components are positive, and some of them 
are very large, and if unique effects tend to be small 
throughout, this suggests that the predictors act as a 
positive manifold in relation to the dependent vari- 

4 We thank an anonymous reviewer for clarifying this 
issue. 
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able. Such an empirical situation is consistent with 
models that assume that most or all predictors are 
expressions of a common cause (for examples, see 
Lindenberger & Baltes, 1994, Table 6 and Footnote 7; 
Baltes & Lindenberger, 1997, Table 3). 

Quasi-partial correlation coefficient. Recently, 
Salthouse (1994) introduced the quasi-partial correla- 
tion method to "evaluate the extent to which the age- 
related influences in a set of variables are independent 
of each other" (Salthouse, 1994, p. 413). In Figure 4 
of his article and elsewhere, Salthouse described how 
to compute quasi-partial correlations by means of hi- 
erarchical linear regression. On the basis of these de- 
scriptions, the quasi-partial correlation coefficient is 
equal to the square root of the geometric mean of two 
SOS: the SOS of age on A (with B as the other pre- 
dictor), on the one hand, and the SOS of age on B 
(with A as the other predictor), on the other. In a 
sense, then, the quasi-partial correlation coefficient is 
the symmetrical version of SOS transformed into a 
correlational metric by taking its square root. 

Salthouse (1994) suggested that "the quasi-partial 
correlation can be thought of as the converse of a 
partial correlation because . . .  the partial correlation 
procedure excludes age-related variance . . .  whereas 
the quasi-partial correlation procedure is restricted to 
age-related variance" (Salthouse, 1994, p. 419). 
Given that the quasi-partial correlation coefficient is 
the square root of the geometric mean of two comple- 
mentary SOS, it can be expressed as a function of a,  
[3, and partial (see Equation 15 below). 

The first part of Equation 15 is identical with Equa- 
tion 13, whereas the second part is its mirror image, 
that is, all as  are replaced with 13s and vice versa. 
Attempts to transform this expression into a more 
elegant form through expanding or factoring were un- 
successful. More important, however, this expression 
again contains partial, that is, it includes variance 
components in A and B that can be represented by 
variables that are orthogonal to age. As was true for 
SOS, this influence of age-orthogonal variance com- 
ponents disappears only when partial = O. In that 
case, the quasi-partial correlation coefficient reduces 
to the square root of the geometric mean of the two 
age relations, a and [3: 

• . 2 2 1 / 4  
quast-parttalx±y= (a ~ ) . (16) 

The influence of partial on quasi-partialgener ~ is 
readily apparent by looking at the four panels of Fig- 
ure 4, in which the quasi-partial correlation changes 
as a function of partial despite the fact that the age 
relations of the two variables remain unchanged. 
Thus, our arguments regarding SOS also apply to the 
quasi-partial correlation coefficient. Specifically, the 
quasi-partial correlation coefficient, in the general 
case, is not restricted to age-related variance. 

Summary  and Implicat ions 

The formal analysis of hierarchical linear regres- 
sion presented in this article has revealed that unique 
and shared effects of the exogenous variable on the 
dependent variable are quadratically related to the 
partial correlation between the mediator variable and 
the dependent variable controlling for the exogenous 
variable. The examples provided in Figure 4 have 
demonstrated the ubiquity of this dependency for all 
methods that adhere, in one form or another, to the 
logic of hierarchical linear regression, such as path 
analysis, linear structural equation models with me- 
diator variables, commonality analysis, and the quasi- 
partial correlation coefficient introduced by Salthouse 
(1994). 

How is it possible that variance components repre- 
sentable by variables that are orthogonal to the exog- 
enous variable, such as X and Y in Figure 2, influence 
a variance ratio deemed to decompose the variance of 
that exogenous variable into SOS? The answer to this 
question lies in the hierarchical linear regression pro- 
cedure itself (see the Appendix). When we subtract 
the simple effect of the mediator variable from the 
total effect of both predictors to arrive at the unique 
effect of the exogenous variable, we are making use 
of all variance components in the mediator variable 
related to the dependent variable, including those 
components that can be represented by variables that 
are orthogonal to the exogenous variable. As a con- 
sequence, the magnitude of the unique effect of the 
exogenous variable is influenced by variance compo- 
nents in the mediator variable that are orthogonal to 
the exogenous variable if these variance components 
are related to the dependent variable. In other words, 
the magnitude of the unique effect of the exogenous 
variable is influenced by exogenous-variable extrane- 
ous variance. 

,:,'a-'a:IF TM 
quasi-partialgencral = ~ L [3 + "~ + ~2 partial 2 a 2 ] - -  l a + "~ + a  partial 2 "~ .] J 

(15) 



EFFECT DECOMPOSITION IN LINEAR REGRESSION 227 

In our view, our formal exposition of the hierarchi- 
cal linear regression procedure has two implications, 
one technical and the other substantive. We first dis- 
cuss the technical implication. Although our discus- 
sion is coached in terms of variables A, B, and age, 
most points generalize to any field of psychology in 
which hierarchical linear regression has been used to 
decompose the influence of an exogenous variable 
(e.g., socioeconomic status, gender, grade level, etc.) 
on a dependent variable of interest. 

Technical Implication 

The technical consequence concerns the choice of 
words when reporting results obtained with hierarchi- 
cal linear regression procedures. Whenever the partial 
correlation between B (mediator variable) and A (de- 
pendent variable) controlling for age (exogenous vari- 
able) differs from 0, statements such as "56% of the 
age-related variance in A is predicted by age differ- 
ences in B," are technically wrong because some of 
the relevant variance in B is orthogonal to age. The 
technically correct statement is "56% of the age- 
related variance in A is predicted by individual dif- 
ferences in B." Paradoxical as it may sound (i.e., 
something age-orthogonal is used to predict some- 
thing age-related), this statement correctly summa- 
rizes the hierarchical linear regression procedure. 
With respect to Panel A of Figure 4, both statements 
would be correct because the partial correlation be- 
tween A and B controlling for age is 0. With respect to 
Panel C of Figure 4, however, only the second state- 
ment corresponds to statistical reality. 

Substantive Implications 

The substantive consequence of our analysis con- 
cerns the usefulness of variance-partitioning proce- 
dures as a statistical tool for obtaining knowledge 
about the causal influence of the exogenous variable 
on the dependent variable. As demonstrated, the ca- 
pacity of a mediator variable to statistically account 
for exogenous-variable variance in the dependent 
variable is influenced not only by the relations of the 
mediator variable and the dependent variable to the 
exogenous variable but also by the partial correlation 
between the mediator and the dependent variable con- 
trolling for the exogenous variable. 

A striking example of this dependency can be ob- 
served when one compares the path coefficients of 
Panels A, B, and C in Figure 4. The path coefficients 
of Panel B would be consistent with the hypothesis 
that B is a perfect mediator of age differences in A. In 

contrast, Panels A and C would indicate that a sub- 
stantial portion (i.e., 44%) of the age-related variance 
in A is not mediated by B but unique to age. Thus, 
depending on variations in the magnitude of the par- 
tial correlation between A and B controlling for age, 
researchers most likely will come to very different 
conclusions regarding the role of B as a mediator of 
age differences in A. If  the data correspond to Panels 
A or C, they would probably conclude that B is a 
moderately powerful mediator of age differences in A. 
As a consequence, some researchers would invest ef- 
forts into the identification of additional variables that 
are able to mediate some of the remaining unique 
effect of age on A. If the data correspond to Panel B, 
however, researchers would conclude that Variable B 
is a perfect mediator of age differences in A. As a 
consequence, some may decide to closely examine the 
mechanisms underlying age differences in B with the 
hope of understanding age differences in A. In making 
this decision, they may not be aware that it was in- 
fluenced not only by the age relations of A and B but 
also by the age-partialed correlation between these 
two variables. 

In contrast to this practice, we recommend that the 
decision to entertain the hypothesis that a certain vari- 
able mediates the causal effect of another should be 
based on theoretical considerations and not on the 
outcome of hierarchical linear regression analyses. Of 
course, such theoretical considerations are informed 
by empirical findings, but the present analysis indi- 
cates that the outcome of hierarchical linear regres- 
sion analyses should not serve as the primary or sole 
source of relevant empirical information. Specifically, 
it is important to realize that hierarchical linear re- 
gression does not offer a test of the basic mediation 
assumption. All it does is tell us how the world may 
look if that assumption were true. 

The scientific legitimacy of hierarchical linear re- 
gression, then, critically depends on the theoretical 
status of the mediator variable B and the exogenous 
variable age. For instance, if theory posits that per- 
ceptual speed (mediator variable B) is a major cause 
of individual differences in reasoning (dependent 
variable A) in general (cf. Salthouse, 1996), then the 
quadratic influence of the partial correlation between 
A and B on the magnitude of SOS does not constitute 
a major problem of interpretation. In a way, the pur- 
pose of hierarchical linear regression analysis, in this 
case, is to test whether the exclusion of an exogenous 
variable from the linear regression equation, be it age, 
gender, socioeconomic status, or any other source of 
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individual differences, is associated with a major dec- 
rement in explained variance, with the expectation 
that this is not the case. 

However, the use of hierarchical linear regression 
rests on weak ground if the mediator variable is as- 
sumed to be causal with respect to exogenous- 
variable-related variance alone, or if assumptions 
about causality are absent to begin with. For instance, 
if we assume that only age-associated individual dif- 
ferences in perceptual speed, but not individual dif- 
ferences in perceptual speed in general, predict rea- 
soning, or if we have no strong a priori assumptions 
about the role of perceptual speed altogether, then the 
results of hierarchical linear regression are difficult to 
interpret in theoretical terms. 

Conclusions and Outlook 

Hierarchical linear regression is a statistical tool 
that reorganizes information contained in the covari- 
ance matrix (or, if standardized, the correlation ma- 
trix). As such, this method cannot escape the limita- 
tions of correlation research, and its results must not 
be overinterpreted. Even statistically sophisticated 
variants of hierarchical linear regression, such as lin- 
ear structural equation models with mediator vari- 
ables, do not provide more than a consistency check 
between the theory underlying the model and the em- 
pirical data (cf. Breckler, 1990; MacCallum et al., 
1993). And, of course, all these methods assume that 
relations among variables are linear. 

When developmentalists analyze cross-sectional 
data sets with hierarchical linear regression proce- 
dures, strong causal intentions collide with a rela- 
tively weak method. Quite often, the ultimate goal of 
the analysis is to identify basic components or mecha- 
nisms acting as pacemakers of age-associated change 
in more complex forms of behavior (e.g., "develop- 
ables"; cf. Flavell, 1992). However, what hierarchical 
linear regression does is identify variables that excel 
as mediators in the limited statistical sense of the 
hierarchical linear regression procedure. Whether 
these variables represent, in fact, basic components 
that drive development in more complex forms of 
behavior cannot be decided on the basis of the hier- 
archical linear regression procedure itself. 

What is needed, then, is the use of additional sta- 
tistical tools and research designs, coupled with sound 
theorizing and precise measurement, to move toward 
the identification of the directionality and structure of 
causal connections (Baltes et al., 1988; Hertzog, 

1996). Particular attention should be given to methods 
that are nonexperimental (i.e., that do not presuppose 
random assignment of participants to the exogenous 
variable) but nevertheless are better suited to test as- 
sumptions about causality than hierarchical linear re- 
gression. Admittedly, such methods are difficult to 
implement because they often require repeated mea- 
surements on the same participants and a high degree 
of statistical expertise. Nevertheless, we believe that a 
stronger reliance and further elaboration of these 
methods is worth the effort. A few developmentally 
oriented examples follow. 

Chronological age has the rather unique property 
that individuals assume different levels on this vari- 
able in a perfectly predictable manner until they die. 
The typical cross-sectional research design does not 
take advantage of this property, but longitudinal de- 
signs do, and therefore they allow for the analysis of 
interindividual differences in intraindividual change 
(Baltes et al., 1988; Nesselroade, 1991; cf. Reinert, 
Baltes, & Schmidt, 1966). By observing the same in- 
dividuals on multiple measures at different ages, it is 
possible to examine intercorrelations among change 
scores, relations between level and slope on multiple 
measures, and lead-lag relations among different 
variables (Hultsch, Hertzog, Dixon, & Small, in press; 
McArdle & Nesselroade, 1994; McArdle & Wood- 
cock, 1997). These methods do not rely on the logic of 
hierarchical linear regression with age as the exog- 
enous variable because age changes are observed di- 
rectly and do not need to be inferred on the basis of 
age differences. 

Another promising method is the analysis of dy- 
namic patterns of interrelations among variables over 
time within subjects (Molenaar, 1994). Presumably, 
many causal connections can be identified more pre- 
cisely by looking at covariance structures representing 
time-ordered multivariate patterns within one organ- 
ism, rather than at covariance structures representing 
differences between organisms. 

Other methods are of broader applicability because 
they do not depend on the special properties of the age 
variable. For instance, quasi-experiments can be used 
to study predictors of individual differences in learn- 
ing in a multivariate framework (Rogers, Fisk, & 
Hertzog, 1994), to identify predictors of individual 
differences in asymptotic levels of performance 
(Baltes & Kliegl, 1992), to identify process dissocia- 
tions between groups (Kliegl, Mayr, & Krampe, 
1994), or to empirically simulate the effects of exog- 
enous variables (Lindenberger & Baltes, 1995). Fi- 
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nally, mathematical simulations similar to the one 
presented in this article can be used to test the dis- 
criminatory power of  theoretical models and data- 
analytic tools (Molenaar & van der Molen, 1994; Per- 
fect, 1994) or to promote theorizing in a given domain 
of  research (Li & Lindenberger, in press). The search 
for causes in (developmental) psychology will profit 
from an increased reliance on these methods and some 
skepticism where hierarchical linear regression is con- 
cerned. 
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Appendix 

The Linear Hierarchical Regression Procedure 
Regression variables: A, B, age 

/Dependent A 
/Enter age - - >  Simpleag ~ 
/Dependent A 
/Enter B > Simple B 
/Dependent A 
/Enter age, B > Totalage. B 

Uniqueage = T°talage. B - SimpleB 
Sharedage. B = Simpleage - Uniqueage 
SOS a = Sharedage, JSimpleage 

Note. The top half of the illustration shows how the simple effect 
of age on A, the simple effect of B on A, and the total effect of age 
and B on A can be computed using a widely distributed statistics 
package, SPSS-X (1988). The bottom half of the illustration dis- 
plays the computation of unique and shared variance components. 
a Shared over simple effects of age on A. 
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