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COMBINING MAKE TO ORDER AND MAKE TO STOCK
IVO ADAN AND JAN VAN DER WAL*

Abstract. In inventory control and production planning one is tempted to use one of two strate-
gies: produce all demand to stock or produce all demand to order. The disadvantages are well-known.
In the ‘make everything to order’ case (MTO) the response times may become quite long if the load
is high, in the ‘make everything to stock’ case (MTS) one gets an enormous inventory if the number
of different products is large. In this paper we study two simple models which combine MTO and
MTS, and investigate the effect of combining MTO and MTS on the production lead times.

Key words. inventory control, production planning, Markov process, queueing model

AMS subject classifications. 60K25, 90B22

1. Introduction. Lesser and lesser production systems are fully Make to Stock
(MTS) organized. In MTS systems the clients receive their products from a warehouse
near the client. A lot of research concerns the performance and control of these systems
(multi-echelon inventory control). Some other systems are completely Make to order
(MTO). No product is made without a client. The analysis of these systems calls for
queueing models. An important problem in MTO systems is the relation between the
lead time and the utiization of the capacity. It is well-known that the lead time grows
with the utilization as 1/(1 — p) . Utilizations of 80% are often considered to be far
to low. On the other hand a utilization of 95% may give lead times which are not
acceptable any more.

If one wants high utilizations and short lead times then one has to be able to
deal with the natural day to day fluctuations in the demand (we are not thinking of
seasonal variations). One possibility is flexible capacity. Another option studied in
this paper is the combination of MTO with some MTS.

We will consider two models in which this mixture is studied. In the first one we
assume that there is one product which is standard and can be made to stock. If the
machine is idle it will produce a limited number of these standard products to stock.

In the second model we think of products being produced in two phases. The
first phase is standard and common for all products. The second phase is customer
specific. If the machine is idle it can continue to produce a limited number of ‘first
phases’ as a capacity inventory.

Assuming exponential production and interarrival times the models can be de-
scribed by Markov processes on a two-dimensional grid. One dimension indicates the
number of products on stock, and thus is finite. We show that the equilibrium distribu-
tions of the Markov processes can be determined analytically. From this distribution
it is straightforward to compute the distribution and moments of the production lead
time. Numerical results show that combining MTO and MTS effectively reduces pro-
duction lead times.

The literature on these hybrid systems is growing fast. The papers [7, 2, 6, 3]
study models where several items are produced by a common facility with limited
capacity. Some of these items are produced to stock, others are produced to order.
The MTO items have priority over MTS items. For these systems a variety of questions
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is addressed, such as: ‘Which items should be stocked or made to order?’ and ‘How
must production capacity allocated among MTO and MTS items?’

In section 2 we first consider some simple queueing models for inventory systems
related to the produce-to-stock systems in [1], and investigate the relation between
inventory and the production lead time. In particular tails of the production lead time
distribution tend to be rather thick. Section 3 deals with the two type system, standard
products to stock, specific products to order. In section 4 we consider the production
in two phases, the first one being standard, the second one customer specific.

2. Inventories and production lead times. Let us first consider the following
model. Jobs arrive according to a Poisson process with rate p(< 1), the production
times are exponential with mean 1. In this system the production lead time is expo-
nential with mean 1/(1 — p). We now assume that some of the idle time is used to
produce items on stock, say at most M items. As state space for this Markov process
we take the set {-M,-M +1,...,0,1,2,...} where the negative numbers refer to a
number of items on stock and the positive numbers to jobs waiting to be processed.
The equilibrium probability p, for the system to be in state n clearly equals

Pa=(1-p)p"™M, n=-M,-M+1,....

So the production lead time S(M) is equal to 0 with probability 1—p™ and exponential
with mean 1/(1 — p) with probability pM. Hence, for p close to 1, the maximum stock
M has to be fairly large to get a significant effect. Table 1 shows the mean production
lead time and the probability of a production lead time greater than 10 times the
mean production time as a function of p and M.

TABLE 1
Performance characteristics for exponential production times.
E[S(M)] P[S(M) > 10]
M 0 8 16 24 32 40 0 8 16 24 32 40
.8 S .839 141 024 .004 .001 135 .023 .004 .001 .000 .000
P .9 10 4.30 1.85 .798 .343 .148 .368 .158 .068 .029 .013 .005
95 20 13.3 8.80 5.84 3.87 257 607 402 .267 .177 .118 .078

In case the production times have an Erlang distribution with r phases, each
phase with mean 1/r (so the mean production time is 1), and the maximum stock
is M items the analysis proceeds in an almost identical way. Now we take as state
space the set {-Mr,—Mr+1,...,0,1,2,...} where the negative numbers refer to a
number of phases completed in advance (so in state —r there is one item on stock)
and the positive numbers to the number of uncompleted phases in the system. The
equilibrium probabilities p, are for n = —Mr,~Mr +1,... given by (see e.g. [4])

.
Pn = E Aix?+Mr’
=1
where the z;’s are the roots of the equation
z" - p(ar:"1 42772 4. ..+ 1)/r =0,
and the coefficients A; satisfy
A= (1-p)/ I - z;/=:).
J#i
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The production lead time S(M) is equal to 0 with probability 3 "}, p. and it is the
sum of n+r exponentials with mean 1/r with probability p, forn = —r+1,-r+2,...
So for t > 0 we obtain that '

0 n4r—1 !
PS(M)>t] = Z Pn Z e_”%

n=—r+1 =0

"
= Z A —r+1+Mr -r(l—a:.)t

i=1 1- Ti &
and thus also
_ : —r+l+Mr
E[S(M)] = ; moRcts

Table 2 shows how the production lead times are reduced by the production to stock
of the standard items.

TABLE 2
Performance characteristics for Erlang-10 production times.

E[S(M)] P[S(M) > 10]

M 0 8 16 24 32 40 0 8 16 24 32 40
.8 3.2 .140 .006 .000 .000 .000 .027 .001 .000 .000 .000 .000
p .9 595 1.32 .291 .064 .014 .003 172 .038 .008 .002 .000 .000
95 11.5 547 2.61 1.24 592 .282 420 .200 .096 .046 .022 .010

By comparing the results in table 1 and table 2 we see that in case of Erlang
production times the reductions in the production lead time are much larger than in
case of exponential production times. This is also illustrated in figure 1.
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F1G. 1. The mean production lead time as a function of the mazimum stock M for p = 0.95 in
case of ezxponential and Erlang-10 production times, resp.

We finally note that for general phase-type production time distributions the
analysis is equally simple.



3. Two types of jobs, standard (MTS) and customer specific (MTO).
We now turn to a model which combines make to order and make to stock. There
are two types of products, standard and non-standard products. When the machine is
idle (i.e. there are no orders) it is used to produce standard products until the stock
reaches a a certain maximum level, M say. A customer asking for a standard product
receives it directly (if possible) from stock. If the stock is empty the customer order
joins the queue. Non-standard, customer specific products are never delivered from
stock, but always produced to order. Demand for standard products arrives according
to a Poisson process with rate A;, the customer specific demand is Poisson as well
with rate A;. Further we set A = A; + A;. The production times for both types of
products are exponential with the same mean 1/pu. Production to stock is preempted
by production to order. For stability we assume that p = A/p < 1. Below we will first
present an exact analysis of this system and then investigate the effect of producing
to stock on the production lead times of standard and non-standard orders.

The system can be described by a Markov process with states (n,m) where n is
the number of orders in the production queue and m the number of items on stock.
If m > 0 all n jobs in the queue are type 2, but if m = 0 the n jobs are a mixture of
type 1 and type 2 jobs. The flow diagram of this Markov process is depicted in figure
2.

m
o A, B A,
M
[ ] ® . [ ] }"I . °
ol I M 9
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M
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u l.l'l’)vz u }"l+}"2 n

Fi1G. 2. Flow diagram for the model with standard and customer specific jobs

By balancing in each state (n,m) the flow out of and into that state we get the
following set of equations:

(1) p(n, MYA+p) = p(n—-1,M)A+p(n+1,M)p, n>0,
(2) p(n,m)(A+p) = p(n,m+ 1)+ p(n—1,m)Az+ p(n+1,m)u,
n>00<m< M,

(3) p(n,0)(A+p) = p(n, )M +p(n—1,00A+p(n+1,0)n, n>0,

(4) p(0, M)A = p(0,M —1)u+ p(1, M)u,

(5) p(0,m)A+p) = p(0,m+ 1)\ +p(0,m — 1)p+ p(1,m)p,
O<m< M,

(6) p(0,0)(A + p) = p(0,1)A + p(1, 0)p.
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Note that in the equations (2) there are no probabilities p(l, k) with & < m, since it
is only possible to consume and not produce stock items in states ({,k) with I > 0.
Hence the balance equations can be solved as follows. We start to solve the equations
for m = M and then work our way down from m = M — 1 to m = 0. Equation (1) is
a difference equation in n only. Its solution is given by

p(n, M) = Agoz™,
where Ag g is (for the time being) free and z is a root of
7 30+ p) = A + 2%
One of the two roots of (7) is larger than 1, and thus not useful. The other one equals
_ At vOA+p) -
2u

This root is positive and less than 1. Substituting p(n, M) = Agoz™ into equation (2)
for m = M — 1 we obtain an inhomogeneous recurrence relation for the probabilities
p(n, M — 1), with the p(n, M)’s as the inhomogeneous terms. The solution of this
recurrence relation is of the form

x

p(n, M — 1) = A1z™ + Agnz™.

The first term is the solution of the homogeneous equation, the second one is a partic-
ular solution of the inhomogeneous equation. It is convenient to rewrite the expression
for p(n,M — 1) in the form

(8) p(n, M -1)=3 Ay ; (1 j n) z".

=0

Next we substitute this expression into (2) for m = M — 2 and solve the probabilities
p(n, M — 2). Repeating this procedure we can work our way down from M — 1 to 1.
This leads to the solution

k
k
(9) p(n,M—k):ZAk,j( :;.-n).'l:n, k=0,....M-1,n=0,1,...,

=0
where for £ = 1,..., M — 1 the constants Ay ; satisfy

A = A1Ak_1,k-1

Ap . = j=1,...,k—1.
k.5 ’\+ll_2l“7 ? J ’ ]

The constants Ao 0, A1,0,. .., Ap—1,0 are still free. Equation (3) is a difference equation
in p(n,0) with the p(n,1)’s given by (9) as inhomogeneous terms. The solution of this
equation is given by

n M-1 n
(10) p(n,0)=B (—3) + Z AMm,; (Mj )z".
5



The first term with B free is the solution of the homogeneous equation. The sum is
a particular solution of the inhomogeneous equation. The constants Aps; in this sum
satisfy

AMM-1 = —AM-1,M-17,
and
Am = A7 {0+ w)o — 208} A — p? Am gz = MeAy-1),

forj =0,..., M—2, where Apr,pr = 0 by definition. We can conclude that the solution
of the equations (1)-(3) is given by (9) and (10) in which the constants Agg, ..., AM-1,0
and B are free. These constants can finally be determined from the boundary equations
(4)-(5) together with the normalization condition.

Once the probabilities p(n,m) are known, performance characteristics, such as
e.g. the mean number of orders in the production queue and the mean production
lead time for the two types of orders can be easily obtained. For instance, let L(M)
be the number of orders in the production queue. Then, by inserting the expressions
for the probabilities p(n, m) we find that

E[L(M)] = 3 np(n,m) = B+ */" +ZZ ,JZ(Hn) e

k=0 j=0 n=0

where the infinite sum can be reduced to 2 finite one by using

k  — k+ (k z L [(k+n
Z( +n) nzazk_jé(_;gjg _ 3 ( J]r )nxn_

n=j—k

The mean overall production lead time E[S(M)] (i.e. for type 1 and 2 orders together)
can be obtained from E[L(M)] by application of Little’s law, i.e.,

E[S(M)] = E[L(M)]/.

Denote by S1(M) and S2(M) the production lead time for a standard and non-
standard order, respectively. From the PASTA property (see [8]) we obtain

E[Sy(M)] = (B[L(M)]+ 1)1
Further, it holds that
BIS(M)] = LIS ()] + JLE[S,(M)],

from which E[S7(M)] directly follows.

The figures 3 and 4 illustrate for p = 0.9 and ¢ = 1 how the mean production
lead times for standard and non-standard orders decrease with M for the ratios A;/\;
equal to 3, 1 and 1/3, respectively. Note that for M = 0 and M = oo we have

E[$1(0)] = ElSi(0)] = (L —,
6
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FiG. 3. The mean production lead time for standard orders as a function of M for p =1 and
p = 0.9 where f = A1 /)2 is varied as 3, 1 and 1/3, resp.
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F1G. 4. The mean production lead time for non-standard orders as a function of M for p = 1
and p = 0.9 where f = A1 /A2 is varied as 3, 1 and 1/3, resp.

ElSi(oo)] =0, ElSy(oo)] = 1L,

where py = A\1/u and py = Aa/p.

We see that significant reductions in the lead time are possible, and that, appar-
ently, the reductions for the standard orders are quite insensitive to the ratio A;/As.
Most of the reduction, 80% say, is already achieved for moderate M. This is also
shown in table 3 where we list the minimal M for which a% of the possible reduction

7



in the lead time is realized, i.e.

E[51(0)] — E[$1(M)] > 1001‘7[51(0)] ,

E[$5(0)] - ElS2(M)] > —(E[$1(0)] - E[S1(c0)).

100
Again observe that the minimal M is quite insensitive to the ratio A;/)s.

TABLE 3
Minimal M to achieve a % of the possible reduction in the lead time

M

M/A\2=3 o 20 50 80 90

.8 2 5 9 12
p 9 4 8 17 23

.95 6 15 33 46
AfA=1

.8 2 4 8 11
p 9 4 8 17 23

.95 6 15 33 46
AfA=1/3

.8 2 4 7 10
p 9 3 7 16 22

.95 6 15 32 46

The figures 3 and 4 and table 3 illustrate the reductions in the lead time achieved
for given mazimum stock M. The maximum stock size is important for the allocation
of space needed for storage, the average stock is relevant for the calculation of holding
costs. The average stock can be determined as follows. There is a simple relation
between the probability p(0, m — 1) and the probability g(m) that there are m items
on stock. Namely, balancing the flow between the sets {(0,m —1),(1,m—1),...} and
{(0,m),(1,m),...} yields

p(0,m—-1Dpu=q(m)Ay, m=1,...,.M.

From this relation we can compute the probabilities ¢(m) and thus also the average
stock. In figure 5 we show for p = 0.9 and p = 1 the average stock as a function of M
for the ratios A;/A; equal to 3, 1 and 1/3, respectively. Observe that from M = 15
say, the lines are nearly straight with slope 1, so that from there on it is not worth to
stock another item.

It is also possible to compute the distribution of the production lead time from
the equilibrium probabilities p(n,m). The production lead time S;(M) for a standard
order is the sum of n + 1 exponentials with mean 1/p with probability p(=,0) and it
is equal to 0 otherwise. For a non-standard order the production lead time S3(M) is
equal to the sum of n + 1 exponentials with probability p(n, m). Hence, for ¢t > 0 we
obtain that

P[Si(M) > t] = ip(n O)Ze"‘t (”t) ,
n=0 =0

P[Sy(M) > 1] Z E p(n, m)Ze““ (pt) .

n=0m=0

8
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Fi1G. 5. The average stock as a function of M for p = 1 and p = 0.9 where f = A1 /A2 is varied
as 3, 1 and 1/3, resp.

Table 4 lists the percentages of the standard and non-standard orders that will get a
production lead time more than 10 times the mean production time.

TABLE 4
Percentages of the standard and non-standard orders with a lead time longer than 10 times the
mean production time

P[S:(M) > 10] P[S2(M) > 10]

Ai/A2 =3 M 0 8 16 24 32 0 8 16 24 32 oo

.8 14 23 38 .06 .01 14 23 41 .10 .04 .03
p 9 37 16 6.8 29 13 37 16 68 30 1.3 .04

.95 61 40 27 18 12 61 40 27 18 12 .05
Al//\z =1

8 14 23 .38 .06 .01 14 24 61 31 .26 .25
p 9 37 16 68 29 13 36 16 7.1 33 1.6 .41

.95 61 40 27 18 12 61 40 27 18 12 .52
A1/A2 =1/3

.8 14 21 .32 .05 .01 14 34 21 19 18 1.8
p 9 37 15 65 2.8 1.2 37 17 94 6.2 49 3.9

.95 61 40 26 17 12 61 41 29 21 16 5.6

4. Half-finished products to stock. In this section we consider products that
are produced in two phases. The first phase is standard and identical for all products.
The second phase is customer specific. We will analyze how the production lead time
decreases if we store some, at most M, half-finished products, that is products with
phase 1 completed. The first phase of a product takes an exponential time with mean
1/p41, the second phase is exponential with mean 1/u,. Orders arrive for one item at
a time according to a Poisson process with rate A. For stability we assume that

A A

(11) —+ —< 1.
H1 o M2
9



The system can be described by a Markov process with states (n,m) with n the
number of orders in the system and m the number of half-finished products in stock
or in use. So state (1,2) denotes the situation with 1 job in the system for which the
machine is processing phase 2, and 1 half-finished product on the shelf. If phase 2 is
completed the state changes to (0,1) and the machine continues with the production
of phase 1 products until the limit M is reached, or a new customer order enters. So,
a newly arriving order preempts a stock production. In state (n,0) with = positive
the machine is working on phase 1. If phase 1 is completed the state changes to (n,1)
and the machine continues with phase 2. The flow diagram of this Markov process is
depicted in figure 6.

m
A
M p
29 / A
L] L] uz L]
Hi A A A
4 . ] [ ] > e
Ky Mz 5} y [
. n
A A A

FiG. 6. Flow diagram for the model with half-finished products

By equating in each state (n,m) the flow out of and into that state we get:

(12) p(n’M)()“*'ﬂ'Z) = p(n- 1L,M)\, n>0,

(13)  p(n,m)(A+pz) = p(n—1,m)A+p(n+1,m+ L)us,
n>0,1<m< M,

(14)  p(n,1)(A+p2) = p(n—1,1)A+p(n,0)p1 +p(n +1,2)p2, n>0,

(15) p(n,0)(A+ 1) = p(n-— 1,0)A + p(n + 1, Dpz, n>0,

(16) p(0, M)A = p(0,M - 1)uy,
(17)  p(0,m)( A+ ) = p(0,m—1)p+ p(1,m+ 1)y,
2<m< M,

(18) p(0,2)(A+ ) = p(0,1)p + p(1,3)u2,
(19)  p(0,1)(A+ 1) p(0,0)p1 + p(1,2)p2,
(20)  p(0,0)(A+ 1) = p(1,1)p..

The approach to solve the equations (12)-(20) is similar to the one in the previous
section. We start with the equations for m = M and then subsequently solve the
equations for m = M — 1, m = M — 2 and so on. Equation (12) is a difference

10



equation in n only. Its solution is given by
p(na M) = AO,Oxn ’
where Agp is free and

A
At pz
By substituting p(n, M) = Agoz™ into (13) for m = M — 1 we get an inhomogeneous

recurrence relation for the probabilities p(n, M — 1), with the p(n, M) as inhomoge-
neous terms. The solution of this recurrence relation can be written as (cf. (8))

1
p(n, M —1) = ZALJ' (l-ljn)w".
i=0 J

Next we insert this expression into (13) for m = M —2. This yields an inhomogeneous
recurrence relation for the probabilities p(n, M — 2), which can readily be solved. By
repeating this procedure for m = M — 3 down to m = 2 we obtain

k .
(21) P(n,M—k)=ZAk,j<n;J)z", k=0,....M-2,n=0,1,...,

j=0
where for £ = 1,..., M — 2 the constants Ay ; satisfy

T2

A+ p2

App = Ap_1 k-1,

Akv] Aky]+1+ Ak -17-1> j-—_k_].,-..,l

/\ +
This completes the solution of the equations (12)-(13). The constants Ag,..., AM—-2,0
in this solution are still free. We now consider the equations (14)-(15). Note that these
equations are difference equations in p(r,0) and p(n, 1) with the p(n,2)’s given by (21)
as inhomogeneous terms. The solution is given by

M-2 .
({2 n n+ n
(22) p(n,1) = Buyl + Bay + ) AM—LJ'( J ])z )
Jj=0
A — Ayt A — Ayl
(23) p(n,0) = B AtH2= A1 n pAthz= M, n
s H1
M-2
n 4+ n
Z AM,J( . J) .
Jj=0 J

The first two terms in (22)-(23) are the solution of the homogeneous equations, where
B; and B are free and g; and gy, are the two roots of

papay® — [N+ A(pa + p2)ly + A2 =0.

Condition (11) guarantees that the roots y; and y; are both positive and less than 1.
The two sums in (22)-(23) are a particular solution of the inhomogeneous equations.

11



Note that the particular solution has the same form as the inhomogeneous term p(n, 2)
given by (21). For the constants Apr; and Ap_y,; in the two sums the following
relations can be derived. The constants Aps; in (23) satisfy

HaZ
Apm-2 = —TAM—z,M—z )
1

and
Am,; " “ - [(/1'1 p2)Am 41 + Az AM,J+2]
- Z Ay - B2 Z(z+1—j)AM_2,,,
I=j+1 Mo

for j = M -3,...,0, where Aprpr—1 = 0 by definition. The constants Apr—y; in
expression (22) follow from the relations

1 M-=-2
Ap-1; = o1 {:/J'IAM,J'—I + pa Z AM—2,m]
m=j—1

forj=1,...,M — 2 and

M-2
[(A +p1 = Az Apo + Az Ap g — poz E AM—I,I:I .

1
AM-a10=—3
H2Z =1

We can now conclude that the solution of the equations (12)-(17) is given by (21)-(23)
in which the constants Agg,...,Ap—20 together with B; and B are free. These
constants can finally be solved from the boundary equations (16)-(20) and the nor-
malization condition.

It is straightforward to determine performance characteristics, such as the mean
number of orders in the system and the mean lead time from the equilibrium proba-
bilities p(n, m). For instance, for the mean number of orders in the system we obtain

_ A+ pz — Ay? Biy A+ pp — Ayyt Bay,
ElLan) = (1 * I} (1-mn)? Ut 1 (1-y2)?

M-2 k z
+ Z ZA’%J (§1+;g+y

k=0 7=0

g M2 1 T
+ Z Am- 1,,(51”)2“ +Y 4 ,J(E—J;J)g—ﬂ

where we used that
[e o] . .
Z n-l.-J nz":——(1+]gz..
n=0 J (1 - (D) +
The mean production lead time follows from E[L(M)] and Little’s law, i.e.,

E[S(M)] = E[L(M)]/A
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Note that for M = 0 and M = oo it holds that
1/ +1/p2 = p2/m

El50)= 1-p1—p2
ElS(oo)] = 7222,

where p; = A/ and p; = A/po. Figure 7 illustrates how the mean production lead
time decreases with M for the ratios p; /u2 equal to 3, 1 and 1/3, respectively. In each
case the mean production time (i.e., 1/p1 + 1/p2) is equal to 1.

9 — T T T T T T

| - 1
0 5 10 15 20 25 30 35 40

Fic. 7. The mean production lead time as a function of M for mean production time 1 and
p=0.9 where f = p1/p2 is varied as 3, 1 and 1/3, resp.

We see that significant reductions in the lead time are possible. The reduction is
large if phase 1 constitutes a large part of the total production time, thus if u;/us is
small. In table 5 we list the minimal M for which a% of the possible reduction in the
lead time is realized, i.e. '

E[S(0)] - E[S(M)] 2 15=(EIS(0)] - E[S(c0)].

Figure 7 and table 5 show the reductions in the lead time for given maximum
stock level M. It is interesting to know the average stock in these cases. To compute
the average stock we can use the following relation between the probability g(m) that
there are m half-finished products in stock and p(0,m — 1). By balancing the flow
between the sets {(0,m — 1),(1,m — 1),...} and {(0,m),(1,m),...} it follows that

p(0,m — L)y; = (g(m) — p(0,m))p2, m=2,...,M.

Also note that ¢(1) = p(0,1). From this relation we can calculate the probabilities
g(m), and thus also the average stock. Figure 8 illustrates the average stock for the
examples in figure 7. We see that for pq/us = 1,1/3 the lines are straight with slope
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TABLE 5
Minimal M to achieve a% of the possible reduction in the lead time -

M
p1fp2 =3 o 20 50 80 90
.8 3 8 20 29
p 9 6 20 48 69
.95 14 43 102 146
p1/p2 =1
.8 2 5 11 16
p 9 4 10 23 33
.95 7 21 48 68
p1/p2 =1/3
.8 2 4 8 12
p 9 3 8 17 24
.95 5 15 34 49
35 T T T T T T —T
f=3 o—
f=1 -
1=13 -a |
30 =
e 4
-
.E r)'
a
25 P 4
-
-4
«H 0"
o
ar Pl 1
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2'57"
#
o5
5F z 4
0 1 L 1 | I L L 1
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Fi1Gg. 8. The average stock as a function of M for mean production time 1 and p = 0.9 where
f=p1/u2 is varied as 3, 1 and 1/3, resp.

1 from M = 20 say, so that from there on an extra half-finished product on stock will
not leave the shelf. For pq/ps = 3, however, it will help a little bit to produce extra
half-finished products, even when there are already 40 items on stock.

It is also possible to compute the distribution of the production lead time from
the equilibrium probabilities p(n,m). Let S(n,m) be the lead time if on arrival the
system is in state (n,m). So, if n +1 < m, then §(n,m) is the sum of n» + 1 phase
2 productions (and no phase 1 productions), and otherwise, S(n,m) is the sum of
n+ 1 — m phase 1 and n + 1 phase 2 productions. Since an arriving order finds the
system with probability p(n,m) in state (n,m) we obtain for ¢t > 0 that

P[S(M) > t] = p(n,m)P[S(n,m) > 1].

From this relation it is straightforward to calculate the probability P[S(M) > t] once
the probabilities p(n, m) are known. This is done for the examples in table 6 where
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the percentages of the orders that will get a production lead time more than 10 times
the mean production time are listed.

TABLE 6
Percentages of the orders with a lead time longer than 10 times the mean production time

P[S(M) > 10]
prfp2 =3 M 0 8 16 24 32 oo

.8 88 53 32 20 14 .48
P .9 30 23 18 14 11 1.3

.95 53 48 43 38 34 22
pafpue =1

.8 7.2 22 .68 .21 .07 .00
p .9 27 16 89 51 29 .00

.95 52 40 30 23 18 .00
p1fpz =1/3

.8 88 17 .32 .06 .01 .00
p 9 30 14 63 29 13 .00

.95 55 37 26 18 12 .00

5. Concluding remarks. In this paper we studied two production-to-order sys-
tems and we investigated whether producing to stock in idle time can effectively reduce
the production lead times. Indeed, it appeared that this simple combination of make
to stock and make to order can significantly reduce the production lead time.

We explicitly solved the equilibrium equations of the models in sections 3 and
4 by combining products of powers. Another approach which is well suited to solve
these equations is the matrix-geometric approach developed by Neuts [5]. In fact, for
the models considered in this paper the corresponding rate matrices R can be solved
exactly by a simple recursion.

REFERENCES

[1] J. A. BuzAcOTT, J. G. SHANTHIKUMAR, Stochastic models of manufacturing systems, Prentice
Hall, 1993.

[2] A. S. Carr, A. R. GULLU, P. L. JacksoN, J. A. MUCKSTADT, An ezact analysis of a
production-inventory strategy for industrial suppliers, Working paper, School of Operations
Research and Industrial Engineering, Cornell University, Ithaca, NY, 1993.

[3] A. FEDERGRUEN, Z. KATALAN, Make-to-stock or make-to-order: that is the question; novel
answers to an ancient debate, Working paper, Graduate School of Business, Columbia Uni-
versity, New York, 1994.

[4] L. KLEINROCK, Queueing systems, Volume I: Theory, J. Wiley & Sons, New York, 1975

[5] M. F. NEUTS, Matriz-geometric solutions in stochastic models, Johns Hopkins University Press,
Baltimore, 1981.

[6] C. R. Sox, L. J. THoMas, J. O. McCLAIN, Jellybeans: Sorting capacity to improve service,
Working paper, Department of Industrial Engineering, Auburn University, Alabama, 1994.

[7] T. M. WILLIAMS, Special products and uncertainty in production/inventory systems, EJOR, 15
(1984), pp. 46-54.

(8] R. W. WOLFF, Poisson arrivals see time averages, Opns. Res., 30 (1982), pp. 223-231.

15





