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CRITERION FOR THE RESOLVENT SET
OF NONSYMMETRIC TRIDIAGONAL OPERATORS

A. I. APTEKAREV, V. KALIAGUINE, AND W. VAN ASSCHE

(Communicated by Theodore W. Gamelin)

Abstract. We study nonsymmetric tridiagonal operators acting in the Hubert

space t1 and describe the spectrum and the resolvent set of such operators in

terms of a continued fraction related to the resolvent. In this way we establish

a connection between Padé approximants and spectral properties of nonsym-

metric tridiagonal operators.

1. Introduction

In this paper we consider operators in the Hubert space I2, with the following

representation in an orthonormal basis of this space:

(1) A =

ißo 7o 0 0 ...\
ai ßi Yi 0 ...
0 a2 ß2 y2 ...

V; ; ••. -.   •./
where ak , ßk , yk are complex numbers, ak^0,yk^0,k£N. The operator

A is defined for any finite vector x = Xogo+xxgx H-\-xng„ in the orthonormal

basis {g„}o° , and its domain of definition D(A) is dense in t2 .

The symmetric case, where ak = y^Zl and ßk is real, can under an appro-
priate chosen basis be reduced to an infinite Jacobi matrix enabling a deeper

examination of this spectral theory. The main tools of investigation in this case

are the classical moment problem (including the theory of self adjoint extensions

of unbounded symmetric operators), the theory of general orthogonal polyno-

mials and the spectral theorem for selfadjoint operators ([1], [2], [9], [11]).

This connection between the spectral theory and analysis is fruitful for various

points of view. For example, the scattering problem for a Jacobi matrix can be

treated on the basis of strong (or Szegö type) asymptotic results for orthogonal

polynomials ([4], [6], [10]). On the other hand, the perturbation theory gives

new results for orthogonal polynomials ([12]).
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In the general, nonsymmetric, case we cannot use the spectral theorem and

orthogonal polynomials, but in return we will obtain results of use for Padé

approximants and the theory of continued fractions. We denote as usual by

o(A) the spectrum of the operator A , ii(A) = C \ o(A) is the resolvent set

and the resolvent is R(X) = (XI - A)~x for X £ ii. By {gn}™ we denote the

orthonormal basis in I2. The function

(2) <P(X) = (R(X)g0,go)

is analytic on the resolvent set ii(A). If the operator A is bounded (this is

the case when ak , ßk , yk are bounded), then the function <p(X) is analytic for

|X| > ||^41|. For convenience we have changed the basis of representation of

the operator A. The new basis {e„}g° is defined by en = gn/dn , where d„ =

7o7i • • • ïn-i, do = 1. In this basis the operator (1) has the following form:

(3)

/ ßo
Qi7o

0

1       0

ßi       1
«271     ßi

0
0
1

V

•\

■.)
If we set a„ = a„yn-X, b„ ß„ , then we have in the basis {e„} :

\

(4) A =

(bo 1
ax bx
0 a2

v; ;

0
1

b2

0
0
1

:)

The Chebyshev algorithm (Algorithm 7.2.1 in [8, page 248]) applied to cp(X) at
infinity gives us the following continued fraction (J-fraction):

II
(5)

«il a2\

\X-b0     \X-bx     \X-b2

The numerators P„ and denominators Qn of the n th convergents for this

fraction satisfy the three-term recurrence relation:

(6) any„-i +bnyn+yn+i =Xy„,        n = 0,1,2,

with the initial conditions

Ö-i = o,
P-i = i,

<2o=l,
Po = 0.

The main problem considered in this paper is to describe the spectrum and

the resolvent set of operators of type ( 1 ) in terms of the continued fraction (5)

and the monic polynomials P„, Qn and in this way to establish a connection

between Padé approximants and spectral properties of nonsymmetric tridiag-

onal operators. In our main result, Theorem 1, we state the criterion for the

resolvent set ii(A) in terms of the growth of the polynomials Qn(z). The

proof of the necessary condition is essentially based on the results of Kershaw

and Demko, Moss, and Smith about decay rates of inverses of banded matri-

ces ([5]). This theorem gives us analytic properties of the polynomials Qn(X)

and the related Padé approximants nn := Pn/Qn on the set ii(A). We prove,

among other things, the following
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Theorem 2. If A is bounded and

0<|ajfc|, |7fc| < Ci <cx>

for some Cx, then for any X £ ii(A) there is a subsequence of Padé approximants
nn which converges to <p(X) with a geometric rate.

In section 2 we formulate and prove Theorem 1 and related results. Section

3 will be devoted to an application of these results to the behavior of Padé

approximants.

2. Analysis of the spectrum and the resolvent set of the operator

Suppose A has a representation (4) in an orthogonal basis {e„}, where

Iknll = hn ■ We assume that the operator A is bounded. In this case A is

defined on the whole space I2 and X £ ii(A) if and only if the following
conditions are satisfied:

(1) Ker(A/ - A) = {0},
(2) Vn,3zn:(XI-A)Zn = en,

(3) \\(XI-A)~xx\\ < C||x||, for all finite vectors x - xoeo+xxex-\-Yxnen
and some constant C.

Proposition 1. Xq is an eigenvalue of A if and only if
oo

(7) £ \Qn(Xo)\2h2n < +00.
n=0

Proof. We can formally write Ax = Xqx and obtain for x - Xo^o + xxex H-
the following system:

¿o-*o   +   X\    =   An.xo
axxo   +   bxxx    +   x2   =   X0xx

' a2Xx    +   b2x2   +   x3   =   X0x2

t • ! !

If xo = 0, then x„ = 0, Vzz £ N. If xo ^ 0, then x„ = Qn(Xo)xo and in this
case x £ I2 iff ZcT \Qn(X0)\2h2 < oc .   n

Proposition 2. For given X, the equation

(XI - A)z = en

has a solution in I2 for all n > 0 if and only if there exists a complex number

y such that

(8) £|Ö„(A)y-P„(A)|2/z„2<+oc,
n=0

Proof. First we find the formal solution z(0) of the equation

(U-A)z = eQ.

Let z(0) = (z0,o, zi,o, ^2,o. •••) in the basis {e„};then

1 +    ¿0^0,0    +    ^i,o    =    ¿z0,o

iZlZ0,o    +    ^1^1,0    +     ^2,0    =    kzXyo

(9) \ a2zx,o   +   ¿2^2,0   +    Z3,o   =   Xz2t0
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So z„o satisfies the same recurrence relations as Qn(X) and Pn(X) for zz > 1,

only the first relation is different. This implies that z„0 = QnWv - Pn(X) for

zz > 1 and for any y the first relation is also satisfied: b0y+y(X-bo)-l + l = Xy.

Thus the sequence Qn(X)y - Pn(X) is a solution of (9) for any y. We need a

solution in I2 . So e0 is in the image of (XI-A) iff ¿£° \Q„(X)y - P„(X)\2h2 <
-I-co for some y . Note that if X is not an eigenvalue of A, then the convergence

of this series is possible only for one y. For the solution of the equation

(XI- A)z = ex we note that (XI - A)eo - Xeo - Aeo = (X- bo)eo - axex and then

-axex = (XI-A)(e0-(X-b0)zW). So z'1) = -(e0-(X-b0)z^)/ax is a solution

of (XI - A)z = ex. This is an element of I2 if z(0' £ I2. In the same way we

find zW = -(ex -(X-bx)z^ + z^)/a2 for the solution of (XI- A)z = e2 and

so on.   D

Theorem 1. Suppose A is bounded, X is not an eigenvalue of A, and (8) is

satisfied for some y. Then X £ ii(A) if and only if there are constants C > 0

and 0 < q < 1 such that

.Q„(X)rm(X) h„
(10)

(11)

axa2...an hn

,Qm(X)rn(X)hn

, < Cqm~n..

1 < Cq"-m,

n < m,

n > m,
axa2...a„ hn

where rm(X) := Qm(X)y - Pm(X).

Proof. From Propositions 1 and 2 it follows that the inverse operator B =

(XI - A)~x can be defined on the basis vectors by Be„ = z(">. The matrix of

B in the basis {e„} is of the form:

/ Zn ^ -Û- —rji— ...\

Qi-r(12)

£L
a\

Qi^
r2    r2

^3    r3

\:

at

Ql
a,

■axa2

>a¡a2

a\aiai

Qi-
Qi
03 u[U2ß3

Indeed, for the first column there is no problem, since it contains z'0). The

zz th column contains z("'. For z(1) = -(eo - (X - bo)z^)/ax we have

1 - (X - b0)r0 _ ri_

~ ax

n rx
zi.i =- = Qi

(13)

Z2,l = —

^0,1 =
ax

-(X-b0)zXyo

ax

-(X- b0)z2,o

ax

a\
-rQl
~riTx

This is the second column of B. Suppose we have calculated z^ as indicated

and we have to find z(fc+1). First note that

ek - (A - bk)zW + z(*-i)Ak+l) -

"k+l
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Then

1    i   n      L y        rk                 _rk-l^_y rk+l
zo,k+i = --—(-(X - bk)—-— + —-—) -

ak+x axa2---ak     axa2---ak-X       axa2---ak+x

1   /   n     h y     Qirk          _öuV-i_x     n        rk+i
zi,k+i = --—(-(X- bk)——-— + —-—) = Qi

ak+x axa2---ak     axa2---ak_x       ' axa2---ak+x

Zk,k+i=-^(l-(*-bk)-¥^-+     &-'?    ) = Qk-     rk+l
ak+x axa2---ak     axa2---ak_x        ' axa2---ak+x

We used here the relations Qk-Xrk - Qkrk_x = -axa2 ■ ■ ■ ak_x deduced from the

recurrence relations for Qk and rk . Next,

1   (   /,     L N_G^fc+i          Qk-ifk+i_,     . Qk+i
Zk+i,k+i = —„—(-(X - bk)-—-— + —-—) = rk+¡■

ak+x axa2---ak     axa2---ak_x axa2---ak+x

and so on for z¡ k+l, I > k + 1. Thus the form of the matrix B is correct.

Now we decompose B into two parts: B = Bx + B2, where Pi and R2 are

lower and upper triangular matrices with the same diagonal elements (Ri);,, =

(Ri)i,i = \Bi,i ■ For trie estimation of norms of matrices we use the formula

11^11= sup   sup \(y, Kx)\.
\\x\\<l \\y\\<l

We have for two finite vectors x = xoe"o + xxex + ■ ■■ + x„e„ and y = yo^o +

yxex + ---+y„en:

(y, Bxx) = 2*0,0^0^0+ (èi,oVi^-(--èi>ij;ixT)/z2

+ " ' + (bn,oynXÔ + b„, xynX¡ + ---+-rbn, iynXn)hl.

Here, we denote by b¡ t ¡ the elements of the matrix B . Then

.    n n   n-j

\(y,BxX)\ <^\b^K\\Xk\\yk\h2k + J2zZ\bk+j^\\xk\\yk+j\h2k+j
k=0 j=l k=0

1   " " "_J h
= 2 H \bk,k\\Xk\\yk\h2k + 53 53 Ibk+i>k~jr\\xkhk\\yk+jhk+jI

k=0 j=l k=0 k

<C(\ + q + q2 + --- + qn)\\x\\\\y\\

1 - an+x
^ciy-^-MiMi.

A similar estimation is applicable for the matrix R2 • The first part of the

theorem is thus proved.

To prove that for X £ ii(A) the estimation (10) holds, one can use the

known theorem on the decay rates of the inverse of banded matrices (see [5])
and the matrix representation of B = (XI - A)~x obtained in the first part of

our proof.   D
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3. Application to Padé approximants

In this section we consider some applications of Theorem 1. First of all we

note that Theorem 1 together with Propositions 1 and 2 gives a characteriza-

tion of the resolvent set of A in terms of the polynomials P„ and Q„ . On

the other hand this theorem also gives a result on the convergence of the con-

tinued fractions (5). We recall that the fraction P„/Qn is a diagonal type Padé

approximant for tf>(X) at infinity (see, e.g., Theorem 7.15 (B) in [8, page 250]).

Corollary 2. If X £ ii(A), then the remainder of Padé approximation in linear

form tends to zero, i.e.,

lim[Q„(X)<p(X)-Pn(Wn = 0.
n—»oo

Proof. We have z<°) = R(X)e0 and <f>(X) = (R(X)e0,e0) = z0,o, with h0 = 1.
On the other hand z0,o = yQo - Po = 7\ hence cf>(X) = y and the corollary

follows from Proposition 2.   D

Remark 1. In the case of a symmetric operator A with a representation (1) in
some orthogonal basis, the polynomials

Qn = Qn/dn,      d„ = Toft • ■ • Vn-X ,

are orthonormal and if X £ ii(A), then q„(X)cp(X) - p„(X) —> 0 as zz -> oc. In

this case we have h„ — l/\dn\.

Corollary 3. If there exists a positive constant Cx such that \ak\,\yk\<Cx, then

for all X £ ii(A)
limsup|ß,,WAII|,/"> 1.

n—>oo

Proof. Both Qn and r„ satisfy the same recurrence relation (6). Hence

Qn-\rn - Qnrn-i = -axa2--an-x,

or equivalently

ÖL                rn                  H"         n  L              rn-\             "n —1 <
n-l"«-l TT7.-TU" U-QnhnT-"-"-J— = -1.

hnax-a„    hn-X             hn-Xax-- -an_x   h„

From Theorem 1 we get

rk <Cqk,        q<l,
\hkax    -akl

so the sequence Qnh„ cannot be majorized by a geometric sequence pn with

p < l/q , i.e., for any p < l/q and any positive constant C the inequality

\QnWhn\ < Cpn

is not satisfied for an infinite number of indices n . For a subsequence A c N

we thus have

\Qn(X)hn\>Cp",        zzeA;

and consequently if we choose p such that l/q > p > 1 we have

limsup\Q„(X)hn\l/n >p>I,
n—>oc

giving the required result.   G
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Remark 2. In the symmetric case this corollary gives us the well-known charac-

terization of ii(A) in terms of the orthonormal polynomials q„ : if X £ ii(A),

then limsup^l^WI'/^i ([11]).
The combination of these two corollaries gives

Theorem 2. If A is bounded and 0 < \ak\, \yk\ < Cx < oo for some constant

Ci, then for any X £ ii(A) there exists a subsequence of the Padé approximants

n„ = P„(X)/Qn(X) which converges with a geometric rate to <p(X).

Proof. From Corollary 1 we have

lim Qnhn<t>(X) - Pnhn = 0.
n—>oo

Let A c N be such that

lim \Qn(X)h„\ 1>»>1,
n—»oo

then \Qn(X)h„\ > Cp" for some p > 1. Hence

VAÍ)"'
which proves the theorem.   D

Remark 3. In the symmetric case this statement seems to be unnoticed. In-

deed, suppose A is in the form (1) in an orthonormal basis, and consider the

so-called asymptotically periodic case (or the corresponding limit-periodic con-

tinued fraction) where for some N we have

lim akN+l■ = <?,-,        i = 0, 1, 2, ...N- 1,
k—»oo

and similarly for ßkN+i and ykx+i ■ Then it is known that the poles of the
Padé approximants n„ = Pn/Qn are essentially concentrated on a system of

N closed intervals ([4], [7]). The convergence of n„ however depends on the

behaviour of the so-called spurious poles. Nevertheless our theorem shows that

for any X in the exterior of the spectrum some subsequence of n„ converges

with a geometric rate.

Finally we note that from Theorem 1 we get a connection between the fact

that X £ ii(A) and the convergence of Padé approximants n„(X) = P„(X)/Q„(X).

The convergence of n„(X), without further requirements on the rate, does

not imply that X £ ii(A). A counterexample is given by the spectral mea-

sure dp(x) = \/l -x2dx on [-1, 1], for which Pn(x) - 2~n+xUn-i(x) and

Qn(x) = 2~nU„(x), where U„(x) are the Chebyshev polynomials of the second

kind. At X = 1 € o(A) we have 7t„(l) = 2n/(n+ I) which converges, but with-

out geometric rate. The convergence of some subsequence with a geometric rate

is also not sufficient to imply that X £ ii(A). A counterexample is given by any

symmetric measure on [-1, 1], because then at X - 0 £ o(A) we always have

Pln(X) = 0.
The following question is thus of interest: does the convergence of the whole

sequence nn(X) with a geometric rate imply that X £ ii(A) ?

<t>(X)
Pn(X)

QnW
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