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Abstract. We consider the problem of constructing a portfolio of finitely many assets
whose returns are described by a discrete joint distribution. We propose mean–risk
models which are solvable by linear programming and generate portfolios whose returns
are nondominated in the sense of second-order stochastic dominance. Next, we develop
a specialized parametric method for recovering the entire mean–risk efficient frontiers of
these models and we illustrate its operation on a large data set involving thousands of
assets and realizations.

1. Introduction

The problem of optimizing a portfolio of finitely many assets is a classical problem
in theoretical and computational finance. Since the seminal work of Markowitz [17, 19]
it is generally agreed that portfolio performance should be measured in two distinct di-
mensions: the mean describing the expected return, and the risk which measures the
uncertainty of the return. In the mean–risk approach, we select from the universe of all
possible portfolios those that are efficient : for a given value of the mean they minimize
the risk or, equivalently, for a given value of risk they maximize the mean. Such an
approach has many advantages: it allows one to formulate the problem as a parametric
optimization problem, and it facilitates the trade-off analysis between mean and risk.

Markowitz used the variance of the return as the measure of the risk. It is easy to
compute, and it reduces the portfolio selection problem to a parametric quadratic pro-
gramming problem. One can, however, construct simple counterexamples that show the

Date: August 6, 2002.
Key words and phrases. Portfolio optimization, stochastic dominance, mean–risk analysis, least ab-

solute deviations, Fenchel duality, linear programming, parametric simplex method, robust statistics.
The second author was supported by grants from the ONR (N00014-98-1-0036) and from the NSF

(CCR-0098040).
1
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imperfection of the variance as the risk measure: it treats over-performance equally as
under-performance, and more importantly its use may suggest a portfolio which is always
outperformed by another portfolio. The use of the semivariance rather than the variance
was already recommended by Markowitz himself [18]. But even in this case significant
deficiencies remain (see [22, 23]) as we shall explain.

Another theoretical approach to the portfolio selection problem is that of stochastic
dominance (see [30, 15]). The usual (first order) definition of stochastic dominance gives
a partial order in the space of real random variables. More important from the portfolio
point of view is the notion of second-order dominance which is also defined as a partial
order but which is equivalent to this statement: a random variable Y dominates the
random variable Z if E[U(Y )] ≥ E[U(Z)] for all nondecreasing concave functions U(·) for
which these expected values are finite. Thus, no risk-averse decision maker will prefer a
portfolio with return Z over a portfolio with return Y . While theoretically attractive,
stochastic dominance order is computationally very difficult, as a multi-objective model
with a continuum of objectives.

We shall, therefore, concentrate on mean–risk portfolio models, but we shall look for
such models whose efficient frontiers consist of stochastically nondominated solutions, at
least above a certain modest level of mean return.

The general question of constructing mean–risk models which are in harmony with the
stochastic dominance relations has been the subject of the analysis of the recent papers
[22, 23, 24]. We shall apply and specialize some of the results obtained there to the
portfolio optimization problem. We shall show that the resulting mean–risk models can
be formulated as linear programming problems. In this sense, our work has a different
motivation than the classical paper by Sharpe [28], where he develops a linear program-
ming approximation to the mean–variance model. We do not want to approximate the
mean–variance model, but rather to construct a linear programming model that has better
theoretical properties than the mean–variance model and its approximations. Moreover,
we develop a highly effective algorithm for recovering the entire efficient frontiers of our
models. Our numerical results show that our approach is capable of solving portfolio
problems of large sizes in a reasonable time. This, combined with the theoretical prop-
erty of stochastic efficiency of the solutions obtained constitutes a strong argument for
the use of our models in practical portfolio optimization.

2. The mean–risk portfolio problem

Let R1, R2, . . . , Rn be random returns of assets 1, 2, . . . , n. We assume that the returns
have a discrete joint distribution with realizations rjt, t = 1, . . . , T , j = 1, . . . , n, attained
with probabilities pt, t = 1, 2, . . . , T . Our aim is to invest our capital in these assets
in order to obtain some desirable characteristics of the total return on the investment.
Denoting by x1, x2, . . . , xn the fractions of the initial capital invested in assets 1, 2, . . . , n
we can easily derive the formula for the total return:

(1) R(x) = R1x1 + R2x2 + . . . Rnxn.
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Clearly, the set of possible asset allocations can be defined as follows:

X = {x ∈ Rn : x1 + x2 + · · ·+ xn = 1, xj ≥ 0, j = 1, 2, . . . , n}.

Our analysis will not depend on the detailed way this set is defined; we shall only use
the fact that it is a convex polyhedron. So, in some applications one may introduce the
possibility of short positions , i.e., allow some xj’s to become negative. One can also limit
the exposure to particular assets or their groups, by imposing upper bounds on the xj’s
or on their partial sums. One can also limit the absolute differences between the xj’s and
some reference investments x̄j, which may represent the existing portfolio, etc. All these
modifications define some convex polyhedral feasible sets, and are, therefore, covered by
our approach.

With each portfolio allocation x we can associate the mean return

µ(x) = E[R(x)] =
n∑

j=1

T∑
t=1

rjtxjpt

and some risk measure ρ(x) representing the variability of the return R(x). At this
moment we may think of ρ(x) being the variance of the return, although later we shall
work with other risk measures which, as we shall argue, are superior to the variance.

The mean–risk portfolio optimization problem is formulated as follows:

(2)
max µ(x)− λρ(x)

subject to x ∈ X.

Here, λ is a nonnegative parameter representing our desirable exchange rate of mean for
risk. If λ = 0, the risk has no value and the problem reduces to the problem of maximizing
the mean. If λ > 0 we look for a compromise between the mean and the risk, at which
further improvements ∆ in the mean are associated with increases in the risk of at least
∆/λ, and a reduction δ of the risk cannot be achieved without decreasing the mean by
at least λδ. The results of the mean–risk analysis are usually depicted on the mean–risk
graph, as illustrated in Figure 1.

Artzner et al. introduced in [3] the concept of coherent risk measures by means of
several axioms. In our terminology their measures correspond to composite objectives of
the form −µ(x) + λρ(x).

3. Consistency with stochastic dominance

The concept of stochastic dominance is related to an axiomatic model of risk-averse
preferences [7]. It originated from the theory of majorization [12, 20] for the discrete case
and was later extended to general distributions [25, 10, 11, 27]. It is nowadays widely
used in economics and finance [4, 15].

In the stochastic dominance approach, random returns are compared by a point-wise
comparison of some performance functions constructed from their distribution functions.
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Figure 1. Mean–risk analysis. Portfolio x is better than portfolio y in the
mean–risk sense, but none of them is efficient.

For a real random variable V , its first performance function is defined as the right-
continuous cumulative distribution function of V :

FV (η) = P{V ≤ η} for η ∈ R.

A random return V is said [14, 25] to stochastically dominate another random return S
to the first order, denoted V �

FSD
S, if

FV (η) ≤ FS(η) for all η ∈ R.

The second performance function F (2) is given by areas below the distribution function F ,

(3) F
(2)
V (η) =

∫ η

−∞
FV (ξ) dξ for η ∈ R,

and defines the weak relation of the second-order stochastic dominance (SSD). That is,
random return V stochastically dominates S to the second order, denoted V �

SSD
S, if

(4) F
(2)
V (η) ≤ F

(2)
S (η) for all η ∈ R

(see [10, 11]). The corresponding strict dominance relations �
FSD

and �
SSD

are defined
in the usual way

(5) V � S ⇔ V � S and S 6� V.
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Figure 2. The expected shortfall function.

For portfolios, the random variables in question are the returns defined by (1). To avoid
placing the decision vector, x, in a subscript expression, we shall simply write

F (η; x) = FR(x)(η) and F (2)(η; x) = F
(2)
R(x)(η).

It will not lead to any confusion, we believe. Thus, we say that portfolio x dominates
portfolio y under the FSD rules, if F (η; x) ≤ F (η; y) for all η ∈ R, where at least one strict
inequality holds. Similarly, we say that x dominates y under the SSD rules (R(x) �

SSD

R(y)), if F (2)(η; x) ≤ F (2)(η; y) for all η ∈ R, with at least one inequality strict.
Stochastic dominance relations are of crucial importance for decision theory. It is known

that R(x) �
FSD

R(y) if and only if E[U(R(x))] ≥ E[U(R(y))] for any nondecreasing
function U(·) for which these expected values are finite. Also, R(x) �

SSD
R(y) if and only

if E[U(R(x))] ≥ E[U(R(y))] for every nondecreasing and concave U(·) for which these
expected values are finite (see, e.g., [15]).

For a set X of portfolios, a portfolio x ∈ X is called SSD-efficient (or FSD-efficient) in
X if there is no y ∈ X such that R(y) �

SSD
R(x) (or R(y) �

FSD
R(x)).

We shall focus our attention on the SSD relation, because of its consistency with risk-
averse preferences: if R(x) �

SSD
R(y), then portfolio x is preferred to y by all risk-

averse decision makers. By changing the order of integration we can express the function
F (2)(·; x) as the expected shortfall [22]: for each target value η we have

(6) F (2)(η; x) = E [max(η −R(x), 0)].

The function F (2)(·; x) is continuous, convex, nonnegative and nondecreasing. Its graph
is illustrated in Figure 2.

Our main concern is the following: may the mean–risk efficient frontier, as illustrated
in Figure 1, contain portfolios which are dominated in the SSD sense? It is unfortunately
true for the mean–risk model using the variance as the risk measure (see, e.g. [31]).

Following [22, 23], we introduce the following definition.
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Definition 1. The mean–risk model (µ, ρ) is consistent with SSD with coefficient α > 0,
if the following relation is true

R(x) �
SSD

R(y) ⇒ µ(x)− λρ(x) ≥ µ(y)− λρ(y)

for all 0 ≤ λ ≤ α.

In fact, as we shall see in the proof below, it is sufficient to have the above inequality
satisfied for α; its validity for all 0 ≤ λ ≤ α follows from that.

The concept of consistency turns out to be fruitful. In [22] we have proved the following
result.

Theorem 1. The mean–risk model in which the risk is defined as the absolute semidevi-
ation,

(7) δ̄(x) = E {max(µ(x)−R(x), 0)},

is consistent with the second-order stochastic dominance relation with coefficient 1.

We provide an easy alternative proof here.

Proof. First, it is clear from (6) that the line η − µ(x) is the asymptote of F (2)(η; x) for
η →∞. Therefore R(x) �

SSD
R(y) implies that

(8) µ(x) ≥ µ(y).

Secondly, setting η = µ(x) in (4) we obtain

δ̄(x) ≤ E [max(0, µ(x)−R(y))].

Since µ(x)− µ(y) ≥ 0, we have

max(0, µ(x)−R(y)) = max(0, µ(x)− µ(y) + µ(y)−R(y))

≤ µ(x)− µ(y) + max(0, µ(y)−R(y)).

Taking the expected value of both sides and combining with the preceding inequality we
get

δ̄(x) ≤ µ(x)− µ(y) + δ̄(y),

which can be rewritten as

(9) µ(x)− δ̄(x) ≥ µ(y)− δ̄(y).

Combining inequalities (8) and (9) with coefficients 1 − λ and λ, where λ ∈ [0, 1], we
obtain the required result. �

An identical result (under the condition of finite second moments) has been obtained in
[22] for the standard semideviation, and further extended in [23] to central semideviations
of higher orders and stochastic dominance relations of higher orders (see also [9]).

Elementary calculations show that for any distribution

δ̄(x) =
1

2
δ(x),
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where δ(x) is the mean absolute deviation from the mean:

(10) δ(x) = E |R(x)− µ(x)|.
Thus, δ(x) is a consistent risk measure with the coefficient α = 1

2
. The mean–absolute

deviation model has been introduced as a convenient linear programming mean–risk model
by Konno and Yamazaki [13].

Another useful class of risk measures can be obtained by using quantiles of the distri-
bution of the return R(x). Let qp(x) denote the p-th quantile1 of the distribution of the
return R(x), i.e.,

P[R(x) < qp(x)] ≤ p ≤ P[R(x) ≤ qp(x)].

We may define the risk measure

(11) ρp(x) = E
[
max

(1− p

p
(qp(x)−R(x)), R(x)− qp(x)

)]
.

In the special case of p = 1
2

the measure above represents the mean absolute deviation
from the median. For small p, deviations to the left of the p-th quantile are penalized in
a much more severe way than deviations to the right.

Although the p-th quantile qp(x) might not be uniquely defined, the risk measure ρp(x)
is a well defined quantity. Indeed, it is the optimal value of a certain optimization problem:

(12) ρp(x) = min
z

E
[
max

(1− p

p
(z −R(x)), R(x)− z

)]
.

It is well known that the optimizing z will be one of the p-th quantiles of R(x) (see,
e.g., [5]). In [24] we have proved the following result.

Theorem 2. The mean–risk model with the risk defined as ρp(x) is consistent with the
second-order stochastic dominance relation with coefficient 1, for all p ∈ (0, 1).

Again, we provide here an alternative proof.

Proof. Let us consider the composite objective in our mean–risk model (scaled by p):

(13) G(p; x) = pµ(x)− pρp(x).

If follows from (12) that we can represent it as an optimal value:

(14) G(p; x) = sup
z

[
pµ− E

[
max((1− p)(z −R(x)), p(R(x)− z))

]]
.

Clearly, we have the identity

max
(
(1− p)(z −R(x)), p(R(x)− z)

)
= max

(
0, z −R(x)

)
+ p(R(x)− z).

Using this in (14) we obtain

(15) G(p; x) = sup
z

[
pz − F (2)(z; x)

]
.

1In the financial literature, the quantity −qp(x)W , where W is the initial investment, is sometimes
called the Value at Risk.
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Figure 3. The absolute Lorenz curve.

Therefore, the function G(·; x) is the Fenchel conjugate of F (2)(·; x) (see [6, 26]). Conse-
quently, the second-order dominance R(x) �

SSD
R(y) implies that

G(p; x) ≥ G(p; y)

for all p ∈ [0, 1]. Recalling (13) we conclude that

µ(x)− ρp(x) ≥ µ(y)− ρp(y).

Since we also have (8), Definition 1 is satisfied with all λ ∈ [0, 1]. �

Interestingly, the function G(·; x) can also be expressed as the integral:

(16) G(p, x) =

∫ p

0

qα(x) dα

(non-uniqueness of the quantile does not matter here). Indeed, it follows from (15) that
the quantile qp(x), which is the maximizer in (15), is a subgradient of G(·, x) at p (see
[6, 26]). The integral in (16) is called the absolute Lorenz curve and is frequently used
(for nonnegative variables and in a normalized form) in income inequality studies (see
[2, 8, 16, 21, 24] and the references therein). It is illustrated in Figure 3.

4. Linear programming formulations

The second major advantage of the risk measures discussed in the previous section, in
addition to being consistent with second-order stochastic dominance, is the possibility of
formulating the models (2) as linear programming problems, if the underlying distributions
are discrete.
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Let us start from the risk measure defined as the expected absolute deviation from the
mean, as defined in (10). The resulting linear programming model takes on the form:

(17)

max v − λ
T∑

t=1

ptut

subject to v =
n∑

j=1

T∑
t=1

rjtptxj,

ut ≥
n∑

j=1

rjtxj − v,

ut ≥ v −
n∑

j=1

rjtxj,

x ∈ X,

in which the decision variables are xj, j = 1, . . . , n, v, and ut, t = 1, . . . , T . By construc-
tion, v is the mean portfolio return, and ut represents the absolute deviation of the return
from the mean for realization t.

It follows from Theorem 1 that for every λ ∈ (0, 1
2
) the set of optimal solutions of this

problem contains a portfolio which is nondominated in the SSD sense. So, if the solution
is unique, it is nondominated. If it is not unique, there may be another solution y of (17)
that dominates it, but it will have exactly the same values of the mean and the absolute
deviation: µ(y) = µ(x) and δ(y) = δ(x).

To prove it, suppose that the optimal portfolio x in the above model is dominated (in
the SSD sense) by another portfolio y. It follows from Theorem 1 that

µ(y)− βδ(y) ≥ µ(x)− βδ(x),

for all β ∈ [0, 1
2
]. For β = λ both sides must be equal, because x is the solution of (17).

Since λ ∈ (0, 1
2
), the above inequality must in fact be an equation for all β ∈ [0, 1

2
], and

the result follows.
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The model with weighted absolute deviations from the quantile can be formulated in a
similar way

(18)

max v − λ

T∑
t=1

ptut

subject to v =
n∑

j=1

T∑
t=1

rjtptxj,

ut ≥
n∑

j=1

rjtxj − z,

ut ≥
1− p

p

[
z −

n∑
j=1

rjtxj

]
,

x ∈ X,

in which the decision variables are xj, j = 1, . . . , n, v, ut, t = 1, . . . , T , and z. Indeed,
when x and v are fixed, the best value of z is the p-th quantile of R(x), as follows from

(12). Thus, the expression
∑T

t=1 ptut represents the risk measure ρp(x).
Again, Theorem 2 implies that for every λ ∈ (0, 1) the set of optimal solutions of this

problem contains a portfolio which is nondominated in the SSD sense. If the solution is
unique, it is nondominated. If it is not unique, there may be another solution y of (17)
that dominates it, but it will have exactly the same values of of the mean, and the average
deviation from the p-th quantile: µ(y) = µ(x) and ρp(y) = ρp(x). The argument that
supports this is the same as in the previous case.

5. The parametric method for constructing the efficient frontier

There are many variants of the simplex method for solving linear programming prob-
lems. Some are so-called two-phase methods in which a first phase is used to find a basic
feasible solution and a second phase then pivots from one basic feasible solution to an-
other until a basic optimal solution is found. Other, less known variants, are one-phase
methods. These methods proceed directly from a basic infeasible solution to a basic op-
timal solution without placing any particular emphasis on finding a first feasible solution
(of course, the optimal solution is required to be feasible).

A particular one-phase method of interest is the parametric self-dual simplex method—
see e.g. Chapter 7 of [29]. We describe this method in the context of a generic linear
programming problem:

(19)

max cT x

subject to Ax = b

x ≥ 0.
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Here, A is an m × n matrix—the dimensions of b, c, and x are determined accordingly.
First, we establish some standard notation one needs to define the simplex method. Con-
sider a partition of the variable indices {1, 2, . . . , n} into two sets: B and N . Variables
xj, j ∈ B, are called basic variables whereas those in N are called nonbasic. We permute
the columns of A so that the basic variables precede the nonbasic ones:

A =
[

B N
]
.

The x vector is permuted accordingly: x =
[

xB xN
]T

so that we can write

Ax = BxB + NxN .

If the matrix B is square (m × m) and nonsingular, then the basic variables can be
expressed as functions of the nonbasic ones:

xB = x̂B −B−1NxN ,

where

x̂B = B−1b

and the basic solution associated with this partition is obtained by setting xN = 0 and
reading off the corresponding values for the basic variables: xB = x̂B. If x̂B ≥ 0, the basic
solution is called primal feasible.

The function being maximized can also be expressed purely in terms of the nonbasic
variables:

cT x = cT
BxB + cT

NxN = ξ̂ − ẑT
NxN ,

where

ξ̂ = cT
BB−1b and ẑN = (B−1N)T cB − cN .

If ẑN ≥ 0, then we say that the basic solution is dual feasible. If a basic solution is both
primal and dual feasible, then it is optimal.

It is an easy task to find a partition for which B is square and nonsingular but generally
the associated solution will be neither primal nor dual feasible. Every variant of the
simplex method moves from one basic solution to another until an optimal solution is
found. With the parametric self-dual simplex method, one adds to the objective function
another auxillary function, which is linear in the original variables and which depends
linearly on a parameter λ. Similarly, one adds to the constraint constants another vector
of constants also depending linearly on the parameter λ. Given a basis partition, one then
has

cT x = ξ̂(λ)− (ẑN + λz̄N )T xN ,

and

xB = (x̂B + λx̄B)−B−1NxN ,

where ξ̂(λ) is some specific quadratic expression in λ. The auxillary objective function
and constraint constants are chosen with the following two properties:

(1) A basic optimal solution to the parametrized problem can be trivially identified
for some specific value, say λ0, (or interval of values) of the parameter.
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(2) The original problem coincides with the paramterized problem for some specific
value, say λ1, of the parameter.

When used as a method for solving general linear programming problems, the initial range
of parameter values for which a basic optimal solution is evident is usually taken to be an
interval of the form [λ0,∞) and λ1 is taken to be 0. For such a case, it is easy to determine
an appropriate auxillary objective function and appropriate constraint constants. Indeed,
it suffices to choose them so that z̄N > 0 and x̄B > 0. With such a choice, for λ sufficiently
large the initial basis satisfies the two conditions for optimality:

(20) x̂B + λx̄B ≥ 0 and ẑN + λz̄N ≥ 0.

Suppose for the sake of discussion that λ1 < λ0. The parametric self-dual method
works as follows. It begins by setting the parameter λ to λ0. The parameter is then
decreased as much as possible without violating optimality of the current basis. At the
point where λ cannot be further decreased without violating optimality of the current
basis, a simplex pivot is performed which allows one to further decrease λ. How one
determines the entering and leaving variables for the pivot depends on which inequality
in (20) blocks further reduction in λ.

Suppose that the blocking inequality is ẑj + λz̄j ≥ 0 for some j ∈ N . Then xj is the
entering variable and the leaving variable xi is determined by performing the usual ratio
test computed using the current blocked value of λ = −ẑj/z̄j:

i = argmin
i∈B

(B−1aj)i>0

x̂i + λx̄i

(B−1aj)i

,

where aj denotes the j-th column of A and (B−1aj)i is the element of the vector B−1aj

corresponding to the basic variable xi.
If, on the other hand, the blocking inequality comes from an inequality on the basic

indices then one does a dual pivot in exactly the manner dual to the primal pivot just
described.

One can check that for either type of pivot the new basic solution is optimal for an
interval of λ’s having the current value as its upper bound (as opposed to its being the
lower bound before the pivot). So, after the pivot, λ is again decreased as much as possible
until any further reduction would violate the optimality of the current basis. And again,
a simplex pivot (either primal or dual as needed) is used to allow further reduction in λ.
The method continues in this way until a basis is found whose λ-interval of optimality
covers λ1. At this point, λ is simply set equal to λ1 and the optimal solution to the
original problem is obtained.

Although the parametric self-dual simplex method is not widely used in current com-
mercial linear programming solvers, one can argue that it ought to be so employed as
it has many advantages. First of all, empirical studies indicate that, for nondegenerate
problems, this method takes roughly the same number of pivots to find an optimal so-
lution as the common two-phase methods ([29], Section 12.7). Furthermore, by simply
randomizing the auxillary objective function and constraint constants, one can guarantee
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that the method will never make any degenerate pivots. Hence, for degenerate problems,
the number of pivots of a so-randomized version of this algorithm can be vastly fewer
than what one obtains with other variants of the simplex method. Thirdly, this method
is more amenable than others to average-case performance analyses. In fact, Adler and
Meggido [1] made the first such average-case analysis back in the mid-80s and more re-
cently [29] (Section 12.6) shows that the algorithm can be expected to take, on average,
n/2 iterations.

The fourth, and for us the most important, advantage of the parametric self-dual sim-
plex method is that sometimes a parametric representation of the problem is inherent in
the original problem. This can be then exploited to great advantage. Such is the case in
computing points on the efficient frontier using either (17) or (18).

For both linear programming problems (17) and (18), the solution with λ = 0 is trivial:

put 100% into that security which has the highest expected return.

To find any specific point on the efficient frontier, say the point corresponding to λ = λ1,
one can start at λ = 0 and use the parametric self-dual simplex method to walk along
the efficient frontier to the point λ1. But, of course, in so doing we obtain not only
the solution to a single point on the efficient frontier but we also obtain, for free, the
solution to every frontier point in between. And, we can continue beyond λ1 and keep
going until λ = ∞. In so doing we obtain the entire efficient frontier with about the same
amount of computation as would otherwise have been used to determine a single point on
the frontier. In fact, every step of our parametric simplex method generates an efficient
solution.

The only technical issue that needs to be addressed is the identification of the basic and
nonbasic variables associated with the initial λ = 0 solution. Let us consider first (17).
Using the first constraint to eliminate v, introducing slack variables on the inequalities,
and assuming, purely for simplicity, that X = {x ≥ 0 : x1 + x2 + · · ·+ xn = 1}, we rewrite
the problem in the same form as (19):

(21)

max
n∑

j=1

T∑
t=1

rjtptxj − λ
T∑

t=1

ptut

subject to
n∑

j=1

(
rjt −

T∑
t′=1

rjt′pt′

)
xj − ut + s+

t = 0, t = 1, 2, . . . , T,

−
n∑

j=1

(
rjt −

T∑
t′=1

rjt′pt′

)
xj − ut + s−t = 0, t = 1, 2, . . . , T,

n∑
j=1

xj = 1,

xj ≥ 0, j = 1, 2, . . . , n,

ut, s
+
t , s−t ≥ 0, t = 1, 2, . . . , T.
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There are m = 2T +1 equality constraints. Hence, we must identify 2T +1 basic variables.
The remaining nonbasic variables must, of course, be zero. We use this fact to guide us
in determining which variables are basic and which are nonbasic in the initial solution.
Let j∗ denote a security with maximal expected return. We can write explicit formulas
for the all of the variables in the λ = 0 optimization problem:

xj =

{
1, j = j∗,
0, else,

ut =

∣∣∣∣∣rj∗t −
∑

t

rj∗tpt

∣∣∣∣∣ ,
s+

t = max

(
0,−rj∗t +

∑
t

rj∗tpt

)
,

s−t = max

(
0, rj∗t −

∑
t

rj∗tpt

)
.

One of the xj’s is positive, all of the ut’s are, and of the 2T slack variables T of them are
positive and T of them are zero. Hence, we have 2T + 1 variables that are positive—the
remaining are zero. Clearly, the positive variables are the basic variables and those that
are zero are nonbasic.

Now consider the analogous rewrite of (18). If we assume that all of the rjt’s are
nonnegative (which is the case if one understands these numbers in the sense that a 3%
return is represented as 1.03), then the p-th quantile z will also be nonnegative and we
can rewrite (18) as follows:

(22)

max
n∑

j=1

T∑
t=1

rjtptxj − λ
T∑

t=1

ptut

subject to

(
n∑

j=1

rjtxj − z

)
− ut + s+

t = 0, t = 1, 2, . . . , T,

−(1− p)

(
n∑

j=1

rjtxj − z

)
− put + s−t = 0, t = 1, 2, . . . , T,

n∑
j=1

xj = 1,

xj ≥ 0, j = 1, 2, . . . , n,

ut, s
+
t , s−t ≥ 0, t = 1, 2, . . . , T,

z ≥ 0.
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As before, the λ = 0 solution is easy to write:

xj =

{
1, j = j∗,
0, else,

z = rj∗t∗ ,

ut = |rj∗t − rj∗t∗| ,
s+

t = max(0,−rj∗t + rj∗t∗),

s−t = max(0, rj∗t − rj∗t∗),

where t∗ denotes the sample-space index for which Rj∗ attains its p-th quantile. Again,
we must identify 2T + 1 basic variables, but this time we have one more variable, z, and
this variable is itself nonzero and hence basic. Regarding the ut’s, s+

t ’s, and s−t ’s, the
situation is almost the same as before, the only difference being that all of these vanish
at t∗. Hence, we have only 2T variables that must be declared basic and three choices
for the final basic variable: either ut∗ , s+

t∗ , or s−t∗ . This ambiguity can be resolved in any
convenient way. That is, all three choices provide a nonsingular basis matrix B.

For p = 1, it is easy to find the optimal solution. Indeed, for p = 1, the slacked
constraints in (22) simplify to the following:(

n∑
j=1

rjtxj − z

)
≤ ut, t = 1, 2, . . . , T,

ut ≥ 0, t = 1, 2, . . . , T.

The optimization is over the xj’s, the ut’s, and z. We can view this maximization as first
a maximization over the ut’s and z for fixed xj’s followed by maximization over the xj’s:

max
x,u,z

n∑
j=1

T∑
t=1

rjtptxj − λ
T∑

t=1

ptut = max
x

max
u,z

(
n∑

j=1

T∑
t=1

rjtptxj − λ
T∑

t=1

ptut

)

= max
x

(
n∑

j=1

T∑
t=1

rjtptxj − λ min
u,z

T∑
t=1

ptut

)
.

The inner minimization over the ut’s and z is solved by setting z = maxt

∑
j rjt and ut ≡ 0.

Hence, the outer maximization becomes simply a maximization of expected return; the
risk term vanishes. An alternative way to see that the risk vanishes is to appeal directly
to the definition of ρp(x) in (11) with p = 1. In this case, we get

ρ1(x) = E
[
max

(
0, R(x)− q1(x)

)]
= 0.

The optimal solution is therefore, as before, obtained by placing the entire portfolio into
the security with the greatest expected return.



16 ANDRZEJ RUSZCZYŃSKI AND ROBERT J. VANDERBEI

The optimal solution can also be easily identified for p = 0 and for one particular value
of λ, namely λ = 1. Again, appealing to (11), we see that

ρ0(x) = E
[
max

(
−∞, R(x)− q0(x)

)]
= ER(x)− q0(x).

Hence, the objective function is

µ(x)− λρ0(x) = (1− λ)ER(x) + λq0(x).

For λ = 1, the expected return term drops out and the problem simplifies to solving simply
for the portfolio that maximizes q0(x). This portfolio consists of just one security—the
one which maximizes its lowest return, as the min-max model of [32].

6. Numerical illustration

Using a data file consisting of daily return data for 719 securities from January 1, 1990
to March 18, 2002 (T = 3080), we computed the entire efficient frontier using both the
deviation-from-mean (Figure 4) and the deviation-from-quantile (Figure 5) risk measures.
For the deviation from quantile case, we used the p = 0.05 quantile. The clustered marks
in each graph represent mean–risk characteristics of individual securities.

Although we don’t show it here, we also computed the efficient frontier for the deviation
from median risk measure (i.e, p = 0.5). Normally, one would expect the deviation-from-
median measure to be superior to the deviation-from-mean measure for two reasons: (i)
medians are more robust estimators as evidenced by their fundamental role in nonpara-
metric statistics and (ii) the deviation from median provides stochastically nondomi-
nated portfolios for 0 ≤ λ ≤ 1 whereas for deviation from the mean the interval is only
0 ≤ λ ≤ 1/2. However, the data set at hand, and perhaps it is true for this type of data in
general, does not contain significant outliers that would skew the results obtained using
the mean measure. Furthermore, most portfolios fall in the range 0 ≤ λ ≤ 1/2 so not
much is lost by stopping here. Hence, these two efficient fromtiers, while containing dif-
ferent portfolios, look very similar in the usual risk-reward plots such as shown in Figure
4.

6.1. Deviation from the mean. For the deviation from the mean, the efficient frontier
consists of 23509 distinct nondominated portfolios. At the risky extreme, the first portfolio
consists of putting 100% into the highest return security. Other high-risk portfolios consist
of mixtures of only a few high return securities. As λ increases, the portfolios get more
complicated as they incorporate more and more hedging. The most risk averse portfolio
contains a mixture of 80 securities—this represents a typical size for a portfolio at the
highly-hedged risk-averse end of the efficient frontier. All portfolios corresponding to
λ ∈ [0, 1

2
) are nondominated in the second-order stochastic dominance sense, because

each of them is the unique solution for some values of λ. There are 18901 such portfolios
and they cover almost the entire efficient frontier displayed in Figure 4.

As we can see from the figure, dramatic improvements in the mean and in the risk are
possible, in comparison to the individual securities.
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mean

Figure 4. The efficient frontier for the deviation-from-mean risk measure.
The dashed portion of the frontier represents stochastically nondominated
portfolios (λ ≤ 1/2) whereas the small solid portion in the lower left corner
corresponds to λ > 1/2.

The entire frontier was computed in 1 hour and 46 minutes of cpu time on a Windows
2000 laptop computer having a 1.2 MHz clock. To put this into context, we note that it
took an analogous code (i.e., a code built from the same linear algebra subroutines) that
implements the usual two-phased simplex method about one and a half hours to compute
a single portfolio on the efficient frontier.

6.2. Deviation from the quantile. For the deviation from the 0.05-quantile, the effi-
cient frontier consists of 5127 distinct nondominated portfolios and was computed in 18
minutes of cpu time. As with the deviation-from-mean case, risky portfolios contain only
a few securities whereas risk-averse portfolios are richer in content. For example, the most
risk-averse portfolio consists of 52 securities. All portfolios corresponding to λ ∈ [0, 1) are
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Figure 5. The efficient frontier for the deviation-from-quantile risk mea-
sure using the p = 0.05 quantile. The dashed portion of the frontier rep-
resents stochastically nondominated portfolios (λ ≤ 1) whereas the small
solid portion in the lower left corner corresponds to λ > 1.

nondominated in the second-order stochastic dominance sense. There are 4770 of them
and they cover almost the entire efficient frontier displayed in Figure 5.

When the risk is measured by the weighted deviation from the 0.05-quantile, the devi-
ations to the left of it are penalized about 20 times more strongly than the deviations to
the right. Improving the shape of the left tail of the distribution has therefore an even
more dramatic effect on the risk measure than in the deviation-from-mean case.
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