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1. Introduction

Dirichlet branes [1] in string theory are quantum BPS solitons that are coupled min-

imally to the Ramond-Ramond (RR) gauge fields. In unraveling nonperturbative aspects

of string theories, it has been essential to understand spectra of D-brane bound states.

For example, strongly coupled Type IIA string and partonic description via M(atrix) the-

ory relies heavily on the existence of threshold bound state of D zero-branes for arbitrary

charge. Likewise, conifold transitions in Type II strings compactified on Calabi-Yau three-

fold assumes no threshold bound state for wrapped two-branes and three-branes near the

the singularity. (Non)existence of either types of bound states are extensively studied

[2]. A more nontrivial class of D-brane bound states are those of non-threshold type, for

which binding effect has to be properly taken into account. The most interesting one of

this kind arises in Type IIB string theory. The ten-dimensional Type IIB string theory

exhibits SL(2,Z) S-duality symmetry [3]. There are two types of rank-two antisymmetric

tensor potentials, one B
(NS)
MN from NS-NS sector and another B

(RR)
MN from Ramond-Ramond

sector. Fundamental string (F-string) and D-string are electric sources that couples min-

imally to the two tensor potentials respectively. Under the SL(2,Z) S-duality, the pair

of antisymmetric tensor potential as well as pair of the F- and the D-strings transform

as doublets. The SL(2,Z) S-duality predicts existence of infinite orbits of (m,n) strings

carrying NS-NS charge m and RR charge n, with m and n relatively prime [4]. The (m,n)

strings are BPS configurations annihilated by sixteen supercharges and have a tension

T(m,n) = T

√

m2 +
n2

g2IIB
. (1.1)

Here, T ≡ 1/2πα′ is the F-string tension and gIIB denotes Type IIB string coupling pa-

rameter. Investigation of the (m,n) string bound states so far has been focused mainly

on kinematical aspects such as spectra and degeneracy. Many interesting dynamical issues

such as formation/dissociation of the bound states, recoil and radiation and conformal

field theory of (m,n) string collective coordinates are largely unexplored.

In this paper, we initiate systematic study of D-brane dynamics and study formation

of (m,n) string bound state and subsequent conversion of the released binding energy into

local recoil. Consider a macroscopic F-string of charge (m, 0) approaching a macroscopic

D-string of charge (0, n) at arbitrarily slow relative velocity. Once their wave functions

overlap, the F-string can fuse inside the D-string worldsheet by converting itself into ho-

mogeneous electric flux. The conversion is nothing but stringy Higgs mechanism [5] of

B
(NS)
MN field mediated via Cremmer-Scherk coupling [6] present in the Dirac-Born-Infeld
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(DBI) worldsheet action of D-string. In section 2, we calculate inclusive absorption cross

section of F-string by D-string and show that the cross section is of order gIIB in the limit

m ≫ n but of order g2IIB for finite m, n. Once the (m,n) bound state string is formed,

binding energy has to be either released via radiation of closed string states or converted

into internal excitations via local recoil of the string. In string perturbation theory, such

information is encoded in the higher order contributions to the cross section. Restricting

to the former limit m≫ n, in section 3, we argue that the dominant higher order correc-

tions come from local recoil of bound state string rather than radiation of closed string

states. In section 4, based on the observation of section 3, we calculate leading order cor-

rection (annulus diagram) to the absorption cross section. We show explicitly that rigid

recoil effect is suppressed in the kinematical regime considered but internal excitation via

local recoil deformation is nonvaninshing and provides subleading correction to the total

absorption cross section. In section 5, we conclude with implications of the result to other

p− (p+2) D-brane nonthreshold bound states that are related to the (m,n) string bound

state by a series of S- and T-dualities.

2. Inclusive Absorption Cross Section of Macroscopic F-String

Consider Type IIB string theory compactified on a circle, say, X9 direction of radius

R. L = 2πR is the period in X9 direction. We will take R ≫
√
α′ so that strings

wrapped on it are macroscopic. Arrange F-string with winding number m and D-string

with winding number n, m,n ≫ 1 around the X9 circle. To calculate absorption cross

section of the F-string by D-string (or vice versa), we bring the F-string adiabatically

to the D-string. For example, we let the F-string approach the D-string with arbitrarily

small velocity, v ≪ 1. As the details of final states are not of direct interest to us, we

consider inclusive absorption cross section, hence, total bound state formation rate. By

unitarity and optical theorem, the inclusive cross section is related to the forward Compton

scattering amplitude. The full process can then be visualized as follows: the winding F-

string meets the D-string target, split by fusing into the D-string worldsheet and then

rejoin back to the winding F-string. The leading order parton diagram associated with

this forward Compton scattering amplitude is then given by two Type IIB winding string

vertex operators on a disk diagram with Dirichlet boundary condition. (A closely related

disk amplitude but with Neumann boundary condition has been considered previously [7]

in the context of decaying macroscopic bosonic string. )

The ground state configuration of a winding F-string comes from the massless modes

in the original uncompactified theory, hence, it is characterized by a polarization vector
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ǫµν . Momentum quantum number of the winding F-string measured in the rest frame of

the winding D-string is then given by

pR = (E,mR/α′,p⊥), pL = (E,−mR/α′,p⊥),

E2 − p2
⊥ = (mR)2/α′2.

(2.1)

pR and pL are the usual right-moving and left-moving momenta which appear in the zero-

mode part of X(z, z). Define two (dimensionless) kinematic invariants

s ≡ α′p2‖ = −α′E2 = −[(mR)2/α′ + α′ p2
⊥]

t ≡ α′

2
p1 · p2.

(2.2)

The invariant t is defined out of incoming (p1) and outgoing (p2) momenta. Since we are

interested in the forward scattering limit, we will take t → 0 in the end. Note also that

s≫ 1 for m≫ 1.

The forward Compton scattering disk amplitude is given by

AD2
= n(2π2T1L)

(

κ

2πα′
√
L

)2
∫

D2

d2z1d
2z2

VCKV
〈V †

−1(z1, z1)V0(z2, z2)〉D2
. (2.3)

The notation is as follows: T1 is the D-string tension and κ is the 10-dimensional gravita-

tional coupling. The normalization constant κ/2πα′ is for the massless closed string vertex

operators. The normalization constant for the disk vacuum amplitude, 2π2T1, depends on

the convention for conformal killing volume. We use the infinitesimal form of the standard

representation of SL(2,R) on upper half plane, δz = α+ βz + γz2, where α, β and γ are

real. We replace three real integrals into integrals over (α, β, γ), compute an appropriate

Jacobian and drop the (α, β, γ) integral. The factors of L in (2.3) are inserted to account for

the compact direction volume. As such the amplitude is proportional to the Kaluza-Klein

zero-brane tension and the gravitational coupling in compactified 9-dimensional Type II

string. From the point of view of 9-dimensional Type II string theory, the process under

consideration is interpreted as scattering a massive particle of mass M = mR/α′ off a

fixed zero-brane target.

The winding string state is described by vertex operators V−1 and V0 in -1 and 0 ghost

number picture. In ten-dimensional notation they are given by

V−1(z1, z1) = ǫµν : V µ
−1(p1, z1) :: V

ν

−1(p1, z1) :

V0(z2, z2) = ǫµν : V µ
0 (p2, z2) :: V

ν

0(p2, z2) :,
(2.4)
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where
V µ
−1(p, z) = e−φ(z)ψµ(z) eip·X(z)

V µ
0 (p, z) = (∂Xµ(z) + ip · ψ(z)ψµ(z)) eip·X(z).

(2.5)

When considering scattering off D-p-branes, it is useful to use doubling method

[10][11]and replace X
µ
(z) and ψ

µ
(z) by Dµ

νX
ν(z) and Dµ

νψ
ν(z). The tensor Dµ

ν is de-

fined as Dµ
ν ≡ diag(1, · · · , 1,−1, · · · ,−1), where the first p + 1 entries are 1. The bosonic

and fermionic propagators are given by

〈Xµ(z)Xν(w)〉 = −α
′

2
ηµν log(z − w)

〈ψµ(z)ψν(w)〉 = −α
′

2
ηµν

1

z − w

(2.6)

Using the above propagators, it is straightfoward to evaluate the forward Compton scatter-

ing amplitude. Closely related scattering amplitudes have been studied extensively already

[10][11]. Keeping track of normalization factors carefully, we obtain

AD2
=
nT1κ

2

8

Γ(t)Γ(s)

Γ(1 + s+ t)
(sa1 − ta2) (2.7)

a1 and a2 are complicated kinematic factors. For our purposes, it is enough to note that

a1 = s · Tr(ǫ · ǫ†) plus terms that vanish in the forward scattering limit, t→ 0. Moreover,

Tr(ǫ · ǫ†) = 1 for the polarization tensor normalization adopted above.

In the limit s ≫ 1 and t → 0, we can Taylor expand the amplitude in t and use

Stirling’s formula for Γ(s). Recall also that Γ(t) → 1/t as t → 0. In this approximation,

the amplitude simplifies to

AD2
≈ nT1κ

2

8

(

− s ln s+
s

t

)

+ regular. (2.8)

The t-channel pole comes from the dilaton and graviton tadpoles and is irrelavant.

The imaginary part of A comes from the branch cut:

Im(AD2
) =

πnT1κ
2s

8
(2.9)

.

The optical theorem relates Im(A) to the total absorption cross section in the following

way:

σabsorp =
2 Im(AD2

)

2E|v⊥|
=
πnT1κ

2

8|p⊥|

(

(mR)2

α′
+ α′ p2

⊥

)

, (2.10)
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where the denominator takes into account the flux of the F-string in the standard relativis-

tic normalization for one particle state. Finally, we express (2.10) in terms of dimensionless

string coupling gs:

σabsorp =
4gsπ

7α′3n

|p⊥|

(

(mR)2

α′
+ α′ p2

⊥

)

, (2.11)

using the following well-known relations [1]

Tpκ =
√
π(2π

√
α′)3−p, κ = 8π

7
2α′2gs. (2.12)

A remark is in order. For a fundamental string with a finite length, m = finite, the

forward Compton scattering disk amplitude exhibits poles associated with one particle

intermediate states only in the complex momentum plane. As such, the absorption cross

section vanishes identically. For a macroscopically long fundamental string m ≫ 1, how-

ever, the infinitely many one particle state poles collapse down densely along a real axis and

creates a branch cut effectively. The inclusive absorption cross section we have calculated

is precisely in this limit. In fact, the fact that the absorption cross section is O(gs) can be

understood alternatively from the absolute value square of transition amplitude mediated

by Cremmer-Scherk coupling between B
(NS)
MN and DBI gauge field strength FMN .

3. Higher Order Corrections and Local Recoil Deformation

As we have emphasized repeatedly, the leading order absorption cross section of the

previous section is exact only in the limit m → ∞. However, simple kinematical consid-

eration shows that the binding energy left out upon formation of non-threshold bound

state out of F-string and D-string scattering state should be converted into other forms

appropriately. From the same kinematical consideration, it is straightforward to see that

the binding energy is converted either into internal excitation of bound state (m,n) string

or release away by radiation of massless modes such as graviton, dilaton or NS-NS and RR

antisymmetric tensor fields.

In this section, using SL(2,Z) S-duality of Type IIB string, we argue that the domi-

nant channel of binding energy release is into internal excitation of the bound state (m,n)

string. A similar argument in related context has been given by Verlinde [12] recently and

we adopt some of his arguments gratefully in out context. As in section 2, we consider

the limit m ≫ n and, moreover, take n = 1 for simplicity. This combination of F- and

D-strings is SL(2,Z) dual to a combination of a F-string and m D-strings, hence, we first

focus on the dynamics of the latter.
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In the large m limit, the dynamics of m D-string is described by (1+1)-dimensional

N = 8 supersymmetric gauge theory with gauge group U(m). The worldsheet Lagrangian

is given by

S =

∫

d2xTr
[ 1

4g2YM

F 2
αβ + (DαX

i)2 − g2YM

4
[Xi,Xj]2

]

. (3.1)

The Xi (i = 1, · · · , 8) are eight transverse coordinates of the D-string in the light-cone

gauge. The disk amplitude can then be viewed as a Wilson loop average of the D-string.

At a fixed string coupling, higher order interactions modifies the worldsheet topology by

creating many handles and holes. They are just fishnets of Feynman diagrams associated

with the above U(m) supersymmetric gauge theory. By the ‘t Hooft power counting in the

large m limit, planar diagrams will dominate, viz. disk diagram with handles attached on

it are suppressed compared to that with holes only.
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�������������
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�������������
�������������
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�������������

(a) Tree level disk diagram (b) Disk with many holes

Fig. 1: Planar diagram with many holes

We now apply SL(2,Z) S-duality and reinterpret the above (1+1)-dimensional N = 8

supersymmetric gauge theory with gauge group U(m) as a M(atrix) theory description of

m multiply winding Type IIB F-string. In this case, the strong coupling limit of gauge

theory corresponds to weakly coupled Type IIB string theory, the limit we have assumed

in the absorption cross section calculation in section 2. To see this, consider the large m

limit at a fixed string coupling. The bound state string tension (1.1) is then approximated

as3

T(m,1) =
1

α′

√

m2 +
1

g2IIB
≈ m

α′
+

(1/g2IIBα
′)

2m
. (3.2)

In the M(atrix) string theory picture, the second term is the energy density associated

with electric flux E/L = g2YM/2N and is interpreted as contribution of D-string. We thus

3 In this section and ref. [12], α′ denotes 2π times what we usually call α′
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obtain the identification

g2IIBα
′ =

1

g2YM

. (3.3)

Note that the D-string tension has been ‘renormalized’ by a factor 2mgIIB.

The large-m argument for the dominance of planar diagrams, viz. disk amplitude in

which many holes are nucleated but not handles should then hold in the SL(2,Z) S-dual

description as well. Applying this to the problem we are interested in, any higher order

corrections in string loop expansion to the forward Compton scattering disk amplitude are

dominated by holes rather than handles on it. From this observation follows the first of

our claim: in the large m limit the release of binding energy into radiation of Type IIB

closed string massless modes is completely suppressed. What about the planar diagram

contributions? The boundaries of holes are all with boundary interactions

Sboundary =

∮

dσ [Aα(X
0, X1)∂σX

α + Φi(X
0, X1)∂τX

i]. (3.4)

They represent gauge field fluctuation on the worldsheet and collective coordinate fluctu-

ation of the transverse light-cone coordinates [13]. As such, imaginary part of the forward

Compton scattering amplitude comes from various corners of moduli space of the holes.

Physically, these degeneration limit is represented by disk amplitude with lower numbers

of holes and insertion of vertex operators representing gauge field fluctuation and local

recoil of D-string trajectory. This is intuitively transparent. Overall rigid recoil of the

(m, 1) string bound state is not possible as is easily seen from simple kinematical consid-

eration. On the other hand, the bound state can support internal excitations in the form

of local recoil of each bound state string bit. The local recoil is quite complicated, hence,

exclusive absorption cross section would be technically far more involved to calculate. On

the other hand, the inclusive absorption cross section we study in this paper is summed

over all phase space, hence, can be straightforwardly calculated from the forward Compton

scattering amplitude.

From the SL(2,Z) S-dual point of view, the large m limit corresponds to the limit

in which the DBI field strength approaches the maximal value F01 = 1/α′. Physically

this means that, once the Type IIB string is splitted on the D-string worldsheet, the two

oppositely charged ends are pulled apart very far away from each other. In other words,

actual Type IIB worldsheet is stretched to a macroscopic size compared to typical string

scale α′. In turn, the Type IIB string tension is effectively reduced by a large factor,

leading to a new effective tension Teff = 1/(2mgIIBα
′) [12].

With the above intuitive understanding of the absorption processs, in the next section,

we compute the leading order perturbative correction to the absorption cross section we

have calculated in section 2.
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4. Leading Order Perturbative Corrections

In the previous section, we have argued that the worldsheet picture of fused fundamen-

tal string into D-string is a creation of infinitely many holes, viz. fishnet of planar Feynman

diagrams from the M(atrix) gauge theory point of view. In this section, we calculate ex-

plicitly the leading order correction to the absorption cross section in string perturbation

expansions and draw two important conclusions. First, we will show that the rigid recoil

effect is completely suppressed in the kinematical regime under consideration. This fol-

lows from the fact that logarithmic infrared divergence arising from exchange of massless

Dirichlet open string states (Bloch-Nordsieck processes) is kinematically suppressed and

vanishes individually. Second, we find there are finite corrections of O(g2st) to the inclusive

absorption cross section. These are effects associated with local recoil deformation of the

F- and D-string bound state.

The next-leading order process in string perturbation expansion is given by an annu-

lus diagram with insertion of two winding F-string vertex operators. We pay particular

attention to possible infrared logarithmic divergences (Bloch-Nordsiek divergences) as well

as finite contributions. Throughout this section we set α′ = 2.

z

x

τ

0 1

y

z

y

0 1/2 1
x

-w 1-ww

Σ

z’

y’

0 L/2

Σ’

x’

(b) Annulus(a) Torus (c) Modular transformed annulus

Fig. 2: The world sheet coordinate for torus and annulus

4.1. Correlators on Annulus

The annulus diagram amplitude is conveniently evaluated from Z2 involution of torus

diagram amplitude. On torus, we introduce standard coordinates with a flat metric z =

x+ iy and complex structure modulus τ characterizing the parallelogram. The coordinate

system is depicted in Fig. 2. In the following, z1 = x1 + iy1 and z2 = x2 + iy2 will denote

the positions of the closed string vertices. For notational convenience, we will sometimes
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use (z, w) in place of (z1, z2). Similarly, we will use (p, q) and (p1, p2) interchangebly for

the momenta of the closed strings.

The propagator on a torus may be obtained by the method of images. After regular-

izing the infinite image charge sum, one finds

GT (z, w|τ) = − log

∣

∣

∣

∣

θ1(z − w|τ)
θ′1(0|τ)

∣

∣

∣

∣

2

+
2π

τ2
(Im(z − w))2. (4.1)

The first term gives rise to the correct short-distance singularity (GT → − log |z − w|2 as

z − w → 0) and is periodic in z − w → z − w + 1. The second term is needed to ensure

periodicity in z − w → z − w + τ and flux conservation.

In order to go to an annulus, we introduce a new coordinate σ, such that z = σ1+τσ2.

An annulus is obtained by projecting world sheet fields under the mapping σ1 → 1− σ1,

σ2 → σ2. Clearly, the distance between two points on the world sheet is invariant if and

only if Re(τ) = 0 and so we can set τ = iT for a real number T . After the projection, the

annulus world sheet (Σ) is parametrized by z = x+ iy, where 0 ≤ x ≤ 1
2 and 0 ≤ y ≤ T .

Note that, unlike the torus, the annulus does not have modular invariance as τ → −1/τ

and T ranges from 0 to ∞.

We can impose the boundary conditions on the propagator again by the method

of images. Neuman and Dirichlet propagators correspond to even and odd projections,

respectively, under the mapping mentioned above,

GN (z, w|T ) = GT (z, w|iT ) +GT (z,−w|iT )
GD(z, w|T ) = GT (z, w|iT )−GT (z,−w|iT ).

(4.2)

An image charge at −w enforces the boundary condition at x = 0. By the periodicity

of GT on the torus, the same image charge is placed at 1 − w, which imposes the same

boundary condition at x = 1
2 .

A final remark is in order. In the presence of world sheet boundaries, the self contrac-

tion of X(z, z) and ψ(z, z) give non-zero contributions. In the case of the annulus diagram,

the self contraction is

Gs(z|T ) = ∓ log

∣

∣

∣

∣

θ1(z + z|iT )
θ′1(0|iT )

∣

∣

∣

∣

, (4.3)

where minus and plus signs correspond to Neuman and Dirichlet boundary condition re-

spectively.
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4.2. Annulus Diagram for Forward Compton Scattering

Calculation of the forward Compton scattering on the annulus diagram proceeds es-

sentially the same as on the disk diagram. In contracting the two F-string winding vertex

operators, the only role played by the correlators of ∂X and ψ is to determine kinematic

factors, as is explicitly shown, for example, in [14]. The integrand of the final expression

contain only the zero-mode contributions of the partition function and the correlators of

the exponential factors, exp(ik ·X). Using the propagators and the self-contraction given

in the previous sub-section, one obtains

〈eip·X(z,z)eiq·X(w,w)〉
= exp[−p‖ · q‖GN (z, w)− p⊥ · q⊥GD(z, w)− (p2‖ − p2⊥)Gs(z)− (q2‖ − q2⊥)Gs(w)]

= exp[−t{GT (z, w)−GT (z,−w)}+ s{GT (z,−w)−Gs(z)−Gs(w)}]

=

∣

∣

∣

∣

〈12〉〈12〉
〈12〉〈12〉

∣

∣

∣

∣

t ∣
∣

∣

∣

〈11〉〈22〉
〈12〉〈12〉

∣

∣

∣

∣

s

exp
[

− π

2T
s(z − z − w + w)2

]

,

(4.4)

where we have defined 〈ij〉 = |θ1(zi − zj |iT )| and 〈ij〉 = |θ1(zi + zj |iT )|.
Using these results, we have found that the forward Compton scattering amplitude

on an annulus diagram is given by

AC2
= iA0K

∞
∫

0

dT

T
T−(p+1)/2

∫

Σ

d4z

∣

∣

∣

∣

〈12〉〈12〉
〈12〉〈12〉

∣

∣

∣

∣

t ∣
∣

∣

∣

〈11〉〈22〉
〈12〉〈12〉

∣

∣

∣

∣

s

e
2π
T

s(y1−y2)
2

, (4.5)

where A0 is a normalization constant defined as

A0 ≡ n2(8π2α′)−
p+1

2 L

(

κ

2π
√
L

)2

(4.6)

and K = sa1−ta2 is the same kinematic factor as in the disk diagram. The measure for the

modulus integral is dT/T . The factor T−(p+1)/2 comes from the integration of normalized

zero-modes in Neuman directions.

Conformal Killing symmetry is modded out by fixing one of the y coordinates, drop-

ping the integral and multiplying the integrand by T . We choose to set y1 = 0 and let

y ≡ y2 vary from −T/2 to T/2.

4.3. Bloch-Nordsieck Infrared Divergence at T → ∞

The above annulus amplitude (4.5) contains an infrared divergence. The divergence is

due to propagation of massless open string states, viz. recoil vertex operators in T → ∞.

10



λ

1-1

ρ

0
-T/2

(a)

z

1/2

T/2

0

(c)(b)

Fig. 3: T → ∞ limit is a disk with a long, thin strip attached.

In order to understand the physics behind the divergence, it is convenient to perform the

follwing conformal mappings

ρ = exp(2πiz) λ =
ρ− 1

ρ+ 1
. (4.7)

as depicted in the following figure.

The conformal λ-plane in Fig. 3(c) is the upper half plane, which is equivalent to a disk

with two small semicircles removed and identified. As T goes to infinity, the semicircles

shrink to points on the boundary. As discussed above, this is the limit in which the an-

nulus diagram factorizes into a disk diagram with Dirichlet open string states propagating

between the two points on the boundary[15].

(b) The factorization limit(a) An annulus diagram

Fig. 4: An annulus diagram and the factorization limit of it.

The T -variable is the proper time of propagating open string state and T -integral

gives rise to a propagator for each open string states. Clearly, zero momentum limit of

the massless open string state propagator will give rise to spacetime infrared divergence.

The zero momentum open string state is nothing but the translational zero mode of the

D-brane represented by the vertex operator Vo =
∮

∂nX
i. From the worldsheet point of
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view, the divergence is due to violation of conformal invariance due to shrinking annulus

open string tadpole.

The violation of conformal invariance is cured by taking into account of recoil of the D-

string [16][17]. Recoil of the D-string amounts to fluctuation of transverse position of the D-

string and is described by insertion of recoil vertex operator Vrecoil =
∮

Φi(X
0, X1)∂nX

i to

the disk diagram. The disk diagram with recoil vertex operator inserted is not conformally

invariant either. However, when summed over, the two different sources of violation of

conformal invariance cancel each other via Fischler-Susskind mechanism [18][19][13]. It is

in this way energy and momentum conservation for scattering process involving D-branes

is maintained.

Fortunately, in our case, all these complications disappear. This is because the inclu-

sive absorption cross section is related to the forward Compton scattering amplitude. As

such, there is no momentum transfer from the F-string to the D-string, hence, we expect

that the infrared divergence vanishes in this limit. Below, we will explicitly see that this

is indeed the case.

It is actually straightforward to separate the potential divergence from (4.5)using the

following product representation of the theta function:

θ1(z|iT ) = f(T ) sinπz

∞
∏

n=1

(1− 2e−2πnT cos 2πz + e−4πnT ). (4.8)

Since the integrand depends only on the ratio of theta functions, the prefactor f(T ) is

irrelavant. Moreover, for fixed positions of z1 and z2, the infinite product simply converges

to 1. Therefore, the leading order divergence of the annulus amplitude takes the following

simple form:

div(AC2
) = iA0K

∞
∫

1

dT

T
T−(p+1)/2 · T × 4I,

I ≡
∫

dx1dx2dy

∣

∣

∣

∣

sinπ(x1 − x2 + iy)

sinπ(x1 + x2 + iy)

∣

∣

∣

∣

2t [
sin 2πx1 sin 2πx2

| sinπ(x1 + x2 + iy)|2
]s

.

(4.9)

As before, we have kept the Dirichlet boundary directions arbitrary so that the dependence

of divergence on the D-brane dimension p can be read off. If we cut off the proper-time

integral at T = Λ, we find
√
Λ divergence for D-particle (p = 0), log Λ for D-string (p = 1)

and no divergence for p ≥ 2.

After straightforward calculation, one finds

I ∼ t
Γ(t)Γ(s)

Γ(1 + s+ t)
. (4.10)

We conclude that the coefficient of the divergence is the tree level amplitude times t, the

momentum-squared transferred to the D-string. Since we are taking t→ 0 in the end, we

conclude that there is no violation of conformal invariance, hence, no recoil of the D-string.
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4.4. Finite Corrections from Local Recoil Deformation

Having shown that there is no infinities associated with rigid recoil of the D-string, it

now remains to calculate finite corrections. In this subsection, we will find finite corrections

arising from the T ≥ 1 region. The T ≤ 1 region corresponds to a closed string emitted and

re-absorbed by the D-brane and is not relevant to our problem. We will continue neglecting

the infinite product in the theta functions, which amounts to neglecting all massive open

string modes.

In the previous sub-section, the analysis was simplified because (1) the integration

became an infinite strip, which was mapped to the upper half plane and (2) the integrand

of the z-integral converged. The finite corrections then come from (1) finiteness of the

integration region and (2) the deviation of the integrand from its limiting value. In the

following, we compute these two contributions. It turns out that both of them give same

result up to an overall constant and correspond to two open string branch cut.

Correction due to the finite length of the strip.

It is again easy to work in the upper half plane (Fig. 3(c)). Clearly, the integral (4.9)

over the two semicircles will give the correction. Since T ≥ 1, e−πT is always small and we

can use the approximation λ = i tan z2 = ±1 + reiθ, where 0 ≤ r ≤ e−πT and 0 ≤ θ ≤ π.

The other closed string vertex is fixed on the imaginary axis with coordinate b = tanx1.

Note also that the integrals over the two semicircles yield the same value. We have, to the

leading order in e−πT ,

2 · 1
2

∫

rdrdθdb

r2(1 + b2)

∣

∣

∣

∣

1− ib

1 + ib

∣

∣

∣

∣

2t [
4r sin θ · b
|1 + ib|2

]s

. (4.11)

After some algebra, we obtain

s

32π2
e−πsT

[

Γ(s)

Γ(1 + s/2)2

]2

. (4.12)

This particular combination of Γ-functions in the square bracket is exactly the one

found in the tree level amplitude for a closed string absorbed by the D-string and to excite

two massless open string modes [11]. Thus we recognize this correction as coming from

two open string branch cut. Integration over T produces a numerical constant, which we

do not compute.

Correction due to deviation of integrand from limiting value
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Rescale the y coordinate in (4.9) by y → yT/2 so that y ranges between −1 and +1.

The integrand becomes

T ×
[

coshπTy − cos 2π(x1 − x2)

coshπTy − cos 2π(x1 + x2)

]t
[

2 sin 2πx1 sin 2πx2e
1
2
πTy2

coshπTy − cos 2π(x1 + x2)

]s

. (4.13)

For a fixed value of y, the integrand converges to 0 as T → ∞ and non-zero contribution

comes from a domain |y| ≤ 1/T . For a large value of T, we have

[

4 sin 2πx1 sin 2πx2e
− 1

2
πT (2y−y2)

]

. (4.14)

The factorized x1,2 interals yields

(

1/2
∫

0

(2 sin 2πx)sdx
)2

=
[1

2
s

Γ(s)

Γ(1 + s/2)

]2

, (4.15)

the combination that appears in the tree level amplitude of a closed string absorbed by

the D-string and to excite two massless open string modes. This is again the two open

string branch cut. The remaining y and T integrals give rise to a numerical factor, which

we again do not compute.

We conclude that the leading order finite corrections come from exchange of two

open string massless states viz. gauge fields and translation zero-modes. The correction

corresponds to local recoil deformation of the F- and D-string bound state.

5. Discussions

In this paper, we have studied dynamics of bound state formation between funda-

mental and Dirichlet strings in Type IIB string theory. We have calculated total inclusive

absorption cross section via optical theorem from the forward Compton scattering am-

plitude of an F-string off a D-string target. We have found that the leading order disk

diagram gives cross section of order O(gs) and agrees with power counting from stringy

Higgs mechanism via Cremmer-Scherk coupling. Using M(atrix) string theory and SL(2,Z)

mapping, we have argued that higher order corrections come from disk diagram with ar-

bitrarily large number of holes and describes conversion of binding energy into local recoil

deformation. To check this, we have calculated explicitly leading order corrections from

annulus diagram and have found that rigid recoil of the bound state is absent and that

two open string state branch cut is present as expected.

14



By a series of S- and T-dualities, one can relate the (m,n) bound-state string to other

configurations of strings and branes. For example, T-duality in X7 and X8 directions

followed by S-duality turn the (m,n) string into m D-strings and n D-3-branes, which is

T-dual to any p− (p+2) bound states [20][21][22]. Additional T-duality in a direction not

parallel to coordinate axis give rise to branes intersecting at angles [23][24]. Early studies

of these brane configurations have been focused on their mass spectrum, degeneracy and

supersymmetry. Recently, there have been some progress in analyzing their dynamics by

using scattering of a D-0-brane [20] and low energy Born-Infeld action [21][25][22]. One

notable progress was made in Ref. [22], where it was shown that the condensate of tachyonic

modes of ND strings connecting p− and (p + 2)−branes account for the binding energy

predicted by the BPS formula. In spite of all the progress, the details of the dynamics of

non-threshold brane bound states, brane-anti-brane configuration and intersecting branes

are still poorly understood. We hope that our analysis will be useful in future investigations

on these issues.
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