

Computing PageRank in a Distr ibuted Internet Search System

Yuan Wang David J. DeWitt

Computer Sciences Department, University of Wisconsin - Madison
1210 W. Dayton St.
Madison, WI 53706

USA
{ yuanwang, dewitt} @cs.wisc.edu

Abstract

Existing Internet search engines use web
crawlers to download data from the Web. Page
quality is measured on central servers, where
user queries are also processed. This paper
argues that using crawlers has a list of
disadvantages. Most importantly, crawlers do not
scale. Even Google, the leading search engine,
indexes less than 1% of the entire Web. This
paper proposes a distributed search engine
framework, in which every web server answers
queries over its own data. Results from multiple
web servers will be merged to generate a ranked
hyperlink list on the submitting server. This
paper presents a series of algorithms that
compute PageRank in such framework. The
preliminary experiments on a real data set
demonstrate that the system achieves comparable
accuracy on PageRank vectors to Google’s well-
known PageRank algorithm and, therefore, high
quality of query results.

1. Introduction

Internet search engines, such as Google™, use web
crawlers (also called web robots, spiders, or wanderers) to
download data from the Web [3]. The crawled data is
stored on centralized servers, where it is parsed and
indexed. Most search engines employ certain
connectivity-based algorithms to measure the quality of
each individual page so that users will receive a ranked
page list for their queries. For instance, Google computes
PageRank [22] to evaluate the importance of pages. Thus,

the size of the crawled web data repository has two
impacts on the results of a query. First, more qualified
results may be found in a larger data set. Second, more
web pages will provide a bigger link graph which, in turn,
will result in a more accurate PageRank computation.

However, there are several limitations of using web
crawlers to collect data for search engines:

• Not Scalable. According to a survey [21]
released by Netcraft.com in February 2004, there
are more than 47 million web servers hosting the
contents in the Internet. Based on another study
[19] released by Lyman et al. in 2003, it was
estimated that the Web consisted of 8.9 billion
pages in the “surface web” (public available static
pages) and about 4,900 billion pages in the “deep
web” (specialized Web-accessible databases and
dynamic web sites) in year 20021! The numbers
have been growing even faster since. In
comparison, Google indexes “only” 4.3 billion
pages2. Even with a distributed crawling system
[3], it is still impossible to consider downloading
a large portion of the Web.

• Slow Update. Web crawlers are not capable of
providing up-to-date information in the Web
scale. For instance, it is estimated that Google
refreshes its data set once every two to four
weeks, with the exception of Google™ News,
which covers “only” 4,500 sources.

• Hidden (Deep) Web. It is very difficult, if not
impossible, for web crawlers to retrieve data that
is stored in a database system of a web site that
presents users with dynamically generated html
pages.

• Robot Exclusion Rule. Web crawlers are
expected to observe the robot exclusion protocol
[18], which advises crawlers not to visit certain

1 167 TB in surface web, 91,850 TB in deep web, 18.7
KB per page [19].
2 Claimed on http://www.google.com as of June 2004.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the VLDB copyright notice and the title of the publica-
tion and its date appear, and notice is given that copying is by permis-
sion of the Very Large Data Base Endowment. To copy otherwise, or to
republish, requires a fee and/or special permission from the Endowment
Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

420

directories or pages on a web server to avoid
heavy traffic. Nevertheless, the protocol does not
affect human beings surfing on the Internet. Thus,
the crawled data set is not “complete” and
conflicts with those connectivity-based page
quality measures, such as PageRank, which is
based on the “Random Surfer Model” [22]. Thus,
an incomplete data set may result in a loss of
accuracy in the PageRank computation.

• High Maintenance. It is difficult to write
efficient and robust web crawlers. It also requires
significant resources to test and maintain them
[3].

In fact, besides web crawlers, centralized Internet
search engine systems also face other challenges. A
successful search engine system requires a large data
cache with tens of thousands of processors to create
inverted text indices, to measure page quality, and to
execute user queries. Also, centralized systems are
vulnerable to point failures and network problems, and
thus must be replicated. For example, Google employs a
cluster of more than 15,000 PCs and replicates each of its
internal services across multiple machines and multiple
geographically distributed sites [1].

This paper proposes a distributed Internet search
engine framework that addresses the above problems.
With such a framework, there are no dedicated centralized
servers. Instead, every web server participates as an
individual search engine over its own (local) data so that
crawlers are no longer needed. User queries are processed
at related web servers and results will be merged at the
client side.

Since Google is by far the most utilized search engine,
The framework presented in this paper is based on
Google’s PageRank algorithm. This paper introduces a
series of variants of this algorithm that are used in the
system. The goal of this paper is to present an efficient
strategy to compute PageRank in a distributed environ-
ment without having all pages at a single location. The
approach employs of the following steps,

1. Local PageRank vectors are computed on each
web server individually in a distributed fashion.

2. The relative importance of different web servers is
measured by computing the ServerRank vector.

3. The Local PageRank vectors are then refined us-
ing the ServerRank vector. Query results on a web
server are rated by its Local PageRank vector.

This approach avoids computing the complete global
PageRank vector. (Consider the 4.3 billion pages indexed
by Google, the PageRank vector itself is 17 GB in size,
even without including the size of the web link graph.)
When a user query is executed by a web server, the result
is ranked by the server’s Local PageRank vector. As re-
sults from multiple servers are received by the server to

which the query was originally submitted, they are
merged and ranked by their Local PageRank values and
ServerRank values to produce the final result list.

A real web data set was collected and used to evaluate
the different PageRank algorithms. The preliminary
experiments demonstrate that the Local PageRank vectors
are very “close” to their corresponding segments in the
global PageRank vector computed using Google’s
PageRank algorithm. They also show that the query
results achieved are comparable in quality to those
obtained using the centralized Google Algorithm.

The remainder of the paper is organized as follows.
Section 2 describes the data set that is used throughout the
paper for PageRank computation and query execution.
The collection of algorithms is formulated in Section 3,
along with experiments for each step and evaluation of
Local PageRank and ServerRank vectors against the “ true
global” PageRank vector computed using the standard
Google’s PageRank algorithm. Section 4 presents more
query results and evaluation. Section 5 summarizes the
conclusions and discusses future research directions.

2. Experimental Setup

The following sections use some real web data to evaluate
the proposed distributed search engine scheme. Since the
authors do not have control over the web servers from
which the pages were collected, a local copy of the data
had to be made.

Since the scope of Internet search engines, such as
Google, is the entire Web, ideally, the experiments would
be conducted using all the data on the Web. This is
obviously impossible. What is needed is a relatively small
subset that resembles the Web as a whole. For the
experiments described in this paper, the authors crawled
over the Stanford.edu domain. The major characteristics
of the data set are:

• The crawl was performed in October 2003, start-
ing from “http://www.stanford.edu”, in the
breadth-first fashion as described by Najork and
Wiener [20], in an effort to obtain high-quality
pages.

• The crawl is limited to the stanford.edu domain
and all out-of-domain hyperlinks are removed.

• If the data set is viewed as a breadth-first search
tree, it has 8 levels of pages and thus, 9 levels of
URLs3.

• In the raw data set (15.8 GB), there are 1,168,140
unique pages. Since the experiments only
performed PageRank computation and title search
queries (explained in Section 4) over the dataset,
only those pages of “ text/html” type, all 1,168,140

3 It was not an exhaustive crawl because it was asked to
stop when it just finished downloading 8 levels of pages.

421

of them, were obtained from the crawl. Other
pages, such as PDF files, images, etc., only appear
as hyperlinks in the data set.

• The crawler visited 1,506 different logical
domains that are hosted by 630 unique web
servers (identified by their IP addresses) within
the Stanford.edu domain.

• The crawler did not observe the robot rule in an
effort to try to get the complete page set of the
domain.

In order to create an accurate web link graph, certain
data cleaning procedures were applied to the raw data set.
For example, URLs that are literally different but lead to
the same page were identified4. For such URLs, only one
is retained throughout the data set in order to avoid
duplicates. Also, URL redirections had to be recognized
so that corresponding URLs could be corrected.

The cleaned data set consists of 630 hosts (i.e. web
servers), 1,049,901 pages, and 4,979,587 unique hyper-
links. Figure 1 shows the distribution of the size (number
of pages and number of hyperlinks) of these web servers5.
For instance, 0.5% of servers host more than 100,000
pages and 4.6% of servers host more than 100,000 URLs.

3. The Framework

The goal is to distribute the search engine workload to
every web server in the Internet, while still obtaining
high-quality query results compared to those that a
centralized search engine system obtain. This goal would
be achieved by installing a shrunk version of the Google
search engine on every web server which only answers
queries against the data stored locally. Results from
different web servers are merged locally to produce a
ranked hyperlink list. Ideally this list would be identical to
the result returned by a centralized system for the same
data set.

4 E.g., “www.stanford.edu”, “www.stanford.edu/” and
“www.stanford.edu/index.html” represent the same page.
5 Based on the crawled data set.

It takes three steps to process a user query, namely
query routing, local query execution, and result fusion.

Query Routing. In the distributed search engine
scenario, every web server is equipped with a search
engine, so users can submit their queries to any web
server. For example, a Stanford computer science
graduate student might submit his query on
www.cs.stanford.edu, which, in turn, sends the query to
other web servers that host the relevant pages.

(Local) Query Execution. When a web server
receives a query that has been relayed from another web
server, it processes the query over its local data and sends
the result, a ranked URL list, back to the submitting web
server.

Result Fusion. Once results from other web servers
have been obtained, they are merged into a single ranked
URL list to be presented to the user.

This paper focuses on how queries are executed on
each web server and how to generate a ranked result list.
Later in this section, related issues will be briefly dis-
cussed, which include typical routing strategies and how
to improve them in order to obtain top-k results faster.

Section 3.1 briefly reviews the original PageRank
algorithm. Section 3.2 explores the web link structure and
explains the data locality feature that enables the
distributed execution of search engine queries. A new
PageRank computation strategy is introduced in Section
3.3 and Section 3.4 describes the metrics that are used to
evaluate the algorithms. In the following sections, 3.5
through 3.8, a series of modified PageRank algorithms are
proposed, accompanied by experiments for evaluation.
Section 3.9 discusses a few other issues in the framework,
such as query routing and data updates.

3.1 PageRank Review

Google uses PageRank, to measure the importance of web
pages, which is based on the linking structure of the Web.
Page and Brin [3][22] consider the basis of PageRank a
model of user behavior, the “Random Surfer Model”,
where a web surfer clicks on links at random with no
regard towards content. The random surfer visits a web
page with a certain probability which is derived from the
page’s PageRank.

In fact, the PageRank value of a page is defined by the
PageRank values of all pages, T1, …, Tn, that link to it,
and a damping factor6, d, that simulates a user randomly
jumping to another page without following any hyperlinks
[3], where C(Ti) is the number of outgoing links of page
Ti.

)
)(

)(

)(

)(
()1()(

1

1

n

n

TC

TPR

TC

TPR
ddAPR +++−= �

The PageRank algorithm is formally defined in

6 The value of d was taken to be 0.85 in [22]. We use this
value in all experiments in this paper.

0%

5%

10%

15%

20%

25%

30%

35%

0 1-9 10-99 100-999 1,000-9,999 10,000-
99,999

>100000

% of servers with # of Pages

% of servers with # of Urls

Figure 1: Histogram of Distr ibution over server size.
The x-axis gives the magnitude of the number of pages
or ur ls hosted by a web server, and the y-axis shows the
fraction of web servers of the size.

422

[14][15] as follows,

G is the directed web link graph of n pages (i.e. n

URLs), where every vertex represents a unique URL in
the Web. Let ji → denote the existence of a link from

page i to page j, i.e. URL j appears on page i. Then, P is
the nn× stochastic transition matrix describing the
transition from page i to page j, where Pi j, defined as
1/deg(i), is the possibility of jumping from page i to page
j. Let v

�
 be the n-dimensional column vector representing

a uniform probability distribution over all pages:

[]n n
v 1

1×
=�

The standard PageRank algorithm starts with the uniform

distribution, i.e., vx
��

=)0(. The algorithm uses the power
method to converge, when the L1 residual,

�
, of vectors of

two consecutive runs is less than a preset value � 7. The
result vector is the principal eigenvector of a matrix
derived from P (see details in [15]). Let gγ

�
 denote the

global PageRank vector computed over G, the global web
link graph. gγ

�
 is also referred as the “true global”

PageRank vector in this paper.
Note that PageRank is not the only factor in determin-

ing the relevance of a page to a query. Google considers
other factors, including the number of occurrences of a
term on a page, if terms in the query appear in the page
title, or anchor text, if the terms are in large font, etc., to
produce an IR score for the page. Then, the IR score for a
page is combined with its PageRank value to produce the
final rank value for the page. The algorithm for comput-
ing the IR scores is a secret. Since it is orthogonal to the
PageRank problem, it will not be discussed in this paper.

3.2 The Server L inkage Structure

Intuitively, it would seem that all pages within a domain
(e.g. www.cs.stanford.edu) have a stronger connection
with each other through their intra-domain hyperlinks

7 It is set to be 0.0001 in all experiments in this paper.

than their connections with pages out of their domain.
Bharat et al. [2] investigated the topology of the Web link
graph, focusing on the linkage between web sites. They
introduced a notion of “hostgraph” to study connectivity
properties of hosts and domains over time. Kamvar et al.
[14] studied the block structure of the Web. They found
that there are clearly nested blocks corresponding to do-
mains, where the individual blocks are much smaller than
the entire Web.

Out of the 1,049,271 pages in our test data set,
865,765 (82.5%) pages contain intra-server hyperlinks
and only 255,856 (24.4%) pages contain inter-server
hyperlinks. 96.6% (26,127,126) of the links are intra-
server while 3.4% (908,788) are inter-server. After
removing duplicates, there are 21,604,663 (96.3%) intra-
server links and 833,010 (3.7%) inter-server links. Figure 3
shows that most servers have very few inter-server links
while servers with large numbers of intra-server links are
very common.

Notice that an inter-server hyperlink often points to

the top page (or entry point page) of a domain, such as
http://www.cs.stanford.edu. Among the 908,788 inter-
server links, there are 222, 393 (24.5%) top-page links, or
187,261 (22.5%) links after removing the duplicates. Such
inter-server links do not affect the relative importance of
pages within a web site.

It is possible for a web server to host multiple inde-
pendent web sites that do not interlink each other to a
significant extent. For instance, one server in the data set,
“proxy-service.lb-a.stanford.edu”, hosts as many as 285
web sites. Such case is treated as a single server to avoid
an explosion in the number of servers when doing Server-
Rank calculation. Notice that it will generate more
accurate result if those web sites are treated individually.

3.3 Overview of Distr ibuted PageRank Algor ithms

The topology of the web linkage structure suggests that
connectivity-based page importance measures can be
computed at individual web servers, i.e., every web server
can independently compute a “Local PageRank” vector

Figure 2: The PageRank Algor ithm.

Figure 3: Histogram of Distr ibution over server hyper-
links. The x-axis gives the magnitude of the number of
intra-server and inter-server hyperlinks hosted by a
web server, and the y-axis shows the fraction of web
servers of that size.

0%

5%

10%

15%

20%

25%

30%

35%

0 1-9 10-99 100-999 1,000-9,999 10,000-
99,999

>100,000

% of servers with # of
intra-server links

% of servers with # of
inter-server links

 Function pageRank ()vxG
��

,,)0({

 Construct P from G :)deg(/1 jPji = ;

 repeat
)()1(kTk xdPx

��
=+ ;

1

)1(

1

)(+−= kk xxw
��

;

 vwxx kk ���
+= ++)1()1(;

1

)()1(kk xx
�� −= +δ ;

 until εδ < ;

 return)1(+kx
�

;
 }

423

over its local pages. Since the majority of links in the web
link graph are intra-server links, the relative rankings
between most pages within a server are determined by the
intra-server links. So the result of local query execution is
likely comparable to its corresponding sublist of the result
obtained using the global PageRank algorithm.

The inter-server links can be used to compute
“ServerRank” , which measures the relative importance of
the different web servers. Both Local PageRank and
ServerRank are used in combination to merge query
results from multiple sites into a single, ranked hyperlink
list.

The outline of the algorithm follows:

1. Each web server constructs a web link graph
based on its own pages to compute its “Local
PageRank” vector (Section 3.5).

2. Web servers exchange their inter-server hyperlink
information with each other and compute a
“ServerRank” vector (Section 3.6).

3. Web servers use the “ServerRank” vector to refine
their “Local PageRank” vectors, which are actu-
ally used for local query execution (Section 3.7).

4. After receiving the results of a query from multi-
ple sites, the submitting server uses the “Server-
Rank” vector and the “Local PageRank” values
that are associated with the results to generate the
final result list (Section 3.8).

Each step is described in detail in the following
sections. Notice, that for static data sets, both the Local
PageRank vectors and the ServerRank vector need to be
only computed once. As shown later, all algorithms are
efficient and can be exercised frequently in case of
updates.

3.4 Evaluation Metr ics

The goal is to apply the PageRank algorithm in a
distributed Internet search engine system, where it should
be able to provide users the same quality results as what
the original algorithm does, without incurring the cost of a
centralized search system. Judging the search quality of
Google is not the focus of this paper; rather PageRank
vectors and query results, generated by the algorithms
presented in this paper, can be compared against those
computed using the Google algorithm. Basically, given
the same data set, the distributed search engine system is
expected to return a very similar, if not identical, ranked
page list to the results obtained in a centralized fashion
using the Google PageRank algorithm. In this section,
several metrics are described, which can be used to
compare two ranked lists.

Suppose a PageRank vector γ
�

 is computed over a
page set (domain) D, and p is the corresponding ranked
page list, which is a permutation from D. Let p(i) denote
the position (or rank) of page i in p, and page i is “ahead”

of page j in p if p(i) < p(j).
},|},{ { DjiandjijiPD ∈≠= is also defined to be the

set of unordered pairs of all distinct pages in the domain
D.

Given two PageRank vectors 1γ
�

 and 2γ
�

 on D, and
their respective ranked page lists, p1 and p2, Kendall’s
metric [16] is then defined as:

�
∈

=
DPji

ji ppKppK
},{

21},{21),(),(,

where 1),(21},{ =ppK ji if i and j are in different order in

p1 and p2; otherwise, 0),(21},{ =ppK ji .

To measure the similarity between p1 and p2, Kend-
all’s –distance [9][16] is defined as follows:

2/)1(

),(
),(21

21 −×
=

DD

ppK
ppKDist

Notice the maximum value of KDist(p1, p2) is 1 when p2
is the reverse of p1.

In practice, people are usually more interested in the
top-k results of a search query. Kendall’s –distance,
however, cannot be computed directly between two top-k
ranked page lists because they are unlikely to have the
same set of elements. In [9], Fagin et al. generalize the
Kendall’s –distance to be able to handle this case.

Suppose)(
1

kp and)(
2
kp are the top-k lists of p1 and p2.

The minimizing Kendall’s metric is defined as:

 �
∈

=
DPji

kk
ji

kk ppKppK
},{

)(
2

)(
1

min
},{

)(
2

)(
1min),(),(

where 0),()(
2

)(
1

min
},{ =kk

ji ppK if both i and j appear in one

top-k list but neither of them appears on the other list8;

otherwise,),(),(21},{
)(

2
)(

1
min

},{ ppKppK ji
kk

ji = .

Then, the minimizing Kendall’s –distance [9] is de-
fined as:

2/)1(

),(
),(

)(
2

)(
1min

21
)(

min −×
=

kk

ppK
ppDistK

kk
k .

Another useful metric is the L1 distance between two
PageRank vectors,

121 γγ
��

− , which measures the abso-

lute error between them.

3.5 Local PageRank

Since the majority of hyperlinks within a web site are
intra-server links, intuitively, the PageRank vector calcu-
lated over the site’s local page set may resemble its corre-
sponding segment of the true global PageRank vector.

A straightforward way to compute a Local PageRank
vector on a web server is to apply the PageRank algo-
rithm on its page set after removing all inter-server hyper-

8 This is the only case that there’s not enough information
to compare the ordering of i and j in p1 and p2. Kmin is the
optimistic choice.

424

links [14]. Given server-m that hosts nm pages, G(m)
(mm nn ×), the web link graph of server-m, is first con-
structed from the global web link graph Gg, where for
every link ji → in Gg, it is also in G(m) if and only if
both i and j are pages in server-m. That is, G(m) contains
intra-server links only. Then, a Local PageRank vector of
server-m is computed as follows:

),,()()(mm nnmml vvGpageRank
���

=γ (LPR-1)

where
mnv

�
 is the nm-dimensional uniform column vector

as defined in Figure 2.
To evaluate the accuracy of Local PageRank, the

Local PageRank vectors)(mlγ
�

 of each of the web servers

in the data set are computed. The true global PageRank
vector gγ

�
 is also computed on the entire data set. Let pl(m)

be the corresponding ranked page list of)(mlγ
�

, and pg the

global ranked page list. For every server-m, the elements
corresponding to all of its pages from gγ

�
 are taken to

form)(mgγ
�

, the corresponding vector of)(mlγ
�

. Note that,

in order to compare with)(mlγ
�

,)(mgγ
�

 is normalized so

that its L1 norm (the sum of all element values) is 1. Let
pg(m) be the according ranked page list of)(mgγ

�
.

First, the average L1 distance between)(mlγ
�

 and

)(mgγ
�

,
1)()(mgml γγ

��
− , is 0.0602. In comparison, the

average L1 distance between
mnv

�
, the uniform vector, and

)(mgγ
�

 is 0.3755.

Second, the average9 Kendall’s –distance,
),()()(mgml ppKDist , is 0.00134, which is a short dis-

tance. If a server hosts 40 pages, it means that there is
only 1 pair of pages mis-ordered in the Local PageRank
list, where they are next to each other.

Finally, the average minimizing Kendall’s –distance,

),()()(
)(

min mgml
k ppDistK , is measured, which is shown in

Figure 4.
The accuracy between top-k page lists seems worse

than the accuracy between two full lists, though the dis-
tance declines quickly as k increases. On the one hand,
because of the small size of the top-k lists, even one mis-
ordered pair has a big impact on the distance, e.g., a
Kendall’s –distance of 0.022 corresponds to only 1 mis-
order in a top-10 list. On the other hand, the most impor-
tant pages in a web site usually have more incoming and
outgoing inter-server links with other domains which are
not considered by LPR-1. These links, in turn, affect the
accuracy. Table 1 lists the average number of incoming
and outgoing inter-server links on the lists of the top-10
and top-100 pages, compare to the number of all pages in

9 Weighted by server size.

the data set. The relatively large number of incoming
links indicates that the true PageRank value of a top-k
page is significantly affected by the number of out-of-
domain pages that link to it.

 Top-10 Top-100 All

Outgoing links 2.10 1.58 0.17

Incoming links 70.72 13.30 0.17

Table 1 Average number of inter-server links that involve
top-k pages.

To improve the accuracy of the Local PageRank
vectors, the authors present a slightly more complicated
algorithm. As described in the next section, web servers
need to exchange information about their inter-server
hyperlinks to compute the ServerRank vector. The link
information can also be used to compute more accurate
Local PageRank vectors.

Given server-m, this algorithm introduces an artificial
page, � , to its page set, which represents all out-of-domain
pages. First, a local link graph,)(mG′ ()1()1(+×+ mm nn),

is constructed from the global web link graph Gg, where
for every link ji → , it turns into (1) ji → if both i and

j are local pages; or (2) ξ→i if i is a local page but j is

not; or (3) j→ξ if j is a local page but i is not. Second,

a PageRank vector)(mlγ ′� is calculated as follows,

),,(11)()(++′=′
mm nnmml vvGpageRank

���
γ (LPR-2)

Then, the Local PageRank vector)(mlγ
�

 is derived by

removing � from)(mlγ ′� and normalizing it.

For LPR-2, the average L1 distance between)(mlγ
�

 and

)(mgγ
�

 is only 0.0347, less than half that of algorithm

LPR-1. The average Kendal’s –distance,
),()()(mgml ppKDist , is also reduced to 0.00081, ap-

proximately 1 mis-ordering in 50 pages. Figure 4 also
shows the improvement on the accuracy of the top-k page
lists.

In order to construct)(mG′ , servers need to inform

each other of their inter-server hyperlinks. For instance,
server-m has to send a message to server-n that there are x
links from m to n. Within the data set of 630 web servers,

Figure 4: The minimizing Kendall’s -distance for
top-k page lists between pl(m) and pg(m) (k = 10 to
5,000) of algor ithms LPR-1 and LPR-2.

0.00

0.05

0.10

0.15

0.20

10 100 1,000 10,000

LPR-1
LPR-2

425

on the average a server has outgoing links to 10.0 others,
which means it needs to send 10 point-to-point messages.
More details of the associated communication cost are
discussed in the following sections.

3.6 ServerRank

It is encouraging that the accuracy of the Local PageRank
vectors is improved significantly by the inclusion of some
simple inter-server link information. This section presents
algorithms to compute ServerRank that measure the
relative importance of different servers. ServerRank is
useful in two ways, refining Local PageRank vectors and
weighing the importance of the result pages from different
servers.

Similar to how the relative importance of different
pages is measured by their connections with each other,
ServerRank can be computed on the inter-server links
between servers. However, unlike the Local PageRank
computation, which can be performed individually by
each server without contacting others (algorithm LPR-1),
to calculate the ServerRank, servers must exchange their
inter-server hyperlink information. The communication
cost will be discussed after the algorithms are presented.

First, the server link graph, Gs, is constructed, in
which there are ns servers and every server is denoted by a
vertex. Given servers m and n, nm→ denotes the
existence of a hyperlink from a page on m to a page on n.
Then, a ServerRank vector can be simply computed as if it
were a PageRank vector,

),,(
ss nnss vvGpageRank

���
=γ (SR-1)

Let ps be the corresponding ranked server list of sγ
�

.
Since there is no such “ServerRank” concept in

Google’s search engine scheme and it is an intermediate
step in the framework, there are no direct ways to measure
its accuracy. Intuitively, the importance of a server should
correlate with the importance of the pages it hosts. Here
the authors suggest to construct two “benchmark” lists to
approximately check the ServerRank vector sγ

�
 against

the true global PageRank vector gγ
�

.

• Top_Page server list, Top(ps). Servers are
ranked by the PageRank value of the most impor-
tant page that they host, i.e. the page with the
highest PageRank value in gγ

�
.

• PR_Sum server list, Sum(ps). Servers are
ranked by the sum of the RageRank values of all
pages that they host.

Both server lists are constructed using the global
PageRank vector gγ

�
. Table 2 shows ps is near both of

them and closer to Top(ps). Notice, that the Kendall’s –
distance between Top(ps) and Sum(ps) is 0.025.

Algorithm SR-1 does not distinguish the inter-server
hyperlinks when constructing the server link graph. Since

an outgoing hyperlink carries a certain portion of the im-
portance (i.e. PageRank value) of the source page to the
destination page, in turn, it also transfers some importance
to the hosting server, which means that a link from a more
important page likely contributes more to the destination
server. In fact, the ServerRank vector can be computed
using the PageRank information of the source pages of
the inter-server links. Notice, that at this phase, the Local
PageRank value of a page is the best measure of its “ true”
importance within its own domain, so it can be used to
weight inter-server links [14].

Table 2: The Kendall’s -distance between the ranked server
lists.

The construction of the stochastic transition matrix P,
in Figure 2 can be modified to accommodate any
available Local PageRank information into the
ServerRank computation. Given a link nm→ in the
server link graph Gs, its weight, denoted by nmw → , is
defined as the sum of the Local PageRank values of all
source pages in server-m,

g
DjDi

inm Gjilpw
nm

∈→∀= �
∈∈

→ ,
,

where lpi is the Local PageRank value of page i. Then
P is constructed as,

.,0; otherwisePorGnmif
w

w
P mns

k
km

nm
mn =∈→=

� →

→

and P is still a stochastic transition matrix. Then the rest
of the algorithm is applied to compute the ServerRank
vector,

),,(
ss nnss vvGkpageRan

��� ′=γ (SR-2)

The result ranked server list is also compared against
Top(ps) and Sum(ps) in Table 2. It is clearly closer to those
two lists than the list generated by SR-1.

Notice, that it is not necessary to share all inter-server
hyperlinks explicitly across servers (and related Local
PageRank values in SR-2) to compute the ServerRank
vector. In fact, each server just needs to compose its row
of the stochastic transition matrix P, which means that it
sends only one message out. Suppose on average every
server connects with c other servers through inter-server
links (10.0 in the data set). In a message of algorithm SR-
1, a server just needs to identify the c servers to which it
connects with. In SR-2, the size of the message is a little
bigger, which is a row in P as described above.

Since every server needs a copy of the ServerRank
vector to refine its Local PageRank vector in the next
step. One way to compute it is to let every server
broadcast their messages to all other servers and compute
the vector by themselves. A more efficient strategy is to

 KDist(ps, Top(ps)) KDist(ps, Sum(ps))

SR-1 0.035 0.053

SR-2 0.022 0.041

426

elect a few capable servers to compute the vector and
broadcast the result so most servers will not have to
receive and process n messages to construct the
corresponding server link graph.

3.7 Local PageRank Refinement

In this section, the ServerRank vector is used to refine the
Local PageRank vectors on every web server.

The difference between a Local PageRank vector and
its corresponding (normalized) sub-vector in the true
global PageRank vector is caused by the lack of inter-
server link information. The ServerRank vector indicates
the relative importance of a server within the network.
More inter-server hyperlink information can be added to it
in order to make the Local PageRank vectors more
accurate.

The smallest amount of information that server-n must
share with server-m is the number of links from n to m,
and which pages on m the links lead to. Then, the Local
PageRank vector of server-m can be adjusted in the
following way. Assuming that out of ln inter-server
hyperlinks hosted by server-n there are)(imnl links that

lead to page i on server-m. The Local PageRank value of
page i,

iml)(γ , is adjusted by transferring a portion of

PageRank values of the links from server-n,

n

mn

s

s
mlml l

l
i

m

n

ii

)(
)()(×+=

γ
γ

γγ

where
nsγ and

nsγ are the ServerRank values of m and n

respectively. Then the updated Local PageRank vector is
normalized, denoted by)(mlγ ′� , so that other pages will

also be affected. Thus, the same web link graph G(m) of
algorithm LPR-1 can be used to further distribute the
linkage information. Unfortunately, the loop operation in
the PageRank algorithm (shown in Figure 2) cannot be
performed here as)(mlγ ′� will eventually converge to the

old Local PageRank vector no matter what the initial
input vector is because the PageRank vector is the
principal eigenvector of a matrix, which is constructed
over the web link graphs [15]. To avoid this problem, the
PageRank algorithm can be performed for only one
iteration, denoted by pageRank_single,

),,()()()(mnmlmml vGinglepageRank_s
���

γγ ′= (LPR-Ref-1)

Results from both algorithms LPR-1 and LPR-2 at the
Local PageRank computation step and ServerRank
vectors from both SR-1 and SR-2 are used to evaluate the
refinement algorithms. Table 3 demonstrates that the
accuracy of the Local PageRank vectors is improved,
especially these vectors resulting from LPR-1 because
they do not have any inter-server link information. Only a
small gain orcurs the LPR-2/SR-1 combination because
only a small amount of additional information is added by
algorithm SR-1 to the vectors from LPR-2. The
improvement in vectors from algorithm LPR-1 is greater

because no inter-server link information is applied in the
algorithm. Figure 5 demonstrates the improvement on the
accuracy of the top-k page lists. Notice, that the ranking
of the few most important pages improves significantly
because they are usually affected by the inter-server links
much more than other pages.

Local PageRank
& ServerRank 1)()(mgml γγ

��
−),()()(mgml ppKDist

LPR-1/SR-1 0.0391 (35%) 0.00093 (31%)

LPR-1/SR-2 0.0284 (53%) 0.00069 (49%)

LPR-2/SR-1 0.0303 (13%) 0.00071 (12%)

LPR-2/SR-2 0.0245 (29%) 0.00055 (32%)

Table 3: The Average L1 distance and Kendall’ s –distance
of Local PageRank vectors after being refined by algor ithm
LPR-Ref-1. (Percentage of improvement in parentheses).

If server-n is willing to share more information with
server-m, more specifically, the Local PageRank value of
the individual pages that have hyperlinks to pages on m, it
can help server-m understand better the relative impor-
tance of the incoming links. In this case, server-m’ s Local
PageRank vector can be adjusted as the end page of an
inter-server link receives a certain amount of the Local
PageRank value of the starting page. Specifically,

�
∈→∈

�
�
�

�
�
� ××+=

gn

j

m

n

ii
GijDj

nl
s

s
mlml j

,
)()()()deg(

1γ
γ
γ

γγ

where
jnl)(γ is the Local PageRank value of page j,

which is on server-n and has a URL link to page i, which
is on server-m. deg(j) is page j’ s outgoing degree in the
global link graph. Similarly, the new vector can be
normalized, denoted by)(mlγ ′′� and applied through the

single-iteration PageRank algorithm,
),,()()()(mnmlmml vGinglepageRank_s

���
γγ ′′= (LPR-Ref-2)

Table 4 and Figure 6 show that with more link source
information algorithm LPR-Ref-2 significantly improves
the accuracy of the Local PageRank vectors when
compared with the results obtained using LPR-Ref-1.

In algorithm LPR-Ref-1, each server needs to send one
message to every server to which it is connected with one
or more hyperlinks. For instance, the message from

Figure 5: The minimizing Kendall’s -distance for
top-k page lists between refined pl(m) and pg(m) (k = 10
to 5,000), Algor ithm LPR-Ref-1.

0.00

0.02

0.04

0.06

0.08

10 100 1,000 10,000

LPR-1/SR-1

LPR-1/SR-2

LPR-2/SR-1

LPR-2/SR-2

427

server-n to server-m consists of all unique URLs hosted
by m that occur on pages stored at n, along with the count
of each link, and the count of all inter-server links on
server-n. In the data set, it translates into an average 10
messages per server and the average message
(uncompressed) size is 940 bytes. Because many URLs in
a message share the same domain name, it is easy to
reduce the size of each message using some prefix
compression techniques. Algorithm LPR-Ref-2 needs the
same number of messages but requires more detailed
information about the source page of each inter-server
link, specifically the Local PageRank value of the source
page of every link. In this case, the average message size
increases to 2.1 Kbytes before compression. In both cases,
the small message size means that the bandwidth
requirement of the distributed PageRank algorithms is
low. When scaled to the size of the Internet, the total
number of messages will increase significantly due to the
large number of web servers but the number of messages
sent per server and the average message size will not
increase significantly.

Local PageRank
& ServerRank 1)()(mgml γγ

��
−),()()(mgml ppKDist

LPR-1/SR-1 0.0282 (53%) 0.00061 (54%)

LPR-1/SR-2 0.0197 (67%) 0.00039 (71%)

LPR-2/SR-1 0.0205 (41%) 0.00049 (40%)

LPR-2/SR-2 0.0163 (53%) 0.00027 (67%)

Table 4: The Average L1 distance and Kendall’ s –distance
of Local PageRank vectors after being refined by algor ithm
LPR-Ref-2. (Percentage of improvement in parentheses).

Since the computation of the ServerRank vector in

algorithm SR-2 is dependant on the Local PageRank
vectors, the updated Local PageRank vectors can be used
to further refine the ServerRank vector, etc. Multiple
rounds of refinement can be applied in a relatively static
environment, where hyperlinks on pages are not changed
frequently.

3.8 Result Fusion

When a search query is submitted to a web server, it is

forwarded to some other web servers that have relevant
pages. On each receiving server, the query is executed
using the server’s Local PageRank vector, and the result,
a ranked URL list, is sent back to the server to which the
query was initially submitted. Then, the server performs
Result Fusion (RF), which merges all the result lists into a
single ranked URL list that is as close to the “true global”
result list as possible, i.e. as if the query had been
executed by a centralized search engine over the same
data set.

Given a query q, let qm, a ranked URL list, denote the
result returned by server-m, where in general m ranges
from 1 to ns, which is the number of servers in the system.
qm is a sublist of m’ s ranked page list, pl(m), and it is empty
if there are no relevant pages on server-m. In qm, every
URL is associated with its Local PageRank value. Let

)(mqγ
�

 be the corresponding Local PageRank vector of qm,

which is also a sub vector of)(mlγ
�

, the Local PageRank

vector of server-m. The result lists from every server can
be simply weighted by the ServerRank vector and merged
together,

�
�
�
�
�
�

	

�
�
�
�
�
�

�

=

)(

)(

)1(1

lg

ss nqsn

mqsm

qs

q

γγ

γγ

γγ

γ

�
�

�
�

�

�
 (RF)

where smγ is ServerRank value of m. Then, the result
page list, denoted by qlg, is sorted according to the values
in

lgqγ
�

.

If the entire Local PageRank vector of every server is
applied in RF, the result, plg, will be the sorted list of all
pages in the system. Obviously, qlg is a sub list of plg, i.e.,
for any page i and j in qlg, if i is ahead of j in qlg, then i is
also ahead of j in plg. Let qg denote the corresponding
result list obtained using the centralized PageRank
algorithm, it is also a sub list of pg, the complete sorted
page list based on the true global PageRank vector gγ

�
.

Notice, that the number of mis-ordered pairs between plg
and pg is the upper bound of that between qlg and qg. Also,
that plg and pg are identical is a sufficient condition of qlg
being identical to qg. Thus, the algorithm RF can be
evaluated by comparing pg and plg, or gγ

�
 and lgγ

�
, the

result of RF after normalization. The evaluation of actual
queries will be shown in Section 4.

The set of Local PageRank vectors used in the
following experiments were generated using algorithm
LPR-2, refined by LPR-Ref-2 using the ServerRank vector
produced with SR-2. The L1 distance between lgγ

�
 and gγ

�

is 0.0198. The Kendal’s –distance between plg and pg, is
0.00105, similar accuracy to the Local PageRank page
lists. Figure 7 shows the minimizing Kendall’s –distance
between the top-k lists of plg and pg, which illustrates a

Figure 6: The minimizing Kendall’s -distance for
top-k page lists between refined pl(m) and pg(m) (k =
10 to 5,000), Algor ithm LPR-Ref-2.

0.00

0.02

0.04

0.06

10 100 1,000 10,000

LPR-1/SR-1

LPR-1/SR-2

LPR-2/SR-1

LPR-2/SR-1

428

good match between two lists on the ranking of the most
important pages.

3.9 Query Routing and Data Updates

In this section, the query routing and data updates issues
are briefly discussed.

In general, search engine queries are multi-term
boolean text queries that request ranked results. On the
one hand, more results are desired for purpose of
completeness. On the other hand, the most important
results need to be on the top of the result list. In the
previous sections, this paper focuses on the ranking
problem, assuming that queries are sent to and executed at
all relevant web servers.

Recently there have been many studies on indexing
techniques to help route queries in Peer-to-Peer systems.
Several of these approaches could be applied to the search
engine framework, such as Chord [25], one of a number
of DHT-based indexing methods that have been proposed
recently. Chord was designed to associate a key with each
shared file in a P2P system, in which all keys are hashed
into a common space and every participating peer is re-
sponsible for a portion of the key-space. DHT mecha-
nisms like Chord can be adapted for use in a distributed
search engine, where every keyword can be paired with a
list of server ids that indicate which servers host pages
containing that keyword. Thus, given a user’s search
query, the submitting server first retrieves the server lists
of all query terms from the system. Second, it performs an
intersection operation on the server lists to determine
what servers host relevant pages. Then, it sends out the
user’s search query to the servers and waits for the results.
This strategy guarantees the complete result if the query
ends up being executed on every submitted server.

It may be expensive to send a query to all relevant
web servers if the query contains some popular keywords
that can be found on many websites. Furthermore, in most
cases, people are more likely to be interested in the top-k
results of a query, which requires only that the top-k lists
are accurate. Intuitively, the query should not be sent to a
server that cannot return pages whose PageRank value is
not high enough to make the top-k list. Thus, a more effi-
cient strategy can be used once the submitting server has
the list of all relevant servers, denoted by Sq, as shown in
Figure 8.

The submitting server can also stop forwarding the

query when the user is satisfied with the top-k result list.
Furthermore, it can attach the current threshold PageRank
value to the query so that the receiving servers do not
need to return less relevant results.

Since most search queries contain more than one term,
whose corresponding indices are likely to be distributed
into multiple servers using DHT-based approaches. Direct
peer indices and indirect peer indices, proposed in the
GALANX system [26], can be also applied in the frame-
work, which tend to group indices of frequently co-
occurring terms together so that fewer server contacts
need to be made to discover the relevant server list,

To handle data updates, such as pages added/deleted
on a server, or hyperlinks added/deleted on a page, every
web server can periodically update their Local PageRank
vector based on the frequency and extent of the changes.
Updated inter-server link information can also be
exchanged in the same fashion for the ServerRank
computation.

4. Query Evaluation

In the previous section, the true global PageRank vector is
used to evaluate the accuracy of the Local PageRank vec-
tors in the different steps and the merged PageRank vec-
tor in the final fusion phase. In this section, queries are
used to investigate the performance of the proposed algo-
rithms.

As mentioned in Section 3.1, where Google’s PageR-
ank algorithm was reviewed, there are a few other factors
in ranking search results in Google besides PageRank,
including some standard IR measures, the appearance of
query terms in page titles and anchor text, and text font
size, etc. For each page, an IR score is computed for a
given query and combined with its PageRank value to
form its final page ranking value. Although the formula of
the IR score is not publicly known, it is orthogonal to the
PageRank computation. Thus, title search queries [22] can

Figure 7: The minimizing Kendall’s -distance for
top-k page lists between plg and pg (k = 10 to 50,000).

Figure 8: The Query Routing Algor ithm.

0.00

0.02

0.04

0.06

10 100 1,000 10,000 100,000

Set result list pq = ();
Sort Sq by their ServerRank values, with the high-
est one on the top;
While (Sq is not empty)
{

Pop s servers out of Sq and forward the search
query q to them;
Wait for results;
Perform RF and merge the results into pq.
If (pq has at least k pages)
{

Find the PageRank value of the k-th page, � qk;
Remove all servers in Sq whose ServerRank
value is lower than � qk;

}
}

Return pq.

429

be used to further evaluate the algorithms presented in this
paper. The results of a title search query are all web pages
whose titles contain all the query words. So every word in
the query can be treated equally and the result list is
sorted by PageRank only.

In the over one million pages in the data set, there are
about 150,000 unique terms in their <title> section. a set
of 100 queries is selected, which include “Stanford
University” , “engineering”, “research overview” , “news” ,
etc. On average, the complete result list of each query has
about 3,450 pages from 11 web servers. The combination
of algorithms LPR-2, SR-2, and LPR-Ref-2 are used to
construct and refine Local PageRank vectors on each
server.

In the first experiment, the complete result list is re-
turned for every query and it is compared against the re-
sult list produced using the true global PageRank vector.
The average Kendal’s –distance between two result lists
is 0.00047, which corresponds to approximately 2,800
mis-ordered pairs (out of a possible total of 6 million)
between two 3,450-page lists. Figure 9 shows the accu-
racy of the top-k result lists. Notice that the important
pages are in good order – The minimizing Kendall’s –
distance between the top-10 list and its counterpart gener-
ated using the true global PageRank vector is 0.27, or
only 1.2 mis-ordering pairs out of 45 possible pairs.

If only the top-k result lists are wanted, the progressive

routing approach described in Section 3.9 can be applied.
The second experiment asks for top 100 page URLs for
every query in the same query set. In each round, a query
will be forwarded to 3 servers. As a result, on average,
each query is executed on only 7 servers out of possible
11 servers, and only about 1,500 page URLs (of 3,450
potential results) are received.

5. Related Work

Among the existing Internet search engines, Google is the
most frequently used, accounting for more than 35% of
searches done by US web surfers10. Google employs the
PageRank algorithm, designed by Page and Brin [3][22],
to measure the importance of web pages. There are also a
few other hyperlink connectivity based algorithms, such

10 Measured by the comScore Media Metrix gSearch ser-
vice in November 2003, www.searchenginewatch.com.

as the HITS algorithm by Kleinberg et al. [17][4] used by
the IBM CLEVER Searching project [6].

Several other authors have considered the computation
of PageRank vectors. Haveliwala [10] presents a block-
based strategy for efficiently compute PageRank on
computers with limited memory. Kamvar et al. [15]
propose a power extrapolation algorithm to accelerate the
convergence in computing PageRank vectors. Haveliwala
[11] and Jeh et al. [13] discuss approaches to compute
topic-sensitive or personalized PageRank. Bharat et al. [2]
and Kamar et al. [14] observed the nested block structure
of the Web. Kamar et al. [14] proposed Local PageRank
and BlockRank algorithms (listed as algorithms LPR-1
and SR-2 in Section 3) to accelerate the computation of
PageRank vectors.

While related, the main thrust of this work is
orthogonal to these earlier efforts whose primary goal is
to compute the global PageRank vector more efficiently.
Specifically, the objective is to avoid computing the
global PageRank vector altogether while still being able
to provide quality ranking functions and quality results in
a distributed search environment.

Web crawling is a critical part of Internet search
engines. Cho et al. [3] defined ordering schemes to direct
crawling, and evaluation metrics to measure their
efficiency. Najork et al. [20] studied different crawling
strategies and their impact on page quality. They found
that crawling in a breadth-first search order tends to
discover high-quality pages early on in the crawl, which
was applied when the authors downloaded the
experimental data set. Raghavan et al. [23] propose a
layout-based information extraction technique to extract
semantic information from web search forms and result
pages in an effort to crawl the “hidden” web, the
database-backed automatically generated web pages.

In early Peer-to-Peer file sharing systems, query
routing is fairly simple. For instance, Gnutella [12] does
not have any object indices. A query is simply relayed to
all neighbor peers if it cannot be answered. In contrast to
the flooding-based routing approaches, several research
systems such as CAN [24], Chord [25], Pastry [8], and
Tapestry [27], proposed independently, construct a
distributed hash table (DHT) over the peer network in an
effort to provide efficient query routing. In a DHT-based
system, every shared file is associated with a key, either
its name or a system id. All keys are hashed to a common
key-space. Every peer is responsible for a portion of the
key-space and stores the files whose keys fall into that
key-space. Thus, every file request can be forwarded to
the specific peer that corresponds to the file’s key.

6. Conclusions and Future Work

Existing Internet search engines use web crawlers to
download data to their central servers to process queries.
This paper describes and evaluates an alternative distrib-
uted approach in which every web server acts as an indi-

Figure 9: The minimizing Kendall’s -distance for
top-k query result quality measures (k = 10 to 1,000).

0.00

0.02

0.04

0.06

10 100 1,000

430

vidual search engine on its own pages, eliminating the
need for crawlers and centralized servers. In such a sys-
tem, a query is taken by a web server of the user’s choice,
and then forwarded to related web servers. It is executed
on those servers and results are returned to the submitting
server where they are merged into a single ranked list.

Measuring the importance of web pages and ranking
results are critical parts of a search engine. This paper
focuses on how to apply ranking algorithms, more
specifically Google’s PageRank algorithm, in a
distributed environment. The authors propose a series of
PageRank variants, including Local PageRank,
ServerRank, Local PageRank Refinement, and Result
Fusion. A real web data set is used in the experiments,
which shows a distributed approach can produce
PageRank vectors that are comparable to the results of the
centralized PageRank algorithm. Although it is premature
to apply such distributed approach to the Internet scale
which involves many other complicated research and
engineering problems, the experiments, using a real-world
domain of data, demonstrate it is promising to be adapted
in an enterprise intranet environment.

Apart from improving the ranking algorithms, the
authors plan to implement the framework in a real system
in order to further investigate query routing issues and
system performance such as query response time.

7. Acknowledgement

We would thank the anonymous reviewers for their
valuable comments. The authors are supported by the
NSF under grant number ITR-0086002.

8. References
[1] L. A. Barroso, J. Dean, U. Hölzle. “Web Search for a

Planet: The Google Cluster Architecture”, IEEE Micro,
23(2): 22-28, March/April, 2003.

[2] K. Bharat, B.-W. Chang, M. R. Henzinger, M. Ruhl. “Who
Links to Whom: Mining linkage between Web Sites”, in
Proceedings of the 2001 IEEE International Conference on
Data Mining (ICDM’01), 2001.

[3] S. Brin, L. Page, “The Anatomy of a Large-Scale Hyper-
textual Web Search Engine”, in Proceedings of the 7th In-
ternational World Wide Web Conference (WWW7), 1998.

[4] S. Chakrabarti, B. Dom, D. Gibson, S.R. Kumar, P. Ragha-
van, S. Rajagopalan and A. Tomkins. “Spectral Filtering
for Resource Discovery” , ACM SIGIR workshop on Hyper-
text Information Retrieval on the Web, 1998.

[5] J. Cho, H. Garcia-Molina, L. Page. “Efficient Crawling
Through URL ordering” , in Proceedings of the 7th Interna-
tional World Wide Web Conference (WWW7), 1998.

[6] The IBM CLEVER Searching project. Available at
http://www.almaden.ibm.com/cs/k53/clever.html.

[7] P. Diaconis. “Group Representation in Probability and
Statistics”, Number 11 in IMS Lecture Series. Institute of
Mathematical Statistics, 1998.

[8] P. Druschel, A. Rowstron. “Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems” , in Proceedings of the 18th IFIP/ACM International

Conference on Distributed Systems Platforms (Middleware
2001), 2001.

[9] R. Fagin, R. Kumar, D. Sivakumar, “Comparing top k
lists”, SIAM J. Discrete Mathematics 17, 1 (2003), pp. 134
– 160.

[10] T. H. Haveliwala. “Efficient Computation of PageRank”,
Stanford University Technical Report, 1999.

[11] T. H. Haveliwala. “Topic-Sensitive PageRank”, in Pro-
ceedings of the 11th International World Wide Web Confer-
ence (WWW11), 2002.

[12] The Gnutella website, http://www.gnutella.com.
[13] G. Jeh, J. Widom. “Scaling Personalized Web Search” , in

Proceedings of the 12th International World Wide Web
Conference (WWW12), 2003.

[14] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, G. H.
Golub. “Exploiting the Block Structure of the Web for
Computing PageRank”, Stanford University Technical Re-
port, 2003.

[15] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, G. H.
Golub. “Extrapolation Methods for Accelerating PageRank
Computations”, in Proceedings of the 12th International
World Wide Web Conference (WWW12), 2003.

[16] M. G. Kendall, J. D. Gibbons. “Rank Correlation Meth-
ods” , Edward Arnold, London, 1990.

[17] J. Kleinberg. “Authoritative Sources in a Hyperlinked En-
vironment”, in Proceedings of the ACM-SIAM Symposium
on Discrete Algorithms, 1998.

[18] M. Koster, “A Standard for Robot Exclusion” , available at
http://www.robotstxt.org/wc/norobots.html.

[19] P. Lyman, H. R. Varian, K. Swearingen, P. Charles, N.
Good, L.L. Jordan, J. Pal, “How Much Information 2003?”,
School of Information Management and Systems, Univer-
sity of California at Berkeley, 2003. Available at
http://www.sims.berkeley.edu/how-much-info-2003.

[20] M. Najork, J. L. Wiener. “Breath-First Search Crawling
Yields High-Quality Pages” , in Proceedings of the 10th In-
ternational World Wide Web Conference (WWW10), 2001.

[21] Netcraft Ltd. “Web Server Survey” , Available at
http://news.netcraft.com/archives/web_server_survey.html.

[22] L. Page, S. Brin, R. Motwani, T. Winograd. “The PageR-
ank Citation Ranking: Bringing Order to the Web” , Stan-
ford Digital Libraries Working Paper, 1998.

[23] S. Raghavan, H. Garcia-Molina. “Crawling the Hidden
Web” , in Proceedings of the 27th International Conference
on Very Large Dta Bases (VLDB’01), 2001.

[24] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, S.
Shenker. "A Scalable Content-Addressable Network", in
Proceedings of the ACM SIGCOMM 2001 Conference on
Applications, Technologies, Architectures, and Protocols
for Computer Communication (SIGCOMM’01), 2001.

[25] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H.
Balakrishnan. "Chord: A Scalable Peer-to-peer Lookup
Service for Internet Applications", in Proceedings of the
ACM SIGCOMM 2001 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Com-
munication (SIGCOMM’01), 2001.

[26] Y. Wang, L. Galanis, D. J. DeWitt. “Galanx: An Efficient
Peer-to-Peer Search Engine System”, Available at
http://www.cs.wisc.edu/~yuanwang.

[27] B. Y. Zhao, J. D. Kubiatowicz, A. D. Joseph. “Tapestry:
An Infrastructure for Fault-Tolerant Wide-Area Location
and Routing”, UC Berkeley Computer Science Division Re-
port No. UCB/CSD 01/1141, 2001.

431

