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Abstract 

Existing Internet search engines use web 
crawlers to download data from the Web. Page 
quality is measured on central servers, where 
user queries are also processed. This paper 
argues that using crawlers has a list of 
disadvantages. Most importantly, crawlers do not 
scale. Even Google, the leading search engine, 
indexes less than 1% of the entire Web. This 
paper proposes a distributed search engine 
framework, in which every web server answers 
queries over its own data. Results from multiple 
web servers will be merged to generate a ranked 
hyperlink list on the submitting server. This 
paper presents a series of algorithms that 
compute PageRank in such framework. The 
preliminary experiments on a real data set 
demonstrate that the system achieves comparable 
accuracy on PageRank vectors to Google’s well-
known PageRank algorithm and, therefore, high 
quality of query results. 

1. Introduction 

Internet search engines, such as Google™, use web 
crawlers (also called web robots, spiders, or wanderers) to 
download data from the Web [3]. The crawled data is 
stored on centralized servers, where it is parsed and 
indexed. Most search engines employ certain 
connectivity-based algorithms to measure the quality of 
each individual page so that users will receive a ranked 
page list for their queries. For instance, Google computes 
PageRank [22] to evaluate the importance of pages. Thus, 

the size of the crawled web data repository has two 
impacts on the results of a query. First, more qualified 
results may be found in a larger data set. Second, more 
web pages will provide a bigger link graph which, in turn, 
will result in a more accurate PageRank computation. 

However, there are several limitations of using web 
crawlers to collect data for search engines: 

• Not Scalable.  According to a survey [21] 
released by Netcraft.com in February 2004, there 
are more than 47 million web servers hosting the 
contents in the Internet. Based on another study 
[19] released by Lyman et al. in 2003, it was 
estimated that the Web consisted of 8.9 billion 
pages in the “surface web”  (public available static 
pages) and about 4,900 billion pages in the “deep 
web”  (specialized Web-accessible databases and 
dynamic web sites) in year 20021! The numbers 
have been growing even faster since. In 
comparison, Google indexes “only”  4.3 billion 
pages2. Even with a distributed crawling system 
[3], it is still impossible to consider downloading 
a large portion of the Web. 

• Slow Update.  Web crawlers are not capable of 
providing up-to-date information in the Web 
scale. For instance, it is estimated that Google 
refreshes its data set once every two to four 
weeks, with the exception of Google™ News, 
which covers “only”  4,500 sources. 

• Hidden (Deep) Web.  It is very difficult, if not 
impossible, for web crawlers to retrieve data that 
is stored in a database system of a web site that 
presents users with dynamically generated html 
pages. 

• Robot Exclusion Rule.  Web crawlers are 
expected to observe the robot exclusion protocol 
[18], which advises crawlers not to visit certain 

                                                        
1 167 TB in surface web, 91,850 TB in deep web, 18.7 
KB per page [19]. 
2 Claimed on http://www.google.com as of June 2004. 
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directories or pages on a web server to avoid 
heavy traffic. Nevertheless, the protocol does not 
affect human beings surfing on the Internet. Thus, 
the crawled data set is not “complete”  and 
conflicts with those connectivity-based page 
quality measures, such as PageRank, which is 
based on the “Random Surfer Model”  [22]. Thus, 
an incomplete data set may result in a loss of 
accuracy in the PageRank computation. 

• High Maintenance.  It is difficult to write 
efficient and robust web crawlers. It also requires 
significant resources to test and maintain them 
[3]. 

In fact, besides web crawlers, centralized Internet 
search engine systems also face other challenges. A 
successful search engine system requires a large data 
cache with tens of thousands of processors to create 
inverted text indices, to measure page quality, and to 
execute user queries.  Also, centralized systems are 
vulnerable to point failures and network problems, and 
thus must be replicated. For example, Google employs a 
cluster of more than 15,000 PCs and replicates each of its 
internal services across multiple machines and multiple 
geographically distributed sites [1]. 

This paper proposes a distributed Internet search 
engine framework that addresses the above problems. 
With such a framework, there are no dedicated centralized 
servers. Instead, every web server participates as an 
individual search engine over its own (local) data so that 
crawlers are no longer needed. User queries are processed 
at related web servers and results will be merged at the 
client side. 

Since Google is by far the most utilized search engine, 
The framework presented in this paper is based on 
Google’s PageRank algorithm. This paper introduces a 
series of variants of this algorithm that are used in the 
system. The goal of this paper is to present an efficient 
strategy to compute PageRank in a distributed environ-
ment without having all pages at a single location. The 
approach employs of the following steps, 

1. Local PageRank vectors are computed on each 
web server individually in a distributed fashion. 

2. The relative importance of different web servers is 
measured by computing the ServerRank vector.  

3. The Local PageRank vectors are then refined us-
ing the ServerRank vector. Query results on a web 
server are rated by its Local PageRank vector. 

This approach avoids computing the complete global 
PageRank vector. (Consider the 4.3 billion pages indexed 
by Google, the PageRank vector itself is 17 GB in size, 
even without including the size of the web link graph.) 
When a user query is executed by a web server, the result 
is ranked by the server’s Local PageRank vector. As re-
sults from multiple servers are received by the server to 

which the query was originally submitted, they are 
merged and ranked by their Local PageRank values and 
ServerRank values to produce the final result list. 

A real web data set was collected and used to evaluate 
the different PageRank algorithms. The preliminary 
experiments demonstrate that the Local PageRank vectors 
are very “close”  to their corresponding segments in the 
global PageRank vector computed using Google’s 
PageRank algorithm. They also show that the query 
results achieved are comparable in quality to those 
obtained using the centralized Google Algorithm. 

The remainder of the paper is organized as follows. 
Section 2 describes the data set that is used throughout the 
paper for PageRank computation and query execution. 
The collection of algorithms is formulated in Section 3, 
along with experiments for each step and evaluation of 
Local PageRank and ServerRank vectors against the “ true 
global”  PageRank vector computed using the standard 
Google’s PageRank algorithm. Section 4 presents more 
query results and evaluation. Section 5 summarizes the 
conclusions and discusses future research directions. 

2.   Experimental Setup 

The following sections use some real web data to evaluate 
the proposed distributed search engine scheme. Since the 
authors do not have control over the web servers from 
which the pages were collected, a local copy of the data 
had to be made. 

Since the scope of Internet search engines, such as 
Google, is the entire Web, ideally, the experiments would 
be conducted using all the data on the Web. This is 
obviously impossible. What is needed is a relatively small 
subset that resembles the Web as a whole. For the 
experiments described in this paper, the authors crawled 
over the Stanford.edu domain. The major characteristics 
of the data set are: 

• The crawl was performed in October 2003, start-
ing from “http://www.stanford.edu”, in the 
breadth-first fashion as described by Najork and 
Wiener [20], in an effort to obtain high-quality 
pages. 

• The crawl is limited to the stanford.edu domain 
and all out-of-domain hyperlinks are removed. 

• If the data set is viewed as a breadth-first search 
tree, it has 8 levels of pages and thus, 9 levels of 
URLs3. 

• In the raw data set (15.8 GB), there are 1,168,140 
unique pages. Since the experiments only 
performed PageRank computation and title search 
queries (explained in Section 4) over the dataset, 
only those pages of “ text/html”  type, all 1,168,140 

                                                        
3 It was not an exhaustive crawl because it was asked to 
stop when it just finished downloading 8 levels of pages. 
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of them, were obtained from the crawl. Other 
pages, such as PDF files, images, etc., only appear 
as hyperlinks in the data set. 

• The crawler visited 1,506 different logical 
domains that are hosted by 630 unique web 
servers (identified by their IP addresses) within 
the Stanford.edu domain. 

• The crawler did not observe the robot rule in an 
effort to try to get the complete page set of the 
domain. 

In order to create an accurate web link graph, certain 
data cleaning procedures were applied to the raw data set. 
For example, URLs that are literally different but lead to 
the same page were identified4. For such URLs, only one 
is retained throughout the data set in order to avoid 
duplicates. Also, URL redirections had to be recognized 
so that corresponding URLs could be corrected. 

The cleaned data set consists of 630 hosts (i.e. web 
servers), 1,049,901 pages, and 4,979,587 unique hyper-
links. Figure 1 shows the distribution of the size (number 
of pages and number of hyperlinks) of these web servers5. 
For instance, 0.5% of servers host more than 100,000 
pages and 4.6% of servers host more than 100,000 URLs. 

 

3.   The Framework 

The goal is to distribute the search engine workload to 
every web server in the Internet, while still obtaining 
high-quality query results compared to those that a 
centralized search engine system obtain. This goal would 
be achieved by installing a shrunk version of the Google 
search engine on every web server which only answers 
queries against the data stored locally. Results from 
different web servers are merged locally to produce a 
ranked hyperlink list. Ideally this list would be identical to 
the result returned by a centralized system for the same 
data set. 
                                                        
4 E.g., “www.stanford.edu”, “www.stanford.edu/”  and 
“www.stanford.edu/index.html” represent the same page. 
5 Based on the crawled data set. 

It takes three steps to process a user query, namely 
query routing, local query execution, and result fusion. 

Query Routing.  In the distributed search engine 
scenario, every web server is equipped with a search 
engine, so users can submit their queries to any web 
server. For example, a Stanford computer science 
graduate student might submit his query on 
www.cs.stanford.edu, which, in turn, sends the query to 
other web servers that host the relevant pages.  

(Local) Query Execution.  When a web server 
receives a query that has been relayed from another web 
server, it processes the query over its local data and sends 
the result, a ranked URL list, back to the submitting web 
server. 

Result Fusion.  Once results from other web servers 
have been obtained, they are merged into a single ranked 
URL list to be presented to the user. 

This paper focuses on how queries are executed on 
each web server and how to generate a ranked result list. 
Later in this section, related issues will be briefly dis-
cussed, which include typical routing strategies and how 
to improve them in order to obtain top-k results faster. 

Section 3.1 briefly reviews the original PageRank 
algorithm. Section 3.2 explores the web link structure and 
explains the data locality feature that enables the 
distributed execution of search engine queries. A new 
PageRank computation strategy is introduced in Section 
3.3 and Section 3.4 describes the metrics that are used to 
evaluate the algorithms. In the following sections, 3.5 
through 3.8, a series of modified PageRank algorithms are 
proposed, accompanied by experiments for evaluation.  
Section 3.9 discusses a few other issues in the framework, 
such as query routing and data updates. 

3.1   PageRank Review 

Google uses PageRank, to measure the importance of web 
pages, which is based on the linking structure of the Web. 
Page and Brin [3][22] consider the basis of PageRank a 
model of user behavior, the “Random Surfer Model”, 
where a web surfer clicks on links at random with no 
regard towards content. The random surfer visits a web 
page with a certain probability which is derived from the 
page’s PageRank. 

In fact, the PageRank value of a page is defined by the 
PageRank values of all pages, T1, …, Tn, that link to it, 
and a damping factor6, d, that simulates a user randomly 
jumping to another page without following any hyperlinks 
[3], where C(Ti) is the number of outgoing links of page 
Ti. 
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The PageRank algorithm is formally defined in 
                                                        
6 The value of d was taken to be 0.85 in [22]. We use this 
value in all experiments in this paper. 
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Figure 1: Histogram of Distr ibution over  server  size. 
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[14][15] as follows, 

 
G is the directed web link graph of n pages (i.e. n 

URLs), where every vertex represents a unique URL in 
the Web. Let ji →  denote the existence of a link from 

page i to page j, i.e. URL j appears on page i. Then, P is 
the nn×  stochastic transition matrix describing the 
transition from page i to page j, where Pi j, defined as 
1/deg(i), is the possibility of jumping from page i to page 
j. Let v

�
 be the n-dimensional column vector representing 

a uniform probability distribution over all pages: 

[ ]n n
v 1

1×
=�

 

The standard PageRank algorithm starts with the uniform 

distribution, i.e., vx
��

=)0( . The algorithm uses the power 
method to converge, when the L1 residual, 

�
, of vectors of 

two consecutive runs is less than a preset value � 7. The 
result vector is the principal eigenvector of a matrix 
derived from P (see details in [15]). Let gγ

�
 denote the 

global PageRank vector computed over G, the global web 
link graph. gγ

�
 is also referred as the “true global”  

PageRank vector in this paper. 
Note that PageRank is not the only factor in determin-

ing the relevance of a page to a query. Google considers 
other factors, including the number of occurrences of a 
term on a page, if terms in the query appear in the page 
title, or anchor text, if the terms are in large font, etc., to 
produce an IR score for the page. Then, the IR score for a 
page is combined with its PageRank value to produce the 
final rank value for the page. The algorithm for comput-
ing the IR scores is a secret. Since it is orthogonal to the 
PageRank problem, it will not be discussed in this paper. 

3.2   The Server  L inkage Structure 

Intuitively, it would seem that all pages within a domain 
(e.g. www.cs.stanford.edu) have a stronger connection 
with each other through their intra-domain hyperlinks 

                                                        
7 It is set to be 0.0001 in all experiments in this paper. 

than their connections with pages out of their domain. 
Bharat et al. [2] investigated the topology of the Web link 
graph, focusing on the linkage between web sites. They 
introduced a notion of “hostgraph”  to study connectivity 
properties of hosts and domains over time. Kamvar et al. 
[14] studied the block structure of the Web. They found 
that there are clearly nested blocks corresponding to do-
mains, where the individual blocks are much smaller than 
the entire Web. 

Out of the 1,049,271 pages in our test data set, 
865,765 (82.5%) pages contain intra-server hyperlinks 
and only 255,856 (24.4%) pages contain inter-server 
hyperlinks. 96.6% (26,127,126) of the links are intra-
server while 3.4% (908,788) are inter-server. After 
removing duplicates, there are 21,604,663 (96.3%) intra-
server links and 833,010 (3.7%) inter-server links. Figure 3 
shows that most servers have very few inter-server links 
while servers with large numbers of intra-server links are 
very common. 

 
Notice that an inter-server hyperlink often points to 

the top page (or entry point page) of a domain, such as 
http://www.cs.stanford.edu. Among the 908,788 inter-
server links, there are 222, 393 (24.5%) top-page links, or 
187,261 (22.5%) links after removing the duplicates. Such 
inter-server links do not affect the relative importance of 
pages within a web site. 

It is possible for a web server to host multiple inde-
pendent web sites that do not interlink each other to a 
significant extent. For instance, one server in the data set, 
“proxy-service.lb-a.stanford.edu”, hosts as many as 285 
web sites. Such case is treated as a single server to avoid 
an explosion in the number of servers when doing Server-
Rank calculation. Notice that it will generate more 
accurate result if those web sites are treated individually. 

3.3   Overview of  Distr ibuted PageRank Algor ithms 

The topology of the web linkage structure suggests that 
connectivity-based page importance measures can be 
computed at individual web servers, i.e., every web server 
can independently compute a “Local PageRank”  vector 

Figure 2: The PageRank Algor ithm. 

Figure 3: Histogram of Distr ibution over  server  hyper-
links. The x-axis gives the magnitude of the number  of 
intra-server and inter-server  hyperlinks hosted by a 
web server, and the y-axis shows the fraction of web 
servers of that size. 
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over its local pages. Since the majority of links in the web 
link graph are intra-server links, the relative rankings 
between most pages within a server are determined by the 
intra-server links. So the result of local query execution is 
likely comparable to its corresponding sublist of the result 
obtained using the global PageRank algorithm. 

The inter-server links can be used to compute 
“ServerRank” , which measures the relative importance of 
the different web servers. Both Local PageRank and 
ServerRank are used in combination to merge query 
results from multiple sites into a single, ranked hyperlink 
list. 

The outline of the algorithm follows: 

1. Each web server constructs a web link graph 
based on its own pages to compute its “Local 
PageRank”  vector (Section 3.5). 

2. Web servers exchange their inter-server hyperlink 
information with each other and compute a 
“ServerRank”  vector (Section 3.6). 

3. Web servers use the “ServerRank”  vector to refine 
their “Local PageRank”  vectors, which are actu-
ally used for local query execution (Section 3.7). 

4. After receiving the results of a query from multi-
ple sites, the submitting server uses the “Server-
Rank”  vector and the “Local PageRank”  values 
that are associated with the results to generate the 
final result list (Section 3.8). 

Each step is described in detail in the following 
sections. Notice, that for static data sets, both the Local 
PageRank vectors and the ServerRank vector need to be 
only computed once. As shown later, all algorithms are 
efficient and can be exercised frequently in case of 
updates. 

3.4   Evaluation Metr ics 

The goal is to apply the PageRank algorithm in a 
distributed Internet search engine system, where it should 
be able to provide users the same quality results as what 
the original algorithm does, without incurring the cost of a 
centralized search system. Judging the search quality of 
Google is not the focus of this paper; rather PageRank 
vectors and query results, generated by the algorithms 
presented in this paper, can be compared against those 
computed using the Google algorithm. Basically, given 
the same data set, the distributed search engine system is 
expected to return a very similar, if not identical, ranked 
page list to the results obtained in a centralized fashion 
using the Google PageRank algorithm. In this section, 
several metrics are described, which can be used to 
compare two ranked lists. 

Suppose a PageRank vector γ
�

 is computed over a 
page set (domain) D, and p is the corresponding ranked 
page list, which is a permutation from D. Let p(i) denote 
the position (or rank) of page i in p, and page i is “ahead”  

of page j in p if p(i) < p(j). 
},|},{ { DjiandjijiPD ∈≠=  is also defined to be the 

set of unordered pairs of all distinct pages in the domain 
D. 

Given two PageRank vectors 1γ
�

 and 2γ
�

 on D, and 
their respective ranked page lists, p1 and p2, Kendall’s  
metric [16] is then defined as: 

�
∈

=
DPji

ji ppKppK
},{

21},{21 ),(),( , 

where 1),( 21},{ =ppK ji  if i and j are in different order in 

p1 and p2; otherwise, 0),( 21},{ =ppK ji . 

To measure the similarity between p1 and p2, Kend-
all’s –distance [9][16] is defined as follows: 

2/)1(

),(
),( 21

21 −×
=

DD

ppK
ppKDist  

Notice the maximum value of KDist(p1, p2) is 1 when p2 
is the reverse of p1.  

In practice, people are usually more interested in the 
top-k results of a search query. Kendall’s –distance, 
however, cannot be computed directly between two top-k 
ranked page lists because they are unlikely to have the 
same set of elements. In [9], Fagin et al. generalize the 
Kendall’s –distance to be able to handle this case. 

Suppose )(
1

kp  and )(
2
kp  are the top-k lists of p1 and p2. 

The minimizing Kendall’s  metric is defined as: 

 �
∈

=
DPji

kk
ji

kk ppKppK
},{

)(
2

)(
1

min
},{

)(
2

)(
1min ),(),(  

where 0),( )(
2

)(
1

min
},{ =kk

ji ppK   if both i and j appear in one 

top-k list but neither of them appears on the other list8; 

otherwise, ),(),( 21},{
)(

2
)(

1
min

},{ ppKppK ji
kk

ji = . 

Then, the minimizing Kendall’s –distance [9] is de-
fined as: 

2/)1(

),(
),(

)(
2

)(
1min

21
)(

min −×
=

kk

ppK
ppDistK

kk
k . 

Another useful metric is the L1 distance between two 
PageRank vectors, 

121 γγ
��

− , which measures the  abso-

lute error between them. 

3.5   Local PageRank 

Since the majority of hyperlinks within a web site are 
intra-server links, intuitively, the PageRank vector calcu-
lated over the site’s local page set may resemble its corre-
sponding segment of the true global PageRank vector. 

A straightforward way to compute a Local PageRank 
vector on a web server is to apply the PageRank algo-
rithm on its page set after removing all inter-server hyper-

                                                        
8 This is the only case that there’s not enough information 
to compare the ordering of i and j in p1 and p2. Kmin is the 
optimistic choice. 
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links [14]. Given server-m that hosts nm pages, G(m) 
( mm nn × ), the web link graph of server-m, is first con-
structed from the global web link graph Gg, where for 
every link ji →  in Gg, it is also in G(m) if and only if 
both i and j are pages in server-m. That is, G(m) contains 
intra-server links only. Then, a Local PageRank vector of 
server-m is computed as follows: 

),,( )()( mm nnmml vvGpageRank
���

=γ         (LPR-1) 

where 
mnv

�
 is the nm-dimensional uniform column vector 

as defined in Figure 2. 
To evaluate the accuracy of Local PageRank, the 

Local PageRank vectors )(mlγ
�

 of each of the web servers 

in the data set are computed. The true global PageRank 
vector gγ

�
 is also computed on the entire data set. Let pl(m) 

be the corresponding ranked page list of )(mlγ
�

, and pg the 

global ranked page list. For every server-m, the elements 
corresponding to all of its pages from gγ

�
 are taken to 

form )(mgγ
�

, the corresponding vector of )(mlγ
�

. Note that, 

in order to compare with )(mlγ
�

, )(mgγ
�

 is normalized so 

that its L1 norm (the sum of all element values) is 1. Let 
pg(m) be the according ranked page list of )(mgγ

�
. 

First, the average L1 distance between )(mlγ
�

 and 

)(mgγ
�

, 
1)()( mgml γγ

��
− , is 0.0602. In comparison, the 

average L1 distance between 
mnv

�
, the uniform vector, and 

)(mgγ
�

 is 0.3755. 

Second, the average9 Kendall’s –distance, 
),( )()( mgml ppKDist ,  is 0.00134, which is a short dis-

tance. If a server hosts 40 pages, it means that there is 
only 1 pair of pages mis-ordered in the Local PageRank 
list, where they are next to each other.  

Finally, the average minimizing Kendall’s –distance, 

),( )()(
)(

min mgml
k ppDistK , is measured, which is shown in 

Figure 4. 
The accuracy between top-k page lists seems worse 

than the accuracy between two full lists, though the dis-
tance declines quickly as k increases. On the one hand, 
because of the small size of the top-k lists, even one mis-
ordered pair has a big impact on the distance, e.g., a 
Kendall’s –distance of 0.022 corresponds to only 1 mis-
order in a top-10 list. On the other hand, the most impor-
tant pages in a web site usually have more incoming and 
outgoing inter-server links with other domains which are 
not considered by LPR-1. These links, in turn, affect the 
accuracy. Table 1 lists the average number of incoming 
and outgoing inter-server links on the lists of the top-10 
and top-100 pages, compare to the number of all pages in 

                                                        
9 Weighted by server size. 

the data set. The relatively large number of incoming 
links indicates that the true PageRank value of a top-k 
page is significantly affected by the number of out-of-
domain pages that link to it. 

 
 Top-10 Top-100 All 

Outgoing links 2.10 1.58 0.17 

Incoming links 70.72 13.30 0.17 

Table 1 Average number  of inter-server  links that involve 
top-k pages. 

To improve the accuracy of the Local PageRank 
vectors, the authors present a slightly more complicated 
algorithm. As described in the next section, web servers 
need to exchange information about their inter-server 
hyperlinks to compute the ServerRank vector. The link 
information can also be used to compute more accurate 
Local PageRank vectors. 

Given server-m, this algorithm introduces an artificial 
page, � , to its page set, which represents all out-of-domain 
pages. First, a local link graph, )(mG′  ( )1()1( +×+ mm nn ), 

is constructed from the global web link graph Gg, where 
for every link ji → , it turns into (1) ji →  if both i and 

j are local pages; or (2) ξ→i  if i is a local page but j is 

not; or (3) j→ξ  if j is a local page but i is not. Second, 

a PageRank vector )(mlγ ′�  is calculated as follows, 

),,( 11)()( ++′=′
mm nnmml vvGpageRank

���
γ         (LPR-2) 

Then, the Local PageRank vector )(mlγ
�

 is derived by 

removing �  from )(mlγ ′�  and normalizing it. 

For LPR-2, the average L1 distance between )(mlγ
�

 and 

)(mgγ
�

 is only 0.0347, less than half that of algorithm 

LPR-1. The average Kendal’s –distance, 
),( )()( mgml ppKDist ,  is also reduced to 0.00081, ap-

proximately 1 mis-ordering in 50 pages. Figure 4 also 
shows the improvement on the accuracy of the top-k page 
lists. 

In order to construct )(mG′ , servers need to inform 

each other of their inter-server hyperlinks. For instance, 
server-m has to send a message to server-n that there are x 
links from m to n. Within the data set of 630 web servers, 

Figure 4: The minimizing Kendall’s -distance for  
top-k page lists between pl(m) and pg(m) (k = 10 to 
5,000) of algor ithms LPR-1 and LPR-2. 
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on the average a server has outgoing links to 10.0 others, 
which means it needs to send 10 point-to-point messages. 
More details of the associated communication cost are 
discussed in the following sections. 

3.6   ServerRank 

It is encouraging that the accuracy of the Local PageRank 
vectors is improved significantly by the inclusion of some 
simple inter-server link information. This section presents 
algorithms to compute ServerRank that measure the 
relative importance of different servers. ServerRank is 
useful in two ways, refining Local PageRank vectors and 
weighing the importance of the result pages from different 
servers. 

Similar to how the relative importance of different 
pages is measured by their connections with each other, 
ServerRank can be computed on the inter-server links 
between servers. However, unlike the Local PageRank 
computation, which can be performed individually by 
each server without contacting others (algorithm LPR-1), 
to calculate the ServerRank, servers must exchange their 
inter-server hyperlink information. The communication 
cost will be discussed after the algorithms are presented. 

First, the server link graph, Gs, is constructed, in 
which there are ns servers and every server is denoted by a 
vertex. Given servers m and n,  nm→  denotes the 
existence of a hyperlink from a page on m to a page on n. 
Then, a ServerRank vector can be simply computed as if it 
were a PageRank vector, 

),,(
ss nnss vvGpageRank

���
=γ             (SR-1) 

Let ps be the corresponding ranked server list of sγ
�

. 
Since there is no such “ServerRank”  concept in 

Google’s search engine scheme and it is an intermediate 
step in the framework, there are no direct ways to measure 
its accuracy. Intuitively, the importance of a server should 
correlate with the importance of the pages it hosts. Here 
the authors suggest to construct two “benchmark”  lists to 
approximately check the ServerRank vector sγ

�
 against 

the true global PageRank vector gγ
�

. 

• Top_Page server list, Top(ps). Servers are 
ranked by the PageRank value of the most impor-
tant page that they host, i.e. the page with the 
highest PageRank value in gγ

�
. 

• PR_Sum server list, Sum(ps). Servers are 
ranked by the sum of the RageRank values of all 
pages that they host. 

Both server lists are constructed using the global 
PageRank vector gγ

�
. Table 2 shows ps is near both of 

them and closer to Top(ps). Notice, that the Kendall’s –
distance between Top(ps) and Sum(ps) is 0.025. 

Algorithm SR-1 does not distinguish the inter-server 
hyperlinks when constructing the server link graph. Since 

an outgoing hyperlink carries a certain portion of the im-
portance (i.e. PageRank value) of the source page to the 
destination page, in turn, it also transfers some importance 
to the hosting server, which means that a link from a more 
important page likely contributes more to the destination 
server. In fact, the ServerRank vector can be computed 
using the PageRank information of the source pages of 
the inter-server links. Notice, that at this phase, the Local 
PageRank value of a page is the best measure of its “ true”  
importance within its own domain, so it can be used to 
weight inter-server links [14]. 

Table 2: The Kendall’s -distance between the ranked server  
lists. 

The construction of the stochastic transition matrix P, 
in Figure 2 can be modified to accommodate any 
available Local PageRank information into the 
ServerRank computation. Given a link nm→  in the 
server link graph Gs, its weight, denoted by nmw → , is 
defined as the sum of the Local PageRank values of all 
source pages in server-m, 

g
DjDi
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where lpi is the Local PageRank value of page i. Then 
P is constructed as,  

.,0; otherwisePorGnmif
w

w
P mns

k
km
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� →

→

and P is still a stochastic transition matrix. Then the rest 
of the algorithm is applied to compute the ServerRank 
vector, 

),,(
ss nnss vvGkpageRan

��� ′=γ             (SR-2) 

The result ranked server list is also compared against 
Top(ps) and Sum(ps) in Table 2. It is clearly closer to those 
two lists than the list generated by SR-1.  

Notice, that it is not necessary to share all inter-server 
hyperlinks explicitly across servers (and related Local 
PageRank values in SR-2) to compute the ServerRank 
vector. In fact, each server just needs to compose its row 
of the stochastic transition matrix P, which means that it 
sends only one message out. Suppose on average every 
server connects with c other servers through inter-server 
links (10.0 in the data set). In a message of algorithm SR-
1, a server just needs to identify the c servers to which it 
connects with. In SR-2, the size of the message is a little 
bigger, which is a row in P as described above.  

Since every server needs a copy of the ServerRank 
vector to refine its Local PageRank vector in the next 
step. One way to compute it is to let every server 
broadcast their messages to all other servers and compute 
the vector by themselves. A more efficient strategy is to 

 KDist(ps, Top(ps)) KDist(ps, Sum(ps)) 

SR-1 0.035 0.053 

SR-2 0.022 0.041 
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elect a few capable servers to compute the vector and 
broadcast the result so most servers will not have to 
receive and process n messages to construct the 
corresponding server link graph. 

3.7   Local PageRank Refinement 

In this section, the ServerRank vector is used to refine the 
Local PageRank vectors on every web server. 

The difference between a Local PageRank vector and 
its corresponding (normalized) sub-vector in the true 
global PageRank vector is caused by the lack of inter-
server link information. The ServerRank vector indicates 
the relative importance of a server within the network. 
More inter-server hyperlink information can be added to it 
in order to make the Local PageRank vectors more 
accurate. 

The smallest amount of information that server-n must 
share with server-m is the number of links from n to m, 
and which pages on m the links lead to. Then, the Local 
PageRank vector of server-m can be adjusted in the 
following way. Assuming that out of ln inter-server 
hyperlinks hosted by server-n there are )( imnl  links that 

lead to page i on server-m. The Local PageRank value of 
page i, 

iml )(γ , is adjusted by transferring a portion of 

PageRank values of the links from server-n, 

n

mn

s

s
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l
i
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ii
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γ
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where 
nsγ  and 

nsγ  are the ServerRank values of m and n 

respectively. Then the updated Local PageRank vector is 
normalized, denoted by )(mlγ ′� , so that other pages will 

also be affected. Thus, the same web link graph G(m) of 
algorithm LPR-1 can be used to further distribute the 
linkage information. Unfortunately, the loop operation in 
the PageRank algorithm (shown in Figure 2) cannot be 
performed here as )(mlγ ′�  will eventually converge to the 

old Local PageRank vector no matter what the initial 
input vector is because the PageRank vector is the 
principal eigenvector of a matrix, which is constructed 
over the web link graphs [15]. To avoid this problem, the 
PageRank algorithm can be performed for only one 
iteration, denoted by pageRank_single, 

),,( )()()( mnmlmml vGinglepageRank_s
���

γγ ′=  (LPR-Ref-1) 

Results from both algorithms LPR-1 and LPR-2 at the 
Local PageRank computation step and ServerRank 
vectors from both SR-1 and SR-2 are used to evaluate the 
refinement algorithms. Table 3 demonstrates that the 
accuracy of the Local PageRank vectors is improved, 
especially these vectors resulting from LPR-1 because 
they do not have any inter-server link information. Only a 
small gain orcurs the LPR-2/SR-1 combination because 
only a small amount of additional information is added by 
algorithm SR-1 to the vectors from LPR-2. The 
improvement in vectors from algorithm LPR-1 is greater 

because no inter-server link information is applied in the 
algorithm. Figure 5 demonstrates the improvement on the 
accuracy of the top-k page lists. Notice, that the ranking 
of the few most important pages improves significantly 
because they are usually affected by the inter-server links 
much more than other pages. 

Local PageRank 
& ServerRank 1)()( mgml γγ

��
−  ),( )()( mgml ppKDist  

LPR-1/SR-1 0.0391 (35%) 0.00093 (31%) 

LPR-1/SR-2 0.0284 (53%) 0.00069 (49%) 

LPR-2/SR-1 0.0303 (13%) 0.00071 (12%) 

LPR-2/SR-2 0.0245 (29%) 0.00055 (32%) 

Table 3: The Average L1 distance and Kendall’ s –distance 
of Local PageRank vectors after  being refined by algor ithm 
LPR-Ref-1. (Percentage of improvement in parentheses). 

If server-n is willing to share more information with 
server-m, more specifically, the Local PageRank value of 
the individual pages that have hyperlinks to pages on m, it 
can help server-m understand better the relative impor-
tance of the incoming links. In this case, server-m’ s Local 
PageRank vector can be adjusted as the end page of an 
inter-server link receives a certain amount of the Local 
PageRank value of the starting page. Specifically, 
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where 
jnl )(γ  is the Local PageRank value of page j, 

which is on server-n and  has a URL link to page i, which 
is on server-m. deg(j) is page j’ s outgoing degree in the 
global link graph. Similarly, the new vector can be 
normalized, denoted by )(mlγ ′′�  and applied through the 

single-iteration PageRank algorithm, 
),,( )()()( mnmlmml vGinglepageRank_s

���
γγ ′′=  (LPR-Ref-2) 

Table 4 and Figure 6 show that with more link source 
information algorithm LPR-Ref-2 significantly improves 
the accuracy of the Local PageRank vectors when 
compared with the results obtained using LPR-Ref-1. 

In algorithm LPR-Ref-1, each server needs to send one 
message to every server to which it is connected with one 
or more hyperlinks. For instance, the message from 

Figure 5: The minimizing Kendall’s -distance for  
top-k page lists between refined pl(m) and pg(m) (k = 10 
to 5,000), Algor ithm LPR-Ref-1. 
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server-n to server-m consists of all unique URLs hosted 
by m that occur on pages stored at n, along with the count 
of each link, and the count of all inter-server links on 
server-n. In the data set, it translates into an average 10 
messages per server and the average message 
(uncompressed) size is 940 bytes. Because many URLs in 
a message share the same domain name, it is easy to 
reduce the size of each message using some prefix 
compression techniques. Algorithm LPR-Ref-2 needs the 
same number of messages but requires more detailed 
information about the source page of each inter-server 
link, specifically the Local PageRank value of the source 
page of every link. In this case, the average message size 
increases to 2.1 Kbytes before compression. In both cases, 
the small message size means that the bandwidth 
requirement of the distributed PageRank algorithms is 
low. When scaled to the size of the Internet, the total 
number of messages will increase significantly due to the 
large number of web servers but the number of messages 
sent per server and the average message size will not 
increase significantly. 

Local PageRank 
& ServerRank 1)()( mgml γγ

��
−  ),( )()( mgml ppKDist  

LPR-1/SR-1 0.0282 (53%) 0.00061 (54%) 

LPR-1/SR-2 0.0197 (67%) 0.00039 (71%) 

LPR-2/SR-1 0.0205 (41%) 0.00049 (40%) 

LPR-2/SR-2 0.0163 (53%) 0.00027 (67%) 

Table 4: The Average L1 distance and Kendall’ s –distance 
of Local PageRank vectors after  being refined by algor ithm 
LPR-Ref-2. (Percentage of improvement in parentheses). 

 
Since the computation of the ServerRank vector in 

algorithm SR-2 is dependant on the Local PageRank 
vectors, the updated Local PageRank vectors can be used 
to further refine the ServerRank vector, etc. Multiple 
rounds of refinement can be applied in a relatively static 
environment, where hyperlinks on pages are not changed 
frequently.  

3.8   Result Fusion 

When a search query is submitted to a web server, it is 

forwarded to some other web servers that have relevant 
pages. On each receiving server, the query is executed 
using the server’s Local PageRank vector, and the result, 
a ranked URL list, is sent back to the server to which the 
query was initially submitted. Then, the server performs 
Result Fusion (RF), which merges all the result lists into a 
single ranked URL list that is as close to the “true global”  
result list as possible, i.e. as if the query had been 
executed by a centralized search engine over the same 
data set. 

Given a query q, let qm, a ranked URL list, denote the 
result returned by server-m, where in general m ranges 
from 1 to ns, which is the number of servers in the system. 
qm is a sublist of m’ s ranked page list, pl(m), and it is empty 
if there are no relevant pages on server-m. In qm, every 
URL is associated with its Local PageRank value. Let 

)(mqγ
�

 be the corresponding Local PageRank vector of qm, 

which is also a sub vector of )(mlγ
�

, the Local PageRank 

vector of server-m. The result lists from every server can 
be simply weighted by the ServerRank vector and merged 
together, 
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where smγ  is ServerRank value of m. Then, the result 
page list, denoted by qlg, is sorted according to the values 
in 

lgqγ
�

. 

If the entire Local PageRank vector of every server is 
applied in RF, the result, plg, will be the sorted list of all 
pages in the system. Obviously, qlg is a sub list of plg, i.e., 
for any page i and j in qlg, if i is ahead of j in qlg, then i is 
also ahead of j in plg. Let qg denote the corresponding 
result list obtained using the centralized PageRank 
algorithm, it is also a sub list of pg, the complete sorted 
page list based on the true global PageRank vector gγ

�
. 

Notice, that the number of mis-ordered pairs between plg 
and pg is the upper bound of that between qlg and qg. Also, 
that plg and pg are identical is a sufficient condition of qlg 
being identical to qg. Thus, the algorithm RF can be 
evaluated by comparing pg and plg, or gγ

�
 and lgγ

�
, the 

result of RF after normalization. The evaluation of actual 
queries will be shown in Section 4. 

The set of Local PageRank vectors used in the 
following experiments were generated using algorithm 
LPR-2, refined by LPR-Ref-2 using the ServerRank vector 
produced with SR-2. The L1 distance between lgγ

�
 and gγ

�
 

is 0.0198. The Kendal’s –distance between plg and pg, is 
0.00105, similar accuracy to the Local PageRank page 
lists. Figure 7 shows the minimizing Kendall’s –distance 
between the top-k lists of plg and pg, which illustrates a 

  

Figure 6: The minimizing Kendall’s -distance for  
top-k page lists between refined pl(m) and pg(m) (k = 
10 to 5,000), Algor ithm LPR-Ref-2. 
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good match between two lists on the ranking of the most 
important pages. 

 

3.9   Query Routing and Data Updates 

In this section, the query routing and data updates issues 
are briefly discussed. 

In general, search engine queries are multi-term 
boolean text queries that request ranked results. On the 
one hand, more results are desired for purpose of 
completeness. On the other hand, the most important 
results need to be on the top of the result list. In the 
previous sections, this paper focuses on the ranking 
problem, assuming that queries are sent to and executed at 
all relevant web servers. 

Recently there have been many studies on indexing 
techniques to help route queries in Peer-to-Peer systems. 
Several of these approaches could be applied to the search 
engine framework, such as Chord [25], one of a number 
of DHT-based indexing methods that have been proposed 
recently. Chord was designed to associate a key with each 
shared file in a P2P system, in which all keys are hashed 
into a common space and every participating peer is re-
sponsible for a portion of the key-space. DHT mecha-
nisms like Chord can be adapted for use in a distributed 
search engine, where every keyword can be paired with a 
list of server ids that indicate which servers host pages 
containing that keyword. Thus, given a user’s search 
query, the submitting server first retrieves the server lists 
of all query terms from the system. Second, it performs an 
intersection operation on the server lists to determine 
what servers host relevant pages. Then, it sends out the 
user’s search query to the servers and waits for the results. 
This strategy guarantees the complete result if the query 
ends up being executed on every submitted server. 

It may be expensive to send a query to all relevant 
web servers if the query contains some popular keywords 
that can be found on many websites. Furthermore, in most 
cases, people are more likely to be interested in the top-k 
results of a query, which requires only that the top-k lists 
are accurate. Intuitively, the query should not be sent to a 
server that cannot return pages whose PageRank value is 
not high enough to make the top-k list. Thus, a more effi-
cient strategy can be used once the submitting server has 
the list of all relevant servers, denoted by Sq, as shown in 
Figure 8. 

 
The submitting server can also stop forwarding the 

query when the user is satisfied with the top-k result list. 
Furthermore, it can attach the current threshold PageRank 
value to the query so that the receiving servers do not 
need to return less relevant results. 

Since most search queries contain more than one term, 
whose corresponding indices are likely to be distributed 
into multiple servers using DHT-based approaches. Direct 
peer indices and indirect peer indices, proposed in the 
GALANX system [26], can be also applied in the frame-
work, which tend to group indices of frequently co-
occurring terms together so that fewer server contacts 
need to be made to discover the relevant server list, 

To handle data updates, such as pages added/deleted 
on a server, or hyperlinks added/deleted on a page, every 
web server can periodically update their Local PageRank 
vector based on the frequency and extent of the changes. 
Updated inter-server link information can also be 
exchanged in the same fashion for the ServerRank 
computation. 

4.   Query Evaluation 

In the previous section, the true global PageRank vector is 
used to evaluate the accuracy of the Local PageRank vec-
tors in the different steps and the merged PageRank vec-
tor in the final fusion phase. In this section, queries are 
used to investigate the performance of the proposed algo-
rithms. 

As mentioned in Section 3.1, where Google’s PageR-
ank algorithm was reviewed, there are a few other factors 
in ranking search results in Google besides PageRank, 
including some standard IR measures, the appearance of 
query terms in page titles and anchor text, and text font 
size, etc. For each page, an IR score is computed for a 
given query and combined with its PageRank value to 
form its final page ranking value. Although the formula of 
the IR score is not publicly known, it is orthogonal to the 
PageRank computation. Thus, title search queries [22] can 

Figure 7: The minimizing Kendall’s -distance for  
top-k page lists between plg and pg (k = 10 to 50,000). 

Figure 8: The Query Routing Algor ithm. 
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be used to further evaluate the algorithms presented in this 
paper. The results of a title search query are all web pages 
whose titles contain all the query words. So every word in 
the query can be treated equally and the result list is 
sorted by PageRank only. 

In the over one million pages in the data set, there are 
about 150,000 unique terms in their <title> section. a set 
of 100 queries is selected, which include “Stanford 
University” , “engineering”, “research overview” , “news” , 
etc. On average, the complete result list of each query has 
about 3,450 pages from 11 web servers. The combination 
of algorithms LPR-2, SR-2, and LPR-Ref-2 are used to 
construct and refine Local PageRank vectors on each 
server. 

In the first experiment, the complete result list is re-
turned for every query and it is compared against the re-
sult list produced using the true global PageRank vector. 
The average Kendal’s –distance between two result lists 
is 0.00047, which corresponds to approximately 2,800 
mis-ordered pairs (out of a possible total of 6 million) 
between two 3,450-page lists. Figure 9 shows the accu-
racy of the top-k result lists. Notice that the important 
pages are in good order – The minimizing Kendall’s –
distance between the top-10 list and its counterpart gener-
ated using the true global PageRank vector is 0.27, or 
only 1.2 mis-ordering pairs out of 45 possible pairs. 

 
If only the top-k result lists are wanted, the progressive 

routing approach described in Section 3.9 can be applied. 
The second experiment asks for top 100 page URLs for 
every query in the same query set. In each round, a query 
will be forwarded to 3 servers. As a result, on average, 
each query is executed on only 7 servers out of possible 
11 servers, and only about 1,500 page URLs (of 3,450 
potential results) are received.  

5.   Related Work 

Among the existing Internet search engines, Google is the 
most frequently used, accounting for more than 35% of 
searches done by US web surfers10. Google employs the 
PageRank algorithm, designed by Page and Brin [3][22], 
to measure the importance of web pages. There are also a 
few other hyperlink connectivity based algorithms, such 
                                                        
10 Measured by the comScore Media Metrix gSearch ser-
vice in November 2003, www.searchenginewatch.com. 

as the HITS algorithm by Kleinberg et al. [17][4] used by 
the IBM CLEVER Searching project [6]. 

Several other authors have considered the computation 
of PageRank vectors. Haveliwala [10] presents a block-
based strategy for efficiently compute PageRank on 
computers with limited memory. Kamvar et al. [15] 
propose a power extrapolation algorithm to accelerate the 
convergence in computing PageRank vectors. Haveliwala 
[11] and Jeh et al. [13] discuss approaches to compute 
topic-sensitive or personalized PageRank. Bharat et al. [2] 
and Kamar et al. [14] observed the nested block structure 
of the Web. Kamar et al. [14] proposed Local PageRank 
and BlockRank algorithms (listed as algorithms LPR-1 
and SR-2 in Section 3) to accelerate the computation of 
PageRank vectors. 

While related, the main thrust of this work is 
orthogonal to these earlier efforts whose primary goal is 
to compute the global PageRank vector more efficiently. 
Specifically, the objective is to avoid computing the 
global PageRank vector altogether while still being able 
to provide quality ranking functions and quality results in 
a distributed search environment. 

Web crawling is a critical part of Internet search 
engines. Cho et al. [3] defined ordering schemes to direct 
crawling, and evaluation metrics to measure their 
efficiency. Najork et al. [20] studied different crawling 
strategies and their impact on page quality. They found 
that crawling in a breadth-first search order tends to 
discover high-quality pages early on in the crawl, which 
was applied when the authors downloaded the 
experimental data set. Raghavan et al. [23] propose a 
layout-based information extraction technique to extract 
semantic information from web search forms and result 
pages in an effort to crawl the “hidden”  web, the 
database-backed automatically generated web pages. 

In early Peer-to-Peer file sharing systems, query 
routing is fairly simple. For instance, Gnutella [12] does 
not have any object indices. A query is simply relayed to 
all neighbor peers if it cannot be answered. In contrast to 
the flooding-based routing approaches, several research 
systems such as CAN [24], Chord [25], Pastry [8], and 
Tapestry [27], proposed independently, construct a 
distributed hash table (DHT) over the peer network in an 
effort to provide efficient query routing. In a DHT-based 
system, every shared file is associated with a key, either 
its name or a system id. All keys are hashed to a common 
key-space. Every peer is responsible for a portion of the 
key-space and stores the files whose keys fall into that 
key-space. Thus, every file request can be forwarded to 
the specific peer that corresponds to the file’s key. 

6.   Conclusions and Future Work 

Existing Internet search engines use web crawlers to 
download data to their central servers to process queries. 
This paper describes and evaluates an alternative distrib-
uted approach in which every web server acts as an indi-

Figure 9: The minimizing Kendall’s -distance for  
top-k query result quality measures (k = 10 to 1,000). 
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vidual search engine on its own pages, eliminating the 
need for crawlers and centralized servers. In such a sys-
tem, a query is taken by a web server of the user’s choice, 
and then forwarded to related web servers. It is executed 
on those servers and results are returned to the submitting 
server where they are merged into a single ranked list. 

Measuring the importance of web pages and ranking 
results are critical parts of a search engine. This paper 
focuses on how to apply ranking algorithms, more 
specifically Google’s PageRank algorithm, in a 
distributed environment. The authors propose a series of 
PageRank variants, including Local PageRank, 
ServerRank, Local PageRank Refinement, and Result 
Fusion. A real web data set is used in the experiments, 
which shows a distributed approach can produce 
PageRank vectors that are comparable to the results of the 
centralized PageRank algorithm. Although it is premature 
to apply such distributed approach to the Internet scale 
which involves many other complicated research and 
engineering problems, the experiments, using a real-world 
domain of data, demonstrate it is promising to be adapted 
in an enterprise intranet environment. 

Apart from improving the ranking algorithms, the 
authors plan to implement the framework in a real system 
in order to further investigate query routing issues and 
system performance such as query response time. 
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