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Critical exponents of random XX and XY chains:

Exact results via random walks
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We study random XY and (dimerized) XX spin-1/2 quantum spin chains at their quantum phase
transition driven by the anisotropy and dimerization, respectively. Using exact expressions for
magnetization, correlation functions and energy gap, obtained by the free fermion technique, the
critical and off-critical (Griffiths-McCoy) singularities are related to persistence properties of random
walks. In this way we determine exactly the decay exponents for surface and bulk transverse and
longitudinal correlations, correlation length exponent and dynamical exponent.

Disordered quantum spin chains have gained much in-
terest recently [1–8]. It seems to be established right
now that the critical properties in these one-dimensional
system are governed by an infinite-disorder fixed-point
[9] and the application of a renormalization group (RG)
scheme á la Dasgupta and Ma [10] is a powerful tool
to determine critical properties and static correlations of
these new universality classes, either analytically, if pos-
sible, or numerically. Although the underlying renormal-
ization scheme is extremely simple the analytical compu-
tations are sometimes tedious [1,2]. Therefore an alterna-
tive route to the exact determination of critical exponents
and other quantities of interest is highly desirable, and
this is what we are going to present in this letter. In doing
so we follow a route on which we already traveled suc-
cessfully for the random transverse Ising chain [11–13],
and here we are going to do one step further studying
random XX and XY models with the help of a straight-
forward and efficient mapping to random walk problems.
This mapping is not only a short-cut to the results known
from analytical RG calculations, it also gives new exact
results in the off-critical region (the Griffiths-phase [14])
and provides a mean to study situations in which the RG
procedure must fail, as for instance in the case of corre-
lated disorder [15]. Here we confine ourselves to a concise
presentation of the basic ideas including the determina-
tion of various exponents for the first time. The technical
details of the derivations and further results are deferred
to a subsequent publication [16].
The model that we consider is a spin-1/2 XY–quantum

spin chain with L sites and open boundaries, defined by
the Hamiltonian

H =

L−1
∑

l=1

(

Jx
l S

x
l S

x
l+1 + Jy

l S
y
l S

y
l+1

)

, (1)

where the Sx,y
l are spin-1/2 operators and the interaction

strengths or couplings Jx,y
l > 0 are independent random

variables modeling quenched disorder. In the case of the

random XY chain one has two independent distributions
for the couplings Jx and Jy, ρx and ρy, respectively,
whereas the random dimerized XX-chain has perfectly
isotropic couplings Jx

l = Jy
l = Jl but two independent

probability distributions for the even and odd couplings
(i.e. for J2l = Je

2l and J2l−1 = Jo
2l−1), ρ

e and ρo, respec-
tively.
The model (1) has a critical point given by [ln Jx]av =

[ln Jy]av in the XY case and [ln Je]av = [ln Jo]av in the
XX case (here [. . .]av denotes the disorder average). The
distance from the critical point is conveniently measured
in the variable

δ =
[ln Jx(e)]av − [ln Jy(o)]av

var[ln Jx(e)] + var[ln Jy(o)]
, (2)

where var(x) is the variance of random variable x. At
the critical point (δ = 0) spatial correlations decay alge-
braically, for instance in a finite system of length L with
periodic boundary conditions the bulk-correlations decay
as

[Cµ(L)]av = [〈0|Sµ
1 S

µ
L/2|0〉]av ∼ L−ηµ

(3)

for µ = x, y, z, 〈0| denotes the ground state of (1),
whereas for a finite system of length L with open bound-
ary conditions the end-to-end correlations decay with a
different exponent like

[Cµ
1 (L)]av = [〈0|Sµ

1 S
µ
L|0〉]av ∼ L−ηµ

1 . (4)

Away from the critical point (δ 6= 0) the infinite sys-
tem develops long range order. For the XY model
limL→∞[Cµ(L)]av = (mµ)2 6= 0, with mx > 0 for δ > 0
and my > 0 for δ < 0, whereas for the XX model there
is dimerization for δ 6= 0 with non-vanishing string or-
der [17]. One can introduce local transverse and lon-
gitudinal order parameters mx,y

l and mz
l also for a finite

system (with open boundaries) using the off-diagonal ma-
trix element [mµ

l ]av = [〈1|Sµ
1 |0〉]av, where 〈1| is the lowest
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excited state with a non-vanishing matrix-element [18].
Analogous to bulk and end-to-end correlations the bulk
and surface magnetizations mµ

L/2 and mµ
1 , respectively,

behave differently:

[mµ
L/2]av ∼ L−xµ

and [mµ
1 ]av ∼ L−xµ

1 (δ = 0) (5)

where the critical exponents xµ and xµ
1 fulfill the scaling

relation 2xµ = ηµ and 2xµ
1 = ηµ1 .

Now we are going to determine the critical exponents
introduced above. We use the free-fermion representa-
tion of model (1) to derive exact expressions for the local
order-parameters whose finite size scaling behavior fol-
lows then from a mapping to a random walk problem.
We start with the longitudinal order parameter for the

random XX chain (of length L with open boundaries; for
convenience we assume from now on that L is a multiple
of 4), which is given by [16]

mz
2l−1(XX) =

1

2

{

1 +

L/2−1
∑

k=l

k
∏

j=l

(

J2j−1

J2j

)2

+

l−1
∑

k=1

k
∏

j=1

(

J2l−2j

J2l−2j−1

)2
}

−1

(6)

for odd sites. Note that the couplings to the left and
to the right of the spin that is considered enter this ex-
pression differently. For the surface (l = 1) , where one
only has ”right” couplings, this expression is similar to
an analogous result for the random transverse Ising chain
[11] and its scaling properties are related to the survival
probability of a random walk with L/2 steps. This is
easy to see for the extreme binary distribution, in which
J2j = 1 and J2j−1 = λ, λ−1 with probability 1/2, tak-
ing the limit λ → 0 (i.e. λ−1 → ∞). Due to the occu-
rance of infinite terms in the sum in the denominator of
the r.h.s. of (6) one can easily identify those instances
that give a non-vanishing surface magnetization: When

∀k = 1, . . . , L/2 − 1 :
∏k

j=1 J2j−1 < ∞ the expression

on the r.h.s. of (6) attains a non-vanishing value (typ-
ically 1 or, less frequently, some fraction 1/n), other-
wise it is zero. One can represent the disorder config-
uration J1, J3, J5, . . . , JL−1 as one instance of a random
walk with L/2− 1 steps by saying that the walker in the
i-th steps moves downwards if J2i−1 = λ and upwards if
J2i−1 = λ−1, as it is sketched in Fig.1. In this way the
disorder configuration with non-vanishing surface mag-
netization mz

1 are easily identified: they represent sur-
viving walks, i.e. walks that never move into the upper
half. Thus [mz

1(XX)]av scales like the survival proba-
bility Psurv(L/2) of a random walk with L/2 steps that
vanishes like L−1/2, i.e. [mz

1(XX)]av ∼ L−1/2. Therefore

xz
1(XX) =

1

2
and ηz1(XX) = 1 . (7)

Inspecting the expression (6) for the bulk (l = L/4)
one sees that now (again for the extreme binary dis-
tribution) a nonvanishing magnetization mz

L/2−1 arises
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FIG. 1. Sketch of the configuration of odd bonds for a chain
of length L that gives a non-vanishing longitudinal magneti-
zation mz

i ∼ O(1) for the surface spin, i = 1, in (a) and the
central spin, i = L/2 − 1, in (b). The example is for the
extreme binary distribution with J2i = 1. Weak couplings
(J2i−1 = λ) correspond to downward steps of the random
walk, strong couplings (J2i−1 = λ−1) to upwards steps. The
walk in (a) has surviving character, it does not enter the up-
per half plane. In (b) one can identify two random walks each
starting at the central site, i = L/2− 1, one to the right and
one to the left, and each of them has surviving character.

only if ∀k = L/4, . . . , L/2 − 1 :
∏k

j=L/4 J2j−1 < ∞
and ∀k = 1, . . . , L/4 − 1 :

∏k
j=1 J

−1
L/2−2j−1 < ∞. We

represent the disorder configuration to the right of the
central site, JL/2−1, JL/2+1, . . . , JL−1, as a random walk
with L/4 steps in the way as for the surface spin. The
disorder configuration JL/2−1, JL/2−3, . . . , J1 to the left
is represented as a second (independent) random walk
also with L/4 steps, now counting backwards and with
the step-direction reversed (i.e. downwards for J = λ−1

and upwards for J = λ), since now strong bonds on odd
sites imply weak coupling of the central spin. For illus-
tration this representation is depicted in Fig. 1. Now,
for the bulk magnetization mz

L/2−1 to be non-vanishing,

both halfs of the coupling configuration have to repre-
sent surviving random walks. Thus the probability for a
non-vanishing magnetization mz

L/2−1 is just the product

of two survival probabilities (since both walks are inde-
pendent), i.e. [mz

L/2−1]av ∼ {Psurv(L/4)}2 ∼ L−1 and

therefore

xz(XX) = 1 and ηz(XX) = 2 . (8)

For the XY chain one has the following exact relation
[16] for the disorder averaged longitudinal magnetization

[mz
l (XY )]av = [{mz

l (XX)}1/2]2av , (9)

which yields immediately the surface and bulk exponents
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for longitudinal order parameter and correlations: Since
{mz

1(XX)}1/2 has a non-vanishing value if and only if
mz

1(XX) is non-vanishing, one obtains [mz
1(XY )]av ∼

{Psurv(L/4)}2 ∼ L−1, which means

xz
1(XY ) = 1 and ηz1(XY ) = 2 , (10)

and further, [mz
L/2−1(XY )]av ∼ {Psurv(L/4)}4 ∼ L−2,

which means

xz(XY ) = 2 and ηz(XY ) = 4 . (11)

For the transverse surface order parameter mx
1 one has

[16] the exact formula (valid for the XX and XY case)

mx
1 =

1

2



1 +

L/2−1
∑

l=1

l
∏

j=1

(

J
y(o)
2j−1

J
x(e)
2j

)2




−1/2

, (12)

which is similar to (6) formz
1(XX), apart from the power

1/2 on the r.h.s., which again is only non-vanishing for
disorder configurations that represent surviving walks á
la Fig.1a. This then yields without any effort

xx
1 (XX,XY ) = 1 and ηx1 (XX,XY ) = 2 , (13)

For the transverse bulk order parameter in the XY
chain we use the fact that the model can be mapped
onto two transverse Ising models (TIM), with uncorre-
lated disorder in both chains [2,16]. Through this map-
ping one obtains for the transverse correlation function
Cx

2i,2i+2r = 〈0|Sx
2iS

x
2i+2r |0〉 the following identity [16]

[Cx
2i,2i+2r(XY )]av = 4[Cx

i,i+r(TIMfree)]av (14)

·[Cx
i,i+r(TIMfixed)]av ∼ r−2ηx(TIM) ,

where fixed and free indicated the boundary conditions.
Since the correlation function exponent is known exactly
[1] to be ηx(TIM) = (3−

√
5)/2 we have:

xx(XY ) = (3−
√
5)/2 and ηx(XY ) = 3−

√
5 . (15)

For the XX chain the two transverse Ising chains have
perfectly correlated disorder, which implies that the dis-
order averaged transverse correlations do not factorize
into two independent averages as in (14). Therefore,
for the transverse order parameter exponent in the XX
case we have to use a different route: The first impor-
tant observation is that the transverse bulk order pa-
rameter mx

L/2 = 〈1|Sx
L/2|0〉 attains its maximum value

1/2 if the central spin is decoupled from the rest of the
system, i.e. when JL/2−1 = JL/2 = 0. More generally
we expect that mx

L/2 ∼ O(1) when it is weakly cou-

pled to the rest of the system. ”Weakly coupled” in
the case of the extreme binary distribution means that
the bond configuration to the left and to the right of
the central spin represent both surviving random walks,
as exemplified in Fig.1b (this is actually equivalent to

the (exact) condition for the longitudinal order param-
eter mz

L/2(XX) to be non-vanishing). This correspon-

dence implies [mx
L/2(XX)]av ∼ {Psurv(L/4)}2 ∼ L−1

from which one obtains

xx(XX) = 1 and ηx(XX) = 2 . (16)

We verified the strong correlation between weak coupling
and non-vanishing transverse order parameter numeri-
cally in the following way: We considered a chain with
L+1 sites and the couplings at both sides of the central
spin were taken randomly in the form of surviving walk
character, where we used the binary distribution with
λ = 0.1. For such small value of λ the surface order-
parameter averaged over the surviving walk (sw) configu-
rations [mx

1 ]sw was very close to the maximal value of 1/2.
Then we calculated numerically the order-parameter at
the central spin and its average value over surviving walk
configurations [mx

L/2]sw as given in Table I.

L 2[mx
1 ]sw 2[mx

L/2]sw
32 0.994 0.764
64 0.991 0.682
128 0.991 0.647
256 0.991 0.577

TABLE I: Surface and bulk transverse order-parameters av-

eraged over 50000 surviving walk coupling configurations for

the binary distribution (λ = 0.1).

As seen in the Table the averaged surface order-
parameter stays constant for large values of L, whereas
the bulk order-parameter decreases very slowly, actually
slower than any power. The data can be nicely fitted
by [mx

L/2]sw ∼ (lnL)−1/2. Thus we conclude that the

numerical results confirm the exponents given in (16),
however there are strong logarithmic corrections, which
imply for the average transverse correlations

[Cx(r)]av ∼ r−2 ln−1(r) XX−model . (17)

These strong logarithmic corrections render the numeri-
cal calculation of critical exponents very difficult [17,19].
In earlier numerical work using smaller finite systems dis-
order dependent exponents were reported [19]. We be-
lieve that these numerical results can be interpreted as
effective, size-dependent exponents and the asymptotic
critical behavior is indeed described by Eq. (17).
Away from the critical point the correlation length ex-

ponent ν can be determined by the scaling behavior of
the longitudinal surface magnetization, i.e. (6) with l = 1,
which can be inferred from the survival properties of a,
now biased, random walk: [mx,y

1 (δ, L)]av ∼ Psurv(δ, L/2).
A non-vanishing distance δ, see (2), from the critical
point means that the disorder configurations can be rep-
resented by random walk that have a drift either towards
(δ > 0) or away from (δ < 0) an absorbing wall (take for
instance the extreme binary distribution, in which weak

3



bonds λ occur with a probability (1 − δ)/2 and strong
bonds λ−1 occur with a probability (1 + δ)/2 and com-
pare with Fig.1a). Recalling the asymptotic properties
of the survival probability of random walks [11] one gets
for δ > 0 Psurv(δ > 0, L) ∼ exp(−L/ξ) with ξ ∼ δ−2,
where the characteristic length scale ξ of surviving walks
corresponds to the average correlation length of the XX
and XY chains:

[ξ]av ∼ δ−ν with ν = 2 . (18)

For δ < 0 the drift away from the adsorbing wall
yields a finite survival probability even in the infinite
system, Psurv(δ < 0, L/2) ∝ δ, which implies that

[mµ
1 ]av ∝ |δ|−βµ

1 , with βx,y
1 (XX,XY ) = βz

1 (XX) = 1
and βz

1 (XY ) = 2. Since xµ
1 = βµ

1 /ν and ν = 2 from (18)
one reconfirms the results about the surface magnetiza-
tion exponents in (7), (10) and (13)
The typical correlation length, ξtyp can be inferred

from the scaling behavior of the typical surface magne-

tization lnm1 ∼
∑

j{ln(J
y(o)
2j−1)− ln(J

x(e)
2j )} ∝ δL, which

gives

[ξ]typ ∼ δ−νtyp with νtyp = 1 (19)

The critical and off-critical scaling behavior of the low
energy exciations and dynamical correlations can be de-
duced from the formula for the gap ǫ [16]

ǫ(L) = mx
1m

x
L−1J

y
L−1

L/2−1
∏

j=1

J
y(o)
2j−1

J
x(e)
2j

, (20)

which is analogous to a corresponding formula for the
gap in the transverse Ising chain [11]. At the criti-
cal point one observes that ln ǫ is a sum of L inde-
pendently distributed random variables with zero mean
(since δ = 0), for which the central limit theorem ap-
plies. Therefore the probability distribution of gaps
obeys P (ln ǫ) ∼ L−1/2p̃(ln ǫ/L−1/2) and one uses scaling
arguments as in [20] to deduce the asymptotic (imagi-
nary) time dependence of the spin-spin autocorrelation
function Gµ

l (τ) = [〈0|Sµ
l (τ)S

µ
l (0)|0〉]av.

Gµ
a(τ) ∼ (ln τ)−ηµ

a (21)

for the surface (a = 1) and bulk (a =bulk), respectively,
with the critical exponents ηµa as given above.
Away from the critical point in the Griffiths-phase [14]

the gap distribution has still an algebraic tail P (ǫ) ∼
ǫ−1+1/z′(δ) , with a dynamical exponent z′(δ) that varies
continuously with the distance from the critical point δ
and is given by the exact (implicite) formula [12]

[

(

Jx(e)

Jy(o)

)1/z′(δ)
]

av

= 1 . (22)

The dynamical exponent z′(δ) parameterizes all Griffiths-
McCoy singularities occurring in the Griffiths-phase, e.g.
the spin-spin autocorrelations decay algebraically as

Gl(τ) ∼ τ−1/z′(δ) , (23)

which gives for the susceptibility χµ ∼ T−1+1/z′(δ) di-
verging for T → 0 (T = temperature) if z′(δ) > 1.
To summarize we have shown how to obtain a com-

plete description of the critical and off-critical singular-
ities of random XX and XY chains with simple random
walk arguments using exact formulas arising from the free
fermion description of these quantum spin models. All
results for the critical exponents are therefore exact. One
should note that for the transverse bulk order parameter
exponent for the XY model we referred to a result for the
transverse Ising model obtained by a RG calculation [1]
and for the same exponent of the XX model we showed
the existence of strong logarithmic corrections.
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