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Abstract
Current best-match ranking (BMR) systems perform well but cannot handle word mismatch

between a query and a document. The best known alternative ranking method, hierarchical

clustering-based ranking (HCR), seems to be more robust than BMR with respect to this

problem, but it is hampered by theoretical and practical limitations. We present an approach to

document ranking that explicitly addresses the word mismatch problem by exploiting

interdocument similarity information in a novel way. Document ranking is seen as a query-

document transformation driven by a conceptual representation of the whole document

collection, into which the query is merged. Our approach is based on the theory of concept (or

Galois) lattices, which, we argue, provides a powerful, well-founded, and computationally-

tractable framework to model the space in which documents and query are represented and to

compute such a transformation. We compared information retrieval using concept lattice-based

ranking (CLR) to BMR and HCR. The results showed that HCR was outperformed by CLR as

well as by BMR, and suggested that, of the two best methods, BMR achieved better

performance than CLR on the whole document set while CLR compared more favorably when

only the first retrieved documents were used for evaluation. We also evaluated the three

methods’ specific ability to rank documents that did not match the query, in which case the

superiority of CLR over BMR and HCR (and that of HCR over BMR) was apparent.

*  To whom all correspondence should be addressed
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1. Introduction

Information retrieval is concerned with retrieving the documents of interest to a user from a

natural-language document collection. The typical retrieval setting consists of a user submitting

a query to the system, usually in free-text natural language, and the system returning a list of

possibly relevant documents in ranked order. Most of the major ranking systems that are in use

today, although working from a very different basis, can be seen as performing two main

operations: building an internal representation of queries and documents first, and then scoring

the query representations against the document representations to produce a ranked document

list. In the first stage, queries and documents are usually represented as weighted term vectors,

using such diverse weighting schemes as SMART’s classical tf x idf approach (Salton, 1971;

Salton and Buckley, 1988), Croft and Harper (1979)’s probabilistic indexing method,

INQUERY’s network inference model (Turtle and Croft, 1991; Callan et al., 1992), OKAPI’s

2-Poisson model (Robertson and Walker, 1994; Walker et al., 1997), and the Cornell variant of

the OKAPI algorithm (Singhal et al., 1995). Once the weighted term vectors have been

computed, the matching of queries against documents is customarily performed in the same

manner, i.e., by computing the dot product between corresponding weighted term vectors.

These best-match retrieval systems are highly efficient and have shown to perform well in

many operational situations, including the TREC environment (Voorhees and Harman, 1998).

However, they are limited by their inability of dealing with word mismatch. When translating

an information requirement into a query for a document retrieval system, a user must convert

concepts involved in his requirement into query terms which will not necessarily match the

terms used by the authors to describe the same concepts in their documents. This is the well

known vocabulary problem, described in (Furnas et al., 1987), two specific important aspects

of which are polysemy (same word to describe different things) and synonymy (different

words to describe the same thing). The severity of the vocabulary problem tends to decrease as

queries get longer, but it may be exacerbated in applications where the queries are very short, as

is usually the case in Web-based retrieval.

One traditional solution to the vocabulary problem is to automatically or interactively expand

or refine the query using various knowledge sources, such as the relevance feedback provided

by users (Harman, 1992), the top ranked documents retrieved by the original query (Xu and

Croft, 1996 Carpineto et al., 1999), collection-specific lexical networks (Cooper and Byrd,

1997), and general purpose thesauri (Voorhees, 1993). The query modification approach

attempts to extend the capabilities of conventional, best-match ranking systems to recover from

word mismatch without modifying the assumptions of their underlying model. A more

fundamental solution to word mismatch is to try to exploit the relationships in content which

exist between the documents in the collection when deciding which documents are to be
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retrieved in response to a query. Of this alternative strategy to best-match ranking, the most

well known approach is cluster-based ranking, where a query is ranked not against individual

documents but against a hierarchically grouped set of document clusters. The rationale for this

method is the cluster hypothesis (van Rijsbergen, 1979; Hearst and Pedersen, 1996), which

states that relevant documents tend to be more similar to each other than non-relevant

documents. Hierarchical cluster-based ranking (hereafter often referred to as HCR) does go

some way towards compensating for the vocabulary problem but does not solve it all, because

this approach suffers from theoretical as well as practical limitations.

In this work we present a novel approach to document ranking that has clear potentials to deal

with word mismatch. In the same vein as HCR, it is based on building a cluster structure from

the set of documents, but the clustering methodology is completely different. Instead of

grouping the set of documents using some similarity metrics, it is based on the recognition and

ordering of set inclusion relations between the terms describing the documents. The ranking

strategy of our approach is also different from HCR. Rather than computing a similarity

between individual document clusters and a query, we use a clustered representation of the

whole document collection to drive a transformation between the representation of a query and

the representation of each document. In practice, the query is merged into a conceptually-

clustered document space and the similarity between the query and each document is seen as a

function of the length of the shortest path linking the query to the document. The mathematical

tool used to implement this approach is the concept (or Galois) lattice associated with a term-

document relation (Wille, 1984; Davey and Priestley 1990).

The theory of concept lattices has already been used in information retrieval applications

(Godin et al., 1989 and 1993; Carpineto and Romano, 1996a and 1996b), but it has been

customarily employed to support user interface design. In fact, one of the motivations of our

research was a desire to extend the scope of such a theory to fully-automatic retrieval tasks. We

show that concept lattice-based ranking (CLR) has a clear and sound semantics and that CLR

helps overcome some limitations of HCR related to the dissatisfying theoretical assumptions

and operational implementations of the latter method. We then evaluate the retrieval

effectiveness of CLR in contrast to BMR and HCR. The results are promising. In particular,

they support the view that CLR performs better than HCR, and that CLR may be seen as an

alternative to BMR, especially for some retrieval tasks and at least for collections of small-

medium size. In addition, our experiment indicates promising synergistic combinations between

CLR and BMR for large databases.

This article is organized as follows. Section 2 examines some inherent limitations of HCR.

Section 3 provides an abstract, but intuitive, view of document ranking as a representation

transformation in a conceptual space. Section 4 formally introduces concept lattice-based
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ranking, provides a detailed illustrative example, and examines implementation and

computational requirements. Section 5 reports the results of comparing the three ranking

methods on different retrieval tasks, including the specific ability of ranking documents that do

not match a given query. Section 6 considers the scaling issue. Section 7 contains a discussion

of related work, including cluster-based ranking, earlier applications of concept lattices to

information retrieval, and other approaches based on document similarity. Section 8 concludes

the paper with a summary and some directions for future work.

2. Limitations of hierarchical cluster-based ranking systems

Hierarchical clustering methods take as input a matrix of document-to-document distances,

based on some similarity function, and iteratively merge the most similar pair of distinct

clusters, using some clustering strategy (e.g., single link, complete link, group average,

Ward’s method), until there is only one cluster. Once the clustering hierarchy has been built, an

incoming query is ranked against neighborhoods of this structure, using some search strategy

(top down, bottom up, or optimal search) and some query-cluster similarity function. The

result of HCR is a partially-ordered sets of documents, because the documents in each cluster

are equally ranked; however, a totally-ordered list can be easily obtained from it by individually

ranking the documents in each cluster against the query.

From a conceptual point of view, HCR seems to be more robust than BMR with respect to

word mismatch, because it takes into account both the interdocument similarity and the

similarity between a query and the individual documents. Still, it appears too limited to reveal

the richness and diversity of relevance relationships between queries and documents with

different surface representations. For one thing, this is due to some well known empirical

weaknesses of hierarchical clustering methods for information retrieval applications, such as the

relatively small number of free parameters that they have (essentially, n clusters for n

documents) and their incapability of performing multiple or crossed classifications (Deerwester

et al., 1990; Carpineto and Romano, 1996a). In addition, perhaps more importantly, we believe

that a major problem with this approach is the lack of firm theoretical foundations by which to

characterize the document ranking in terms of the query and document descriptions. Shaw et al.

(1997) pointed out that clustering algorithms may not reveal the natural structure of a set of

documents and that search strategies exploiting the topical relatedness of queries and clusters

may not select the most effective clusters of documents. We elaborate on this, showing some

inherent limitations involved in both of these two steps.

We first focus on the process of cluster formation, arguing that the method used by HCR to

group the documents into clusters may easily involve at some point some heuristic decision to

choose between equivalent cluster hierarchies. In particular, we will see that even for a very
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simple set of documents, the resulting hierarchy may contain certain clusters while failing to

produce other equally good clusters. We then consider the ordering of the generated clusters in

response to a query, which is usually based on a best-match function between the query and

some clusters representation. The result of this step may also vary depending on how we

choose the main parameters involved here. Overall, we show that the reliance of HCR on

several and loosely-coupled similarity or distance measures may make the output result difficult

to control and prone to error. In fact, the use of HCR may easily result, even for simple tasks

and in the presence of typical assumptions and choices, in a failure to discriminate between

documents that have manifestly different degrees of relevance for a certain query. In the rest of

this section we make these points more precise.

Consider the simple document-term relation described in Table 1. Clearly, BMR methods

would always fail to discriminate between documents that have no terms in common with a

query. For instance, if the query is equal to “T1”, documents D2 and D3 would be equally

ranked by BMR, whereas D2 appears to be more relevant than D3 for the given query; a dual

situation holds for documents D2 and D1 with respect to query “T4”.1 Let us see what happens

if we use a HCR method. Clusters D1-D2 and D2-D3 are equivalent, no matter which

interdocument similarity function and which cluster strategy we have chosen. Thus, we may

have two possible cluster hierarchies for the set of documents at hand, depending on how we

break the tie (see Figure 1). Suppose, for simplicity and generality, that incoming queries are

then scored against the clusters using optimal search. For query “T1”, the left hierarchy would

produce a correct document ranking, because the best matching cluster would be D1, followed

by cluster D1-D2. For query “T1”, however, the right hierarchy would rank cluster D1-D2-D3

right after cluster D1, which would cause documents D2 and D3 to be equally ranked. A dual

situation holds for query “T4”, with the first hierarchy behaving wrongly and the second

correctly. This behavior will be observed for any choice of the query-cluster similarity function.

Not only can HCR fail to discriminate between documents which do not match the query

(hereafter often referred to as non-matching documents), i.e., D2 versus D3 for query “T1”, D1

versus D2 for query “T4”, but it can also fail to discriminate between matching and non-

matching documents. Assume without loss of generality that the query-cluster similarity

function is computed by taking the inner product with cosine normalization between the query

term vector and a cluster term vector formed by the set of terms contained in all cluster’s

documents, weighted with their frequency in the cluster itself. These are typical choices for the

normalization factor and the cluster representative (e.g., Griffiths et al., 1986). If the incoming

query is equal to “T2”, then, for the left hierarchy, the best matching cluster is D1-D2;

                                                
1 One should be aware that in a more complex context these considerations may represent a rough approximation
of what determines relevance. Spink and Saracevic (1997), for instance, show that no matter how judicious their
choice, the majority of search terms will retrieve both relevant and non-relevant documents.
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documents D1 and D2 are thus ranked equally, and ahead of D3, which is correct. However,

for the same query “T2”, using the right hierarchy would result in selecting the cluster D1-D2-

D3 (with a query-similarity score of 2 / (10)1/2) before cluster D2-D3 (whose query-similarity

score is equal to 1 / (6)1/2), in which case the documents D1, D2, and D3 would be equally

ranked. A dual situation holds for query “T3”, with the right hierarchy behaving correctly and

the left hierarchy behaving wrongly.

In order to overcome these limitations it seems thus necessary to attack the fundamental

representational limitations of current HCR systems, including the limited expressive power of

the structure representing the interdocument similarity and the need of mapping entities with

different representations. Our approach addresses both these issues using a richer and unique

framework for representing documents and query and comparing them.

Table 1. A simple document-term relation

T1 T2 T3 T4

D1 x x

D2 x x

D3 x x

D1 D2

D1

D1 D2 D3

D2 D3

D2 D3

D1

D1 D2 D3

D2 D3

Figure 1. Equivalent cluster hierarchies derived from the set of documents shown in Table 1.

3 Viewing document ranking as a query transformation in a
conceptual document space

The starting point is that the matching between a query and a document can be described in

terms of a sequence of operations that transforms one into the other. We envisage that the basic

operations to transform the term vector representing a query into the term vector representing a

document are a form of term addition and term deletion, while the length of the sequence that

accomplishes the desired transformation is a measure of the similarity between the two vectors.

Note that one apparently straightforward way to implement this idea is to simply count the

terms that are not shared by the query vector and the document vector, or, alternatively, to use

some related similarity measure, such as Dice or Jaccard coefficient (Salton and McGill, 1983).

Such an approach, however, would amount to a simplistic form of best-match retrieval, with

very limited ranking capabilities. Neither would it be able, in general, to discriminate between
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non-matching documents. In the simple example considered in Table 1, for instance, it could

not rank D2 ahead of D3, for query “T1”, because the two documents would get the same

distance score. Thus, viewing the distance between a query and a document as a transformation

process between the corresponding representations is not sufficient alone.

The second essential ingredient of our approach is that the query-document transformation

should be driven by an internal conceptual structure of the database being searched. The

intuition behind this view is the following. Assume for a moment that we are able to extract

from a document collection a set of concepts contained in it, where such concepts can be

thought of as the queries that can be naturally satisfied by some document in the collection.

Assume also that, for each concept, it is available some procedure, say a nearest neighbors

operator, that determines which are its most related concepts. The set of concepts together with

the nearest neighbors operator provide us with a tool for analyzing the query-document

transformation, provided that the query can be mapped onto some concept. The set of concepts

defines the space of admissible query transformations; the nearest neighbors operator tells us

how to make a transition from a query to another. At this point the problem of computing a

sequence of operations that transforms a query into a document can be cast as a breadth-first

search through the space of admissible queries, as determined by the query and the collection at

hand. The initial state is a concept corresponding to the query, while the successor states are

specified by the nearest neighbor operator. The search ends as soon as a concept is reached that

corresponds to the document representation. A document score is given by the length of the

shortest path linking the initial and the final state, while the final ranked document list is

obtained by arranging the documents in the increasing order of score.

The next question is: is there any conceptual representation of a document collection that

satisfies these requirements? We argue that concept (or Galois) lattice is a good candidate. The

concept lattice associated with a document collection contains a particular set of concepts

inherent to the collection that can be ordered by generality. Roughly, each concept is a complete

set of co-occurrences, where by this we mean a set of terms appearing jointly in a set of

documents and such that those documents do not have other terms in common. Concept lattices

have the following desirable features: (i) the concepts have a natural interpretation from the

point of view of characterizing the set of queries that can be satisfied by the collection, (ii) a

user query can be consistently mapped onto the lattice, (iii) the concept ordering tells us how to

gradually pass from one query to another, and (iv) the set of concepts in the lattice is

sufficiently numerous to ensure a rich representation while being still tractable. In addition, the

concept lattice can be automatically built from a document-term matrix, and its construction is

computationally feasible.

Before we proceed, it is useful to consider again the example given in Section 2 as a simple

illustration. As will become clearer in the following of the paper, the set of relevant concepts
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contained in the concept lattice associated with the set of documents described in Table 1 and

with query “T1” is shown in Figure 2. The highest ranked document is D1, because there is a

link connecting the query to it, followed by document D2, through the path T1-T1T2-T2-T2T3,

and by document D3, through the path T1-T1T2-T2-T2T3-T3-T3T4.

T2 T3

T1T2 T2T3 T3T4
(D1) (D2) (D3)

T1
(Q)

Figure 2. The set of ordered concepts derived from the collection in Table 1 and from query “T1”.

In the next section we make the above considerations more precise. We start by introducing

order-theoretical ranking formally; in particular, we define the concept lattice that can be

generated from a document collection, and provide an algebraic treatment that yields the

document ranking for an incoming query. Basic notions and formalisms are borrowed and

adapted from the concept lattice theory (Wille 1984) as well as from the more general ordered

set theory (Davey and Priestley 1990).

4. A ranking method based on the concept lattice theory

4.1. Formal description

As input data, we consider a binary relation between a set of documents (D) and a set of terms

(T), usually called context in the concept lattice theory. In the information retrieval field, this is

the usual document by term relation.

Definition 1  A context is a triple (D, T, I) where I ⊆  D×T. We write dIt, meaning the

document d has the term t.

To derive from a context the set of concepts, the following Galois connections are useful.

Definition 2  Let (D, T, I) be a context. For  X⊆ D  and  Y⊆ T, define:

X' = { t ∈ T | (∀ d ∈ X) dIt}

Y' = {d ∈ D | (∀ t ∈ Y) dIt}.
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In other words, X' is the set of terms common to all documents in X and Y' is the set of

documents possessing all the terms in Y.

Definition  3  Let (D, T, I) be a context. A concept is a pair (X, Y) where  X ⊆  D, Y ⊆  T,

X' = Y, and Y' = X; X and Y are called the extent and the intent of the concept, respectively.

Only the pairs (X,Y) that are complete with respect to I according to the given definition

represent admissible concepts. In particular, a subset Y of T is the intent of some concept if and

only if Y"=Y, in which case the unique concept of which Y is an intent is (Y',Y); a dual

statement holds for the extent of a concept. From the point of view of document retrieval, each

concept can be seen as a conjunctive query (the intent) along with the set of documents that

satisfy it (the extent).

The set of all concepts of the context  (D, T, I) is denoted by  C(D, T, I). It is possible to

order this set of concepts by generality (specificity), in such a way that each concept contains a

subset (superset) of the terms of its more specific (general) concepts .

Definition  4  Let  C(D, T, I) be the set of concepts of the context (D, T, I) and let (Xa,

Ya), (Xb, Yb) ∈  C(D, T, I). Then (Xa, Ya) is subsumed (    <    ) by (Xb, Yb) if Xa ⊆  Xb, or,

equivalently, if Ya ⊇  Yb.

C(D, T, I) along with     <     form a partially ordered set, that turns out to be a complete lattice2

(Wille 1984).

Definition  5  Let (C(D, T, I) ;     <    ) be the concept lattice corresponding to the context (D, T,

I) and let a, b ∈  (C(D, T, I) ;     <    ). Then a is a nearest neighbor (>-<) of b if either a < b and a     <    

z < b implies z = a, or b < a and b < z     <     a  implies z = a. The latter conditions are demanding

that there be no element z of (C(D, T, I) ;     <    ) with a < z < b  or b < z < a.

Observe that the subsumption relation determines, but is not determined by, the nearest

neighbor relation. The nearest neighbor relation defines for each concept all its minimal

conjunctive refinements (enlargements) with respect to the database at hand, in the sense that

there is no choice of term addition (deletion) which would produce an intermediate concept.

                                                
2 Recall that, given a non-empty ordered set P, if for all S1P there exists a least upper bound and a greatest

lower bound, then P is called a complete lattice.
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Definition  6  Let  C(D, T, I ; >-<) be the set of concepts of the context (D, T, I) together

with the nearest neighbor relation and let a, b ∈  (C(D, T, I) ; >-<). Then the transitive closure,

>-<*, of >-< is defined by  a >-<*b  if and only if
(¡n ∈ N) (¡z0, z1,..., zn ∈  (C(D, T, I) ; >-<))  such that a = z0 >-< z1>-< z2..>-< zn = b.

The transitive closure identifies a sequence of minimal refinements or enlargements by which

to derive one concept from another. In particular, it can be applied to a query and a document,

provided that we specify a concept node for the query and a concept node for the document.

The former can be obtained by merging the query into the lattice as a pseudo-document. The

latter is the lattice node with intent equal to the set of terms describing the document in question;

such a node exists, by definition, and its extent contains at least that document. The transitive

closure of a query can then be used to order the set of documents that can be derived from it.

Definition  7  Let q a user query, (Dq, Tq, Iq) the context (D, T, I) augmented with q, and

C(Dq, Tq, Iq ; >-<) the set of concepts of the augmented context along with the nearest

neighbor relation3. For each d1, d2 ∈  D, let a1, a2 ∈  C(D, T, I), such that the intents of a1 and

a2 are equal to the descriptions of d1 and d2, respectively. Then d1 is ranked ahead of d2 with

respect to q if and only if n1 < n2, where n1 is the least n ∈ N such that  q >-<* a1, and n2 is

the least n ∈ N such that  q >-<* a2.

From the above definitions, it can be easily proved the following result.

Proposition 1 If a document d1 ∈  D is ranked ahead of a document d2 ∈  D for a user

query q, according to Definition 7, then the set of terms contained in d1 can be derived from the

set of terms contained in q by a smaller number of admissible minimal transformations, with
respect to the collection at hand, than the set of terms contained in d2.

A complete ranked document list can be obtained by arranging the whole set of documents in

the increasing order of minimal transformations that are necessary to derive each document

from the query. Of course, this is a partially ordered retrieval output, because the documents

that are equally distant from the query concept have the same score. We can think of the sets

containing equally-ranked documents as concentric rings around the query node. The longer the

radius, the lower the document score (of the associated documents).

We now present a more elaborate example that illustrates the approach we have described.

Then we address the issue of automatic determination of order-theoretical ranking.

                                                
3 Note that both the user query and the documents are elements of C(Dq, Tq, Iq; >-<)
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4.2. An example

We will refer to a simple bibliographic database consisting of seven documents described by

eight index terms (see Table 2). All documents are about computerized decision support

systems, with two broad application domains: economics and environment. Suppose we are

interested in the former class of documents, and let us assume that the database is queried by

questioning "Neural-Network-Systems, Finance". The concept lattice built from the set of

documents and from this query, treated as if it were a pseudo-document, is illustrated in Figure

3 by a Hasse diagram.

Table 2. A simple database containing seven documents described by eight index terms
D1 D2 D3 D4 D5 D6 D7

Neural-Network-Systems  x  x  x  x
Knowledge-Based-Systems  x  x  x  x
Credit  x  x  x
Finance  x  x  x
Account  x  x
Bank  x  x  x  x
River  x
Waters  x

NNS       0 
FINANCE 
(Query)

1 
NNS 

FINANCE 
CREDIT 

KBS 
(D7)

4 
KBS

1 
NNS 

FINANCE 
BANK 

ACCOUNT 
(D1)

1 
NNS

1 
FINANCE

2 
NNS 

BANK

2 
NNS 

BANK 
ACCOUNT 

(D3)

2 
FINANCE 

CREDIT 
KBS 
(D4)

3 
CREDIT    

KBS 
(D5)

3 
NNS 

BANK 
RIVER 

(D2)

3 
BANK

4 
BANK 

KBS 
WATERS 

(D6)

Figure 3. The concept lattice associated with the database in Table 2 and with the query “Neural-Network-
Systems, Finance”. For each concept, it is also shown its ring number (right upper corner).
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The Hasse diagram shows the set of concepts along with the nearest neighbor relation (see

Definition 4), implying that there is an edge between two nodes if and only if they represent

comparable concepts (the ascending paths can be seen as representing the

subconcept/superconcept relation) and there is no other intermediate concept in the lattice. The

labeling of the diagram in Figure 3 is such that the intents are shown for every concept, while

an extent is attached only to the smallest concept that has that extent (i.e., when the description

of documents in the extent coincides with the node’s intent). It should also be noted that in

Figure 3 we do not show the lattice top and the lattice bottom. By definition, the top concept

contains all documents and is described by their common terms (if any), the bottom concept is

described by the set of all terms and contains the documents that have those terms. Except for

the case when the lattice top is described by a non-empty set of attributes (i.e., all documents

have those attributes), or, dually, when the lattice bottom contains a non-empty set of

documents (i.e., some document has all attributes), it is convenient to omit both the lattice top

and the lattice bottom in the graph used to compute the document ranking, for these two nodes

cannot be seen as proper queries with associated documents.

In order to visually highlight the transition from relevant to non-relevant information (to keep

with our terminology, from near to distant rings), the diagram in Figure 3 has been depicted

using a simple instantiation of the fisheye view technique (Sarkar and Brown, 1994). The focus

of interest is the query node, and the other nodes are displayed in decreasing levels of detail

(with respect to the font size) and at increasing graphical distance, depending on the topological

distance from the focus, where the topological distance between a given node and the focus

node is the length of the shortest path between the two nodes.

As stated in Definition 3, not every term subset is a lattice concept. For instance, in the

lattice relative to the context in Table 1 there cannot be any concept having an intent equal to

“Credit”, in that all documents having “Credit” have also “Knowledge-Based-Systems”. The

completeness constraint limits the number of admissible concepts by favoring maximally

specific descriptions of the extent’s documents. In other terms, it is assumed that if one term

always appears jointly with other terms, the single terms do not refer to distinct concepts while

their tuple does convey a useful meaning. In a sense, every complete set of co-occurrences

determines a semantic “context” specific to the collection at hand, and the closeness between

two semantic “contexts” is completely determined by the distribution of terms in the collection’s

documents. One consequence of this assumption is that in the lattice there may well be two near

concepts that differ by a larger number of terms than more distant concepts do. For instance,

the query concept Q and the concept with extent D7 are connected by a single-link path although

they differ by two terms (i.e., “Credit” and “Knowledge-Based-Systems”), because creating an

intermediate concept between Q and D7 with either “Credit” or “Knowledge-Based-Systems”

would be of no help in discriminating between the given set of documents. At the same time, it



Carpineto  13

may happen that the same two concepts become more distant, or, viceversa, closer, as the set of

documents in the collection changes. For instance, as a consequence of the introduction of a

new document described by “NNS-Finance-Credit”, a new concept with intent “NNS-Finance-

Credit” would be added to the lattice between the concepts Q and D7, thus increasing their

distance. Thus, this kind of distance is a context-sensitive measure, similar to most distance

measures based on some clustering method. By contrast, this important feature cannot be easily

incorporated into more traditional statistical measures where the distance between two

representations is based only on the characteristics of those representations (e.g., Euclidean

distance), although there have been some attempts in this direction using the standard deviations

or the covariance matrix of the variable values (Everitt, 1993).

Now let us see how the ranked list for the given query and documents is produced. The

nodes that are closest to the query (ring 1) are “Finance”, “NNS”, “ NNS-Finance-Credit-

KBS”, and “NNS-Finance-Bank-Account”. The relevant documents are D1 and D7 (recall that,

according to Definition 6, in order to reach a document concept it is not sufficient to simply

generate a node whose extent contains that document, but it is necessary to generate the node

with intent equal to the document description).  Ring 2 consists of the nodes “NNS-Bank”,

“Finance-Credit-KBS”, and “NNS-Bank-Account”, which yield the documents D3 and D4,

and so on. The complete ranked list of documents is the following (in parenthesis we indicate

their distance from the query node): D1 (1), D7 (1), D3 (2), D4 (2), D2 (3), D5 (3), and D6

(4). This result is correct, in the sense that it seems to reflect the actual document relevance to

the given query.

It is useful to compare the above ranking with that produced by BMR methods. We would

get the following ranked list: D1 and D7, with the same score, followed by D2 and D3, with the

same score, by D4, and by D5 and D6, with the same score. This result presents several

inversions with respect to the ideal ordering, involving not only pairs of documents that did not

match the query (D5-D6), but also pairs where only one document matched the query (D2-D5),

or both documents matched the query (D2-D3). The last case is interesting. Documents D2 and

D3 have the same term in common with the query (“NNS”) and both contain the ambiguous

word “bank”. Using the lattice, the concept “NNS-Bank” can be equivalently specialized with

“River” and with “Account” (see Figure 3); however, the concept “NNS-Bank-Account” may

be reached from the given query through a shorter alternative path, which reflects the higher

overall structural similarity of the latter concept with the query. Incidentally, this observation

may suggest that it is worth investigating the potentials of concept lattices for dealing with

ambiguous query terms in query refinement based on the actual content of the collection

(Cooper and Byrd, 1997).
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4.3. Computational efficiency

Order-theoretical ranking can be implemented as a three-step procedure. The concept lattice

associated with a document collection, along with its Hasse diagram, is built first; then a query

is mapped onto the lattice derived in the earlier step, and finally a ranked document list for that

query is computed from the augmented lattice. In order to build the lattice we used GALOIS.

The system GALOIS, described in detail in (Carpineto and Romano, 1996a), is based on an

incremental algorithm for lattice construction that works by examining one document at a time

and updating the Hasse diagram of the lattice relative to the documents that have already been

seen. Once the document lattice has been built, the query is simply added to it, as if the query

were a document, by GALOIS itself. In fact, using an incremental algorithm has the advantage

that every query can be processed by adding it to the document lattice, without recomputing the

augmented lattice from scratch whenever the system is presented with a new query. The third

step is also computationally simple. It is sufficient to perform a breadth-first search through the

augmented lattice starting from the query node, without generating the nodes that have already

been encountered, until all nodes have been reached. Then, if there are some disconnected

nodes left,4 they are added at the end of the ranked list that has been produced so far. Each step

of the breadth-first search returns a set of nodes that are equally distant from the query, with an

associated set of documents. Thus, the position of each document in the output ranked list is

computed in parallel while visiting the augmented concept lattice.

The overall complexity of order-theoretical ranking is essentially determined by the complexity

of lattice construction, because the other two operations require at most one pass over the lattice

built in the first step. The space complexity of the concept lattice built from a document

collection varies, in practice, from linear to quadratic with respect to the number of documents,

and the time complexity of each update performed by GALOIS varies in a similar manner

because it is proportional to the number of concepts in the lattice being updated (Carpineto and

Romano, 1996a). Thus, the relative efficiency of the process of lattice construction easily

allows small/medium size applications of our approach, like the one that will be considered

here, but it also raises the question of its applicability to large scale applications, which will be

addressed below (see Section 6).

                                                
4 Since we usually remove the lattice top and the lattice bottom, it may happen that some documents cannot be
derived from the query by transitive closure, according to Definition 6. In practice, however, such high
disconnected documents should be rare, and they are likely to be of no interest at all for the given query.
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5. Comparative Evaluation

5.1. Goal
The objective of the experimental test was to evaluate the comparative effectiveness of the three

ranking methods discussed in this paper, namely BMR (Best-Match Ranking), HCR

(Hierarchical Clustering-based Ranking), and CLR (Concept Lattice-based Ranking). We ran

two experiments. In the first, standard experiment we evaluated the retrieval effectiveness of the

three systems on the entire set of documents contained in a collection. In addition,  as in this

paper we focused on the word mismatch problem, we evaluated the specific ability of the three

systems to produce a relevance ordering for documents contained in the collection that did not

match a given query.

5.2. Test Collections
We used two well known, electronically-available test collections in our experiment, CACM

and CISI. The CACM data set contains 3204 documents and 52 queries, the CISI data set

contains 1460 documents and 35 queries. In order to determine, for each collection, the

document-term relation used as input by the three ranking method we used the classical

blueprint for automatic indexing suggested by Salton (1989), consisting of four steps: text

segmentation, word stemming, stop wording, word weighting. Text segmentation amounted to

extracting the individual words occurring in the documents, ignoring punctuation and case.

Word stemming was done by using a very large trie-structured morphological lexicon for

English (Karp et al, 1992), that contains the standard inflections for nouns, verbs, and

adjectives. For stop wording we used a stop list included in the CACM test collection,

containing 428 common function words. Word weighting was performed through the classical

tf.idf approach.

The last step, word weighting, is the most important and deserves some explanation. Strictly

speaking, word weighting is necessary only for BMR, while HCR and CLR do not need this

kind of information. In practice, however, word weighting may be useful also for the latter

systems. This is the case in our experiment, where all ranking systems take as input a weighted

term vector representation of the document collection. HCR uses the term weights to compute

the matrix of document-to-document distances and to order the documents in each cluster; CLR

uses the term weights to reduce the set of terms describing each document, mainly for reasons

of efficiency, and to order the documents in each ring, similar to HCR. It follows from these

assumptions that the weighting method itself becomes an independent variable of our

experimental setting, because it can influence not only the performance of BMR, but also that of

HCR and CLR. We will return to this issue when we discuss the results of our experiments.
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The automatic indexing of queries was the same as documents, except for word weighting.

CLR did not use weighting of query terms at all, while for BMR and HCR the weight of each

term was simply given by its frequency in the query, which seems to produce better results.

5.3. Implementation of the three ranking systems

The implementation of BMR was straightforward: we computed the inner product with cosine

normalization between the document vectors and a query vector, determined as explained

above.

The implementation of HCR was more elaborate because several choices can be made at each

of the main steps of this method, in particular during the process of cluster formation. To

determine the degree of similarity between documents we used the inner product with cosine

normalization. For the cluster formation stage we used the single link method, because although

it may be less effective than the other main methods (complete link, group average, Ward’s

method),5 it can be implemented more efficiently: O(n2) time and O(n) space for the  clustering

of n documents. The issue of efficiency does make an important difference because the storage

requirement of most hierarchical clustering methods - O(n2) space - may make their

computation exceedingly hard even for small collections, like those considered in our

experiments. To rank the set of generated clusters according to their relevance to a query, we

computed the inner product with cosine normalization between the query and each cluster in the

hierarchy, using as a representation of a cluster the set of terms describing all the documents

contained in the cluster, weighted with their frequency (Griffiths et al., 1986). Finally, we

decided to individually rank the documents in each cluster against each query because this

strategy produces better results (Voorhees, 1985). This inner ranking was done using again the

inner product with cosine normalization.

The CLR method was implemented as described in section 4.3, with two important

specifications. First of all, like other retrieval systems that do not use full-text indexing due to

computational limitations (e.g., Deerwester et al., 1990; Maarek et al. 1991), CLR works with

a restricted set of index terms. The goal is to choose the most informative terms while

facilitating the subsequent process of lattice construction. For this purpose, we selected, for

each document, the first k terms (at most), where k was automatically set using the mean of the

number of terms per document produced by full-text indexing. This method pruned the

representation of the documents that contained more than k terms, and left those containing k

                                                
5 Most experimental studies agree that the single link method may have worse retrieval performance than the
other hierarchical clustering methods (e.g., Voorhees (1985), Willett (1988), Rasmussen (1992), Burgin (1995)).
These results, however, have been partially contradicted by other experiments, in which more comparable levels
of retrieval effectiveness were found (Griffiths et al, 1986, El-Hamdouchi and Willett, 1989).
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terms or fewer unchanged. For each data set, the actual input representation and the concept

lattice built from it had the following characteristics. For the CACM data set, which after word

stemming and stop wording contained 9608 distinct terms and was described on average by

23.48 terms per document, the number of distinct terms remained the same while the average

number of terms per document shrunk to 14.48. The corresponding lattice contained 40185

nodes. For the CISI data set, the number of distinct terms remained again the same (8862),

while the average number of terms per document passed from 45.41 to 39.50; the concept

lattices contained 256826 nodes. The time needed to construct the two lattices on a SUN Ultra 2

workstation equipped with 512 Mbytes of RAM was about fifteen minutes and two hours for

the CACM and CISI data sets, respectively.

Of course, while restricting the index set by some heuristic thresholds allows more efficient

lattice construction, it may also affect the subsequent retrieval process. We did not

systematically study how retrieval performance varied as a function of indexing exhaustivity,

but some preliminary experiments suggest that the optimal size should be smaller than full-text

indexing and greater than the one we used in the comparative evaluation. This observation is

consistent with earlier findings by Burgin (1995), who showed that the representation that

optimizes the retrieval performance of hierarchical clustering-based systems usually represents a

compromise between indexing exhaustivity and specificity. In our case, this behavior can be

explained by considering that term pruning may help improve CLR’s performance by filtering

out noisy terms in the document description and by making document length more comparable,

as long as it does not remove informative terms. We will return to this in Section 6.

The second important point to note in the implementation of the CLR method used in the

experiment is that we ordered the documents contained in each ring. Similar to the

implementation of HCR, the inner ranking was obtained by computing the inner product with

cosine normalization between the documents and each query, although we should emphasize

that alternative, more sophisticated methods are possible. For instance, we could discriminate

between two nodes that are connected with the query through paths of the same length by using

the number of distinct paths of that length that link the query to either node. Such an approach

would represent a more natural refinement of our main criterion, because it would be based on a

measure of the degree of multiple structural connections between the lattice concepts; however,

this would be computationally hard, while taking the inner product is much more efficient.
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5.4. Experiment 1: Ranking all documents

We ran each ranking system on each of the two collections for each query. To evaluate the

retrieval effectiveness of the resulting ranked document lists, we used eight different evaluation

measures. The results, averaged over the set of queries, are displayed in Table 3 and Table 4. If

we look at the differences in performance between any two of the three methods, we get the

following rough indications. HCR was clearly beaten by CLR as well as by BMR on both

collections, while, of the two best methods, BMR was better than CLR on CACM and slightly

worse on CISI.

                                                                 BMR                  HCR                  CLR

Average precision (non-interpolated) 0.320 0.231 0.253
----------------------------------------------------------------------------------------------------------------------------------------
11-point precision 0.340 0.257 0.281
----------------------------------------------------------------------------------------------------------------------------------------
Precision at 5 points 0.346 0.342 0.412
Precision at 10 points 0.304 0.298 0.240
Precision at 20 points 0.238 0.202 0.164
----------------------------------------------------------------------------------------------------------------------------------------
Recall at 5 points 0.227 0.136 0.228
Recall at 10 points 0.297 0.224 0.266
Recall at 20 points 0.428 0.323 0.319
______________________________________________________________________________________________________

Table 3. Comparison of retrieval performance for CACM.

                                                                 BMR                  HCR                  CLR

Average precision (non-interpolated) 0.164 0.127 0.162
----------------------------------------------------------------------------------------------------------------------------------------
11-point precision 0.183 0.153 0.185
----------------------------------------------------------------------------------------------------------------------------------------
Precision at 5 points 0.269 0.280 0.337
Precision at 10 points 0.266 0.254 0.286
Precision at 20 points 0.239 0.209 0.234
----------------------------------------------------------------------------------------------------------------------------------------
Recall at 5 points 0.027 0.042 0.043
Recall at 10 points 0.060 0.066 0.095
Recall at 20 points 0.107 0.103 0.139
______________________________________________________________________________________________________

Table 4. Comparison of retrieval performance for CISI.
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A more precise picture can be obtained by examining the results relative to each of the eight

selected performance measures, considering also how many of the differences were statistically

significant according to a one-tailed paired t test with a confidence level in excess of 95%. This

last datum is indicated in parenthesis below. BMR achieved better results than HCR on both

CACM (eight wins (6)) and CISI (five wins (2), three losses (0)). Similarly, CLR fared better

than HCR on CACM (five wins (2), three losses (0)), and on CISI  (eight wins (2). Of the two

best methods, BMR had better performance values than CLR on CACM (six wins (4), two

losses (0)), and worse values on CISI (six losses (2), two wins (0)).

Even though the results relative to the comparison between CLR and BMR presented

considerable variation across the two domains and the eight evaluation measures, a pattern

seems to emerge from the data that is related to the type of performance variables measured in

the experiment. If we consider the first two effectiveness measures, regarding the whole set of

retrieved documents, CLR performed worse than BMR, which achieved much better results on

CACM and comparable results on CISI. However, if we take the last six measures considered

in the experiment, which focus on the system’s retrieval effectiveness for the first retrieved

documents, the results were quite different. Out of the overall 12 measurements of this kind,

CLR was first 7 times, second 2 times, and last 3 times; by contrast, BMR was first 5 times,

second 3 times, and last 4 times (HCR was never first, it was second 7 times, and third 5

times). In particular, CLR achieved better values of “precision at 5” and “recall at 5” than either

opposing method on both data sets. The comparatively better results of CLR on the first

retrieved documents can be explained by looking at the distribution of documents in the ordered

set of rings returned by order-theoretical ranking.

We considered how the number of documents contained in a ring varied as the the ring’s

radius increased. It turned out that middle rings usually contained many more documents than

nearest and farthest rings, somewhat similar to a normal distribution. In particular, the first

rings typically contained a few documents, while the more numerous rings contained up to

hundreds of documents. Thus, the system performance for the first retrieved documents was

basically determined by the partially-ordered rank determined by the concept lattice, i.e., by the

inclusion of documents in near or distant rings. As the system retrieved more documents, the

rings grew much larger and the system performance became more and more influenced by the

individual best-match ranking of the documents contained in each ring. Since CLR did not use

full-text indexing, it is likely that CLR was less effective than BMR in ranking these distant

documents, which resulted in an overall performance degradation.

An additional hidden parameter of our experimental design is the choice of the word

weighting method, as mentioned in Section 5.2. In order to gain some insights into the effect of

word weighting on performance, we performed some experiments with a different weighting

scheme. We used the signal-noise ratio (snr), because it has a different theoretical basis than the
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tf.idf approach and it is simple to implement (Salton and McGill, 83). Both efficiency and

effectiveness were affected by the new weighting scheme. In particular, while the efficiency of

HCR and BMR, which used full-text indexing, remained the same, we observed that the

computation of CLR was adversely affected. Due to the specific distribution of snr weights (the

same term has always the same weight in all documents), the pruning of the index set involved

in CLR yielded a much smaller number of distinct terms and a smaller number of terms per

document than the tf.idf approach, but, since there were more subsets of documents which had

some terms in common, the final concept lattices computed using snr had a greater number of

nodes.6 As for retrieval effectiveness, the comparative results across ranking methods and

domains were consistent with those obtained with tf.idf, while the absolute performance of snr

was noticeably different from tf.idf. In particular, while the retrieval effectiveness of the two

weighting functions was comparable on the CISI data set, the performance of snr was definitely

inferior to that of tf.idf on the CACM data set, probably due to the different characteristics of

the two collections (i.e., the CACM documents have more concise and better characterizing

descriptions than the the CISI documents).

Finally, an interesting byproduct of our experiment concerns the comparative evaluation of

HCR and BMR. Not only do these results confirm previous findings that HCR does not

perform as well as BMR (Salton, 1971; Griffiths et al, 1986), but they also strongly suggest

that the relatively good results of HCR reported by some authors (Jardine and van Rijsbergen,

1971; Croft, 1980) may be due to overly specific experimental choices, such as the use of a

single small collection (i.e., Cranfield) and the emphasis on searches that retrieved only a few

documents. A similar concern was also expressed by Willett (1988); we offered more evidence

to support such a conjecture. In particular, we showed that HCR can be clearly outperformed

by BMR when all documents are considered for evaluation, and that the performance of HCR,

while remaining inferior to that of BMR, becomes more comparable to the latter as we consider

for evaluation only the first retrieved documents.

5.5. Experiment 2: Ranking the non-matching documents

As one of our main claims is that order-theoretical ranking allows better treatment of documents

that do not match the query than BMR and HCR, we are concerned with finding empirical

evidence that supports this hypothesis. We are not aware of any earlier experiment of this kind,

so we had to come up with our own test methodology, which is described in the following.

                                                
6 Recall that the concept lattice contains, by definition, all nonempty and complete intersections between the
documents of a context.
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BMR, by its very nature, cannot rank documents that do not match a query, so we can

assume that in this case the non-matching documents are randomly ordered. For HCR and

CLR, we computed a ranking relative to the non-matching documents by removing the

matching documents from the full document ranking. In this case, we get a strict partially-

ordered output because the documents in a same ring cannot be further ranked by similarity

with the query, as with matching documents. Then, in order to compare the performance of the

three methods, we used Cooper’s expected search length (ESL), first introduced in (Cooper,

1968), and then described in detail in (van Rijsbergen, 1979) and (Salton and McGill, 1983).

We chose ESL because it very well suits partially-ordered retrieval output systems, like HCR

and CLR, and, in addition, it allows sound comparison with random document ranking, which

can be seen as the output of BMR methods for non-matching documents. In our experiment,

ESL was defined as the average number of (non-matching) non-relevant documents that are

retrieved by the system before all (non-matching) relevant documents are retrieved. To cope

with the random element of this measure, it is convenient to assume that in a set of equal

scored documents the relevant ones are located at equal intervals; it is then useful to compute a

relative measure of ESL (ESL-reduction), which specifies the improvement obtained by the

case in which the non-matching documents are partially ordered over the random case (Salton

and McGill, 1983).7 We computed ESL-reduction for each ranking method (HCR and CLR)

and for each query on each collection, and then averaged the results over the set of queries.

The results are shown in Table 5.

The CLR and HCR methods performed, on average, much better than BMR (random

selection) in both domains, although we noted that for some queries HCR resulted in a small

negative ESL-reduction over the random case. For the CACM data set, CLR performed better

than BMR by a much greater margin than HCR did, while, on the CISI collection, CLR and

BMR achieved more comparable improvements (over the random case). On the whole, the

results of this experiment suggest that, for non-matching documents, both HCR and CLR may

be much better than random ranking, and that CLR may be more effective than HCR. These

indications received further support when, analogously to the earlier experiment involving all

documents, we ran Experiment 2 using snr instead of tf.idf  as weighting scheme. In particular,

we found that CLR fared better than HCR not only on the CACM but also on the CISI data set,

with the performance of HCR on the latter data set coming closer to random selection.

We should emphasize that the superior performance of HCR and CLR for non-matching

documents had a limited effect on the performance relative to the whole set of documents, due

                                                
7 ESL-reduction = [random-ESL - ESL] / random-ESL = 1 - {[ PREVNONREL + (NONREL . REL) / REL+1]} /

 [(ALLREL . ALLNONREL) / (ALLREL + 1)], where PREVNONREL is the number of nonrelevant documents in all
sets preceding the one where the search terminates, REL is the number of relevant documents in the final set, and
NONREL is the number of nonrelevant documents in that set.
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to the characteristics of the test collections. The CISI collection has, on average, 49.77 relevant

documents per query. Of these, only 4.49 do not match the query (9.02%), while the total

number of non-matching documents is 598.54. For the CACM collection, there are, on

average, 15.31 relevant documents, of which 1.40 (8.86%) do not match the query; the total

number of non-matching documents is 2104.25. The proportion of relevant documents that do

not match the query is therefore low; the situation is similar for both collections, although the

fact that the CACM documents contain, on average, a much smaller number of terms, should

make this event more unlikely. In fact, many classical test collections seem biased towards

producing relevant documents that do match the query. While this bias may be representative,

in the sense that it reflects the way natural language is used, we regret that test collections

containing a significant proportion of non-matching relevant documents are extremely rare,

because this latter situation would probably better reflect the characteristics and the limitations

of many real searches conducted with short user queries, as is the case for Web-based

information retrieval. Furthermore, even for more typical information retrieval evaluation tasks

involving longer queries, such as the TREC test collection, it is sometimes the case that a large

proportion of relevant documents do not match the query terms (see for instance Berenci et al.

(1999)).

CACM CISI

HCR 11% 16%

CLR 27% 13%

Table 5. Average ESL-reduction for non-matching documents.

6. Scaling issues

As in the experiments we used databases of limited size, it is useful to examine how well our

approach could scale up. The two main aspects involved here are efficiency and effectiveness.

We will consider both of them, in turn.

As mentioned in Section 4.3, the size of the lattice may grow quadratically with respect to

the number of documents, but there is experimental and theoretical evidence that, when the

number of index terms used to represent each document is small, both the size of the lattice and

the time necessary to compute each update by Galois grow linearly with respect to the number

of documents (Carpineto & Romano, 1996a). Reducing the set of index terms may be therefore

an effective strategy to deal with larger databases than used in our experiments, although this

may not be sufficient for large scale databases. For the case when it is exceedingly hard to build
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the concept lattice associated with a database, we could use a method that finds an approximated

solution.

The idea is to let the user formulate a query first, and then dynamically compute a limited

portion of the lattice, centered around the concept that corresponds to the query. This approach

has been recently explored by Carpineto and Romano (1998) to support query reformulation in

Boolean retrieval. The core of this method is an algorithm that finds the neighbors (parents and

children) of a given node, with a time complexity proportional to the number of documents and

to the average number of neighbors in the lattice. If the collection contains a few thousands of

documents, the neighbors of a given node can be generated in real time even with full-text

indexing (Carpineto and Romano (1998)). Furthermore, the dynamic algorithm can be

recursively applied to each generated node to find more distant nodes. This procedure may

therefore be more efficient than full lattice construction to find the rings around the query,

provided that it is not necessary to rank all documents but only the most relevant ones and that

to find such documents it is sufficient to generate a limited number of rings.

We can make these considerations more concrete by providing a rough estimate of how

much of the lattice would have to be built to achieve certain retrieval results. By analyzing the

data collected in our experiments, we observed that the first two lattice rings generated for each

query contained on average the 13% of the relevant documents associated with the query. Since

the number of neighbors of each node is usually proportional to the size of the node’s intent,

irrespective of the number of documents in the collection, this implies that for a query with q

terms, in order to retrieve a small but not negligible fraction of the relevant documents, it may

be sufficient to generate only  1+ q + q2  nodes, which will require 1 +q invocations of the

dynamic algorithm. For short queries and collections of medium size, such an approach would

still be feasible in real time.

Whichever construction method we use, for large data sets it might be necessary to choose a

set of index terms of limited size. At this point, it is important to consider whether working

with a smaller set of index terms than used in our experimental evaluation might affect retrieval

effectiveness. In order to gain some insights into this phenomenon, we performed some

experiments varying the threshold used to select the set of index terms that describe each

document. We observed that working with a smaller set of index terms did not always result in

performance degradation, although this was typically the case, and, perhaps more importantly,

we noticed that the retrieval effectiveness usually underwent small decreases in response to

major reductions in the size of the index set. For the CACM database, for instance, when using

a significantly more restrictive selection criterion than the average number of terms (i.e., the

mean of weights in the document), the average number of terms per document reduced to 8.47

(- 42%), the number of nodes in the lattice to 13301 (- 67%), and the average precision

decreased “only” to 0.23 (- 8% ). This is encouraging, of course, but it is not enough to
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guarantee that the retrieval performance of the system would be equally good when shifting to a

larger environment. Working with a large number of documents and with a comparatively small

lattice would probably increase the number of documents associated with each ring, thus

reducing the utility of lattice-based ranking. Also, due to computational limitations, the system

might be unable to correctly rank the documents that did not match the query, which may be

located in the farthest rings. As a consequence, the overall retrieval performance might still be

badly affected.

Admittedly, while the above considerations may be useful to expand the range of practical

applications of our system, they do not solve the scalability problem all. For large domains, an

alternative, and perhaps more promising, approach is to try to exploit the potentials of

combined ranking methods. This will be discussed in the final section of the paper.

7. Related work

7.1. Hierarchical clustering-based ranking

Since a concept lattice can be seen as a particular structure for clustering documents and terms,

it is important to further compare the relative merits and drawbacks of HCR and CLR. One

distinguishing feature, as remarked in the first part of the paper, is that CLR, unlike HCR, has

a clear semantics by which to characterize the ranked document list produced in response to a

query in terms of the query and documents descriptions. A related important characteristic for a

cluster-based ranking system is the ability to integrate cluster formation and cluster selection:

HCR needs to map different representations and similarity functions, while CLR uses a unique

framework for representing documents and query and comparing them. Also, the clustering

structure used by HCR has a smaller number of free parameters (n clusters for n documents)

than CLR, whose number of clusters is usually in the range between n and n2. From the point

of view of retrieval effectiveness, these seem to be clear advantages of CLR over HCR, and the

results of our experiments support this claim.

For the worst case computational complexity, CLR compares less favorably, because there

are some cases in which the size of the lattice may grow exponentially with respect to the

number of documents. In practice, however, the efficiency of CLR is comparable to and

sometimes better than that of most HCR methods, whose time and storage requirements are at

least O(n2), except for the single link method, in which the latter complexity may reduce to

O(n).8 Furthermore, the concept lattice method has the advantage that its complexity can be

                                                
8  As mentioned in Section 4.3, the size of the lattice may not, and usually does not, grow quadratically with
respect to the number of documents. In our experiments, for instance, the concept lattice associated with the
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controlled by reducing the number of terms used to represent each document. This does not

hold, in general, for the hierarchical clustering methods, although some inverted file algorithms

for the calculation of interdocument similarity coefficients have been developed that can take

advantage of short document descriptions (Croft, 1977; Willett, 1981). Other variables of

interest in the comparison concern incrementality and use of background knowledge (e.g.,

thesauri). In short, both types of clustering structures can be built incrementally (Carpineto and

Romano, 1996a; Can, 1993), while CLR can more easily accommodate background knowledge

than HCR because the clusters in the lattice have an intensional description which makes it

possible to use broader terms to index more general clusters (Carpineto and Romano, 1996a).

7.2. Using concept lattices for information retrieval

The application of concept lattices to information retrieval tasks is not new, but it has usually

focused on interactive searches. The typical scenario (Godin et al., 1989 and 1993) starts with a

user query, followed by some form of visualization of the lattice region on which the query

zoomed in; the user may then see the documents contained in each of the nodes displayed on the

screen or may jump to more distant regions by formulating new queries. This approach has

been subsequently endowed with the possibility for the user to dynamically restrict the lattice

being searched using a set of terms that should, or should not, be contained in the documents of

interest (Carpineto and Romano, 1996b). More recently, the basic navigational framework has

been further extended to accommodate for Boolean queries and full-text indexing (Carpineto

and Romano, 1998). In all these approaches, the concept lattice associated with a collection of

documents is seen as a search space that can be explored by a user using various and integrated

retrieval strategies. To our knowledge, this paper is the first attempt to explore the potentials of

concept lattices for automatic document ranking.

7.3. Other approaches based on interdocument similarity

The notion of query and document space has also been used by non-clustering approaches to

document retrieval. Everett and Cater (1992) and Egghe and Rousseau (1998) suggested that a

similarity function between a document and a query, along with a threshold that specifies the set

of retrieved documents, can be seen as a topology on the document space, which implicitly

determines neighborhoods around every document even without the formulation of a specific

query. This resembles our approach, but the nature and the scope of topological retrieval

systems are very different from CLR. Since a topological structure on the document space is

                                                                                                                                                       
CISI data set (1460 documents) contained 256826 nodes, while the concept lattice associated with the the CACM
data set (3204 documents) contained only 40185 nodes.
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defined with respect to a particular (best-match) retrieval method, the topological approach may

be useful to discover general properties and to investigate the behavior of the given retrieval

method but it does not produce per se a set of documents in response to a user query. In fact,

topological retrieval cannot be implemented as a truly document ranking system.

A proper ranking system that uses an alternative method to discover and exploit hidden

similarities between query and documents was presented by Deerwester et al. (1990). Instead

of computing some form of neighborhood in a structured document space, it changes the

representation of documents and query first, and then it matches the query against individual

documents using the newly-created representations. These representations are based on the

singular value decomposition (related to factor analysis) of a term-document matrix from the

entire document collection, which was termed latent semantic indexing (LSI). Besides the

ranking strategy and the mathematical underlying tool, another main difference between LSI

and CLR is the comprehensibility of the intermediate text structures generated by the two

approaches. Unlike the lattice concepts, the factors extracted by LSI are difficult to interpret and

to relate to the actual document description, although there has been some attempt in this

direction (Story, 1996).

Although motivated by a different goal - i.e., extending the basic vector space model with

term-term correlations - the work by Wong et al. (1987) can be seen as an earlier attempt at

transforming document representation prior to ranking, based on interdocument similarity. In

Wong et al.’s Generalized Vector Space Model (GVSM), the terms describing the documents

are in turn described as a combination of atomic concepts (or minterms) associated with a

Boolean algebra defined over the set of terms. In practice, the idea is to broaden the document

representation by adding terms that are correlated with the original terms which described the

documents. For instance, using the same example given by Wong et al. (1987), suppose that

document D is described by terms T1 and T3, and that there are many documents in our

collection that contain exactly T1 and T2. In this case, D’s description is extended to include

both the minterms T1-T3 and T1-T2, thus favoring the retrieval of the document D in response

to the query T2. This kind of behavior has a natural counter-part in the CLR method, with the

two concepts T1-T3 and T1-T2 being placed close to one another and the document described

by T1-T3 being retrieved right after those described by T1-T2. The GSVM has not been widely

used since its publication probably due to its computational limitations, although Wong et al.

(1987) suggested also model approximations.
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8. Conclusions and future work

We took the view that the ranked relevance of a set of documents to a query can be computed in

terms of the length of the sequence of minimal refinements/enlargements that transform the

query into each document, as determined by the concept lattice associated with the documents

and the query. Concept lattice-based ranking (CLR) represents a major departure from other

approaches based on document similarity such as hierarchical clustering-based ranking (HCR),

because it does not rely on a similarity measure to build the cluster hierarchy and it does not

involve scoring a query against individual document clusters to rank the documents in the

cluster hierarchy. We have seen that CLR’s firmer theoretical basis help overcome some

inherent limitations of HCR due to fundamental assumptions and operational implementations.

We compared the retrieval effectiveness of CLR with that of HCR and best-match ranking

(BMR). The results clearly showed that HCR was outperformed by both CLR and BMR. Of

the two best methods, BMR achieved better performance than CLR on the whole document set,

while CLR compared more favorably than BMR on the first retrieved documents, due to a finer

granularity of their grouping by CLR, as well as on the documents that did not match the query,

where the superiority of CLR’s partially-ordered rank over BMR’s random selection was

apparent.

This research can be extended in several directions. Using concept lattices, the distinction

between textual information and information expressed as attribute-value pairs is blurred. With

some precautions and devices (Wille, 1992; Carpineto and Romano, 1996a), it is possible to

build a concept lattice from a set of structured documents, where each document may be

characterized by a set of attributes that may contain free-text descriptions or take on nominal or

numeric values. One direction for future work is to explore the potentials of concept lattices for

the retrieval and management of this class of enriched documents, with a view to XML

documents.

Another important issue is a more fully utilization of term weights in the process that leads to

the final ranked document list. At the moment, term weights are used to restrict the set of index

terms used to describe the documents and to order the documents contained in each ring, but

not to assign rings to documents. The use of term weights in the determination of the partial

ordering might better reflect the relative importance of terms in each document and it might also

explicitly account for document length when documents are not the same length. In order to

augment order-theoretical ranking with term weights, we plan to investigate the use of an

extension of the concept lattice theory, recently presented by Wille (1995), that combines

objects, attributes, and conditions under which objects may have certain attributes.
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A third avenue for further research concerns the combination of CLR and BMR, which

seems to complement each other very well. BMR is more efficient and may have better

effectiveness when considering the whole set of documents, CLR may be more effective for the

first retrieved documents and it can discriminate between non-matching documents. A

combined strategy might keep the strengths of the two methods while avoiding their main

weaknesses. One simple integration strategy is to have BMR rank an entire collection first, and

then to use CLR to refine the ranking of the best-matching documents returned by BMR. The

anticipated advantages of such an integrated approach are that it might be applied to large scale

collections and it might feature a better retrieval performance than BMR on the first retrieved

documents, which are of greater interest in many practical applications. That this is indeed a

promising research direction is indirectly confirmed by some recent work on the application of

clustering techniques to ranked documents, which showed that a combined strategy may

produce good results (Hearst and Pedersen, 1996), even when the clusters are created from

short document descriptions such as the snippets returned by Web search engines (Zamir and

Etzioni, 1998).
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