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Abstract
Current best-match ranking (BMRYystems perform well butannot handlevord mismatch
between a query and a documerte best knownalternativeranking method hierarchical
clustering-based rankinHCR), seems to be moreobust than BMR with respect to this
problem, but it is hampered hlgeoreticaland practicallimitations. We present an approach to
document rankingthat explicity addressesthe word mismatch problem by exploiting
interdocument similarity information in a nowslay. Documentranking is seen as a query-
document transformation driven by a conceptual representation ofviioée document
collection, into which the query is merged. Our approach is bas#iieaheory of concept (or
Galois) latticeswhich, we argue, provides a powerful, well-foundadd computationally-
tractableframework to noadel the space iwhich documents and queaye represented and to
compute such a transformation. We g@amed information retrievalsing concept lattice-based
ranking (CLR) to BMR and HCR. The results showed that HCR was outperformed by CLR as
well as by BMR, and suggested that, dhe two best methodsBMR achieved better
performance than CLR on the whole document set while CLR compared more favanably
only the first retrieved documents wengsed for evaluation. We alsevaluated the three
methods’ specifi@bility to rank documentshat did not match thequery, in whichcase the
superiority of CLR over BMR and HCR (and that of HCR over BMR) was apparent.

* To whom all correspondence should be addressed
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1. Introduction

Information retrieval is concerneglith retrievingthe documents of interest touser from a
natural-language document collection. The typical retrieval seattingists of a usesubmitting

a query tothe system,usually in free-text naturdanguage, anthe system returning a list of
possibly relevant documents in ranked order. Most of the major ranking syktgnase in use
today, althoughworking from a verydifferent basis,can beseen as performing two main
operations: building an internal representation of queries and docuingtntand then scoring
the query representations agaitis¢ document representationspi@duce a ranked document
list. In the first stage, queries and documents are usually represented as werghtedtors,
using such diverse weighting schemeSBART's classicalf x idf approach(Salton, 1971;
Salton and Buckley,1988), Croft and Harper(1979)’s probabilistic indexing method,
INQUERY'’s network inference model (Turtle a@oft, 1991;Callan etal., 1992),O0KAPI’'s
2-Poisson model (Robertson and Walker, 1994; Walkat, 1997), and the Cornell variant of
the OKAPI algorithm(Singhal et al, 1995). Once theweighted term vectors havebeen
computedthe matching ofqueries against documents is customarily performetthénsame
manner, i.e., by computing the dot product between corresponding weighted term vectors.

These best-match retriev@stemsare highly efficient and havehown to prform well in
many operationasituations,including the TREC environment (Voorhees atarman,1998).
However,they are limited by their inability of dealingith word mismatch. Wen translating
an information requirement into a qudor a document retrievasystem, a usemust convert
concepts involved irhis requirement into query terms which will not necessarigtam the
termsused bythe authors to describthe same concepts in thelocuments. This ishe well
known vocabulary problem, described in (Furnaalet1987), twospecific important aspects
of which are polysemy (samewvord to describe different things) ansynonymy (different
words to describe the same thing). The severity of the vocabulary problem tends to decrease as
gueries get longer, but it may be exacerbated in applications where the queries are very short, as
is usually the case in Web-based retrieval.

One traditional solution to the vocabulary problem isutomatically or interactivelgxpand
or refine the query using various knowledsmirces, such dhke relevance feedbagkovided
by users (Harman, 1992he top ranked documents retrieved by the originedry (Xu and
Croft, 1996 Carpinetoet al., 1999), collection-specific lexicahetworks (Cooper and Byrd,
1997), and generapurposethesauri(Voorhees, 1993)The query nodification approach
attempts to extend the capabilities of conventional, best-match rasystgms taecover from
word mismatch without modifyingthe assumptions oftheir underlyingmodel. A more
fundamental solution taord mismatch is to try to exploit the relationships in contehtch
exist between the documents in tballection when deciding which documentare to be



Carpineto 3

retrieved inresponse to a query. @is alternative strategy to best-matdmnking, the most
well known approach is cluster-baseohking, where a query imnked not against individual
documents but against a hierarchicghpuped set of documenlusters.The rationaldor this
method is the clustdrypothesis (van Rijsbergen, 1979; Hearst and Pedet886), which
statesthat relevantdocuments tend to be more similar éach other than non-relevant
documentsHierarchical cluster-based ranking (hereafter often referred téCi®) does go
some way towards compensating for the vocabulary problerddast not solve it albecause
this approach suffers from theoretical as well as practical limitations.

In this work we present a novel approach to document ranking that has clear potedgals to
with word mismatch. In the same vein as HCR, it is based on building a cluster structure from
the set ofdocuments, buthe clustering methodology is completeallfferent. Instead of
grouping the set of documents using some similarity metrics, it is basie oecognition and
ordering of set inclusion relations betwettie termsdescribingthe documents.The ranking
strategy ofour approach is also different froHCR. Rather than computing a similarity
between individual document clusters anduery, we use alustered representation of the
whole document collection to drive a transformation between the representatiouerfysand
the representation of eaclocument. In practicethe query is merged into aonceptually-
clustered document space and the similarity betweequéry andeach document iseen as a
function of the length of the shortest path linkithg query tothe document.The mathematical
tool used toimplementthis approach ishe concepfor Galois)lattice associated with #&rm-
document relation (Wille, 1984; Davey and Priestley 1990).

The theory of concept lates hasalready beerused ininformation retrieval applications
(Godin et al., 198%nd 1993; Carpineto arldomano, 1996and B96b), but it hasbeen
customarily employed teupport user ietrfacedesign. In fact, one dhe motivations of our
research was a desire to extend the scope of such a theory to fully-autetriatialtasks. We
showthat concept lattice-basednking (CLR) has alearand soundsemantics anthat CLR
helps overcome some litations of HCR related to thedissatisfyingtheoreticalassumptions
and operational implementations of tHatter method. We then evaluate the retrieval
effectiveness of CLR in contrast to BMR aHE@€R. The resultsare promising. In particular,
they supportthe view that CLR performsbetter tharHCR, andthat CLR may beseen as an
alternative toBMR, especiallyfor someretrieval tasks and akeastfor collections of small-
medium size. In addition, our experiment indicates promising synergistic combinations between
CLR and BMR for large databases.

This article isorganized agollows. Section 2 examines some inherent linotedé of HCR.
Section 3 provides an abstract, but intuitive, viewdo€ument ranking as a representation
transformation in a conceptuapace. Section 4 formally introduces concelaittice-based
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ranking, provides adetailed illustrative example, and examinegmplementation and
computationalrequirements. Section 5 repottse results of comparinghe three ranking
methods on different retrieval tasks, including the speabiity of ranking documentthat do

not match a given query. Section 6 considers the scakug.Section 7 contains discussion

of relatedwork, including cluster-basedanking, earlier applications of concept lattices to
information retrieval, and other approaches based on document similarity. Section 8 concludes
the paper with a summary and some directions for future work.

2. Limitations of hierarchical cluster-based ranking systems

Hierarchical clustering methodake as input a matrix of document-to-documedistances,
based on some silarity function, anditeratively merge themost similar pair of distinct
clusters, using somelustering strategye.g., sngle link, complete link, group average,
Ward’'s method), until there is only one clusténce the clustering hierarchy has been built, an
incoming query is ranked againgighborhoods of this structure, using some search strategy
(top down, bottonup, or optimal search) and some query-cluster similafijction The

result of HCR is gartially-orderedsets of documentfecause the documentsdach cluster

are equally ranked; however, a totally-ordered list can be easily obtained from it by individually
ranking the documents in each cluster against the query.

From aconceptual point ofiew, HCR seems to beare robustthan BMRwith respect to
word mismatch,because it takes into account bdtie interdocument similarity and the
similarity between a@uery andhe individualdocuments. Still, it appears tdmited to reveal
the richness and diversity of mlance relationships betweemeries and documents with
different surface representatiort2or one thing, this isdue to some welknown empirical
weaknesses of hierarchical clustering methods for information retrieval applications, such as the
relatively small nurber of free parameterthat they have(essentially, n clusters for n
documents) and their incapability of performimgltiple or crossedclassifications (Deerwester
et al., 1990; Carpineto and Romano, 1996a). In addition, perhaps more importarihlicwe
that a major problem with this approach is Ik of firm theoreticafoundations by which to
characterize the document ranking in terms of the query and document desci$teomst al
(1997) pointed outthat clustering algorithms mayot reveal the natural structure of a set of
documents anthatsearch strategies exploiting ttapical relatedness ajueries and clusters
may not select thenosteffective clusters of documents. Weabbrate orthis, showing some
inherent limitations involved in both of these two steps.

We first focus on the process of cluster formation, argthagjthe methodised by HCR to
group the documents into clustemsy easily involve asome point some heuristic decision to
choose betweeaquivalent clustehierarchies. In particular, we will sdbat evenfor a very
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simple set odocumentsthe resulting hierarchy may contadertain clusters while failing to
produce other equally good clusters. We then con#iigasrdering ofthe generatedlusters in
response to a query, whichusually based on a best-match function betwerguery and

some clusters representatiorhe result ofthis stepmay also vary depending ohow we
choosethe main parameteligvolved here. Overall, weshow that the reliance oHCR on
several and loosely-coupled similarity or distance measures may make the output result difficult
to control and prone to error. In fathe use of HCRmay easilyresult, evenfor simpletasks

and in the presence oypical assumptions and choices, infalure to discriminate between
documents that have manifestly different degrees of relevance for a gereajn Inthe rest of

this section we make these points more precise.

Considerthe simple document-term relation describedrable 1.Clearly, BMR methods
would alwaysfail to discriminate betweedocumentshat have no terms in commavwith a
query. For instance, the query isequal to“T1”, documents D2 and D3 would kegually
ranked by BMR, whereas D2 appears to lweemelevant than DBr the given query; a dual
situation holds for documents D2 and D1 with respect to query*T4t.ussee what happens
if we use a HCR method. ClusteBsl-D2 and D2-D3 are equivalent, nomatter which
interdocument similarity function anahich cluster strategy we hawhosen. Thus, we may
have two possible cluster hierarchfes the set of documents hand,depending orhow we
break thetie (see Figurel). Suppose, for siplicity and generalitythat incomingqueries are
then scored against the clusters using optsealch. For query “T1'the left hierarchywould
produce a correct document ranking, becdbs®estmatching clustewould be D1, followed
by cluster D1-D2. For query “T1”, howevehe right hierarchyvould rank clusteD1-D2-D3
right after clusteD1, which wouldcause documents D2 and D3 to be equalhked. Adual
situation holds for query “T4”, withthe first hierarchy behavingvrongly andthe second
correctly. This behavior will be observed for any choice of the query-cluster similarity function.

Not only can HCR fail to discriminate betweedocuments which do nahatch thequery
(hereafter often referred to as non-matching documents), i.e., D2 versus D3 for query “T1”, D1
versus D2 for query “T4”put it canalso fail to discriminate between matchirapd non-
matching documents. Assume withoubss of generality that thequery-clustersimilarity
function is computed by taking the inm@oduct with cosine normalization betwethe query
term vectorand a clusteterm vectorformed by the set of terms contained alh cluster’s
documents, weighted with their frequency in the cluster it$akse are typical choicésr the
normalization factor and the cluster representative (e.g., Griffttlaé, 1986). Ifthe incoming
query isequal to“T2", then, for the left hierarchy,the best matching cluster is D1-D2;

! One should be aware that in a more complex context these considerations may represent a rough approximation
of what determines relevance. Spink and Saracevic (1997), for instance, show that no matter how tjuglicious
choice, the majority of search terms will retrieve both relevant and non-relevant documents.
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documents D1 and D2 atus ranked equally, aremhead ofD3, which is correctHowever,
for the same query “T2”, using the right hierarahguld result inselecting the cluster D1-D2-
D3 (with a query-similarity score of 2(10)12) before clusteD2-D3 (whosequery-similarity
score isequal to 1 / (6%2), in which casd¢he document®1, D2, and D3 would beequally
ranked. A dual situation holds for query “T3", witie right hierarchy behaving correctly and
the left hierarchy behaving wrongly.

In order to overcome thedenitations it seems thus necessary datack the fundamental
representational limitations of current HGgstems,ncluding thelimited expressive power of
the structure representing the interdocument similarity and the need of mapping entities with
different representationQur approacladdresses bottheseissues using dacher and unique
framework for representing documents and query and comparing them.

Table 1. A simple document-term relation

T1 T2 T3 T4

D1 X X
D2 X X
D3 X X

D1D2D3 D1D2D3
/ N\
D1D2 D2 D3
/N /N
D1 D2 D3 D1 D2 D3

Figure 1. Equivalent cluster hierarchies derived from the set of documents shown in Table 1.

3 Viewing document ranking as a query transformation in a
conceptual document space

The starting point ishat the matching betweencaery and a documeitan be described in
terms of a sequence of operations that transforms one into the other. We etmas#uge basic
operations to transform the term vector representing a querthatierm vectorepresenting a
document are form of term additionandterm deletion, whilethe length of the sequentat
accomplishes the desired transformation is a measure of the similarity betwéso trextors.
Note that one apparently straightforwasday to implementthis idea is tosimply count the
terms that are not shared by the query vectortladlocumenvector, or,alternatively, to use
some related similarity measure, such as Dice or Jaccard coefficient (Salton and M&3ill,
Such an approach, however, woalthount to a simplistic form of best-match retrieval, with
very limited ranking capabilities. Neitherould it be able, in general, thscriminate between
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non-matchingdocuments. Inthe simple exampleonsidered inrable 1,for instance, itcould

not rank D2 ahead dD3, for query “T1”, because théwo documents wouldjet the same
distance score. Thus, viewing the distance between a query and a document as a transformation
process between the corresponding representations is not sufficient alone.

The second essential ingredient ofir approach ighat thequery-document transformation
should be driven by amternal conceptual structure of the database bsewyched. The
intuition behind this view ighe following. Assume for anoment that we are able to extract
from a documentollection aset of concepts contained iy where suchconcepts can be
thought of aghe queriesthat can be naturallgatisfied by some document the collection.
Assume also that, foeachconcept, it isavailablesome procedure, sayreearest neighbors
operator, that determines which are its most related conddggsset of concepts together with
the nearesneighbors operator provide us withteol for analyzing the query-document
transformation, provided that the query can be mapped onto some cdimepet of concepts
definesthe space of admissibtpiery transformationghe nearesheighbors operataells us
how to nake a transitioirom a query to another. At thigoint the problem of computing a
sequence of operatiotisattransforms a querinto a document can be cast as a breadth-first
search through the space of admissible queries, as determined by the qubey afidction at
hand.The initial state is a concepbrresponding tdhe query, while the successor states are
specified by the nearest neighbor operator. The search ends as soon as a concept thatached
corresponds tthe documentepresentation. A document score is giventhy length of the
shortestpath linking theinitial and the finalstate, while the final ranked document list is
obtained by arranging the documents in the increasing order of score.

The nextquestion is: is there any conceptual representation of a documiédtion that
satisfies these requirements? We argue that cof@ef@alois)lattice is agood candidate. The
conceptlattice associated with a documeanbllection contains a particulaset of concepts
inherent to the collection that can be ordered by generality. Roughly, each concept petecom
set of co-occurrences, where by this weam aset of terms appearing jointly in a set of
documents and such that those documents do not have other terms in c@unuaptattices
have thefollowing desirable features: (the concepts have a natural interpretafiam the
point of view ofcharacterizing the set gjueriesthat can besatisfied by the collection, (i) a
user query can be consistently mapped onto the lattice, (iii) the concept ordering hels tos
gradually pass fromone query to another, and (ithe set of concepts in thiattice is
sufficiently numerous to ensure a rich representation while being still tractalalédition, the
conceptiattice can be automaticallyuilt from a document-termrmatrix, and its construction is
computationally feasible.

Before we proceed, it is useful to considgain the example given in Section 2 as a simple
illustration. As will become clearer in thellowing of the paper,the set of relevant concepts
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contained in the concefattice associated witlthe set of documents describedTiable 1 and

with query “T1” is shown in Figure 2The highest ranked document [ixl, because there is a
link connecting the query to it, followed by document D2, through the path T1-T1T2-T2-T2T3,
and by document D3, through the path T1-T1T2-T2-T2T3-T3-T3T4.

T1 T2 T3

N NN
T1T2 T2T3 T3T4
(D1) (D2) (D3)

Figure 2. The set of ordered concepts derived from the collection in Table 1 and from query “T1".

In the next section we make the ab@ansiderations morprecise. Westart by introducing
order-theoretical ranking formally; in particular, we defile conceptlattice that can be
generated from a document collection, and provide gebedic treatment that glds the
document rankindor anincoming query. Basic notions and formalismare borrowed and
adapted from the concelatttice theory (Wille 1984) aswell as fromthe more general ordered
set theory (Davey and Priestley 1990).

4. A ranking method based on the concept lattice theory

4.1. Formal description

As input data, we consider a binary relation between a set of documents (D) and a set of terms
(T), usually calleadcontextin the concept lattice theory. In the information retridiedt, this is
the usual document by term relation

Definition 1 A context is a tripl€D, T, 1) wherel O DxT. We write dIt, meaning the
documendt has the term

To derive from a context the set of concepts, the following Galois connections are useful.
Definition 2 Let (D, T, I) be a context. For DD and YOT, define:

X' ={tOT|@dOX) dit}
Y'={dOD|@QtOY) dit}.
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In otherwords, X' isthe set of terms common &l documents in X and Y' is the set of
documents possessing all the terms in Y.

Definition 3 Let (D, T, I) be a context. A concept is a pair (X, Y) whered1)0, YO T,
X'=Y,and Y'=X; Xand Y are called tlextentand theintentof the concept, respectively.

Only thepairs (X,Y) that are completavith respect to | according tihe given definition
represent admissible concepts. In particular, a subset Y of T is the intent of some concept if and
only if Y"=Y, in which case the unique concept which Y is anintent is (Y'Y); a dual
statement holds for the extent of a concept. Ritwempoint ofview of document retrievakach
concept can beeen as a conjunctive query (tinent) along withthe set of documenthat
satisfy it (the extent).

The set of all concepts of the conteffd, T, 1) isdenoted byC(D, T, I). It is possible to
order this set of concepts by generality (specificity), in such athayeach concemiontains a
subset (superset) of the terms of its more specific (general) concepts .

Definition 4 Let C(D, T, I) be the set of concepts of the coni@t T, 1) andlet (X3,
Ya), Xp, Yp) O CD, T, I). Then (X Yg) is subsumed<) by (Xp, Yp) if Xq O Xp, or,
equivalently, if Y30 Yp.

C(D, T, I) along with < form apartially orderedset, thatturns out to be aomplete latticé
(Wille 1984).

Definition 5 Let (C(D, T, I) ; <) be the concept lattice corresponding to the context (D, T,
I)and let a, bl (C(D, T, I) ; <). Thenais a nearest neighbor (>-<) loff eithera < b anda <
z<bimpliesz=4a, orb<a andb <z < a impliesz = a. The latterconditions are demanding
that there be no element z D, T, I) ; <) witha<z<b orb<z<a.

Observe that theubsumptiorrelation determines, but is nadetermined by, the nearest
neighbor relation.The nearesnheighbor relabn definesfor each concepgll its minimal
conjunctive refinements (enlargements) with respethidéadatabase &tand, inthe sensethat
there is no choice of term addition (deletion) which would produce an intermediate concept.

2 Recall that, given a non-empty ordered set P, if for @P3hereexists a least uppdoundand agreatest
lower bound, then P is calleccamplete lattice
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Definition 6 Let C(D, T, | ; >-<) be the set afoncepts of the contexD, T, I) together
with the nearest neighbor relation andddb [1 (C(D, T, I) ; >-<). Then the transitiveclosure,
>-<", of >-< is defined bya >-<b if and only if

(An0O N) (3zy, z,..., , 0 (C(D, T, I) ; >-<)) such thah = z;>-< z;>-< z,.>-< Z,=h.

The transitive closure identifies a sequence of minimal refinements or enlargements by which
to derive one concept from another. In particulacait be applied to query and a document,
providedthat wespecify a concept noder the query and aoncept noddor the document.

The former can be obtained by merging ¢uery intothe lattice as gseudo-document. The

latter is the lattice node with intent equal to the set of terms describing the document in question;
such a nodexists, by definitionand its extent contains at ledisat document.The transitive
closure of a query can then be used to order the set of documents that can be derived from it.

Definition 7 Let g a user query, (PTg, Iy the contex{D, T, 1) augmented with g, and
CDg Tg lg; >-<) the set of concepts of the augmented context alwitiy the nearest
neighbor relatioh For each ¢ d, 00 D, let a, & 0 C(D, T, 1), such thatthe intents of aand
& are equal to theescriptions of gdand d, respectively. Then,ds ranked ahead of,dvith
respect to q if and only if;,< n,, where i is the least ] N suchthat q >-< a;, and B is
the least riJ N such that q >-*<a2.

From the above definitions, it can be easily proved the following result.

Proposition 1 If a document g0 D is ranked ahead of a documentld D for a user
query q, according to Definition 7, then the set of terms containgccandoe derived from the

set of terms contained in g by a smaller number of admissilvlienal transformations, with
respect to the collection at hand, than the set of terms containgd in d

A complete ranked document list can be obtained by arranging the whole set of documents in
the increasingorder of minimal transformationghat arenecessary to deriveach document
from the query. Of coursethis is apartially orderedretrieval output, because the documents
that are equally distarfitom the query concept have the samseore. Wecan think of thesets
containing equally-ranked documents as concentric rings around the query node. The longer the
radius, the lower the document score (of the associated documents).

We now present a one elaborate example that illustrates @pproach we havdescribed.
Then we address the issue of automatic determination of order-theoretical ranking.

3 Note that both the user query and the documents are eIeméXﬁrqoﬂ'q, Iq; >-<)



Carpineto 11

4.2. An example

We will refer to a simple bibliographic database consisting of seven documents described by
eight index termgsee Table 2). All documents are about computerized decissopport
systemswith two broadapplication domains: economics aedvironment. Suppose we are
interested in the formearlass of documents, aret usassumehat the database is queried by
guestioning "Neural-Network-Systems, Financ&he conceptiattice built from the set of
documents and from this query, treated as if it were a pseudo-documbumireted in Figure

3 by a Hasse diagram.

Table 2. A simple database containing seven documents described by eight index terms

D1 Dz DG D4 Dt De D7

Neural-Network-Systems X X X X
Knowledge-Based-Systems X X X X
Credit X X X
Finance X X X
Account X

Bank X
River

Waters X

X
X X
X

4
KBS

/

3
CREDIT 3
KBS
(05) /FI NANi /NNS\ BANK\
FINANCE NNS 2 ;
CREDIT FINANCE NNS
€5 Quen)
2 3
NNS NNS
BANK BANK
ACCOUNT RIVER
(D3) (02)
1 1
NNS NNS
FINANCE FINANCE
CREDIT BANK
KBS ACCOUNT
(D7) (D1)

Figure 3. Theconcept latticeassociatedvith the database inTable 2 and with the query “Neural-Network-
Systems, Finance”. For each concept, it is also shown its ring number (right upper corner).
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The Hasse digramshowsthe set of concepts alongth the nearesheighbor relation (see
Definition 4), implying that there is an edge betwdam nodes if and only ithey represent
comparable concepts (the ascendingaths can be seen as representing the
subconcept/superconcept relation) and there is no iotieemediate concept in the lattice. The
labeling of the diagram in Figure 3 ssichthat the intents arehown forevery conceptwhile
an extent is attached only to the smallest concephtsthat extenti.e., whenthe description
of documents in the extent coincidesth the node’s intent). It should also beted that in
Figure 3 we do nashowthe latticetop and thdattice bottom. By definitionthe top concept
contains all documents and is described by their common terasyjifthe bottom concept is
described by the set afl terms and contains the documethtat havethose termsExcept for
the casavhenthe latticetop is described by a non-empty set of attribies, all documents
have those attributespr, dually, whenthe lattice bottom contains a non-empty set of
documents (i.e., some document hBHsttributes), it is convenient wmit both the lattice top
and the lattice bottom in the graph used to compute the docuamiig, forthesetwo nodes
cannot be seen as proper queries with associated documents.

In order to visually highlight the transition from relevant to non-relevant information (to keep
with our terminology, frormear to distantings), the diagram inFigure 3 haseen depicted
using a simple instantiation of the fisheye view technique (Sarkar and Brown, 1994). The focus
of interest is thejuery nodeand the othenodesare displayed in decreasing levels detail
(with respect to the font size) and at increasing graphical distance, depending on the topological
distance fronthe focus, wherethe topological distance between a givesde andthe focus
node is the length of the shortest path between the two nodes.

As stated in Definition 3not everyterm subset is dattice concept. For instance, in the
lattice relative to theontext in Table 1 there cannot ey concept having an intent equal to
“Credit”, in that alldocuments having “Credit” havalso “Knowledge-Based-Systems”. The
completeness constraint limits the number of admissible concepfavbying maximally
specific descriptions ahe extent'sdocuments. Irotherterms, it is assumeitthat if one term
always appears jointly with other terms, the single terms do not refer to distinct concepts while
their tupledoes convey a useful meaning. Irsense,every completeset of co-occurrences
determines a semantic “context” specific to the collectiohaaid, and theclosenesdetween
two semantic “contexts” is completely determined by the distribution of terms in the collection’s
documentsOne consequence of this assumption is that in the lattice there may well beamwo
conceptghat differ by a larger number of terms than more distant conckptg-or instance,
the query concept Q and the concept with extent D7 are connected by a single-link path although
they differ by two terms (i.e., “Credit” and “Knowledge-Based-Systems”), beaaaatng an
intermediate concept betweena@d D7 witheither “Credit” or“Knowledge-Based-Systems”
would be of no help in discriminating between the given set of documerttse Aamedime, it
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may happen that the same two concepts become more distant, or, viceversa, closer, as the set of
documents in theollectionchanges. For instance, az@sequence of the introduction of a

new document described by “NNS-Finance-Credit”, a nencept withintent “NNS-Finance-

Credit” would beadded to thdattice between the concepts Q abd, thusincreasing their
distance. Thusthis kind of distance is a context-sensitiveasure similar to most distance
measures based on some clustering method. By contrast, this important feature ceasit be
incorporated into more traditional statisticaleasures wherghe distance between two
representations is based only ihve characteristics ahose representatior{e.g., Eiclidean
distance), although there have been some attempts in this direction using the standard deviations
or the covariance matrix of the variable values (Everitt, 1993).

Now let usseehow the ranked lisfor the givenquery and documents moduced. The
nodesthat areclosest tothe query (ring 1)are “Finance”, “NNS”, “NNS-Finance-Credit-
KBS”, and “NNS-Finance-Bank-Account”. The relevant documents are D1 arfce€dll that,
according to Definition 6, imrder toreach a document concept it is not sufficient to simply
generate amode whoseextent containghatdocument, but it is necessarygenerate the node
with intent equal to the documedescription). Ring 2 consists tiie nodes “NNS-Bank”,
“Finance-Credit-KBS”, and “NNS-Bank-Account”, whigheld the documents D3 and D4,
and so onThe completeanked list of documents is tli@llowing (in parenthesis wadicate
their distance fronthe query node): D11), D7 (1), D3 (2), D4 (2), D2 (3), D5 (3and D6
(4). This result is correct, ithe sensethat it seems taeflect the actual document relevance to
the given query.

It is useful to compare the above ranking witat produced byBMR methods. We would
get the following ranked list: D1 and D7, with the same score, followed by D2 and D3, with the
same score, by DAnd by D5 and6, with the samescore. This result presentseveral
inversions with respect to the ideal ordering, involving not only pairs of docuthantisd not
match the query (D5-D6), but also pairs where only one docunenhed thequery (D2-D5),
or both documents matched the query (D2-D3). The last case is interBstiugnents D2 and
D3 have the same term in commwith the query (“NNS”) and both contaithe ambiguous
word “bank”. Usingthe lattice, the concepNNS-Bank” can be equivalently specialized with
“River” and with “Account” (see Figure 3)however,the conceptNNS-Bank-Account” may
be reached fronthe givenquery through a shorteiternativepath, whichreflects the higher
overall structural similarity of th&atter conceptvith the query. Incidentally, this observation
may suggestthat it is worth investigating the potentials of concept lattiées dealing with
ambiguous query terms in quergfinementbased onthe actual content of the collection
(Cooper and Byrd, 1997).
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4.3. Computational efficiency

Order-theoretical rankingan be implemented as a three-gpepcedure.The concept lattice
associated with a document collection, along with its Hasse diagrdmilti§irst; then a query
is mapped onto the lattice derived in the eadtep,and finally a ranked document ligtr that
query is computed frorthe augmented lattice. lwrder to buildthe lattice weused GALOIS.
The system GALOIS, described utetail in(Carpineto andRomano, 1996a), is based on an
incremental algorithnfior lattice constructionthat works byexamining one document atiene
and updating the &bksediagram of thdattice relative to thelocumentghat have already been
seen. Once the document lattie@s beenbuilt, the query is simply added tib, as if the query
were a document, by GALOIS itself. In fact, usingireremental algorithnmasthe advantage
that every query can be processed by adding it to the document lattice, without recomputing the
augmentedattice from scratch whenevehe system is presented with a newery. The third
step is also computationally simple. It is sufficient to perform a breadth-first search through the
augmented lattice starting from theery nodewithout generatinghe nodesthat have already
been encounteredintil all nodeshave beerreached. Then, ithere aresome disconnected
nodes leff, they are added at the end of the ranked list that has been prodfeedEswhstep

of the breadth-first search returns a set of nodes that are equally distathdiguery, with an
associated set afocuments. Thughe position ofeach document in theutput ranked list is
computed in parallel while visiting the augmented concept lattice.

The overall complexity of order-theoretical ranking is essentially determinéduelbgomplexity

of lattice construction, because the other two operations require at most one pdiss lawre
built in the first step. The space complexity of the concdattice built from a document
collection varies, in practice, from linear to quadratic with respect to the numtecwinents,
and thetime conplexity of each updatperformed by GALOIS varies in a similar manner
because it is proportional to the number of concepts itattiee being updated (Carpineto and
Romano, 1996a). Thushe relative efficiency of thg@rocess oflattice construction easily
allows small/medium size applications ofir approachlike the one that will beconsidered
here, but it also raises the question ofajpplicability to large scalapplications, which will be
addressed below (see Section 6).

4 Since we usually remove the lattice top and the lattice bottom, it may happen thadcsoments cannot be
derivedfrom the query by transitive closureaccording toDefinition 6. In practice, however, sudhigh
disconnected documents should be rare, and they are likely to be of no interest at all for the given query.
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5. Comparative Evaluation

5.1. Goal

The objective of the experimental test was to evaluate the comparative effectiveness of the three
ranking methods discussed in this papeamely BMR (Best-MatchRanking), HCR
(Hierarchical Clustering-basdglanking),and CLR (Concept Lattice-bas&hnking). We ran

two experiments. In the first, standard experiment we evaluated the retrieval effectiveness of the
threesystems orthe entire set of documents contained in a collectioadtiition, as in this

paper we focused on the word mismatch problemevatuated the specific ability of the three
systems to produceralevanceordering for documentsontained in the collection thdid not

match a given query.

5.2. Test Collections

We used twowell known, electronically-available test collections aur experimentCACM
and CISI. TheCACM dataset contains$3204 documents and Sflueries,the CISI data set
contains 1460 documents and 3jueries.In order to determine, foeach collection, the
document-term relatiomsed asnput by the threganking method weused the classical
blueprint for automaticindexing suggested by Salt¢h989), consisting of four stepsext
segmentation, word stemming, stop wording, word weighfliegt segmentation amounted to
extracting the individualvords occurring in thedocuments, ignoringpunctuation anccase.
Word stemmingwas done by using a vengrge trie-structured morphological lexicon for
English (Karp etal, 1992), that contains thestandard inflectiondor nouns, verbs, and
adjectives. For stop wording we used a skep included in theCACM test collection,
containing 428 common function words. Word weightivas performed throughhe classical

tf-idf approach.

The last step, word weighting, is the most important and deserves some expl&tatiby.
speaking, word weghting is necessary only f@MR, while HCR and CLR do not need this
kind of information. In practicehowever, wordweighting may beuseful also forthe latter
systems. This is the case in our experiment, where all ranking systems take as input a weighted
term vector representation of the document collecttfdR useshe termweights tocompute
the matrix of document-to-document distances and to order the documeathinluster; CLR
uses the term weights to redube set of termsglescribingeachdocumentmainly for reasons
of efficiency, and to ordethe documents ieachring, similar toHCR. It followsfrom these
assumptionsthat the waghting method itself becomes an independent variable of our
experimental setting, because it can influence not only the performance of BMR, but also that of
HCR and CLR. We will return to this issue when we discuss the results of our experiments.
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The automatic indexing of querigagasthe same adocumentsexceptfor word weighting.
CLR did not use weighting of query termsa#lt while for BMR andHCR the weight ofeach
term was simply given by its frequency in the query, which seems to produce better results.

5.3.Implementation of the three ranking systems

The implementation of BMRvas straightforward: weomputed the inngoroduct with cosine
normalization between the documerdctors and a query vectadetermined as explained
above.

The implementation of HCR was more elaborate because several choices can besacide at
of the mainsteps of this method, iparticularduring the process of cluster formation. To
determine the degree of similarity between documentssgethe innerproduct with cosine
normalization. For the cluster formation stage we used the single link method, because although
it may belesseffective than the other mamethods(completelink, group average, Ward’s

method); it can be implemented more efficient(n?) time andO(n) spacefor the clustering
of n documentsThe issue of efficiency does makeiarportant difference because the storage

requirement of most &iarchical clusteringmethods - O(n?) space- may make their

computation exceedingly hard evdor small collections, like those considered in our
experimentsTo rankthe set of generaterlusters according to their eslance to &juery, we
computed the inner product with cosine normalization between the queeaemdluster in the
hierarchy, using as @epresentation of a cluster the set of tedascribingall the documents
contained in thecluster, weighted with their frequenc{Griffiths et al, 1986). Finally, we
decided to individually ranithe documents irach cluster against eacjuery because this
strategy produces better results (Voorhees, 1985). This inner ranking was doregasirhe
inner product with cosine normalization.

The CLR methodwas inplemented asdescribed in sectiort.3, with two important
specifications. First of allijke other retrievabystemshat donot usefull-text indexing due to
computational limitations (e.g., Deerwester et al., 1988arek etal. 1991),CLR works with
a restricted set of indeterms. The goal is tochoosethe most informative terms while
facilitating thesubsequent process lattice construction. For thigpurpose, weselected, for
each document, the firktterms (at most), whefewas automatically set usirtge mean of the
number of terms per document produced by full-textexing. This method pruned the
representation of the documetitat contained more thdnterms,andleft those containing

° Most experimental studieagreethat the single linkmethodmay have worse retrievaberformancethan the

other hierarchical clustering methods (e.g., Voorhees (1985), Willett (1988), Rasmussen (1992), Burgin (1995)).
These results, however, have been partially contradicted by other experiments, in whicloommuaeble levels

of retrieval effectiveness were found (Griffitesal, 1986, EI-Hamdouchi and Willett, 1989).
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terms or fewenunchanged. Foeach dataet, the actual nput representation and the concept
lattice built from it had the following characteristiézr the CACM dataset, whichafter word
stemming andtop wordingcontainedd608 distinct terms andvas described on average by
23.48terms per documenthe number of distinct terms remained the same while the average
number of terms per documestirunk to 14.48.The correspondindattice contained40185

nodes. Fothe CISI dataset,the number of distinct terms remained again the Sg@862),

while the average number of terms per docunparsised fromi5.41 to 39.50the concept
lattices contained 256826 nodes. The time needed to construct the two lattices on a SUN Ultra 2
workstation equipped witb12 Mbytes of RAM was about fifteen minutes artsvo hours for

the CACM and CISI data sets, respectively.

Of course, while restricting the index set by some heuristic thresholds allosesefficient
lattice construction, itmay also affect the subsequentretrieval process. Wedid not
systematicallystudy howretrieval performance varied as a function of index@xgaustivity,
but some preliminary experiments suggbst the optimal sizehould besmaller than full-text
indexing and greater than the one wged inthe comparativeevaluation. This observation is
consistent withearlier findings by Burgin (1995), who showsetthat the representatiotinat
optimizes the retrieval performance of hierarchical clustering-based systems usually represents a
compromise between indexing exhaustivity and specificityoun case, thivehavior can be
explained by considerintpat termpruningmay help improveCLR’s performance by filtering
out noisy terms in the document description and by making document length more comparable,
as long as it does not remove informative terms. We will return to this in Section 6.

The secondmportant point to note in the implementation of tBeER methodused in the
experiment is that weordered the documents contained ieach ring. Similar to the
implementation oHCR, the innerranking wasobtained by computing the innproduct with
cosine normalization between the documents eathquery, although weshould empasize
that alternative, morsophisticated methodse possible. For instance, weould discriminate
between two nodes that are connected with the query through paths of the same lesgth by
the number of distinct paths of that lengftht link thequery toeithernode. Such aapproach
would represent a more natural refinement of our main criterion, because it would be based on a
measure of the degree of multiple structural connections betwedéattitesconceptshowever,
this would be computationally hard, while taking the inner product is much more efficient.
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5.4. Experiment 1: Ranking all documents

We raneachranking system omach of thewo collectionsfor eachquery. Toevaluate the

retrieval effectiveness of the resulting ranked document lists, weeigtgddifferent evaluation
measures. The results, averaged over the set of queries, are displayed in Table 3 and Table 4. If
we look atthe differences in performance between amy of the threemethods, weget the
following rough indications. HCR waslearly beaten byYCLR as well as by BMR on both
collections, while, of the two best methods, BMR watter than CLR oiCACM and slightly

worse on CISI.

BMR HCR CLR
Average precision (non-interpolated) 0.320 0.231 0.253
11-point precision 0.340 0.257 0.281
Precision at 5 points 0.346 0.342 0.412
Precision at 10 points 0.304 0.298 0.240
Precision at 20 points 0.238 0.202 0.164
Recall at 5 points 0.227 0.136 0.228
Recall at 10 points 0.297 0.224 0.266
Recall at 20 points 0.428 0.323 0.319
Table 3. Comparison of retrieval performance for CACM.

BMR HCR CLR
Average precision (non-interpolated) 0.164 0.127 0.162
11-point precision 0.183 0.153 0.185
Precision at 5 points 0.269 0.280 0.337
Precision at 10 points 0.266 0.254 0.286
Precision at 20 points 0.239 0.209 0.234
Recall at 5 points 0.027 0.042 0.043
Recall at 10 points 0.060 0.066 0.095
Recall at 20 points 0.107 0.103 0.139

Table 4. Comparison of retrieval performance for CISI.
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A more precise picture can be obtained by examiningebatsrelative to each of the eight
selected performance measures, considering also how mérg differencesvere statistically
significant according to a one-tailed paitdedst with a confidence level excess of 95%. This
last datum is indicated iparenthesi®elow. BMR achieved betteresults tharHCR on both
CACM (eight wins (6)) and CISI (five win@), threelosses (0))Similarly, CLR faredbetter
than HCR on CACM (five wins (2), three losses (0)), and on CISI (eight wins (2he@ivo
best methodsBMR had better performance values than CLRGACM (six wins (4), two
losses (0)), and worse values on CISI (six losses (2), two wins (0)).

Even thoughthe results relative to thecomparison between CLR arBMR presented
considerable variatioacrossthe two domains andhe eight evaluatioomeasures, gattern
seems to emerge from tkata that is related to the type of performance variab&ssured in
the experiment. If we consider the first twifectivenessneasurestegarding thevhole set of
retrieved documents, CLR performed worse than BMR, whdttieved much betteesults on
CACM and comparable results on ClSlowever, if wetake the lassix measures considered
in the experiment, which focus othe system’sretrieval effectivenessor the first retrieved
documentsthe results werayuite different. Out ofthe overall 12 measurements tbfs kind,
CLR was first 7 times, second 2 times, dast 3 times; bycontrast BMR was first 5 times,
second 3 times, anldst 4 times(HCR wasneverfirst, it was second 7 timesnd third 5
times). In particular, CLR achieved better values of “precision at 5”racdll at 5" than either
opposingmethod on botihdata sets. The comparatively betteresults of CLR onthe first
retrieved documents can be explained by looking at the distribution of documents in the ordered
set of rings returned by order-theoretical ranking.

We consideredhow the number of documents contained imirey varied ashe thering’s
radius increased. It turned aiat middlerings usuallycontained many more documents than
nearest and farthesings, somewhat similar to a normdistribution. In particularthe first
rings typically contained dew documentswhile the morenumerous ringsontained up to
hundreds of documents. Thubge system performancir the first retrieved documents was
basically determined by the partially-ordered rank determined by the concept ilatjcby the
inclusion of documents in near or distaimgs. Asthe systemretrieved moredocuments, the
rings grew much larger arttle system performandeecame morand more influenced by the
individual best-match ranking of the documents containeshairing. Since CLR did not use
full-text indexing, it islikely that CLR was lesseffective than BMR inranking these distant
documents, which resulted in an overall performance degradation.

An additional hidden parameter olur experimentaldesign isthe choice of theword
weighting method, as mentioned in Section 5.2. In order to gain some insights ietiethef
word weighting on performance, we performed some experiments with a different weighting
scheme. We used the signal-noise ratio)( because it has a different theoretical basis than the
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tf-idf approach and it is simple tmplement(Salton and McGill,83). Both efficiency and
effectiveness were affected by the new weighting scheme. In partivhie,the efficiency of

HCR and BMR, which usedfull-text indexing, remained the same, webservedthat the
computation of CLR was adversely affected. Due to the specific distributgnr efeights(the

same term has always the same weight in all documémg)runing ofthe index set involved

in CLR yielded a much smaller number of distinct terms and a smaller number of terms per

document than thié-idf approach, but, since there were more subset®@iments which had
some terms in commothe final concept lattices computading snr had a greater number of
nodes’ As for retrieval effectivenessthe comparativeresults across ranking methods and

domains were consistent with those obtained ttf, while the absolute performance sir

was noticeably different fromif-idf. In particular, whilethe retrieval effectiveness of the two
weighting functions was comparable on the CISI data set, the performaroevals definitely

inferior to that oftf-idf on the CACM dataet, probably due tdhe different characteristics of
the two collections(i.e., the CACM documents have more concise and better characterizing
descriptions than the the CISI documents).

Finally, aninteresting byproduct abur experiment concerrthie comparative evaluation of
HCR and BMR. Not only dothese results confirm previous findingsat HCR does not
perform as well aBMR (Salton, 1971; Griffithset al, 1986),but they alsostrongly suggest
that the relatively good results BICR reported by some authors (Jardine and Rasbergen,
1971; Croft, 1980may be due to overly specific experimerthbices, such athe use of a
single small collectiorfi.e., Cranfield) and themphasis on searchtst retrievecnly a few
documents. A similar concern was also expressed by Willett (1988); we offerecvidmece
to support such a conjecture. In particular, we shaottvatHCR can be clearly outperformed
by BMR when all documents are considered for evaluationftatidhe performance tiCR,
while remaining inferior to that of BMR, becomes more comparable ttatiee as weconsider
for evaluation only the first retrieved documents.

5.5. Experiment 2: Ranking the non-matching documents

As one of our main claims is that order-theoretical ranking allows hettgment ofdocuments
that donot match thequery thanBMR and HCR, weare concernedavith finding empirical
evidence that supports this hypothesis. We are not aware of any earlier experimeriioélthis
so we had to come up with our own test methodology, which is described in the following.

® Recall that theconcept latticecontains, by definitionall nonemptyand complete intersectionbetween the
documents of a context.
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BMR, by its very naturecannot rank documenthat donot match aquery, so we can
assumehat in this casethe non-matching documents are randowngiered. For HCR and
CLR, we computed a rankingelative to the non-matchingocuments by removing the
matching documentisom the full documentanking. In this case, wget a strict partially-
ordered output becausige documents in a samieg cannot be further ranked ksymilarity
with the query, as with matching documents. Then, in order to compare the performance of the
threemethods, we used Coopeesgpected search leng(BSL), firstintroduced in(Cooper,
1968), and then describeddietail in (van Rijsbergen, 1979) and (Salton and Mc@i833).
We chose ESL because it very waliits partially-ordered retrieval outpgtystemsJike HCR
and CLR, and, in addition, it allows sound comparison with random document ranking, which
can beseen ashe output of BMRmethods fomon-matchingdocuments. In our experiment,
ESL was defined as the average number of (non-matching) non-relevant docuhenise
retrieved by thesystem beforall (non-matching) relevant documents aegrieved. Tocope
with the randomelement ofthis measure, it i€onvenient to assunthat in aset of equal
scored documents the relevant ones are located at equal intervals; it is then usefiguie a
relative measure oESL (ESL-reduction), which specifidhe improvement obtained by the
case in which the non-matching documents are partallgred ovethe random case (Salton
and McGill, 1983)! We computed ESL-reductidor eachranking methodHCR and CLR)
and foreachquery oneachcollection, and then averaged ttesults overthe set ofqueries.
The results are shown in Table 5

The CLR andHCR methods performed, on averageuch better than BMR (random
selection) in botldomains,although we notethatfor some queries HCIResulted in asmall
negative ESL-reduction ovéine randonctase. Fothe CACM dateaset, CLR performecbetter
than BMR by a much greater margin tHd@€R did, while, onthe CISI collection, CLR and
BMR achieved more comparable improvemed(atiger the randomcase). Onthe whole, the
results of this experiment suggest that, for non-matctiozgiments, both HCRnd CLR may
be much better than randaianking,andthat CLR may be more effective thanCR. These
indications received furthesupport whenanalogously tdhe earlier experimenhvolving all

documents, we ran Experiment 2 ussmg instead otf-idf as weighting scheme. In particular,
we found that CLR fared better than HCR not only on the CACM but al#ted@I S| dataset,
with the performance of HCR on the latter data set coming closer to random selection.

We shouldemphasize that thsuperior performance diCR and CLR for non-matching
documents had a limited effect on the performance relative Wbk set of documents, due

" ESL-reductiorr [random-ESL- ESL] / random-ESI= 1- {{ PREVNONREL+ (NONREL - REL) / REL+1]} /

[(ALLREL - ALLNONREL)/ (ALLREL *+ 1)], wherePREVNONRELis the number of nonrelevadbcuments in all
sets preceding the one where the search termimEess the number of relevant documents in the final set, and
NONREL is the number of nonrelevant documents in that set.
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to the characteristics of the test collections. The CISI collebié#sy on average, 49.7&levant
documents pequery. Of theseonly 4.49 donot match thequery (902%), while the total
number of non-matching documents 588.54. Forthe CACM collection, thereare, on
average, 15.3televantdocuments, of whici.40 (8.86%) daot natch the gery; the total
number of non-matching documenti04.25.The proportion ofrelevant documenthat do
not match thequery is therefore lowthe situation is similafor both collectionsalthough the
fact that the CACMdocuments contain, on averaganach smaller number aérms, should
make this event moreaunlikely. In fact,many classical test collections seem biasmslards
producing relevant documerttsat do match thgquery. While this biasmay berepresentative,
in the sensethat it reflects theavay natural language isised, weregret that test collections
containing a significant proportion of non-matchirglevant documents are extremebre,
because thitatter situationwould probablybetter reflect the characteristiaad thelimitations
of many realsearches conducted withort user queries, as the casefor Web-based
information retrieval. Furthermore, even fooma typical information retrieval evaluatidasks
involving longer queries, such as the TREC test collection, it is sometmease that a large
proportion of relevant documents do meatch thequery terms (sefor instance Berenat al
(1999)).

CACM CISI
HCR 11% 16%
CLR 27% 13%

Table 5. Average ESL-reduction for non-matching documents.

6. Scaling issues

As in the experiments wesed databases liited size, it is useful t@xaminehow well our
approach could scale uphe two main aspects involved heire efficiency aneffectiveness.
We will consider both of them, in turn.
As mentioned in SectioA.3, the size of thdattice maygrow quadratically with respect to
the number ofdocuments, buthere is experimental arttieoretical evidencéhat, when the
number of index terms used to represent each document is small, both thetlsiz&aitite and
the time necessary to compute each updat&ddgis grow inearly with respect tadhe number
of documents (Carpineto & Romano, 1996a). Reducing the set of indexiteynise therefore
an effective strategy tdealwith larger databases thased in our experimentsjthough this
may not be sufficient for large scale databases. For the case when it is exceedingly hard to build
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the concept lattice associated with a database, we could use a method that finds an approximated
solution.

The idea is to let thaserformulate a queryirst, and then dynamically computelimited
portion of the lattice, centered around the contegitcorresponds tthe query. This approach
has been recently explored by Carpineto and Romano (1998) to supportefjaenulation in
Boolean retrieval. The core of this method is an algoritmemfinds the neighbors (parents and
children) of a given node, with a time complexity proportional to the number of documents and
to the average number of neighborghe lattice. If the collection containsfew thousands of
documentsthe neighbors of a given nodean be generated in rei@he even withfull-text
indexing (Carpineto and Roman@998)). Furthermorethe dynamic algorithm can be
recursively applied teach generatedode to find more distamodes.This procedure may
therefore be more efficient than fudttice construction to findhe rings aroundthe query,
provided that it is not necessary to ratkdocuments but onlthe mostrelevantones andhat
to find such documents it is sufficient to generate a limited number of rings.

We can make theseonsiderations more concrete pyoviding a roughestimate of how
much of thelattice would have to be built to achieve certain retrienegults. Byanalyzing the
data collected in our experiments, we observed that the firdattiae rings generatedor each
guery contained on average the 13% of the relevant documents associated gugryh8ince
the number oheighbors ofeachnode is usually proportional the size of thaode’s intent,
irrespective of the number of documents in the collectiun,impliesthatfor a query withq
terms, in order twetrieve a small but not negligible fraction of the relewdoduments, it may
be sufficient to generatenly 1+ g + ¢ nodes,which will require1l +q invocations of the
dynamic algorithm. For short queries and collectionmefliumsize, such an g@ooachwould
still be feasible in real time.

Whichever construction method we use, for large data sets it might be necessary to choose a
set of index terms dfmited size. At this point, it igmportant to consider wheth&vorking
with a smaller set of index terms than used ineyoerimental evaluation might affect retrieval
effectiveness. In order tgain someinsights into this phenomenon, we performed some
experiments varyinghe threshold used teelect the set of index terntat describeeach
document. We observed that working with a smaller set of index terms did not always result in
performance degradation, although this Wwacally thecase, and, perhapsone importantly,
we noticed that the retrievaiffectiveness usually underwent aindecreases imesponse to
major reductions in the size of the index set. For the CACM database, for instance, when using
a significantly more restrictive selection criterion than the average number of (tesmghe
mean of weights in the document), the average number of terms per document re@ud&d to
(- 42%), the number ohodes inthe lattice t013301 (- 67%),and the average precision
decreased “only” td.23 (- 8% ).This is encouraging, ofourse,but it is not enough to
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guarantee that the retrieval performance of the system would be equally good when shifting to a
larger environment. Working with a large number of documents and with a comparsitinaly
lattice would probablyincrease the number of documents associatiéidl eachring, thus
reducing the utility of lattice-basednking. Also,due to computational limitations, tisgstem
might be unable to correctly ratlke documentshatdid notmatch thequery, whichmay be
located in the farthestngs. As a consequendbge overall retrieval performance might still be
badly affected.

Admittedly, while the aboveonsiderationsnay beuseful to expandhe range ofpractical
applications of our system, they do not solvedbaability problemall. For largedomains, an
alternative, and perhaps mopgomising, approach is to try to exploit the potentials of
combined ranking methods. This will be discussed in the final section of the paper.

7. Related work

7.1. Hierarchical clustering-based ranking

Since a concept lattice can be seen as a particular strimtulestering documents artdrms,
it is important to further compare relative meritand drawbacks oHCR and CLR. One
distinguishing feature, as remarked in the first pathefpaper, isthat CLR, unlike HCR, has
a clear semantics byhich to characterize theanked document list producedriesponse to a
query in terms of the query and documents descriptiomslated important characterisfior a
cluster-based ranking systemtie ability to integrate cluster formati@nd cluster selection:
HCR needs to map different representations and simifamitgtions,while CLR uses aunique
framework for representing documents and query @wdparingthem. Also,the clustering
structure used b CR has asmaller number of free parametensc{usters forn documents)
than CLR, whose number of clusters is usuallyhi range betweem andn2. Fromthe point
of view of retrieval effectiveness, these seem to be clear advantages of CLHRG#Reand the
results of our experiments support this claim.

For the worst case computational complexity, CLR compdess favorablybecause there
are some cases in whictine size of thdattice maygrow exponentially with respect to the
number of documents. In practicepwever, the efficiency of CLR is comparable to and
sometimes better than that of meKER methods, whosénte and storage requiremerdse at
leastO(n2), exceptfor the single linkmethod, in whichthe latter complexity may reduce to
O(n).2 Furthermorethe conceplattice methodhasthe advantage thas complexity can be

8 As mentioned irSection 4.3, theize of the lattice may nogndusually doesnot, growquadraticallywith
respect tathe number of documents. In our experiments, for instancegaheept latticeassociatedvith the
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controlled by reducing the number of terosed to represemachdocument. This does not

hold, in general, for the hierarchical clustering methods, although some infidertdorithms

for the calculation of interdocument similarity coefficients have been developed thttkean
advantage othort document description§Croft, 1977; Willett, 1981). Other variables of
interest in thecomparison concermcrementalityand use of background knowledde.g.,
thesauri). In short, both types of clustering structures canitieincrementally (Carpineto and
Romano, 1996a; Can, 1993), while CLR can more easily accommodate background knowledge
than HCR because thelusters inthe latticehave an intensional description which makes it
possible to use broader terms to index more general clusters (Carpineto and Romano, 1996a).

7.2. Using concept lattices for information retrieval

The application of concept lattices to information retriggaks is nohew, but it has usually
focused on interactive searches. The typical scenario (@bdln 1989 and 1993) starts with a

user gueryfollowed by some form of visualization dfie latticeregion on whichthe query

zoomed in; the user may then see the documents contained in each of the nodes displayed on the
screen or may jump to more distargions by formulatinghew queries. Thigspproach has

been subsequently endowed wiitie possibility forthe user todynamically restrict the lattice

being searched using a set of terms that should, or should not, be contained in the documents of
interest (Carpineto and Romari®96b). More recently,the basic navigationdtamework has

been further extended 'ccommodatdor Boolean queries and full-text indexing (Carpineto

and Romano, 1998). In alheseapproacheshe conceptattice associated with aollection of
documents is seen as a search space that can be explored by a user using vanisgsated

retrieval strategies. To our knowledge, this paper is the fishptttoexplore the potentials of
concept lattices for automatic document ranking.

7.3. Other approaches based on interdocument similarity

The notion ofquery and document spabas alsdeenused by non-clustering approaches to
document retrieval. Everett and Cater (1992) and Egghd&kandseau (1998) suggestbdt a
similarity function between a document and a query, along with a threshold that specifies the set
of retrieveddocumentscan beseen as a topology ahe documenspace, whichmplicitly
determineseighborhoods around evetpcument even withoduhe formulation of a specific
guery. This resembles our approach, kbe nature and thecope of topologicatetrieval
systemsarevery different fromCLR. Since a topological structure on the document space is

CISI data set (1460 documents) contained 256826 nodes, while the concept lattice associated willAtB®the
data set (3204 documents) contained only 40185 nodes.
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defined with respect to a particular (best-match) retrimethod,the topological approach may
be useful to discovageneral properties and to investigéte behavior of the giveretrieval
method but it does not produper sea set of documents in response to a gsery. In fact,
topological retrieval cannot be implemented as a truly document ranking system.

A proper ranking systerthat uses aralternative method taliscover and exploit hidden
similarities betweemuery and documentsas presented by Deerwesteradt (1990). Instead
of computing some form of neighborhood in a structured docusesnte, it changes the
representation of documents and quinst, and then it matches thguery againsindividual
documents usinghe newly-createdepresentations. These representatiaresbased on the
singular value decompositidrelated to factomanalysis) of a term-documentatrix from the
entire document collectionyhich wastermed latent semantimdexing (LSI). Besides the
ranking strategy anthe mathematicalinderlyingtool, another main difference between LSI
and CLR is the comprehensibility of thetermediate texstructures generated ke two
approaches. Unlike the lattice concepts, the factors extracted by LSI are difficult to interpret and
to relate to the actual documemhéscription, althoughhere has been some tampt in this
direction (Story, 1996).

Although motivated by a different goali.e., extending the basic vector space model with
term-term correlations thework by Wonget al (1987)can beseen as aearlier attempt at
transforming document representation prioranking, based omterdocument similarity. In
Wong et al’s Generalized VectoBpace Mdel (GVSM), the termsdescribingthe documents
are inturn described as a combination aitbmic concepts(or minterms) associated with a
Boolean algebra defined over the setesfns. Inpractice, the idea is toroadenthe document
representation by adding terrigt are correlatedith the original termswvhich described the
documents. For instance, usitige same example given byonget al (1987), supposéhat
document D is described by terms T1 and T3, tonad there are mangocuments in our
collection that contain exactly Tdnd T2. In thiscase,D’s description is extended to include
both the minterms T1-T3 and T1-T2, thus favoringréteeval of the document D iresponse
to the query T2. This kind of behavibas anatural counter-part in the CLRethod, with the
two concepts T1-T3 and T1-T2 beiptaced close to one another and the document described
by T1-T3 being retrieved right after those described by T1-T2. The GSVM has not been widely
usedsince its publication probably due to @smputational limitations, althougiWong et al
(1987) suggested also model approximations.
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8. Conclusions and future work

We took the view that the ranked relevance of a set of documents to a query can be computed in
terms of the length of the sequencenahimal refinements/enlargements thi@mansform the

guery intoeachdocument, asletermined by the concelattice associated witlthe documents

and thequery. Concept lattice-based rankif@LR) represents aajor departure from other
approaches based on document similarity such as hierarchical clusteringandsegl HCR),

because itloes notrely on a similarity measure to build the cluster hierarchy awnides not

involve scoring a query against individual document clusters to ttamkdocuments in the
cluster hierarchy. Weénave seerthat CLR’s firmer theoreticalbasis help overcome some
inherent limitations of HCR due to fundamental assumptions and operational implementations.

We compared the retrieval effectiveness of Gt that of HCR and best-match ranking
(BMR). Theresultsclearly showedthatHCR wasoutperformed by both CLR an8MR. Of
the two best methods, BMR achieved better performance than CLR on the whole daseiment
while CLR compared more favorably than BMR on the first retrieved documents, due to a finer
granularity of their grouping by CLR, as well as on the documents that did not matgketiye
where the superiority of CLR’spartially-ordered rank over BMR’s random selection was
apparent.

This researcltan be extended in severitections. Usingconcept lattices, the distinction
between textual information and information expresseattabute-valuepairs is blurred. With
some precautions and devices (Wille, 1992; CarpinetdRamdano, 1996a), it is possible to
build a conceptattice from a set of structured documents, wheexh document may be
characterized by a set of attributes that may contain free-text descripti@h® @n nominal or
numeric values. One direction for future work is to exptbeepotentials of concept lattices for
the retrieval andnanagement othis class of enrichedlocuments, with a view to XML
documents.

Another important issue is a more fully utilization of term weights in the process that leads to
the final ranked document list. At the moment, term weights are used to restrict the set of index
termsused todescribe the documents anda@erthe documents contained @achring, but
not to assign rings to documenide use oftermweights inthe determination of the partial
ordering might better reflect the relative importance of terms in each document and it might also
explicitly accountfor document lengtivhen documentare not the samkength. In order to
augment order-theoretical ranking wiirm weights, weplan to investigate theise of an
extension of the concepttice theory, recently presented by Mé (1995), that combines
objects, attributes, and conditions under which objects may have certain attributes.
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A third avenuefor further research concertise combination of CLR an8MR, which
seems tocomplement each otherery well. BMR is more efficient and may haveetter
effectiveness when considering the whole set of documents, CLR may be more effective for the
first retrieved documents and dan discriminate between non-matchidgcuments. A
combined strategy might keep teengths otthe two methodswhile avoiding their main
weaknesses. One simple integration strategy is to have BMR rasitiancollectiorfirst, and
then touse CLR tarefine theranking ofthe best-matching documents returnedBWR. The
anticipated advantages of such an integrated approacthaaiie might be applied to large scale
collections and it might feature a better retrieval performance than BMR dirstheetrieved
documents, whiclare of greater interest in many practiepplications.That this is indeed a
promising research direction is indirectly confirmed by soewentwork onthe application of
clustering techniques to ranketbcuments, which showethat a combinedstrategy may
produce good results (Hearst aRddersen, 1996kvenwhen the clustersare createdrom
shortdocument descriptiorsuch aghe snippets returned by Web search engi@esnir and
Etzioni, 1998).
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