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ENERGETIC CONSEQUENCES OF FIELD BODY TEMPERATURES
IN THE GREEN IGUANA

WOUTER D. VAN MARKEN LICHTENBELT,' JACOB T. VOGEL,?2 AND RENATE A. WESSELINGH?

Carmabi Foundation, P.O. Box 2090, Curagao, Netherlands Antilles, and
Behavioural Biology, University of Groningen, P.O. Box 14, 9750 NN Haren, The Netherlands

Abstract. 'We investigated body temperatures of free-ranging green iguanas (Iguana
iguana) on Curagao (Netherlands Antilles), and how metabolic costs and benefits of food
processing affect body temperatures. Body temperatures of free-living iguanas were mea-
sured by radio telemetry. We also used a model, with activity data and operative temperature
from taxidermic mounts as inputs, to estimate body temperature of free-ranging animals.
Estimated body temperature was highly correlated with telemetered body temperature (mean
difference 0.8°C). Thus, our model for estimating lizard body temperatures may be useful
in field studies where telemetry is not possible.

Data from both telemetry and estimation with the model showed that green iguanas
maintained relatively constant body temperatures (minimum 32.9 = 1.4°C; maximum 36.6
*+ 2.9°C; mean * 1 sp) during the midday period (0945-1545). Temperature measurements
of taxidermic mounts and ambient air showed that body temperatures between 29°C and
40.5°C could readily be attained on Curagao. Hence, the range of potential body temper-
atures was much greater than the range of actually achieved body temperatures.

Thermoregulatory behavior, food intake, and locomotor activities were recorded along
with temperature measurements. Relations between body temperature, daily metabolizable
energy intake (MEI), and resting metabolic rate (RMR) were used to examine whether or
not observed body temperatures coincide with temperatures at which energy gain from
ingested food is high. Our data show that, in these herbivorous reptiles, food intake and

digestion explain most of the variation in the observed field body temperatures.

Key words:

energetics; field body temperature; Iguana iguana; lizard; operative environmental

temperature; temperature telemetry; thermoregulation.

INTRODUCTION

Diurnal lizards are well known to precisely regulate
their body temperature (7},) during their daily activity
period, despite fluctuating ambient temperatures
(Cowles and Bogert 1944). Presumably, thermoregu-
lation not only serves to avoid lethal or damaging tem-
perature extremes, but also to maximize the time spent
at optimal temperatures (Cowles and Bogert 1944,
Dawson 1975). Although the optimal temperatures for
many functions fall in the range of selected body tem-
peratures in the field (Dawson 1975, Huey 1982, Ste-
venson et al. 1985), there are indications that others do
not. For example, some reptiles select higher temper-
atures after feeding (Cowles and Bogert 1944, Schall
1977, Huey 1982), or spend more time basking after
feeding (Hammond et al. 1988), suggesting that di-
gestion may require higher temperatures than do other
functions.

Manuscript received 18 November 1994; revised 27 Jan-
uary 1996; accepted 28 February 1996.

! Present address: Human Biology, Maastricht University,
P.O. Box 616, 6200 MD Maastricht, The Netherlands.

2 Present address: Institute for Systematics and Population
Biology, University of Amsterdam, Kruislaan 318, 1098 SM
Amsterdam, The Netherlands.

Superimposed on physiological optima of some
functions, physiological and ecological constraints can
have a substantial impact on the costs and benefits of
maintaining a particular body temperature. Metabolic
rate, for example, is related to body temperature (Mo-
berly 1968, Bennett and Dawson 1976), and lizards
may sometimes select low temperatures to conserve
energy (Regal 1966, Christian et al. 1984).

Many ecologically relevant processes may play a
role in balancing the costs and benefits at selected field
body temperatures. In thermal studies, properties such
as stamina, maximal sustainable speed, or maximum
oxygen consumption have received much attention
(John-Alder and Bennett 1981, Van Berkum et al. 1986,
Huey et al. 19890), whereas fewer studies have com-
pared other vital processes with selected body tem-
peratures (Huey 1982, Stevenson et al. 1985, Huey et
al. 1989a). For example, food digestion may be of cru-
cial importance, especially in herbivorous reptiles, be-
cause digestion of plant material is often relatively time
consuming. Some studies have indicated that dry mat-
ter digestibility is positively related to body tempera-
ture (Harlow et al. 1976, Kaufmann and Pough 1982,
Troyer 1987). However, other studies that used food
intake rates more typical of field conditions have shown
a significant influence of body temperature on the tran-
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sit rate of food through the digestive tract rather than
on digestibility (Parmenter 1981, Zimmerman and Tra-
cy 1989, van Marken Lichtenbelt 1992). Although an
inverse relation between body temperature and gut pas-
sage time has been demonstrated in these studies, the
metabolic costs and benefits associated with optimal
temperatures for food digestion remain to be investi-
gated and compared to the costs at actual field body
temperatures.

Besides the energetic costs and benefits linked to
body temperature, it is relevant to know whether or not
animals are able to select optimal body temperatures
in their habitat. Thermal constraints can arise because
the body temperature of an ectotherm is a complex
function of its biology and its biophysical environment
(Gates 1980). These constraints may be measured by
comparing the pattern of thermal microclimate avail-
ability with the use of microclimate by lizards (Chris-
tian et al. 1983). Operative environmental temperature
(T.) has been developed as a thermal index of micro-
climate (Bakken and Gates 1975, Bakken 1976, 1992,
Bakken et al. 1985). T, may be defined as the temper-
ature of an inanimate object of zero heat capacity with
the same size, shape, and radiative properties as the
animal exposed to the same microclimate. For an ec-
tothermic reptile, with no pelage, 7, is the environ-
mental temperature as experienced by the animal, and
is an index of the thermal potential driving heat flow.
T, can be measured directly for many species of reptiles
using taxidermic mounts (Bakken et al. 1985).

We performed a study on green iguanas (Iguana
iguana) on the tropical island Curacao. We collected
data on 7, using taxidermic mounts, and on 7, by es-
timation and telemetry. The following questions were
addressed: (1) What are the potentially available field
body temperatures for green iguanas? (2) Which are
the actually achieved field body temperatures? (3) What
relationships might exist between field body temper-
atures and the metabolic costs and benefits for food
processing of those body temperatures?

METHODS
Climate and study site

The study was conducted from August 1987 until
April 1988 at Santa Barbara on Curacao, Netherlands
Antilles. Curacao has a semiarid climate with strong
spatial and seasonal variation in rainfall. Mean annual
yrainfall is 570 mm, to which the rains in October—
January contribute 64%, with considerable year-to-year
variation. Monthly mean air temperature is 27.5°C,
with a minimum of 25.3°C in January and a maximum
of 30.9°C in September. Strong trade winds blow from
the east nearly all year round (mean wind speed 7.1
m/s). Seasonality of the rainfall has a strong influence
on plant production and, thus, on food for the iguanas,
often resulting in a period of low food availability from
February to June (van Marken Lichtenbelt 1993). The
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PLATE 1. Contrary to arboreal mainland populations, in
many areas on Curagao the green iguanas live on rocks, mak-
ing use of trees only for foraging.

reproductive cycle is geared to this seasonality (van
Marken Lichtenbelt and Albers 1993). The mating sea-
son takes place from March to April. Eggs are laid in
April-May, and hatching takes place in the second half
of July and August. v

The study site encompassed =0.7 ha with large lime-
stone boulders, situated in front of a limestone plateau.
The boulders were partly covered with shrubs, cacti,
and small trees. The intervening areas were densely
vegetated with trees, shrubs, and various climbing
plants.

Observations

Five blinds surrounding the main observation rocks
were constructed. Four blinds stood on the edge of the
plateau and one on top of a large rock. Most of the
day, the iguanas stayed on the rocks and only went into
the vegetation to feed. There they tended to forage in
the top layer of the trees and shrubs. Due to the high
position of the blinds, it was possible to observe in-
dividual iguanas throughout their daily activity periods.
Observations with a telescope from blinds (one person
per blind) were made by two to three persons who
communicated by radio. Animals were recognized by
individual characteristics of the tail, dewlap, and crest
prior to their eventual capture. Colored beads were at-
tached to the crest of all captured individuals so that
identification could be made more rapidly. The iguanas
with temperature transmitters were followed daily dur-
ing three observation periods of 2-3 wk each: August—
September 1987, December—January 1987/1988,
March—April 1988. Observations took place from 30
min after sunrise until sunset. Only whole-day obser-
vations, with continuous behavioral records, were used
for analyses. During the same periods, other iguanas
on the study site were observed for whole days in ro-
tation. No extreme weather conditions were observed
during these observation periods.

The following data relevant to body temperature
were recorded every 5 min for the focal animals:
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1) the animal’s location;

2) the substrate used: rock or shrub/tree;

3) the animal’s posture: body and head in full con-
tact with the substrate, body flat but head up, body
semi-upright, or body upright;

4) the animal’s position relative to the sun. The
“‘sphere’” of possible radiation angles around the ani-
mal was divided into five classes. The angle of radiation
was ‘‘rostral”” when the rays made an angle of <45°
with the longitudinal (snout-to-tail) axis of the animal.
The part of this cone-shaped region with angles <10°
was called “‘extremely rostral.”” Radiation with incom-
ing angles between 135° and 180° with this axis was
called ‘““caudal.” The remaining ‘‘saddle”-like part of
the sphere was divided into two classes, depending on
the angle with the second, dorsal-ventral, axis, per-
pendicular to the first. Radiation with an angle <45°
with this second axis was “‘dorsal,”” and the remainder
was “‘lateral’;

5) the percentage of the body exposed to the sun;

6) the animal’s wind exposure: no wind (W = 0);
crest and/or dewlap move due to the wind (W = 2);
dewlap, crest, and head move (W = 3). In the period
March-April 1988, we attached a 3 c¢m long cotton
thread to the crest, just behind the animal’s head, to
refine the wind exposure measurement. If the thread
only was moving, it was classified as W = 1.

The following data relevant to the time budget were
also registered every 5 min: (1) movement (>30 cm,
about one body length) since the preceding record; and
(2) locomotor activities: total time spent walking on
the rock, and time spent sprinting. These were calcu-
lated from mean walking and sprinting speeds and dis-
tance covered in 5 min. The mean walking and sprinting
speeds were calculated from previous, direct obser-
vations in which distance and time taken for walking
or sprinting had been recorded (van Marken Lichtenbelt
et al. 1993).

Foraging time was obtained from continuous obser-
vations and was defined as the sum of minutes in which
eating actually occurred. For comparison among
individuals, we used only results from those animals
for which at least three complete observation days
were available. Metabolizable energy intake (MEI,
kJ-kg='-d™!) is determined by direct complete-day ob-
servations on food intake, chemical analyses of available
food types, and digestion trials (van Marken Lichtenbelt
1992). The number of bites taken could be converted to
biomass and MEI, as described in van Marken Lichten-
belt (1993).

Telemetry

Body temperatures of three free-living green iguanas
were successfully measured using radio telemetry, dur-
ing different observation periods for 14, 16, and 8 d,
respectively (Tables 1 and 2). An animal was caught
at its sleeping site, taken to the laboratory, and
weighed. The next morning, it was anesthetized by in-
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TABLE 1. Characteristics of the iguanas under study, as
measured when caught just before the start of an obser-
vation period. Each individual is identified by a two-letter
code.

SVL{ Mass Source of
Code Season Sex (cm) (g) temperature data
GO Aug-Sep f 32.5 1328 telemetry
BG Dec-Jan f 29.3 902 telemetry
BG Mar—-Apr f 28.9 805 model estimation
LB Mar-Apr m 28.0 695 telemetry
PB Mar-Apr m 27.8 628  model estimation
LY Mar—-Apr m  30.5 815 model estimation
LL Mar-Apr f 27.5 783  model estimation

T Snout-vent length.

traperitoneal injection of 0.8 mL/kg Ketamine. Tem-
perature-sensitive transmitters (2.5 X 1.7 X 0.8 cm,
OM1 of the AVM Instrument Company) with the
thermistor mounted on the end of a 6-8 cm long med-
ical-grade silicone probe (diameter 1.5 mm) were used.
The transmitter was taped laterally to the tail near the
base, and the probe was subcutaneously led to the ab-
domen. A small incision was made in skin and peri-
toneum so that the tip of the probe (1.5 cm) could be
led into the abdominal cavity. The abdominal skin in-
cision was then sutured. After sunset, the animal was
released at the capture site. We had observed each an-
imal several days prior to capture; we saw no obvious
differences in behavior after implantation, although fe-
male BG seemed to be more wary.

The transmitter generated pulses wherein the interval
between pulses varied inversely with temperature. Ev-
ery 15 min during daytime, pulse frequency was mea-
sured by counting pulses in 2 min (receiver: AVM
LA12-DS). Occasionally, nighttime body temperatures
were measured. After a 2-3 wk period of continuous
observation, the animal was recaptured and the trans-
mitter was removed. Upon inspection, all telemetered
animals were in good condition and no infection was
evident. The next day, after another visual inspection
of the incision and the general appearance, the animals
were released at the place of capture. Transmitters were
calibrated, using a waterbath and thermometer, before
and after the experiments (accuracy +0.1°C).

Estimating body temperature

Two hollow, copper replicas of the green iguana were
constructed (snout—vent lengths (SVL) 30 cm and 25
cm, the range of SVLs of live iguanas under study) out
of copper sheet (=0.5 mm thick). They closely matched
the lizards’ actual shape, including legs and tail. A
thermistor was located inside the models. The mounts
could be filled with water to obtain a heat capacity
similar to that of live animals. We used empty mounts
for measuring the consequences of being in a particular
environment (see Appendix). The copper models were
covered with skins of iguanas. After sewing up the
edges, we allowed the skins to dry. During drying, the
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TABLE 2. Actual and simulated iguana body temperatures (°C, mean * 1 sp) during the day, night, 24-h, and midday
periods; modal day, minimum, and maximum field body temperatures. Also given are water-filled mount (7,,) and air

temperatures.
Body temperature (°C)
Maxi-
Mode mum Mini-
Code Method  Sex Period Day Night 24-h  (day) (night) mum Midday n
A) Field body temperatures
GO telemetry f Aug-Sep 356 15 293 1.1 319 36-37 429 245 366=*14 14
BG telemetry f Dec—Jan 347 14 29306 314 36-37 41.8 258 360=x15 16
LB telemetry m  Mar-Apr 339*x13 272*x05 299 3536 431 260 353=*1.6 8
LB  simulated m  Mar-Apr 33.1 £ 0.8 29.6 34-35 40.0 265 347 *x1.2 8
PB  simulated m  Mar-Apr 333 £ 1.1 29.7 34-35 410 265 350=x1.2 2
LY simulated m  Mar-Apr 32.8 £ 0.7 29.5 32-33  40.1 252 347 09 7
LL  simulated f Mar-Apr 32.8 30.7 34-36 36.6 265 345 1
BG  simulated f Mar-Apr 312 £ 1.0 28.8 377 251 329*x12 3
B) Model and air temperatures
T, Aug-Sep 389 1.5 42-43 535 245 406 =*23 14
Air Aug-Sep 299 £ 17 281*05 336 248 37720 14
T Dec—Jan 383 £ 1.8 39-40 47.8 258 415*09 16
Air Dec—Jan 28.1 £12 268 *0.5 305 241 288*14 16
T simulated Mar-Apr 386 x 1.5 38-40 489 265 40.7 = 2.1 8
Air Mar-Apr 288 06 263 *0.3 312 245 297 £0.6 8

skins shrank slightly, producing a snug fit between skin
and copper. There was no apparent change in color
during drying, although a change in near-IR reflectance
may have been possible. As a result, the models were
good replicas of live iguanas and, because the skins
were intact, they possessed virtually the same radiation
absorptivity and thermal emissivity as the skin of live
iguanas, as shown for mammal and bird pelage by Bak-
ken and Gates (1975).

The taxidermic mounts were used to measure the
operative environmental temperature (7,) in the field
(see Appendix). The T, of models in locations and body
positions similar to those of free-ranging lizards could
be used to estimate the body temperature of iguanas
for which no telemetry data were available, if detailed
behavioral observations were made (for calculations,
see Appendix). The body temperature estimation was
validated against 3 d of body temperature measured by
telemetry. We used the calibrated model to estimate
body temperatures of five animals for 8, 2, 7, 1, and 3
d (Table 2). Tables 1 and 2 and Figs. 5 and 6 indicate
whether the data are derived from telemetered or es-
timated temperatures.

Air temperature was measured every 15 min during
observation periods, using a thermistor located 1 m
above a shaded rock patch under a naturally shaped
rock cover exposed to wind.

RESULTS

General basking behavior

Green iguanas on the study site lived on large, lime-
stone boulders in small groups composed of a dominant
adult male with one or more adult females, and often

accompanied by one or more subadults of either sex.
The night was spent on steep walls, in shrubs, or in
crevices. At, or shortly after, local sunrise, most lizards
moved to basking places located at variable distances
(1-20 m) from their sleeping sites. Most basking places
combined sun exposure with a wide view over the area,
and often were close to hiding places. Lizards basked
for =3 h, after which they usually went foraging in
vegetation surrounding the rocks. Most green iguanas
foraged once or twice per day for =0.5-1.5 h, but did
not forage every day. During the hottest part of the day
(=1300-1600), they were often seen under shrubs or
in an upright position on wind-exposed places. Shortly
after sunset, the iguanas returned to their sleeping sites.

Estimated body temperatures

Comparisons of measured body temperatures of a
radio-tracked green iguana (LB) and its estimated body
temperature show that, in most circumstances, the es-
timated temperatures approached the actual measured
temperature closely (Fig. 1A, B and Appendix). In
some cases, by the end of the day, the estimated body
temperature dropped below the measured body tem-
perature (Fig. 1C). This was probably due to the influ-
ence of the substrate temperature. In these cases, the
animals adpressed their body against the warm sub-
strate, something we could not mimic with the copper
models. Temperature measurements indicated that the
stone surface at the end of the day can exceed 45°C.
Effective substrate temperatures were hard to quantify,
because the irregular shape of the rocks at the study
site causes many different exposure positions. We con-
clude that our procedure provides a reasonable estimate
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Fig. 1. Body temperature (T,) of a single green iguana
(animal LB), air temperature (T,), maximal potential body

temperature (7,), and the estimated body temperature (7,)
during the course of the day, for three days.

of the measured body temperature, except when sub-
strate temperature accounts for a relatively large pro-
portion of the total heat flow to the animal’s body (see
Bakken 1989).

Field body temperature in the course of a day

Body temperature profiles of telemetered lizards
show four distinct phases during 24 h (Fig. 2): (1) early
morning: warming up; (2) midday (0945-1545): rela-
tively stable temperatures; (3) late afternoon: much
variation in body temperatures, including cooling after
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local sunset (standard deviations are significantly larger
than in preceding periods, F test); (4) night: body tem-
peratures close to air temperature; in crevices, T, is
0.5°-1°C higher than air temperature.

During the early morning, water-filled mount tem-
peratures were comparable to the iguana’s 7, (Fig. 1),
but the mount reached mean midday values of 40.0°C
and 39.2°C, whereas the iguana’s mean midday tem-
peratures were 33.8°C and 35.3°C. This demonstrates
that the iguanas potentially can reach much higher tem-
peratures than they actually achieve. Mean day and
midday body temperatures of all animals were always
below those of the water-filled mount (Table 2).

Actual and potential body temperature

Comparison of the frequency distributions of day-
time body temperature and the potential maximal body
temperature (7,,, water-filled mount) of male LB shows
that mean 7, (33.9°C) and modal T, (35°-36°C) were
much lower than the values of 7,, (mean: 38.6°C; mod-
al: 38°-40°C; Fig. 3). At midday (taking temperature
values from 1100 to 1430), the modal body temperature
was equal to whole-day values, but the frequency dis-
tribution was symmetric due to absence of the warming
up and cooling down periods. During midday, 50% of
the body temperatures fell between 34.0° and 37.0°C.

In the iguanas for which estimated or telemetered
data from >6 d were available (GO, BG, LB, and LY;
Table 2), the frequency distributions of the midday
body temperatures were not significantly skewed, ex-
cept for male LY (skewness, g, = —0.56, P < 0.05;
Sokal and Rohlf 1981). If we exclude from analysis
one day when male LY had an unusually long stay in
a crevice, this frequency distribution is also not sig-
nificantly skewed. Midday body temperatures for all
individuals had a minimum standard deviation of 1.4°C
and a maximum of 2.9°C, indicating the narrow range
of body temperatures. Body temperatures during mid-
day were analyzed for each individual by one-way
ANOVA to determine day-to-day differences in body
temperatures. All individuals for which enough data
were available (n = 5) had significant (P < 0.05) vari-

42F
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Frequency

Temperature (°C)

Fi1G. 3. Frequency distributions of daytime (A) and midday
(B) telemetered body temperatures (7,) of male LB and the
potential maximal body temperature (7). Frequency distri-
bution during midday (0945-1545) is more symmetric, due
to the absence of periods of warming in the morning and
cooling in late afternoon. N = 8 observation days.

ation among days with respect to midday body tem-
peratures.

Activities linked to locomotion

The data presented here are from outside the mating
season. There were no significant differences in dis-
tances covered between ‘‘mating period” and ‘‘non-
mating period”’ (van Marken Lichtenbelt et al. 1993).
The time spent locomoting and foraging contributed
almost all (>95%) of the daily activity time. Time spent
moving differed between the sexes. Males spent a mean
23.1 min/d moving, vs. 13.6 min/d for females (Table
3). Iguanas moved for =45% of the distance covered
on horizontal to moderately sloping, very irregular rock
surface, whereas 25% of the distance was covered by
climbing up and down steep slopes and vertical es-
carpments. The remaining distance (30%) was tra-

TABLE 3.

WOUTER D. VAN MARKEN LICHTENBELT ET AL.

Ecology, Vol. 78, No. 1

versed in shrubs and trees. Time devoted to vigorous
sprinting was a mean 0.19 min/d in males. On 20 of
the 33 d of observation, sprinting occurred. Sometimes
considerable distances (>20 m) were covered during
a chase.

Metabolizable energy intake

Daily metabolizable energy intake (MEI) of the
green iguanas varied greatly among individual iguanas
(Table 4). Female BG did not forage for 6 d in March—
April, whereas female GO had a mean MEI of 49.3
kJ-kg~!-d~! in August—September (van Marken Lich-
tenbelt et al. 1993).

DiscussION
Body temperature

Green iguanas encounter relatively stable air tem-
peratures on Curacao. Both trade winds and cloudy
intervals make it possible for iguanas to pick locations
where they can maintain observed body temperature
ranges. During prolonged rainy periods (several days),
however, body temperatures may drop below those lev-
els, which may have a substantial negative impact on
the lizard’s energy expenditure and food intake (W. D.
van Marken Lichtenbelt, personal observation, on cap-
tive population).

Mean daytime body temperatures found in this study
are comparable to body temperatures found in other
studies on green iguanas (Table 5). Midday body tem-
peratures reported from other iguanines are also of the
same level as the green iguanas on Curagao, although
Cyclura nubia (Christian et al. 1986) and particularly
the desert iguana Dipsosaurus dorsalis (40°-42°C,
DeWitt 1967) have higher body temperatures.

Estimating body temperatures

Taxidermic mounts are frequently used to compare
actual body temperatures with potential body temper-
atures (Grant and Dunham 1988, Huey et al. 19895,
Grant 1990) or to explain basking behavior (Crawford
et al. 1983, Hammond et al. 1988). Our method used
the model in a fixed orientation towards sun and wind,
in a fixed microclimate type from which the temper-
atures in other types and in other orientations could be
estimated. This has the advantage that the temperature

Daily distances covered and time spent on locomotor activities by male and female

green iguanas; values are mean * 1 sp. Differences between males and females are tested

with unpaired ¢ tests.

Locomotor activity Malest Females$ t test§
Distance moved on rock (m/d) 57.9 = 6.0 344 + 34 P < 0.01
Distance moved in vegetation (m/d) 19.3 = 3.7 153 * 6.4 NS
Time spent locomoting (min/d) 23.1 * 2.6 136 = 1.5 P < 0.01
Time spent foraging (min/d) 143 £ 6.1 16.0 = 4.2 NS
Time spent sprinting (min/d) 0.19 = 0.11 0.01 = 0.01 P < 0.01

1 n = 3 males observed; total observation period = 33 d.
F n = 4 females observed; total observation period = 58 d.

§ For each statistic in this table, df = 89.
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TABLE 4. Metabolizable energy intake, MEI (kJ-kg=!-d~!;
mean * 1 sp), estimated from observations of bites taken
during entire days, for green iguanas whose field body tem-
peratures were measured simultaneously over N days (see
Table 3).

Code Period Sex MEI N (d)
GO Aug-Sep f 49.3 = 35.0 22
BG Dec-Jan f 13.2 £ 23.6 22
LB Mar-Apr m 29.1 = 21.6 19
LY Mar-Apr m 15.0 = 13.9 8
PB Mar—-Apr m 21.7 £ 199 7
LL Mar-Apr f 38.8 = 18.3 6
BG Mar-Apr f 0 6

measurements of the mounts can be used to obtain es-
timates of both potential maximum body temperatures
and transient body temperatures. Moreover, only one
mount is necessary to predict body temperatures of
several animals (depending on the number of animals
that can be observed in detail).

However, heating and cooling results may differ
from models to live animals, because of color changes.
Lizard color changes may be related to the control of
heat gain from visible and near-infrared radiation (Rice
and Bradshaw 1980, Bartholomew 1982), and may be
important for large ectotherms (Stevenson 1985). In-
deed, iguanas on Curagao tended to be darker in early
morning than during midday (W. D. van Marken Lich-
tenbelt, personal observations). Heating and cooling of
lizards may also differ due to adjustments of blood
circulation. A living animal cools more slowly than it
warms up, and both cooling and warming are slower
in dead bodies (Bartholomew and Vleck 1979, Bar-
tholomew 1982). Notwithstanding the possible sources
of error, the method is accurate within 1°C (see Ap-
pendix) when estimates of mean body temperatures
over a period of several hours or longer are desired.
Our discussion centers on these long-term values, and
we feel our approach is adequately accurate.
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Costs and benefits associated with body temperature

Food passage in the green iguana is an important
temperature-dependent process. Therefore, we com-
pared field body temperatures with optimal tempera-
tures for food processing (i.e., temperatures at which
metabolizable energy intake rate minus energy expen-
diture is maximal). Results from food digestion trials
with captive green iguanas showed that the apparent
dry matter digestibility was not related to body tem-
perature. However, transit time (TT) of food through
the intestinal tract proved to be significantly inversely
related to body temperature (van Marken Lichtenbelt
1992): with increasing T, food processing is increased.
The same study revealed that the ad libitum maximal
rate of fresh-food intake was linearly related to the
transit time.

Combining these relations with the metabolizable
energy content of the food gives the relation between
the potential metabolizable energy intake (MEI) and
body temperature (7): MEI,,, = 132.0 — 4085 X
10-00¢ o MEI in kilojoules per kilogram per day (Fig.
4). Resting metabolic rate (RMR) is related.to T, as
follows (van Marken Lichtenbelt et al. 1993): RMR =
2.22 X 10%03¢ T (Fig. 4).

Combination of the data on MEI,,, and RMR shows
a gradual increase in net energy gain (MEI,,,, — RMR)
with rising body temperature until a body temperature
of 36.5°C is reached (Fig. 4). According to the derived
formulas (based on extrapolation from a temperature
range of 30.0°-36.5°C for MEI,,,), net energy gain de-
creases above 36.5°C. This temperature coincides with
the upper end of the range of recorded mean midday
body temperatures (36.6°C). Clearly, more data are nec-
essary over a wider temperature range with different
foods. Nevertheless, our data indicate that the observed
body temperatures coincide with, or are below, the de-
rived optimal T, for food processing.

In the cost—benefit model presented, the costs of for-

TABLE 5. Field body temperatures of iguanines.
Body temperature (°C) Refer-
Species Place Day Midday ence T
Amblyrhynchus cristatus Galdpagos Islands 35-37 1
Cylura nubia Puerto Rico 37.9-39.4 2
Conolophus pallidus Galdpagos Islands 36.4-37.6 (mi) 2
35.2-37.0 (f}) 2
Dipsosaurus dorsalis California 42 3
Iguana iguana Costa Rica 34.0-37.2 4
Mexico 31-39 5
Colombia 33.8-40.6 6
Curagao 31.2-35.6 32.9-37.8 7
Sauromalus obesus South West USA 35-37 8
California 36.6-39.6 9

+ References: 1, Bartholomew 1966; 2, Christian et al. 1986; 3, DeWitt 1967; 4, Hirth 1963;
5, McGinnis and Brown 1966; 6, Miiller 1972; 7, this study; 8, Zimmerman and Tracy 1989;

9, Muchlinski et al. 1990.
+ m, male; f, female.
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FIG. 4. Resting metabolic rate (RMR), maximal metabo-
lizable energy intake (MEIL,,), and the difference between
ME]I,,,, and RMR as functions of body temperature in Iguana
iguana. The gray area indicates the range of observed mean
midday field body temperatures. Vertical lines indicate the
maximal differences between MEI, ., and RMR.

aging are not incorporated. Although free-living igua-
nas do not cover large distances, the costs of transport
are substantial (van Marken Lichtenbelt et al. 1993),
involving mainly strenuous climbing. If the investment
in obtaining the maximum amount of food is too high
(e.g., when food availability is low), it is beneficial to
consume less food. In that case, it would be energet-
ically advantageous to select a lower body temperature,
corresponding to the amount eaten (see Fig. 4). Indeed,
midday field body temperature is significantly posi-
tively related to the daily metabolizable energy intake
(Fig. 5). Since transit times are =3 d, we also calculated
MEI over longer periods (=6 d). After removing one
significant outlier (animal BG from September; Bon-
ferroni-corrected outlier test), the relation between
mean 24-h T, and mean MEI is highly significant (P
< 0.001; Fig. 6). The green iguana GO had the highest
MEI of the animals examined, and had a mean midday
body temperature of 36.6°C (Table 2). It is interesting
to note that body temperatures of Conolophus pallidus
were also significantly lower during the season with
relatively low food availability, although higher body
temperatures potentially could have been obtained
(Christian and Tracy 1985).

Walking at regular speed may affect 7,, especially
since costs of locomotion due to climbing on steep
walls and in vegetation are high (van Marken Lichten-
belt 1993). The relation between the time spent moving
and T, is not significant. However, stepwise forward
multiple regression (F = 4 to add, F = 3.99 to remove)
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y =0.028x+ 34.7 °
s0d r=0490
P<0.05

Midday body temperature (°C)

MEI (kJ-kg 1-d"T)

Fi1G. 5. Midday body temperatures (6-h mean) of free-liv-
ing green iguanas in relation to their daily metabolizable en-
ergy intake (MEI). Solid circles are telemetered data; open
circles are model estimations.

showed that adding distance moved while climbing,
distance moved in a horizontal plane, and distance
moved in vegetation to the regression of 7, and MEI
improved the fit. MEI alone gave a multiple correlation
coefficient of R = 0.96 and a standard error of estimate
(SEE) of 0.33 (Fig. 6), whereas inclusion of the dis-
tances resulted in R = 1.0 and SEE = 0.02. All vari-
ables had positive regression coefficients. Food intake
(expressed in MEI) and locomotion thus seem to ex-
plain most of the variation in field body temperature.
This line of thought about the thermal sensitivity of
locomotion is still speculative, and direct measure-
ments on the thermal dependence of stamina are badly
needed.
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FIG. 6. Mean 24-h body temperatures of free-living green
iguanas in relation to their mean daily metabolizable energy
intake (MEI), both averaged over =6 d. Solid circles are
telemetered data; open circles are model estimations.
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APPENDIX
MODELLING BoDY TEMPERATURE

We developed a method to estimate body temperatures of
free-living iguanas by using behavioral data in combination
with operative temperature measurements. For this, two hol-
low, empty model iguanas were constructed as operative tem-
perature sensors. One of these was used as a reference for
general meteorological conditions, much as a single micro-
meteorological station might be used. The temperature of the
second model was determined relative to the first. The second
model was placed in various orientations to the sun, substrate
types, wind, and shade. For each of these situations, at least
16 comparisons were made between the two models. A mul-
tiple regression was used to generate an empirical model, the
dependent variable being the temperature of the second mod-
el. The independent variables were all interaction terms be-
tween the temperature of the first model and the various ob-
servable aspects of posture and exposure to thermal factors
of the second model. This gave an estimated operative tem-
perature for any similarly sized iguana whose posture and
exposure variables were known. This operative temperature
could then be smoothed by an exponential time filter with a
time constant derived from cooling curves on the same mod-
els (then filled with water) to give an estimated body tem-
perature. The coefficients were later adjusted to fit body tem-
peratures of live iguanas with telemetry transmitters in the
field.

The following abbreviations are used:

T, = body temperature

T, = operative environmental temperature

T, = air temperature

T, = estimated body temperature

T., = steady-state temperature of the mount

T.. = mount temperature during tests at different locations
T = time constant

The first empty mount (snout—vent length, SVL = 30 cm)
was always situated with the ventral side of the body on a
flat piece of rock at the same spot, and was constantly kept
perpendicular to the sun. In this way, sun exposure was max-
imal (100%) and angle of radiation was dorsal. Wind exposure
at the spot was W = 1. Temperatures of the mount (7,) and
air (T,) were registered every 15 min. An empty mount was
used because of the relatively low 7 value, providing accurate
measurements of the changes in radiation. The time constant
(7) from the equation of exponential decay T, = T, + (T, —
T.) X e~ (Bakken and Gates 1975) is the time required for

63.2% (1 — 1/e) of the total temperature change to occur. T
was graphically obtained from the cooling curves of both
empty and water-filled models. The models were heated to
45°C (T,) in a free-convection environment and, while located
with the ventral side of the body on a polystyrene substrate,
were allowed to cool to steady state (7). T of the empty and
water-filled models was 11.5 and 50.5 min, respectively.
The position of the second mount (measuring 7,,) was var-
ied with respect to substrate (rock or shrub), orientation to
the sun’s rays (see Methods), and percentage exposed to the
sun. From the difference between T, and T.,, we derived fac-
tors (f), expressed relative to T,: f = (T, — T)/(T. — T,) X
100%. Each experiment was tested four times an hour for at
least 4 h. In this way, we included some of the environmental
variation in wind speed and solar radiation. During an ex-
periment, the orientation towards the sun was regularly ad-
justed to keep the solar angle constant. f was obtained by
averaging the f values of 15-min intervals. Wind speed af-
fected both f and 7 values. f and 7 values were adjusted for
actual field circumstances using simultaneous measurements
of T, and body temperature and behavioral data from radio-
tracked male LB (on 28 and 31 March and 6 April), so that
the difference between actual and estimated body temperature

TaBLE Al. Correction factors f [=(T,, — TH)/(T, — T,) X
100%], and the T values (time constants) used to calculate
body temperatures from T, T,, and the positional protocols
of free-living iguanas. The mount was situated on rock,
exposed to the sun with a dorsal angle of radiation, and
had a wind exposure of W = 1.

f T
Exposure Variables (%) (min)

Substrate rock 100
vegetation 85
Angle of radiationf dorsal 100
lateral 85
rostral 70
extremely rostral 55

Wind exposure W=20 124 30

w=1 100 30

W=2 74 20

wW=3 62 10

T Sun relative to body.
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was minimized. The total adjustment was < 3%. The resulting
f values and 1 values are presented in Table Al.

For estimation of field body temperatures, T, was assumed
to be the steady-state temperature of the empty mount, and
5-min values of T, and T, were obtained by linear interpolation
of the 15-min measurements. The estimated steady-state tem-
perature of the animal under study (equal to T,,) was deter-
mined by T, T,, and the position of the animal:

Ty =T, + (T = T) X fuswate X fange Of radiation
X fuma X % exposed to sun.

The time interval (¢) used for iterative calculations was 5
min. At the beginning of this interval (Ty), T,,, T, and ¢ were
used to calculate the (estimated) body temperature at the end
of this interval:

Ty =T+ (T, — T.) X e,
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Body temperature at the end of the time interval was T, for
the next 5-min interval, etc. By repeating this procedure, the
body temperatures in the course of the day could be estimated.
The procedure started at local sunrise, when air temperature
and T, were equal (T, = T, = T,).

Correlation between actual body temperature and estimated
body temperatures was highly significant (R = 0.91, P <
0.001, df = 370), and the slope did not deviate significantly
from unity (ANCOVA). Although estimated individual tem-
perature values could be off by some degrees, mean estimated
values over a period of several hours were close to actual
values. Actual mean body temperature was 33.9°C vs. a mean
estimated temperature of 33.1°C (paired ¢ test: P > 0.05, df
= 370). The mean midday (0945-1545) body temperature
was 35.4°C vs. 35.0°C (paired ¢ test: P > 0.1, df = 199). In
general, when we used data over a period of 1 d, the method
provided good estimates.



