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ABSTRACT 
Introduction: While many studies on rheumatoid arthritis have focused on the active 

phase of the disease, the events that lead to the development of autoimmunity remain 

poorly defined. We have developed a model of breach of self tolerance, where a Th1 

response to irrelevant antigen (OVA) results in arthropathy associated with spontaneous 

induction of autoreactive T and B cell responses, which allows the investigation of the 

immnologival events that lead to the development of autoreactivity. Employing this 

model the role of Th17 cells, a a subset of IL-17 producing CD4
+
 T important in 

autoimmunity, was investigated in the development of autoimmunity. In addition, the 

relative ability of Th1 and Th17 polarised populations in supporting B cell responses was 

analysed. Finally, in this thesis the role of sterile damage regulation in the development 

of autoimmunity was assesed, by investigating the role of Siglec-G, a molecule involved 

in DAMP-signalling regulation, in this process.  

Results: Transfer of OVA specific Th17 cells induced similar levels of inflammation as 

Th1 cells, and could induce a breach of self tolerance as demonstrated by CII specific T 

and B cell responses. While the CII specific T cells in the Th1 recipients produced IFNγ 

and not IL-17, surprisingly the CII T cell responses in the Th17 recipients were 

predominantly IFNγ producers. Whereas the transferred OVA specific Th1 population 

retained its phenotype, the transferred Th17 population displayed significantly reduced 

IL-17 production. However, cells polarised under Th17 conditions expanded in a higher 

degree and persisted for longer time in response to immunisation. This resulted in a 

higher ability of Th17 polarised population in supporting B cell responses. Finally in this 

thesis, preliminaty data for a role of Siglec-G in the development of autoimmunity were 

presented, as Siglec-G deficient mice were protected from the development of 

autoreactive B cell responses.  

Conclusion: The results of this thesis suggest that the developing autoimmuniy in both 

Th1 and Th17 models is mediated by Th1 cells. These studies highlight the plasticity of 

transferred cell populations in vivo, and support the use of blocking and fate-mapping 

studies to definitively address how auto-reactive responses develop.  
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Chapter 1: Introduction 
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1.1 Aims 

 

 

Rheumatoid arthritis (RA) is a complex systemic autoimmune disease that 

predominantly targets synovial joints, especially the small joints of the hands and 

feet, and is characterized by joint destruction and chronic disability(1). Its 

occurrence is about 1%(1) of the population and presents a significant economical 

burden to the health system and society (estimated €45.1 billions in Europe)(2).  

RA pathology can be subdivided in three stages: autoimmunity, inflammation and 

bone destruction(3). Susceptible individuals, under the influence of various 

environmental factors, develop an underlying autoimmunity that manifests as 

autoantibodies, such as rheumatoid factor (RF) and anti-citrullinated 

protein/peptide antibodies (ACPA)(3). This stage can precede the clinical 

manifestation of the disease by as much as ten years(4) and is relatively 

understudied compared to the active phase of the disease (Fig 1.1). This is due to 

the fact that only tissue from active arthritis patients is available, and most animal 

models resemble the articular phase of the disease.  Recently our group has 

developed a model of early RA based upon the adoptive transfer of T helper (Th)1 

polarised T-cell receptor (TcR) transgenic (Tg) T cells specific for ovalbumin 

(OVA)(5). The advantage of this model is that the precise development, migration, 

antigen (Ag) specificity and the contribution of the T cell phenotype to the 

pathology can be monitored and regulated.  More importantly, this model is 

characterized by development of autoreactivity in the form of B and T cell 

responses against collagen type II (CII)(5-7), as these mice were never immunised 

with this protein. It therefore provides a useful tool to investigate the early 

immunological mechanisms that lead to autoimmunity in the context of arthritis.  

Th17 cells are the latest addition in the effector Th cell repertoire and are 

characterised by the production of interleukin (IL)-17.  Their discovery in models 

such as experimental autoimmune encephalomyelitis (EAE) and collagen-induced 

arthritis (CIA)(8;9) marked a shift from the traditional view that autoimmune 

diseases are Th1-mediated conditions. Even though some data suggest a role for IL-

2



 

 

17 and Th17 cells in inflammation and bone destruction that characterizes RA(10-

13) their role in the early immunological events that lead to breach of self tolerance 

is unknown. Moreover, the role of these cells in crucial aspects of the adaptive 

immune, namely their ability to support T-cell dependent B cell responses is 

relatively understudied.    

Employing the aforementioned model of breach of self tolerance in the context of 

arthritis and other adoptive transfer models the following aims will be pursued:    

 

 Develop a robust and reproducible Th17 polarisation protocol that will be   

employed through out this thesis 

 Investigate the role of Th17 versus Th1 T cells in the immunological events 

that lead to the breach of self tolerance in experimental arthritis  

 Investigate the role of Th17 effector cells in supporting T-cell dependent B cell 

responses  

In the last part of this thesis, the role of sialic acid binding Ig-like lectins (Siglec)-G, 

a sialic acid binding lectin, that has been proposed to play a part in mechanisms that 

discriminate between damage and pathogen associated derived signals, which might 

underlie the breach of self tolerance, will also be investigated.  
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Fig 1.1 Pathogenesis of RA

The pathogenesis of RA can be grossly subdivided into 3 stages. Under the

influence of various environmental factors (e.g. smoking, microorganisms)

individuals that carry various disease-associated genetic traits (e.g HLA-DR4,

PTN22) may develop autoimmunity in the form of autoantibodies (Rheumatoid

Factor, Anti-Citrullinated Protein/Peptide Antibodies), some-times years before

clinical signs of the disease. The mechanisms of transition to the clinical phase of

the disease are still poorly defined but biomechanical events and trauma might be

involved. Initiation of the disease is characterized by systemic inflammation that

leads to joint destruction and co-morbidity.
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1.2 Pathology of Rheumatoid arthritis: a brief overview 

 

RA is a systemic inflammatory disease of unknown aetiology. Clinically it 

manifests as a symmetric polyarthritis associated with swelling and pain in multiple 

joints, often initiated from the joins of the hand, wrist and feet(14). RA can also 

affect other organs which result in conditions such as vasculitis, pleuritis and 

pericarditis(15). In the next section a brief overview of RA pathology will be 

presented, starting from the preclinical stage of the disease and expanding to the 

joint pathology and associated co-morbidities. Also a brief description of the 

healthy synovial membrane will be presented to contextualise the changes 

developing in an RA joint.  

1.2.1 Normal Synovium  

 

The synovial membrane is a connective tissue layer that covers the inner surface of 

the joint, tendon, sheaths and bursae(16). It has two main layers, the synovial lining 

and the synovial sublining(16). The synovial lining is composed by two major types 

of synovial cells which  morphologically, phenotypically and functionally can be 

subdivided to‗macrophage-like‘ (type A) and ‗fibroblast-like‘ (type B) 

synoviocytes(17;18) (Fig 1.2a). The type A cells express various macrophage 

markers such as CD68, Fcγ receptors, CD14 and CD45 (common leukocyte antigen) 

and major histocompatibility complex class II (MHCII)(19). The type B 

synoviocytes on the other hand express rather specifically vascular cell adhesion 

molecule-I (VCAM-I) and decay accelerating factor (DAF)(16). They differ by 

other type of fibroblasts by the expression of α6β1 intergrin, which binds to the 

basement membrane component laminin(16;20). The synovial fibroblasts are the 

primary stromal cells of the joints and are responsible for the production of 

collagen I, III, IV an V and other connective tissue components that support the 

joint, such as fibronectin, laminin, chondroitin and heparan sulphate(16). 

Furthermore they produce and secrete hyaluronic acid into the joint cavity 

providing lubrication to its components(21;22). The synovial sublining consist of 

soft, loose connective tissue based on a network of elastic fibres and different 
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collagens, such as collagen I, III, IV, V and VI, fibronectin, laminin and 

proteoclycans(23). The synovial fluid is a plasma dialysate formed by diffusion 

through the synovial lining and sublining(16). It is acellular under physiological 

condition and its supplementation with hyaluronan accounts for its viscosity(16).  

1.2.2 Preclinical RA 

 

The relatively superficial question ―When does RA start?‖ is still challenging 

researchers and clinicians. It has been demonstrated in various studies that both RF 

and ACPA are present in patients‘ sera years before the development of clinical 

disease(4;24-26). The first study demonstrating RF preceding clinical signs of RA 

took place in Finland 20 years which reported that two thirds of the patients 

investigated had developed RF four year before disease onset(24). A more recent 

study in Sweden employed blood samples from 83 donors that subsequently 

developed RA(26). This study revealed that the prevalence for ACPA was 33.7%, 

16.9% IgG-RF, 19.3% IgM-RF, and 33.7% IgA-RF, which was significantly higher 

than healthy controls (26). Another study has demonstrated the presence of IgM-RF 

and ACPA in almost half of the patient investigated, at a median of 4.5 years before 

disease onset(4). More importantly it demonstrated that the autoantibody titres 

increased as the onset of disease approached(4). The presence of these 

autoantibodies and especially the fact that they are class switched suggests an 

active adaptive immune response against a various autoantigens, which is initiated 

years before the clinical signs of the disease. There are studies in animal models 

demonstrating a role for autoantibodies in the development of the articular phase of 

RA(27-29), however why and how this antibodies develop in humans is still 

unclear. Understanding the events surrounding the breach of self tolerance 

associated with RA could therefore reveal markers associated with the onset of 

preclinical disease and signal a window of early intervention that would prevent the 

initiation of the cascade of events leading to symptomatic disease.  
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1.2.3 Inflamed synovium 

 

In RA the phenotype of the synovium is altered and it develops into a thickened, 

invasive growing tissue that eventually destroys the joint (Fig 1.2b).  The 

acquisition of an activated phenotype by the synovium is a chronic process that 

develops in several not well defined stages(16).  Synovial thickening is one of the 

main characteristics of RA and can result in a depth of up to eight cells(30).  The 

synovial hyperplasia is probably a combined event of local proliferation of the 

synovial lining and influx of inflammatory cells(16). Macrophages constitute one of 

the major determinants of synovial thickening and there are studies that suggest that 

they account for 80% of the synovial infiltrate, especially in the area adjacent to the 

joint cartilage (31;32). In addition to hyperplasia, altered function of cells such as 

fibroblasts is a hallmark of RA(16;33). Activated fibroblasts exhibit many features 

of transformed cell lines, such as increased cell adhesion molecule expression, 

proliferation, resistance to apoptosis, oncogene expression and cytokine 

production(33;34). Inflamed synovial sublining is characterized by pronounced 

infiltrates of T cells, B cells, natural killer (NK) cells, dendritic cells and mast 

cells(33;35-38). Lymphocyte aggregates are observed in 50-60% of the RA 

patients(33). These aggregates can be surrounded by plasma cells, whereas 

macrophages can infiltrate them(33).  Neutrophils are mainly found in the synovial 

fluid even though they can also be found in the synovial-cartiladge junction(39;40). 

The role of some of these cells in pathology and joint destruction will be discussed 

later in this chapter. The thickened synovium has increased requirement for oxygen 

and nutrients that can only be provided by the generation of new blood vessels. The 

local hypoxia is a strong stimulus for angiogenesis, whereas the required pro-

angiogenic factors, such as Fibroblast Growth Factor (FGF) and Vascular 

Endothelial Growth Factor (VEGF), are produced by macrophages, synovial 

fibroblasts and other cells of the synovial infiltrate, such as neutrophils(41-43). 

Conversely, inhibition of angiogenesis has been reported to inhibit the development 

of CIA(44).     
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a) b)

Fig 1.2: Healthy vs. RA synovial membrane

a) The synovium is a relatively acellular structure comprising by a thin layer of

macrophage-like (type A) and fibroblast-like (type B) synoviocytes. b) The synovial

membrane in RA patients is activated and hyperplastic as the synoviocytes

proliferate locally. At the same time, various immune cells are recruited to the

inflamed site. The inflamed synovial membrane will gradually invade the joint. The

increased cellularity of the RA synovium requires adequate oxygenation which is

supported by angiogenesis. The production of cytokines, chemical mediators and

degrading enzymes destroys the cartilage and deregulates bone metabolism, which

eventually leads to joint destruction.
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1.2.4 Extra-articular manifestations of RA 

 

RA is a systemic inflammatory disease, which in addition to the peripheral 

polyarthritis, can involve other organs and tissues. These manifestations could be 

either extra-articular symptoms or complications of the disease, however there is no 

agreed classification for them(45). The incidence and frequency for extra-articular 

RA varies between studies, but the most common are nodules which are present to 

up to 30% of cases(45). The most important extra-articular features and 

complications of RA are summarized in table 1.  

Extra-articular manifestations have been thought to be more frequent in severe 

cases of RA(46). In addition, these manifestations seem to be more often in men 

and in rheumatoid factor (RF) positive(47) and/or anti-nuclear antibody (ANA) 

patients(48). Extra-articular features that do not respond to treatment clearly can 

have an adverse effect in the course of RA. These symptoms are not common and 

include systemic and ocular vasculitis, Felty‘s syndrome, interstitial pulmonary 

fibrosis, neuromyopathies, amyloid and cryoglobulins(45).  

There is conciderable evidence linking cardiovascular disease and RA. RA is an 

independent risk factor for ischemic heart disease(45). More recently it has been 

shown that congestive heart failure, more than ischemic heart disease, appears to 

contribute to the overall RA mortality and this is through increased incidence of 

this condition in RA compared to the general population(49). RA patients have 

twice the risk of developing congestive heart disease compared to the non-RA 

population(50) and cardiovascular-disease associated death has been linked with 

markers of systemic inflammation(51). Studies have shown that the increased 

incidence of cardiovascular disease or the presence of atherosclerosis is not 

explained by traditional cardiovascular risk factors (smoking, lipid levels etc), 

suggesting a role for RA in the development of the disease(52;53).  

 From the above it is obvious that the extra-articular manifestations of RA have 

great effect in the life quality and expectancy of RA patients.   
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Table 1
i
: Extra-articular manifestations of RA 

Extra-articular RA Complication of RA 

 Nodules 

 Raynaud‘s phenomenon 

 Secondary Sjogren‘s syndrome 

 Interstitial lung disease-pulmonary 

fibrosis 

 Pericarditis 

 Pleuritis 

 Felty‘s syndrome 

 Polyneuropathy, mononeuropathy, 

mononeuritis multiplex 

 Myopathy, polymyositis 

 Episcleritis, Scleritis 

 Glomerulonephritis 

 Systemic vasculitis 

 Benign cutaneous and nail-fold 

vasculitis 

 Lymphadenopathy 

 Weight loss, cachexia, malaise, 

fatigue, fever 

 Amyloid 

 Cervical myopathy 

 Chronic leg ulcers 

 Normochromic normocytic anaemia 

 Osteoporotic fructure 

 Carpal tunnel syndrome 

 Lymphoedema 

 Hyperviscocity, cryoglobulins 

 Ischaemic heart disease 

 Non-Hodgkin‘s lymphoma 

 Infections 

 

    

                                                 
i
 Table adapted from reference (45) 
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1.3 Genes and environment in the induction of breach of self 
tolerance 

 

As noted above, RA is a multi-factorial condition where genetic, environmental 

factors and deregulated immune responses have a defining  effect on the induction, 

magnitude and rate of progression of the disease(3). The result of this complexity is 

that the clinical picture is highly heterogeneous with different subsets of RA being 

manifested in patients(54;55). However, how these factors promote breach of self 

tolerance and progression of pathology is ill defined.  

1.3.1 Genes  

 

The genetic basis of RA is extremely complex. RA does not aggregate with high 

prevalence in families and concordance rates in identical twins are relatively low 

(12-15%)(56). However, the prevalence of the disease between first degree 

relatives is considerably higher than the general population(56).  The description of 

the Human Leukocyte Antigen (HLA) association with RA is the strongest 

evidence for a genetic basis of the disease(56;57).   Most patients with rheumatoid 

arthritis express particular HLA-DR alleles like HLA-DRB1*0401, *0404, *0405, 

*0408, *0101, *0102, *1001 and *1402(58). RA associated HLA-DR alleles share 

a highly conserved amino acid motif (
70

QRRAA
74

, 
70

RRRAA
74

 or 
70

QKRAA
74

) 

expressed in the third hyperviariable region of their DRB1 chain, termed the shared 

epitope (SE)(58). In different ethnic groups the involved allele varies considerably, 

for example 
*
0401 and 

*
0404 for Caucasians and  

*
0405 in Japanese(59). 

Apart from MHC, the best established locus of susceptibility for RA is protein 

tyrosine phosphatase non-receptor type 22 (PTPN22) which encodes Lyp, a 

tyrosine phosphatase expressed by T lymphocytes and regulates TcR 

transduction(60). The minor allele of a single nucleotide polymorphism (SNP) in 

PTPN22 has been linked to conditions such as type-I diabetes and RA(61-64).  This 

SNP results in a in an amino acid substitution of
 
arginine (Arg620) for tryptophan 

(Trp620) in a proline rich motif of the non catalytic C terminal of Lyp(62).  It has 

been reported that the Trp620 allele is a gain of function mutation(65).  T 
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lymphocytes from patients that carried this allele produced reduced amounts of IL-

2 in response to TcR stimulation, compared to T cells that did not carry the 

mutation, whereas induced expression of the mutant PTN22 transferred this hypo-

responsiveness in primary T cells and the Jurkat T cell line(65).  It has been 

suggested that the increased efficacy of the mutant PTN22 in inhibiting TcR 

signalling may lead to a defective thymic negative selection, conferring 

predisposition to autoimmunity(65). This hypothesis is re-enforced by animal data, 

where deregulated thymic selection results in autoimmune arthritis(66). 

Genome wide association studies (GWAS) have revolutionized the study of human 

disease genetics. These studies represent a powerful tool for the identification of 

genes involved in common human diseases. A GWAS was undertaken by The 

Wellcome Trust
 
Case Control Consortium(57) confirmed the association of HLA-

DR1 and PTPN22 with RA.  Other candidate genes associated with RA that this 

study revealed are CTLA-4 (only nominal significance), the α and β chain of the 

IL-2 receptor( IL-2RA and IL-2RB), genes of the TNF pathway  (TNFAIP2 

(tumour necrosis factor, alpha-induced protein))  and in the regulation of T-cell 

function (GZMB (granzyme B))(57). 

 

1.3.2 Environment 

 

The amount of data concerning the environmental factors that contribute to the 

development of the disease is surprisingly scarce. Smoking is the environmental 

factor most strongly linked to an increased risk of developing RA(67-71). A link  

has been demonstrated between the HLA-DRB1 shared epitope, citrullination and 

smoking(72;73). Antibodies to antigens modified by citrullination through 

deimination of arginine to citrulline  are present in about two-thirds of RA patients 

but are rare in other inflammatory conditions(73).  It has been demonstrated that 

smoking increases protein deimination, which in the presence of the SE, leads to 

increased risk of developing ACPA positive RA(73).   This lead to the suggestion 

that smoking triggers citrullination in lungs through activation of peptidylarginine 

deiminase (PAD)(73), activation of the local antigen presenting cells (APCs) that 
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enables efficient antigen presentation of the post-translationally modified peptides 

for which the immune system has not developed tolerance(68;74). In addition, it 

has been reported that the conversion of arginine to citrulline at the peptide side-

chain
 
position interacting with the shared epitope significantly increases

 
peptide-

MHC affinity, which could lead to an immune response at individuals carrying the 

susceptible HLA-DRB1 alleles(75).  

Recently great attention has been given to the immuno-modulatory role of mucosal 

microbiota(76;77). In has been proposed that the normal intestinal flora may protect 

against the development of inflammatory diseases(78-80). Mice deficient in a G-

protein coupled receptor that recognises products of the metabolism of fiber by gut 

microbes developed exacerbated arthritis in the KxB/N serum-induced arthritis 

model, which suggests that commensal bacteria might be required for regulation of 

the immune response(78). Other reports suggests that components of the microbiota 

drive arthritis development(81;82). A prime example of a possible link of mucosal 

micro-organisms and RA pathogenesis is Porphyromonas (P.) gingivalis, a 

pathogen linked to periodontal disease development(83). This bacterial species has 

been linked to the development of immunity against citrullinated proteins due to its 

ability to produce citrullinated epitopes and its presence in an environment that 

highly analogous to RA, characterized by bone erosion and chronic 

inflammation(84;85).     

Table 2 lists some of the main environmental factors that have been reported to 

affect RA pathology:  
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Table 2: Environmental factors and RA 

Environmental 

factor 

Effect References 

 

Smoking 

Increased risk, dependent 

on magnitude and length of 

habit, association with anti-

CCP antibodies 

 

(67-69;72-74;86) 

 

Alcohol  

May decrease risk, 

lower risk for anti-

CCP positive 

RA(86;87) 

 

(86;87) 

High Birth Weight Increased Risk(88)  (88) 

Oral contraceptives Lowers the risk of RF 

positivity(89)  
(90) 

Breast feeding Reduced risk (91) (91) 

Socioeconomic status 

Inverse association 

between 

socioeconomic status, 

measured by 

occupational class and 

education and RA(92) 

 

 

(92) 

Geography 

Location of birth and 

current residence is 

associated with 

differential risk of 

RA(93) 

 

(93) 

Microbiota 

Intestinal flora could 

be protective, P. 

gingivalis promotes 

disease 

(78;81) 
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1.4 Localisation  

 

The major clinical sign of RA is joint pathology, which manifests as a symmetric 

polyarthritis with associated swelling and pain in multiple joints, often initially in 

the joints of the hand, wrist and feet(14). This is recapitulated in many animal 

models; however, why the systemic autoimmunity that characterizes the preclinical 

phase of the disease eventually targets the joints is still unknown. Interestingly, 

studies from our group using an adoptive transfer model of arthropathy reveal early 

involvement of the articular environment was prerequisite for development of 

autoreactive responses as immunisation in other sites did not lead to autoimmune 

arthritis (RA Benson, unpublished data). Reasons related to the environment and 

function of the joint, namely biomechanical stress, hypoxia, and trauma could 

potentially explain its preferential involvement in RA. Joint overuse and misuse in 

conjunction with trauma have been linked to the development of osteoarthritis(94), 

however their role in RA development is not clear. Interestingly, a case control 

study links physical trauma with RA onset(95), whereas in experimental arthritis 

development of the disease was associated with joint microbleeding(96). We could 

speculate that local microtrauma or infection leads to inflammation, damage, 

antigen release and activation of resident dendritic cells (DCs), which in genetically 

susceptible and environmentally conditioned individuals, target the autoimmune 

response to the joint. In experimental arthritis hypoxia-induced cell death was 

linked to the release of damage associated molecular patterns (DAMPs), such as 

HMGB1, that perpetuated the inflammatory response(97). This potentially suggests 

that regulation of sterile trauma could be important in RA development. It is now 

accepted that the immune system recognises both DAMPs and pathogen associated 

molecular patterns (PAMPs), through pattern recognition receptors (PRRs), such as 

Toll-like receptors (TLRs)(98-100). Less clear is how the immune system 

discriminates between DAMP and PAMP derived signals. Indeed injury and cell 

death is followed by the release of DAMPs and probably self antigens, however 

this does not usually lead to autoimmunity. A good example is cancer radiotherapy, 

where dying cells release HMGB1, which activates DCs through TLR4 initiating 
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anti-cancer T cell immunity. Despite the fact that the dying cancer cells will contain 

autoantigens this does not lead to a generalised autoimmune responses(101). This is 

established in a significant degree by central and peripheral tolerance mechanisms. 

Recent studies however, suggest that another possible mechanism is through 

attenuating the signals initiated by DAMPs(102). It was demonstrated that CD24, 

also known as heat-stable antigen, can associate with various DAMPs, such as 

HMGB1, heat-shock protein (Hsp)-70 and Hsp-90(103). Interestingly, CD24 

deficient mice were more susceptible to liver injury induced by acetaminophen, a 

phenomenon mediated by HMGB1, which suggest that this molecule is part of a 

DAMP regulatory mechanism. As CD24 is a  glycosyl-phosphatidyl-inositol 

anchored molecule(104) it does not have a intracellular signalling domain(105). On 

the other hand, CD24 and HMGB1 form a complex with Siglec-G(106). This is a 

member of the Siglec family of Ig-like type I transmembrane proteins, which 

recognise sialic acids(107). There are 13 siglecs in humans and 8 in mice, and all of 

them, apart from sialoadhesin and Siglec-H, possess immunoreceptor tyrosine-

based inhibitory motifs (ITIM) in their intracellular domains(107). Thus Siglec-G 

has the potential to initiate regulatory signals by recruiting phosphatases such as 

SHP-1. Indeed, Siglec-G deficient mice phenocopy the CD24 deficient mice in 

their lethal acetaminophen response(108). In addition, Siglec-G represses DAMP-

mediated NFκB activation, but more importantly does not regulate the 

inflammatory signals initiated by PAMPs, such as LPS and polyI:C(109).  These 

data suggest that the CD24/Siglec-G complex is a regulatory mechanism that 

facilitates discrimination between pathogen and damage-derived signals. It is 

intriguing to speculate that potential deficiencies in regulation of sterile damage 

initiated by mechanical loading or microtrauma might lead to the articular 

localisation of RA. Unfortunately, there are no experimental data to support this.      

 

 

16



 

 

1.5 Mechanisms of disease progression: cells and cytokines 

 

The development of the inflammatory conditions that is RA, involves many 

different cell types and a complex cytokine networks. An overview of the cellular 

protagonist and the cytokine networks involved in RA development will be 

presented in the following sections, focusing mainly on cells of the adaptive 

immune response. 

 

1.5.1 The role of T cells in RA 

 

A critical role for adaptive immunity in the pathogenesis of RA is supported by the 

presence of activated T cells in the synovial lesion, by long established association 

with HLADRB1 and by recent genome wide scanning studies implicating ptpn22, 

cd40, ctla4 and cd28(57;63;64;110). Various studies have reported the presence of 

T cells in the synovial membrane(111;112). Interestingly these studies positioned 

these cells in association with APCs (either DCs or B cells), which could suggest an 

active adaptive immune response in the synovial membrane(111;112).  T cells from 

synovial fluids and membrane are mainly highly differentiated activated memory 

CD4
+
 CD45RO

+
 CD45RB

dull
cells(113-115). Interestingly, the synovial membrane 

environment protects these cells from apoptosis even though they express apoptosis 

susceptibility markers (Bcl-2
low

, Bax
high

, Fas
high

)(116).  Other studies have reported 

that RA patients are characterized by a T cell phenotype (CD4
+
 CD28

-
) that has 

both effector and memory T cell features(117).  In adoptive transfer of these cells 

into SCID mice grafted with human synovial membrane these cells expressed 

CCR7, CCR5 and CXCR4 and homed at the synovium, but preferentially homed at 

the lymph node upon activation with CCL5 or CXCL12(117). Upon treatment with 

IL-12 or TcR activation these cells homed to the synovial membrane via 

upregulation of CCR5(117). The T cells of RA patients, even the ones that develop 

the disease at early age, exhibits features of increased ageing as demonstrated by 

telomere shortening(118). This is observed in both naïve and antigen experienced 

cells suggesting that is not an antigen driven event, but potentially due to reduced 
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production of new thymic emigrants and homeostatic proliferation of the T cell 

repertoire(118).  

 

Numerous animal models further confirm the involvement of T cells in the 

development of inflammatory arthritis. An intrinsic defect in the TcR signaling (a 

spontaneous point mutations that alters the encoding of an SH-2 domain of ZAP70)  

can lead to T-cell dependent arthritis in mice(66). It was reported that altered signal 

transduction from the TcR through the aberrant ZAP70 defects, changes the 

threshold of thymic T cell selection, leading to the positive selection of otherwise 

negatively selected autoimmune T cells(66). Another model where the central role 

of T cell in the development of arthritis is demonstrated is the IL-1 receptor 

antagonist (IL-1Ra) deficient mouse model(63). IL-1Ra deficient mice develop 

spontaneous autoimmune arthritis, only in the presence of T cells, which produce 

cytokines, such as IL-17 and TNF, important for the development of the 

disease(119). Furthermore,  when the KRN/C57BL/6 TcR transgenic mice were 

crossed with the Non-Obese Diabetic (NOD) mice (KxB/N) the off-spring 

developed arthritis, due to the development of T-cell dependent B cell responses 

against glucose-6-phosphate isomerase (GPI), a glycolytic enzyme that is 

ubiquitously expressed(27;120).    

 

Various T-cell directed therapies have been developed with the most promising 

being abatacept, a fully human recombinant fusion protein of the extracellular 

domain of the endogenous inhibitory molecule cytotoxic T-lymphocyte antigen 4 

(CTLA4) and the Fc domain of human IgG1(121). The efficacy of abatacept has been 

demonstrated in phase II studies in RA patients either nonresponsive to adequate 

doses of methotrexate or in combination with methotrexate. Treatment responses 

were sustained to 3 years(122).  

 

Even though there seems to be an important role for T cells in RA it is not clear yet 

what antigen they recognise. Various molecules, highly expressed in the joint, have 

been proposed, such as CII, the cartilage protein HCgp-39 and proteoglycans (e.g.  
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aggrecan), mainly based on their ability to promote arthritis in animal models(123-

125).  Antigens such as Hsp and immunoglobulin binding protein (BiP) have also 

been proposed(126;127). The presence of SE in RA patients and its association 

with anti-citrullinated protein immune responses could suggest that T cells in RA 

patients recognise citrullinated epitopes(68;72;73). Indeed in the HLA-DRB1*0401 

transgenic mice the conversion of arginine to citrulline at the side chain where 

peptides interact with the SE, leads to increased peptide-MHC affinity and 

activation of CD4
+
 cells(128). However there is little evidence directly relating T 

cells specific for these antigens to the pathogenesis of RA and it is most probable 

that in different patient groups, different antigenic epitopes will be responsible for 

the pathology.  

 

 

1.5.2 The roles of B cells in RA 

 

The important role of B cells in RA pathology can be summarized by the following 

evidence: 

 The presence of autoantibodies in patients with RA 

 Presence of B cells in RA synovial membrane 

 B cell activation and germinal centre formation in ectopical germinal 

centers in RA synovial membranes 

 The effectiveness of B cell depletion as a treatment of RA   

The first evidence for a role of B cells in RA were based on the plethora of auto-

antibodies that characterize this condition. Given the easier accessibility of 

peripheral blood the first feature of B cell contribution that was reported is RF, an 

autoantibody against the Fc portion of human IgG(129;130). RF is found at about 

80% of RA patients but it is not very specific and it is found in other autoimmune 

conditions and even healthy individual (130). However, there are differences 

between RF in health and disease. In healthy individuals RF is an IgM produced by 

B1 cells as ―natural‖ antibody and has low affinity and polyreactivity(131). On the 

other hand RF in RA patients undergoes class switching as a consequence of help 

19



 

 

that the B cells are receiving from T cells(131;132), a phenomenon also observed 

for ACPA(133).   

B cells are a significant but not constant population in RA synovium(132). B cell 

infiltration is not so prominent in samples of synovium tissue that are lacking a 

defined level of organization of immune cells, whereas it is more significant in 

samples that are characterized by large and well organized mononuclear 

aggregates(134). Importantly as the lymphocyte number increase a defined 

lymphoid tissue organization appears with defined T and B cell 

compartmentalization, vascular apparatus and follicular dendritic cell (FDC) 

network(134). In synovial membrane, B cells are the major source of lymphotoxin-

B (LT-β), a cytokine important in normal lymphoid organogenesis(135) suggesting 

a significant role of B cells in ectopical lymphoid tissue organization. A defined 

lymphoid architecture in the synovial tissue, with B cells in close interaction with T 

cells, potentially  provides the appropriate microenvironment for B cell 

activation(136). Different pattern of synovites have been shown to correlate with 

different markers of B cell activation(137). Tissues containing germinal centers 

have the highest levels of IgG transcription, compared to samples with diffuse 

synovitis(137). In addition, increased B cell activation markers such as Blys and 

APRIL, have been reported in RA synovial membrane(137). 

B cells can also act as efficient APCs in antigen specific manner to stimulate T cells 

and to allow optimal CD4
+
 T cell memory(138-141). RF

+
 B cells can take up 

antigen-IgG immune complexes via their membrane Ig receptors, which are IgG 

specific. B cells then can process and present peptides from the antigen and provide 

T cell activation and help, which could lead to responses against self antigens(142). 

Indeed, a study employing human synovial transplantation into SCID mice 

demonstrated that the presence of B cells is required for adequate local activation of 

T cells(143). Furthermore, in the KxB/N model, development of arthritis is based 

on the cognate recognition of GPI by B and T cells, emphasising the importance of 

B-T cell communication in the disease establishment(27).  

The importance of B cells in RA pathology is depicted by the effectiveness of B 

cell depletion therapies(144). Rituximab is B-cell-cytolytic chimeric IgG1 CD20-
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specific monoclonal antibody, which can potently kill B cells from the pre-B-cell 

stage to the pre-plasma-cell stage(145). Several B cell depletion agents are now 

under investigation with a major goal the re-establishment of some form of 

immunological tolerance. 

 

1.5.3 Innate immune cells in RA: Macrophages and DCs 

 

The myeloid lineage gives rise to several cell types involved in the disease, such as 

monocytes/macrophages, subtypes of DCs and osteoclasts.  

Monocytes/macrophages:  The predominance of macrophage derived cytokines in 

the synovial compartments(146-149) signifies the importance of this cell type in the 

pathology of RA.  In the normal synovial membrane, macrophages predominate in 

the lining layer, where they scavenge debris from articular structures, and eliminate 

all the microorganisms entering via the blood or upon trauma(1). In the inflamed 

synovial membrane activated macrophages is one of the most abundant cell types(1) 

and the degree of macrophage infiltration directly correlates with clinical status and 

progression of joint damage(150;151). At the tissue level, pre-activated monocytes 

infiltrate the synovial membrane, mature into macrophages, which get activated and 

interact with other synovial cells(152).  Activated macrophages confer in the 

progression of the pathology through 

 Production of pro-inflammatory cytokines such as TNF-α(146), IL-1(147), 

IL-6(149) and GM-CSF(148).   

 Production of chemoattractants and chemokines such IL-8(153), MCP-

1(154) and MIP-1α(155). 

 The overexpression of metalloproteinases, such as MMP9(156) and 

MMP12(157), which confer to tissue distruction. 

 Antigen presentation, even though the relative importance of this cell type 

compared to other APCs such as dendritic cells and B cells in this function 

is not clear
(1;152)

.  

Dendritic cells: DCs comprise a complicated population of heterogeneous APCs 

that are critical for the initiation of the adaptive immune response and the 

21



 

 

maintenance of both central and peripheral tolerance(158). DCs both in human and 

mouse can be divided into subsets according to tissue distribution, function and 

phenotype(159).  DCs have been identified in RA synovial fluid and synovial tissue 

by several groups but their origin, function and potential role in the pathogenesis of 

the disease are not fully understood(160). A gross subdivision can be made between 

conventional and plasmacytoid  DCs (cDCs and pDCs respectively)(159). Contrary 

to other APCs, DCs can prime naïve T cells for helper and cytotoxic functions, are 

essential for the generation of primary antibody responses, and are powerful 

enhancers of natural killer cells(161). DCs are likely to contribute in several ways 

in the pathogenesis of RA. Firstly, DCs could prime auto-immune responses by 

presenting self-antigens. Our group has demonstrated that the presentation of 

collagen derived peptides by mature bone marrow derived DCs is sufficient to 

induce arthritis in DBA/1 mice(162). More importantly, in a model of pre-clinical 

arthritis it was demonstrated that conventional DCs are the cells that orchestrate the 

initial breach of self tolerance(7). Secondly, DCs could infiltrate the synovial tissue 

and fluid where they could take up and present antigen locally, perpetuating the 

disease, however there are no direct evidence to support this(163).  Furthermore, 

DCs, alongside with other immune cells and synoviocytes produce inflammatory 

mediators that drive the RA pathology(161).   

DCs are critical for peripheral and central tolerance. Both cDCs and pDCs have 

been suggested to have tolerogenic abilities in different environmental settings(164-

167). Our group has demonstrated using a model of breach of self tolerance in the 

context of arthritis, that pDCs can function to limit self reactivity and the 

consequent pathology(168). To further support a regulatory role for pDCs, 

identified a tolerogenic  CCR9
+
 pDC population has been identified, which can 

suppress acute host versus graft disease(167).  Even though there is an incomplete 

understanding of how DCs are involved in RA pathology, DCs therapies are 

currently developed with some success in murine models(169-171), whereas 

clinical trials have been initiated in UK 

(http://news.bbc.co.uk/1/hi/health/7560535.stm) and Australia 

(http://www.uq.edu.au/news/?article=13128).  
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1.5.4 Non-Immune cells 

 

 

Osteoclasts: Osteoclasts are multinucleated cells of hemopoeitic origin, they are 

the primary bone resorbing cells and are essential for the remodeling of bone 

throughout life(172). These giant cells are a fusion product of up to 20 single 

cells(173). There are only a few clinical conditions that induce the local formation 

of osteoclasts and one of them is RA(173). Synovial inflammatory tissue is the 

source of osteoclasts(173;174). The synovial membrane contains many 

monocytes/macrophages that could undergo osteoclast differentiation upon contact 

with the appropriate signals. Two cells are considered very important in providing 

differentiation signals for the monocytes to become osteoclasts, fibroblasts and T 

cells(175;176). Fibroblasts express receptor activator of nucleor factor (NF)κB 

ligand (RANKL), which is a major driver of osteoclast formation(175). T 

lymphocytes, apart from RANKL, express cytokines such as IL-17 that support 

osteoclast formation(176). Other cytokines present in the synovial environment 

such as TNF, IL-1 and IL-6 also are important in RANKL upregulation and thus 

possibly on osteoclast formation(173). From animal models of arthritis it is evident 

that osteoclast formation is an early and rapid event of the pathology(177), which 

eventually leads to the destruction of the joint.   

 

Synovial Fibroblasts: Synovial fibroblasts, together with synovial macrophages, 

are one of the two main cells compromising the synovial membrane(178). RA 

synovial fibroblasts are now considered active drivers of RA pathology(179). The 

physiological function of these cells is to provide the joint cavity and cartilage with 

plasma proteins and lubricating molecules such as hyaluronic acid(178). Human 

synovial fibroblasts contribute to disease pathology through the production of 

inflammatory mediators and chemokines, such as VEGF, IL-15, interferon-β 

(IFNβ), IL-8, CXCL2, CCL8, CCL5, CXCL10(180-183) and damage promoting 

enzymes, notably cathepsins and MMPs(184-186). It should be noted that RA 

synovial fibroblasts differ considerably from fibroblasts from healthy joints. RA 
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fibroblasts have an activated phenotype which is characterised by morphological 

differences, long term growth, reduced apoptosis and an altered response to various 

stimuli(178;187). Indeed a recent study demonstrated that RA fibroblasts were able 

to spread the pathology by invading unaffected joints, an ability lacking from non-

RA fibroblasts(188). Various mechanisms could be involved in the development of 

this phenotype, amongst them cytokines and growth factors(FGF, IL-17, IL-18, 

TNF and IL-1)(178;189-192), articular hypoxia of the rheumatoid joint that 

activates the production of pro-angiogenic and pro-inflammatory factors(193) and 

expression of proto-oncogenes and tumour supressors molecules(194). 
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1.5.5 Cytokine networks in RA 

 

Numerous cytokines have been involved in the pathology of RA, amongst them 

members of the IL-1, IL-12, and TNF superfamilies. More importantly, neutralising 

antibodies against cytokines is an established therapy for RA, with TNF blocking as 

the most characteristic example.  

 

IL-1 Superfamily, IL-1, IL-18 and IL-33: IL-1, IL-18 and IL-33 are related by 

means of origin, receptor structure and signaling pathways(195). The IL-1 family 

includes IL-1α, IL-1β and IL-1 receptor antagonist (Ra), the IL-18 family includes 

IL-18 and IL-18 binding protein and the IL-33 family includes IL-33 only(195). 

The major extracellular forms for these cytokines are IL-1β, IL-18 and IL-33 and 

are all stored as inactive precursors in cells(195). They are activated by the enzyme 

caspase-1 to the active form which is  released from the cell(195).    

IL-1α and IL-1β are produced by various cells such as monocytes, macrophages, 

neutrophils and hepatocytes(195). They activate cells through IL-1RI(195). IL-1Ra 

is related to IL-1α and IL-1β but has undergone mutations that renders it capable of 

binding avidly to the receptor but fails to signal through it, thus acting as specific 

inhibitor of IL-1(196). All the members of the IL-1 family have been found in 

abundance in synovial membrane(197;198). There are various studies that report 

the production of matrix metalloproteinases (MMPs) and prostogladin E2 by IL-1 

and TNFα(192;199) which are very important in tissue degradation and 

perpetuation of the inflammation. The involvement of IL-1 in the pathology of RA 

has been shown in many models of experimental arthritis. IL-1 is present in the 

inflamed synovium of mice with  CIA(200), whereas intra-articular delivery of IL-1 

into rabbit and rat joints resulted in arthritic manifestation similar to RA(201;202). 

Furthermore, IL-1Ra-deficient mice develop spontaneous arthritis in an IL-17 

dependent manner(203). In addition the significant role of IL-1 in articular damage 

and bone erosion was demonstrated when human TNF-α overexpressing mice that 

develop spontaneous arthritis were crossed with IL-1 deficient mice(204). These 

mice even though they developed synovial inflammation they had significantly 
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reduced bone erosion and osteoclast formation(204). Due to the accumulating 

evidence of its importance in RA pathology, methods for blocking its action were 

investigated. However, blocking its activity using another member of the IL-1 

family, the IL-1Ra (anakinra) has failed to produce adequate therapeutic value 

compared to other biologics(205). 

 

IL-18 was discovered in 1989 and was described as IFNγ inducing factor 

(IGIF)(206). It is produced as an inactive 24KDa precursor that is cleaved by 

caspase-1 to its active form(207) and was found to have powerful Th1 promoting 

activities(208;209). It is produced by various cell types amongst them, 

macrophages, articular chondrocytes, synoviocytes and osteoblasts(207;210;211). 

In the context of RA it is considered to be produced by macrophages or DCs and 

leads synovial T cells to produce IFNγ(212). In the CIA model, injection of IL-18 

increased the bone erosion and inflammation(212), whereas its blocking, either 

with IL-18 binding protein or anti-IL-18 antibodies, reduced the severity of 

arthritis(213). In RA patients but not OA patients IL-18 has been described to be 

present in serum and synovial fluid (209;212). IL-18 induces the production of 

GM-CSF, nitric oxide, TNFα, IL-6 and IFNγ from RA synovial cell cultures, 

suggesting an important role in the propagation of the disease(209;212).  

 

IL-33 is an IL-1-like cytokine with functional and structural similarities with other 

members of the IL-1 family(214), which mediates its actions through the IL-33R, 

also known as ST-2. IL-33 expression has been detected on synovial fibroblasts 

from RA patients(215). Furthermore, it has been demonstrated that IL-33 

exacerbates CIA, whereas IL-33R deficient mice or mice that were administrated 

with sST2 (an natural antagonist of IL-33) exhibit reduced disease(215).      

 

TNF superfamily: The most important member of this family is TNFα. It forms a 

membrane bound homodimer cleaved by TNFα-converting enzyme to generate a 

17KDa secreted form(216). Two TNF receptors (TNFR) have been described; 

TNFR1 (p55) and TNFR2(p75)(216).   TNF-blockade is one of the most effective 
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therapies developed for RA. The introduction of anti-TNF therapy was based on the 

expression of TNF and its receptors in RA synovial tissue, in vitro studies using RA 

synovial tissue(217;218) and on animal models of autoimmunity(219).  

Three TNF-blocking agents have been introduced in the market since 1998: 1) 

Infliximab (Remicade), a chimeric anti-TNFα IgG1 antibody; 2) Etanercept 

(Enbrel), a human dimeric TNF receptor type II-IgG1 fusion protein (TNFR-Fc); 3) 

Adalimumab (Humira), a human anti-TNF-α IgG1 antibody genetically engineered 

through phage display technology(220).  

Even though anti-TNF blocking is widely used the mode of action of this therapy is 

not fully elucidated. Various mechanisms have been proposed for its action. 

Amongst them, the inhibition of the cytokine cascade initiated by TNF, 

sequestration of TNF by binding, altered leukocyte recruitment and endothelial 

activation, reduction of angiogenesis, and generation of regulatory T cells 

(TREG)(216;221-223). The biggest disadvantages of TNF-blocking therapies are the 

partial response or no-response to the therapy and the susceptibility of the patients 

to infections like tuberculosis(224).  

 

Another important member of the TNF superfamily that is important for RA 

development is RANKL. It is a type 2 transmembrane cytokine that is expressed by 

bone and lymphoid tissue(225). Its critical role is in the differentiation and 

activation of osteoclasts. RANKL assemples into functional trimers, bind to its 

receptor, RANK, and induces the differentiation of osteoclasts from their precursor 

cells(225).  It also promotes the bone resorbing activity of osteoclasts and prolongs 

their survival(225). The other important regulatory component of this system is 

osteoprotegerin (OPG), a soluble decoy receptor for RANKL, which inhibits 

RANKL activity by preventing its binding to RANK(225).  It is believed that the 

RANKL/RANK/OPG is critical for bone destruction in RA. RANKL is highly 

expressed in synovial tissue of RA patients(226;227) and is mainly produced by 

synovial fibroblasts and T lymphocytes(226;228). Cytokines, such as IL-17, and 

TLRs (TLR2 and TLR4) have been involved in the production of RANKL by 

synovial fibroblasts(11;226).  A fully human RANKL blocking monoclonal 

27



 

 

antibody (denosumab) is in phase II clinical trials for RA with promising results 

concerning the limitation of bone erosion(229).   

 

IL-6: IL-6 is a pleiotropic cytokine produced by various cell types such as 

macrophages, fibroblasts, endothelial cells, B and T cells(230). Its action is 

mediated through the heterodimeric receptor composed by the gp130 and IL-6R 

subunits(230). Pro-inflammatory cytokines, like IL-1 and TNFα, immune 

complexes and oxidative stress induce the production of IL-6, mainly though the 

activation of the NFκB pathway(230).  

IL-6 is present in the serum and synovial fluid of patients with RA and its presence 

correlates with disease activity(230;231). It is involved in the activation of 

autoreactive T-cells and the production of rheumatoid factor(232). Acting on 

hepatocytes it induces the production of acute phase proteins(233) and in the 

presence of the soluble IL-6R it activates the osteoclast precursor cells to 

differentiate to functional osteoclasts(234).   

IL-6 is considered to be lower from TNF in the cytokine hierarchy because TNF-

blocking reduces the levels of IL-6(235). However, the fact that IL-6 deficient mice 

are protected from CIA and IL-6 blocking through targeting either the cytokine or 

the receptor ameliorates CIA suggest an independent role for IL-6 in 

RA(230;236;237).  

IL-6 blocking is the subject of intense clinical trial activity and a humanized anti-

IL6R antibody has bedeveloped with promising results. Tocilizumab, a humanized 

monoclonal antibody against the IL-6R, is on phase III clinical trials and has been 

shown to suppress disease activity in patients that are resistant to disease modifying 

anti-rheumatic drugs (DMARDs)(238).  

 

IL-15: IL-15 is a pleiotropic cytokine involved in lymphoid homeostasis and 

inflammation(230). It exists in two isoforms one expressed on the membrane or 

secreted and one that has a cytosolic and nuclear distribution(230). Its action is 

mediated through a heteromeric receptor composed by IL-15Rα, IL-2/15Rβ, which 

is shared by IL-2 and a common γc subunit that is shared by many cytokines(230). 
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It is expressed by immune cells such as macrophages and dendritic cells and non-

immune cells like fibroblasts and epithelial cells(230). IL-15 protein and mRNA 

levels are increased in RA patients, and on the surface of peripheral blood T cells 

derived from patients with early RA(239). In the CIA model, administration of an 

IL-15 mutant/Fcγ2a fusion protein, which binds with the IL-15 receptor with high 

affinity but does not signal through it, had both protective and therapeutic 

actions(240). In humans, neutralizing studies are focused on a monoclonal IgG1 

antibody, AMG714, which inhibits the activity of both bound and soluble IL-15 in 

vitro and has promising results in clinical studies(241). 

The IL-12/23 and IL-17 family of cytokines: The IL-12 superfamily includes a 

number of structurally related cytokines such as IL-12, IL-23 and IL-27, which are 

mainly produced by dendritic cells and macrophages.  

 

IL-12 is a heterodimeric cytokine consisting of the p40 and p35(242) subunits that 

signals though a receptor complex composed of IL-12Rβ1 and IL-12Rβ2(243). It 

activates STAT4 and it is crucial for the development of a Th1 response(244-246). 

Its role in arthritis is not very clear. IL-12 has been detected in synovial membrane, 

produced mainly by macrophages, where it was suggested to induce IFNγ 

production by CD4 cells(247). Whereas blocking IL-12 during CIA induction 

reduces the severity of the pathology and low doses of the cytokine during the 

induction phase increase the CIA severity, high doses of IL-12 are protective(248). 

In addition, anti-sense therapy against STAT4, the main transcription factor 

initiated by IL-12, proved to be protective for CIA(249). However, in this case the 

role of other cytokines such as IL-15 and IL-23 that also activate STAT4 should be 

considered(249). On the other hand, IL-12 seems to be dispensable for the 

development of arthritis in the KxB/N model, whereas IL-12p35 deficient mice that 

specifically do not produce the full IL-12 molecule, but produce IL-23, show 

increased susceptibility to CIA, suggesting a regulatory role for IL-12(9)
,
(250). 

 

IL-23 is composed by the p40 subunit of IL-12 and the unique p19 subunit(251).  It 

is mainly produced by macrophages and dendritic cells in response to various 
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inflammatory stimuli(251-253). It signals through a heterodimeric receptor, which 

compromises of the common with IL-12, IL-12Rβ1 subunit and the unique IL-

23R(254).  Contrary to IL-12 that induces the development of Th1 cells, IL-23 

binds to memory T cells that produce mainly IL-17, IL-17F, TNF, IL-6 and IL-22 

and are termed Th17(8;255). IL-23 and IL-23R has been linked to many 

autoimmune diseases, such as psoriasis(256) and Chron‘s disease(257) . A role in 

RA for this cytokine was proposed mainly based on the fact that IL-23 deficient 

mice were protected from CIA development due to their inability to develop IL-17-

producing CD4 cells(9). In RA, the p19 subunit of IL-23 has been detected in RA 

synovial fluid in abundant levels, however only low levels of bioactive IL-23 were 

measured in these patients(258).  It has been reported that PGE2 induces IL-17 

production in an IL-23 dependent manner, mediating neutrophilia and tissue 

pathology in two models of RA, CIA and antigen-induced arthritis(259;260).  

While for diseases such as inflammatory bowel disease and psoriaris there is a 

strong association with IL-23R polymorphisms, this is not the case for 

RA(57;257;261). There are however some IL-23R variants that have been 

suggested to confer increased risk of RA, even though the association is not as 

strong as the aforementioned diseases(262;263). These data suggest that even 

though in animal models there seems to be a clear pathogenic role for this cytokine, 

its role in human disease is not very clear.  

 

The IL-17 cytokine family was recently identified and it includes IL-17A, IL-17B, 

IL-17C, IL-17D, IL-17E (also known as IL-25) and IL-17F(264). IL-17A (from 

now termed IL-17) is the prototypic member of the family exerting its actions as a 

homodimer with a molecular weight around 35 kDa(265).  IL-17 and IL-17F induce 

the production of antimicrobial peptides (defensins and S100 proteins) (255;266) , 

cytokines (IL-6, GM-CSF and G-CSF)(267-270), chemokines (IL-8, CXCL5, 

CCL20)(270-273) and  matrix metaloproteinases(265). The proinflammatory 

functions of IL-17 expand to the induction of adhesion molecules, such as 

intracellular adhesion molecule-1 (ICAM-1) by keratinocytes (274) and IL-1 and 

TNFα by macrophages(275).  

30



 

 

From the above it is suggested that IL-17 could be a potent inflammatory mediator 

in rheumatoid arthritis. This role is supported by the presence IL-17 and IL-23p19 

in the sera, synovial fluid and synovial biopsies of RA patients but not osteoarthritis 

(OA) patients(276). Their production is increased via a phosphoinositide-3 kinase 

(PI3K) pathway and f NFκB dependent pathway(277;278). In addition, IL-17 

activates the production of IL-6, IL-8 and VEGF by fibroblasts and thus promoting 

the recruitment and activation of inflammatory cells (189;279).There is an 

established role for IL-17 in cartilage and bone destruction in RA.  Specifically, it  

enhances the production of IL-6, cartilage destruction and cartilage generation by 

RA synovial explants and causes bone erosion in RA bone explants(280). 

Furthermore, it induces metalloproteinases in synoviocytes and chondorocytes(281) 

and thus it plays a role in cartilage degradation(282). In addition it has been shown 

to have a direct catabolic effect on cartilage(283). The destructive effect of IL-17 is 

independent of IL-1 production as IL-1Ra cannot inhibit matrix degradation 

initiated by IL-17(284). The downstream signalling of IL-17 and IL-1 are distinct 

and deferential pathways of AP-1 initiated by IL-17 and IL-1 have been 

described(12). Furthermore, IL-17 induces the expression of RANKL in cultures of 

osteoblasts(12). As mentioned previously RANKL binds to its receptor RANK and 

the RANK/RANKL pathway is crucial in osteoclastogenesis and bone erosion 

process(225). On the other hand the decoy receptor OPG acts as a negative 

regulator of osteoclastogenesis(225).  It has been reported that in the CIA model, 

IL-17 overexpression enhanced
 
RANKL expression and also strongly up-regulated 

the RANKL/OPG
 
ratio in the synovium(11). These could justify a role for Th17 in 

RA pathology as these cells are a major source of IL-17(285). However, it should 

be stressed that Th17 cells are not the only source of IL-17. Other cell types such as 

CD8
+
 T cells,  NK cells, γδ T cells, mast cells and neutrophils have also been 

reported to produce IL-17 (286-290). It is thus important not to denote all IL-17 

related inflammatory events to Th17 cells.    

 

. 
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1.6 T helper subsets 

 

 

The induction of an adaptive immune response begins when an antigen is ingested 

by immature DCs in the presence of PAMPs or DAMPs(291-293). The activated 

DC are carried away from the involved tissue in lymph, along with their antigen 

cargo to enter peripheral lymphoid tissue, in which they can interact with naïve T 

cells and initiate the adaptive immune response(293;294). Activated DCs will 

interact with antigen specific T cells, which in response will proliferate and 

differentiate in to effector Th cells(138;293;295;296) (Fig 1.3). Many different Th 

subsets with different functions have been proposed, with Th1, Th2, Th17 and T 

follicular helper (TFH) cells being involved in inflammatory responses whereas 

regulatory T cells are engaged in maintaining peripheral tolerance and immune 

suppression.  
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Fig 1.3: Th cell subsets

When a naïve T cells encounters a DCs bearing its cognate antigen it is activated

and in the presence of the right environmental cues it can polarise to a Th subtype.

The different Th cell lineages are characterised by the production of a selective set

of cytokines that affect the immunological outcome. In addition, these lineages

express characteristic transcription factors that regulate this selective cytokine

production.
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1.6.1 Th1 cell subset  

More than twenty years ago it was proposed that Th cells could be subdivided into 

two populations, Th1 and Th2(297). Th1 cells are characterized by the production 

of IL-2 and IFNγ and induce responses that tend to be dominated by cell-mediated 

forms of immunity (298;299). A prime example for their role in conferring 

immunity against intracellular pathogens is the parasite Leishmania major. An 

infection with this pathogen is lethal to genetically susceptible mouse strains, such 

as BALB/c, which correlates with the development of an inappropriate IL-4/Th2 

response(300-302). On the other hand mouse strains resistant to the infection, such 

as C57/BL6, mount an IFNγ/Th1 response that is able to clear the pathogen(300). 

Furthermore, adoptive transfer of pathogen-specific T cell lines that produced IFNγ 

could confer protection to susceptible BaLB/c mice, whereas IL-4 producing lines 

could not(302).  Similar results have been reported for other pathogens, such as 

Mycobacterium avium, Salmonella typhimurium, Listeria monocytogenes and 

herpes simplex virus(303-306). In addition to their role in clearing intracellular 

pathogens Th1 cells have been proposed to be important in tumour 

rejection(307;308).  The cytokine milieu is probably the most dominant 

determinant for Th differentiation, and for Th1 commitment the role of IL-12 is 

pivotal(309;310). TcR stimulation induces upregulation of IL-12R, whose 

expression is sustained only under Th1, but not under Th2 conditions(311;312). 

Mice deficient in IL-12p40 are impaired in IFNγ production and mounting Th1 

responses, whereas patients with defective IL-12R signalling are susceptible to 

mycobacterial infections(313;314). However, the fact that IL-12 deficient mice are 

still capable of generating Th1 cells, albeit in a reduced capacity(315;316), suggests 

that other factor are able to promote Th1 generation. Indeed, cytokines such as 

IFNγ and IL-27 have been suggested to promote de novo Th1 generation, whereas 

IL-18 and IL-27 has been reported to synergizes with IL-12 to enhance Th1 

differentiation(298;317-324). Commitment to the Th1 lineage is linked with the 

expression of specific transcription factors, the most important of which is T-bet 

(T-box expressed in T cells)(325). T-bet is specifically expressed by Th1 cells and 

it is induced by TcR and IFNγR/STAT-1 signalling(325-327). Retroviral induction 
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of T-bet into primary T cells induced IFNγ expression, whereas its induction in Th2 

polarised T cells resulted in IFNγ production and repression of IL-4 

expression(325). Furthermore, CD4 cells from T-bet deficient mice fail to 

differentiate towards a Th1 phenotype in vitro and in vivo, whereas their phenotype 

skews towards a Th2 profile(328). Its importance was also demonstrated by the 

failure of T-bet deficient mice to control a Th1 protozoan infection and the 

spontaneous development of a Th2-mediated airway hypersensitivity that resembles 

human asthma(328;329). Apart from T-bet other, transcription factors, such as Hlx 

and STAT-4 have also been linked to Th1 cell polarisation. Hlx-1 seems to be 

downstream of T-bet, and in synergy with it, promotes IFNγ production(330). On 

the other hand STAT-4 is critical for IL-12 signalling, which has a pivotal role in 

Th1 generation(315).   Due to their role in cell mediated immunity and tumour 

rejection, Th1 cells have been linked to the development of chronic inflammatory 

conditions and autoimmunity(331-334). In animal models of inflammatory bowel 

disease and autoimmune diabetes it has been reported that the pathology is 

mediated by IFNγ-producing CD4 cells(331-335). In the CIA model of rheumatoid 

arthritis, administration of factors that promote Th1 immunity, such as IL-12 and 

IL-18, exacerbated the pathology, increased the production of CII-specific 

antibodies and lead to enhanced production of pro-inflammatory cytokines, such as 

IFNγ, TNF and IL-6(333). In rheumatoid arthritis patients, the presence of IFNγ-

producing CD4
+
 clones from synovial fuid and membranes that would suggest an 

involvement of Th1 cells in disease pathogenesis(336-339). The discovery, 

however, of the Th17 subset forced a reassessment of the established views relating 

to the role of Th1 cells in the development of some autoimmune syndromes as it 

will be discussed later.  

 

1.6.2 Th2 cell subset  

 

Th2 cells are characterized by the production of IL-4, IL-5, IL-5,  IL-10 and IL-

13(297). Th2 cells have been linked to humoral immune responses and IgG1 and 

IgE class switching(340). They are considered the cells responsible for immunity 
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against large extracellular pathogens such as helminths(341-344). On the other 

hand an over-exuberant Th2 responses leads to pathogenic conditions, such as 

atopic airway hypersensitivity and asthma(345;346). The most dominant cytokine 

responsible for the induction of the Th2 phenotype is IL-4(347-349). As with Th1 

cells, specific transcription factors are linked to Th2 lineage commitment, mainly 

GATA-3, STAT-6 and c-Maf(341;350-352). Indeed, forced expression of GATA-3 

into Th1 cells induces IL-4 production, whereas CD4 cells from GATA-3 deficient 

mice are unable to fully differentiate towards a Th2 phenotype(350). In vitro, 

STAT-6 has been shown to be activated by IL-4-signaling and subsequently to 

activate GATA-3(352). C-Maf on the other hand has been reported to control IL-4 

production in Th2 cells(353).  

 

Recently a new subtype of Th cells was proposed, termed Th9, which produce high 

levels of IL-9 and IL-10, but not IL-4(354;355). Functionally they appear to be 

related to the Th2 subtype as there are also involved in expulsion of intestinal 

helminths(356). Their differentiation seems to be driven by TGFβ and IL-

4(354;355), however much more studies are needed to definitely distinguish 

whether this is a distinct subset.   

 

1.6.3 TFH cell subset   

 

The role of T cells in supporting B cell responses, in the form of antibody class 

switching, affinity maturation and generation of B cell memory is a well established 

phenomenon(138;357-360). Even though Th1 and Th2 cells have been shown to 

support B cell responses(361;362), it is now widely accepted that CD4 T cells that 

migrate to the follicles to provide help to B cells are a unique subset of Th cells 

termed TFH cells. These cells sustainably express the chemokine receptor CXCR5 

and various co-stimulatory molecules, such as ICOS, CD40L, OX-40 and PD-1 that 

allow follicular localisation and B cell help(363-365). TFH cells have been reported 

to produce various cytokines, amongst them IL-21, IL-4, IFNγ and IL-17(366-368).  

Cytokines, such as IL-21 and IL-6 has been suggested to be important in TFH cell 
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generation(369;370). Type I IFN signaling in DCs and non-hematopoietic cells has 

also been shown to drive TFH cell generation(371). In addition, their localisation 

and the follicular area provides to these T cells unique environmental cues deriving 

either from cognate B cells or stromal cells that could promote their 

differentiation(372;373) (Fig 1.4). As with other Th subtypes, commitment to the 

TFH cell lineage is regulated at the transcriptional level and the transcription factor 

B cell lymphoma (Bcl)-6 appears to act as the master switch determining TFH cell 

development. Bcl-6 is a transcriptional repressor, binds to the promoter region of T-

bet and RORt, and suppresses Th1 and Th17 differentiation(374-376). In addition, 

it regulates GATA-3 protein levels, repressing Th2 cell differentiation(377). As 

many autoimmune diseases are characterised by the presence of class switched 

autoantibodies a role for TFH cells in these conditions has been suggested. Indeed, 

cells displaying TFH cell phenotypes are evident in human autoimmune diseases 

and in numerous animal models. Their presence and activity is of particular note in 

systemic lupus erythematosus (SLE), where patients demonstrate higher levels of 

ICOS
+
CD4

+
 T cells in peripheral blood and spleen(378;379). A similar 

phenomenon is also observed in the Roquin
san/san

 mice, which exhibit a lupus-like 

syndrome due to an inability to post-translationaly repress ICOS expression 

resulting in an excessive TFH activity(380;381). Interestingly, expression of TFH 

cell phenotypes by circulating peripheral blood cells in autoimmune patients 

correlates with disease severity(379). One possible effect of these cells might be the 

development of ectopic GC, which is not uncommon in autoimmunity, and have 

been reported in rheumatoid synovium, diabetogenic islets and inflamed 

meninges(382-384). However, the role of these structures in disease severity and 

chronicity is still debatable.  
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Figure 1.4: B-T cell interactions and their role in the generation of protective or

pathogenic humoral responses

Dendritic cells present antigen to T cells in the paracortex leading to a cognate

interaction that results in the priming and clonal expansion of antigen-specific T

cells. Activated T cells downregulate CCR7 and upregulate CXCR5, which allows

them to migrate to the follicular border. At the same time, B cells encounter antigen

in the follicle and are activated through their BCR. This leads to the upregulation of

CCR7 and migration to the follicular border. At the follicular border the meeting of

an antigen-specific B cell with its cognate T cell has bilateral effects on both cell

types. B cells receive co-stimulatory and cytokine signals that lead to the formation

of the germinal centre that regulates the humoral immune response. At the same

time, T cells receive signals from B cells that potentially drive them to a specific

phenotype (Tfh, Th1, Th2, Th17). Understanding this bilateral relationship could

reveal targets for improved vaccine development and for developing treatment for

autoimmune and chronic inflammatory conditions.

38



 

 

1.6.4 Regulatory T cells 

 

In contrast to effector Th cells that promote inflammation, TREG cells are crucial in 

maintaining peripheral tolerance and immune homeostasis(385). Naturally 

occurring TREG (nTREG) cells constitute 5-10% of peripheral CD4
+
 T cells and are 

characterized by high expression of the IL-2R (CD25), CTLA-4 and 

glucocorticoid-induced tumor necrosis factor receptor family−related gene 

(GITR)(386-388).  As with the effector Th cells the lineage commitment of TREG 

cells is controlled at the transcriptional level by specific transcription factors, most 

notably by FoxP3(389-391). These cells produce high levels of IL-10 and 

membrane bound of TGFβ and seem to exert their suppressive effect by cell-cell 

contact(392). Apart from the nTREG cells that are generated in the thymus, 

CD4
+
CD25

-
 cells after TCR stimulation in the presence of TGFβ and IL-2 can give 

rise to CD4
+
CD25

+
FoxP3

+
 inducible (i)TREG cells with similar functions as the 

nTREG(393;394). It has been suggested that nTREG are primarily develop in respond to 

self antigens expressed in the thymus whereas iTREG are induced in response to 

environmental antigens presented to them by DCs in secondary lympoid 

organs(395;396). FoxP3 expressing cells are very important in maintaining 

peripheral tolerance as mice deficient in this transcription factor develop a fatal 

lympho-proliferative autoimmune syndrome that affects multiple organs(397). 

Similarly, in humans mutations in the FoxP3 gene results in the immune 

dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX), a 

inflammatory conditions that can manifest as diabetes-mellitus and psoriasis-like 

dermatitis(398). In addition, reduction in number or reduced activity of TREG cells 

has been reported in various autoimmune diseases, such as diabetes, SLE and 

multiple sclerosis (MS)(399-401), and in animal models, such as the EAE model of 

MS, which is characterise by defective myelin specific TREGs. Other subsets of 

regulatory T cells have been described, that also express IL-10 and TGFβ, but do 

not express FoxP3 and are termed Tr1 cells(402). The generation of these cells in 

vitro requires IL-10 and they have similar suppressive functions as the other TREG 

cells(403).  
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1.6.5 Th17 cell subset 

  

Recent studies have defined a previously unknown Th subset, the Th17 lineage. As 

stated previously, the prototypic cytokine expressed by this lineage is IL-17. The 

breakthrough for the discovery of the Th17 subset was given from studies in animal 

models of autoimmunity, mainly EAE and CIA that were traditionally considered 

as Th1 mediated(9;333;404-406). Paradoxically, IFNγ receptor deficient mice were 

more susceptible to CIA(407;408) , IFNγ deficient mice were susceptible to EAE 

development(409) and IFNγ itself played a negative regulatory role in the initiatory 

and effector phase of myelin oligodendrocyte glycoprotein-induced EAE(410). In 

addition, IL-12 specific depletion did not protect mice from CIA or EAE 

development(8;9). On the other hand mice deficient in IL-23 production were 

resistant to both CIA and EAE development, a phenomenon that was linked to the 

absence of IL-17–producing CD4
+
 T cells despite normal induction of  

autoreactive-interferon-γ–producing Th1 cells(8;9).  At the same time data were 

presented that favoured the presence of a distinct effector lineage that was termed 

Th17. It was reported that IL-23 induced naïve precursor cells to differentiate to the 

Th17 lineage, whereas their development was potently inhibited by IFNγ and IL-

4(411). Most importantly, fully differentiated Th17 were resistant to suppression by 

Th1 or Th2 cytokines (IFNγ, IL-4)(411). Even though initially IL-23 was 

considered as a critical cytokine for  polarisation towards the Th17 lineage, 

subsequent studies reported that IL-23 is not the crucial differentiation factor for 

the generation of Th17 cells and instead IL-6 and TGFβ can induce the 

differentiation of naïve T cells to Th17 effector cells(412-414). On the other hand, 

even though IL-23 was dispensable in Th17 differentiation it was important for 

their expansion and survival(413). Recent studies suggest that the source of TGFβ 

is T cells and more specifically, Th17 cells in an autocrine manner, but not TREG 

cells(415;416). TREG cells seem to promote Th17 differentiation not by providing 

TGFβ, but limiting the availability of IL-2, which has an inhibitory role in Th17 

lineage commitment(417-419). Studies, however have challenged the role of TGFβ 
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in driving Th17 lineage polarisation(420). It was suggested that TGFβ is not 

directly promoting Th17 polarisation, but instead inhibits the generation of Th1 and 

Th2 cells by blocking the expression of the transcription factors STAT4 and 

GATA3(420) respectively.  Apart from TGFβ and IL-6,  IL-21 was found to be 

produced by Th17 and act in an autocrine manner amplifying the Th17 

axis(421;422). Human Th17 were identified later than their mouse counterpart. 

Two studies have demonstrated the existence of memory CD4
+
 T cells that 

produced IL-17 after polyclonal stimulation in human peripheral blood and in gut 

from healthy individuals or patients with Crohn‘s disease(423-425).Both studies 

reported that the human Th17 expressed IL-23R and the chemokine receptor CCR6. 

Further studies revealed that presence of Th17 clones specific for Candida Albicans 

hyphae, which exhibited poor proliferative and cytotoxic capacity and could induce 

production of IgG, IgM and IgA, but not IgE(423). Initially the development of 

human Th17 was considered completely different from mouse Th17. It was 

reported that TGFβ was not essential for human Th17 differentiation and IL-1, IL-

23 and IL-6 were the critical cytokines  inducing IL—17 production by human 

CD4
+
 T cells(426-428).  However more recent studies reported that TGFβ is 

required for differentiation of human Th17 cells alongside with  either IL-1, IL-23 

or IL-21 (429;430).  

 

Apart from IL-17, Th17 express IL-17F, IL-6, TNF, GM-CSF, IL-21, IL-22 and in 

humans also IL-26(8;255;422;427). The major function of the cytokines produced 

by these cells is to chemo-attract other cells through the induction of other 

cytokines and chemokines(425). IL-17A and IL-17F act on different cell types and 

induce the production of IL-6, IL-8, GM-CSF, G-CSF, CXCL1, and CCL20 and in 

this way attract neutrophils(431). Th17 produce IL-21 that has B cell differentiating 

role(432). These suggest an important role for these cells in mediating host 

immunity against various pathogens, which will be discussed in more details later 

in this chapter.  
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1.6.6 Transcriptional regulation of Th17 cells 

 

As for Th1 and Th2 cells, Th17 development and function is governed by specific 

transcription factors, which are either lineage specific such as retinoic acid-related 

orphan receptor (ROR)γt or non specific such as nuclear factor of activated T cells 

(NFAT)(433). Similarly to the other Th cell subtypes, the first step of Th17 

differentiation and activation is TcR engagement. One of the first events after TcR 

engagement is the production of intracellular calcium and the activation of 

NFAT(434). It is not a surprise thus that the human IL-17 promoter has two 

putative NFAT binding sites, which bind to NFATc1 and NFATc2(433). In 

addition, signalling through the TcR differentially regulates the expression of Th17 

cytokines(435). More specifically, the inducible T cell kinase (Itk) deficient mice 

exhibit decreased expression in vitro and in vivo of IL-17A, despite normal 

expression of RORγt and IL-17F(435). Itk is required for sufficient TCR-induced 

activation of the phospolipase C-γ (PLC-γ1) pathway, which leads to NFAT 

activation(434).  The absence of a NFAT binding site from the IL-17F promoter, 

that the IL-17A promoter possesses, explains the  differential regulation of these 

cytokines by the TcR (435).  

Similarly to other Th cells, Th17 cells selectively express a lineage specific 

transcription factor, Retinoic Orphan Receptor (ROR)-γt. RORγt is a member of the 

nuclear hormone receptors superfamily and its mouse form is encoded by the RORc 

gene, which in mice is located on chromosome 3 and in humans at the chromosome 

region 1q21(436;437). RORc encodes two isoform, RORγ and RORγt(438). 

Whereas RORγ was found to be expressed in a variety of tissues such as thymus, 

muscle, brain, heart, kidney, lung and liver, RORγt initially, was found to be 

expressed only in the thymus (and thus the name RORγt)(438). RORγt was 

predominantly considered to be important in the early development of the adaptive 

immune system. It is essential for survival of CD4
+
CD8

+
 double positive 

thymocytes and the formation of lymph nodes and Peyer‘s patches(439). 

Interestingly, RORγt is highly expressed in a subpopulation of CD3
-
CD4

+ 

CD45
+
IL-7Ra

+
 cells(439). These cells, termed lymphoid inducer cells (LTi), have 
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been shown to be associated with lymphoid organogenesis(440;441) and require 

RORγt for their generation(442). It was only when IL-17A was discovered to be a 

lineage specific cytokine, that this transcription factor was associated with Th17 

development. By using a RORγt-EGFP-reporter mouse it was demonstrated that in 

the lamina propria apart from LTi cells, there is a subpopulation of TcRαβ
+
 and 

TcRγδ
+
 cells that express RORγt(443). More, importantly when the RORγt-

expressing TcRαβ
+
 cells were isolated and stimulated they produced IL-17, in 

contrast to their non-RORγt expressing counterparts(443). In addition, in vitro 

Th17 polarisation was greatly inhibited in RORγt deficient mice, whereas forced 

expression of RORγt in highly purified naïve T cells resulted in IL-17, IL-17F and 

IL-22 production(443). However, of considerable importance is the fact that even 

when RORγt was absent there was residual IL-17A and F production(437;443). 

This suggests that RORγt is sufficient to induce some parts of the Th17 

programming however there are co-factors that may compensate its absence. 

Supporting, this hypothesis, another member of the ROR-family, RORα acts 

synergistically with RORγt to promote Th17 differentiation(444). Other factors that 

control Th17 development include interferon regulatory factor-4 (IRF-4)(445). IRF-

4 deficient T cells fail to differentiate to a Th17 phenotype, have less expression of 

RORγt and increased expression of FoxP3, whereas IRF-4 deficient mice are 

resistant to EAE(445).  On the other hand, transcription factors such as FoxP3 

inhibit Th17 development(446;447). TGFβ induces both RORγt and FoxP3, 

however it is unable to induce IL-17 without the presence of pro-inflammatory 

cytokines, such as IL-6 or IL-21, which suggests that the cytokine-regulated 

balance between FoxP3 and RORγt controls Th17 or iTREG generation(446). The 

interaction of FoxP3 with Runx1 is essential for the negative effect of FoxP3 on 

Th17 differentiation(447). 

As mentioned previously cytokines such as IL-6, IL-21 and IL-23 are critical for 

the development and expansion of Th17 cells(411;421;448). All of these cytokines 

have in common that they preferentially activate STAT3(449-451).  There is much 

evidence that support a central role of STAT-3 in the Th17 biology. Firstly, in vitro 

Th17 differentiation is greatly impaired in STAT-3 deficient T cells(419). In 
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addition, the expression of the signature transcription factor for Th17, RORγt, is 

also dramatically reduced in STAT3 deficient T cells(452). Furthermore the IL-

17a/f locus has putative STAT binding sites and STAT-3 has been shown to 

directly bind to the IL-17a/f  and IL-21 promoter(453)
,
(454). Apart from the direct 

effect that on IL-17 production, STAT-3 activation has other indirect effects that 

promote Th17 development and survival. For example, both IL-6 induced 

production of IL-21 expression and IL-21 induced IL-17 production is STAT-3 

dependent(455). In addition, all IL-6, IL-21 and IL-23 up-regulate  the IL-23R in a 

STAT-3 dependent manner(422;428;455). Furthermore, deletion of suppressor of 

cytokine signalling 3 (SOCS3), which is a negative regulator of STAT-3 signalling, 

leads to increased STAT-3 phosphorylation, IL-17 production and Th17 generation, 

further supporting a role for STAT-3 in Th17 development(453;456). 

   

 

1.6.7 The role of Th17 cells in immunity 

 

Even though the initial description of the Th17 lineage was made using mouse 

models of autoimmunity and their function has been linked to various autoimmune 

diseases, there is accumulative evidence for their role in host defence against 

extracellular bacteria, fungi and even viruses, especially in mucosal surfaces such 

as the gut and the lung(457). Various bacteria, fungi, fungal products and viruses, 

such as Klebsiella pneumoniae(458), Mycobacteria tuberculosis(459), Helicobacter 

pylori(460), Fransicella tularensis(461), Citrobacter rodentium and Escherichia 

coli (462), Candida albican, β-glucans(463), and herpes simplex virus(464) can 

condition DCs to produce Th17 polarising cytokines, TGFβ, IL-6, IL-1β and IL-23. 

The various cytokines produced by the Th17 cells has been reported to have 

specific roles in host defence. One of the first documented effects of IL-17A is the 

promotion of neutrophil differentiation by CD34
+
 progenitor cells and the induction 

of cytokines such as IL-6, IL-8, G-CSF and PGE2(270). IL-17RA, which binds IL-

17A and IL-17F, and IL-17A deficient mice are susceptible to Klebsiella 

pneumoniae pulmonary infection, a phenomenon linked to reduced chemokine 
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production (CXCL2) and neutrophil recruitment(465). IL-17A was also found to 

induce the production of  β-defensin-2, S-100 proteins and various chemokines, 

such as CXCL1 and CXCL5, in lung epithelial cells(466;467).  Furthermore, CD4-

derived IL-17 was demonstrated to be important for intra-abdominal abscess 

formation in response to bacteria such as Staphylococcus aureus and Bacteroides 

fragilis(468). Mechanistically, it was also reported that bacteria alone and not 

viruses, conditioned DCs through the nucleotide oligomerization domain-2 (NOD2) 

pathway to promote IL-17 production from memory T cells(469). Apart from IL-

17A and IL-17F another Th17 cytokine, IL-22, has been reported to play important 

role in mucosal immunity. IL-22 induces production of antimicrobial peptides, such 

as RegIIIβ and RegIIIγ,  defensins and chemokines by host epithelial cells and it 

increase their proliferation and resistance to injury(470)
,
(471). The above data 

signify the importance of Th17 derived cytokines in mucosal defence against 

mucosal pathogens. These cytokines do not seem to be so critical for immunity 

against intracellular pathogens such as Mycobacterium tuberculosis and Listeria 

monocytogenes(472). These cytokines and Th17 cells are also important for anti-

fungi immunity. When the phenotype of human Th17 cells was initially described it 

was  reported that memory T cells specific for Candida albicans were mainly 

present at the CCR6
+
CCR4

+
 Th17 subset, whereas memory T cells specific for 

Mycobacterium tuberculosis were found mainly at the CCR6
+
 CXCR3

+
 Th1 

subset(473).  In addition, patients with autosomal-dominant hyper-IgE syndrome 

(Job's syndrome), which is caused by a mutation in the STAT-3 gene, have been 

show to have impaired Th17 responses. Interestingly these patients are particularly 

susceptible to mucocutaneous infections caused by Candida albicans(474). To 

further support these data it was reported that a C-type lectin, Dectin-2 acts as a 

pattern recognition receptor (PRR), through which DCs are conditioned by fungi 

derived molecules to promote Th17 responses(475). All of these facts demonstrate 

a clear role for Th17 immunity against extracellular bacteria and fungi especial in 

mucosal surfaces.     
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1.6.8 The role of Th17 cells in RA 

 

It is still not clear wheather RA is a Th1 or Th17 mediated disease. Studies that 

specifically inhibited either the IL-12/Th1 axis or the IL-23/Th17 axis 

demonstrated that at least in the CIA model, animal deficient in generating Th1  

responses were more susceptible to disease development, and this was associated 

with the presence of Th17 cells, whereas IL-23 or IL-17 deficient mice were 

protected from the disease development(9;476) . In addition, in other RA models, 

such as the SKG and IL-1Ra KO animals, the active phase of the disease seems to 

be mediated by Th17 cells, and in addition the synovial membrane expresses 

chemokines (CCL20) that can attract these cells to the pathological site(477-479). 

In patients with RA and ankylosing spondylitis, IL-17
+
 and IL-22

+
 CD4

+
 T cells 

could be detected in the circulation and were increased compared to healthy 

controls(480).   Furthermore, as mentioned previously, there is a well established 

role for IL-17 and Th17 in joint destruction and remodeling. In the CIA model it 

has been demonstrated that Th17 cells promote osteoclastogenesis an ability absent 

from Th1 and Th2 cells(176). IL-17, which is highly expressed in RA synovial 

membrane and fluid, acts on osteoblasts, stimulating the production of pro-

osteoclastogenic factors, such as osteclastogenesis differentiation factor (ODF), 

promoting this way differentiation of osteoclast maturation(481;482). Other Th17-

related cytokines have been reported to be involved in RA pathology. IL-21-

blockade ameliorates CIA in mice and rats, IL-21 receptor (IL-21R) deficient mice 

are protected from the development of arthritis in the autoimmune prone K/BxN 

model and in humans the IL-21R is expressed by RA synovial macrophages and 

fibroblasts(483-485). It should be noted however, that many of the Th17-related 

cytokines, such as IL-21, IL-22 and even IL-17 it-self, are not exclusively produced 

by Th17 cells, but from other cell types and effector T cells(286;486;487). Even 

though the above studies suggest a role for Th17 in RA, other studies in human and 

animals, report a less significant role for these cells. The proteoglycan-induced 

model of arthritis, for example, is mediated by IFNγ-producing cells, and mice 
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deficient for this cytokine develop significantly less severe pathology(488).  In 

humans, a study in Japan revealed that the frequency of Th17 cells was neither 

increased in RA patients nor correlated with disease severity, and was significantly 

decreased in joints compared to peripheral blood, unlike Th1 cells that were more 

abundant in the joint(489). Furthermore, Th17 frequency was reported to be 

increased only in seronegative arthropathies, such as psoriatic arthritis, but not in 

RA(490). It remains thus possible that the role of Th1/Th17 can differ according to 

disease subtype.  All the aforementioned studies, in animal model and humans, are 

mainly focused in the articular phase of the disease. On the other hand, the role of 

Th17 cells in the events that lead to the breach of self tolerance, however, are ill 

defined and under-studied.  

 

1.6.9 T helper cell plasticity 

 

 

The reductionist approach, that two Th subsets, Th1 and Th2, regulate host 

immunity against pathogens, collapsed in a certain degree with the discovery of 

regulatory T cells, Th17 and TFH cells (Fig 1.3). These subsets fit the lineage 

paradigm and, as mentioned previously, produce and express specific sets of 

cytokines and transcription factors. However recent studies suggest that cytokine 

expression is not as stable as it was initially thought (Fig 1.5). For instance, Th17 

cells have been shown to produce the Th1 signature cytokine IFNγ, especially in 

vivo(427;491). In some cases also, Th17 cells seem to totally cancel the production 

of their signature cytokine, becoming selective IFNγ producers(492;493). In 

addition both Th1 and Th17 cells have been reported to produce IL-10, which has 

been suggested to regulate the inflammatory responses initiated by IFNγ and IL-17 

respectively(494;495).  The phenomenon of cytokine plasticity can also be 

expanded to Th2 cells. Indeed, Th2 cells can produce IL-9 under the influence of 

TGFβ(355). More importantly, in vitro polarised Th2 cells specific for lymphocytic 

choriomeningitis virus (LCMV) are protective in vivo through the production of 

IFNγ(496).  This plasticity can be also observed in the transcription factor level. 
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FoxP3 expression can be turned off and former regulatory cells can acquire pro-

inflammatory phenotype, producing either IL-17 or IFNγ, depending on the site 

investigated(497;498). Alternatively, FoxP3-expressing T cells can acquire a TFH 

phenotype and support B cell responses and IgA antibody production in Peyer‘s 

patches in the gut(499). All these suggest that the phenotype of regulatory and 

effector T cells is not as stable as originally believed, and this might serve the 

functions of the immune system, either by allowing regulation of ongoing immune 

responses or by using the memory repertoire in the most appropriate way, 

especially as becomes more limited with age(500). This also can open opportunities 

for intervention, as altering the phenotype of the immune response could be an 

effective therapy for conditions such as asthma and various autoimmune syndromes.   
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Fig 1.5: Flexibility and plasticity of Th subsets

Recent studies have revealed that Th subset are more flexible both in cytokine

production and transcription factor expression, than originally considered. CD4+

cells can change their cytokine profile, regulatory cells can become inflammatory,

whereas effector cells can acquire regulatory functions. In addition there are

circumstances where expression of transcriptional master regulators is transient or

cells express more that one at the same time (e.g T-bet/RORγt or FoxP3/RORγt).
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1.7 Animal models of RA 

 

RA is a very complicated multifactorial inflammatory disease. In this concept 

animal models are instrumental for understanding the pathology and aetiology of 

RA.  The advantages of using animal models are mainly: 

 Animals can be genetically controlled. Laboratory mice and rats have been 

inbred which dramatically reduces variations that are very common in 

human studies. 

 Their environment can be easily controlled 

 The genetic background of the animals can be manipulated 

Animal models of inflammatory arthritis can be subdivided to induced models, 

whose development is based on immunising animals with an autoantigen or protein 

in the presence of an adjuvant or spontaneous models whose development is based 

on genetic manipulations (Table 3).   Probably the most widely used model of 

arthritis is CIA. It was first described in rats, but was subsequently found to 

develop in genetically susceptible DBA/1 mice that carry the MHC Class II I-A
q
 

haplotype(123;501). It is based on the immunisation of heterologous CII in CFA 

and its development is characterised by anti-CII B and T cell responses(502).  
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Table 3: Animal models of inflammatory arthritis
ii
 

 

 

 

 

Antibodies are active drivers of the pathology in this model, as immunoglobulin 

concentrates of sera from CIA mice can transfer disease even to resistant mouse 

strains(512). Similar protocols are now used to induce arthritis and are collectively 

                                                 
ii
 This table was adapted from ref: (511) 

Model Species Disease characteristics 
Arthritis caused by infection  

Mycoplasma induced arthritis(503) 

 

Rat and mice Mild chronic arthritis 

 Borrelia induced arthritis(504) 

 

Rat and mice Severe erosive arthritis 

 Stapylococus induced arthritis(505)  

 

Rat and mice Severe arthritis 

 Arthritis caused by fragments 

of bacteria persisting in the 

joints 

 

Adjuvant (mycobacterium cell wall) 

induced arthritis(505) 

Rats  

 
Acute general inflammatory 

disease with erosive arthritis  

Streptococcal cell wall induced 

arthritis(506) 

Rats and mice 

 

Severe and erosive arthritis 

Adjuvant induced arthritis  

Mineral oil induced arthritis(507) 

 

Rats Acute, self limited 

inflammation in the peripheral 

joints 

Pristane induced arthritis(508) Rats and mice Chronic and generalized 

inflammatory disease mainly 

affecting the joints 

Arthritis induced by cartiladge 

protein immunisation 

 

Collagen induced  arthritis(123;501) Rats and mice Chronic and erosive arthritis 

in peripheral joints 

Human proteglycan (in CFA)-induced 

arthritis(509) 

Mice Chronic arthritis 

 

CXI  (in CFA)-induced arthritis(510)        Rats Mild, acute arthritis 

‘Spontaneous’ arthritis models  

TNFa transgenic mice (overproducing 

TNFa)(219) 

Mice Erosive arthritis as well as 

generalized tissue 

inflammation 

Mice with ZAP-70 mutation (SKG 

mice)(66) 

Mice Chronic erosive arthritis 

TcR transgenic mouse (T cell 

autoreactivity)(27) 

Mice Severe arthritis 
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termed collagen antibody-induced arthritis (CAIA). Apart from CII, immunisation 

with other joint derived antigens, such as cartilage-proteoglycan, induces arthritis in 

mice, which is accompanied by B and T cell responses against these antigens(509). 

A limitation of these models is that they rely on breaching existing tolerance to a 

single self-antigen based on aggressive immunisation protocols utilizing this same 

antigen. Spontaneously arising autoimmune models could be more beneficial in 

understanding how breach of tolerance is likely to occur in human RA. Genetic 

manipulation has lead to the development of various spontaneous developing 

arthritis models (Table 3). In the K/BxN model, disease occurs in the F1 progeny of 

NOD mice crossed with the KRN TcR transgenic mouse(27). In this system the 

transgenic TCR shows reactivity with GPI in the context of I-Ag7
 (27)

. Pathogenesis 

relies on T cell activation of B cells and their production of complement fixing GPI 

specific antibody(27).  The fact however that this model utilises a single specificity 

TCR transgenic to initiate/maintain disease against an antigen limits its 

physiological relevance as probably multiple autoimmune clones are involved in 

RA development. Multiple autoreactive T cell clones are involved in the 

development of the SKG model of arthritis(66). The development of this model is 

based on a point mutation in the gene encoding the TcR signalling molecule ZAP-

70 resulting in altered thymic selection(66). These mice have high titres of 

rheumatoid factor, anti-type II collagen, ACPA and heat shock protein reactive 

antibodies, demonstrating multiple antigen specific response(66).  

The importance of cytokines, such as IL-1 and TNF in development of arthritis has 

been demonstrated in animal models. Mice that overexpress TNF(66;219) or 

deficient in the IL-1 receptor antagonist(66;479) develop spontaneous arthritis and 

have been instrumental in investigating the role of these cytokines in RA 

development.  

Most of these models resemble the active, destructive phase of the disease, and thus 

do not allow the delineation of the immunological mechanisms that lead to the 

underlying autoimmunity that characterises RA patients even years before disease 

development or the mechanisms that initiate the articular phase of the disease. To 
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understand this phase of the disease an animal model that resembles it needs to be 

utilised. 

1.8 OVA-TcR-induced model of early arthritis 

 

In our lab, a novel model of experimental arthritis has been developed that highly 

resembles the underlying autoimmunity that characterizes the preclinical stage of 

RA(5). Transfer of Th1-polarised OVA-specific-TcR-transgenic CD4
+
 T cells, 

induces transient arthritis in mice challenged in the footpad with heat-aggregated 

OVA (HAO). This is characterized by a transient paw swelling, which lasts around 

7-9 days, synovial hyperplasia and cartilage erosion proximal to the HAO 

challenged paw(5). These clinical and histopathological signs of disease are mild 

compared to the aggressive polyarthritis of other models, such as CIA and SKG, 

which resemble more the advanced human disease(5;66;123).  However, the most 

important feature of this model is the unbiased breach of self-tolerance. Indeed, 

even though these animals never encountered autoantigen in an immunogenic way, 

as for example in the CIA model, they develop self reactive T and B cell responses. 

More specifically animals in this model develop a number of class-switched (IgG) 

autoantibodies, namely anti-CII antibodies, ACPA, RF and anti-DNA antibodies,  

and T cell responses against CII(5;6;168). Interestingly, the anti-CII antibodies in 

this model recognise the U1 peptide, which is one of the epitopes recognised by 

antibodies in the CIA model(513) (Conigliaro P. et al manuscript submitted). 

Importantly, our group has demonstrated that even-though non-specific 

inflammation could recapitulate the clinical and histopathological signs of the 

disease, it was not able to lead to the development of autoreactivety, suggesting that 

this is dependent on eliciting an antigen specific T cell response of irrelevant-

specificity proximal to the joint(6). Furthermore, using this model we have 

demonstrated that pDCs have a regulatory role, limiting self reactivity and the 

developing pathology(168). Crucially, we have identified that the CD11c
+
 APCs 

mediate the breach of self tolerance, as these cells can substitute HAO challenge, 

and their absence inhibits the development of autoreactivity(7). More recently, we 

have demonstrated the importance of co-stimulation on the development of auto-
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reactivity, as CTLA-4-Ig (Abatacept) was able to inhibit the development of 

autoantibodies, through an effect on TFH differentiation(514). All of these data 

demonstrate the usefulness of this model in delineating the early immunological 

events that lead to the breach of self tolerance.  

 

This model will be employed to answers question relating to the role of Th17 

effector cells in the events that lead to the breach of self tolerance as it will be 

described in the result chapters of this thesis. This thesis will start by describing the 

establishment of a reproducible and efficient Th17 protocol. It will continue by 

investigating the involvement of Th17 in the OVA-TcR arthritis model and their 

ability to induce breach of self tolerance. In the next chapter, the relative ability of 

Th17 compared to Th1 population in supporting B cell responses, as this might be 

in the development of autoantibodies. Finally, in the last chapter the role of Siglec-

G in the development of autoreactivity will be investigated. As these molecules are 

involved in the negative-regulation of sterile inflammation, it would be interesting 

to investigating their involvement in autoimmunity development.   
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Chapter 2: Material and 
methods 
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2.1 Mice 

 

BALB/c (H-2
d/d

) mice, between 6-12 weeks old, were either bred by the University 

of Strathclyde Biological Procedures Unit or purchased from Harlan, UK. C57BL/6 

(H-2
b/b

) mice were purchased from Harlan, UK. Homozygous DO11.10 BALB/c 

(H-2
d/d

)   mice, expressing the DO11.10 TcR specific for chicken OVA peptide 

323-339/I-A
d
, were used as CD4

+
 cell donors(515). In other experiments 

homozygous C57BL/6 OT-II mice that express a TcR that recognises the OVA 

peptide 323-339 in the context of I-A
b
 were used as transgenic T cell donors(516). 

DO11.10 BALB/c (H-2
d/d

)    SCID mice were bred by the University of Strathclyde 

Biological Procedures Unit or by the Glasgow University Central Research Facility.  

In some experiments Sigleg G deficient mice (517) on the BALB/c (H-2
d/d

) 

background were used as recipient of transgenic DO11.10 cells. These mice were 

kindly donated by Prof. Paul Crocker from Dundee University.  

Mice heterozygous for the anti-hen egg lysozyme (HEL) IgM
a
 and IgD

a
 transgenes 

on the BALB/c background (MD4) were screened by flow cytomentry for their 

ability to bind HEL and positive animals were used as donors of transgenic B 

cells(518). IgH
b
 BALB/c (H-2

d/d
, IgM

b
) mice(519) were used as recipients of the 

transgenic B cells. All animals were maintained at either the University of 

Strathclyde Biological Procedure Unit or the University of Glasgow Central 

Research Facility in accordance with Home Office regulations, in SPF cages, or 

filter-top cages, as appropriate.   
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2.2 Preparation of single cell suspensions from LNs and 
Spleens 

 

 

Mice were euthanized by cervical dislocation and various lymph nodes (LNs) 

(cervical, inguinal, popliteal, auxiliary, brachial, cervical, mesenteric and para-

aortic LNs) and/or spleen were extracted in RPMI complete media (for composition, 

refer to the appendix). Single cell suspensions were prepared by passing them 

through a 40μm sieve (BD Biosciences) into RPMI complete media using the 

plunger of a sterile 5ml syringe (BD Biosciences). Cell suspensions were washed 

with complete RPMI media and were centrifuged at 400xg for 5min at 4°C. In the 

case of the spleen cell suspension the pellet was resuspended into 2-5ml of red 

blood cell (RBC) lysis buffer (ebioscience) and cells were incubated for 5min on 

ice. 20-40ml of complete RPMI media was added to stop the reaction and the cells 

were centrifuged (400xg, 5mins, 4°C) and resuspended in complete RPMI media. 

Cells were counted using a haemocytometer with non-viable cells excluded on the 

basis of trypan blue staining. 

 

2.3 Flow cytometric analysis  

 

LNs and/or spleens were made into a single cell suspension as described in 2.1.2. 

For cell surface staining, 2x10
5
 to 1x10

6
 cells per well were transferred to a 96-well 

round bottom microtitre plate (Costar), washed with 250μl of FACS buffer (for 

composition refer to appendix in the end of the chapter) and centrifuged (400xg, 

5mins, 4°C). Cells were resuspended in 50μl of FcR blocking buffer (for 

composition refer to the appendix) were incubated for 15min at 4-8°C. Antibodies 

for extracellular staining were diluted in FcR blocking buffer in concentration from 

1-5μg/ml, 50μl were added to each well and incubated for 30min at 4-8°C in the 

dark. Cells were washed twice with 250μl of FACS buffer and centrifuged (400xg, 

5mins, 4°C). In cases where biotin-conjugated antibodies were used a 

fluorochrome-labelled streptavidin secondary reagent was necessary. The labelled 

57



 

 

streptavidin was diluted in FACS buffer and used at a concentration of 1μg/ml for 

15min at 4-8°C. Cells were washed twice and were either resuspended in FACS 

buffer or were fixed with 4% paraformaldehyde (PFA) (100μl per tube, 20min, at 

room temperature in the dark).  

For intracellular cytokine staining, 2x10
5
 cells per well were added in a 96-well 

round bottom microtitre plate and incubated with 50ng/ml of Phorbol-12-Myristat-

13-Acetate (PMA)(Sigma) , 500ng/ml Ionomycin (Sigma) for 5 hours at 37
o
C, 5% 

CO2. Golgi-Plug (BD Biosciences) (diluted 1/1000) was added for the last 4 hours 

of the stimulation. After the incubation the cells were centrifuged (400xg, 5min, 

4°C) and then stained for extracellular markers as described before. Cells were then 

fixed with 100μl of 4% PFA for 20min at room temperature in the dark, washed 

with 250μl of permeabilisation buffer (for composition refer to the appendix), 

centrifuged (400xg, 5min, 4°C) and resuspended in the same buffer. Cells were 

permeabilised for 20min at 4°C in the dark, centrifuged (400xg, 5min, 4°C) and 

incubated with the antibody against the cytokine of interest. The antibodies were 

diluted in permeabilisation buffer at a concentration of 5μg/ml and cells were 

incubated with them for 30min in room temperature in the dark. The cells were then 

washed with permeabilisation buffer, centrifuged (400xg, 5min, 4°C) and 

resuspended in FACS flow (BD biosciences). Antibodies for extracellular and 

intracellular staining and the composition of the buffers used are listed in the 

appendix of this chapter. Data were acquired on a FACS Canto (BD), using the 

Diva software, or FACSCalibur (BD) using Cell Quest Pro software and analyzed 

with FlowJo software (Treestar).    

 

2. 4 Magnetic-activated cell sorting (MACS) 

 

 

Mice were euthanized by cervical dislocation and peripheral LNs (cervical, inguinal, 

popliteal, axillary, brachial, cervical, mesenteric and para-aortic LNs) and spleen 

were extracted in RPMI complete media.  For CD4
+
 isolation, the CD4

+
 T cell 

isolation kit from Miltenyi Biotec (#130-095-248) was used and the manufacturer‘s 
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instructions were followed. In detail, spleen and LNs were made to single cell 

suspension as described in 2.1.2.  The cells were then centrifuged (300xg, 10min, 

4°C), resuspended in 40μl of MACS buffer (for composition refer to the appendix) 

per 10
7
 cells and 10μl of antibody cocktail per 10

7
 cells and incubated for 10min at 

4-8°C. According to the manufacturer, the antibodies of the cocktail were directed 

against CD8a, CD11b, CD11c, CD19, CD45R (B220), CD49b (DX5), CD105, 

MHC-class II and Ter-119 (an erythroid cell marker). This incubation was followed 

by the addition of 30μl of MACS buffer per 10
7
 cells and 20μl of anti-biotin 

labelled magnetic beads per 10
7
 cells to the cell suspension and incubation for 

15min at 4-8°C. Cells were then washed with MACS buffer (30-40ml), centrifuged 

(300xg, 10min, 4°C) and resuspended for cell sorting in the appropriate volume of 

MACS buffer (500μl per 10
8 

cells). LS columns (Myltenyi Biotec) were fitted to a 

magnet (Miltenyi Biotec), primed with 3ml of MACS buffer and the cells were 

applied onto them (up to 2x10
9
 per column). Columns were washed 4 times with 

3ml of MACS buffer, and the negative fraction (CD4
+
 enriched fraction) was used 

for Th1 and Th17 polarisation. The positive fraction was flushed out with 5ml of 

MACS buffer and used as a source of antigen presenting cells for the Th1 and Th17 

polarisations. The cell in the positive and negative fraction were counted using a 

haemocytometer (Hawksley) and trypan blue (Sigma) for non-viable cell exclusion. 

Cells were washed and resuspended in complete RPMI or complete IMDM medium 

(for compositions refer to the appendix) depending on future use. In the case of the 

positive fraction and spleen cells used as a source of APCs, cells were treated with 

mitomycin C (50μg/ml, Sigma) for 60min at 37°C, 5% CO2 and were then washed 

twice with complete media. 

 

2.5 In vitro Th1 and Th17 polarisation 

 

Th1 polarisation were based on the protocol used by Maffia et al(5). In detail, 

MACS sorted CD4
+
 T cells from DO11.10 or OT-II mice at a concentration of 

5x10
5
 cells/ml were co-cultured with mitomycin C treated splenocytes at a 

concentration of 5x10
6
 cells/ml in complete RPMI media in the presence of 
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0.5μg/ml OVA323-339 (Cambridge Biosciences) and the following cytokines and 

neutralizing antibodies: IL-12 (10ng/ml, RnD Systems), anti-IL-4 (clone 30340, 

2μg/ml, RnD Systems)(246;520). Cells were culture in 75T tissue culture flasks 

(Nunc) for 3 days at 37°C, 5% CO2. For Th17 polarisation, MACS sorted CD4
+
 T 

cells from DO11.10 or OT-II mice at a concentration of 3x10
5
cells/ml were co-

cultured with mitomycin C treated splenocytes at a concentration of 3x10
5
 cells/ml 

in complete IMDM media (for composition refer to appendix) in the presence of 

1μg/ml OVA323-339 and the following cytokines and neutralising antibodies: IL-6 

(20ng/ml, RnD Systems), TGFβ (1ng/ml, RnD Systems), IL-23 (10ng/ml, RnD 

Systems), IL-1β (10ng/ml, RnD Systems), anti-IL-4 (clone  30340, 10μg/ml, RnD 

Systems), anti-IFNγ (clone XMG1.2, 10μg/ml, BD 

Biosciences)(8;412;414;455;521-523). Cells were cultured for 4 days at 37°C, 5% 

CO2. The phenotype of the polarised population was assessed by intracellular 

cytokine flow cytometric staining or enzyme-linked immunosorbent assay (ELISA) 

of the culture supernatans.  

 

2.6 Proliferation assay  

 

To measure the relative ability of CD4
+
 T cells to proliferate in response to various 

antigens we directly measured the incorporation of the nucleoside analogue 5-

ethynyl-2´-deoxyuridine (EDU) during active DNA synthesis using the Click-

iT®EdU Alexa Fluor® 488 Cytometry assay kit (Invitrogen). Detection is based on 

a click reaction, a copper catalyzed reaction between an azide and an 

alkyne(524;525). In this case the EDU contains the alkyne and the Alexa Fluor® 

488 dye contains the azide. Mice were euthanized by cervical dislocation and 

popliteal lymph nodes were extracted into complete RPMI media. Single cell 

suspensions were prepared from the popliteal LNs as described in section 2.1.2. 

2.5x10
5 

cells were added in each well of a 96-well microtitre plate that contained 

either complete RPMI media, or complete RPMI media with 1mg/ml of chicken 

OVA or 50μg/ml of CII (Sigma) and were incubated for 72hrs at 37°C, 5% CO2. 

After 48hrs, EDU (Invitrogen) was added to each well at a concentration of 5μg/ml. 
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After 72hrs the cells were centrifuged (400xg, 5min, 4°C), washed twice with 

FACS buffer, and stained for surface markers as described previously (2.1.3). They 

were then washed twice with 1% bovine serum albumin (BSA) /PBS, fixed with 

4% PFA (20min at room temperature in the dark), washed with 1% BSA/PBS and 

centrifuged (400xg, 5min, 4°C). Following this, they were resuspended in the 

Click-iT™ reaction cocktail prepared according to manufacturer‘s instructions and 

incubated for 30min at room temperature in the dark. Cells were then washed with 

1% BSA/PBS, centrifuged (400xg, 5min, 4°C) and resuspended in FACS flow 

(BD). Data were acquired using a FACS Canto (BD), using the Diva software, or 

FACSCalibur (BD) using Cell Quest Pro software, and analyzed with FlowJo 

software (Treestar). 

 

2.7 Enzyme-linked immunosorbent assay (ELISA) 

 

96-well microtitre plates (Costar) were coated with antigen or capture antibody in 

carbonate buffer pH 9.6(for composition refer to the appendix)   (50μl per well), 

overnight at 4°C. Plates were washed with ELISA wash buffer (3x), and non-

specific protein binding was blocked by incubation with blocking buffer (200μl per 

well, 10% FCS in PBS, 37°C, 1hr). Following this, the plates were washed with 

wash buffer (0.05% Tween-20, PBS, 3x), and the serum samples were added 

(50μl/well) and incubated for 2hrs at 37°C. In the case of anti-OVA, anti-CII, or 

anti-CCP antibody detection, serial dilutions of the mouse sera were employed. 

After incubation, plates were washed with wash buffer (4x), and were incubated 

with the detection antibody (50μl per well, diluted in dilution buffer:0.2% FCS, 

0.05% Tween-20, PBS) for 1hr at 37°C. Plates were washed (4x) with wash buffer, 

and in the case were the detection antibody was biotinylated, were incubated with 

horse-radish-peroxidase (HRP)-conjugated streptavidin (50μl per well, diluted in 

dilution buffer) for 30min at room temperature. Plates were then washed (4x) with 

wash buffer, and incubated with SureBlue TMB Microwell Substrate (KPL) for the 

appropriate time at room temperature. The reaction was terminated by the addition 

of 10% H2SO4 and the absorption was determined at OD450 using an ELISA plate 
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reader (Molecular Devices). The antigen-antibody and antibody pairs used, their 

concentrations and the composition of the buffers used are listed in the appendix of 

this chapter.  

 

2. 8 Immunohistochemistry  

 

The protocols used in this thesis were adopted and/or modified  from protocols 

developed by Grierson et al(526). The composition of buffers and antibodies used 

are listed in the appendix in the end of this chapter. In detail,  mice were euthanised 

by cervical dislocation and draining lymph nodes were removed and snap frozen in 

OCT embedding medium (VWR). 6-8μm thick sections were cut using a cryotome 

(Thermo Scientific) and mounted on superfrost plus microscopy slides (VWR). 

Slides were then stored at -20°C. Prior to staining sections were brought to room 

temperature and were fixed in acetone for 10min. Slides were allowed to dry and 

sections were marked using an ImmEdge hydrophobic barrier pen (Vector). From 

this point on all samples were kept in a darkened, humidified box at room 

temperature, unless differently specified. The sections were rehydrated with PBS 

for 5min and endogenous peroxidase activity was inhibited by incubation with the 

endogenous peroxidase blocking buffer (for composition refer to the appendix) for 

15min. This step was repeated three times. Sections were washed with PBS (3x, 

3min). Non-specific FcR binding was blocked with incubation with FcR blocking 

buffer (for composition refer to the appendix). All endogenous biotin, biotin 

receptors or avidin binding sites present in the tissue sections were blocked using 

an avidin/biotin blocking kit (Vector) according to manufacturer‘s instructions. In 

detail, sections were incubated with diluted avidin (100μl per section, 4 drops in 1 

ml of PBS) for 15min, washed with PBS (1x, 5min), incubated with diluted biotin  

(100μl per section, 4 drops in 1 ml of PBS) and washed again with PBS (1x, 5min). 

 

When samples were stained only for extracellular markers, sections were initially 

incubated with biotinylated antibodies diluted in 1% blocking buffer for 30min 
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(100μl per sample). Samples were washed in TNT wash buffer (3x, 5min) and were 

incubated with HRP-conjugated streptavidin (Perkin Elmer) diluted 1:100 in TNB 

blocking buffer (for compositions refer to the appendix). They were then washed 

with TNT buffer (3x, 5min) and incubated with biotinylated tyramide (Perkin 

Elmer) diluted in 0.015% H2O2 /amplification buffer (Perkin Elmer) for 10min. 

Tissues were washed with TNT (3x, 5min) and AlexaFluor®647-labelled 

streptavidin (2μg/ml, Invitrogen) diluted in TNB was added for 30min. Following 

this, sections were washed with TNT buffer (3x, 5min) and incubated with directly 

fluorochrome-labeled antibodies diluted in 1% blocking buffer overnight at 4°C. 

The samples were then washed with PBS (3x, 5min) and in some cases incubated 

with AlexaFluor®488-labelled anti-fluorescein antibody (Invirtogen) diluted in 1% 

blocking buffer (2μg/ml) for 30min. They were then washed with PBS (3x, 5min), 

allowed to air dry (5-10min, in the dark), mounted in vectashield (Vector) and 

sealed with a coverglass (VWR) and clear nail varnish.    

 

For detection of the intracellular transcription factor RORγt or for IL-17, samples 

were incubated for 30min with permeabilisation buffer A (50μl per sample, for 

composition refer to the appendix), washed with PBS (3x,10sec) and were then 

incubated with 50μl of 1% blocking buffer/0.1% saponin for 30min. The sections 

were washed with PBS (3x, 10sec) and incubated with the antibody against the 

intracellular marker diluted in permeabilisation buffer B (for composition, refer to 

appendix) overnight at 4°C. Samples were then washed with TNT buffer (3x, 5min) 

and were incubated with biotynilated secondary antibodies diluted in 1% blocking 

buffer/0.1% saponin for 30min. They were then washed with TNT buffer (3x, 5min) 

and incubated with biotynilated tyramide (Perkin Elmer) diluted in 0.015% H2O2 

/amplification buffer (Perkin Elmer) for 10min. Tissues were washed with TNT (3x, 

5min) and AlexaFluor®647-labelled streptavidin (2μg/ml, Invitrogen) diluted in 

TNB was added for 30min. Samples were then stained for cell surface markers as 

described previously.  
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Images were acquired using a Carl Zeiss LSM510 META Confocal Imaging 

System and analyzed using Volocity™ software (Impovision, Perkin Elmer). Using 

the tile scan function of the LSM510 confocal microscope, the full area of the 

section was imaged. Usually 3 random sections per sample were imaged. Colour 

levels of the acquired images were optimized and noise was reduced using 

Volocity™ software employing the ―contrast enhancement‖ and ―Remove Noise‖ 

tools. For quantification of transferred T and B cells, cells were tracked using the 

―Find Objects Using SD Intensity‖ tool. This tracks cells based on the mean of the 

intensities in each pixel and selecting standard deviations about that mean. Objects 

smaller than 30μm
2
 and larger than 350 μm

2 
were excluded using the ―exclude 

objects by size‖. Touching objects were separated using 100μm
2
 as a guide size.     

 

 

2.9 Chicken Ovalbumin (OVA)-Hen Egg Lysozyme (HEL) 
chemical conjugation 

 

 

The OVA-HEL conjugate antigen was prepared by using glutaraldehyde to couple 

HEL (Bioenzyme laboratories) to OVA (Sigma) as described before(138;361;362). 

One hundred and thirty micrograms of OVA-HEL was estimated to contain the 

equivalent of 100μg of OVA and 30μg of HEL. In details 450mg of OVA and 

126mg of HEL were separately diluted in 18ml of phosphate buffer each. The two 

solutions were combined in a 50ml tube, centrifuged at 450xg for 5min and the 

supernatant was transferred to a bottle wrapped in tinfoil. 78.6μl of glutaraldehyde 

were added to 24ml of phosphate buffer and 14.4ml of this solution were added to 

the OVA/HEL solution (glutaraldhyde concentration 1mM). The 

HEL/OVA/glutaraldehyde solution was stirred for 1hr at room temperature after 

which it was centrifuged at 450xg for 5min. The supernatant was transferred to 

dialysis cassettes (Thermo Scientific) and dialysed overnight in PBS at 4°C. The 

dialysed product was transferred to concentrators (Amicon) and was centrifuged at 

3600xg for 30min at 4°C. The concentration of the HEL-OVA conjugate was 

determined using a NanoDrop 1000 spectrophotometer (Nanodrop) at 280nm.  
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2.10 Preparation of Heat aggregated ovalbumin (HAO) 

 

Chicken ovalbumin (Sigma) was diluted in PBS at a concentration of 20mg/ml and 

was incubated at 100°C for 2hrs. The denatured solidified ovalbumin was washed 

with PBS, centrifuged (450xg, 5min, 4°C) and resuspended in PBS. HAO was 

stored at -20°C. Before use, HAO was homogenized in a gentle-MACS Dissociator 

(formely Dispomax, Miltenyi) in order to be injected. 

 

 

 

2. 11 OVA-TcR induced animal model of arthritis  

 

The OVA-TcR induced animal model of arthritis was initially developed by Maffia 

et al(5) (Fig 2.1). Peripheral lymph nodes (LNs) (axillary, cervical, inguinal, 

popliteal, para-aortic), mesenteric LNs and spleen from DO11.10 mice were made 

to a single cell suspension and CD4
+
 cells were MACS sorted from them as 

described in section 2.1.2. CD4
+
 from DO11.10 mice were polarised to a Th1 or 

Th17 phenotype as described in section 2.1.5. 2x10
6
 transgenic T polarised under 

Th1 or Th17 condition were transferred intra-venously (i.v.) into BALB/c 

recipients. One day following adoptive transfer, recipients were immunised 

subcutaneously (s.c.) on the back with 100μg of chicken OVA (Sigma) in complete 

Freund‘s adjuvant (CFA, Sigma).  Ten days after immunisation all recipient 

animals were injected subcutaneously proximal to their ankle joints with 100μg of 

HAO. Control mice received PBS instead of HAO. The mice were monitored daily 

for signs of arthritis and were scored according to table (2.1).  Paw thickness was 

measured using a dial calliper (Kroeplin). Seven days post footpad challenge 

recipient mice were euthanized by cervical dislocation and popliteal LN draining 

the challenged paw, blood, and the challenged paw were extracted. Cells from the 

popliteal LN were made into a single cell suspension, counted using a 
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haemocytometer in the presence of trypan blue to exclude non-viable cells, cultured 

for 72hrs with OVA (1mg/ml), CII (50μg/ml) or complete RPMI and their ability to 

proliferate and produce cytokines was assessed by flow cytometry employing the 

Click-iT EDU proliferation assay and intracellular cytokine staining respectively as 

described in sections 2.1.3 and 2.1.6. In addition, cells from popliteal LNs were 

analyzed phenotypically by flow cytometry as described in section 2.1.3. Serum 

samples were extracted by centrifuging the blood at 13200rpm (15575xg) for 5min. 

These were analyzed for anti-CII and anti-OVA antibodies (IgG, IgG1, IgG2a) by 

ELISA as described in section 2.1.7. For histological analysis hind limbs were fixed 

in 10% neutral-buffered formalin (Sigma) for 14 days and sent to the 

Histopathological Department of the Veterinary School of Glasgow University to 

be stained with Heamatoxylin and Eosin (H&E) or toluidine blue.  

 

Table (2.1): Clinical scoring system of arthritis 

Each limb could receive a score of ≤4 points were:  

Score 0:  No reaction, normal 

Score 1: Mild, but definite redness and swelling of the ankle  

Score 2:  Moderate redness and swelling of the ankle 

Score 3:  Severe redness and swelling of the entire paw including digits 

Score 4:  Maximally inflamed limb with involvement of multiple joints 
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 2.12 B-T cell co-transfer model 

 

This model was initially developed by Garside et al to visualize the development of 

antigen specific T cell-dependent B cell responses(138) (Fig 2.3). MACS sorted 

CD4
+
 T cells were polarised towards a Th1 or Th17 phenotype and spleens from 

MD4 BALB/c mice were made into a single cell suspension as described in section 

2.1.2.  The percentage of HEL-specific B220
+
 MD4 cells or KJ1.26

+
CD4

+
 DO11.10 

T cells in these preparations was determined by flow cytometric analysis. Cell 

suspensions containing 2x10
6
 transgenic T cells polarised under Th1 or Th17 

conditions and 2x10
6
 of transgenic B cells were co-transferred by i.v. injection into 

congenic age-matched IgH
b
 BALB/c recipients. One day after adoptive transfer the 

mice were immunised s.c. in the back of the neck with 130μg of OVA-HEL 

conjugate antigen in CFA. OVA-HEL was prepared using glutaraldehyde to couple 

OVA with HEL as described in section 2.1.9. Mice were euthanised at days 3, 7 

and 10 after immunisation and draining LNs (axillary and bronchial) and blood 

were extracted. LNs were either snap frozen in OCT embedding medium for 

immunohistochemical analysis or used to analyze the phenotype of the cells by 

flow cytometry. From the blood sera was extracted by centrifugation and analyzed 

by ELISA for the presence of anti-OVA and anti-HEL antibodies. 

2.13 Preparation of bone marrow derived dendritic cells 
(DCs)  

 

DCs were prepared from bone marrow (of BALB/c mice) as previously 

described
(527)

. Bone marrow was flashed out from the femur and tibia of BALB/c 

mice using a syringe filled with complete RPMI media. Cells were passed through 

nitex mesh (Cadisch & Sons Ltd. London, UK) to filter any bone particles and were 

washed in complete RPMI, centrifuged and counted. Bone marrow cells were 

plated at a concentration of 0.5x106 cells/well in 6 well plates (Costar) in complete 

RPMI media supplemented with the supernatant of X63 myeloma cells transfected 

with mouse GM-CSF cDNA (10%v/v).  
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2.14 Assessment of viability of Th1 and Th17 polarised 
populations  

 

MACS sorted CD4
+ 

T cells from DO11.10 mice were polarised towards a Th1 or 

Th17 phenotype as described in 2.1.5. Cells were rested for 24hrs in the absence of 

polarising cytokines and antigenic stimulus and 10
5
 of them were co-cultured with 

3x10
4 

bone marrow DCs in the presence or absence of OVA323-339 for two time 

points, 24hr and 48hrs. DCs were either in resting condition or activated with LPS 

(Sigma, 1µg/ml) for 24hrs. The viability of the CD4 cells was assessed using the 

Annexin-V FITC kit (Miltenyi) according to manufacturer instructions. The kit 

includes Annexin-V FITC that binds phospatidylserine (PS) and propidium iodine 

(PI) that binds DNA and thus dead cells. In normal cells PS is located in the 

cytosolic leaflet of the plasma membrane, however during apoptosis and necrosis it 

redistributes and becomes available for binding with Annexin-V(528;529). Live 

cells are negative both for PI and Annexin-V staining. In detail, cells were 

harvested and their number was determined using a haemocytometer employing 

toluidine blue to exclude dead cells. They were then stained for cell surface 

markers, namely CD4 and the DO11.10 TcR as described in 2.1.3. Cells were 

washed in binding buffer (provided by the kit) and centrifuged at 300xg for 10min. 

They were then resuspended in 100µl of binding buffer per 10
6 

cells, 10µl of 

annexin V were added to them and incubated in the dark at room temperature for 

15min.  Cells were washed with 1ml annexin-V and centrifuged at 300xg for 10min. 

The cell pellet was resuspended in 250µl of FACS flow (BD) and 1µl of PI was 

added prior to analysis with flow cytometry.    

 

2.15 Statistics 

 

Data were analysed using the GraphPad Prism
®
 software. To test normality of the 

data sets the D‘ Agostino and Pearson omnibus test was used. To test if the means 

of two samples are different the Student‘s t-test or Mann Whitney test was used, for 
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normally and non-normally distributed data sets respectively. To compare the 

means of two or more samples one-way analysis of variance (ANOVA) was used. 

When the interaction of two independent variables was tested two-way ANOVA 

was employed. A value of P<0.05 was considered as significant.     
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Chapter 3: Development of Th17 
Polarisation protocol 
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3.1 Aim and rationale   

 

In this chapter the development of a robust and reproducible protocol for the 

generation of Th17 cells is presented. We have recently developed a model of 

breach of self tolerance in the context of RA that is based on the adoptive transfer 

of OVA-specific Th1 cells(5). Due to the mounting evidence relating Th17 cells to 

various autoimmunity animal model (8;9;477) we hypothesised that a Th17 induced 

RA model could lead to a more potent breach of self tolerance that could possibly 

be accompanied by more severe clinical image than the current Th1 induced model. 

In order to test this model, a reliable and consistent protocol for Th17 polarisation 

had to be developed. In addition, in this chapter the phenotype of the transferred 

Th1 and Th17 population was investigated, and specifically the presence of TReg 

and TFH cells, as the presence of these cell types could potentially give information 

relating to the pathology of the models.     

 

3.2 Introduction  

3.2.1 Cytokine regulation of Th17 polarisation 

 

Th17 is a recently discovered effector CD4
+
 subtype that is identified by its ability 

to secrete IL-17A and other cytokines, such as IL-17F, IL-21, IL-22 and 

TNF(255;422;454;530). Various cytokines have been involved in Th17 lineage 

commitment. When Th17 cells were initially characterized in models of 

autoimmunity, the dendritic cell derived cytokine IL-23 was considered to be 

critical in lineage commitment(8). However, the fact that IL-23 induced only small 

percentages of IL-17
+
 CD4

+
 cells  and was not sufficient to generate Th17 from 

naïve cells in vitro (8;521) suggested that other factors must be more important for 

the de novo generation of naïve T cells to the Th17 phenotype. In is now accepted 

thal IL-6 and TGFβ, are responsible for the de novo  differentiation of Th17 
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cells(412-414). IL-6 or TGFβ alone can only modestly, if at all, induce generation 

of IL-17 producing CD4
+
 cells, however their combination is highly effective in 

generating Th17 cells from naïve precursors(413;414;521). TGFβ is a pleiotropic 

cytokine with functions important from T cell development and homeostasis to 

tolerance(531). Its importance in Th17 polarisation in vivo was revealed in mice 

that were either deficient for the TGFβ receptor or possessed T cells that over-

expressed TGFβ. The first do not respond to TGFβ, do not generate Th17 cells and 

are protected from EAE, whereas the latter develop more severe EAE and have 

elevated Th17 responses(414;523).  TGFβ has the potential to induce both Th17 

and TReg cells. In combination with pro-inflammatory cytokines such as IL-6 and 

IL-21, TGFβ induces upregulation of IL-23R and  the production of IL-17 by TCR 

activated CD4
+
 cells(446). In addition, TGFβ, regardless of the presence of IL-6, 

can rapidly induce the prototypical Th17 transcription factor RORγt(446;532).  On 

the other hand  high concentration of TGFβ favours the development of Foxp3
+
 T 

cells and the repression of the IL-23R(446). The fact that CD4
+
 cell-specific TGFβ 

ablation leads to inhibition of in vivo Th17 development suggests an autocrine or 

paracrine role for this cytokine(415).  

 

The role of IL-6 in Th17 differentiation was initially discovered when an antibody 

against IL-6 could inhibit the production of IL-17 by anti-CD3/CD28 stimulated 

naïve CD4
+
 T cells cultured in the presence of LPS conditioned DC media(413). In 

addition, recombinant IL-6 was able to inhibit TGFβ induced Foxp3 upregulation 

and induced IL-17 production by CD4
+
 T cells(414).   Lamina propria CD4

+
 T cells 

from IL-6 deficient mice failed to express RORγt, IL-17F and the IL-23 specific 

chain of the IL-23R, which suggests that IL-6 is required for the in vivo generation 

of Th17 cells in the gut(443).  Activation of the IL-6R leads to activation of 

STAT3(533). STAT-3 deficient mice have a greatly reduced capacity to produce 

IL-17 and have a decreased RORγt and RORα induction(444;451;534). Also, mice 

with a conditional CD4
+
 deletion of STAT-3 are resistant in the induction of 

EAE(534).  
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Apart from IL-6 and TGFβ other cytokines were found to be important for Th17 

differentiation. Three independent studies revealed an important autocrine role for 

IL-21 in Th17 differentiation(421;422;455). IL-21 is highly expressed by Th17 

cells and its expression is induced by IL-6 and IL-21 but not IL-23 or TGFβ(422). 

In addition, IL-21 alone or in combination with TGFβ resulted in upregulation of 

RORγt, IL-23R and Th17 cytokines such as IL-17, IL-17F and IL-22 by anti-CD3 

activated naïve CD4
+
 T cells in STAT-3 dependent manner (422;455). Another 

cytokine with an important role in Th17 differentiation is IL-1. IL-1 receptor 1 (IL-

1R1) is expressed in higher amounts in Th17 cells compared with Th1 cells a 

phenomenon that is mediated by the IL-6/STAT-3 axis (535).  In vivo IL-1R1 

deficiency protected mice from the development of EAE, which was correlated 

with a failure of development of autoantigen specific Th17 responses and their 

ability to migrate to the site of inflammation(522;535) . This was not due to a 

secondary effect of IL-1 on another cell type (e.g APCs) but a direct failure of IL-1 

signalling on CD4
+
 T cells as CD4

+
 specific IL-1 signalling deficiency protects 

mice from EAE(535) and transfer of IL-1-competent  autoantigen specific T cells 

could re-establish the disease(522). Furthermore,  IL-1 was found to enhance IL-23 

induced IL-17 production(522), retain the production of IL-17 by Th17 polarised 

cells even in the absence of TcR stimulus, promote the transformation of TReg to 

Th17 cells(535), and abrogate the inhibitory effect of IL-2 in IL-17 production(536).  

 

As well as cytokines that promote Th17 differentiation there are a number of 

cytokines that inhibit their differentiation. In vitro, IFNγ and IL-4 the prototypical 

cytokines of Th1 and Th2 cells have been shown to inhibit Th17 

differentiation(412). However the presence of IFNγ and IL-17 double positive cells 

in vivo in models of autoimmunity potentially contradicts this fact(494).  IL-2 

which is a growth factor for activated T cells and TReg(537-539), inhibits Th17 

development via a STAT-5 dependent mechanism(419). IL-27, a member of the IL-

12 family of cytokines has a regulatory role in Th17 development that is mediated 

indirectly via TGFβ and IL-6 in vitro and in vivo or through the generation of Tr1-

like cells that produce IL-10(540-542).     
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3.2.2 AhR and Th17 polarisation  

 

Another modifier of Th17 development is the aryl-hydrocarbon receptor (AhR).  

AhR is a highly conserved molecule that is expressed by various cell types and it is 

considered to have a dual role in the metabolism of small molecules and in the 

modulation of the immune system(543). Dioxin is the prototypical ligand for AhR, 

however there are a vast array of possible endogenous ligands, such as indoles (e.g. 

6-formylindolo[3,2-b]carbazole (FICZ)), tetrapyroles and arachidonic acid 

metabolites(544). Th17 cells have been found to express high levels of AhR and 

administration of the AhR ligand FICZ leads to  a significant worsening of 

EAE(545;546). AhR is not indispensable for Th17 development as AhR deficient 

CD4
+
 can still be polarised to a Th17 phenotype, however they are impaired in their 

ability to produce IL-22(546).   

 

3.2.3 Signal 1 and Signal 2 in Th17 polarisation  

 

For any T cell, the first step of activation is initiated by the binding of the TcR to its 

cognate antigen in the context of an MHC molecule (signal 1), and the second by 

co-stimulatory molecules expressed on the activated DC (signal 2)(434;547-549). 

Previously, studies have suggested that TcR signal strength is an important factor 

for in vivo Th1/Th2 differentiation. It was reported that peptide/MHC complexes 

that bind strongly to the TcR, in the absence of polarising cytokines, drive T cells to 

a Th1 phenotype whereas peptide/MHC complexes that bind weakly induce Th2 

cells(550;551).  In addition, antigen dose has also been reported to play a 

significant role in the in vitro Th1/Th2 polarisation, with low doses favoring 

development of Th2-like cells and high doses Th1-like cells(552).  It is not very 

clear how these factors affect Th17 polarisation. Signals through the TcR induce 

IL-17 production from memory and naïve CD4
+ 

cells(491). Qualitatively functional 

avidity of the stimulating peptide has been reported to affect significantly Th17 

generation in vivo, with the high avidity peptides favoring higher Th17:Th1 ratio, 
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compared to lower avidity peptides(553). Furthermore, it has also been 

demonstrated that in vitro optimal production of IL-17, under Th17 polarising 

conditions, requires high doses of anti-CD3 antibody, an IL-17 specific 

phenomenon as IL-17F production was not affected(435).  Contrary to these data, it 

has been reported that low concentration of anti-CD3, in the presence of anti-CD28 

and polarising cytokines, results in higher proportion and number of IL-17
+
CD4

+
 

compared with high concentration(554). In any case, these two studies only give 

information relating to the efficacy of Th17 polarisation under different conditions 

of TcR signaling as they are performed in the presence of polarising cytokines, 

unlike the initial studies investigating the role of TcR signal strength in Th1/Th2 

polarisation where no polarising cytokines were used(550;552). The role that the 

various co-stimulatory molecules play in Th17 polarisation is equally understudied. 

When Th17 cells were initially discovered it was reported that their generation 

requires the co-stimulatory molecules ICOS and CD28(285). However, this study 

employed IL-23 expanded Th17 cells, which were probably memory cells and not 

de novo generated Th17 cells. More recently, it has been reported that CD28 co-

stimulation reduced the frequency of in vitro generated IL-17 producing 

CD4
+
cells

(555)
. They suggest that this is mediated by  CD28-induced IL-2 and IFNγ 

production(555). However, there are no other studies that investigate other co-

stimulatory molecules or the effect that the Th17-inducing cytokines have on APCs, 

as most studies so far utilize anti-CD3/anti-CD28 antibodies. In addition, it is quite 

questionable how physiologically relevant these issues are in an in vivo setting. TcR 

cross-reactivity or degeneracy, where a TcR binds and responds to multiple 

peptide-MHC ligands is a well accepted concept(556-558). Estimates of the peptide 

repertoire have shown that the number of potential immunogenic peptides in the 

environment far exceeds the total number of TCR specificities in an individual at 

any given point(557).  In addition, in the thymus T cells must recognise, with low 

affinity, MHC molecules bearing self peptides(559). From this point of view, 

cytokine regulation of T cell polarisation would probably be hierarchically more 

significant, at least from TcR signal ―strength‖  as ―strong‖ signal for one T cell 

clone could be a weak or intermediate for another, thus leading to the development 

77



 

 

of unwanted Th phenotypes.   Based on the above data, the development of a 

protocol that would produce a highly polarised Th17 population, which could be 

employed for the development of a Th17-induced RA model and for the 

investigation of the role of these cells in B cell responses, was pursued.     

 

3.3 Results 

 

3.3.1 The APC:T cell ratio is crucial for the effectiveness of in 

vitro Th17    polarisation 

 

The Th17 protocol initially employed was based on the Th1 protocol established in 

our group and used by Maffia et al to develop the OVA-TcR induced RA model(5). 

This involved the culture of MACS sorted CD4
+
 cells from DO11.10 mice with 

mitomycin C treated splenocytes as APCs, in an APC:T ratio of 10:1 (for detailed 

description refer to Chapter 2: Materials and Methods, Section 2.1.5) .  Based on 

the published data relating to the in vitro Th17 polarisation we used a cytokine and 

antibody cocktail consisting of anti-IFNγ, anti-IL-4, IL-6, TGFβ, IL-23 and IL-

1β(413;521;535) (for concentrations refer to Chapter 2: Materials and Methods, 

Section 2.1.8). When CD4
+
 cells from DO11.10 mice were polarised under these 

conditions the effectiveness of Th17 polarisation was very poor and was 

characterised by very low number of IL-17
+
 CD4

+
 cells (Fig 3.1, lower panel). This 

was specific for Th17 polarisation as Th1 polarisation with the same APC:T cell 

ratio resulted in a high number of IFNγ
+
 CD4

+
 cells (Fig 3.1, top panel). Following 

this, a small panel of cytokines that included IL-2, IFNγ and IL-17 (Fig 3.2a-c) was 

analysed in the supernatants of the Th1 and Th17 polarisation cultures by ELISA.  

As expected the Th1 cultures were characterized by high production of IFNγ and 

low production of IL-17, whereas Th17 cultures were characterized by high 

production of IL-17 and low production of IFNγ (Fig 3.2a-b). In both Th1 and 

Th17 polarising conditions the levels of IL-2 production were similar (Fig 3.2c). In 

addition there was no difference in the expansion of the two populations (Fig 3.2d).  
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IL-2 has been reported to have an inhibitory function in Th17 generation through 

the preferential promotion of TREG cells(419). The fact that the supernatants of the 

Th17 polarisations contained high amounts of IL-2 could suggest that this cytokine 

constrains the generation of IL-17+ CD4+cells. To definitively determine the role 

of IL-2 in this system CD4+ T cells were cultured under Th17 conditions as in Fig 

3.1 in the presence or absence of an IL-2 blocking antibody. Unlike the published 

reports(419), in our system IL-2 blocking did not have any effect in the percentage 

of IL-17
+
CD4

+
 cells (Fig 3.3a and b), which remained low (<5%).  

 

Studies in the past have shown that the availability of MHCII-peptide complexes or 

co-stimulatory molecules, controlled by the APC:T cell ratio, has a profound effect 

in T cell activation, proliferation and even functional differentiation(552;560;561). 

For example, it  has been reported that T cell activation is decreased as APC:T ratio 

decreases(561). As mentioned above, the peptide availability could affect 

polarisation, with high doses of antigen favouring Th1 generation and low doses 

Th2(552). In order to investigate if the APC:T cell ratio has an effect in the in vitro 

Th17 polarisation, MACS sorted CD4
+
 T cells from DO11.10 mice were cultured 

under Th17 conditions  in an APC:T cell ratio of either 10:1 or 1:1 (Fig 3.4). 

Interestingly, when the APC:T cell ratio was 1:1 the cultured CD4
+
 population was 

consistently characterized by a higher percentage of IL-17
+
 CD4

+
 T cells (Fig 3.4 a 

and b).  This was not a generalized effect in cytokine production by the activated 

CD4
+
 T cells as the percentage of IFNγ

+
 CD4

+
 cells had not increased significantly 

(Fig 3.4b). In addition, Th1 polarisation was not influenced by the APC:T cell ratio 

as shown by the percentage of IFNγ
+
 CD4

+
 cells (Fig 3.4c).  

 

These data show that the efficiency of the in-vitro Th17 polarisation is crucially 

affected by the APC:T cell ratio. As in vitro Th17 polarisation has been reported to 

be modified  by both the quality of co-stimulation and TcR signal(554;555), this 

effect could be either related to the availability of MHCII-peptide complexes or the 

amount of co-stimulation given to the proliferating T cells, however more 

experiments are required to validate this. 
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3.3.2 The effect of culture media on Th17 differentiation  

 

 

 Even though the modulation of the APC:T ratio from 10:1 to 1:1 resulted in a 

dramatic increase of the effectiveness of Th17 polarisation, the percentage of IL-

17
+
 CD4

+
 varied significantly between experiments, ranging from ~10% to ~40%. 

As mentioned previously, Th17 differentiation is dependent on IL-6 and TGFβ and 

is modulated by the expression of the AhR receptor. AhR is highly expressed by 

Th17 cells and its activation by high affinity ligands during Th17 development 

markedly increases the proportion of IL-17
+
 cells(545;546). In early 2009 it was 

reported that RPMI medium contains relatively low levels of AhR agonists, which 

results in poor Th17 polarisation when this cell culture medium is used. On the 

other hand the same group reported that IMDM, a medium richer in aromatic amino 

acids, which give rise to AhR agonists, when used in Th17 polarisation, results in 

higher Th17 polarisation efficiency(562).  All Th17 polarisations so far were 

conducted in RPMI culture medium, which could suggest that, the high variability 

in Th17 efficiency was due to low concentration of natural AhR ligands in the 

culture media. In order to confirm that the variability of Th17 polarisation 

efficiency was due to the use of RPMI medium, MACS sorted CD4
+
 T cell from 

DO11.10 were cultured under Th17 polarising conditions, at 1:1 APC/T cell ratio, 

either in RPMI or IMDM culture medium. Consistent with the published 

reports(562) CD4
+
 cells cultured in IMDM medium under Th17 polarising 

conditions were characterized by significantly higher percentages of IL-17
+
 

compared to cells cultured in RPMI media. More importantly, Th17 polarisation 

conducted in IMDM medium was consistently characterised by percentages of IL-

17
+
CD4

+
 cells higher than 35% (Fig 3.5). In addition, the increase in IL-17

+
 CD4

+
 

cells was not associated with an increase in the percentage of IFNγ
+
 CD4

+
 cells 

(Fig3.5a). These data demonstrate that apart from the polarising cytokines and 

blocking antibodies, the culture media has a crucial effect in Th17 generation 

efficacy, with RPMI media being only able to support sub-optimal Th17 

polarisation. 
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3.3.3 The effect of the mouse strain in Th17 polarisation  

 

Different mouse genetic backgrounds are known to significantly alter the direction 

of Th subset development. BALB/c and C57BL/6 mice are known to express 

different type of immune responses, with the first to be considered Th2 prone and 

the latter Th1(300;563;564). In response to Leishmania major infection susceptible 

BALB/c mice develop a Th2 response that fails to clear the pathogen, whereas 

resistant C57BL/6 mice develop a protective Th1 type response(300). Similar 

reports exists for helminth parasites, such as Trichuris muris, were susceptible 

inbred mice cannot mount an effective Th2 response, unlike resistant strains(565).  

In addition, C57BL/6 mice are more susceptible than BALB/c to experimental 

autoimmune diseases such as experimental autoimmune myasthenia gravis and 

experimental autoimmune uveitis(563;564). Even though some of these differences 

could be attributed to factors apart from Th phenotype, such as the MHCII 

haplotype, these reports demonstrate the role of genetic background in the quality 

of the immunological response.   

 

There is no evidence relating to how the genetic background modulates the in vitro 

or in vivo development of Th17 cells. In order to investigate the relative effect the 

genetic background has on in vitro Th17 polarisation, the relative ability of 

DO11.10 or OT-II CD4+ T cells was compared. It should be noted at this point that 

apart from differences relating to the genetic background these two transgenic 

mouse strains differ in the affinity with which their TcR receptor recognises the 

same peptide (OVA323-339).  The OT-II mouse strain has a low affinity TcR, and 

recognises the same antigen as the transgenic TCR carried by DO11.10 transgenic 

mice, albeit presented by a different MHC II molecule (I-A
b
). The DO11.10 TCR 

carries the transgenic αβ TCR (Vα13/Vβ8) that also recognises OVA323-339, 

however, in the context of MHC class II I-A
d
 and has approximately 50 fold higher 

affinity for peptide/MHCII than OT-II(566;567). MACS sorted CD4
+
 cells from 

DO11.10 mice (BALB/c) or OT-II mice (C57BL/6) were cultured under Th17 

polarising conditions (1:1 APC:T cell ratio, IMDM culture media) and their 
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phenotype was assessed by intracellular cytokine staining (Fig 3.6).  There was no 

difference in the percentage of IL-17
+
 CD4

+
 T cells between DO11.10 and OT-II 

mice. In both cases the percentage of Th17 cells was consistently higher than 35% 

(Fig 3.6 b) suggesting that CD4
+
 T cells from both mouse strains have the same 

potential to polarise in vitro to a Th17 phenotype. 

 

3.3.4 Phenotypic characteristics of the in vitro Th1 and Th17 

populations 

 

Now that a reliable protocol for Th17 polarisation was established, the phenotypic 

characteristics of the polarised population were analysed in more detail. More 

specifically the presence of two other T helper subtypes, inducible TReg and TFH 

cells, was investigated. This is important as the presence or absence of either 

phenotype could have important impact in the pathogenesis of experimental 

arthritis, with TReg cells regulating the development of autoreactive responses and 

TFH supporting and exacerbating B cell responses(568-572).   

 

Immunological self tolerance is maintained at least in part by regulatory T cells that 

actively control potentially autoreactive T cells(385). There are various subtypes of 

regulatory T cells, such as naturally CD4
+
CD25

+
Foxp3

+
 TReg , IL-10 secreting Tr1 

cells, inducible CD4
+
CD25

+
Foxp3

+
 TReg cells, and TFGβ producing Th3 cells(530). 

Th17 and TReg developmental pathways share a reciprocal connection. Naïve T 

cells after TCR stimulation in the presence of TGFβ express Foxp3 and become 

TReg. However, as mentioned above, in the presence of TGFβ and IL-6/IL-21 these 

cells polarise to a Th17 phenotype. In order to investigate the presence of TReg in 

the Th1 or Th17 polarised population, polarised cells were analyzed for the 

expression of the transcription factor Foxp3 by intracellular flow cytometric 

analysis. Both Th1 and Th17 population included cells that expressed Foxp3 (Fig 

3.7). In addition there was no difference in the percentage of Foxp3
+
 cells between 

the two populations.  
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 TFH cells are defined by their mobilization from the T cell zone to the B cell 

follicle following antigenic priming, their unique cytokine signature and provision 

of B cell help(573). TFH cells can be distinguished from other T helper subsets by 

their sustained expression of CXCR5. The co-expression of CXCR5 with ICOS 

and/or PD-1 has proven a useful phenotypic profile to distinguish this T helper cell 

subset(573). In order to investigate the presence of follicular homing markers in the 

Th1 and Th17 polarised population, polarised cells were analyzed for the co-

expression of CXCR5 and ICOS (Fig 3.8). In both cases only a very small 

percentage (~2%) exhibited a TFH phenotype (Fig 3.8). These data demonstrate 

that both Th1 and Th17 polarised population are relatively free of other 

contaminating T helper subsets and only a very small percentage express markers 

specific for TReg and TFH cells. However, it should be noted that especially in the 

case of Th17 polarisation a significant proportion of the CD4
+
 did not produce 

either IL-17 or IFNγ (30-55%).   
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Fig 3.1: Th1 and Th17 polarisation using a 10:1 APC to T cell ratio.

CD4+ T cells from DO11.10 mice were cultured under or Th17 polarising conditions for

72hrs at a 10:1 APC:T cell ratio. The ability to produce IL-17 and/or IFNγ was assessed by

intracellular flow cytometry staining. Lymphocytes were identified based on the FSC and

SSC profile and transgenic T cells based on KJ1.26 staining and CD4 expression. Similar

results were obtained in three independent experiments.
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Fig 3.2: Th1 and Th17 polarisation using a 10:1 APC to T cell ratio.

CD4+ T cells from DO11.10 mice were cultured under or Th17 polarising conditions for

72hrs at a 10:1 APC:T cell ratio. Their ability to produce IL-17 (a), IFNγ (b) and IL-2 (c)

was assessed by ELISA of the culture supernatants. At the same time point the cells were

harvested and their number was determined using a heamocytometer (d). Data are presented

as mean±SE (a-c) or as mean (d). Similar results were acquired in two independent

experiments,***: p<0.001.

a) b)

c) d)

*** ***
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Fig 3.3: IL-2 blockade does not increase the percentage of CD4+IL-17+ cells.

CD4+ cells from DO11.10 mice were cultured under Th17 polarising conditions at a

10:1 APC:T cell ratio in the absence (a) or presence (b) of anti-IL-2 antibody. Their

ability to produce IL-17 and/or IFNγ was assessed by intracellular flow cytometry.

Lymphocytes were identified based on the FSC and SSC profile and transgenic T cells

based on KJ1.26 staining and CD4 expression. Similar results were acquired in two

independent experiments.
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a)

c)b)

Fig 3.4: The APC:T cell ratio is critical for Th17 polarisation.

a) MACS sorted CD4+ cells from DO11.10 mice were cultured under Th17 polarising

conditions at an APC:T cell ratio of either 10:1 (top panel) or 1:1 (lower panel). Their

ability to produce IL-17 and/or IFNγ was assessed by intracellular flow cytometry. b)

Scatter plot from individual experiments with CD4+ T cells from DO11.10 mice

polarised under Th17 conditions showing the percentage of IL-17+ CD4+ cells when the

APC:T cell ratio is 10:1 or 1:1 ; *:p<0.05.c) Scatter plot of from individual experiments

with CD4+ cells from DO11.10 mice polarised under Th1 conditions showing the

percentage of IFNγ+CD4+ cells when the APC:T cell ratio is 10:1(triangle) or

1:1(circle).
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Fig 3.5: IMDM culture media induces higher percentage of CD4+IL-17+

cells under Th17 polarising conditions.

MACS sorted CD4+ cells from DO11.10 mice were cultured towards a Th17

phenotype either in RPMI (a) or IMDM (b) complete media. Cells were harvested and

their ability to produce IL-17 and/or IFNγ was assessed by intracellular flow

cytometry. c) Scatter plot from individual experiments with CD4 T cells from

DO11.10 mice polarised under Th17 conditions showing the percentage of IL-17+

CD4+ cells in the presence of RPMI (circle) or IMDM (triangle), * p<0.05
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a)

b)

Fig 3.6: OT-2 and DO11.10 CD4+ T cells have equal ability to polarise to a

Th17 phenotype.

a) MACS sorted CD4+ cells from DO11.10 (top panel) or OT-II (bottom panel) mice

were cultured under Th17 conditions. Cells were harvested and their ability to produce

IL-17 and/or IFNγ was assessed by intracellular flow cytometry. b) Scatter plot from

individual experiments with CD4 T cells from DO11.10 (triangles) or OT-II (circles)

mice polarised under Th17 conditions showing the percentage of IL-17+ CD4+ cells.
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Fig 3.7: TREG marker expression in the Th1 and Th17 polarised populations.

MACS sorted CD4+ cells from DO11.10 mice were polarised under Th1 (top panel) or

Th17 (bottom panel) conditions. Cells were harvested and the expression of the TReg

specific transcription factor FoxP3 was analyzed by intracellular fluorescent cytometry.

Similar results were acquired by two independent experiments.

90



K
J1

.2
6

CD4

IC
O

S

CXCR5

S
S
C

FSC

IS
O

ISO

Fig 3.8: TFH marker expression in the Th1 and Th17 polarised populations.

MACS sorted CD4+ cells from DO11.10 mice were polarised under Th1 (top panel) or

Th17 (bottom panel) conditions. Cells were harvested and were analysed for the

expression of ICOS and CXCR5 by flow cytometry. Transgenic T cells that were double

positive for ICOS and CXCR5 were considered as TFH cells. These are representative

plots from two independent experiments.
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3.4 Discussion 
 

In this chapter, a reliable, consistent and robust Th17 polarisation protocol was 

developed. This process gave insights to the mechanistics of in vitro Th17 

generation. Firstly, it was demonstrated that Th17 generation is crucially dependent 

on the APC:T cell ratio, as high APC:T cell ratio inhibited the generation of Th17 

cells. This effect was not IL-2 dependent as inhibition of this cytokine did not 

increase the generation IL-17
+
 CD4

+
 cells. Only when the APC:T ratio was reduced 

to 1:1 there was a significant increase in Th17 cell generation. However, even in 

this case, the percentage of IL-17
+
 cells was highly variable. This was probably due 

to the use of RPMI media as when this was replaced by IMDM this dramatically 

increased the efficacy of Th17 differentiation and reduced its variability. In 

addition, it was confirmed that, at least in vitro, differences in the genetic 

background between BALB/c and C57BL/6 mouse strains do not have a significant 

impact in Th17 polarisation. Finally, it was demonstrated that the polarised 

population are mostly free of other Th subtypes and specifically TREG and TFH 

cells. 

 

The dramatic effect that the APC:T cell ratio had on Th17 polarisation could be 

attributed to the potency of TCR signaling, availability of MHCII-peptide 

complexes and/or co-stimulatory molecules. All of these factors have a crucial 

influence on the activation and proliferation of CD4+ T cells(560;561) and could 

potentially have an effect on Th cell differentiation. Relating to co-stimulatory 

molecule availability, it has been reported that CD28 co-stimulation exerts a 

negative regulation of Th17 differentiation and IL-17 production(555). This could 

potentially explain the effect the APC:T cell ratio has on Th17 polarisation, as in 

low APC:T cell ratio there will be greater competition for co-stimulatory molecules, 

and thus less CD28-ligation. In addition, when the same group used APC/T cell 

cultures, mature dendritic cells were less efficient than immature dendritic cells in 

their ability to support Th17 differentiation(555). Interestingly, they also showed 

that the inhibitory activity of CD28 was most potent when the TCR stimulus (anti-
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CD3 antibody in this case) was at its highest concentration, conditions that 

resemble a high APC:T cell ratio.  It should be noted that early studies on Th17 

generation have suggested an essential role for CD28 and ICOS in this 

process(285). However these studies employed only IL-23 driven Th17 cells which 

probably constitute a memory population and not de novo polarised T cells.  In a 

system using human cells it was demonstrated that low TCR stimulation favors 

greater in vitro Th17 stimulation compared with high, with more efficient Th17 

polarisation at lower APC:T ratios(554). Contrary to this published report, there are 

other studies, which indicate that at least IL-17 production from Th17 cells requires 

strong TCR stimulation(435).   CD4
+
 deficient in Itk, a tyrosine kinase required for 

full TCR-induced phospholipase-Cγ activation, exhibit a reduced IL-17 production 

both in vivo and in vitro, event though IL-17F production was not affected(435). In 

addition they demonstrated that optimum IL-17 production required TCR 

stimulation with high concentration of anti-CD3 antibody(435). Notably, IL-2 

blocking did not have any effect on the percentage of IL-17
+
 CD4

+
 cells when a 

10:1 APC:T cell ratio was used. It has been reported that IL-2 inhibits the 

generation of Th17 cells and promotes generation of TReg(419). In addition, CD28-

mediated inhibition of Th17 generation is IL-2-dependent(555). Probably in our 

system other factors, mainly APC:T cell ratio and culture media, are more 

important, rendering IL-2 inhibition unconsequential.   

   

Even though the modification of the APC:T cell ratio to 1:1 resulted in a significant 

increase of Th17 polarisation efficiency the percentage of IL-17
+
CD4

+
 cells was 

highly variable, ranging from ~10% to 40%. This could be overcome by the use of 

IMDM media, which resulted in significant increase of the efficacy of Th17 

polarisation and reduced variability. These data are in agreement with recent a 

recent study which reports that RPMI media supports low levels of Th17 

polarisation, whereas use of IMDM results in a higher Th17 expansion due to the 

higher concentration of aromatic amino acids that give rise to AhR agonists(562). 

The same group and others have reported that ligation of the AhR by agonists 

promotes Th17 differentiation(545;546). The link between the AhR and Th17 
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pathway could be of significant physiological importance. Autoimmune diseases 

are multifactorial conditions, where genetic background and environmental factors 

have central role.  As AhR is a responsive to many environmental pollutants it is 

intriguing to hypothesize that these factors may be involved in the development of 

autoimmune diseases through the enhancement of Th17 responses.     

 

After the establishment of a reliable Th17 protocol, the effect of the genetic 

differences between BALB/c and C57/BL6 mice was investigated. As the OVA 

TcR induced RA model can be employed in both strains it was very important to 

investigate how the genetic background of each mouse strain can influence in vitro 

Th17 polarisation. There was no difference in the percentage of IL-17
+
 CD4

+
 cells 

between the two mouse strains, suggesting that at least under strong polarising 

conditions the genetic characteristic of each mouse strain had little effect on Th17 

generation efficiency. These data are in agreement with studies investigating the 

effect of the genetic background on Th1/Th2 polarisation. In these studies it was 

shown that in vitro under strong polarising conditions the effect of genetic 

background is negligible(574). Under neutral conditions however, a predisposition 

towards Th1 or Th2 phenotype could be revealed(574). Thus it remains possible 

that under neutral conditions differences between the two strains may be detected. 

Apart from the genetic background, DO11.10 and OT-II mice differ in the affinity 

in which they recognise the OVA323-339 in the context of their respective MHCII 

molecules(566), with DO11.10 having higher affinity for the peptide compare with 

OT-II(566). This suggests that at least in vitro in highly polarising conditions the 

affinity of the TcR does not have any effect on Th17 polarisation. It should be 

noted, however, that in vivo it has been reported that as the functional avidity of the 

immunising peptide for the TCR/MHCII increases the Th17:Th1 ratio  

increases(553).  

 

From the experiment presented in this chapter it is very difficult to conclude which 

is the most critical factor that affects Th17 polarisation efficacy.  In vitro, it is 

probably a combination of factors relating to cytokine stimulation, TcR signaling 

94



 

 

and quality of co-stimulation. It is most probable that a plethora of factors, ranging 

from location of APC activation, the type of pathogen or damage associated 

molecules present, availability and type of antigen, cytokine milieu, and quality and 

kinetics of co-stimulation and TcR stimulation, would have a collective role in 

Th17 generation.  

 

    

Finally, in this chapter, the presence of TFH and TREG cells, in the polarised Th1 

and Th17 population were investigated. Especially in the case of Th17 polarisation, 

cytokines such as TGFβ and IL-6 have been reported to be important for the 

generation of inducible TReg and TFH cells respectively(385;575). IL-6 promotes 

the production of IL-21 from CD4
+
 cells which has been reported to promote both 

Th17 and TFH generation(370;454;576). However, in both Th1 and Th17 polarised 

population, there was minimal contamination from TREGand TFH cells. It would be 

interesting however to determine the cytokine, chemokine and chemokine receptor 

profile of the two population as this would give us clues for the functional and 

localisation potential after transfer.  

 

The Th17 protocol developed in this chapter was used to generate the Th17 

populations used for all the subsequent studies of this thesis.  
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Chapter 4: Potential role of 
Th17 effector cells in the 
initial events that lead to 
breach of self tolerance 
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4.1 Aim and rationale  

 

In this chapter the potential role of the Th17 effector T cells in the initial events that 

lead to the breach of self tolerance in experimental arthritis was investigated. While 

many studies on rheumatoid arthritis have focused on the active phase of the 

disease(219;501;512;577) the initial immunological events that lead to the 

underlying autoimmunity that precedes joint patholog   are relatively understudied. 

We previously developed a model of breach of self tolerance where a Th1 response 

to irrelevant antigen (OVA) results in arthropathy associated with spontaneous 

induction of autoreactive T and B cell responses(5). Due to the mounting evidence 

relating to Th17 cells in various autoimmunity models(8;9;285;477;578) we 

hypothesized that if Th17 played a significant role in the breach of self tolerance in 

experimental arthritis, the auto-antigen specific immune response in the Th1-

induced RA model would be characterized by IL-17-producing CD4
+
 cells. In 

addition, we hypothesized that a model induced by Th17 effector cells would be 

characterized by more potent autoimmune B and T cell responses that potentially 

could lead to a more severe clinical and histopathological image compared to the 

Th1 model. Furthermore, in this chapter, the phenotype, the kinetic characteristics, 

distribution and viability of the Th1 and Th17 transferred populations was analyzed. 

As such, in this chapter, the disease induced by Th1 cells was compared with that 

caused by Th17 cells and the immunological parameters associated with this were 

characterised.    

4.2 Introduction 

 

 

The pathogenesis of rheumatoid arthritis can be grossly subdivided into three 

phases(3). Genetically susceptible individuals, under the influence of various 

environmental factors develop an underlying autoimmunity which manifests with 

the production of various autoantibodies, such as rheumatoid factor and 

ACPA(3;130). This phase precedes any clinical manifestation in some cases even 

by 10 years(3;4). The mechanisms that mediate this are ill-defined, but the 
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association of molecules such as PTN22 and CTLA-4 with diseases 

pathogenesis(57;579), suggest a failure in aspects of both central and peripheral 

tolerance. This asymptomatic autoimmune phase is followed by a transitional stage, 

which leads to the development of the clinical symptoms of rheumatoid arthritis(3). 

The onset of the clinical disease leads the relative acellular synovial membrane to 

become hyperplastic and be infiltrated by a plethora of immune cells(1;130). Most 

studies of RA have focused their attention at the active, articular, phase of the 

disease. This is due to the availability of tissue from patients with active RA and 

from the development of a number of animal models, such as CIA, TNF transgenic 

mice, and AIA(219;501;577), that highly resemble this stage of the pathology. In 

addition, most treatments of RA are symptomatic and do not re-establish 

immunological tolerance. Thus, it would be more useful to understand the early 

events that lead to breach of self tolerance, with a target to re-educate the immune 

system and re-establish tolerance.  

 

 

As mentioned previously, the ultimate goal in all autoimmune disorders is to re-

establish immunological tolerance. This is very difficult, as patient studies are 

practically impossible to dissect the critical events mediating the initiation of self-

reactivity because these take place some times many years prior of the clinical 

diagnosis. Furthermore, many of the animal models of the disease are based on the 

aggressive immunisation of putative self-antigens (e.g. CIA), which do not 

resemble the early pre-articular phase of the disease and do not permit its 

analysis(123;580).   As mentioned previously in this thesis, a novel model of 

experimental arthritis has been developed in our lab that highly resembles the 

preclinical stage of the disease(5). Transfer of Th1-polarised OVA-specific-TcR-

transgenic CD4
+
 T cells, induces transient arthritis in mice challenged in the 

footpad with HAO, thus avoiding immunisation with a self antigen. This is 

characterized by a transient paw swelling, which lasts around 7-9 days, synovial 

hyperplasia and cartilage erosion proximal to the HAO challenged paw(5). 

However, the most important characteristic of this model is the breach of self-
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tolerance that is manifested by the generation of class-switched (IgG) 

autoantibodies, namely anti-CII antibodies, ACPA, RF and anti-DNA antibodies,  

and T cell responses against CII(5;6;168). It represents a model of preclinical or 

early arthritis, showing high similarities with the underlying autoimmunity that 

characterizes these stages of the disease. As such, it is a very useful tool in 

delineating the early immunological events that lead to the breach of self tolerance 

and was used through out this thesis to investigate the role of Th17 cells in these 

events.  

 

 It is still not clear whether RA is a Th1 or Th17 mediated disease. Studies in 

models such as the CIA, SKG and IL-1Ra KO revealed that the IL-23/Th17 axis is 

mediating pathogenesis though the production of cytokines such as IL-17 and IL-22 

(9;476-479). Furthermore, there is a well established role for IL-17 and Th17 in 

joint destruction and remodelling through the promotion of osteoclastogenesis and 

production of tissue degrading enzymes, such as MMP-1(176;481;482).  Other 

Th17-related cytokines have been reported to be involved in RA pathology. IL-21-

blockade ameliorates CIA in mice and rats, IL-21 receptor (IL-21R) deficient mice 

are protected from the development of arthritis in the autoimmune prone K/BxN 

model and in humans the IL-21R is expressed by RA synovial macrophages and 

fibroblasts(483-485). It should be noted however, that many of the Th17-related 

cytokines, such as IL-21, IL-22 and even IL-17 it-self, are not exclusively produced 

by Th17 cells, but from other cell types and effector T cells(286;486;487). Even, 

though the above studies suggest a role for Th17 in RA, other reports in human and 

animals, indicate a less significant role for these cells. The proteoglycan-induced 

model of arthritis, for example, is mediated by IFNγ-producing cells, and mice 

deficient for this cytokine develop significantly less severe pathology(488).  In 

humans, a study in Japan revealed that the frequency of Th17 cells was neither 

increased in RA patients nor correlated with arthritis severity, and was significantly 

decreased in joints compared to peripheral blood, unlike Th1 cells that were more 

abundant in the joint(489). It remains thus possible that the role of Th1/Th17 can 

differ according to disease subtype.  All the aforementioned studies, in animal 
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model and humans, are mainly focused in the articular phase of the disease. The 

role of Th17 cells in the events that lead to the breach of self tolerance, however, 

are ill defined and under-studied, as this stage of the disease is very difficult to be 

investigated.  

 

In this chapter, the model of breach of self tolerance was employed to investigate 

the role of Th17 in this phase of the disease. The phenotype of the autoimmune 

response was characterized and the relative ability of Th17 effector population 

compared to a Th1 to induce breach of self tolerance was investigated. Lastly, the 

phenotype, distribution and clonal expansion of the transferred Th1 and Th17 

populations were analyzed.   
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4.3 Results 

 

3.3.1 Phenotype of the Collagen-specific response in the Th1 
OVA TcR-induced RA model 

 

 

As mentioned above, there are a few studies that support a role for Th17 cells in the 

active phase of RA, and especially about the role of these cells and the cytokines 

they produce in joint damage and remodelling(9;12;478;581). On the other hand 

there is very little known about the role of these cells in the events that lead to the 

underlying autoimmunity that characterizes the early pathology of RA. Therefore, 

first of all, the involvement of Th17 responses was examined. It was hypothesised 

that if Th17 were involved in the events leading to the breach of self tolerance in 

this system, then it would be possible to detect self-antigen specific Th17 cells. In 

order to test this hypothesis, the phenotype of the anti-CII response developed in 

the Th1 OVA-TcR induced RA model was analyzed, in respect of IL-17 and/or 

IFNγ production. The model was employed as described in materials and methods 

and previously(5-7;514). In agreement with published studies(5-7), the mice 

developed a transient mono-arthritis, measured as paw swelling, which lasted 

approximately 7 days (Fig 4.1a). Seven days post footpad challenge mice were 

euthanized and B and T cell responses against OVA and CII were assessed (Fig 

4.1b-d). Both PBS and HAO challenged mice developed robust B cell responses 

against OVA in the form of anti-OVA IgG antibodies (Fig 4.1c), as both groups 

were immunised with OVA/CFA. More importantly, HAO challenged mice 

developed auto-reactivity in the form of B and T cell responses against CII that did 

not develop in the PBS challenged group (Fig 4.1b, d and Fig 4.2). In detail, HAO 

challenged mice developed significantly higher anti-CII IgG antibodies compared 

to the PBS challenged mice (Fig 4.1c). Furthermore, in an ex-vivo recall assay only 

CD4
+
 from draining LNs of HAO challenged mice proliferated when cultured in 

the presence of CII (Fig 4.1d and 4.2), whereas cells from PBS challenged mice did 

not. As expected, CD4
+
 cells from HAO challenged mice had a robust recall 
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response against OVA (Fig 4.1d and4.2). These data, demonstrate that by day 7 

post challenge the mice have already developed autoimmune B and T cell 

responses confirming previous studies(7). In order to characterize the phenotype of 

the CII specific T cells, cells from the draining LN were cultured in the presence of 

media, OVA or CII and their ability to produce IFNγ and/or IL-17 in response to 

these antigens was investigated by intracellular flow cytometry.  CD4
+ 

cells from 

PBS challenged mice did not produce either IFNγ or IL-17 in response to OVA or 

CII (Fig 4.3 and 4.4). The CD4
+
 response against OVA in the HAO challenged 

mice was characterized exclusively by IFNγ producing cells, whereas the 

percentage of IL-17
+
 CD4

+
 or IL-17

+
IFNγ

+
 CD4

+
 cells was not significantly higher 

from either the media control or the PBS-challenged mice (Fig 4.4a-c). Similarly, 

the CII CD4
+
was characterized only by IFNγ producing cells as the percentage of 

IL-17 or IL-17/IFNγ producers were not different from controls (Fig 4.4a-c). These 

results demonstrate that the phenotype of the self-specific response in the Th1 OVA 

TcR-induced RA model is of a Th1 type with no apparent involvement of Th17 

cells.  

 

4.3.2 Effect of adjuvant in the development the Th1 OVA-TCR-
induced RA model  

 

The fact that the OVA-TcR-induced arthritis model is mediated by a highly 

polarised Th1 population might bias the developing primary auto-immune response 

towards a Th1 phenotype, inhibiting any developing Th17 cells. Indeed, IFNγ has 

been reported to inhibit development of Th17 cells(412). APCs, such as DCs, have 

been proposed to be the source of Th17 polarising cytokines(413;582), however the 

nature of the stimuli that drives the production of this cytokines is not very clear. It 

has been reported that mouse DCs stimulated via TLR4 or dectin-1 induced Th17 

polarisation(413;463). The latter especially is particularly interesting in the context 

of experimental arthritis. Dectin-1 is a C-type lectin, which when binds to yeast β-

glucans, such as curdlan, induces DC maturation and the production of copious 

amounts of IL-6, TNF and IL-23, but little IL-12, promoting Th17 polarisation in 

vitro, and both Th1 and Th17 polarisation in vivo(463). More importantly, curdlan 
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induces robust arthritis in SKG mice kept in pathogen-free condition that are 

normally resistant to disease development(82). Interestingly, even BALB/c control 

mice developed arthritic symptoms after curdlan (CUR) administration, albeit in a 

mild form(82). Furthermore, the β-glucan mediated arthritis in the SKG model was 

accompanied by an increase in the percentage of IL-17
+
CD4

+
 cells(477). Based on 

this data it was hypothesized that substitution of CFA with CUR in the Th1 OVA-

TcR-induced arthritis model could potentially skew the developing autoreactive 

response to a Th17 phenotype that would possibly be accompanied by more severe 

clinical and histological signs of disease. The Th1 OVA-TcR induced RA model 

was employed as before but in this case mice were immunised either with 

OVA/CFA or with OVA/CUR. Ten days after immunisation mice were challenged 

in the footpad with HAO and arthritis was assessed for 7 days. Both CFA and CUR 

immunised animals developed similar levels of arthritis that lasted approximately 

seven days (Fig 4.5a). In addition, histological analysis did not reveal any 

difference between the CFA and CUR/OVA immunised HAO challenged mice, 

with both developing only mild synovitis (Fig 4.5b and c). As expected, PBS 

challenged mice did not develop clinical or histological signs of arthritis (Fig 4.5). 

When sera from the blood was analyzed for anti-CII antibodies, both CUR and 

CFA/OVA immunised mice that were challenged with HAO developed anti-CII 

antibodies in titres significantly higher that the PBS challenged mice (Fig 4.6a). 

Furthermore, HAO challenged mice from both CFA and CUR/OVA immunised 

mice developed proliferative T cell responses against CII, significantly higher than 

the PBS challenged mice (Fig 4.6b). These data demonstrate that both models 

develop B and T cell autoreactivity. There was no difference between the two 

adjuvants in respect of the T cell response against OVA, suggesting an equal ability 

to prime an adaptive immune response for both CUR and CFA. Interestingly, when 

the supernatant from the proliferation assay was analyzed for the presence of IL-17, 

only very low levels of this cytokine could be detected in response to OVA or CII, 

in either CUR or CFA/OVA immunised mice. This suggests that CUR did not skew 

the autoreactive response to a Th17 phenotype (Fig 4.6c). 
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There are reports that suggest that CUR can induce both Th1 and Th17 cells in 

vivo(463). In order to investigate relative ability of CFA and CUR to induce in vivo 

Th17 generation, MACS sorted CD4
+
 from DO11.10 mice were adoptively 

transferred to BALB/c mice and were then immunised with either CFA or 

CUR/OVA. Seven days after immunisation mice were euthanized and the ability of 

the transferred and host CD4
+
 to produce IL-17 or/and IFNγ was investigated. 

Notably, only a very small percentage of the transferred transgenic T cells produced 

IL-17 or IFNγ in response to either CFA or CUR/OVA (Fig 4.7a-top panel, b and c).  

The two adjuvants had a similar effect in the host CD4
+
population (i.e. 

CD4
+
KJ1.26

NEG
), inducing only a small percentage of IL- or IFNγ. These data 

demonstrate that CUR does not preferentially prime unpolarised T cells towards a 

Th17 phenotype in vivo. As the breach of tolerance in the arthritis model is 

mediated by polarised OVA-specific Th1 cells, the relative effect of CUR and CFA 

on the phenotype of the transferred transgenic T cells was investigated. Th1 

polarised CD4
+ 

from DO11.10 mice were adoptively transferred to BALC/c mice, 

which were then immunised with OVA/CFA or OVA/CUR. Five days after 

immunisation mice were euthanized and cells from the draining LNs (axillary) were 

analyzed for the production of IFNγ and/or IL-17 by flow cytometry (Fig 4.8). The 

transferred Th1 population retained, albeit at lower percentage IFNγ production in 

response to both OVA/CFA and OVA/CUR (Fig 4.8b). More importantly, none of 

the adjuvants induced the production of IL-17 from the transferred T cells (Fig 

4.8c).  

 

These data demonstrate that CUR and CFA, when employed to the Th1 OVA-TcR 

induced RA model as adjuvants, result in the development of similar clinical and 

histological signs of arthritis. In both cases, HAO challenge results in the breach of 

self as demonstrated by CII B and T cell responses. In contrast to published 

reports(463), this data did not demonstrate any in vivo Th17 polarisation ability by 

CUR or CFA. In addition, CUR did not alter the phenotype of polarised Th1 cells, 

which retained IFNγ production and failed to produce any IL-17 after adoptive 

transfer.  
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4.3.3 Relative ability of Th1 and Th17 cell to induce breach of self 
tolerance in the OVA-TcR-induced arthritis model 

 

So far in this chapter it has been confirmed that Th1 polarised CD4
+
 of an irrelevant 

specificity can induce the development of transient arthritis, but most importantly 

autoreactivity, in the form of T and B cell responses against CII. The phenotype of 

the CII specific T cell response was characterized by the production of IFNγ, and 

by the absence of IL-17 producing CD4
+
. This disproves part of our original 

hypothesis, which stated that if Th17 cells were playing a part in the breach of self 

tolerance that develops in the Th1 model, the autoreactive T cell response would be 

partly or fully of a Th17 type. It is however possible that the highly polarised Th1 

cells that mediate the autoreactivity might skew the developing T cell self-response 

towards a Th1 phenotype. Using curdlan, a yeast β-glucan that has been reported to 

act as a Th17 adjuvant and to induce arthritis(82;463), did lead to breach of self 

tolerance, but did not alter the Th1 phenotype of the autoreactive response.  As in 

some other models, such as the CIA, IFNγ responses are considered regulatory, it 

was hypothesized that if the model was induced by a Th17 polarised population, 

this would potentially mediate a more robust breach of self tolerance, e.g. higher 

anti-CII T-cell responses, and more severe and chronic clinical disease.  In order to 

test this, the relative ability of Th1 and Th17 polarised populations in mediating the 

breach of self tolerance in the OVA-TcR-induced model was compared. Th1 or 

Th17 polarised CD4
+
 population (Fig 4.9a) from DO11.10 mice were adoptively 

transferred into BALB/c mice, which were then immunised with OVA/CFA and 

challenged in the footpad with HAO. Control mice were challenged with PBS. Both 

Th1 and Th17 recipient HAO-challenged mice developed similar levels of transient 

mono-arthritis, as demonstrated by clinical score and paw swelling (Fig 4.9b-c). 

PBS challenged mice did not develop any clinical signs of arthritis (Fig 4.9b-c). 

Similarly, there were no histological differences between the two models, as only 

HAO challenged mice developed very mild synovitis, in both Th1 and Th17 
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recipient mice (Figd4.9d and 4.10). On the other hand, none of the PBS challenged 

mice developed histological signs of the disease (Fig 4.9d and 4.10).  

 

The development of autoreactivity in the form of T cell responses against CII was 

then investigated (Fig 4.11). Cells from draining LNs from PBS or HAO 

challenged mice were cultured in the presence of OVA, CII or no antigen and their 

ability to proliferate was assessed using the Click-iT EDU proliferation assay. As 

expected cells from HAO challenged mice of Th1 or Th17 recipients proliferated 

robustly in response to OVA (Fig4.11a-b). Crucially, cells from both Th1 and Th17 

recipients challenged with HAO proliferated to a similar degree in response to CII 

(Fig 4.11a-b). Cells from PBS challenged mice that either received Th1 or Th17 

cells did not proliferate in response to either OVA or CII.  

 

It has been previously demonstrated in this chapter that Th1 cells mediate breach of 

self tolerance in the form of IgG anti-CII antibodies, whereas our group has also 

reported the presence of ACPA in the Th1 OVA-TcR-induced arthritis model(6). 

Thus the presence of these antibodies was investigated in the Th17 OVA-TcR-

induced model (Fig 4.12a and b). As in the Th1 model, Th17 recipients challenged 

with HAO developed both anti-CII and ACPA antibodies in titers significantly 

higher than PBS challenged mice (Fig 4.12). Unfortunately, due to inconsistency in 

the development of the autoreactive T and B cell responses in both Th1 and Th17 

models, it was not possible to directly compare the titres of these antibodies 

between the two models.  

 

These data clearly demonstrate that both Th1 and Th17 populations can mediate 

similar levels of pathology, but more importantly can both breach  B and T cell self 

tolerance. However, our data do not demonstrate a relative advantage of Th17 in 

inducing more robust auto-reactive response or more severe pathology.  
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4.3.4 Phenotype of the Collagen-specific response in the Th17 
OVA-TcR-induced RA model 

 

Previously in this chapter, it was reported that the CII T cell response in the Th1 

OVA-TcR-induced RA model is of a Th1 phenotype. Even though, these data so far 

demonstrate any differences between the two models, it was still possible that the 

phenotype of the auto-reactive T cell response might differ between them.  Cells 

from draining LNs from HAO or PBS challenged Th17 recipient mice were 

cultured with OVA, CII or no antigen for 72 hours and the ability of the CD4
+ 

to 

produce either IL-17 and/or IFNγ was analyzed by flow cytometry (Fig 4.13). 

CD4
+
 from PBS challenged mice failed to produce either cytokine in response to 

the stimulating antigens (Fig 4.13a-top panel, b-d). Surprisingly, CD4
+
 cells from 

HAO challenged mice failed to produce IL-17 in response to OVA, however they 

produced high amounts of IFNγ (Fig 4.13a-bottom panel, b-d). More interestingly, 

in response to CII, CD4
+
 produced only IFNγ, and no IL-17 or IL-17/IFNγ 

producers were detected. These data demonstrate that, as in the case of the Th1-

induced model, the CII-specific CD4
+
 response in the Th17-induced model is of a 

Th1 type. Moreover, unlike the Th1-model, the OVA-specific response, did not 

retain the phenotype of the Th17 transferred transgenic population, but acquired a 

Th1 phenotype.                     

 

4.3.5 Presence of FOXP3+ cell in the Th1 and Th17 OVA-TcR-
induced arthritis models 

 

In both the Th1 and Th17 models, a B and T cell breach of self tolerance occurs, 

suggesting a failure in some aspect of peripheral tolerance.  TREG cells are crucial 

for preventing generalized autoimmunity and their importance have been 

demonstrated in various models of autoimmune disease such as multiple sclerosis 

and arthritis(570;583). Furthermore there is reciprocality in the development of 

TREG or Th17 cells that depends on the cytokine milieu(413;414). In order to 

investigate if the breach of self tolerance in the Th1 and Th17 models is related to a 

failure of the development of TREG cells the presence of these cells was assessed. 
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As mentioned in the previous chapter, the transcription factor FOXP3 is crucial for 

the commitment of cells to the TREG lineage. Thus, this marker was used to identify 

these cells. Th1 or Th17 OVA-TcR-induced RA models were developed as 

previously described, and seven days post-footpad challenge cells from the dLNs 

were analyzed for the presence of FOXP3 expressing CD4
+
 cells by flow cytometry 

(Fig 4.14). CD4
+
 FOXP3

+
 cell could be identified in both Th1 and Th17 models, 

irrespective if the mice were challenged with HAO or PBS. Even though the 

percentage of CD4
+
FOXP3

+
 cells did not differ between the groups, HAO 

challenged mice exhibited increased numbers of TREG cells compared to PBS 

challenged mice (Fig 4.14b and c). More interestingly, Th17 HAO challenged 

recipients had significantly higher numbers of FOXP3
+
 T cells than their Th1 

counterparts (Fig 4.14c). These data demonstrate that in both Th1 and Th17 models 

the development of auto-reactivity cannot be attributed to a failure of TREG cell 

generation. It should be noted however that the functionality of these cells was not 

formally tested, thus it remains possible that impaired regulatory activity of these 

cells might account for the development of auto-reactivity.      

 

 

4.3.6 Phenotype, kinetics and distribution of the transferred Th1 
and Th17 trangenic CD4+ population  

 

 

An observation of this chapter is the Th1 phenotype of both the OVA and CII CD4
+
 

response in the Th17-induced model. Especially the predominant IFNγ response 

against OVA is quite intriguing as these animals received trangenic Th17 cells 

specific for this antigen. As mentioned in the introduction of this thesis, a 

characteristic of in vitro polarised Th17 cells is their phenotypic plasticity, and their 

transformation to a Th1-like cell type(492;493). In addition, as the number of Th 

subtypes has increased the idea of CD4
+
 plasticity is now considered an established 

concept for other subsets(584). It should be noted that for some subsets such as 

Treg reports have suggested that they have a stable phenotype in vivo(585). It is 

thus important to investigate the phenotype of the Th1 and Th17 transferred 
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populations that mediate the breach of tolerance, as this may change after transfer. 

Furthermore, as the transgenic Th populations mediate the pathology and are 

necessary for the development of the breach of tolerance(5), it is important to 

investigate the kinetics and their distribution, before HAO challenge. This could 

give mechanistic information as to how these cells mediate breach of self tolerance.  

 

 In order to investigate the phenotype of the transferred population, Th1 or Th17 

polarised cells from DO11.10 mice were adoptively transferred in to BALB/c mice, 

which were then immunised with OVA/CFA or PBS. Mice were culled at days 3, 7 

and 10 post-immunisation and draining LNs (axillary and brachial) were removed. 

Cells from the draining LNs were stimulated with PMA and ionomycin, to induce 

synchronous cytokine production and the ability of the transgenic T cells to 

produce IL-17 or/and IFNγ was assessed by flow cytometry (4.15). Transgenic T 

cells were identified based on the expression of CD4
+
 and the DO11.10 TCR, 

which is identified by the KJ1.26 monoclonal antibody. In immunised animals, the 

transferred Th1 cells continued to produce IFNγ, in a reducing rate that was 

stabilized after day 7 (Fig 4.16). These cells produced minimal amounts of IL-17 

the first two time points investigated, however at day 10 the percentage of IL-17
+
 

transgenic T cells was significantly higher than at day 3 and 7 (Day 3: 0.54± 0.25, 

Day 7: 1.01± 0.29, Day 10: 5.02± 0.63, Day 10 vs. Day 3: p<0.001, Day 10 vs. Day 

7: p<0.001, n=3, data presented as mean±SD) (Fig 4.16b). In unimmunised mice, 

the kinetics of IFNγ production by the transferred population was similar to the 

immunised mice, contrary to IL-17 production which is minimal at all time points. 

On the other hand, the Th17 transferred population in OVA/CFA immunised mice 

experienced a sharp reduction in the percentage of IL-17
+
 cells with an 83.01% 

reduction by day 3 (Day 0: 50.03± 17.17, Day 3: 8.4± 0.60) compared to the 

original percentage. After day 3 the percentage of IL-17
+
 transgenic cells remained 

relatively stable at around 5% (Day 3: 8.4± 0.60, Day 7: 5.23± 1.77, Day 10: 5.77± 

2.35, n=3 data presented as mean±SD) (Fig 4.12c). The proportion of IFNγ-

producing transgenic T cells was not affected by the transfer and remained 

relatively low (Day 0: 2.88± 0.79, Day 3: 1.30± 0.21 Day 7: 2.41± 0.30 Day 10: 
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4.51± 1.98, n=3, data presented as mean±SD).  Similarly, in unimmunised mice, the 

percentage of IL-17
+
 transgenic T cells was dramatically reduced (Day 0: 50.03± 

17.17, Day 3: 4.67 ±1.12, Day 7:  1.12± 0.28, Day 10: 2.67± 2.09, n=3, data 

presented as mean±SD) after transfer (Fig 4.16c). Interestingly, however, the 

percentage of IFNγ
+
 cells in the transferred population gradually increased and by 

day 10 it was similar to the percentage of the Th1 transferred population (Day 0: 

2.88± 0.79, Day 3: 1.10± 0.92, Day 7: 4.26± 0.59, Day 10: 24.98± 4.570, Day 0 vs. 

Day 10, p<0.001, Day 3 vs. Day 10, p<0.001, Day 7 vs. Day 10, p<0.001, n=3, data 

presented as mean±SD) (Fig 4.16b), suggesting a spontaneous IFNγ production by 

these cells at this time-point.  

 

It was demonstrated previously in this study that CUR had similar effects to CFA in 

polarised Th1 cells (Fig 4.6). In addition, it was also that the adoptively transferred 

Th17 population rapidly loses its ability to produce IL-17. As CUR has been shown 

to drive Th17 responses in vivo and in vitro its effect on adoptively transferred in 

vitro polarised Th17 population was tested, hypothesising that it might stabilize 

their phenotype. As before, DO11.10 cells polarised under Th17 conditions were 

adoptively transferred to BALB/c mice that were then immunised with either 

OVA/CFA or OVA/CUR. The phenotype of the transferred population was 

assessed five days after immunisation by flow cytometry (Fig 4.17a and b). 

Similarly to CFA, CUR failed to maintain a high percentage of IL-17
+
 transgenic 

cells in the transferred population. As in the case of CFA, this was not followed by 

an increase on the percentage if IFNγ producing cells.      

 

The relative expansion and distribution of the transferred Th1 and Th17 polarised 

population was then investigated. Three different secondary lymphoid organs were 

analyzed, the draining LNs (axillary and brachial), the spleen to investigate 

systemic responses and the mesenteric LNs (mLNs) as a more distal site. As before, 

Th1 or Th17 polarised CD4
+
 from DO11.10 mice were transferred to BALB/c mice, 

which were then immunised with OVA/CFA or PBS. At days 3, 7 and 10 post-

immunisation cells from draining LNs, spleen and mLNs were analyzed for the 
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presence of the transferred transgenic T cells (Fig 4.18). Unfortunately, due to 

technical issues relating to the emulsion nature of the adjuvant (CFA) it was not 

possible to isolate any cells from the site of injection. As expected, in unimmunised 

mice that had received either Th1 or Th17 populations, in all sites investigated, 

there was no expansion of the transgenic T cells, which became almost 

undetectable by day 10 (Fig 4.18). In immunised, animals on the other hand, Th17 

polarised cells expanded to a higher degree compared to the Th1 polarised 

population, as shown by both the number and percentage of transgenic T cells, in 

all organs examined. This was very prominent it the spleen, where cells polarised 

under Th17 conditions accumulated in high numbers and persisted at the site even 

at the latest time-point investigated (Fig 4.18b and e). Cells polarised under Th1 

conditions accumulated mainly in the draining LNs where their numbers probably 

peacked between day 3 and day 7, and were reduced to levels of unimmunised mice 

by day 10 (Fig 4.18a and d). In contrast, cells polarised under Th17 conditions 

accumulated in the dLNs and persisted at the site in high number even at the last 

time-point investigated (Day 10) (Fig 4.18b and e). Interestingly in immunised 

mice, cells polarised under Th17 conditions could be detected in high numbers and 

constituted a significant percentage of CD4
+ 

cells in mLNs at days 3 and 7, 

something that was not observed with cells polarised under Th1 conditions. These 

data demonstrate that the two populations differ greatly in their distribution, 

expansion and kinetics, with cells polarised under Th17 conditions expanding in a 

greater degree than the Th1 population, distributing widely in all organs examined 

and persisting in the dLNs and spleen even ten days after immunisation.  

 

4.3.7 Relative viability of cells polarised under Th1 and Th17 
conditions  

 

Differences in viability of the cells polarised under Th17 conditions relative to cells 

polarised under Th1 conditions, might be a possible explanation for the greater 

expansion and persistence of the former. In order to investigate this possibility, 

CD4
+
 cells from DO11.10 mice were polarised under Th1 or Th17 conditions for 
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72hrs, rested in the absence of any TcR stimulus or polarising cytokine for 24hrs, 

and cultured in the absence or presence of bone marrow derived DCs. The bone 

marrow DCs were either in a resting state, with or with out antigen or LPS-

activated in the presence of OVA323-339 (Fig 4.19 and 4.20). The viability of the 

transgenic T cells was analyzed at two time-points, 24 and 48hrs, by annexin V and 

propidium iodide (PI) staining by flow cytometry. Cells negative for both annexin 

V and PI staining were considered viable. In the absence of antigen, independently 

of the presence of DCs, cells polarised under Th17 conditions were more viable 

than the Th1 counterparts, at both time-points investigated. Similarly, in the 

presence of antigen, cells polarised under Th17 conditions were more viable 

compared to the Th1 population, especially at 48hrs. In both Th1 and Th17 

population the presence of antigen resulted in a significant reduction of the 

percentage of viable cells, compared to condition of antigen absence, suggesting 

activation-induced cell death (AICD)(Fig 4.14b and c). These data demonstrate, 

that cells polarised under Th17 conditions are more viable that Th1 polarised cells. 

This is possibly not only due to differences in AICD, as the Th17 population is 

more viable even in the absence of a TcR stimulus.   
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a) c)

b) d)

Fig 4.1: Breach of tolerance in the Th1 OVA-TcR induced RA model.

Th1 cells from DO11.10 mice were transferred to BALB/c recipients, which were then

immunised with OVA/CFA. Ten days after immunisation recipient mice were challenged in

the hind paw with HAO. Control mice received PBS. Arthritis was assessed for 7 days by

measuring the difference in paw thickness between the challenged and unchallenged paw

(a). Antibody responses against OVA (total IgG) and CII (total IgG) were analysed by

ELISA (b and c). Cells from the draining LN were cultured for 72hrs in the presence of

either media, OVA or CII and the ability of CD4+ cells to proliferate in response to them

was assessed using the Click-iT EDU proliferation assay by flow cytometry (d). Populations

were gated on lymphocytes based on the FSC and SSC profile and then CD4+ T cells based

on CD4 expression. Data represent mean ±SEM.*p<0.05, **p<0.01, ***p<0.001 (n=5).
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Fig 4.2: Breach of tolerance in the Th1 OVA-TcR induced RA model.

Th1 cells from DO11.10 mice were transferred to BALB/c recipients, which were

then immunised with OVA/CFA. Ten days after immunisation recipient mice were

challenged in the hind paw with HAO. Control mice received PBS. Cells from the

draining LN were cultured for 72hrs in the presence of either media, OVA or CII

and the ability of CD4+ cells to proliferate in response to them was assessed using

the Click-iT EDU proliferation assay by flow cytometry. Populations were gated on

lymphocytes based on the FSC and SSC profile and then CD4+ T cells based on

CD4 expression. Similar results were obtained in 3independent experiments.
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Fig 4.3: Phenotype of Collagen II T cell response in the Th1 OVA-TCR

induced RA model

Th1 cells from DO11.10 mice were transferred to BALB/c recipients, which were then

immunised with OVA/CFA. Ten days after immunisation recipient mice were challenged

in the hind paw with HAO. Control mice received PBS. Mice were culled 7 days after and

cells from the draining LN were cultured for 72hrs in the presence of either media, OVA

or CII and their ability to produce IL-17 and/or IFNγ was assessed by intracellular

fluorescent cytometry staining. Representative fluorescent cytometry plots demonstrating

the production of IL-17 and/or IFNγ by CD4+ cells from a draining LN of a PBS (top

panel) or a HAO (bottom panel) challenged mouse. Populations were gated on

lymphocytes based on the FSC and SSC profile and then CD4+ T cells based on CD4

expression. Similar results were obtained in one more experiment.
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Fig 4.4: Phenotype of Collagen II T cell response in the Th1 OVA-TCR

induced RA model

The Th1 OVA-TcR induced RA model was employed as described in materials and

methods. Mice were culled 7 days after challenge and cells from the draining LN were

cultured for 72hrs in the presence of either media, OVA or CII and their ability to produce

IL-17 and/or IFNγ was assessed by intracellular fluorescent cytometry staining. Collective

fluorescent cytometry data demonstrating the production of IFNγ (a), IL-17 (b), IFNγ and

IL-17 (c) by CD4+ cells from draining LN of PBS (grey bars) or HAO (black bars)

challenged mice. Data represent mean ±SEM.*p<0.05, **p<0.01, ***p<0.001 (n=5).
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i) ii)

iii) iv)

v) vi)

vii) viii)

a) b)

Fig 4.5: The relative effect of curdlan compared to CFA in the induction of

breach of tolerance in experimental arthritis.

Th1 cells from DO11.10 mice (a) were transferred to BALB/c recipients, which were then

immunised with OVA/CFA or OVA/CUR. Ten days after immunisation recipient mice were

challenged in the hind paw with HAO. Control mice received PBS. Arthritis was assessed for

7 days by measuring the differencing in thickness between the challenged and unchallenged

paw (a). Ankle joints from challenged hind paws were stained (H&E and toluidine blue) and

section were assessed for histological signs of arthritis (b and c). Data represent mean, n=5. c)

H&E (i,iii,v,vii) and toluidine blue (ii, iv, vi, viii) of ankle joints from CFA (i and ii) and CUR

(iii and iv) immunised mice challenged with PBS or CFA (v and vi) and CUR (vii and viii)

immunised mice challenged with HAO. Original magnification (x10). CFA/HAO

vs.CFA/PBS:*, ***: p<0.001, CUR/HAO vs. CUR/PBS:+, +++ :p<0.001, n=5.
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Fig 4.6: The relative effect of curdlan compared to CFA in the induction of

breach of tolerance in experimental arthritis.

Th1 cells from DO11.10 mice were transferred to BALB/c recipients, which were then

immunised with OVA/CFA or Cur/OVA. Ten days after immunisation recipient mice were

challenged in the hind paw with HAO. Control mice received PBS. a) Antibody responses

against CII (total IgG) were analysed by ELISA of the blood serum. b) Cells from the

draining LN were cultured for 72hrs in the presence of either media, OVA or CII and the

ability to proliferate was analyzed using the Click-iT EDU proliferation assay.

Lymphocytes were identified based on the FSC and SSC profile and then CD4+ T cells

based on CD4 expression. c) Cells from the draining LN were cultured for 72hrs in the

presence of either media, OVA or CII and the ability to produce IL-17 was assessed by

ELISA analysis of the culture supernatants Data represent mean ±SEM.*,+ p<0.05, **,

++p<0.01, ***, +++p<0.001 (n=5).
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Fig 4.7: Relative ability of curdlan and CFA in promoting in vivo Th1/Th17

responses

CD4+ cells from DO11.10 mice were transferred to BALB/c recipients, which were then

immunised with OVA/CFA or Cur/OVA. Seven days after immunisation the mice were

euthanised and cells from draining LNs were stimulated with PMA/ionomycin and their

ability to produce IL-17 and IFNγ was assessed by flow cytometry (a-e). Lymphocytes

were identified based on the FSC and SSC profile and then were gated according to the

expression of CD4 and KJ1.26 into CD4+KJNEG (a-bottom panel, d and e) or CD4+KJ+

(a-top panel, b and c) populations. Data represent mean ±SEM (n=3).
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Fig 4.8: Effect on curdlan and CFA on adoptively transferred Th1

polarised cells

Th1 polarised CD4+ cells ((a) left panel) from DO11.10 mice were transferred to

BALB/c recipients, which were then immunised with OVA/CFA or Cur/OVA. Five

days after immunisation the mice were euthanised and cells from draining LNs were

stimulated with PMA/ionomycin and their ability to produce IL-17 and IFNγ was

assessed by flow cytometry (a-c). Lymphocytes were identified based on the FSC and

SSC profile and transgenic T cells based on KJ1.26 staining and CD4 expression.

(n=4).
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Fig 4.9: Relative ability of Th1 and Th17 cells to induce clinical and histological

signs of experimental arthritis

Th1 or Th17 cells from DO11.10 mice (a) were transferred to BALB/c recipients, which

were then immunised with OVA/CFA. Ten days after immunisation recipient mice were

challenged in the hind paw with HAO. Control mice received PBS. b-c) Arthritis was

assessed for 7 days by measuring the difference in paw thickness between the challenged

and unchallenged paw (b) and clinical score (c). Data represent mean ±SEM, n=5. d)Ankle

joints from challenged hind paws were stained (H&E and toluidine blue) and sections were

assessed for histological signs of arthritis. Data represent mean, n=5. Th1/PBS vs.

Th1/HAO:*,*<0.05, **<0.01, ***<0.001, Th17/PBS vs. Th17/HAO: +, +<0.05, ++<0.01,

+++<0.001
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i) ii)

iii) iv)

v) vi)

vii) viii)

Fig 4.10: Histological signs of arthritis in the Th1 and Th17-induced models

H&E (i,iii,v,vii) and toluidine blue (ii, iv, vi, viii) of ankle joints from Th1 (i and ii) and

Th17 (iii and iv) recipient mice challenged with PBS or Th1 (v and vi) and Th17 (vii and

viii) recipient mice challenged with HAO. Original magnification (x10).
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Fig 4.11: Relative ability of Th1 and Th17 cells to mediate breach of self

tolerance in experimental arthritis

Th1 or Th17 cells from DO11.10 mice were transferred to BALB/c recipients, which

were then immunised with OVA/CFA. Ten days after immunisation recipient mice were

challenged in the hind paw with HAO. Control mice received PBS. Seven days after

challenge cells from draining LNs were cultured for 72hrs in the presence of either media,

OVA or CII and the ability of CD4+ cells to proliferate in response to them was assessed

using the Click-iT EDU proliferation assay by flow cytometry (a and b). Lymphocytes

were identified based on the FSC and SSC profile and then CD4 T cells based on CD4

expression. Data represent mean ±SEM.*p<0.05, **p<0.01, ***p<0.001 (n=5).
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Fig 4.12: Breach of self tolerance in the Th17-induced RA model: anti-CII

antibodies and ACPA

Th17 cells from DO11.10 mice were transferred to BALB/c recipients, which were

then immunised with OVA/CFA. Ten days after immunisation recipient mice were

challenged in the hind paw with HAO. Control mice received PBS. Seven days after

challenge mice were euthanised and serum from blood was analysed for the presence

of anti-CII (a) and ACPA (b) IgG antibodies by ELISA. Data represent mean

±SEM.*p<0.05, **p<0.01, ***p<0.001 (n=5).
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Fig 4.13: Phenotype of Collagen II T cell response in the Th17 OVA-TCR

induced RA model

Th17 cells from DO11.10 mice were transferred to BALB/c recipients, which were then

immunised with OVA/CFA. Ten days after immunisation recipient mice were challenged in

the hind paw with HAO. Control mice received PBS. Mice were culled 7 days after and

cells from the draining LN were cultured for 72hrs in the presence of either media, OVA or

CII their ability to produce IL-17 and/or IFNγ was assessed by intracellular flow cytometry

staining. a) Representative fluorescent cytometry plots demonstrating the production of IL-

17 or/and IFNγ by CD4+ cells from a draining LN of a PBS (top panel) or a HAO (bottom

panel) challenged mouse. Lymphocytes were identified based on the FSC and SSC profile

and then CD4+ T cells based on CD4 expression.b-d) Collective fluorescent cytometry data

demonstrating the production of IFNγ (b), IL-17 (c), IFNγ and IL-17 by CD4+ cells from

draining LNs of PBS (grey bars) or HAO (black bars) challenged mice. Data represent

mean ±SEM.*p<0.05, **p<0.01, ***p<0.001 (n=8).
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Fig 4.14:Presence of FOXP3+ CD4+ in the Th1 and Th17 OVA-TcR induced

arthritis models

Th1 or Th17 cells from DO11.10 mice were transferred to BALB/c recipients, which were

then immunised with OVA/CFA. Ten days after immunisation recipient mice were

challenged in the hind paw with HAO. Control mice received PBS. At day 7 post challenge

mice cells from draining LNs (popliteal) were analysed for the expression of the regulatory

marker FOXP3 by flow cytometry. a) Representative flow cytometry plots demonstrating

FOXP3 expression from CD4+ cells from Th1 (top panel) or Th17 (bottom panel) recipient

mice challenged with PBS (left panel) or HAO (right panel). Lymphocytes were identified

based on the FSC and SSC profile and then CD4+ T cells based on CD4 expression.b)

Collective flow cytometry data demonstrating the % of CD4+ FOXP3+ cells. c) Number of

CD4+ FOXP3+ cells in Th1 or Th17 recipients challenged with PBS or HAO. Data represent

mean ±SEM.*p<0.05, **p<0.01, ***p<0.001 (n=5).
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Fig 4.15: Phenotype of Th1 and Th17 polarised population after adoptive

transfer.

Th1 or Th17 polarised CD4+ cells from DO11.10 mice were adoptively transferred to

BALB/c mice, which where then immunised with OVA in CFA. Control mice received

PBS. Mice were euthanised at days 3, 7 and 10 post immunisation and cells from draining

LNs analysed for the expression of IL-17 and IFNγ by flow cytometry. Representative

flow cytometry plots from Th1 recipient mice immunised with OVA/CFA or PBS (top two

panels) or Th17 recipients immunised with OVA/CFA or PBS (bottom two panels).

Lymphocytes were identified based on the FSC and SSC profile and transgenic T cells

based on KJ1.26 staining and CD4 expression.
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Fig 4.16: Phenotype of Th1 and Th17 polarised population after adoptive

transfer.

Th1 or Th17 polarised CD4+ cells from DO11.10 mice were adoptively transferred to

BALB/c mice, which where then immunised with OVA in CFA. Control mice received

PBS. Mice were euthanised at days 3, 7 and 10 post immunisation and cells from draining

LNs were stimulated with PMA/ionomycin and analysed for the expression of IL-17 and

IFNγ by flow cytometry Time course of IFNγ (a) and IL-17 (b) expression from CD4+

KJ1.26+ cells from Th1 or Th17 recipient mice immunised with OVA/CFA or PBS. Day 0

represents the % of IFNγ and IL-17 expressing cells of the transferred Th1 and Th17

populations. Data represent mean ±SEM, *: Th1/OVA vs. Th1/PBS +: Th17/OVA vs.

Th17/PBS.*,+p<0.05, **,++p<0.01, ***,+++p<0.001 (n=3).

a)

b)
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Fig 4.17: Effect on Curdlan and CFA on adoptively transferred Th1

polarised cells

Th17 polarised CD4+ cells ((a) left panel) from DO11.10 mice were transferred to

BALB/c recipients, which were then immunised with OVA/CFA or Cur/OVA. Five days

after immunisation the mice were euthanised and cells from draining LNs were

stimulated with PMA/ionomycin and their ability to produce IL-17 or IFNγ was assessed

by flow cytometry (a-c). Lymphocytes were identified based on the FSC and SSC profile

and transgenic T cells based on KJ1.26 staining and CD4 expression. (n=4).
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Fig 4.18: Distribution and expansion of Th1 and Th17 polarised population

after adoptive transfer.

Th1 or Th17 polarised CD4+ cells from DO11.10 mice were adoptively transferred to

BALB/c mice, which where then immunised with OVA in CFA. Control mice received

PBS. Mice were euthanised at days 3, 7 and 10 post immunisation and cells from draining

LNs (axillary and brachial, a and d), spleens (b and e), mesenteric LNs (c and f) were

analyzed for the presence of transgenic T cells by flow cytometry. Lymphocytes were

identified based on the FSC and SSC profile and transgenic T cells based on KJ1.26 staining

and CD4 expression. a-c) Total number of transgenic T cells in the draining LN (a), spleen

(b) and mesenteric LNs (c). d-f) Percentage of transgenic T cells in the draining LN (d),

spleen (e) and mesenteric LNs (f). *: Th1/OVA vs.Th17/OVA. Data represent mean

±SEM.*p<0.05, **p<0.01, ***p<0.001 (n=3).
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Fig 4.19: Viability of Th1 and Th17 polarised populations

MACS sorted CD4+ T cells from DO11.10 mice were polarised towards a Th1 or

Th17 phenotype and were cultured either alone or with bone marrow-derived DCs,

unpulsed or pulsed with OVA323-339, or OVA323-339 and LPS. Viability was assessed

at two time-poinsts, 24hrs or 48hrs by PI and annexin V staining by flow cytometry

Representative flow cytometry plots, gated on CD4+ KJ1.26+ cells, demonstrating

viability staining of Th1 and Th17 polarised cells on 24hrs (top two panels) and

48hrs (bottom two panels).
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Fig 4.20: Viability of Th1 and Th17 polarised populations

MACS sorted CD4+ T cells from DO11.10 mice were polarised towards a Th1 or Th17

phenotype and cultured either alone or with bone marrow-derived DCs, unpulsed or

pulsed with OVA323-339, or OVA323-339 and LPS. Viability was assessed at two time-

poinsts, 24hrs (a) or 48hrs (b) by PI and annexin V staining by flow cytometry .

Lymphocytes were identified based on the FSC and SSC profile and transgenic T cells

based on KJ1.26 staining and CD4 expression. Collective fluorescent cytometry data

demonstrating percentage of live cells (i.e. Annexin- VNEG/PINEG). Data represent mean

±SEM.*p<0.05, **p<0.01, ***p<0.001 (n=3).

a)

b)
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4.4 Discussion 

 

In this chapter the role of Th17 effector cells in the breach of self tolerance that 

characterize the early phase of RA pathogenesis was investigated. In order to do 

this a model of breach of self tolerance, in the context of arthritis, was employed, in 

which a Th1 response against an irrelevant antigen (OVA) results to arthropathy 

that is characterized by the development of auto-reactivity in the form of T and B 

cell responses against various auto-antigens, namely CII. As Th17 have been linked 

to various models of autoimmunity, we hypothesized that if these cells are involved 

in the breach of self tolerance observed in our model then self specific Th17 cells 

could be identified. When the CII specific response was characterized 

phenotypically, it was revealed that it was of a Th1 type. The phenotype of the CII 

specific response was not altered even when curdlan, a yeast-derived β-glucan 

adjuvant that has been reported to induce Th17 responses(463;478), was employed. 

As Th1-derived cytokines, such as IFNγ, have been shown to be regulatory in some 

autoimmunity models, it was postulated that a model induced by a Th17 population 

would induce more robust breach of self tolerance that would potentially result in 

more severe pathological signs. Th17 cells could induce breach of self tolerance in 

the form of B and T cell responses against CII. However, these responses were 

similar to the ones induced by the Th1 population. Morever, Th17 cells did not 

induce more severe or chronic clinical signs of the disease or enhanced histological 

damage. Interestingly, the phenotype of both the OVA and CII CD4
+
 T cell 

responses in the Th17-induced model was characterized by IFNγ production. This 

could be due to the fact that the transferred Th1 population retained, even partly its 

IFNγ production, whereas the Th17 population was characterized by a sharp 

decline of its IL-17 production. Apart from these, it was demonstrated in this 

chapter that the two populations differ dramatically in their expansion, distribution 

and kinetics, with the Th17 population expanding in a greater degree and persisting 

for a longer time period in the secondary lymphoid tissues examined. This could 

partly be explained by the greater viability demonstrated by cells polarised under 

Th17 conditions compared to their Th1 counterparts.   
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Th17 cells have been linked to various autoimmunity models, such as the EAE 

model of multiple sclerosis and the CIA and SKG model of arthritis, to name a 

few(8;9;477;478). It was thus surprising to find that the auto-reactive response in 

both Th1 and Th17-induced models was characterized by the absence of IL-

17
+
CD4

+
 cells. In the case of the Th1-induced arthritis model, it was postulated that 

the highly polarised initiating OVA-specific population might skew the emerging 

auto-reactive T cell responses towards a Th1 phenotype. Indeed, it has been 

reported that Th1 cytokines, namely IFNγ, inhibit the development of Th17 cells, 

whereas at the same time induce the generation of Th1 cells(285;586). In order to 

test this hypothesis curdlan was employed as a Th17-inducing adjuvant. As 

mentioned previously, curdlan is a yeast β-glucan that specifically acts through a C-

type lectin, dectin-1, and conditions DCs to promote Th17 responses both in vitro 

and in vivo(463). More importantly, a single injection of curdlan can induce chronic 

arthritis in SKG mice, which are resistant to disease development when kept in a 

pathogen-free environment, and transient arthritis in normal BALB/c mice(82). 

Interestingly the clinical development of the disease is accompanied by the 

development of Th17 cells in the affected joints(477). It should be noted, however, 

that CFA also has been reported to induce IL-17-producing CD4
+
 cells, through IL-

6 production, and is widely used in models that have been linked with Th17 cells, 

such as EAE and CIA(448).  In the Th1-induced model curldan was equally 

effective as CFA in inducing breach of self tolerance, however its employment did 

not lead to increased pathology nor to an enhancement of the Th17 element of the 

auto-reactive response. It was speculated that this was due to failure  of curdlan to 

induce in vivo Th17 polarisation of naïve CD4
+
 T cells in our system  and in 

addition it did not had any effect on the Th1 polarised population, which retained 

its IFNγ production and thus its potential to skew any emerging auto-reactive 

responses to a Th1 phenotype. This is no surprise as curdlan has been shown to 

promote both Th1 and Th17 responses in vivo(463). Interestingly, even in the 

Th17-induced model the phenotype of the auto-reactive CD4
+
 response was 

characterized by IFNγ production. This could suggest that it is IFNγ producing 
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CD4
+
 cells that promote autoimmunity in the OVA-TcR-induced arthritis model. 

There are various ways that IFNγ-producing CD4
+
 T cells could promote breach of 

self tolerance. Our group has previously demonstrated that cDCs are the APCs that 

drive the arthritogenic autoimmunity in our model(7).  We have proposed that the 

OVA-specific memory population creates an environment that alters the 

characteristic of the cDCs and allows reversal of their tolerogenic interaction with 

autoreactive T cells and priming of auto-reactivity(7). It is possible that this is an 

effect mediated by IFNγ produced by T cells. Indeed, IFNγ has been reported to up-

regulate MHCII on DCs and alongside with co-stimulation signals such as CD40L 

might be required for optimal expression of IL-12 by these cells(587;588). On the 

other hand, other studies report that IFNγ treated DCs afford protection against the 

development of diabetes in the NOD mouse and reduce autoantibody production in 

a model of autoimmune myasthenia gravies(589;590). It will therefore be crucial to 

block IFNγ in both Th1 and Th17 OVA-TcR arthritis models to determine its role 

in the development of autoimmunity. An approach to do that would be to use an 

antibody against IFNγ, before the HAO challenge. This would neutralize any IFNγ 

produced by either transferred cells, emerging autoreactive CD4
+
 cells, or any host 

cell that could produce this cytokine. Antibody blocking of IFNγ function was 

employed, however due to immunogenicity of the isotype control these results are 

not presented in this thesis.   Even though this approach would reveal the 

significance of IFNγ in the model it would not reveal the cellular source of the 

cytokine. An approach using mice deficient in IFNγ production would be able to 

give an answer to this question. In detail, employment of IFNγ deficient DO11.10 

would reveal if IFNγ derived from the transfer transgenic T cells is crucial for the 

breach of self-tolerance, whereas CD4-specific IFNγ deficient recipients would 

reveal if the IFNγ from the host CD4
+
 cells mediates the breach of self tolerance. 

The latter could be achieved using a conditional knock-out system, where loxP 

sequences would flank the IFNγ gene and Cre recombinase would be promoted by 

a CD4
+
 specific promoter. The absence of IL-17

+
 CD4

+
 T cells should not exclude 

the involvement of Th17 as this is not the only cytokine that these cells produce and 

in addition they may localise in a difference site than the Th1 cells. It has been 
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reported that apart from IL-17, Th17 cells produce IL-17F, TNF, IL-21 and IL-

22(255;454;477;591). Similarly, Th1 cells also produce other cytokines apart from 

IFNγ, such as IL-2 and TNF(592;593).  There are studies that involve this cytokines 

in the RA pathology(484-486;594), and specifically for TNF there is a very well 

established role in disease development, which is demonstrated by the efficacy of 

TNF blocking therapies(595). Our group has previously reported that the 

development of autoimmune B and T cell responses in the OVA-TcR-induced 

arthritis model are TNF-dependent(7). As both Th1 and Th17 induce breach of self 

tolerance, and have been reported to produce this cytokine, it is possible that both 

cell types mediate development of autoimmunity through TNF production. A more 

detailed analysis of the cytokine profile of the CII-specific response could give 

more evidence for the phenotype of the developing auto-reactivity. As Th17 cells 

have been reported to express CCR6 and selectively being recruited to the joint, via 

CCL20(478), it would be useful to investigate the phenotype of the CD4
+
 T cell 

that localise in the joints in both Th1 and Th17 models, as this will give 

information for the tissue specific environment in which APCs are conditioned and 

acquire antigens and potentially auto-antigens. To definitely determine the role of 

Th1 and Th17 in the development of autoimmunity in our system approaches that 

will inhibit their generation must be employed. Development of CD4
+
-specific 

conditional knock-out mice for key transcription factors such as RORγ for Th17 or 

T-bet for Th1, which would be used as recipients, could reveal if a host Th17 or 

Th1 response is required for the development of autoimmunity in our models. For 

Th17 cells a more approachable pharmacological method could be employed. The 

small molecule halofuginone, a derivative of the plant alkaloid febrifugine(596), 

has been reported to specifically inhibits mouse and human Th17 development by 

activating a  cytoprotective response,  the amino acid starvation response(597). This 

molecule could be employed in both Th1 and Th17 models, before HAO challenge, 

to selectively inhibit the development of any Th17 response.  

 

Another important finding reported in this study is the failure of the cells polarised 

under Th17 conditions to retain their ability to produce IL-17 after adoptive transfer, 
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unlike cells polarised under Th1 conditions which retained at some degree their 

ability to produce IFNγ. The plasticity of the Th17 phenotype has been reported 

previously, where highly purified Th17 cells acquired a Th1-like phenotype after 

adoptive transfer in a model of diabetes(492). As in this study the populations used 

were not purified it is not possible to suggest plasticity as the only explanation for 

the reduced percentage of IL-17
+
 cells. As it was not possible to investigate the 

phenotype of the cells in the OVA/CFA injection site, a preferential localisation of 

the IL-17
+
 CD4

+
 cells at this site cannot be excluded. Th1 and Th17 have a distinct 

chemokine receptor profile, with Th1 cells mainly expressing CXCR4, CXCR6 and 

CCR5 whereas Th17 have been reported to express CCR6, CCR4 and 

CCR2(478;598-601).  Most of these chemokine receptors will drive cells to 

inflammatory  sites, however a receptor profiling of the transferred population 

could reveal if there is a potential for preferential recruitment for the IL-17
+
CD4

+
 

transgenic cells to injection site. Interestingly, in humans, CCR6 expression 

correlates highly with IL-17 expression, which would agree with a preferential 

localisation of IL-17-producing cells to sites of inflammation(601). This was not 

the only difference between the two populations as cells polarised under Th17 

conditions expanded to a greater degree and persisted longer compared to cells 

polarised under Th1 conditions. One possible explanation for this difference is the 

greater viability of cells polarised under Th17 conditions demonstrated in this 

chapter.  Published reports suggest that Th17 cells are more resistant to activation-

induced cell death (AICD) compared to Th1 cells, a phenomenon possibly 

mediated  by a reduced expression of FasL by cells polarised under Th17 

conditions(602). In addition, there is a well documented role for IFNγ in AICD of 

effector T cells(603;604), which could suggest that this cytokine mediates increased 

cell death in the Th1 polarised cells. It would be useful to assess the proliferative 

capacity of the two populations after transfer as this could show if there is a relative 

advantage in cells polarised under Th17 conditions. A study that compared this 

used CFSE dilution and reported that cells polarised under Th1 conditions exhibit a 

faster pace of proliferation compared to Th17 cells(602), which seems to contradict 

to the significantly higher expansion of the cells polarised under Th17 reported in 
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this chapter. An alternative explanation would be a preferential recruitment of cells 

polarised under Th17 to secondary lymphoid tissues. This is supported by studies 

that report that in vitro polarised Th17 cells migrate poorly to inflammation and 

preferentially locate in the spleen(605) due to a lack of expression of CCR5 and 

CXCR3(605). Other studies suggest that the presence of TGFβ induces CCR7 

expression which could lead to a preferential recruitment of the Th17 polarised 

population to the secondary lymphoid organs(599).   As previously mentioned, a 

profiling of the chemokine receptor expression of both transferred populations 

would give information that could explain the differences observed in this study.  

 

In this chapter it has been demonstrated that both Th1 and Th17 induce similar 

levels of inflammation and breach of self tolerance, in the form of B and T cell 

responses against CII. As in both models the autoreactive T cell response was 

characterized by IFNγ production, it is possible that this cytokine mediates the early 

immunological events that lead to breach of self tolerance. It is of high priority 

however to employ methods that will block the Th1 and Th17 cells and the 

cytokines they produce to definitely define the role of these cells in the 

development of autoimmunity. As there is a well documented role for B cells in the 

development of autoimmunity, and both OVA-TcR-induced models are 

characterized by the presence of various autoantibodies the next question 

investigated in this thesis related to the role of Th17 cells in the T cell-dependent B 

cell responses.    
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Chapter 5: The role of Th17 
cells in B cell responses 
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5.1 Aim and rationale 

 

In this chapter the role of Th17 cells in T cell-dependent B cells responses was 

investigated. More specifically their relative ability, compared to a Th1 polarised 

population, to support antigen specific B cell responses was assessed. The role of 

CD4
+
 T cells in antibody generation is well established and it is now widely 

accepted that a specific T helper subtype, named TFH, involved in regulating 

various aspects of antigen-specific B cell responses(606). Our group has previously 

reported that both in vitro and in vivo generated Th1 and Th2 cells have similar 

ability to support antibody responses in vivo(361;362). However the role of role of 

inflammatory Th17 cells in B cell responses is relatively understudied.  While at 

first glance it might not be expected that such effector cells might provide B cell 

help it could be argued that they would be involved in driving B cell responses to 

deal with pathogens they target, such as fungi. The presence of class switched 

antibodies in RA patients suggests an active T-cell dependent B cell response. As 

Th17 cells have been suggested to be important in some aspects of RA pathology 

and in animal models of the disease(12;13) it is of considerable importance to 

investigate their ability to support antibody responses as this may allow to have a 

better understanding for their role in disease development. In order to do this an 

adoptive transfer approach was employed where in vitro Th1 or Th17 polarised 

antigen-specific TcR transgenic populations were transferred to congenic recipient 

mice along side antigen-specific B cell receptor (BcR) transgenic B 

cells(138;361;362). This approach provides the ability to examine the relative effect 

of Th1 and Th17 populations on antigen specific B cell expansion, antibody 

production and differentiation. In addition it allows the tracking and localisation of 

the antigen specific B and T in situ. This approach was also extended to investigate 

Th17 of TFH and germinal centre B cell responses in the pathogenesis of murine 

RA models.     
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5.2 Introduction 

 

As mentioned previously RA is a disease  that is characterised by the presence of a 

number of class switched auto-antibodies
(1)

. In addition the effectiveness of B cell 

depletion as a therapeutic intervention signifies even more the importance of B cell 

responses in the development of the disease
(607)

. Isotype switched, high affinity 

antibody responses to protein antigens require cognate interaction between the 

antigen-specific B cell and the activated antigen-specific Th cell within the 

microenviroment of the secondary lymphoid tissue
(138;606)

.  Naïve T cell are 

activated in the paracortex by professional APCs, such as DCs, and move to the 

outer edge of the B cell follicle where they interact with an antigen specific B cell 

which has also previously encountered antigen and has moved to the same 

location
(138;365;608)

. When the Th1 and Th2 subset were originally discovered, a 

division in the quality of the immune response was proposed with Th2 cell 

mediating humoral and Th1 cells cell-mediated immunity
(609)

. This was suggested 

mainly because Th2 cells characteristically produce cytokines that have been 

implicated in various stages of B cell proliferation and differentiation(610-612). 

However, there are a number of studies that demonstrate that both Th1 and Th2 

cells are able to support B cell responses both in vitro and in vivo(361;362;612). 

More specifically, our group has reported that both in vitro and in vivo Th1 and Th2 

polarised cells are able to migrate to the follicle to support B cell clonal expansion, 

differentiation and antibody production to a similar degree. More importantly, it 

was demonstrated that IFNγ producing CD4 cells migrate into the B cell follicle to 

interact with antigen specific B cells
(361;362)

.  With the expansion of the T helper 

subset beyond the Th1 and Th2 phenotypes it is now considered that the CD4
+
 T 

cells that migrate into follicles and support B cell responses constitute a distinct T 

helper subset termed TFH cells(613). These cells are characterized by the sustained 

expression of the chemokine receptor CXCR5, costimulatory molecules such as 

ICOS, PD-1, CD40L and OX40, and cytokines, most important amongst other IL-

21
(363;364;370;422;614)

. How TFH cells relate to the other T helper subtype is not yet 

very well established. There is evidence that suggest that TFH cells constitute a 
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truly distinct T cell subset, which develops independently of Th1, Th2 and Th17 

cells(369). This is supported by the distinct transcriptional regulation of TFH cells, 

with Bcl-6 acting as the master regulator of TFH development, while inhibiting the 

generation of other effector phenotypes
(374;376)

.  However there is evidence that 

argue against a distinct TFH phenotype. Firstly, most activated CD4
+
 cells up-

regulate CXCR5 transiently. Furthermore, it was shown recently that after transfer 

into naïve mice and antigenic challenge, CXCR5
-
 PD-1

-
 IL-4/GFP

+
 CD4

+
 T cells 

could develop into TFH cells, whereas TFH cells have been reported to co-express 

the Th2 transcription factor GATA-3 and produce IL-4 and IFNγ
(366;614)

. This could 

suggest either that plasticity exists within Tfh cells, or that distinct subsets, like 

Th1/Th2/Th17 Tfh cells, exist within the Tfh cell compartment. Indeed, a study 

suggests that the human blood CXCR5
+
CD4

+
 cells constitute a memory TFH 

compartment that can be subdivided into Th1, Th2 and Th17-like cells
(368)

.   

The role of Th17 cells in supporting B cell responses is not extensively studied, 

however there are evidences that suggest a possible role of IL-17 producing CD4
+
 

in B cell responses. The autoimmune prone BXD2 mice, which express more IL-17 

and have elevated Th17 cells compared to wild type, show spontaneous 

development of germinal centres, followed by the production of pathogenic 

autoantibodies
(615)

. Importantly, IL-17-producing cells, most of which were CD4
+
, 

were localised near the germinal centre region, which was also characterized by the 

presence of IL-17R
+
 germinal centre B cells(615). Interestingly, inhibition of IL-17 

or IL-17R signalling resulted in reduced germinal centre formation(615). In 

addition, the existence of IL-17 producing TFH cells has been reported both in 

mice and humans
(367;368)

. Even though these studies implicate IL-17-producing 

CD4
+
 cells in aspects of the B cell immunity none of them followed the 

development of an antigen specific Th17-dependent B cell response and only 

indirectly involves these cells in antibody production. This leaves many questions 

relating to the mechanistics of this function unanswered, especially whether 

antigen-specific IL-17-producing CD4 cells directly interact with cognate B cells, 

promote germinal centre formation and antibody production. In addition, the 

quality of a Th17-driven B cell response is understudied. It is very well established 
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that in mice Th1 immunity is characterized mainly by the production of IgG2a 

antibodies whereas in Th2 immunity by IgG1 and IgE
(361;362;609-612)

, however the 

type of antibody response that characterizes Th17-mediated immune responses is 

relatively unknown.  

As Th17 are suggested to be important in some aspects of RA, a disease 

characterized by the presence of class switched autoantibodies, it would be useful 

to investigate the role of these cells in supporting B cell responses.  

 

5.3 Results 

 

In order to investigate the relative ability of Th1 and Th17 cells to support B cells 

an adoptive transfer approach was employed that allowed the tracking of antigen-

specific B and T cells. This is an adaptation of a previously described model in 

which the response of BcR transgenic cells depends on cognate help provided by 

antigen specific transgenic T cells
(138;361;362)

. In detail, OVA-specific T cells from 

DO11.10 mice were polarised under Th1 or Th17 polarising conditions and 

adoptively transferred with HEL-specific B cells from MD4 mice to IgH
b
 congenic 

recipient mice. The mice were immunised with a HEL-OVA conjugate in CFA. 

This facilitates the cognate interaction between the transgenic B and T cells, as B 

cell acquire the HEL-OVA antigen through their BcR, process it and present 

OVA323-339 peptide to the T cells. Transgenic T cells were detected using the KJ1.26 

monoclonal antibody that recognises their TcR. Transgenic B cells were tracked 

using an anti-IgM
a
 monoclonal antibody as host B cells express the IgM

b
 haplotype.   

 

5.3.1 Clonal expansion of antigen specific T cells  

 

CD4
+
 T cells from DO11.10 mice were polarised under Th1 or Th17 conditions and 

their phenotype in respect to the expression of the clonotypic DO11.10 TcR 

receptor and the production of IL-17 and/or IFNγ was assessed by flow cytometry 

(Fig 5.1a). As expected, in both Th1 and Th17 polarisations the vast majority of T 
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cells were expressing the DO11.10 TCR. In addition, the intracellular staining 

confirmed the phenotype of the two transferred population, with Th1 characterized 

mainly by IFNγ
+
 cells and Th17 by IL-17

+
 cells. At the same time splenocytes from 

MD4 mice were analyzed for the presence of transgenic HEL-specific B cells by 

assessing their ability to bind a biotinylated-form of HEL (Fig 5.1b). Flow 

cytometric analysis revealed that MD4 mice carry exclusively transgenic B cells.  

Polarised trangenic T cells and HEL-specific transgenic B cells were then 

transferred into congenic IgHb mice which were immunised with HEL-OVA/CFA. 

Control mice were injected with PBS. The draining LNs were removed from 

recipient mice and the presence of the transferred T cells was analyzed by flow 

cytometry (Fig 5.2 and Fig 5.3). In agreement with results presented in the previous 

chapter Th17 expanded in higher degree and persisted longer in the draining LN 

compared to the cells polarised under Th1 conditions. As expected all immunised 

groups displayed expansion above unimmunised.  

 

5.3.2 Ability of Th1 and Th17 polarised populations to support 
transgenic B cells 

 

B cell clonal expansion: The relative ability of Th1 and Th17 polarised cells to 

provide B cell help would be reflected in the clonal expansion of the cognate 

transgenic B cells. In response to HEL-OVA/CFA, mice that received T cells 

polarised under Th17 conditions exhibited significantly higher antigen specific B 

cell clonal expansion compared to Th1 recipient mice (Fig 5.4 and 5.5). In both Th1 

and Th17 recipient mice, clonal expansion peaked between day 3 and 7. However 

in the case of Th17 recipients B cell numbers did not decline to unimmunised levels 

even at the last time point investigated as they did in Th1 recipients (Fig 5.5a and b). 

In the absence of immunisation, as anticipated, transgenic B cells did not expand in 

either Th1 or Th17 recipient mice.  

HEL-specific antibody production: In order to have a measure of the functional 

status of the transgenic B cells, their ability to produce antibodies against HEL was 

assessed. As transgenic B cells do not class switch(518) the presence of anti-HEL 
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anti-IgM
a
 antibodies was investigated.  Serum was sampled on days 3, 7 and 10 

post immunisation and anti-HEL antibody titres assessed by ELISA. T cells 

polarised under either Th1 or Th17 conditions could support antibody production, 

however the Th17 population induced higher levels of HEL-specific antibodies, at 

all time-points investigated (Fig 5.6). In the absence of immunological stimulus 

there was no antibody production in either Th1 or Th17 recipient mice. These 

results suggest that cells polarised under Th17 conditions have a relative advantage 

in supporting antigen specific antibody production.  

OVA-Specific antibody production: In addition to the anti-HEL antibody 

production by the transferred transgenic cells, the production of antibodies against 

OVA by the host B cells also allowed the evaluation of the relative ability of Th1 

and Th17 population to provide B cell help. As transgenic B cells from MD4 mice 

do not class switch, investigation of the anti-OVA antibody response, gave more 

qualitative information relating to the isotype class the two populations 

preferentially promote. Serum from days 3, 7 and 10 post immunisation was 

analyzed for the presence of anti-OVA IgM
b
, IgG1 and IgG2a. In both Th1 and 

Th17 recipient mice immunised with OVA-HEL/CFA there were very low levels of 

anti-OVA IgM
b
 antibodies that did not differ from control levels at all time points 

investigated (Fig 5.7). More prominent differences were noted in the anti-OVA IgG 

response. As expected at day 3 there were undetectable levels of either IgG1 or 

IgG2a anti-OVA antibodies. In the case of the IgG1 response, mice that have 

received cells polarised under Th17 conditions exhibited higher antibody titres 

from as early as day 7 compared to animals received cells polarised under Th1 

conditions. This difference was still evident at day 10 (Fig 5.8a-c). On the other 

hand, recipients of Th1 polarised population demonstrated significantly higher 

titres of anti-OVA IgG2a antibodies in response to immunisation compared to 

recipients of cells polarised under Th17 conditions. This was observed from as 

early as day 7 and was evident even at the last time point investigated (Fig 5.8d-f). 

Only at day 10 anti-OVA IgG2a antibodies could be detected in Th17 recipients, 

albeit at levels much lower than Th1 recipients. In the absence of immunological 

stimulus there was no IgG response. These results suggest that T cells polarised 
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under Th17 conditions induce mainly an IgG1 response, whereas T cells polarised 

under Th1 conditions induce high IgG2a antibody levels.   

Germinal Centre B cells:  The germinal centre is known to be associated with T 

cell dependent antibody responses and is considered to be the site where 

phenomena such as clonal selection and expansion, class switching and affinity 

maturation occur and where high-affinity antibody-secreting plasma cells and 

memory B cells are generated(616). Based on that, the ability of cells polarised 

under Th1 or Th17 conditions to induce the generation of germinal centre B cells 

was used as a measure of B cell help. Germinal centre B cells were identified by the 

expression of GL-7 and FAS by flow cytometry as done previously by our group 

and others(514;617) (Fig 5.9). In both Th1 and Th17 recipient mice germinal centre 

B cells were first identified in higher proportion than unimmunised controls at day 

7 (Fig 5.10b). Interestingly, the number and proportion of germinal centre B cells 

was significantly higher in mice that have received cells polarised under Th17 

condition compared to the ones that had received Th1 polarised cells (Fig 5.10a and 

b). This was noticeable both at day 7 and 10.  In unimmunised mice only a very 

small number of germinal centre B cells could be detected. These data further 

support a higher ability of the Th17 polarised population relative to the Th1 

population in supporting B cell clonal expansion.   
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5.3.3 Evidence of follicular migration markers in the transferred 
Th1 and Th17 population  

 

An important requirement of T cell-dependent B cell responses is the migration of 

activated antigen-specific T cell to the follicular region where they interact with 

their cognate B cell
(138;613)

.  It has been reported that this is mediated by the 

downregulation of the chemokine receptor CCR7 and the upregulation of CXCR5 

on T cells
(363;618;619)

. CXCR5 defines follicular localisation as in response to its 

ligand, CXCL13, it facilitates follicular migration
(620)

. As mentioned previously it is 

now accepted that TFH cells are the ones that regulate B cell responses, which are 

characterised by the expression of CXCR5 and costimulatory molecules, such as 

ICOS
(364;368)

. In order to measure the ability of follicular migration and provision of 

co-stimulatory signals by the transferred Th1 and Th17 polarised populations the 

expression of CXCR5 and ICOS was investigated (Fig 5.11). At days 3, 7 and 10 

the transgenic T cells from the draining LNs were analyzed for the expression of 

CXCR5 and ICOS.  Interestingly, the proportion of ICOS
+
CXCR5

+
 transgenic T 

cells was not different between the immunised and unimmunised groups of either 

Th1 or Th17 recipients (Fig 5.12b). This might suggest that cells activated under 

either Th1 or Th17 polarising environment are conditioned for follicular migration. 

On the other hand, the number of transgenic ICOS
+
 CXCR5

+
 T cells was 

significantly higher in the immunised mice. Notably, in the Th1 recipients the 

number of transgenic T cell with a TFH phenotype peaked approximately at day 3 

and declined to unimmunised levels by day 10. On the other hand, in mice injected 

with cells polarised under Th17 conditions the number of transgenic cells did not 

peak at day 3 and was significantly higher than the Th1 counterparts both at days 7 

and 10 (Fig 5.12a). In order to quantify differences in the levels of expression of 

CXCR5 and ICOS by the transgenic T cells the MFI for these markers was 

calculated. Transferred T cells in unimmunised mice expressed significantly lower 

levels of ICOS compared their counterparts in immunised mice. Remarkably cells 

polarised under Th17 conditions expressed significantly higher levels of ICOS 

compared to Th1 polarised cells at days 7 and 10, suggesting a higher ability to 
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provide costimulatory help (Fig 5.13a). In addition, there were no differences 

between the groups relating to levels of CXCR5 expression, which suggest that 

both populations have equal potential to migrate to the follicle, a phenomenon 

independent on the presence of antigenic stimulus (5.13b).  

 

5.3.4 Localisation of antigen specific T cells within the draining 
LN 

 

The differences in expression of markers associated with a TFH phenotype between 

the two populations prompted the investigation of possible differences in 

localisation of the transgenic T cells in the LN in situ. More specifically the relative 

ability of T cells polarised under Th1 or Th17 conditions to localise to the follicular 

region was investigated.  The same experimental setting as before was employed 

and the localisation of the transgenic T cells was analyzed at days 3, 7 and 10 post-

immunisation by fluorescent-based immunohistochemistry (Fig 5.14). The tile scan 

function of the Carl Zeiss LSM510 META Confocal Imaging System allowed 

imaging of the full surface of the LN section. Transgenic T cells were detected 

using the KJ1.26 monoclonal antibody against their TcR, whereas staining for B220 

revealed the B cell follicles. The quantification of the localisation of the transgenic 

T cells was achieved using the Volocity© software (Fig 5.15). Areas of interest 

were drawn around the borders of the sections or around the follicular regions. This 

allowed the calculation of the surface of LN section and follicular area respectively. 

In the same time the number of transgenic T cells in the section and in the follicular 

areas could be calculated. The localisation of T cells in the follicular area was 

calculated as a fraction of the proportion of KJ1.26
+
 cells in the follicular area  

(KJfollicle/KJtotal) to the proportion of the follicular surface (areafollicle/areatotal) (Fig 

5.15b). This gave a number that was normalised for both T cell expansion (KJtotal) 

and follicular area (areafollicle), and thus differences observed would be due to 

follicular localisation and not due to higher clonal expansion or larger follicular 

area in a specific section. Interestingly, there were no differences between the Th1 

and Th17 population in respect to follicular localisation (Fig 5.16). In addition, only 
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on day 3 there was increased localisation in the follicular area in immunised mice 

compared to unimmunised, suggesting that recruitment in the follicular area takes 

places in early time points after antigen encounter  and the differences observed 

from that point after are due to greater clonal expansion in the immunised mice (Fig 

5.16a-c). Indeed, when the proportion of transgenic T cells that reside in the follicle 

was calculated in all time points it was higher in the immunised mice compared to 

the unimmunised (Fig 5.17a-c). Furthermore, the number of transgenic cells per 

unit of follicular area was significantly increased in immunised groups (Fig 5.18a-

c). Interestingly, in Th17 recipients this was observed even at day 10, unlike Th1 

recipients which were at unimmunised levels at this point (Fig 5.18c). This suggests 

that cells polarised under Th17 conditions, due to higher clonal expansion, persist 

in the follicular area for longer time period compared to their Th1 counterparts.          
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5.3.5 Development of TFH cells and germinal centre B cells in the 
Th1 and Th17 OVA TcR-induced models of arthritis 

 

Both the Th1 and Th17 OVA TcR-induced models of arthritis are characterized by 

breach of self tolerance, which is manifested with the presence of various 

autoantibodies. Evidence support the hypothesis that dysregulated germinal centre 

responses give rise to autoantibodies, a phenomenon supported by numerous 

autoimmune prone mouse strains that spontaneously develop germinal centre 

reactions
(615;621;622)

. In addition somatic hypermutation taking place in the germinal 

centre dark zones can lead to the development of autoantibodies(623). Given the 

importance of T cell help in supporting germinal centre generation it is not a 

surprise that the aberrant expression of TFH associated molecules such as ICOS, 

SAP, Bcl-6, c-maf and IL-21 impacts on autoantibody productions in murine 

models
(367;621;624-626)

.  It is thus of considerable importance to investigate the 

generation of these cells in the OVA TcR arthritis models. Furthermore, as results 

so far in this chapter demonstrate a relative advantage for cells polarised under 

Th17 conditions to support B cell response it would be interesting to compare the 

Th1 and Th17 models both for the generation of TFH cells and germinal centre B 

cells. CD4
+ 

cells from DO11.10 mice were polarised under Th1 or Th17 condition 

and were adoptively transferred to BALB/c congenic mice, which were then 

immunised with OVA/CFA. Ten days after immunisation recipient mice were 

challenged proximal to the ankle joint with HAO. Control mice were injected with 

PBS. Seven post-challenge cells from the draining LNs were analyzed for the 

presence of TFH cells by flow cytometry. TFH cells were identified as CD4
+
 cells 

co-expressing the chemokine receptor CXCR5 and the costimulatory molecule 

ICOS (Fig 5.19). In both Th1 and Th17 models cells with TFH phenotype were 

identified. Approximately 5-10% of the CD4 population in both Th1 and Th17 

recipients challenged with HAO had a TFH phenotype. (Fig 5.20a) Interestingly, 

the percentage and number of TFH cells was similar between Th1 and Th17 models 

(Fig 5.20a-b). Mice injected with PBS had a significantly lower proportion and 

number of TFH cells compared to the HAO challenged mice. As the result of T cell 
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help is a germinal centre reaction the generation of germinal centre B cells was 

investigated. This could give another functional readout for the developing humoral 

response. Cells from draining LNs were analyzed for the presence of germinal 

centre B cells by flow cytometry. As previously in this chapter, germinal center B 

cells were identified as B220
+
 cells co-expressing GL-7 and FAS (Fig 5.21). 

Around 20% of the B cells in the draining LNs of challenged mice had a germinal 

B cell phenotype; however as in the case of TFH cells, there was no difference in 

the number and proportion of germinal centre B cells between Th1 and Th17 

recipients (Fig 5.22). HAO challenged mice had significantly higher proportion and 

number of germinal centre B cells compared to PBS control mice, demonstrating an 

active B cell response (Fig 5.22a-b). These data suggest that in challenged mice an 

active T cell-dependent B cell response is taking place, which might be responsible 

for the generation of the autoantibodies that characterize these models.  
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Fig 5.1: Phenotype of transferred transgenic B and T cells

Cells from DO11.10 mice were polarised under Th1 or Th17 conditions and transferred to

congenic IgHb recipient mice together with 2x106 HEL-specific B cells from MD4 mice. The

phenotype of the Th1 and Th17 population was assessed by intracellular flow cytometry (a).

Lymphocytes were identified based on the FSC and SSC profile and transgenic T cells based

on KJ1.26 staining and CD4 expression. The proportion of HEL- specific MD4 B cells was

assessed by flow cytometry(b). Lymphocytes were identified based on the FSC and SSC

profile and transgenic B cells based on B220 expression and the ability to bind biotinylated

HEL.
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Fig 5.2: Kinetics of the KJ1.26+ CD4+ population after immunisation

2x106 Th1 or Th17 polarised CD4+ T cells from DO11.10 mice were adoptively transferred to

IgHb congenic recipient mice along side with 2x106 HEL-specific B cells. On day 0 recipients

were immunised s.c. with 130μg/ml of OVA-HEL. The presence of CD4+KJ1.26+ T cells in

the draining lymph nodes (axillary and brachial) of recipient mice was assessed by flow

cytometry on days 3, 5, and 10 after immunisation. Lymphocytes were identified based on the

FSC and SSC profile and transgenic T cells based on KJ1.26 staining and CD4 expression.

Figure demonstrate representative FACS plots of days 3 (top panel), day 7 (middle panel) and

day 10 (low panel).
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Fig 5.3: Kinetics of the KJ1.26+ CD4+ population after immunisation

2x106 Th1 or Th17 polarised CD4+ T cells from DO11.10 mice were adoptively transferred

to IgHb congenic recipient mice together with 2x106 HEL-specific B cells. On day 0

recipients were immunised s.c. with 130μg/ml of OVA-HEL. The number (a) and

percentage (b) of CD4+KJ1.26+ T cells in the draining lymph nodes (axillary and brachial)

of recipient mice was assessed by flow cytometry on days 3, 5, and 10 after immunisation.

Lymphocytes were identified based on the FSC and SSC profile and transgenic T cells based

on KJ1.26 staining and CD4 expression. Unimmunised controls from each time point were

averaged and represented as day 0. Data represent mean ±SEM. *: Th1/HEL-OVA vs.

Th17/HEL-OVA, *p<0.05, **p<0.01, ***p<0.001 (n=3). Similar results were obtained in

one additional experiment.
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Fig 5.4: Relative ability of in vitro polarised Th1 and Th17 populations to

support antigen specific B cell expansion

2x106 Th1 or Th17 polarised CD4+ T cells from DO11.10 mice were adoptively transferred to

IgHb congenic recipient mice along side with 2x106 HEL-specific B cells. One day post-

transfer recipients were immunised s.c. with 130μg/ml of OVA-HEL. The presence of

trangenic B cells in the draining lymph nodes (axillary and brachial) of recipient mice was

assessed by flow cytometry on days 3, 5, and 10 after immunisation. Lymphocytes were

identified based on the FSC and SSC profile and transgenic B cells based on IgMa and B220

expression. Figure demonstrates representative FACS plots of days 3 (top panel), day 7

(middle panel) and day 10 (low panel). Similar results were acquired in one additional

experiment.
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Fig 5.5: Relative ability of in vitro polarised Th1 and Th17 populations to

support antigen specific B cell expansion

2x106 CD4+ T cells from DO11.10 mice were polarised under Th1 or Th17 conditions and

were adoptively transferred to congenic IgHb recipient mice along side with 2x106 HEL-

specific B cells. One day post-transfer recipient mice were immunised s.c. with 130μg/ml of

OVA-HEL/CFA. The presence of trangenic B cells in the draining lymph nodes ( axillary and

brachial) of recipient mice was assessed by flow cytometry on days 3, 5, and 10 after

immunisation. Lymphocytes were identified based on the FSC and SSC profile and transgenic

B cells based on the IgMa and B220 expression. Unimmunised controls from each time point

were averaged and represented as day 0. Data represent mean ±SEM. *: Th1/HEL-OVA vs.

Th17/HEL-OVA, *p<0.05, **p<0.01, ***p<0.001 (n=3). Similar results were obtained in one

additional experiment.
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Fig 5.6:Relative ability of Th1 and Th17 populations to support the production

of HEL-specific antibodies

Cells from DO11.10 mice were polarised under Th1 or Th17 conditions and transferred to

congenic IgHb recipient mice along side with 2x106 HEL-specific B cells from MD4 mice.

One day post transfer recipient mice were immunised with HEL-OVA. Control mice were

injected with PBS. Mice were euthanized at days 3, 7 and 10 after immunisation. Serum was

taken from the animals and was assessed for the presence of HEL-specific IgMa antibodies.

Data represent mean ±SEM. *: Th1/HEL-OVA vs. Th17/HEL-OVA, *p<0.05, **p<0.01,

***p<0.001 (n=3). Similar results were obtained in one additional experiment.
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Fig 5.7:Relative ability of Th1 and Th17 populations to support the production

of OVA-specific IgMb antibodies

Cells from DO11.10 mice were polarised under Th1 or Th17 conditions and transferred to

congenic IgHb recipient mice along side with 2x106 HEL-specific B cells from MD4 mice.

One day post transfer recipient mice were immunised with HEL-OVA. Control mice were

injected with PBS. Mice were euthanized at days 3, 7 and 10 after immunisation. Serum was

taken from the animals and was assessed for the presence of OVA-specific IgMbantibodies.

Data represent mean ±SEM.(n=3). Similar results were obtained in one additional

experiment.
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Fig 5.8:Relative ability of Th1 and Th17 populations to support the production

of anti-OVA IgG1 and IgG2a antibodies

Cells from DO11.10 mice were polarised under Th1 or Th17 conditions and transferred to

congenic IgHb recipient mice along side with 2x106 HEL-specific B cells from MD4 mice.

One day post transfer recipient mice were immunised with HEL-OVA/CFA. Control mice

were injected with PBS. Mice were euthanized at days 3, 7 and 10 after immunisation.

Serum was taken from the animals and was assessed for the presence of anti-OVA IgG1 (a-

c) and IgG2a (d-f) antibodies. Data represent mean ±SEM. *: Th1/HEL-OVA vs.

Th17/HEL-OVA, *p<0.05, **p<0.01, ***p<0.001 (n=3). Similar results were obtained in

one additional experiment.
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Fig 5.9: Relative ability of in vitro polarised Th1 and Th17 populations to

support generation of germinal centre B cells.

2x106 CD4+ T cells from DO11.10 mice were polarised under Th1 or Th17 conditions and

were adoptively transferred to congenic IgHb recipient mice along side with 2x106 HEL-

specific B cells. One day post-transfer recipient mice were immunised s.c. with 130μg/ml of

OVA-HEL/CFA. On days 3, 7 and 10 mice were euthanised and the presence of germinal

centre B cells in the draining LNs were assessed by flow cytometry. Lymphocytes were

identified based on the FSC and SSC profile and B cells based on B220 expression. Germinal

centre B cells were identified by expression of GL-7 and FAS. Figure demonstrates

representative FACS plots gated on B220+ cells of days 3 (top panel), day 7 (middle panel)

and day 10 (low panel). Similar results were acquired in one additional experiment.
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Fig 5.10: Relative ability of in vitro polarised Th1 and Th17 populations to

support generation of germinal centre B cells.

2x106 CD4+ T cells from DO11.10 mice were polarised under Th1 or Th17 conditions and were

adoptively transferred to congenic IgHb recipient mice along side with 2x106 HEL-specific B

cells. One day post-transfer recipient mice were immunised s.c. with 130μg/ml of OVA-

HEL/CFA. On days 3, 7 and 10 mice were euthanised and the presence of germinal centre B

cells in the draining LNs were assessed by flow cytometry. Lymphocytes were identified based

on the FSC and SSC profile and B cells based on B220 expression. Germinal centre B cells

were identified by expression of GL-7 and FAS. Figure demonstrates the number (a) and

percentage (b) of germinal centre B cells on days 3, 7 and 10 post immunisation. Unimmunised

controls from each time point were averaged and represented as day 0. Data represent mean

±SEM. *: Th1/HEL-OVA vs. Th17/HEL-OVA, *p<0.05, **p<0.01, ***p<0.001 (n=3). Similar

results were obtained in one additional experiment.
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Fig 5.11: TFH phenotype acquisition by the adoptively transferred Th1 and Th17

populations

CD4+ cells from DO11.10 mice were polarised under Th1 or Th17 conditions and were

adoptively transferred to IgHb congenic mice along side with HEL-specific B cells. The ability

of the transferred T cell to acquire a TFH phenotype in the draining LNs was assessed by flow

cytometry on 3 time-points (day 3,7 and 10) based on the expression of ICOS and CXCR5.

Lymphocytes were identified based on the FSC and SSC profile and trangenic T cells based on

the expression of CD4 and KJ1.26 staining. Figure demonstrates representative FACS plots

gated on transgenic T cells. TFH were identified by expression of ICOS and CXCR5. Similar

results were obtained in one additional experiment.
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Fig 5.12: TFH phenotype acquisition by the adoptively transferred Th1 and Th17

populations

CD4+ cells from DO11.10 mice were polarised under Th1 or Th17 conditions and were

adoptively transferred to IgHb congenic mice along side with HEL-specific B cells. The ability

of the transferred T cell to acquire a TFH phenotype in the draining LNs was assessed by flow

cytometry on 3 time-points (day 3,7 and 10) based on the expression of ICOS and CXCR5.

Lymphocytes were identified based on the FSC and SSC profile and trangenic T cells based on

the expression of CD4 and KJ1.26 staining. TFH were identified by expression of ICOS and

CXCR5. Figure demonstrates the number (a) and percentage (b) of TFH cells on days 3, 7 and

10 post immunisation. Unimmunised controls from each time point were averaged and

represented as day 0. Data represent mean ±SEM. *: Th1/HEL-OVA vs. Th17/HEL-OVA,

*p<0.05, **p<0.01, ***p<0.001 (n=3). Similar results were obtained in one additional

experiment.
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Fig 5.13: Relative levels of ICOS and CXCR5 expression by the transferred

Th1 and Th17 populations

CD4+ cells from DO11.10 mice were polarised under Th1 or Th17 conditions and were

adoptively transferred to IgHb congenic mice along side with HEL-specific B cells.

Recipient mice were immunised with HEL-OVA/CFA. At days 3, 7 and 10 post challenge

the mean fluorescence intensity of ICOS (a) and CXCR5 (b) on the CD4+ KJ1.26+

adoptively transferred T cell populations was calculated. Data represent mean ±SEM. *:

Th1/HEL-OVA vs. Th17/HEL-OVA, *p<0.05, **p<0.01, ***p<0.001 (n=3).
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Fig 5.14: Localization of trangenic T cells in the draining LNs

CD4+ cells from DO11.10 mice were polarised under Th1 or Th17 conditions and were

adoptively transferred to IgHb congenic mice along side with HEL-specific B cells. Recipient

mice were inhected with HEL-OVA/CFA or PBS. The localization of transferred cells was

determined by immunohistochemistry in draining LNs of Th1 (top two panels) or Th17

recipients (bottom two panels) on days 3,7 and 10. Trangenic T cells were detected using the

KJ1.26 antibody against their TcR (RED) and B cell follicles using an antibody against B220

(GREEN). Pictures were taken using a confocal microscope with a 10x objective. The tile scan

function was used to acquire the full surface of the LNs.

165



(KJfollicle/KJtotal)

areafollicle/areatotal)
Transgenic cells per unit area =

i ii iii

iv v

a)

b)

B220
KJ1.26

Fig 5.15: Analysis of localization of transgenic T cells in the draining LNs

Tile scan images of draining LN sections acquired by confocal microscopy were analyzed

using Volocity® software. Areas of interest were drawn around the borders of the section (a-ii)

or the B cell follicle based on B220 expression (GREEN) (a-iv), which allowed the calculation

of the respective surfaces. The number of transgenic T cells was calculated based on the

intensity of the KJ1.26 staining (RED). (a-iii and a-v) Objects smaller than 30µm and larger

than 300µm were excluded. The proportion of transgenic T cells that reside in the follicle was

normalized to the number of KJ1.26+ cells in the section and the surface of the section and

follicle (b).
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Fig 5.16: Follicular localization of transgenic T cells in the draining LNs

CD4+ cells from DO11.10 mice were polarised under Th1 or Th17 conditions and were

adoptively transferred to IgHb congenic mice along side with HEL-specific B cells. Recipient

mice were injected with HEL-OVA/CFA or PBS. On days 3 (a), 7(b) and 10 (c) section the

relative ability of the transgenic T cells to localise in the follicular area was assessed by

immunofluorescence using the volocity® software as described in fig 5.15. Up to three

section were analysed from each animal and each point represents the mean of that..

*p<0.05, **p<0.01, ***p<0.001 (n=3).

DAY 3 DAY 7

DAY 10

167



****

Fig 5.17: Follicular localization of transgenic T cells in the draining LNs

(proportion of transferred T cells localizing in the follicle)

CD4+ cells from DO11.10 mice were polarised under Th1 or Th17 conditions and were

adoptively transferred to IgHb congenic mice along side with HEL-specific B cells. Recipient

mice were injected with HEL-OVA/CFA or PBS. On days 3 (a), 7(b) and 10 (c) the

proportion of transgenic T cells that localize in the follicular area was assessed by

immunofluorescence using the Volocity® software as described in fig 5.15. Up to three

section were analyzed from each animal and each point represents the mean of that.

*p<0.05, **p<0.01, ***p<0.001 (n=3).
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Fig 5.18: Follicular localization of trangenic T cells in the draining LNs (number

of transferred T cells per unit of follicular area)

CD4+ cells from DO11.10 mice were polarised under Th1 or Th17 conditions and were

adoptively transferred to IgHb congenic mice along side with HEL-specific B cells. Recipient

mice were injected with HEL-OVA/CFA or PBS. On days 3 (a), 7(b) and 10 (c) the number

of transgenic T cells per unit of follicular area was assessed by immunofluorescence

using the Volocity® software. Up to three section were analyzed from each animal and

each point represents the mean. *p<0.05, **p<0.01, ***p<0.001 (n=3).

*****

DAY 3

****
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***
DAY 10

169



CXCR5

IC
O

S

ISO

IS
O

a)

PBS HAO

Th1

Th17

Fig 5.19: Presence of TFH cells in the Th1 and Th17 OVA-TcR-induced RA

models.

Th1 or Th17 polarised CD4+ cells from DO11.10 mice were adoptively transferred to BALB/c

mice, which where then immunised with OVA in CFA. Ten days after immunisation recipient

mice were challenged in the hind paw with HAO. Control mice received PBS. Seven days post

challenge cells from the draining LNs were analyzed for the presence of TFH cells. TFH cells

were identified based on the expression of CD4, ICOS and CXCR5. The figure demonstrates

representative FACS plots gated on CD4+ cells. Similar results were acquired in two additional

experiments.
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Fig 5.20: Quantification of TFH cells in the Th1 and Th17 OVA-TcR induced

arthritis models

Th1 or Th17 polarised CD4+ cells from DO11.10 mice were adoptively transferred to

BALB/c mice, which where then immunised with OVA in CFA. Ten days after immunisation

recipient mice were challenged in the hind paw with HAO. Control mice received PBS.

Seven days post challenge cells from the draining LNs were analyzed for the presence of

TFH cells. The number (a) and percentage (b) of TFH cells in the draining lymph nodes

(popliteal) was assessed by flow cytometry based on the co-expression of CD4, ICOS and

CXCR5. Data represent mean ±SEM., *p<0.05, **p<0.01, ***p<0.001 (n=6).
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Fig 5.21: Generation of germinal centre B cells in the Th1 and Th17 OVA-TcR

arthritis models.

Th1 (top panel) or Th17 (bottom panel) polarised CD4+ cells from DO11.10 mice were

adoptively transferred to BALB/c mice, which where then immunised with OVA in CFA.

Ten days after immunisation recipient mice were challenged in the hind paw with HAO.

Control mice received PBS. Seven days post challenge cells from the draining LNs were

analyzed for the presence of germinal centre B cells. Germinal centre B cells were identified

based on the expression of B220, GL-7 and FAS. Figure demonstrates representative FACS

plots gated on B220+ cells. Similar results were acquired in two additional experiments.
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Fig 5.22: Quantification of germinal centre B cells in the Th1 and Th17 OVA-

TcR arthritis models.

Th1 or Th17 polarised CD4+ cells from DO11.10 mice were adoptively transferred to

BALB/c mice, which where then immunised with OVA in CFA. Ten days after immunisation

recipient mice were challenged in the hind paw with HAO. Control mice received PBS.

Seven days post challenge cells from the draining LNs were analyzed for the presence of

germinal centre B cells. The number (a) and percentage (b) of germinal centre B cells in the

draining lymph nodes (popliteal) was assessed by flow cytometry based on the co-expression

of B220, FAS and GL-7. Data are presented as mean ±SEM., *p<0.05, **p<0.01,

***p<0.001 (n=6). .

***

***
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5.4 Discussion 

 

In this chapter the relative ability of Th1 and Th17 polarised populations to support 

B cells responses was investigated. An adoptive transfer approach was employed 

that allowed the analysis of the cognate T cell help to antigen specific B cells and 

the subsequent developing humoral response. In this study transgenic CD4 cells 

were polarised in vitro towards a Th1 or Th17 phenotype and adoptively transferred 

to recipient mice where they clonally expanded. Similarly to results from the 

previous chapter, Th17 cells expanded in a greater degree and persisted for a 

greater time length in the draining LN than their Th1 counterparts. More 

importantly, it was demonstrated that cells polarised under Th17 conditions have a 

relative advantage in supporting antibody responses compared to Th1 polarised 

populations. The Th17 population supported a greater B cell clonal expansion and 

higher HEL-specific antibody production compared to cells polarised under Th1 

conditions. Furthermore, the Th17 population supported higher titres of anti-OVA 

IgG1 antibodies. On the other hand, only Th1 polarised cells support the production 

of high titres of IgG2a anti-OVA antibodies. Interestingly, cells from both Th1 and 

Th17 population acquired a phenotype that supported follicular migration and B 

cell help, however due to a higher in vivo expansion of the Th17 population there 

was a greater number of cells with a TFH phenotype in Th17 recipients. 

Nonetheless, both populations had similar ability to migrate and localise into the B 

cell follicle. Even though, these results demonstrate a higher ability of cells 

polarised under Th17 conditions to support B cells responses, this was not evident 

in the Th17 OVA-TcR model of arthritis as both number and proportion of TFH 

cells and germinal centre B cells were similar. 

The data from this chapter suggest a potential advantage of cells polarised under 

Th17 conditions in supporting B cell responses compared to Th1 polarised cells. 

Th17 cells have been so far considered pro-inflammatory mediators that cause 

tissue inflammation through the production of cytokines, such as IL-17 and IL-

22(266;273;465;470). However their role in B cell responses has not been 

thoroughly investigated. An elegant study in the BXD2 autoimmune prone mouse 
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strain that have elevated levels of IL-17 production has demonstrated the presence 

of IL-17 producing CD4
+
 cells in germinal centers, suggesting a potential role for 

Th17 in promoting autoreactive antibody production. However, the role of Th17 

cells in an immunological setting that is not affected by the genetic abnormalities 

present in the inbred BXD2 mice has never been performed. This was attempted in 

this chapter using the B-T co-transferred adoptive transfer model. This did not only 

allow the tracking of both the B and T cell transgenic cells but gave the ability to 

modulate the phenotype of the transferred T cells and thus to directly compared 

cells polarised under Th1 and Th17 conditions. Using this model it was 

demonstrated that cells under Th17 conditions expanded and persisted longer in the 

draining LN. These results agree with previous data from this thesis and could 

potentially be the reason for the higher ability of the Th17 polarised population in 

supporting greater germinal centre formation and antibody production. Indeed 

dynamic imaging studies using multiphoton microscopy have revealed that most B 

and T cell interaction in the light zone of germinal centers are of short duration 

(<5min) and only around 4% of the them are long lasting suggesting that 

availability of T cell help is the limiting factor for B cell selection(627). This was 

further confirmed by studies targeting antigen to B cells using DEC205 antibody-

antigen conjugates, where it was demonstrated that T cell help is the limiting factor 

for germinal centre intrazonal micration and B cell clonal expansion(628). It is thus 

possible that the higher clonal expansion of cells polarised under Th17 conditions 

increases the availability of T cell help to B cells both before and after the 

formation of the germinal centre resulting in more robust antibody responses. The 

microarchitecture of secondary lymphoid organs is critical for optimal cognate T-B 

cell interactions, which takes place in defined anatomical areas mainly the follicular 

border and the light zone of the germinal centres(138;616;627;628). As mentioned 

previously cells that migrate to the follicular region to provide B cell help constitute 

a distinct T helper phenotype termed TFH cells. Based on that, the relative ability 

of the Th1 and Th17 population to acquire a TFH phenotype was investigated. This 

would also be a measure for their potential to move to the follicle. Interestingly 

both populations had a similar ability to acquire a TFH phenotype, as demonstrated 
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by the percentage of ICOS and CXCR5 co-expressing cells. However due to a 

greater expansion of the Th17 population the number of transgenic cells with a 

TFH phenotype was significantly higher in the Th17 recipients. These data were in 

accordance with immunocytochemistry data presented in this chapter assessing the 

localisation of the transgenic T cells in the follicle. Indeed, there was no increased 

localisation of cells polarised under Th17 conditions in the follicle compared to 

their Th1 counterparts, when this was normalized to the clonal expansion of 

transgenic cells and surface of follicle and LN section. However, due to higher 

clonal expansion of cells polarised under Th17 conditions the number of transgenic 

cells per unit area of follicle was significantly higher in these mice compare to their 

Th1 counterparts. These data collectively suggest that the relative advantage of the 

Th17 population relies to one extent on sheer numbers.  

Another possible contributory factor in the greater ability of Th17 population 

relative to their Th1 counterparts in supporting antibody production is the higher 

levels of ICOS expression. ICOS is a CD28-like molecule which is crucial for T 

cell dependent antibody responses and is highly expressed by TFH cells(363;364). 

In humans absence of ICOS leads to an immunodeficiency that is characterized by 

failure in memory B cell generation and immunoglobulin class switching, whereas 

in mice this is accompanied by failure in germinal centers generation (629;630). On 

the other hand overexpression of this molecule, as in SLE patients and in the  

Roquin
san/san

 mice (sanroque mice) leads to autoantibody related pathology and 

spontaneous development of germinal centers(378;381;621). It is thus possible that 

a combination of high number and a higher ability to provide costimulatory helps 

leads to a more robust B cells response in mice that received cells polarised under 

Th17 conditions. 

Apart from differences in the magnitude of antibody response between the two 

groups a difference in the quality of the antibody response was observed.  In mice 

that received cells polarised under Th17 conditions the IgG response was 

characterized by the IgG1 isotype and low levels of IgG2a, whereas Th1 recipients 

by IgG2a. The IgG2a profile of the Th1 response is not a surprise as the role of 

IFNγ in IgG2a class switching is well established and our group using the same co-
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transfer model has demonstrated that in vitro and in vivo polarised Th1 cells 

promote IgG2a class switching(361;362;631). The data relating to the Th17 

population agree with a recent report which demonstrated that the antibody class 

profile induced by cells polarised under Th17 conditions is characterised mainly by 

IgG1, secondly by IgG2b and low levels of IgG2a antibodies(632).  Interestingly, a 

recent study in humans demonstrated that IL-17 producing TFH cells can induce in 

vitro naïve B cells to produce IgG, IgM and IgA(368). It would be interesting thus 

to investigate in the co-transfer system the presence of other isotypes such as IgA 

and IgE. As Th17 cells have been linked to immunity in mucosal surfaces, it would 

be intriguing to speculate that a Th17-B cell response would be characterised by the 

appropriate antibody profile, such as IgA.  

Even though, it has been demonstrated in this chapter that cells polarised under 

Th17 conditions are able to support B cells responses, no direct evidence was 

presented that the cells that provide B cell help are actually Th17. It was 

demonstrated in the previous chapter that after adoptive transfer, the proportion of 

IL-17-producing cells in the Th17 population is reduced dramatically. This leaves 

open the possibility that cells other than Th17 are the ones that provide B cell help. 

So far most studies circumvent this issue by inhibiting IL-17 or IL-17R signalling 

which has as a consequence reduction in germinal centre formation. Even though 

this signifies the importance of IL-17 in germinal centre formation, it is not a direct 

proof of a Th17 cell providing help to its cognate B cell. In order to achieve this in 

situ staining for transgenic cells expressing Th17 markers (e.g. IL-17, RORγt) 

needs to be performed in conjunction with staining for the transgenic B cells. This 

will allow assessing whether Th17 cells are directly providing help to their cognate 

B cells. I am currently in the process of developing a protocol for in situ IL-17 and 

RORγt staining in order to perform this analysis.  

As both Th1 and Th17 OVA-TcR models of arthritis are characterised by the 

generation of autoantibodies the presence of TFH cells and germinal centre B cells 

was investigated. In both models HAO challenged mice were characterized by the 

presence of a defined population of TFH and germinal centre B cells. This is 

expected as the antibody titres from these animals suggest an active germinal centre 

177



 

 

reaction. Interestingly, unlike the co-transfer model were cells polarised under 

Th17 conditions induce a more robust antibody response, this is not the case in the 

OVA TcR model. This could be due to the fact that, as shown in the previous 

chapter, in both models the OVA and autoreactive T cell responses are 

characterised only by IFNγ producing cells. Unfortunately, it is difficult to analyse 

the specificity of the TFH cells. It is true that a proportion of TFH and the germinal 

centre B cells will be OVA-specific, however a proportion of them will be 

autoantigen specific. Using tools such as MHCII-tetramers it would be possible to 

isolate at least cells that are specific for CII peptides. Indeed, our group has 

reported that the CII-specific response in the Th1-OVA TcR model is 

predominately against the U1 CII peptide (Cogniliaro P, manuscript under review). 

This peptide has been reported to be one of the dominant epitopes recognised by 

anti-CII antibodies in the CIA model(513). Development of a MHCII-U1 peptide 

tetramer complex would allow the isolation of autoreactive T cells and the 

assessment of their functionally relative to the OVA-specific T cells.  

In the next chapter, possible mechanisms that could lead to breach of self tolerance 

in autoimmune arthritis will be investigated. This will focus on the role of siglec G, 

a sialic acid receptor that has been involved in regulating danger associated signals, 

in this process.    
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Chapter 6: The Role of Siglec-
G in the development of 

autoimmunity in experimental 
arthritis 
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6.1 Aim and rationale 

 

The presence of class switch autoantibodies and autoreactive T cells in the OVA-

TcR induced arthritis model suggests a failure in peripheral tolerance. Our group 

has suggested that local damage in the joint driven by polarised T cells of an 

irrelevant specificity condition DCs to promote autoreactive responses(7). It is thus 

possible that failure in regulation of signals induced by sterile damage might be 

important in developing autoimmunity. Siglecs are members of the 

immunoglobulin superfamily, which specifically recognise sialic acid on cell 

surface glycol-conjugates(633). Siglec-G has been reported to be part of a 

regulatory mechanism that discriminates damage (or danger)- and pathogen-

associated molecular signals, thus preventing development of an excessive response 

against the former(634). Based on this, the role of this molecule was investigated in 

the OVA-TcR-induced model of arthritis, hypothesizing that its deficiency would 

lead to a more robust breach of self tolerance and potentially more severe pathology.  

 

6.2 Introduction 

 

It is now well accepted that the innate immune system recognises both DAMPS and 

PAMPS through the same set of receptors, such as TLRs and Nod-like 

receptors(635). This raises an important question as to how it differentially 

regulates damage and pathogen associated signals. Recent evidence suggests that 

the CD24/Siglec-G complex constitutes a regulatory mechanism that discriminates 

signals derived from sterile damage from those originating from pathogens. Most of 

siglecs are negative immunoregulators carrying ITIMs(636). These motifs, when 

phosphorylated in tyrosines, create binding sites for protein tyrosine phosphatases, 

such as SHP-1 and-2, which dephosphorylate various intracellular proteins leading 

to inhibition of many signalling pathways(637). Siglec-G is a member of the CD33-

related siglec family in the mouse, has a clear orthologue in humans, Siglec-10(107) 

and carries an ITIM(638). It is highly expressed by all types of B cells, but also by 
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other immune cells such as CD11c
+
, CD11b

+
 cells and T cells(639;640). Its role in 

immunological responses is not very clear. It has been reported that Siglec-G is a 

B1 cell regulatory receptor, which inhibits BcR-mediated calcium signalling(517). 

Its deficiency has as a result a cell intrinsic expansion of the B1a population, which 

results in higher titres of natural IgM antibodies, without any effect on the B2 cell 

population or IgG production(517). However, apart from its role in B1 cells, siglec-

G has been reported to have a regulatory role in DAMP-mediated inflammatory 

responses(634). It has been reported that CD24 complexes with siglec-G to create a 

inhibitory signalling mechanism that specifically recognises DAMPs, such as 

HMGB1, heat-shock protein-70 and -90 (Hsp-70 and Hsp-90) and negatively 

regulates their stimulating activity(634). CD24 has a wide distribution on different 

cell types and was initially attributed with co-stimulatory activity for antigen 

specific T cells(641-643). Its costimulatory function seems to be redundant in cases 

where CD28 costimulation is abundant, however it seems to be important at sites as 

the central neural system where CD28 expression is poor(642;644). Consistent with 

this, CD24 deficient mice are protected from EAE development(645). This suggests 

an immune enhancing effect for this molecule, however in an acetaminophen-

induced liver injury model CD24-deficiency resulted in an increased susceptibility 

to necrosis of liver cells(634). CD24 mediated this function through association 

with various DAMPs, namely HMGB1, Hsp-70 and Hsp-90, which were critical for 

liver necrosis. Interestingly, CD24 mediated its inhibitory function through Siglec-

G, with which it physically associates, in an NFκB dependent manner(634). Indeed, 

Siglec-G deficient mice phenocopy CD24-deficient mice in the acetaminophen-

induced liver injury model. This is a DAMP-specific effect as the proinflammatory 

signals initiated by LPS or poly-I:C are not regulated by this complex, making this 

pathway a possible discriminatory mechanism between DAMP and PAMP initiated 

signals. As DAMPs have been reported to possess adjuvant properties and activate 

DCs(646), which are the initiators of the adoptive immune response, it would be 

intriguing to hypothesise that absence of this regulatory mechanism might lead to 

aberrant immune responses against auto-antigens released during sterile damage. 
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Based on this, the effect of Siglec-G deficiency was investigated on the 

development of autoreactive responses in the Th1 induced model. 

6.3 Results 

 

6.3.1 Effect of Siglec-G deficiency on breach of self tolerance in 
the OVA-TcR-induced arthritis model 

 

In order to investigate the effect of Siglec-G in breach of self tolerance the 

development of autoreactive responses in Siglec-G deficient mice was investigated, 

employing the Th1 OVA-TcR-induced model of arthritis. In both knock-out (KO) 

and wild type (WT) mice a transient arthritis developed as demonstrated by paw 

swelling and clinical score. Siglec-G KO mice exhibited more severe clinical signs 

of arthritis only at day 6, however by day 7 both paw swelling and clinical score 

were not different than control mice (Fig 6.1a-b). The development of autoreactive 

B cell responses was investigated by analyzing the presence of anti-CII IgG 

antibodies. Interestingly, HAO-challenged KO mice developed significantly lower 

anti-CII IgG antibody titres, compared to WT HAO-challenged mice (Fig 

6.2b).Even though WT mice injected with PBS had a high background of anti-CII 

antibodies this was still lower than HAO challenged mice. This effect is CII-

specific as both WT and KO mice develop equal levels of anti-OVA antibodies (Fig 

6.2a). These suggest that Siglec-G might be involved in the development of 

autoreactive B cell responses. The development of autoreactive T cell responses 

was then investigated. Seven days post-challenge cells from draining LNs were 

cultured in the presence of media, OVA or CII and their ability to proliferate was 

assessed employing the Click-iT EDU proliferation assay. In both KO and WT 

animals challenged with HAO the T cell responses against OVA was significantly 

higher to PBS injected mice (Fig 6.3). Surprisingly there were no differences in 

CII-specific T cell responses between the KO and WT animals. In both cases, in 

HAO challenged mice the proportion of CD4
+
 cells that proliferated in response to 

CII was much higher than the PBS challenged mice. It should be noted however 

that in both WT and KO HAO challenged mice there was a very high background, 
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as CD4 cells cultured in the absence of antigen exhibited a significantly higher 

proliferative response compared to CD4 cells from PBS challenged mice (Fig 6.3b). 

The phenotype of the OVA and CII specific T cell responses relating to production 

of IL-17 and IFNγ was then investigated. The phenotype of both OVA and CII 

responses did not differ between KO and WT mice, and as demonstrated in 

previous chapters they were characterized almost exclusively by IFNγ producing 

cells (Fig 6.4 and 6.5). There was minimal production of both IL-17 and IFNγ in 

PBS challenged mice. As in the proliferation assay, in HAO challenged mice there 

was a high background of IFNγ producing cells, such as that both OVA and CII 

responses are not significantly higher than media controls. It is thus of high 

importance to re-investigate the T cell responses in a separate experiment.  

6.3.2 Effect of Siglec-G deficiency in the generation of TFH cells 
and germinal centre B cells 

 

As there was a difference between KO and WT mice in the production of anti-CII 

antibodies their ability to develop effective T-cell dependent B cell responses mice 

was investigated. In order to achieve this, the relative ability of siglec-G KO 

compared to WT littermate mice to generate TFH cells and germinal centre B cells 

was investigated. At day 7 post challenge cells from draining LNs (popliteal) were 

analyzed for the presence of TFH cells by flow cytometry. As in previous chapters, 

TFH cells were identified as CD4 cells co-expressing CXCR5 and ICOS (Fig 6.6). 

In PBS challenged KO or WT mice there was a very small number of TFH cell in 

the draining LNs. On the other hand, in HAO challenged mice there was clear 

population of TFH cells. Interestingly, there was no difference between WT and 

KO mice in TFH cell development, as both the proportion and number of TFH cells 

were similar between the two groups (Fig 6.7). In order to have another measure of 

the ability of TFH cell to promote B cell responses the generation of germinal 

centre B cells was investigated. Germinal centre B cells were identified as B220
+
 

cells that co-expressed GL-7 and ICOS (Fig 6.8). Consistent with previous results 

in this thesis, in PBS challenged mice there was very small number of germinal 

centre B cells in the draining LN (Fig 6.9a-b). In HAO challenged mice there was a 
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clear population of germinal centre B cells. As in the case of TFH cells, there was 

no difference in the number and proportion of germinal centre B cells between KO 

and WT mice (Fig 6.9a-b). These data suggest that both KO and WT mice have a 

similar ability in generating T cell dependent B cell responses and thus the lower 

ability of KO mice to develop anti-CII antibodies is due to different reasons.  
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Fig 6.1: Effect of Siglec-G deficiency in the development of clinical signs of

arthritis

The Th1 OVA-TcR-induced model of arthritis was employed using as recipient mice

Siglec G KO or WT littermate mice. Arthritis was assessed for 7 days by measuring the

difference in paw thickness between the challenged and unchallenged paw (a) or

clinical score (b). Data represent mean ±SEM.*: WT/HAO vs. KO/HAO,*p<0.05,

**p<0.01, ***p<0.001 (n=4).
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Fig 6.2: Effect of Siglec-G deletion in the development of autoantibodies

The Th1 OVA-TcR-induced model of arthritis was employed using as recipient

mice Siglec G KO or WT littermate mice. At day 7 sera was sampled and the

presence of anti-OVA (a) and anti-CII (b) IgG antibodies was analysed by ELISA.

Data represent mean ±SEM.*: WT/HAO vs. KO/HAO,*p<0.05, **p<0.01,

***p<0.001 (n=4).
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Fig 6.3: The effect of Siglec-G deletion on the development of autoimmunity

The Th1 OVA-TcR-induced model of arthritis was employed using as recipient mice

Siglec G KO or WT littermate mice. At day 7 cells from the draining LN were

harvested and cultured for 72hrs in the presence of either media, OVA or CII and the

ability of CD4+ cells to proliferate in response to them was assessed using the Click-iT

EDU proliferation assay by flow cytometry. Populations were gated on lymphocytes

based on the FSC and SSC profile and then CD4+ T cells based on CD4 expression. a)

Representative FACS plots of WT (top panel) or KO (bottom panel). b) Collective flow

cytometry data of proliferation assay. Data represent mean ±SEM, ,*p<0.05,

**p<0.01, ***p<0.001 (n=4).
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Fig 6.4: Effect of Siglec-G in the phenotype of the OVA and Collagen II

T cell response

The Th1 OVA-TcR-induced model of arthritis was employed using as recipient

mice Siglec G KO or WT littermate mice. At day 7 cells from the draining LN

were harvested and cultured for 72hrs in the presence of either media, OVA or CII

and the ability of CD4+ cells to cytometry staining. Representative fluorescent

cytometry plots demonstrating the production of IL-17 or/and IFNγ by CD4+ cells

of PBS or HAO challenged WT (top two panels) or KO (bottom two panels)

mouse.
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Fig 6.5: Effect of Siglec-G in the phenotype of the OVA and Collagen II

T cell response

The Th1 OVA-TcR-induced model of arthritis was employed using as recipient

mice Siglec G KO or WT littermate mice. At day 7 cells from the draining LN

were harvested and cultured for 72hrs in the presence of either media, OVA or CII

and the ability of CD4+ cells to cytometry staining. Fluorescent cytometry data

demonstrating the production of IFNγ (a) or IL-17(b) by CD4+ cells of PBS or

HAO challenged WT or KO mice. Data represent mean ±SEM, ,*p<0.05,

**p<0.01, ***p<0.001 (n=4).

b)

a)
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Fig 6.6 Effect of Siglec-G deficiency on TFH cell development

The Th1 OVA-TcR-induced model of arthritis was employed using as recipient mice

Siglec G KO or WT littermate mice. Seven days post challenge cells from the draining

LNs were analyzed for the presence of TFH cells. TFH cells were identified based on

the expression of CD4, ICOS and CXCR5. The figure demonstrates representative

FACS plots gated on CD4+ cells. Similar results were acquired in one additional

experiments.
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Fig 6.7 Effect of Siglec-G deficiency on TFH cell development

The Th1 OVA-TcR-induced model of arthritis was employed using as recipient mice

Siglec G KO or WT littermate mice. Seven days post challenge cells from the draining

LNs were analyzed for the presence of TFH cells. The number (a) and percentage (b) of

TFH cells in the draining lymph nodes ( popliteal) was assessed by flow cytometry

based on the co-expression of CD4, ICOS and CXCR5. Data represent mean ±SEM.,

*p<0.05, **p<0.01, ***p<0.001 (n=6)

***

***

***

***
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Fig 6.8 Effect of Siglec-G deficiency on germinal centre B cell development

The Th1 OVA-TcR-induced model of arthritis was employed using as recipient mice

Siglec G KO or WT littermate mice. Seven days post challenge cells from the draining

LNs were analyzed for the presence of germinal centre B cells. The figure

demonstrates representative FACS plots gated on B220+ cells. Germinal centre

B cells were identified as B220+ cells co-expressing GL-7 and FAS. Similar

results were acquired in one additional experiments.
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Fig 6.9 Effect of Siglec-G deficiency on germinal centre B cell development

The Th1 OVA-TcR-induced model of arthritis was employed using as recipient mice

Siglec G KO or WT littermate mice. Seven days post challenge cells from the draining

LNs were analyzed for the presence of TFH cells. The number (a) and percentage (b) of

germinal centre B cells in the draining lymph nodes ( popliteal) was assessed by flow

cytometry based on the co-expression of B220, FAS and GL-7. Data represent mean

±SEM., *p<0.05, **p<0.01, ***p<0.001 (n=6)
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 6.4 Discussion   

 

In this chapter the effect of Siglec-G deficiency on the breach of self tolerance was 

investigated. It was hypothesised that the absence of Siglec-G would result in a 

reduced ability to regulate damage related signals that would have as an effect more 

robust autoreactive responses. Surprisingly, however, Siglec-G deficiency protected 

animals from developing autoreactive B cell responses in the form of anti-CII IgG 

antibodies. This was an autoantibody specific phenomenon as the development of 

anti-OVA antibodies was not affected by Siglec-G deficiency. It was also 

demonstrated in this chapter that the absence of Siglec-G does not affect the 

phenotype of the OVA and CII T cell response, which predominantly is 

characterized by IFNγ-producing CD4 T cells. Lastly, it was demonstrated in this 

chapter that the inability of the Siglec-G KO mice to develop autoreactive B cell 

responses is not due to failure in generating TFH cell or effective germinal centre 

reactions. 

The lower level of anti-CII antibodies in the Siglec-G KO mice is an unexpected 

result. As mentioned previously Siglec-G functions as a negative regulator of BCR 

signalling and it deficiency results in the expansion of the B1a subset of B 

cells(517).Indeed, Siglec-G KO mice have been reported to have 5 to 7 times 

higher titres of IgM antibodies compared to wild type littermates as  B1 cells 

secrete natural antibodies of the IgM isotype mainly(517;647). Interestingly, 50- to 

70-weeks old Siglec-G KO mice had higher titres of IgM RF and anti-erythrocyte 

IgM antibodies than wild types controls(517). In addition, mice deficient in both 

Siglec-G and CD22, another member of the Siglec family that also inhibits B cell 

signalling, spontaneously developed anti-DNA and anti-nuclear antibodies which 

resulted in moderate glomerulonephritis(648). Based on these it would be 

interesting to investigate the levels of anti-CII IgM antibodies as there is a 

possibility that these might predominate in the Siglec-G KO mice. If, however, the 

reason for lower anti-CII IgG antibodies in the KO mice is the predominance of the 

IgM isotype a similar effect would be observed in the anti-OVA response. On the 

contrary, in both WT and KO mice there are similar levels of anti-OVA IgG 
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antibodies. The ability of both Siglec-G KO mice to mount effective T-cell 

dependent B cell responses was also reconfirmed by the presence of TFH cells and 

germinal centre B cells. These data agree with reports that assessed the ability of 

Siglec-G KO mice to mount B cell responses against trinitrophenol (TNP)-

ovalbumin, which demonstrated no defect in production of anti-TNP IgG1, IgG2b 

and IgM antibodies(649).  

A possible explanation for the protection of Siglec-G KO mice from the production 

of anti-CII antibodies is the reduced acquisition or presentation of CII by antigen 

presenting cells. It is traditionally considered that pathogens have evolved the 

capacity to acquire sialic acid from the host in order to mimic the local 

microenvironment and to evade the immune response(107). However there are 

studies that suggest that sialic acids in pathogens are important for their recognition 

and the activation of the innate immune response. Indeed the recognition of various 

pathogens such as Tryponosoma cruzi, Campylobacter jejuni, Neisseria 

meningitides and Porcine reproductive and respiratory syndrome virus 

(PRRSV)(107;650-653)is to one extend mediated by sialic acid recognition through 

various siglecs (e.g. sialoadhesin). If a similar process can take place in humans and 

if this is mediated by Siglec-G is unknown. Sialylation has been reported to take 

place in the synovial membrane rheumatoid arthritis patients(654) so the presence 

of Siglec-G ligands in the joint is possible. A possible way to test the ability of 

Siglec-G KO DCs to acquire and present antigen is the employment of the Eα-GFP 

system. Previous studies have demonstrated that the Eα peptide derived from a self 

protein (I-E), can be detected in the context of MHC Class II by the antibody Y-

Ae(655), thus allowing the quantification of antigen presentation. In addition GFP-

acquisition allows the assessment of antigen uptake. Differentially sialylate Ea-GFP 

proteins could allow the comparison of the relative ability of Siglec-G KO 

compared to WT mice in acquiring and presenting antigen.  

In this chapter preliminary data for a potential role of Siglec-G in the breach of self 

tolerance were demonstrated. However, further studies are required especially 

related to the effect of Siglec-G deficiency on T cell responses and antigen 
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presentation, as well as for potential ligands for this receptor in both our model and 

RA patients employing glycan microarrays(656).          
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Chapter 7: Conclusions-
Future perspectives 
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As highlighted in chapter 1, RA is characterised by breach of self tolerance that is 

evident years before the onset of the disease. This is the least studied or understood 

stage of the disease due to limitation of existing animal models and inability to 

access tissue samples from patients at this phase. Understanding the timing, 

location and mechanisms that lead to autoimmunity might hold the key in 

preventing disease development and promoting re-establishment of immunological 

tolerance. This thesis aimed to investigate the role of the Th17 effector cells in the 

induction of autoimmunity by taking advantage an animal model that is 

characterised by the spontaneous breach of B and T cell tolerance(5). As mentioned 

previously these cells have been linked to animal models of autoimmunity(8;9) but 

their role in the breach of tolerance in the context of RA is ill defined.  

The first question that was posed in this thesis related to the phenotype of the auto-

reactive T cell responses that develop in the Th1 OVA TcR-induced arthritis model. 

This revealed that the CII-specific T cell response was characterised by the 

presence IFNγ and the absence of IL-17 producing CD4
+
 cells. This did not change 

even in the presence of Th17 inducing adjuvants, such as curdlan or even when 

Th17 polarised transgenic T cells were used to induce the model. This could 

suggest that the early breach of self tolerance is characterised by Th1 type 

responses. On the other hand, cells polarised under Th17 conditions could induce 

similar breach of self tolerance as Th1 polarised populations. However, whereas the 

Th1 population retained its phenotype the Th17 population experienced a sharp 

decline in its ability to produce IL-17. It is thus possible that even in this case the 

IFNγ-producing cells mediate the immunological events that lead to breach of self 

tolerance. As already mentioned blocking IFNγ and IL-17 or Th1 and Th17 cells 

will give more clear answers related to their role in breach of self tolerance. 

The absence of IL-17-producing auto-antigen specific cells in a model that is 

characterised by a variety of auto-antibodies(6) prompted the investigation of the 

ability of Th17 in supporting B cell responses. Interestingly, not only cells 

polarised under Th17 conditions were able to support B cell responses, but they 

have a relative advantage in this function compared to Th1 polarised populations. 

This is probably due to the significantly higher expansion of these cells in vivo and 
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higher expression of co-stimulatory molecules, such as ICOS. This, in first instance, 

seems to contradict the similar ability of Th1 and Th17 polarised populations in 

inducing breach of B cell tolerance. However, the fact that in both cases the CII-

specific responses are mediated by Th1-like cells could explain this phenomenon. 

Even though cells polarised under Th17 conditions can support antibody production 

this does not necessarily mean that Th17 cells are the ones interacting with the 

cognate B cells, especially as this population rapidly loses its ability to produce IL-

17. As mentioned in chapter 5, in situ staining for identification of Th17 cells 

interacting with cognate B cells will give more information about the role of these 

cells in antibody responses. Undoubtedly, however, the two transferred populations 

are distinct after transfer, as shown by differences in kinetics, expansion and 

functionality. Recent studies, employing fate mapping approaches using IL-17 

reporter mice, suggest that Th17 cells can extinguish their ability to produce IL-17 

and produce IFNγ(657). It is still unknown, whether these ex-Th17 cells have 

different functionality than the traditional Th1 cells, however it would be useful to 

investigate this possibility in the B-T cell co-transfer system and in the RA model.  

Understanding the fate of these cells through time is a very important question as it 

can offer opportunities for suitable temporal intervention. In fact, the possibility of 

a flexible program for effector T cells might have implications relating to both 

disease pathogenesis and therapeutic intervention. Indeed, based on data from this 

thesis, it could be possible that the initial breach of self tolerance, probably taking 

place in the secondary lymphoid organs, is mediated by Th1-like cells producing 

IFNγ. These cells could potentially acquire, under the influence of environmental 

factors, trauma or infection, a Th17 phenotype that could mediate enhanced 

antibody production, expansion of autoreactive B cells clones and direct tissue 

destruction, leading to the articular phase of the disease. On the other hand if Th 

cells are plastic, a resetting of their effector phenotype to a non-damaging one 

could be possible. So in the case of RA and diseases such as multiple sclerosis and 

type I diabetes, the destructive Th1/Th17 response could be altered to a more 

benign Th2 phenotype. There are also downsides in this approach, as in the case of 
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therapeutic use of TREG cells, where their potential transformation to inflammatory 

cells could be detrimental.   

One of the major limitations of the OVA-TcR arthritis model is that, even though it 

is characterised by the development of autoreactivity, it does not progress to the 

active phase of the disease. Indeed, in both Th1 and Th17 models the inflammation 

is self-resolving over a period of 14 days. In the Th1 model, despite minimal 

evidence for footpad inflammation after this point, autoantibody titres continue to 

rise, however mice do not spontaneously develop arthritis at a later timepoint 

(Conigliaro P. et al, submitted manuscript). This is very important for the human 

disease, as how and why the systemic autoimmunity, developed and expanded in 

the secondary lymphoid organs, is subsequently focused in the joint is a crucial 

question. We hypothesized that the answers may lay in the biomechanics of the 

joint itself and its ability to manage sterile damage. This is the reason that the role 

of Siglec-G was investigated in the breach of self tolerance, as it has been linked in 

the regulation of signals derived from sterile inflammation(658). Interestingly, 

Siglec-G
-/-

mice are relatively protected from the development of anti-CII antibodies. 

It was speculated that this might be due to a possible defect in the ability of Siglec-

G
-/-

 DCs in acquiring autoantigen. Further studies are required to prove this; 

however the role of molecules such as Siglecs in RA might prove to be important. 

Siglecs, as mentioned previously, are a family of molecules that bind sialic acid and 

are thought to promote cell-cell interaction and regulate the function of innate and 

adaptive immune cells through recognition of glycans(107). They are categorized 

into two subsets, based on their sequence homology and evolutionary conservation,  

the CD-22 and CD33-related Siglecs(107). With the exception of resting T cells, 

most cell in the human and mouse immune system express one Siglec and some 

express several(107). All CD22- and most CD33-related Siglecs carry one or more 

ITIM, suggesting an immunoregulatory role for these molecules, whereas Siglec-H 

in mice and Siglec-14 and -15 in humans lack this motif(107). In RA, changes have 

been reported in glycosylation of synoviocytes, chondrocytes, in synovial fluid 

glycoproteins, and in IgG(659-662). It is thus possible that molecules, such as 

Siglec, which recognise glycan-moieties, to be involved in the pathogenesis of the 
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disease.  Indeed, sialoadhesin, a CD22-related Siglec expressed by macrophages, 

has been found to be present in high levels in synovial membranes of RA 

patients(663). It would be thus useful to investigate the role of Siglecs in the 

development of autoimmunity and in conditions such as RA.  

The events that lead to breach of self tolerance, progression to active disease and 

tissues destruction are highly dynamic in a temporal and spatial manner. Imaging 

techniques (e.g. PET, SPECT, MRI) have impacted on arthritis from a diagnostic 

and assessment of pathology point of view(664;665), whereas imaging at cellular 

resolution has a significant impact in the understanding of immunological 

processes(666;667). The most effective approach to acquire this type of data is 

through in vivo optical imaging(668). Optical imaging, employing techniques such 

as multi-photon laser scanning microscopy (MPLSM) will allow the undertaking of 

important, detailed, kinetic studies of cellular behaviour required in both lymphoid 

and disease relevant tissues during initiation, maintenance and resolution/regulation 

of autoimmunity and pathology. This could potentialy allow to identify where, 

when, and which cells are interacting, how they are interacting, thus facilitating the 

identification of new cellular and molecular targets. As these studies allow the 

temporal mapping of the development of an autoimmune response, they will 

potentially identify windows of opportunity for the most appropriate intervention. 

In the case of RA and experimental arthritis imaging modalities that maximize 

spatial resolution within the joint are required.  Employing multiphoton endoscopy, 

using gradient reflective index lenses (GRIN) could allow unparalleled imaging 

within the joint. This approach has recently been applied to study morphological 

and structural alterations occurring in the joint during the onset of arthritis in the 

SKG murine model(669). As this imaging modality has already been employed in 

humans, it has a great potential as a diagnostic tool in assessing joint damage in a 

minimally invasive manner(670). Understanding the mechanisms that lead to 

autoimmunity in a spatio-temporal manner in vivo can provide data that will 

rationalize the use of existent therapeutics so that the right person can receive the 

right therapy at the right time and place.  
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In conclusion, this thesis, provided data relating to the ability of Th17 and Th1 cells 

in inducing breach of self tolerance. It was demonstrated that both Th1 and Th17 

effector cells of an irrelevant specificity can induce breach of self tolerance, 

however in both cases these responses were mediated by Th1-like cells. In addition, 

in this thesis evidence is provided that demonstrate the relative advantage of cells 

polarised under Th17 condition in supporting B cell responses compared to Th1 

cells, through their ability to expand and persist longer in the secondary lymphoid 

organs, even though they don‘t retain their ability to produce IL-17. Finally, some 

preliminary data were produced involving Siglec-G in the development of 

autoreactive B cell responses.  
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Appendix   

I. Buffers   

 

a) Flow cytometry buffers 

 

Phosphate Buffered Saline 

(PBS)  1x (1000ml) 

  

NaCl 8g Sigma  

KCl 0.2g Sigma 

Na2HPO4 1.44g Sigma 

KH2PO4 0.24g Sigma 

  

Fixing Buffer   

PFA 4% Sigma 

PBS 1x  

NaOH  5N, 1-2 drops  Sigma 

 

Permeabilisation Buffer   

PBS 1x   

Saponin 0.5% Sigma 

FCS 1% GIBCO, Invitrogen 

NaN3  0.05% Sigma 

EDTA pH8, 2mM Sigma 

 

Fc Receptor Blocking 

Buffer 

  

Supernatant from 2.4G2 

hybridoma cultures 

  

Mouse Serum  10% Biosera 

NaN3  0.01% Sigma 

   

 

Wash Buffer   

PBS 1x  

FCS 2% Sigma 

NaN3 0.1% Sigma 
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b) Magnetic-activated cell sorting (MACS) Buffer 

 

 

MACS Buffer   

PBS 1x, pH 7.2 GIBCO, Invitrogen 

FCS 2% GIBCO, Invitrogen 

EDTA 2mM Sigma 

 

 

 

c) Tissue culture media 
 

  

Roswell Park Memorial 

Institute (RPMI) complete 

media 

  

RPMI-1640 1x GIBCO, Invitrogen 

FCS 10% GIBCO, Invitrogen 

Penicillin 10,000 U/ml GIBCO, Invitrogen 

Streptomycin 10,000 μg/ml GIBCO, Invitrogen 

L-Glutamine 200mM GIBCO, Invitrogen 

 

 

Iscove‘s complete media   

IMDM 1x GIBCO, Invitrogen 

FCS 10% GIBCO, Invitrogen 

Penicillin 10,000 U/ml GIBCO, Invitrogen 

Streptomycin 10,000 μg/ml GIBCO, Invitrogen 

L-Glutamine 200mM GIBCO, Invitrogen 

 

 

Dendritc cell inducing 

culture media 
  

RPMI 1x GIBCO, Invitrogen 

Supernatant from the X63 

GM-CSF producing cell 

line 

10%  

FCS 10% GIBCO, Invitrogen 

Penicillin 10,000 U/ml GIBCO, Invitrogen 

Streptomycin 10,000 μg/ml GIBCO, Invitrogen 

L-Glutamine 200mM GIBCO, Invitrogen 
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d) Immunohistochemistry and immunocytochemistry Buffers  

 

TNT buffer    

Distilled H2O   

Tris-HCl  0.1M, pH 7.5 Sigma 

NaCl 0.15M Sigma 

Tween 20 0.05% Sigma 

 

 

TNB Blocking Buffer   

TNT   

Blocking reagent  1%  TSA, amplification 

kit, Molecular probes  

 

Blocking Buffer   

PBS   

Blocking reagent  1%  TSA, amplification 

kit, Molecular probes  

 

Fc Receptor (FcR) 

Blocking Buffer 

  

Supernatant from 2.4G2 

hybridoma cultures 

  

Mouse Serum  10% Biosera 

NaN3  0.01% Sigma 

 

Permeabilisation Buffer A 

(Cytospins and Tissue 

sections) 

  

PBS 1x   

Saponin 0.5% Sigma 

FCS 2% GIBCO, Invitrogen 

NaN3  0.05% Sigma 

EDTA  pH8, 2mM Sigma 

 

Permeabilisation Buffer B 

(Tissue sections) 

  

PBS 1x   

Triton X-100 0.1% Sigma 

BSA 3% Sigma 

 

Endogenous peroxidase 

blocking buffer  

  

PBS 1x  

NaN3  0.1% Sigma 

H2O2 3% Sigma  
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e) Enzyme-linked immunosorbent assay (ELISA) buffers  

 

Wash Buffer   

PBS 1x  

Tween 0.05% Sigma 

 

 

Blocking Buffer   

PBS 1x  

FCS 10% GIBCO, Invitrogen 

 

 

Dilution buffer   

PBS 1x  

FCS 0.2% GIBCO, Invitrogen 

Tween 0.05% Sigma 

 

 

f) Buffer for OVA-HEL conjugation 

 

Phosphate Buffer   

Na2HPO4 (Dibasic) 2.77g in 300ml 

ddH2O 

Sigma 

NaH2PO4 

(Monobasic) 

0.78g in 100ml 

ddH2O 

Sigma 

Added 60ml of monobasic in 300ml of dibasic to have 65mM PO4
2-

, pH 7.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

206



 

 

II. Antibodies 

 

a) Flow cytometry antibodies  

 

Target  Antibody Isotype  Provider 

CD4 anti-CD4 PerCP 

(Clone RM4-5, 

5μg/ml) 

anti-CD4 FITC 

(Clone RM4-5, 

5μg/ml) 

anti-CD4 APC 

(Clone RM4-5, 

5μg/ml) 

anti-CD4 PE 

(Clone RM4-5, 

5μg/ml) 

 

Rat-

IgG2a,κ 

BD 

Biosciences 

CD45R/B220  Anti-

CD45R/B220 

APC (Clone 

RA3-6B2, 

5μg/ml) 

Rat-

IgG2a,κ 

ebioscience 

ICOS Anti-ICOS PE 

(Clone 

7E.17G9, 

2μg/ml) 

Rat-

IgG2b, κ 

BD 

Biosciences 

CXCR5  Biotynilated-

anti-CXCR5 

(Clone 2G8, 

5μg/ml) 

Rat-

IgG2a,κ 

BD 

Biosciences 

IL-17 Anti-IL-17 PE 

(Clone TC11-

18H10, 2μg/ml)  

Rat-IgG1, 

κ 

BD 

Biosciences 

IFNγ Anti-IFNγ APC 

(Clone 

XMG1.2, 

5μg/ml) 

Rat-IgG1, 

κ 

BD 

Biosciences 

FoxP3 Anti-FoxP3 

APC (Clone 

FJK-16s, 

2μg/ml) 

Rat-

IgG2a,κ 

ebioscience 

CD95 Anti-CD95 PE 

(Clone Jo2, 

2μg/ml) 

Hamster-

IgG2, λ2 

BD 

Biosciences 
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GL-7 Anti-GL7 FITC 

(Clone GL7, 

5μg/ml) 

Rat-IgM, 

κ 

BD biosciences  

DO11.10 TCR  Anti-DO11.10 

TCR FITC 

(Clone KJ1.26, 

2μg/ml) 

Mouse-

IgG2a 

eBioscience 

Vα2  Anti-Vα2 APC 

(Clone B20.1, 

2μg/ml) 

Rat-

IgG2a,κ 

eBioscience 

Vβ5 Anti-Vβ5 FITC 

(Clone MR9-4, 

2μg/ml) 

Rat-IgG1, 

κ 

BD 

Biosciences 

IgMa Anti-IgMa 

(Clone  

5μg/ml) 

Biotinylated-

HEL 

Rat-

IgG2a,κ 

 

N/A 

BD 

Biosciences  
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b) Immunohistochemistry antibodies 

 

  

Target  Primary antibody Secondary reagent 

CD4 Anti-CD4 

eFluor®450 (Clone 

RM4-5, ebioscience, 

5μg/ml) 

N/A 

B220 Anti-B220 FITC 

(Clone RA3-6B2, 

ebioscience, 5μg/ml) 

Rabbit anti-FITC 

Alexa Fluor®488 

B220  Anti-B220 

eFluor®450 (Clone 

RA3-6B2, 

ebioscience, 5μg/ml) 

 

 

 

N/A 

DO11.10 TCR Biotin-anti-DO11.10 

TCR (Clone KJ1.26, 

6μg/ml) 

 

Tyramide signal 

amplification (TSA 

kit, Perkin Elmer) and 

streptavidin Alexa-

Fluoe®647(Invitrogen, 

2μg/ml) 
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c) ELISA antibodies 

 

 

Factor to be 

determined  

Coating 

antigen or 

detection 

antibody 

Detection antibody 

Anti-CII IgG Collagen type 

II (4μg/ml, 

Sigma) 

Goat anti-mouse IgG-HRP (1/5000, , 

Cell Signaling Technologies)  

Anti-CII 

IgG2a 

Collagen type 

II (4μg/ml, 

Sigma) 

Goat anti-mouse IgG2a-HRP 

(1/5000, , Cell Signaling 

Technologies) 

Anti-OVA 

IgG1 

Chicken 

Ovalbumin 

(20μg/ml, 

Sigma) 

Goat anti-mouse IgG1-HRP (1/5000, 

Cell Signaling Technologies) 

Anti-OVA 

IgG2a 

Chicken 

Ovalbumin 

(20μg/ml, 

Sigma) 

Goat anti-mouse IgG2a-HRP 

(1/5000, Cell Signaling 

Technologies) 

Anti-OVA 

IgG 

Chicken 

Ovalbumin 

(20μg/ml, 

Sigma) 

Goat anti-mouse IgG-HRP (1/5000, 

Cell Signaling Technologies) 

IFNγ Purirified anti-

IFNγ antibody 

(Mouse IFN 

gamma 

ELISA 

Ready-SET-

Go, 

ebioscience 

Biotinylated anti-IFNγ antibody 

(Mouse IFN gamma ELISA Ready-

SET-Go 

IL-17 Purified anti-

IL-17 

antibody 

(1.5μg/ml, 

clone TC11-

18H10, BD 

Biosciences) 

Biotinylated anti-IL-17 antibody 

(1μg/ml, clone TC11-8H4., BD 

Biosciences) 
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