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Abstract

We describe the application of the unbiased se-

quential analysis algorithm developed by Dee and

da Silva (1998) to the GEOS DAS moisture anal-
ysis. The algorithm estimates the persistent com-

ponent of model error using rawinsonde observa-

tions and adjusts the first-guess moisture field ac-

cordingly. Results of two seasonal data assimilation

cycles show that moisture analysis bias is almost

completely eliminated in all observed regions. The

improved analyses cause a sizable reduction in the

6h-forecast bias and a marginal improvement in the
error standard deviations.



1 Introduction

Hidden beneath the computational complexities of atmospheric data assimila-

tion systems lies a multitude of assumptions about the errors associated with

observing and predicting atmospheric fields. Most of these assumptions are

there for practical reasons, either because there is not enough information to

remove them, or because they result in critical computational simplifications.

Some, however, are known to be false and could be relaxed without too much

difficulty, with a potentially large benefit to analysis accuracy.

A case in point is the standard assumption that short-term model forecasts,

which are used as first guess fields for the analyses, are unbiased. There is plenty

of evidence to the contrary. For example, Figure 1 shows the means and stan-

dard deviations of the differences between observed and forecast atmospheric

water vapor mixing ratios, computed from January 1998 rawinsonde station

data in four separate regions. The 6h-forecasts were produced by the Goddard

Earth Observing System Data Assimilation System, Version 2.8 (GEOS DAS

2.8), which we describe in Section 4. The statistics show that the systematic
component of the observed-minus-forecast residuals (O-F) is not insignificant,

especially in the Tropics and throughout the upper troposphere. Assuming that

the mean observation error is small, this invalidates the assumption that the
forecast is unbiased.

[Figure 1 about here.]

Details of the forecast bias obviously depend on the particulars of the general

circulation model (GCM) that produced the forecast. They also depend on the

accuracy of the analysis used to initialize the model, which, in turn, is partly

determined by the quality and types of observations that entered into the anal-

ysis. However, the magnitude of GEOS moisture bias is not atypical. Monthly

statistics of specific humidity O-F's produced by the operational DAS of the

European Centre for Medium-Range Weather Forecasts (ECMWF) show com-

parable biases and standard deviations (F. Lalaurette 1999, pets. comm.). The

ECMWF DAS operates at a higher spatial resolution than the GEOS DAS, it

uses a different analysis method, and it assimilates TIROS Operational Vertical

Sounder (TOVS) as well as rawinsonde moisture data. The main cause of bias
in the moisture fields produced by the two systems appears to be related to the

model parameterizations of deep convection and cloud microphysics, which are

perhaps inadequate in all current-generation GCMs (Chen et al. 1998).

The analysis produced by GEOS DAS 2.8 is a weighted average of the 6h-forecast

and the available observations. Analysis weights are derived from assumptions

about the relative accuracies of these two sources of information, which, espe-

cially in the case of moisture, are not very well known. Regardless, the analysis



inheritsafractionoftheforecastbias,simplybecauseof averaging. To illustrate,

we also show in Figure 1 the means and standard deviations of the observed-

minus-analysis differences (O-A). Although the amplitude of the bias has been

reduced by half, its sign is everywhere the same as that of the forecast bias.

Applying more weight to the observations will reduce the bias but increase the

random component of analysis error. It is generally not possible to produce an

unbiased analysis from a biased forecast, unless a reasonable estimate of the
forecast bias is available.

The purpose of this paper is to describe the implementation in GEOS DAS of the
unbiased sequential analysis algorithm developed by Dee and da Silva (1998)

(DdS). The algorithm estimates forecast bias from observations and corrects

the first guess accordingly. Since the bias estimate is continuously updated, it

is more accurately described as an estimate of the slowly varying component
of forecast error. The present implementation, which we refer to as GEOS

DAS BC, is limited to the moisture field and based on rawinsonde data only.

As it turns out, the errors in the 6h-moisture forecasts contain relatively large

persistent components, which are easily captured by the algorithm. Figure 2

displays the January 1998 O-F and O-A statistics for GEOS DAS BC, for the

same regions as before. The bias has all but disappeared, and even the standard
deviations are reduced, albeit by a very small amount. These results were

obtained simply by incorporating the forecast bias estimation in the analysis.
No other modifications were made to the DAS; in particular, the forecast and

observation error covariance models were left unchanged.

[Figure 2 about here.]

Some clarification of terms may be helpful at this point. Bias generally refers

to a non-zero mean error. In theory the mean and other statistics are defined in

terms of a hypothetical ensemble of realizations and its associated probability

density. In practical applications, however, the bias is usually defined as a time

average of a single realization of the error, taken over a finite time interval. This

quantity is spatially variable and, if the errors are bounded, it can evolve on a
time scale that is comparable with the length of the averaging interval. This

length may vary, but our results are usually stated in terms of monthly means.

The term systematic error is loosely applied in this paper to any type of error

caused by an inherent, persistent deficiency in the model or in the observing

system. In a nonlinear system systematic errors are necessarily state-dependent.

Bias is a particular manifestation of systematic errors.

Earlier work addressing systematic forecast errors in the context of data as-

similation was done at the former National Meteorological Center by Thi_baux

and Morone (1990) and Saha (1992), and at NASA's Data Assimilation Office

by Takacs (1996). In each of these studies, forecast bias estimates were de-

rived from analyses rather than from observations. Griffith and Nichols (1996)
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considerthetreatmentof modelerror,andthebiasproblemin particular,by
meansof adjointmethods.DelSoleandHou(1999)explorethepossibilityof
constructing state-dependent empirical corrections, also derived from analyses,
in order to account for systematic errors in the forecast model.

The remainder of this paper explains the details of our GEOS DAS BC imple-
mentation and experimental results. In Section 2 we take a closer look at time

series of mixing ratio residuals produced by GEOS DAS 2.8, to better under-

stand the manifestations of systematic errors in the model forecasts. We briefly

review the unbiased sequential analysis algorithm in Section 3. There we also

discuss the specification of a covariance model for the bias estimation errors,

as well as other general implementation aspects. In an Appendix we derive the

optimal weights for the unbiased analysis equations under a reasonable set of

assumptions; this issue was not settled in the original presentation of the algo-

rithm in DdS. In Section 4 we describe the specifics of the implementation in

GEOS DAS and present results of two seasonal data assimilation experiments

with the new method. Section 5 contains our conclusions and plans for future
work.

2 Evidence of systematic model errors

We can detect systematic model errors by comparing forecasts with observa-

tions. Non-zero mean residuals, computed over suitably long time periods and

over a reasonably large set of stations, can be attributed to systematic model

errors, provided that the mean observation errors are small. This will be the

case if systematic errors in the data have been effectively removed. It is stan-

dard practice, for example, to correct rawinsonde height data at high altitudes

for the effects of solar and infrared radiation (Mitchell et al. 1996). Recent work

by Zipser and Johnson (1998) shows that humidity soundings may also be con-
taminated by instrument-dependent systematic errors, but there is currently no

practical way to correct these data in real time. Nevertheless, quality-controlled
rawinsonde observations continue to serve as a benchmark for all other estimates

of atmospheric moisture content.

The mixing ratio residual statistics shown in Figure 1 represent averages over a

month of station data from four specific regions. The monthly means and stan-

dard deviations are similar during other periods and for other station selections,

but they are usually largest in the Tropics and smaller (but seasonably depen-

dent) in the Extratropics. This reflects a strong dependence of moisture forecast

errors, and probably of observation errors as well, on the amount of moisture

present in the atmosphere and on its local variability. To see this more clearly,

it is helpful to look at individual time series of station data and corresponding
6h-forecasts.



[Figure3abouthere.]

Weplottedin Figure3 theJanuary1998mixingratioobservations,forecasts,
andresiduals,for threepressurelevelsat Singapore.Thelowerpanelshows
that the850hPaforecastsareconsistentlydrierthantheobservations.Mostof
thedots(observations)areabovethethincurve(forecasts),andaccordinglythe
residuals(thickcurve)tendto bepositive.At higherlevelsthesituationisnot
asobvious.Theforecastsat 300hPaaretoowetduringseveralperiodslasting
a fewdaysor more.Thisisconsistentwith theregionalmeanwetbiasin the
forecastmodelat this level,but therearealsoperiodswithseveralconsecutive
dryforecasts.

Wehavelookedat manysuchplotsfordifferenttimeperiodsandstationsinvar-
iouslocations.In contrastwiththemonthlymeanstatistics,whichareprimarily
afunctionof region,altitude,andseason,thetime-dependentcharacteristicsof
systematicforecasterrorsarenotsoeasilyquantified.Theyarebestdescribed
ashavinga tendencyto persistfor a while: successive6h-forecastsoftenre-
maineithertoowetor toodryfora fewdaysor more.Althoughsurelythere
areunderlyingphysicalexplanations,theonsetof suchspellsseemsto occur
randomly.

Theseappearto bemanifestationsof serially correlated model errors. In a the-

oretical study, Daley (1992a) used a Kalman filter on a simple one-dimensional

linear quasi-geostrophic model to examine the potential impact of such errors

on analysis accuracy. He also pointed out the practical difficulty of distinguish-

ing between model bias and serially correlated model errors, even though the

two are conceptually quite different. In our analysis of water vapor mixing ra-
tio observed-minus-forecast residuals we have seen evidence of both types of

phenomena.

Serial correlation of the residuals shows up clearly in the time spectra. We

plotted normalized power spectra, as a function of wave period, for Tropical,

Northern-Hemispheric, and Southern-Hemispheric rawinsonde stations in Fig-

ure 4. There is an excess of power in waves with periods longer than about

5 days, in each of the regions and at all levels; note that serially uncorrelated
errors would result in flat spectra. These average spectra were obtained by

(i) scaling the residuals at each station and at each level, so that the means
are zero and the standard deviations one; (ii) computing the spectrum of each

scaled time series; and (iii) averaging the spectra for all time series consisting
of at least 50 residuals. Since there are gaps in the data, we used a spectral

analysis algorithm for unevenly spaced data (Press et al. 1992, Section 13.8).

[Figure 4 about here.]



Wewill showin thenextsectionhowto usethistypeof spectralanalysisfor
calibratingtheparametersin thebiascorrectionalgorithm.

3 On-line bias correction

Standard a_lalysis methods are bias-blind, in the sense that they ignore biases in

the first guess field. If the first guess is actually biased, then so will the analysis

be biased. An unbiased analysis method must therefore include a scheme for

estimating and removing the first-guess bias.

3.1 The bias-blind analysis equation

In a sequential statistical data assinfilation system such as GEOS DAS, analy-

ses are produced at regular (typically 6-hour) intervals. Each analysis combines

quality-controlled observations with a forecast issued from an initial state de-

rived from the previous analysis. Symbolically, for k = 1,2,...,

w:: + (1)

where the n-vectors w_, wk/ are the analysis and forecast at time tk, respectively,

and the p-vector w_, contains the observations. The pxn-matrix Hk is the
observation operator, which maps model variables to observables, and Kk is an

nxp-matrix of analysis weights.

If both forecast and observations are unbiased, and their errors are mutually

independent, then the optimal (least-squares) analysis obtains for

Kk ! T [H pl..T ]-1----PkHk [ k k_k +Rk , (2)

with P_ and R, the forecast and observation error covariances, respectively

(Jazwinski 1970).

The development of adequate covariance models is an area of active research. In

(linear) theory, P_ and Rk can be computed explicitly using knowledge of the

joint probability distribution of model and observation errors. In reality there

is not nearly enough information available to warrant the staggering expense

that such a computation would entail. Furthermore, the value of a brute-force

approach is questionable, since many of the assumptions that render (2) opti-

mal are incorrect in any case (Dee 1991; Dee 1995). Thus, operational data

assimilation systems use highly simplified representations of the required er-
ror covariances. These are usually obtained by a combination of statistical data



analysis,carefulconsiderationofmultivariatebalancerequirements,optimaluse
ofcomputational resources, and artful tuning of covariance parameters.

In this paper we largely ignore these issues, because (1) implies that the analysis

w_ will be biased if the forecast w_ is biased, regardless o] the analysis weights

Kk. See DdS (Section 2) for more discussion of the transfer of forecast bias to

the analysis, and of the effect of adjusting the covariance models.

3.2 The unbiased analysis equations

DdS showed how to produce unbiased analyses in a sequential data assimilation

system when the forecast is biased. The idea is to provide a running estimate of
the bias and to correct the forecast accordingly. The result is the replacement

of (1) by the following two-step algorithm:

_-/.t- -
(3)

(4)

The n-vector bk is the estimated forecast bias at time tk. The nxp-matrix

Lk, which we will specify below, defines the weighting coefficients for the bias

update equation. Note that (4) and (1) are identical when 1)k = 0.

The two requirements for the analysis w_ to be unbiased are that (i) the obser-

vations w_ are unbiased, and (ii) bk-1 is an unbiased prediction of the forecast
bias at tk. This statement follows simply from linearity and holds regardless

of the specification of the gain matrices Lk and Kk. The second condition

is reasonable when forecast errors tend to persist at fixed locations. It is not

reasonable, for example, when the errors are dominated by large, systematic dis-

placements occurring on synoptic time scales. If a better (e.g., state-dependent)
A

prediction of forecast bias is available, then it can replace b_-I in (3).

Whether t)k-1 provides an unbiased estimate of the forecast bias at tk also de-

pends on the data coverage, both in space and time. Clearly, if a particular

region remains unobserved for a while, then it is not possible to obtain a mean-

ingful bias estimate there, unless additional information (for example, about

the spatial structure of the forecast bias) is used for the bias prediction. As it

stands, the bias estimate generated by (3) will remain constant in regions devoid
of observations. It is therefore important to control the impact of an occasional

observation in a poorly observed region. This can be done by relaxing the bias
estimate to its initial state in the absence of observations, or by careful data

selection. With some abuse of notation, therefore, the observations w_ (and

associated Hk) used in (3) and (4) may be different.



Lackinganya priori information about forecast bias, we take

bo = 0. (5)

Consequently the bias estimate will remain zero in unobserved regions, and the

analysis produced by (4) will differ from the bias-blind analysis (1) only where

data exist. If clearly discernible permanent spatial structures show up in the

bias estimates, and there is reason to believe they can be extrapolated, then (5)

should be modified accordingly.

We show in Appendix A that, within reasonable approximation, the optimal

weights for the bias estimator (3) are

],Lk = PkHk HkP_H / + HkPk/Hk T + Rk , <6)

where P_ is the error covariance of the bias estimate bk-1. Since the observa-

tions used for the bias estimation are used again in the analysis equation (4),

the best choice of analysis weights Kk is not obvious. However, in the Appendix

we derive the remarkable result that, if Lk is defined by (6), then the optimal

analysis weights for (4) are still defined by (2).

The cost of solving the unbiased analysis equations is roughly double that of
computing the standard, bias-blind analysis. Any analysis system designed

to solve (1) can be used to solve both (3) and (4), simply by changing the

background field and the analysis weights. Possible ways to economize are (i)

to use only a subset of the observations for the bias estimation; (ii) to estimate

the forecast bias at a reduced spatial resolution; (iii) to update the forecast bias

estimates less frequently.

3.3 Specification of the error covariances

The bias estimator requires specification of the error covariances P_ of the
bias estimates, in addition to the forecast and observation error covariances

Pk/ and Rk that are needed for the analysis. We are primarily interested in

incorporating the unbiased analysis equations into an existing operational data

assimilation system. Initially, therefore, we regard the forecast and observation

error covariances as given, and use a very simple model for the bias estimation

error covariance. Our approach is to first concentrate on reducing the mean

analysis errors; once that has been achieved we can hope to further improve the

analyses by introducing better covariance models.

DdS proposed the following model for the error covariances of the bias estimates:

P_ = -_P_, (7)



with7 constant.Thismodelassumesthat thespatialcorrelationsof thebias
estimationerrorsareidenticaltothoseoftherandomcomponentoftheforecast
errors,and(in themultivariatecase)thatthetwotypesoferrorsarebalancedin
thesameway.Thisisanattractivestartingpointsinceit takesfull advantageof
theeffortinvestedin formulatingandimplementingaforecasterrorcovariance
modelthat producesreasonableresultsin anoperationalsetting.Thereare
obviouswaysto generalize,for example,by allowingA/to dependon space
and/ortime,orbyadjustingthecorrelationmodelsincorporatedinP_.

Toarriveat a meansfor determininganappropriatevaluefor theparameter
%westudythebehaviorof thebiasestimatorat asingleobservationlocation
that coincideswithamodelgridpoint.Thebiasgain(6) is then

Lk = = + + oo ), (S)

with ab,a I, and ao the error standard deviations for the bias estimate, the

forecast, and the observation, respectively, which we take to be stationary for

the moment. Equation (3) becomes

k-I

= -A _-_'(I - A)Jvk_j,
j----O

(9)

with vk = w_ - Wk/, and we used b0 = 0.

In case of a constant forecast bias bk -- b it is easy to show from (9) and the

assumption that observations are unbiased that limk_oo(bk) = b when 0 <3'<

2. Therefore the mean bias estimate over any sufficiently long time interval

will converge to the mean forecast error over that interval. More generally,

the asymptotic first-moment properties of an estimator for a linear, stationary

system are not sensitive to the covariance specifications, as long as the system
is completely observable and controllable (Jazwinski 1970, Section 7.6). Correct

specification of the error covariances only improves the rate of convergence to

the asymptotic estimate. This is consistent with our earlier statement that
the analysis equations (3-4) are unbiased regardless of the error covariance

specifications. The covariances, or the value of "y in this scalar case, determine

the response of the estimator to errors at shorter time scales.

We showed in Section 2 that, in the absence of forecast bias correction, the time
series of observed-minus-forecast residuals typically have colored spectra. We

would like to determine a value for the parameter A such that the spectra of
the bias-corrected observed-minus-forecast residuals become as flat as possible,

in some well-defined sense. In the time-frequency domain, (9) corresponds to

(lO)



where 3n, un are the Fourier coefficients for wavenumber n > 0 of the time series

/_k, vk, respectively. The response function R,_ is

Rn(A) = -A/[1 - (1 - A)e-Z_i±t/n], (11)

with At the time interval between observations. A flat spectrum of vk + bk

corresponds to

Iv, + Z,,[ = [[1 + R,_(A)]-n] = const. (12)

Clearly (12) cannot be satisfied exactly by manipulating the single free param-

eter A. Instead we can use A to reduce the energy in the long-wave portion

of the spectrum of observed-minus-forecast residuals. A practical method for

estimating A is to compute the average normalized power spectrum Pn of the

residuals for a set of stations (see Section 2), and then to find A that minimizes
the functional

f(A) = _--_n 2 {[[1 + Rn(A)]Pn[- 1} 2 • (13)
n

The factor n 2 serves to emphasize the impact on the long-wave portion of the

spectrum, and we prefer to use average spectra in order to increase the sample

size. A value of A can thus be computed, say, separately for data at fixed
pressure levels from stations in selected regions.

With al and ao given, (7-8) imply

2
A a} + a o

"7 = (14)
1 - _ a} '

which, in conjunction with (7), completes the specification of the bias estimation

error covariance model. This is sufficient for our present purposes.

We briefly outline what would be the next step, namely the re-estimation of

forecast error standard deviations and other covariance parameters, which, after

all, are likely to change as a result of the introduction of forecast bias correction.
The bias-corrected observed-minus-forecast residuals are

vk - w_ - Hk(w[ - bk-1). (15)

Using (A.2,A.1,A.4,A.7) of the Appendix,

Vk = e_ - Hk(6[ - e_¢), (16)

where e_, Ek/, e b are the errors in the observations, in the bias-corrected forecast,

and in the bias estimate, respectively. The covariances of the residuals are
therefore

b T
<v,vT} = HkP_H T + HkPkHk + ak, (17)
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whereweused(A.3,A.5,A.6).Thisrelationbetweenthedataandthecovariance

models provides the basis for estimating parameters of Pk/, P_, and Rk by, for

example, maximum-likelihood techniques (Dee 1995; Dee and da Silva 1999).
Parameters of forecast and bias estimation error covariances are probably not

separately identifiable, so that a model such as (7) will still be needed to close

the problem.

4 Implementation in GEOS DAS

As a first test of on-line forecast bias estimation and correction in an opera-

tional data assimilation system, we modified the GEOS DAS 2.8 moisture anal-

ysis and computed data assimilation cycles for two seasons (December 1997-
February 1998 and June-August 1998). Here we briefly describe the relevant

characteristics of the system, and then discuss the moisture bias correction ex-

periments. In order to save space we show results for January 1998 only. Results

for other months are qualitatively similar, and lead to identical conclusions.

4.1 Description of GEOS DAS 2.8

GEOS DAS 2.8 produces global atmospheric data sets at 6-hourly intervals (3-

hourly for surface fields) on a 2°x 2.5 ° latitude-longitude grid, at 48 vertical
levels in both pressure and sigma coordinates. The core of the system consists

of an atmospheric GCM (Takacs et al. 1999), the MOSAIC land-surface model

(Koster and Suarez 1992; Molod and Salmun 1999), the Physical-Space Statis-
tical Analysis System (PSAS) (Cohn et al. 1998) and various interface functions

including, for example, quality control of observations. The final, assimilated
data products are obtained from the analyzed fields by means of the incremental

analysis update (IAU) procedure (Bloom et al. 1996).

Apart from conventional atmospheric observations, the system accepts geopo-
tential heights retrieved from TIROS operational vertical sounder (TOVS) data,

cloud-drift wind retrievals, and surface winds obtained from SSM/I wind speed

data. The only observations of atmospheric moisture entering the system are

obtained from rawinsonde soundings, although efforts are currently underway to

implement the assimilation of interactive TOVS moisture retrievals (Joiner and

Rokke 1999) and SSM/I-derived total precipitable water obtained from NASA's

Tropical Rainfall Measuring Mission (TRMM) (Hou et al. 1999).

At 6-hourly intervals during the assimilation, a global analysis is computed in

three steps: first for the moisture field (water vapor mixing ratio), then for the

upper-air variables (geopotential heights and winds), and finally for the surface

11



variables(sea-levelpressureand 10m-winds).In eachcasePSASsolvesthe
analysisequation(1),combiningall availableobservationstakenwithin3 hours
oftheanalysistimewith thefirst-guessfieldsproducedbytheGCM.Analysis

weights are defined by (2), based on prescribed forecast and observation error

covariance models. The analysis corrections to the first-guess fields are then

used in the IAU procedure to force the next 6-hour model integration.

The mixing ratio forecast and observation error variances are such that their

ratio is a function of pressure only, ranging between a minimum value of 0.76

(at 700hPa) and a maximum of 2.8 (at 300hPa). This ratio represents, in a

scalar analysis, the weight of a single mixing ratio observation relative to that

of the first-guess value at that location. To complete the covariance model spec-

ifications, observation errors are ,assumed uncorrelated in space and time, while

forecast error correlations are represented by a separable function of horizon-

tal distance and pressure. The variances and correlation parameters have been

estimated from observed-minus-forecast residuals by maximum-likelihood tech-

niques (Dee et al. 1999). Clearly, these exceedingly simple models leave ample

room for improvement.

4.2 Description of GEOS DAS BC

The experimental system GEOS DAS BC is identical to GEOS DAS 2.8 in all

respects, except that the two-step algorithm (3,4) replaces the moisture analysis

equation (1). Both steps are solved with PSAS, using the same forecast and

observation error covariance specifications. For the bias estimation step (3),

we only use observations in the vicinity of stations that report at least once a

day. The computational cost of the moisture analysis is then roughly twice that

in the original system. Since the number of moisture observations is relatively

small (about 7000 per day), the additional expense is insignificant in the context

of the total DAS computation.

The error covariances for the bias estimates, needed to define the weights (6),
are modeled by (7). We tuned the parameter "r using the spectral estimation

procedure described in Section 3, separately for each pressure level, from time
series of GEOS DAS 2.8 observed-minus-forecast residuals restricted to different

time periods and regions in space. The estimated values varied somewhat,
tending to be largest at the upper levels, where the serial correlation of forecast

errors is most pronounced. We ended up using a constant value 7 = 0.22 for
our experiments_ feeling that further refinement may not be worthwhile until

improved covariance models carl be implemented.
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4.3 January 1998 results

Wefirst examinethe timespectraof the GEOSDASBC observed-minus-
forecastresidualsinordertovalidateourchoiceoftheparameter3'.Asdiscussed
inSection3,thesequentialbiasestimatoractsasafirst-orderlinearfilteronthe
dataresiduals.Its behaviorat asinglestationlocationcanbecharacterizedby
a responsefunctionin thetime-frequencydomain,and(with forecastandob-
servationerrorvariancesgiven)isdeterminedbytheparameter3".Anoptimal
analysisschemewouldproducewhite(seriallyuncorrelated)observed-minus-
forecastresiduals(Daley1992b).Figure5 showsthat theregionallyaveraged
spectraof theGEOSDASBCresidualsarein factmuchflatterthanthosefor
GEOSDAS2.8 (shown in Figure 4).

[Figure 5 about here.]

In an earlier experiment with 3' = 0.5 we found that the spectra had too little

power in the low wave numbers (that is, the opposite of Figure 4). The removal

of forecast and analysis bias was equally effective in that experiment (in the

monthly-mean sense), but the random component of forecast error was slightly

larger. This is consistent with the scalar theory presented in Section 3, and sup-

ports our contention that the analyses are unbiased regardless of the covariance

specifications. However, increasing the value of 3' has the effect of contaminat-

ing the bias estimates with noise, and this deteriorates the analyses even if it

does not change their time-mean properties. We find our procedure for esti-

mating the parameter _/based on a spectral analysis of observed-minus-forecast

residuals to be quite effective.

[Figure 6 about here.]

We now take a look at the impact of the forecast bias correction at a single

station. Figure 6 shows time series data at 300hPa, 500hPa, and 850hPa for

the Singapore rawinsonde station; this should be compared with Figure 3. The
thick solid curves are the corrected observed-minus-forecast residuals w_ - (wk/ -

bk-1). The dashed curves show the forecast bias predictions t)k-l; they indi-

cate that the 6h forecasts tend to be too wet at the upper levels and too dry

below. The bias estimates vary slowly with time; adjustments are made when-

ever there are persistent differences between the bias-corrected forecasts and the

observations. The bias estimates may remain quite small for extended periods,

for example at 850hPa between January 14-25.

[Figure 7 about here.]
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Residualtimeseriesat asinglestationfluctuatewildly becauseof random(or
small-scale)observationandforecasterrors.It iseasierto seetheimpactof the
biascorrectionby averagingoverseveralstations.FortheIndonesianregion,
for example,weshowin Figure7 thetimeevolutionof themeanobserved-
minus-forecastresiduals,forGEOSDAS2.8(thincurves)andforthemodified
system(thickcurves).A pointoneachcurveisobtainedsimplyby averaging
the residualsat all stationsin theregion.Sincethebias-correctedforecasts
(wkf -- _)k-1) are truly forecasts, in the sense that they do not depend on data

at t_, these plots demonstrate that the algorithm is able to predict the forecast
bias relative to future observations.

[Figure 8 about here.]

Figure 2, briefly discussed in the Introduction, shows the monthly means and
standard deviations of both the observed-minus-forecast and observed-minus-

analysis residuals, for four different regions. Again, these statistics apply to the

bias-corrected 6h-forecasts (w_ -L)__ 1); they show that, by being able to predict
the forecast bias, the algorithm succeeds in producing unbiased analyses. An

interesting question is whether the improved analyses have a positive impact on

the uncorrected forecasts w_ as well. This is by no means self-evident, since

the mechanisms by which model errors are generated are not well-understood,

although ahnost certainly nonlinear. Figure 8 shows that, in most cases, the

mean errors in the uncorrected forecasts produced from the unbiased analyses in
GEOS DAS BC are in fact much smaller than the errors in the GEOS DAS 2.8

forecasts. This proves that the improvements in the unbiased GEOS DAS BC

analyses do in fact result in significantly better (in the mean sense) short-term

forecasts, at least in observed regions.

In Figure 9 we show an example of a moisture forecast, the forecast bias estimate,

and the analysis produced by the algorithm. This is a snapshot for a particular

region (Indonesia), level (300hPa), and synoptic time (0Z January 1 1998).

The bias estimate represents a spatial and time average of recent observed-
minus-forecast residuals at the stations shown. The estimate indicates that the

forecasts at that level have been consistently wet lately, according to rawinsonde

soundings. The analysis further adjusts the bias-corrected forecast based on the
current observations.

[Figure 9 about here.]

The spatial structure of the forecast bias estimate shown in Figure 9 clearly

reflects the distribution of station locations. There is simply no information in
our scheme about forecast bias other than that contained in the observations.

Far enough away from station locations the bias estimates remain at their initial
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values,whicharezeroin ourexperiments.Thislimits thetotal impactof the
biascorrection on tile global moisture analysis. Furthermore, the final GEOS
DAS data products are based on the output of the IAU procedure, which consists

of an integration of the GCM forced by the analysis increments. It is conceivable
that the effect of the bias correction on the assimilation, even in the vicinity of

data locations, is modified by the IAU due to the influence of the GCM.

To illustrate these points more clearly, the upper left panel of Figure 10 shows

the January 1998 total precipitable water (TPW) according to the GEOS DAS

2.8 assimilation. The upper right panel shows the relative error in this assim-
ilated data set with respect to TPW derived from SSM/I data (Wentz 1997).

These estimates are available over the oceans only, and since we use no mois-

ture data other than those obtained from rawinsonde soundings, the errors are

quite large. This plot gives an indication of the degree of uncertainty in the
GEOS DAS moisture estimates. The lower left panel shows the relative differ-

ence between the GEOS DAS 2.8 assimilated TPW and the TPW computed by

vertically integrating the GEOS DAS 2.8 BC moisture analyses. We regard this

as a measure of the total impact of the forecast bias correction on the moisture

analyses. The impact is not very large (compared to the uncertainty implied

by the Wentz data) and mostly restricted to land. The lower right panel shows

the relative impact of the bias correction on TPW in the assimilation, which

appears to be slightly damped by the IAU procedure.

[Figure 10 about here.]

5 Conclusions

The object of an analysis is to make the best possible use of the available ob-
servations, given a model forecast and whatever is known about the errors. The

observations indicate that model errors tend to persist. This means that the

data contain useful information about likely errors in subsequent forecasts. A

human forecaster would take advantage of this information, being more natu-

rally inclined to think in terms of systematic rather than random model errors.

Of course, the representation of model errors by zero-mean white stochastic

processes in an automated analysis algorithm is strictly a mathematical device,

inspired by computational convenience rather than empirical knowledge.

The unbiased analysis method, introduced in DdS and tested here in the context

of the GEOS DAS moisture analysis, includes a simple scheme for estimating

forecast bias. Analyses are produced as usual, but only after removing the bias

from the forecast. The method relies completely on observations for estimating

the bias, although it can be easily generalized to incorporate any additional

information about forecast bias that may be available. As explained in DdS,
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forecastbiasestimationisa dataassimilationproblemin its ownright; it re-
quiresunbiasedobservations(in thiscase,rawinsondesoundings)supplemented
bya modelfor thebias(in thiscase,persistence).

Thisviewclearlyexposesthemainlimitationsof themethod.First,exclusive
relianceonobservationscanbedangerous,sinceit presumesthateffectivequal-
ity controlandbiascorrectionalgorithmsfor theobservationsarein place.In
practice,forecastbiasestimatesat individualstationsmustbecarefullymoni-
toredin orderto detectproblemswith theobservationsthemselves.It isalso
importantto controlthe impactof anoccasionalobservationin a poorlyob-
servedregion.Second,in theabsenceof additionalinformationaboutforecast
bias,theestimatesareonlymeaningfulwhenandwhereobservationsareregu-
larlyavailable.Thislimitstheimpactofthebiascorrectionin aglobalanalysis
system,as longasrawinsondesoundingsonlyareusedto estimatethebias.
Ultimately,of course,observationsthat aredeemedsufficientlyaccurateforan
analysisshouldbeusefulfor biasestimationaswell.In themoisturecase,for
example,weintendto investigatetheuseof TPWretrievalsto obtainnearly
globalestimatesof troposphericmoisturebias.

Ourexperimentsshowthatthemethodisextremelyeffectiveinpredictingmois-
tureforecastbiasbasedonrecentobserved-minus-forecastresiduals.It is there-
foreableto produceunbiasedmoistureanalysesat all levelsin theobserved
regions.Thisleadsto improvedinitial conditionsfor theforecastmodeland,
asaresult,a reductionin forecasterrors.Specifically,weshowedthatthe6h-
forecastbiasissignificantlyreducedinmanycases.Havingeliminatedanalysis
biasallowsoneto identifymeanforecasterrorswith meanmodelerrors,and
sothebiasestimatesproducedby the methodarein factestimatesof mean
modelerror.Theseestimatescouldproveveryusefulin quantitativestudiesof
modelerror,whichareimportantbothformodeldevelopmentandforadvances
in dataassimilation.

Theupshotofourmethodis thatit usesobservationsmoreeffectively,byremov-
ingtheassumptionthattheforecastmodelisunbiased.It mightbearguedthat
thisapproachoffersonlyatemporarysolutiontayloredto a poorlyperforming
model.Surely,errorswill getsmallerasmodelsanddataimprove.However,
requirementsforanalysisandforecastaccuracycanbeexpectedto increaseac-
cordingly.Theneedfor analysismethodsthat efficientlyextractsmall-scale
informationfromobservationswill grow.Suchmethodsmustinvolveadequate
descriptionsof modelerrorsarisingfromthetreatmentoftopography,convec-
tive parameterizations,etc. It is not at all obviousthat the mosteffective
approximationwill representmodelerrorsby zero-meanwhitenoise.In fact,
webelievethat thetreatmentof systematicdiscrepanciesbetweenmodeland
datawill beevenmoreimportantin futurehigh-performancedataassimilation
systems.

WeplantoextendthisworktothecompleteGEOSDASanalysissystem.There
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is evidenceof significantbiasesandseriallycorrelatedmodelerrorsin data
residualsfor all atmosphericvariables.Themainproblemsto beaddressedin
thiscontextarethedataselectionfromnonstationaryobservers,andareduction
of computationalexpense.Wealsohopeto beableto produceforecastbias
estimatesfordifferentleadtimes,andexaminewhether,say,24hforecastskill
canbe improvedby makinguseof theseestimatesin realtime. Finally,we
wouldlike to explorewaysto usethe forecastbiasestimatesfor identifying
specificsourcesof modelerror,andtherebyhelpimprovepredictionmodels.

Acknowledgements. The authors are grateful to Minghang Chen, Ron Errico,

Siegfried Schubert, and Arlindo da Silva for many fruitful discussions of this
work.

A Optimal gains

In order to make claims about consistency and optimality of an estimator we

need to be precise about what we wish to estimate and about the errors in

our sources of information. The unknowns at time tk are w_, the true state

of the atmosphere, and bk, the deterministic component of forecast error. Our

assumptions on forecast and observations are

= + bk + = 0, (g.1)w k

w_, = Hkw_ + e l, (¢I) _--- 0, (e_(5:_) T) = Rk (A.2)

=0 (h.3)

and that both noise sequences ¢I,¢[ are white. With bk = 0 these are the

standard assumptions for the derivation of the Kalman filter (Jazwinski 1970,

Section 7.3). Bias parameters were first introduced by Friedland (1969), who

derived a sequential bias estimator which is closely related to our unbiased

analysis equations. See DdS for a detailed discussion of the relationship between

Friedland's algorithm and ours.

We further assume that a prediction b_ of the bias bk is available such that

b_ = bk + e b, (e b} = 0, (eb(eb)T) = pb (A.4)

(e_,(e_) T) = 0 (A.5)

Assumption (A.5) is analogous to (A.3); it is clearly true for white observation

errors when b_ is a prediction in the true sense of the word, that is, an estimate
that does not depend on future data. The cross-covariance assumption (A.6) is
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moretroublesome,however,andshouldberegardedasanapproximation.In
particular,for ourunbiasedanalysisequations(3-4)thebiaspredictionis

b_ = bk-1- (A.7)

The forecast wk/ and the bias prediction bk-l both depend on data at t_-l.
Clearly, therefore, their respective errors are not independent. On the other

hand, the forecast errors 6 / involve predictability and model errors as well, so

we expect that the neglected cross-covariances are relatively small.

Substitution of (A.1,A.2,A.4,A.7) into (3) gives

which shows that bk is an unbiased estimate of bk for any Lk. It is also straight-

forward to show, using the second-moment assumptions in (A.1-A.6), that the

best (minimum-variance) linear unbiased estimate obtains when Lk is given

by (6). Optimality depends on the correct specifications of all error covari-

ances; in practice, of course, this will not be the case. In particular, as we
already pointed out, (A.6) is an approximation.

It is not at all obvious, however, that the analysis weights Kk defined by (2)

are optimal. After all, the observations w_: are used twice: first, for estimating

the bias, and second, for computing the analysis. We can write the analysis

equation (4) as

= - (Ag)

w_ = _ + Kk lug - Hk_] • (A.10)

The unbiased analysis (A.10) combines two sources of information--a bias-
corrected forecast and a set of observations---whose errors are not independent.

In fact, using (h.9), (h.1), and (A.8),

_-- -
-- - - wl
= ek/ + bk - bk (A.11)

= [I- LkHk](ek / -- ebk) + Lke°k.

The optimal analysis weights, properly accounting for the cross-covariances, are

(Jazwinski 1970, Section 7.3, Example 7.5)

--? T

Kk = [Pi:H,_- xT] L[Hk:_l"'7"k"k-I-Rk- HkX T - XkH[] -1 (A.12)
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where

With Lk defined b.v (6), it turns out that

remainder of this Appendix proves this statement.

To simplify notation, we omit the subscript k, and define

p _ pb + pl,

S : HPH T + R.

Then (A.11) and (6) imply that

P/ = [I - LH] P [I - LH] T + LRL T

= P - pbHTS-IHp! _ pHTS-IHp b,

and that

X : RL T

= RS-1Hp b,

where we used (A.1-A.6). The first factor of (A.12) is

(A.13)

(A.14)

(A.12) and (2) are identical. The

(A.15)

(A.16)

(A.17)

(A.18)

pIHT _ X T = pH T - pbHTS-1HpIH T _ pHTS-IHpbH T _ pbHTS-i R

= PH T - pbHTS -1 [HP/H T + HpbH T + R] - pIHTS-IHpbHT

: pH T - pbHT _ pIHTS-1HpbHT

= pIHT [I - S-1HpbH T]

= pIHTS -1 [HPIH T + R] .

(A.19)

The inverse of the second factor is

HpIH T + R - nx T - XH T

: HPH T - HpbHTS-1HPIH T _ HPHTS-IHpbH T

+ R - HpbHTS-1R - RS-1HpbH T

= S - HpbHTs-1 [HP/H T + HpbH T + R]

_ HPIHTS-1HpbH T _ RS-1HpbH T

= S - HpbH T - [HP/H T + R] S-1HpbH T

= S - 2HpbH T + HpbHTS-IHpbH T

= It- HpbHTS -l] IS- HpbH T]

= [I- HpbHTS -1] [HpIH T + R].

(A.20)
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Combiningthetwofactors,

K = P/HTS -' [HP/H T + HI [HPIH w + R]-' [I- HPbHTS-'] -'

= PIHrS -1 [I - HPbHTS -j]-I

= P/H r IS - HPbH T]-I

= pIH r IHP/H r + R] -1

(A.21)
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Figure 3: Water vapor mixing ratio [g/kg] observed-minus-forecast residuals

(thick solid curves), rawinsonde observations (dots), and 6h-forecasts

(thin solid curves) at 300hPa, 500hPa, and 850hPa in Singapore, for
the month January 1998. The scales for the residuals are on the left;

those for the observed and forecast values on the right. The empty

dot in the center panel represents an observation that was rejected by

quality control.
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Figure 8: Monthly mean mixing ratio [g/kg] observed-minus-forecast residuals

for rawinsonde stations in four different regions. Forecasts are from

GEOS DAS 2.8 (thin solid curves), and from GEOS DAS BC before
(dashed curves) and after (thick solid curves) bias correction.
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Figure 9: Station locations, 300hPa moisture forecast, bias estimate, and final

moisture analysis near Indonesia for January 1 1998 at OZ. Contour

_alues range from 0 g/kg (lightest) to 0.8 g/kg (darkest) by steps of

0.1 g/kg.
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Figure 10: January 1998 mean total precipitable water (in mm) in the GEOS
DAS 2.8 assimilation (upper left panel); the relative error (in per-

cent) of the GEOS DAS 2.8 assimilation with respect to the Wentz

retrievals (upper right panel); the relative impact (in percent) of the

forecast bias correction on total precipitable water in the GEOS DAS

2.8 BC moisture analyses (lower left panel); and the relative impact

(in percent) of the forecast bias correction on total precipitable water

in the GEOS DAS 2.8 BC moisture assimilation (lower left panel).
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