
Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

 
 
 
 
Incecik, Atilla (1982) Design aspects of the hydrodynamic and structural 
loading on floating offshore platforms under wave excitation. PhD thesis. 
 
 
http://theses.gla.ac.uk/2732/ 
 
 
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 



DESIGN ASPECTS OF THE HYDRODYNAMIC AND 

STRUCTURAL LOADING ON FLOATING OFFSHORE 

PLATFORMS UNDER WAVE EXCITATION 

Atilla Incecik, B.Sc. 

Submitted as a Thesis for the Degree of Doctor of Philosophy 

Department of Naval Architecture and Ocean Engineering 

Glasaow University, 1982 
,( 



(i) 

LIST OF CONTENTS 

LIST OF CONTENTS 

LIST OF FIGURES AND TABLES 

ACKNOWLEDGEMENTS 

DECLARATION 

SUMMARY 

CHAPTER 1: INTRODUCTION 

CHAPTER 2 : WAVE LOADING ON CIRCULAR CYLINDRICAL 
MEMBERS OF OFFSHORE STRUCTURES IN 
DIFFERENT REGIMES 

INTRODUCTION 

1. BASICS OF THE HYDRODYNAMIC PROBLEM 

2. ESTIMATICN OF WAVE FORCES ON THE MEMBERS OF 
OFFSHORE STRUCTURES 

2.1 Wave Forces on Small Diameter Members 

2.1.1 Inertia force 

2.1.2 Drag force 

2.1.3 Total wave force 

2.1.4 Experiments for C
M 

and CD values 

2.1.5 Lift force 

2.1.6 Interference effects of closely 
spaced circular cylinders 

/,.1.6.1 The calculation of wave force when 
a = 0 and fl and f2 are zero 

2.1.6.2 The calculation of wave force when 
a = 90

0 
and fl and f2 are zero 

2.1.7 The calculation of wall effect on the 
inertia coefficients 

2.1.8 The change of drag forces on closely 
spaced circular cylinders 

Page 

i 

vi 

xv 

xvi 

1 

2 

11 

12 

12 

20 

23 

23 

31 

32 

33 

35 

37 

38 

40 

47 

48 

2.1.8.1 Drag force on circular cylinders in 48 
series (one cylinder behind the ot~er) 

2.1.8.2 Drag force on two circular cylinders 53 
side by side 



2.1.9 

2.1.10 

2.1.11 

(ii) 

Effect of inclination angle of cylindrical 
members on wave force calculations 

The effect of roughness on the wave force 
coefficients of circular cylinders 

The non-linear effects on wave force 
calculations 

2.1.11.1 

2.1.11.2 

Second-order time dependent forces 

Second-order time independent forces 

2.2 Wave Forces on Large Diameter Members 

2.2.1 

2.2.2 

2.2.3 

Pressure distribution, wave elevation 
and first-order time dependent forces on 
large diameter circular cylinders 

Application of Stokes' fifth-order wave 
theory to the wave loading calculations 
on large diameter cylinders 

Second-order forces on large diameter 
circular cylinders 

Page 

53 

58 

58 

61 

70 

77 

81 

90 

93 

CHAPTER 3: A GENERAL METHOD AND A COMPUTER PROGRAM 101 
TO CALCULATE WAVE LOADING ON THE CIRCULAR 
CYLINDRICAL MEMBERS OF FIXED AND OF FLOAT-
ING STRUCTURES 

INTRODUCTION 102 

1. 

2. 

THE DERIVATION OF A GENERAL METHOD TO DETER-
MINE WAVE 
MEMBERS OF 

LOADING ON 
FIXED AND 

CIRCULAR 
FLOATING 

CYLINDRICAL 
OFFSHORE STRUCTURES 

1.1 Definition of Reference Systems 

1.2 The Determination of Direction Cosines 

1.3 Calculation of Wave Forces 

1.3.1 Calculation of pressure force 

1.3.2 Calculation of acceleration force 

1.3.3 Calculation of velocity force 

1.3.4 Calculation of the total wave force 

1.4 Calculation of Total Moment 

THE DESCRIPTION OF A 
WAVE LOADING PROGRAM 
MEMBERS OF FIXED AND 
STRUCTURES 

GENERAL THREE DIMENSIONAL 
FOR CIRCULAR CYLINDRICAL 

OF FLOATING OFFSHORE 

2.1 The Description of FILER 

2.2 The Description of WAVLOA 

2.3 The Description of BONES 

103 

106 

109 

111 

111 

115 

118 

120 

121 

123 

123 

126 

128 



( iii) 

3. AN EXAMPLE ON THE USE OF COMPUTER PROGRAMS 

3.1 Input to FILER 

3.2 Output of FILER 

3 . 3 . Usage of BONES 

3.4 Input to WAVLOA 

3.5 Ouput of WAVLOA 

CHAPTER 4: MOTION RESPONSE OF FLOATING OFFSHORE PLAT-
FORMS UNDER WAVE EXCITATION 

INTRODUCTION 

1. HYDRODYNAMIC LOADING DUE TO RIGID BODY MOTION 
OF FLOATING STRUCTURES 

2. DERIVATION OF A GENERAL METHOD TO CALCULATE 
HYDRODYNAMIC LOADING ON THE CIRCULAR CYLINDRICAL 
MEMBERS OF OFFSHORE STRUCTURES 

3. CORRECTIONS TO THE ADDED MASS VALUE IN UN-
BOUNDED FLUID DUE TO THE FREE SURFACE AND 
INTERFERENCE EFFECT OF CLOSELY SPACED MEHBERS 

4. DETERMINATION OF DAMPING COEFFICIENTS 

4.1 Wave Damping Forces 

4.2 Viscous Damping Forces 

5. CALCULATION OF RESTORING FORCES 

6. CALCULATION OF BODY FORCES 

7. DERIVATION AND SOLUTION OF MOTION RESPONSE 
EQUATIONS 

8. DERIVATION AND SOLUTION OF NON-LINEAR COUPLED 
MOTION RESPONSE EQUATIONS 

CHAPTER 5: STRUCTURAL RESPONSE OF FLOATING PLATFORMS 
UNDER WAVE EXCITATION 

INTRODUCTION 

1. CALCULATION OF STRUCTURAL RESPONSE FOR 
DETERMINATE FLOATING STRUCTURES UNDER WAVE 
LOADING 

1.1 Floating Structure is Restrained in Waves, 
Loading is Quasi-Static 

Page 

129 

134 

134 

134 

134 

134 

165 

166 

166 

172 

185 

189 

190 

193 

194 

196 

200 

215 

231 

232 

232 

242 



(iv) 

1.2 Floating Structure is Free in Waves, Loading 
is Quasi-Static 

1.3 Structure is Restrained or Free in Waves, 
Loading is Dynamic 

1.4 Calculation of Struc~ural Response Values 
for Twin Circular Hulled Semi-Submersible 
Model 

2. CALCULATION OF THE STRUCTURAL RESPONSE FOR 
INDETERMINATE STRUCTURES UNDER WAVE LOADING 

2.1 Analysis of Rigid Plane Frames 

2.1.1 Loading is static or quasi-static 

2.1.2 Example of the use of FRAN2 

2.2 Calculation of Structural Response Values 
for Twin Circular Hulled Semi-Submersible 
Model with Bracings 

2.3 Calculation of Structural Response Values 
for Full Scale Twin Circular Hull Semi­
Submersible 

Page 

254 

268 

293 

299 

301 

301 

311 

317 

323 

CHAPTER 6: DESCRIPTION OF THE COMPUTER PROGRAM FLUID4A 346 

INTRODUCTION 

1. DESCRIPTION OF SUBROUTINES 

1.1 Subroutine FLUID4A 

1.2 Subroutine FLUID3 

1.3 Subroutine COLUMN 

1.4 Subroutine FLUID2 

1.5 Subroutine LARGE 

1.6 Subroutine BESSEL 

1.7 Subroutine FLUID 

1.8 Subroutine FACE 

1.9 Subroutines INTER1, INTER2, INTER3, INTER4, 
INTERS, INTER6, INTER7, INTER 8 , INTER9, INTR10, 
INTR11, INTR12 

1.10 Subroutine INTER 

1.11 Subroutines REAR1, REAR 2 , REAR3, REAR4, REARS 

1.12 Subroutine HOT 

1.13 Subroutine HYDROS 

1.14 Subroutine HYDRO 

347 

347 

347 

348 

349 

351 

354 

355 

355 

363 

364 

364 

364 

365 

365 

367 



(v) 

1.15 Subroutine NAT 

1.16 Subroutine FIT 

1.17 Subroutine MOT 1 

1.18 Subroutine MOT 2 

1.19 Subroutine FRAN 1 

2. DESCRIPTION OF INPUT AND OUTPUT DATA 

2.1 Input Data 

2.2 Output Data 

CHAPTER 7: CONCLUSIONS 

1. CONCLUSIONS OF CHAPTER 2 

2. CONCLUSIONS OF CHAPTER 3 

3. CONCLUSIONS OF CHAPTER 4 

4. CONCLUSIONS OF CHAPTER 5 

5. CONCLUSIONS OF CHAPTER 6 

6. CONCLUSIONS OF APPENDIX 1 

APPENDIX 1: DESCRIPTION OF MOTION AND STRUCTURAL 
RESPONSE EXPERIMENTS 

INTRODUCTION 

1. DESCRIPTION OF MODEL 

2. INSTRUMENTATION 

2.1 Instrumentation for Motion Response 
Experiments 

2.2 Instrumentation for Structural Response 
Tests 

3. DESCRIPTION OF CALIBRATION PROCEDURES 

3.1 Calibration of Wave Probes 

3.2 Calibration of Linear Displacement Trans-
ducers 

3:3 Calibration of Strain-Gauges on the 
Transverse Beams 

3.4 Calibration of Strain-Gauges on the 
Inclined Bracings 

4. DESCRIPTION OF RECORDS 

REFERENCES 

NOMENCLATURE 

Page 

367 

367 

368 

368 

369 

371 

371 

373 

385 

386 

387 

388 

389 

391 

392 

395 

396 

396 

405 

405 

406 

407 

407 

408 

409 

410 

411 

424 

436 



(vi) 

LIST OF FIGURES AND TABLES 

CHAPTER 1: 

Figure 1 shows the variation of geometries in some existing 

semi-submersible designs. 

Table 1 illustrates the number of accidents involving 

floating platforms. 

CHAPTER 2: 

Figure 1 illustrates the wave and structure reference systems 

and the co-ordinates of motion displacements of a floating object. 

Figure 2 illustrates the co-ordinates which are used in the 

source and Green functions. 

Figure 3 shows the comparison of inertia and drag forces 

acting on a circular cylinder versus the ratio of wave height to 

cylinder diameter. 

Figure 4 illustrates various regimes according to which wave 

forces are calculated. 

Figure 5 illustrates the control and the member sufraces of 

a body placed in an unbounded fluid. 

Figure 6 illustrates the cross-section of a submerged circular 

cylinder. 

Figure 7 shows two circular cylinders placed in a stream. 

Figures 8-19 show the interia coefficients of two closely 

situated cylinders versus the distance in between the cylinders. 

Figure 20 illustrates the stream lines around a circular 

cylinder situated near to a wall. 

Figure 21 shows the effect of a wall on inertia coefficients 

of a circular cylinder. 



(vii) 

CHAPTER 2 (Cont'd) 

Figures 22 and 22-A show the drag coefficients of circular 

cylinders situated in series (one behind the other) . 

Figure 23 shows the drag coefficients of circular cylinders 

situated side by side. 

Figures 24-27 illustrate various methods of resolving the 

inertia an~ drag forces acting on an inclined circular cylinder. 

Figure 28 illustrates stream lines due to the horizontal 

gradient of horizontal wave particle velocity. 

Figures 29-32 show comparison of linear and non-linear 

theories for wave force calculations on surface piercing circular 

cylinders. 

Figure 33 illustrates a cross-section of a circular cylinder 

on which'second-order time independent forces are calculated. 

Figure 34 shows the second-order time independent forces 

calculated on a submerged circular cylinder using the linear theory. 

Figure 35 shows the second-order horizontal water particle 

velocities. 

Figure 36 shows the second-order wave drift forces on a sub­

merged circular cylinder. 

Figure 37 illustrates oncoming and scattered wave potentials 

around a circular cylinder. 

Figure 38 shows the variation of Bessel function of the first 

kind versus the ratio of cylinder diameter to wave length. 

Figure 39 shows the variation of Bessel function of the second 

kind versus the ratio of cylinder diameter to wave length. 

Figure 40 shows the variation of inertia coefficients versus 

the ratio of cylinder diameter to wave length. 



(viii) 

CHAPTER 2 (Cont'd) 

Figure 41 shows the wave inertia force on a vertical 

circular cylinder calculated using the diffraction the9ry. 

Figures 42 and 43 show the comparison of wave forces cal­

culated on the submerged circular cylinder using the linear and 

the diffraction theories. 

Figure 44 shows the second-order time independent forces 

calculated on the submerged circular cylinder uSing the diffraction 

theory. 

Figure 45 shows the comparison of second-order time in­

dependent forces calculated on the submerged circular cylinder 

using the linear and the diffraction theories. 

Figure 46 illustrates a cross-section of a circular section 

on which second-order time dependent forces are calculated. 

Figure 47 shows second-order time dependent forces calculated 

on the submerged circular cylinder using the diffraction theory. 

Table 1 shows the coefficients of the series which represent 

Stokes' fifth-order oncoming wave potential. 

CHAPTER 3: 

Figure 1 illustrates the bottom of a vertical circular cylinder 

on which vertical wave acceleration forces are calculated using the 

strip-wise approach. 

Figure 2 illustrates the wave, structure and member reference 

systems as well as co-ordinates of motion displacements of a floating 

object. 

Figure 3 shows a cross-section of a circular cylinder in the 

member reference system. 

Figure 4 illustrates continuous and intercostal members on a 

semi-submersible. 



(ix) 

CHAPTER 3 (Cont'd) 

Figures 5 and 6 illustrate identification of the joints in 

the case of more than one member passes through the same point. 

Figure 7 illustrates the selection of the members which are 

to be used for correcting the wave loading calculations for covered­

up areas. 

Figure 8 illustrates the plane from which the structure is 

viewed. 

Figure 9 illustrates the geometry and the main dimensions of 

the platform on which wave forces are calculated. 

Figure 10 illustrates the space frame idealisation of the 

platform shown in Figure 9. 

Figures 11 and 12 illustrate the space frame idealisation of 

the platform shown in Figure 9 from different view points. 

Figure 13 shows the member reference systems on the members of 

the floating structure shown in Figure 9. 

Figure 14 shows the distribution of wave loading on the nodal 

points of a twin circular hull design semi-submersible. 

Figure 15 shows surge force per unit wave amplitude versus 

wave frequency. 

Figures 16-A, 16-B and 16-C show Heave force per unit wave 

amplitude versus wave frequency. 

Figure 17 shows Sway force per unit wave amplitude versus wave 

frequency. 

Figure 18 shows Roll moment per unit wave amplitude versus 

wave frequency. 

Figure 19 shows Yaw moment per unit wave amplitude versus wave 

frequency. 



(x) 

CHAPTER 3 (Cont'd) 

Figure 20 shows Pitch moment per unit wave amplitude versus 

wave frequency. 

Table I shows the member data to be provided as input to 

FILER. 

Table II shows the joint data to be provided to FILER. 

Table III shows the sample run of FILER. 

Table IV illustrates the summary data produced by FILER. 

Table V shows the sample run of BONES. 

Table VI shows the sample run of WAVLOA. 

Table VII illustrates the output data produced by WAVLOA. 

C~PTER4: 

Figure 1 illustrates displacement co-ordinates of an object 

oscillating in an unbounded fluid. 

Figure 2 illustrates displacement co-ordinates of a circular 

cylinder'oscillating in an unbounded fluid. 

Figure 3 illustrates structure and member reference sustems as 

well as rigid-body velocity and acceleration components. 

Figure 4 shows the geometry of a submerged horizontal circular 

cylinder oscillating in an unbounded fluid. 

Figure 5 shows the added-mass values of a circular cylinder 

oscillating near to the free surface. 

Figure 6 shows the measured values of inertia coefficients of 

various geometries oscillating near to the free surface in heave 

mode of motion. 

Figure 7 shows the measured values of damping coefficients of 

various geometries oscillating near to the free surface in heave 

mode of motion. 



(xi) 

CHAPTER 4 (Cont'd) 

Figure 8 illustrates the space position vectors used in the 

calculation of rigid-body motion induced mass-inertia forces. 

Figure 9 shows heave response per unit wave amplitude versus 

wave frequency for the semi-submersible model. 

Figure 10 shows roll response per unit wave amplitude versus 

wave frequency for the semi-submersible model. 

Figure 11 shows variation of phase angles between heave 

force and heave displacement. versus wave frequencies for the semi­

submersible model. 

Figure 12 shows variation of phase angles between roll moment 

and roll displacement versus wave frequencies for the semi-submersible 

model. 

Figure 13 shows variation of magnification factors versus wave 

frequencies for the full scale semi-submersible design. 

Figures 14-16 show variation of heave response per unit wave 

amplitude versus wave frequency for the full scale semi-submersible 

design. 

Figure 17 shows variation of roll response per unit wave 

amplitude versus wave frequency for the full scale semi-submers­

ible design. 

Figure 18 shows variation of pitch response per unit wave 

amplitude versus wave frequency for the full scale semi-submers­

ible design. 

Figures 19-25 illustrate co-ordinate transformations. 

CHAPTER 5: 

Figure 1 shows the distributiono( mass and loading along the 

ship length. 

Figure 2 shows a floating structure on which structural 

response formulations are demonstrated. 

Figures 3-17 illustrate plane frame representations of the 

structure shown in Figure 2 for the structural response formulations. 



(xii) 

CHAPTER 5 (Cont'd) 

Figures 18-20 illustrate a mass and a beam system which 

represents a single degree of freedom system. 

Figure 21 illustrates two masses and a beam system which 

represents a two degrees of freedom system. 

Figures 22-26 show idealised semi-submersible model for the 

calculation of structural response values under the dynamic loading. 

Figures 27-28 illustrate a general view of two existing 

semi-submersible designs. 

Figure 29 shows a general view of the semi-submersible model 

for structural response experiments. 

Figures 30-32 show bending moment per unit wave amplitude 

versus wave frequency variations on the deck of a twin circular 

hulled semi-submersible model. 

Figure 33 shows components of bending moment per unit wave 

amplitude versus wave frequency variations on the deck of a twin 

circular hulled semi-submersible model. 

Figure 34 illustrates force-displacement relations on the 

beam. 

Figure 35 illustrates force and displacement vectors of the 

beam defined in the member and in the structure reference systems. 

Figures 36-37 show the structure used as an example for the 

demonstration of the stiffness method and the FRAN2 computer program. 

Figure 38 illustrates a space frame representation of the 

semi-submersible model with bracing arrangements. 

Figure 39 illustrates plane frame representations of the semi­

submersible model shown in Figure 38 for the structural response 

formulations. 

Figure 40 shows a general view of the semi-submersible model 

with bracing arrangements. 



(xiii) 

CHAPTER 5 (Cont'd) 

Figure 41 shows bending moment per unit wave amplitude 

versus wave frequency variations on the deck of a twin circular 

hulled semi-submersible model with bracing arrangements. 

Figure 42 shows axial force per unit wave amplitude versus 

wave frequency variations on the inclined bracing of a twin 

circular hulled model with bracing arrangements. 

Figure 43 illustrates the geometry and the main dimensions 

of the full scale semi-submersible design. 

Figure 44 illustrates the space frame representation of the 

full scale semi-submersible design shown in Figure 43. 

Figures 45-49 show the structural response values versus 

wave frequencies on the strength members of the semi-submersible 

design shown in Figure 43. 

CHAPTER 6: 

Figure 1 shows the co-ordinates of the twin circular hulled 

semi-submersible model and the input data to progr~ FLUID4A. 

Figures 2 and 3 show the relation between drag and inertia 

coefficients. 

Figures 4 and 5 show turbulence factors for circular cylinders. 

Figure 6 shows roughness factors for circular cylinders. 

Figures 7-9 show the drag coefficients of circular cylinders 

obtained from steady flow experiments. 

Table 1 illustrates the hydrostatic characteristics of the 

twin circular hulled semi-submersible model. 

Table 2 illustrates the overlay tree of program FLUID4A. 

Table 3 summarises the units system used in the program FLUID4A. 

Table 4 illustrates the output of the program FLUID4A~ 



(xi v) 

APPENDIX 1: 

Figure 1 shows general and detailed arrangements of twin 

circular hulled semi-submersible model for structural response 

experiments. 

Figure 2 illustrates the general tank set-up for motion 

and structural response experiments. 

Figure 3 shows strain-gauges on transverse beams. 

Figure 4 shows strain-gauges on brass tubes. 

Figure 5 illustrates the calibration of strain-gauges on 

the transverse beam of the semi-submersible model. 

Figure 5-A illustrates the valibration of strain-gauges on 

the inclined bracings of the semi-submersible model. 

Figures 6-9 show the wave, heave, roll, bending moment, and 

axial force amplitude variations versus time. 

Table 1 illustrates the mass distribution of the twin 

circular hulled semi-submersible model. 

Table 2 illustrates the structural properties of the twin 

circular hulled semi-submersible model. 

Table 3 illustrates calculated and measured natural periods 

and damping coefficients in heave and roll modes of motion. 



(xv) 

ACKNOWLEDGEMENTS 

The research study reported in this thesis would not have been 

possible without the assistance of the members of the Department of 

Naval Architecture and Ocean Engineering at Glasgow University. 

The author is deeply indebted to: 

Professor D. Faulkner, Head of Department, for allowing him to 

carry out this research, and for his constructive guidance; 

Mr. N.S. Miller, Acting Head of Department, for his continuous 

encouragement, stimulating discussions, and his tireless assistance 

wi th many aspe cts of the study; 

Dr. A.M. Ferguson, Superintendent of the Hydrodynamics Labor­

atory, for making the tank testing facilities available to him; 

Mr. M. Sharp and Mr. C. Bradley, for their continuous assistance 

during the development of the computer software routines; 

Mr. R.B. Christison and Nr. J. Holmes( who constructed the model: 

Their skilful work enabled the experiments to run very smoothly; 

Mr. T. Mellon, for providing him with well tried measuring systems; 

Mr. D. Sinclair, who helped him during the rigging and calib­

ration of the model; 

the other members of the staff for very useful discussions on 

various matters associated with this study; 

Miss I. Campbell, Secretary to the Head of Department, and to 

Mrs. M. Frieze for their excellent typing; 

Mrs. A. McGowan and Mr. G. Kerr, for their careful tracing; 

and to his wife, Janet, for her patient encouragement. 

The author gratefully acknowledges the financial support for the 

N.A.T.O. Fellowship Programme, and the Marine Technology Directorate 

of the Science and Engineering Researdi Council, U.K. 



(xvi) 

DECLARATION 

All the material presented in this thesis, unless it 

is otherwise stated, is the original work of the author. 



SUMMARY 

In this thesis an investigation into the wave loading, motion 

and structural response of floating offshore platforms is presented. 

The aim of the study was to develop an analysis procedure which 

could be applied by an offshore designer to various platform designs 

for accurate and safe calculations. 

The investigation starts with a review of the basic hydro-

dynamic principles of wave loading on floating structures. In this 

part the effects of interference between the closely spaced circular 

cylinders, second-order forces, and the non-linear free surface 

conditions on load calculations are presented. 

During the next part of the study, generalised calculation 

methods for circular cylindrical members of offshore platforms have 

been devised in order to determine the hydrodynamic and the structural 

loads under wave excitation. The wave and motion induced load cal-

culations are also coupled with the structural analysis to predict 

the structural response of individual members of a floating platform. 

This load information provides basic input data for the accurate and 

safe determination of member scantlings. 

The developed calculation procedures were implemented in various 

computer routines for practical applications. These methods were 

applied to model and full-scale semi-submersible designs for the 

determination of motion and structural response. 

Finally, model tests have been carried out and the comparisons 

between the theoretical predictions and the test measurements are 

presented. 
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INTRODUCTION 

The design and construction of floa~ing offshore plat­

forms for relatively calm waters started in the early 1960s. 

In the 1970s, with the discovery of oil and gas fields in the 

North Sea, a wide range of platforms (wide, that is, both in 

respect of underwater geometry and of column and bracing arrange-

ments) was designed and built (Fig. 1). These structures, which 

were built for the pu:pose of drilling, production, storage, 

pipe-laying and installation of deck modules on fixed platforms, 

are operated in moderate weather conditions, and must survive 

most severe conditions. 

During the early development of North Sea drilling 

activities, various investigators developed linearised methods 

to predict the motion response of semi-submersible type floating 

platforms. Details of these methods are given in References 1, 

2, 3. The features common to all of these studies may be 

summarised as follows: 

a) Airy wave theory is adopted. Amplitudes of wave and 

platform motions are assumed to be small so that linear 

hydrodynamic methods may be used. This assumption 

permits the linear superposition of the wave forces 

acting on the restrained structure due to the wave 

particle motions, and hydrodynamic forces acting on the 

structure due to the rigid-body oscillations of the 

structure in calm water. The relative motion concept 

is discussed in detail in References 4, 5, 6. 
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GEOMETRY OF SOME EXISTING SEMI- SUBMERSIBLES. 

FIGURE 1. 
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b) Sectional dimensions of members of the floating structure 

are small compared to the wave lengths. The floating 

structure can be divided into small volume elements if 

the dimensions of these e~ements are less than about 1/5 

of the wave length. The wave and motion induced forces 

can be assumed to be concentrated in the centre of these 

volume elements. If one of the dimensions of these 

volume elements is large compared to the wave length, 

the strip theory approach is adopted [4]. The wave and 

motion induced forces are calculated on each volume 

element, assuming that the rest of the structure is not 

present, in other words, the interference between the 

elements of the structure is not taken into account. 

c) Since most of the volume elements of a floating structure 

are deeply submerged, the free-surface effects are 

neglected. 

d) Hydrodynamic forces due to rigid-body velocity are 

linearised and the calculation methods derived in Refs. 

2 and 3 neglect the wave forces due to wave particle 

velocities. 

All these methods, reported in References 1, 2, 3, give 

a good estimation of the wave induced motions of semi-submersible 

type platforms. 

Following the successful development of motion prediction 

methods, optimisation studies were carried out to find the best 

geometrical configurations from the point of view of minimum motion 

response [7,8,9,10,11]. 
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Despite the significant progress achieved in the field of 

structural analysis with the development of various computer pro­

grams which were based on finite element methods, [12,13,14], 

there was not any agreed structural design philosophy to apply to 

this new generation of floating vessels. The wide range of 

structural arrangements in the existing designs (Fig. 1) indicates 

that insufficient interaction took place between the advanced 

fields of hydrodynamic and of structural analysis during the early 

development of floating platforms. The literature reveals that 

designers or classification societies carried out very refined 

finite-element analyses for a certain type of floating structure 

under loading conditions which are computed by pOising the struc­

ture statically on a wave of a certain height and length [15]. 

(Wave length was usually taken to be half of the pontoon length 

and wave height corresponded to a significant wave height of in 

the area where the platform was operated) . 

As experience from the floating platforms operated in the 

North Sea gave evidence of the shortcomings in the design calcul­

ations, the need was felt for more rational design methodologies 

[16] • Towards the middle of the 1970s some large design and 

construction companies, as well as some classification societies, 

either sponsored research or in their own organisations initiated 

analytical studies in order to develop computational methods for 

the structural design of floating platforms [17,18,19,20,21 of 

chapter 5]. 

The features common to these new computational methods of 

structural analYSis may be summarised as follows: 
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a) All members of the structure are assumed to 

deform in the elastic region under static and 

time-dependent quasi-static loading 

b) The member forces are determined under static 

and time-dependent loading using finite 

element methods. The structure is usually 

represented with beam elements for the overall 

structural response analysis 

c) The whole structure is analysed under time­

dependent quasi-static loading to determine 

member forces in the frequency domain 

d) These member forces are divided by the wave 

amplitudes to obtain the transfer functions 

which will be used for the statistical analysis. 

These transfer functions will be correct only 

if the member forces vary linearly with the wave 

amplitudes. This is largely true for the 

floating platforms which operate in most areas. 

e) The transfer functions for each member are com­

bined with the spectral characteristics of the 

operational environment of the platform to arrive 

at the member force and moment spectra for the 

critical locations of the structure 

f) The response spectra for member forces and moments 

are analysed to obtain significant or extreme 

design stresses as well as the fatigue resistance 

of the joints. Details of the statistical 

analysis procedures can be found in References 

21, 22 and 23. 
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g) Extreme design stresses on, and the fatigue 

resistance of, a menber are compared with the 

existing design codes which take safety factors 

into account. These comparisons will enable 

the designer or the certifying authority to 

make the decision as to whether to retain the 

scantlings used throughout the design calcul­

ations or to modify the scantlings and repeat 

the calculations. 

The conceptual philosophy for the overall structural 

response analysis, which is summarised above, can be accepted 

as a rational approach for the design calculations. The 

development of calculation routines based on this new structural 

analysis procedure was reported to be completed in late 1976 

[24,25] • However, since they were the property of a small number 

of institutions, the calculation routines were inaccessible to a 

large group of designers who would have been able to understand 

and use them as design tools. On the other hand, these developed 

routines, as far as the author can conclude from the relevant 

published literature, were in any case restricted in use to design 

calculations on a limited range of geometry. The accidents in-

volving floating platforms bear witness to the shortcomings of 

the developed design procedures [26,27]. Table 1, which was 

taken from Reference 27, shows the number of accidents, between 

1970 and 1980, involving floating platforms in relation to the 

hydrodynamic and structural aspects. 

As drilling activities are, in recent years, being extended 

to deeper waters and more hostile environments, it becomes 
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essential to develop and verify calculation procedures by 

merging the latest methods of hydrodynamic load calculations 

with the most modern and thorough structural analysis tech-

niques. The calculation methods should be devised and 

documented in such a form that an offshore designer can success­

fully and safely apply them to different designs which may vary 

in geometrical and structural configuration, size and operational 

environment. 

In this study an attempt is made to derive generalised 

calculation methods·by which the hydrodynamic and the structural 

loading on a floating platform under wave excitation can be pre­

dicted. 

The methods developed are suitable for use with any 

structural configuration which is composed of circular cylindrical 

elements. 

Wave loading calculations are carried out for a model and 

a full-scale semi-submersible. 

Model experiments were performed in order to compare the 

predictions of motion and structural response with the measure­

ments. 
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TABLE 1 

(From Reference 27) 

I 

FLOATING PLATFORMS I 

Initiating Structural Loss 

Event Total Severe - SUM I Damage Hinor No. 

0 

Weather 3 10 22 17 8 60 

Collision 2 2 11 18 12 45 1 

Blow-out 5 7 9 7 6 34 I 
Leakage - 1 3 - 2 7 i , 

I -
Machine, etc. - 1 4 6 - 11l 

i 

F' (1) I 

l.re 1 2 12 12 - 48 : 
I 

Explosion (1 ) 
I 

- 2 4 6 - 12 i 
, 

Out-of-posit. - - 2 - 4 6 I 
I 

Foundering 1 - - - - 1 I 
: 

Grounding 1 6 2 2 1 12 

- .... 

Capsizing 11 4 1 1 - 17 

Structura.l 
Strength (2) 1 4 14 20 2 41 

Other - - - 8 10 18 
--" , 

SUM 25 40 84 97 45 291 : 

Number of Accidents involving floating platforms operated world-wide 

during 1.1.1970-31.12.1980 (Records were obtained from Lloyd's 

Register of Shipping) . 

1) Fires and explosions occurring in connection with blow-outs do 

not belong to this category as the initiating event in this case 

is the blow-out. 

2) This category includes structural failures that are not apparently 

indiced by rough weather or accidental loads. Hence accidents 

caused by a deficient structure belong to this category. 
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Chapter 2: WAVE LOADING ON CIRCULAR CYLINDRICAL 

MEMBERS OF OFFSHORE STRUCTURES IN 

DIFFERENT REGIMES 
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INTIDDlJCrION 

This chapter summarises the methods used in the evaluation of wave 

loading on structures for different sizes of members on, or beneath the 

free surface. Throughout the report the geometry of circular cylinders 

is used for the numerical procedures and examples. At first, the 

general hydrodynamic problem is outlined and this is followed by a 

detailed analysis of the inertia and diffraction regimes. The analysis 

is primarily based on irrotational (no viscosity), incompressible potent-

ial flow theory. Allowances are made for small diameter members which 

give rise to the viscous forces. In addition, non-linear effects and 

the additional loading generated by the quadratic potential and second-

order loading generated by linear potential are summarised and their 

importance in design calculations is shown. 

1. BASICS OF THE HYDroDYNAMIC ProBLEM 

Our concern is to estimate the wave loading on the cylindrical 

members of a structure which can be fixed or floating amongst the waves. 

In the simple case it may be assumed that the waves are plane progress-

ive waves of small amplitude with sinusoidal time dependence. It is 

also assumed that the wave amplitude is sufficiently small to satisfy 

linearisation. 

If the fluid motion is irrotational it was shown that the follow-

ing relations exist between fluid particle velocity U(x,y,z,t) and a 

scalar potential which will depend on the three space co-ordinates 

(x, y , z) and times [1,2]. 

-+ a -+ a -+ a -+ 
( 1 ) U = V'<P(x,y,z,t) V' = -i +-j + -k 

ax ay az 

-+ 
where U denotes the velocity vector of the fluid, and 

<P denotes the velocity potential. 
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The time dependence of the fluid motion to be considered here is simple 

harmonic motion and therefore ~ may be expressed as: 

-iwt 
~ = Re[~(x,y,z,t)]e 

The mathematical condition specifying the incompressibility of the 

fluid is: 

-+ 
\j-U = 0 

(2) 

(3) 

If equation (1) is substituted in equation (3) the basic differential 

equation of irrotational, incompressible fluid is obtained: 

( 4) 

Fig. 1. 

Since we assume that incident wave is sufficiently small in ampli-

tude and the structure in the wave is stable, the resulting motions 

will be proportionatel~small. Then the velocity potential ~ for the 

floating structure amongst waves can be given as follows: 

6 'wt 
~ (x , y , z , t) = Re {[ ~ (x , y , z) + ~ (x , y , z) + LX, ~ , (x, y , z) ] e ~ } 

o S I j=l J J 
'---------v ( 5 ) 

or 

~A 

6 
~(x,y,z,t) = Re {[~A (x,y,z) + L 

j=l 

-iwt} X , ~ , (x, y , z) ] e 
J J 

- 13 -
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If the structure is fixed amongst the waves the velocity potential takes 

the following form: 

{ -iwt} ~(x,y,z,t) = Re ¢A(x,y,z)e (5-B) 

The first two terms in equation (5) are due to the incident waves 

and their interaction with the structure respectively. These potentials 

are independent of the body motions. The third term in equation (5) is 

due to the structure's rigid body motions in waves. 

The velocity potential associated with an incident wave is given 

by: 

A- - - i 'flo -

O.5gH 
w 

w 

Cosh [k (h+y) ] 

Cosh [kh] 
ikx 

e 

for the deep water waves equation (6) becomes: 

A- - - i 'flo -
O.5gHw ky ikx 

e e 
w 

(6 ) 

(6-A) 

On the surface of the structure elements the following boundary 

condition should be satisfied: 

on S(x,y,z) = 0 (7) 

where 

since 

and 

act> a¢ 
o s 

an = - an- (8) 

Equation (8) shows the kinematic boundary condition on the struct-

ure's surface. 

In addition to the kinematic boundary condition given by equation 

(7) or equation (8) ¢s must also satisfy the following boundary condit-

ions: 
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(a) Laplace equation: 

(b) Bottom boundary condition: 

acp 
s ay = 0 at y -+ - co 

(or, at y - - h for shallow water core) 

(c) Free surface condition: 

on y = 0 

(d) Radiation condition: 

m 
r 

acp 

ar 
s iw cp 

c s = 0 

where m = (n-l)/2 n: the number of dimensions 

r radial distance, r = ~2+z2 

c wave celevity, c = A/T 

(9 ) 

(10) 

(11 ) 

(12) 

It can easily be shown that the incident wave potential cp given 
o 

by equation (6) satisfies the boundary conditions given by equations 

( 9) , (10) and (11). 

The scattering potential, in the most general form, can be 

represented by a distribution of wave sources over the immersed surface 

of the structure using Green's function. The scattering potential 

function is given by Wehausen and Laitone [3] as follows: 

cp (x,y,z) 
s = 4~ II 

s 
f(t;,n,l;) G(x,y,z,t;,n,l;) 

where f(t;,n,l;) represents the source strength, 

(t;,n,l;) denotes a pOint on the surface of the structure, 

G(x,y,z,t;,n,l;) shows Green's function, and 

dS is the differential area on the immersed surface of the 

structure. 

- 15 -
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z 

Fig. 2. 

The Green function which satisfies the Laplace equation (9) is 

given by John [4] as: 

1 
G = R + G* (14) 

where 
, 

R = [(x_~)2 + (y-n) 2 + (Z_~)2]~ 

and 

1 
G* = -- + 2P. v. 

Rl 

+ i 2TI(k
2

-V
2 ) Cosh[k(n+h)] CoS[k(y+h)]J (kr) 

k 2h - \J 2h + \J 0 

(P.V. denotes the principal part of the above integration.) 

where 

w2 ~ 
\J = -- = ktanh(kh), R' = [(x_~)2 + (y+2h+n) 2 +(z_~)2] 

g 

r = [(x-~) 2 + (z_~2)] ~ 

An alternative form of the Green function in series form was given 

in reference [4] as follows: 

+ 4 

iJ (kr)] 
o 

Cos[~ (y+h)] Cos[~ (n+h)] K (Wr) 
m m 0 
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where J and Yare Bessel functions, o 0 

K modified Bessel function, and o 

~m is the real positive roots of the following equation. 

~ tan(~ h) + V = 0 m m (16) 

Equation (13) satisfies all the boundary conditions except the 

kinematic boundary condition on the immersed surface of the structure. 

Substituting equation (13) into equation (8) and taking the inte-

gration around the source into account the following result is obtained: 

a<p 0 1 1 aG 
- ~ = -"2 f (x , y , z) + 47T I I f (~ , n , Z;; ) an (x , y , z , ~ , n , Z;; ) dS (1 7) 

S 

From equation (6) 

a<po = gO.S Hwk [n Sinh[k(y+h)] 
an w y Cosh [kh] + in 

x 
COSh[k(Y+h)]l 

Cosh [kh] J ikx 
e ( 18) 

Finally the following Fredholm integration is obtained as follows: 

- f(x,y,z) + 1 If f(~,n,z;;) 
aG 

(x,y,z,~,n,Z;;) dS 
27T an S 

2g0.S 
Hw

k 
[ ny Sinh [k (y+h) ] COSh[k(Z+h)lj ikx 

= + in e 
w Cosh [kh] x Cosh [kh] _ 

(19) 

Equation (19) may be solved numerically by subdividing the immersed 

surface into N panels and assuming the source strength f(~,n,Z;;) remains 

constant over each panel. Numerical solution of this equation and esti-

mation of <p are discussed in detail in reference [5]. 
s 

Green's function method is very suitable in cases of complex geom-

etries, and moreover for the definition of the flow field so as to be 

able to calculate wave forces on members of the structure taking the 

interaction between the members into account. It is worth noting that 

numerical solution of equation (19) to obtain <p takes up much comput­
s 

ing time from the point of view of development, large storage space and 

it is quite costly to run. 
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Havelock [6] presented a scattering potential function 

as an infinite series using the polar co-ordinates diameter r, and 

angle 8 for circular cylinder geometry in waves: 

00 

cp (r,8,y) = 
s 

," gO. 5 H 
w 

w 
Coshk[y+d] 

Cosh (kd) L 
. t 

A Cosm8 [J (kr) + iY (kr)] e~W 
m m m 

where A are numerical constants, and m 

m=O 

J (kr) and Y (kr) are Bessel functions. m m 

(20) 

The application of equation (20) is given in Section 2.2 to calculate 

the wave forces on large diameter cylindrical members of offshore 

structures. 

The last term in equation (S-A) cpo (x,y,z) represents the velocity 
. J 

potential of a rigid body motion with unit amplitude in the absence of 

the incident waves. For example viz. Fig. 1, if the structure is forced 

to heave with unit amplitude in calm water, the resulting fluid field 

can be represented by potential CP2(x,y,z). The appropriate boundary 

conditions can be obtained by equating the normal derivatives of the 

potential to the normal vector of the rigid structure velocity on the 

surface S(x,y,z) = 0: 

j=1,2,3 (21 ) 

j=4,S,6 (22) 

In addition to the kinematic boundary condition on the body sur-

face each potential cpo should also satisfy the Laplace equation (9), 
J 

, 
the free surface equation (11) and the radiation condition (12). 

The forced motion potentials cpo can be obtained from the solutions 
J 

of the radiation problem and they only depend on the structure geometry 

and the boundary conditions. 
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Having summarised the components of equation (5) we can easily 

achieve our main aim of the calculation of wave loading on the struct-

ure using Bernoulli's equation: 

(23) 

Substituting equation (5) into equation (23) the pressure can be 

obtained in terms of velocity potential: 

p = pw Re { [<Po ex, y , z ) + <P (x , y , z ) + I 
s . 1 J= 

x,4>, (X,y,Z)] 
J J 

.-iwt 
~e 

; [(~x (4)0 (x,y,z) + 4>s (x,y,z) 9 2 + (~y (4)0 (x,y,z) + 4>s (x,y,z) y 2 

+ (~z (4)o(x,y,z) + 4>s(X,Y,Z)Y 2J ei2wt 

-; J [Gx Xj 4>j (x,y ,z) 2 + Gy Xj 4>j (x,y ,z0 2 

+ (~z Xj 4>j (X,y,zy j ei2W1- pgy 

(24) 

The second and third terms in equation (24) are neglected usually for 

the force and moment calculations on the structure, but since they give 

rise to the time independent forces they may be significant on some 

structures. The evaluation of steady-state forces will be given in 

Section 2.1.11.2. 

The force F and moment M can easily be obtained using equation (24): 

F = 11 
S 

-+ 
pndS 

M = 11 p(?A;) dS 
S 

(25) 

The mathematical background outlined in this section is based on 

linear theory, i.e. linear incident wave and linear surface conditions 

are assumed. Non-linear solutions for incident waves were given by 

Stokes [7]. These solutions are based on the systematic power series 

in the wave amplitude. But convergence of these power series is 

- 19 -
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restricted to certain values of the wave steepness H/A and relative 

water depth. (Depth of structure/water depth.) Some applications of 

Stokes' higher order theory were given by Skjelbreia and Hendrickson in 

reference [8]. Non-linear effects can be significant on offshore 

structures which are working in shallow water. The gravity type plat­

form can be a typical example whereby it may be important to consider 

non-linear forces. In Section 2.2 calculation of these forces are 

shown. 

Finally, the theory for quadratic correction of the velocity 

potential ~(x,y,z,t) and of the associated forces due to the assumption 

of a non-linear free surface condition was developed by Lighthill in 

reference [9]. The applications of Lighthill's theory in design calcul­

ations are shown in Section 2.1.11. 

2. ESTIMATION OF WAVE FORCES ON THE MEMBERS OF OFFSHORE STRUCI'URES 

In this section the wave force calculations on the members of off­

shore structures are considered, basically in two flow regimes. These 

regimes are mainly controlled by the structure's characteristic length, 

such as diameter for circular cylinders and the wave length. 

When the ratio between diameter and wave length is less than 0.2, 

force caltulations are carried out in the inertia regime. Within the 

inertia regime as the ratio between diameter and the wave height gets 

smaller viscous forces become significant. The inertia regime may be 

summarised from Fig. 3 as follows: 

when D/H > 0.2, inertia increasingly dominant 

0.125 < D/H < 0.2, inertia + drag significant 

D/H < 0.125 drag predominant. 

As the ratio between diameter and wave length gets larger 

(D/A>0.2 or kR>0.63) the wave force calculations should be done in 

- 20 -

, 



rv 
1-& 

o 
>< u. 

15~ ~ 
u. 

10 

5 

COMPARISON OF INERTIA & DRAG FORCES 

ACTING ON A CIRCULAR CYLINDER. 

I I I o I 9 10 11 o 2 3 l, 5 6 7 6 

Fi<j. ) 
Wave height I Diameter. 



o o 

- 22 -

o . -

aa ....Jw 
W 

I.LJ~ _u 
....J lJ..1.LJ 
!D wtt 
<.!) 
:J 

~<i 
<.!) ~5 
W 
Z 

(j") 
~ 

U 
I.LJ 
lJ.. 
lJ.. 
I.LJ 

.... 
o 

o . .... 

.-
ci 

"1' . 
~ ..... 

:.... 



diffraction regime. If we assume linear-free surface conditions, in 

other words the wave height is small compared to the wave length 

(H/A<O.14 for deep water waves) in diffraction regime the viscous 

forces become negligible. 

Various regimes are summarised as a function of D/A and HekY/D in 

Fig. 4. 

2.1 Wave Forces on Small Diarreter Members 

2.1.1 Inertia force. The summarised results of the linear potential 

flow theory will be applied to calculate wave forces on small diameter 

members of offshore structures. In the absence of the structure the 

fluid motion can be described by a velocity potential ~ (x,t), here ~ 
o 0 

is unsteady in time, but the change with time is slow and length scale 

~ /IV'~ I is small compared to the characteristic length of a member and o 0 

for simplicity it is assumed that the wave particles' velocity is 

a~o 
U

x 
= ~ and is parallel to the x axis at a member and that the member 

has symmetry in respect to the whole reference axis. The disturbance 

of the wave flow due to a member, depends only on the relative flow 

between the member and the fluid. (Here a member of the structure is 

isolated from other members of the structure, in other words it is 

assumed that there is no interference due to the other members.) The 

total potential including the effect of the structure in the flow field 

is given by: 

(26) 

Here U
1 

is the velocity of a member and ¢l the corresponding veloc-

ity potential. The second term in equation (26) identical to the rigid 

body velocity potential representation in equation (5). In equation 

(26) the velocity term was used to include the effect of interference 

between the structure ve~ocity and fluid velocity. When the velocity 

potential of a rigid body is written in the above form the kinematic 
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boundary conditions on the body surface would also be different from 

those given in equation (21). They would take the following form: 

act>. 
~- n. j=1,2,3 an - J 

(27) 
act>. -+ -+ ~= (rAn). 3 j=4,5,6 
an J-

Substituting equation (23) in equation (25) the hydrodynamic force 

vector can easily be written in terms of velocity potential as follows: 

-+ 
F = p!f (~: + ~ v~v~) 

M 

-+ 
ndS (28) 

Newman [10] gives two alternative forms to equation (28) as 

follows: 

-+ 

d~ II 
-+ 

F = - p <PndS 

SM 

or 

-+ 

d~ II 
-+ 

F = - p <PndS 

SM 

z 

\ ( a~ 1 ->-, 
+ pII an V'<P - 2" V'<PV'<Pn) dS 

SM 

[a~ ->- 1 J - pII an V'<P - n 2 V'<PV'<P dS 
Sc 

/ 

;' 

Fig. 5. 
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If we substitute equation (26) in equation (29-A) F becomes: 
X 

d~ II [aw aq, I J F = -p (<p + (U -U 1) <p ) n dS - P I I ~ + (U -u ) X o X 1 X an x 1 an 
Sc Sc 

[

a<p 
~ + (u -u ) 
ax x 1 

a<p 1 1 
- -- n [V<p 
ax 2 x 

.; 

( 30) 

The following relations can also be used to estimate the value of 

F . 
X· 

From the divergence theorem of Gauss: 

III VadV = ff 
v S 

-+ 
andS (31 ) 

In equation (27) if we multiply both sides by <P. and integrate 
~ 

over SM the following equation is obtained: 

a<p. 

ff th -..:..2 dS = 
'+'i an 

SM 
(32) 

If we suppose that we are only considering the value of the force 

due to the structure velocity potential substituting equation (26) into 

equation (28) and neglecting the second-order terms the following equat-

ion can easily be written: 

-+ 
F 

T,M 

d -+ dU. -+ 

= P dt II U.<P. ndS = p dt~ If <Pi ndS 
S ~ ~ 

M 

If we substitute equation (32) into equation (33) F becomes: T,M 

au. 
= p at~ If 

SM 

th a<p. 
'+' i --:.1. d S 

an 

(33) 

( 34) 

By analogy to Newton's second law equation (34) can be expressed 

in the following form: 

au. 
-+ ~ 

FT,M = mij at 

From the definition it becomes clear that: 

m .. 
~J 

= II th a<p. 
p '+'i ~ dS 

SM an 
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Here m .. is the added-mass tensor. Using the divergence theorem 
~J 

of Gauss: 

a<t>. 
m. . = P I I <t>. ~ dS. = P 
~J S ~ on 

M 

Iff 'i7 (<t>. 'i7<t>.) dV = p I I I ('i7<t>. 'i7<t> .) dV 
V ~ J V ~ J 

From the definition pf kinetic energy of the fluid: 

T = 21 p fff ('i7~'i7~) dV = 21 p Iff u.u. 'i7<t>.'i7<t>. dV 
V V ~ J ~ J 

Combining equations (37) and (38): 

1 
T = -2 P u. U. m .. 

~ J ~J 

(37) 

(38) 

(38-A) 

This result is very useful for finding the added-mass values of differ-

ent geometries. 

As an example, the kinetic energy of the fluid in the case of a 

circular cylinder which is moving with U constant speed can be written 

using the definition of kinetic energy expression as follows: 

00 21T 

T = ; p I dr f U2rd8 = 
R 0 

(39) 

Equating (38-A) and (39) m . can easily be obtained for circular 
uJ 

cylinders per unit length: 

_ 2 m.. - 1TpR 
~~ 

In reference [11] the kinetic energy of flow is given for differ-

ent geometries of moving or rotating bodies. Now we can use the results 

obtained in equations (31)-(39) to calculate the first integral in equat-

ion (30): 

a~ 
1 

ff (U x -U 1 ) <t> 1 ] fff 
0 

(U x -U 1) [~ + ndS = -- dV +-m 
0 x ax p 11 

SM V 
(40) 

1 (U
x

-U 1 ) = U V + - mIl x p 

or 

d~ If 
• • 

- p [~ + (Ux -U 1 )<t>1] n dS = (pv+m ll ) U - mIl U 1 
0 X x 

SM 

( 40-A) 
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If we write the terms in the second integral after the multiplicat-

ions of the terms in brackets the following form is obtained: 

f
a<po + 

an 

- .!. n [v<p + 
2 x 0 

a<Pl] (U -u ) 
x 1 ax. 

I J a4> 0 2 
= pI (-) n + (U -u ) 

a<po a<P 1 a<P
1 

a<p a<f> 2 
o 2·( 1 

~ a;z- + (UX -U 1) a;- a;z-+ (Ux~tJl) '"ax)' nx S : ax x x 1 

C t 
1 [. 2 - - n (V cI> ) + 2 (U -U ) 
2 x a x 1 

V<pV<p +(U-U)2(v<f>J)~}dS (41) 
o 1 x 1 I'J 

Since Laplace equations V2<po and V2<P1 are satisfied throughout the 

entire region of Sc' equation (41) becomes: 

p(U -U ) II x 1 
Sc 

[

a<po a<Pl a<po a<P 1 : 
- -- + -- -- - n V<P V<p dS 
an ax ax an x 0 IJ (41-A) 

For sufficiently large radial distance r from the body, the potent-

ial due to the structure's rigid body motion can be written in terms of 

dipole moments: 

<P ~ A _a_ .!. 
i ij ax. r 

J 

as r -+ 00 (42) 

Dipole moments A .. were calculated using Green's theorem and given as 
l.J 

follows [10]: 

1 
A," = l.J 

(Va .. + m .. /p) 
41T l.J l.J 

i,j=1,2,3 

From the symmetry of the structure A .. = 0 if ifj here: 
l.J 

~ = u .. 
l.J 

o 

1 

if 

i=j 

(43) 

Assuming that control surface Sc is sufficiently distant from a 

member of the structure, we can then substitute equations (42) and (43) 

into equation (41-A) to obtain the following form for the second inte-

gration in equation (30): 
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or 

1 
4n 

1 
4n 

(pV+m ) (U -U ) 
11 X 1 

r
a2~ 

(pV+m ) (U -U ) II 0 
11 X 1 ~ 2 

Sc _oX 

... 

(~) -nxV~V a: (~)j dS 

(44) 

- - - - - - n "il 2 'dS a (ilia a2~o a (1'] 
an r) r an ax2 x cp ax ~/ 

(44-A) 

Using Green's theorem inside the control surface Sc the velocity 

potential cpo (x,y,z) can also be given as follows: 
~ 

1 r- a (1) 1 acp i ] CP. (x, y ,z) = - - J I cp. - - - - - dS 
~ 4n S ~ an r r an _ 

c 
(45) 

Using equation (45) and the Laplace equation, the final form of 

the second integral in equation (30) will be: 

- (pV+m ) (U -u ) 
11 X 1 

(46) 

If we replace equations (40-A) and (46) with the first and second 

integrals in equation (30) respectively, we obtain the total horizontal 

force F on a member in the following form: 
x 

aU 
• • x 

F = (PV+m
11 

) U - m U + ( pV+m ) (U -U ) --
x X 1 1 1 11 X 1 ax 

(47) 

or 
aU 

• x • 
F = (pv+m

11 
) U + (U

X 
-U

1
) 

ax 
- m11 U1 x x 

(47-A) 

Similarly the F y' F components of the force vector can be written as 
z 

follows: 

aU 
• -:L • 

F = (pV+m ) U + (U -U ) - m U (47-B) 
y 22 y Y 2 ay 22 2 

au 
• z • 

F = (pV+m ) U + (U -U ) 
az 

- m U (47-C) 
z 33 Z Z 3 33 3 

Equations (47-A), (47-B) and (47-C) are the fundamental expressions 

for the calculation of wave loading on the members of offshore structures. 

We may interpret equation (47-A) to give the physical meaning of 

each component: 
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F 
x (48) 

The first term on the right hand side of equation (48) is the dyn-

amic pressure force due to undisturbed wave field. Thiii can easily be 

understood by comparing equation (40) or (40-A) with the first term in 

question. This force is also called the Froude-Krylov force. 

The second term is the acceleration force due to the presence of 

a member in the wave field. The third term takes the interaction 

between water particle velocity and body velocity into account, as 

well as the variation of fluid particle velocity along the cross-

section of a member. We may call this term a "correction force for 

disturbance of the wave field due to the body" and it has a second 

order effect. The third term is usually neglected in the practical 

calculations. The last term of equation (47-A) is due to the member's 

motion. If we set the sum of all F 's for individual members equal to 
x 

• 
the product of the total mass of the structure and U

1 
we can also 

obtain the motion equation as: 

• 
MU

1 
= I F = I [( pv 0 +m 1 1 0) U 0 - m 1 lOU 1J 

o 1 Xo 0 1 1. ,1. X,l. ,1. 
1.= 1. 1.= 

( 48) 

or 

(
M+ I m 0) U = 

o 1 11,1. 1 
1.= 

! l-( p V 0 +m 1 1 0)] U 0 
o 1 1. ,1. X,l. 
1.= 

(48-A) 

If we want to show the use of equation (47-A) by calculating the 

horizontal wave forces on a circular cylinder, if we assume that the 

cylinder is stationary and the wave field is described with a velocity 

potential given in equation (6-A): 

-i 0.5g H 
w ky ikx 

<Po = e e 
W 

(49) 

f d 
' "I 

I • 0.5g H 
-iwt) ( 

:'-1. 
ky ikx I w , 

U = Re 1- ' e e e 'I 

X dX \ W / i 
"- I 

..J 

(50) 

U = 0.5 H w e
ky 

Cos (kx-wt) 
x w 

( 50-A) 

- 29 -



au U x 0 5 w2 ky x = ~ = . Hw e Sin (kx-wt) (51 ) 

Fig. 6. 

au 
ax

x 
= - 0.5 Hw w k e

ky 
Sin(kx-wt) (52) 

Since the member is assumed to be stationary: 

(53 ) 

If we substitute the equations (50-A)-(53) into equation (47-A) 

F can be written as: 
x 

F x = I { (P1TR2 + p'1TR2) (0.5 Hw w
2 

e
ky 

Sin (kx-wt) - 0.5
2 

H! w
2 

k e
2ky 

Sin (kx-wt) Cos (kx-wt) } dz (54) 

or 

l 
F = J x 

2pnR2 0.5 H w2 e
ky 

Sin (kx-wt) (1-0.5 H k e
ky 

Cos(kx-wt» dz 
w w 

o 

If we neglect the second term in brackets F becomes: 
x 

2pnR2 0.5 H w2 e
ky 

Sin(kx-wt) dz 
w 

(55) 

(54-A) 

Finally, equations (47) can be written as a function of wave 

properties and the geometry of a structure in waves: 
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i 
FX = P J (A

S
(1+k

11
) U

x 
o 

Here A 
s 

k 
11 

cross-sectional area of a structure 

added mass coefficient. 

(55) 

Usually 1+kll is written as C
M 

and therefore equation (55) takes the 

following form: 

i 
Fx = P f (As CM Ux 

o 
( 55-A) 

If we substitute A =TIR2
, k =1 or C

M
=2, and U =0 for stationary circular s 11 1 

cylinders into equation (55-A) we obtain an equation identical to the 

expression given in equation (54-A). 

2.1.2 Drag force. The theoretical wave force predictions given in 

Section 2.1.1 use ideal potential fluid theory and are proportional to 

the local acceleration of the fluid relative to the body, hence they are 

"inertia forces". But as was mentioned earlier in Section 2, when the 

body's characteristic length becomes smaller compared to the wave ampli-

tude (D/H<0.125) , the situation in the flow field is fundamentally 

different and we should also include viscous forces which are due to the 

turbulent flow in the lee of a body. The wave force due to the viscos-

ity of the flow can be represented as follows: 

i 1 
FD = J "2 P AL uxJuxlcD dz 

o 

(56) 

where AL = 2R , U2 is replaced by U Iu I to ensure that FD acts in the 
x x x 

same direction as the fluid velocity. 

The main difficulty comes with CD coefficients in the drag force 

calculations in waves, simply because CD coefficients in waves are not 

only the function of the Reynolds Number which changes throughout one 

wave cycle, but they are also related to the inertia coefficients with 

the Keulegan-Carpenter Number which is defined as UxT/D. (The details 

of C -C relation are discussed in Section 2.1.4.) Therefore the most 
M D 
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accurate viscous force prediction in the waves could be obtained from 

the experimental results with time averaging where flow is sinusoidally 

oscillating or from real wave data. In practice one tends to use steady 

flow results for estimating the CD value for the prediction of drag 

forces in waves, although the published values of drag coefficients in 

waves show similarity to the drag coefficients in steady flow, where CD 

decreases considerably with Reynolds Number over the approximate range 

104<Re<106.0 Care must, ~~_, ~~~~ __ if steady flow results. are applied to sea-

wave flows, because of the two main flow phenomena which do not exist in 

steady flow or in the sinusoidally oscillating flow: 

(a) The water particle motions are orbital, and 

(b) Irregularities of sea-waves. 

If a member ~f the structure is relatively large with respect to the 

wave height, the viscous drag coefficient becomes less sensitive to 

Reynolds Number and steady flow results may be more suitable. 

2.1.3 Total wave force. As was mentioned earlier, in the region where 

0.2s<D/H <0.2 inertia and drag forces both become significant. In this 
w 

region despite the interaction between the inertia and drag forces, the 

total wave force on a cylindrical member of the structure may be assumed 

to be predicted as a summation of the inertia and drag forces which are 

given in equations (54-A) and (56). 

or 

l 
J( • lc / /) FT = P CM As Ux + 2 D AL Ux Ux dz 

(57) 

o 

This form of total force was first proposed by J.R. Morison for the 

design of pile supported offshore structures [12]. 
• 

If we replace U by 
x 

(w2 O.sH ) and replace U by (w O.sH ) it follows that the ratio of 
w x w 

maximum viscous forces to the maximum inertial forces is proportional to: 

~ P w2 (0.sHw)2 CD D 

C
M 

P n D2/4 w2 (O.sHw) 
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In Fig. 3 ratios of maximum inertia force/maximum drag force is 

given as a function of H /D. When equation (57) is used the coeffic­
w 

ients should be chosen very carefully for the appropriate values of 

Reynolds Number, Ke~legan-Carpenter Number {=U T/D) , the relative 
x ,max 

roughness (=k/D) and instantaneous time (=t/T). In other words equat-

ion (57) can be generalised and written as: 

FT = f (U , D, p, \), T, t, k) x ,max (59) 

A simple dimensional analysis of the equation (57) shows that total 

force FT will be a function of the following variables: 

FT C D 
U T 

k ~) = f x,~ax x ,max (60) 
pDU2 , 

D 
, 

D 
, 

x ,max 

Combining equation (60) with equation (57) the force coefficients CM 

and CD can take the following form: 

f (UX'~aJ< D U T 
k i) C

M 
x ,max 

= , , , 
D D 

(61 ) 

(u D U .T 
k ~) f X,max x,max 

CD = , 
v ' D D 

(61-A) 

2.1.4 Experiments for ~ and <; values. As is seen from the equations 

(61) and (61-A) C
M 

and CD can only be obtained from the experiments 

where flow is time dependent. For accuracy and easy usage of the 

experimental results one has to eliminate time dependence by introduc-

ing time-invariant averages. This was done by Ke~legan-Carpenter using 

Fourier analysis [13]. Since FT is periodic and flow has symmetry the 

following relations can be deduced: 

F
T

(8) = - F (8+'IT) (62) 

and from equation (60) : 

FT Al Sin8 + A3 Sin38 + As Sin58 + 
= 

+ 
(63) 

'p D U2 Bl Cos8 + B Cos38 + Bs Sin58 + ---
x,max 3 

t 
where 8 = wt = 2'IT -T 
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Observation of the force curve suggested that the best method for 

the determination of A ,B coefficients in equation (63) will be the 
n n 

use of the Fourier analysis as follows: 

1 27T F T Sin (ne) 
A = -J de n 7T 

p u2 ,max 0 0 
x 

(64) 
1 2 FT Cos(ne) 

B = 7T J de n 
p u2 

0 0 
x,max 

Using equations (50-A) and (51) the total inertia and drag force 

equation can be written in the following non-dimensional form: 

FT ___________ = 7T C 0 W 

24M U 
P U 0 x,max x,max 

Co 
Sine - ~ coselcosel (65) 

Since coselcosel 
8 8 = 37T Cose + 157T Cos3e + ---

equation (63) can also be written, taking the first terms only, as: 

FT 37TBI 
------- = Al Sine + --- 8 Cose I Cose I + ---
P u2 

0 X,max 

(66) 

Equations (66) and (65) are identical, therefore the following 

relation can be written to obtain c
M 

and CD coefficients in terms of the 

total measured experimental wave force values: 

7T 0 W 
Al = 4" CM U 

x ,max (67) 
8 1 

BI = - 37T '2 CD 

Using equations (64) and (67): 

U T 2 x ,max 
o 

27T FT Sinede 

J 
o pu 2 0 

x,max 

(68) 

3 27T FT Cosede 
= - - J 

4 0 U2 0 
P x ,max 

(68-A) 

From equation (68) it becomes clear that C
M 

is related to CD with 

Ux max T 
KQulegan-Carpenter Number ~ and c

M, CD can easily be obtained from 
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the experimental results using equations (68) and (68-A). 

In the experimental towing tanks and in wind or water tunnels 

several experiments have been done to evaluate the inertia and drag co-

efficients on various geometries having different orders of surface 

roughness [13-15] • Experimental results are always at Reynolds Numbers, 

generally two to three orders of magnitude smaller than prototype 

Reynolds Numbers. It is strongly believed that coefficients obtained 

at relatively low Reynolds Numbers may not be applicable at higher 

Reynolds Numbers with linear interpolations. A review of the existing 

literature giving explicit C and C values has been made by Hogben [16]. 
M D 

In the same reference recommended values of inertia and drag coeffic-

ients for offshore structures are given. These values have been mostly 

used in this study. Some large oil companies have joint experimental 

programs to evaluate these coefficients for offshore structures in the 

real sea environment, but none of these data have been made available 

to the public as yet. 

Still further experimental work is required to find out the inter-

ference effects between the neighbouring members, the effect of inc lin-

ation and wall-proximity effect in the determination of wave force co-

efficients. The experimental study of wave and current combination and 

its results in the force coefficient is also one of the areas in which 

research is needed. However, a simple theoretical method has been 

developed by the author to determine inertia coefficients in the ideal 

fluid, taking into account the interference effects between neighbour-

ing members and wall-proximity. The results are given in Sections 2.1.6 

and 2.1.7. In Section 2~1.8 some exper~mental work to determine the 

effect of inclination on the wave force coefficients will be summarised. 

2.1.5 Lift force. When a member is placed in a steady flow, or sinus-

oidally oscillating flow, or wavy flow, one might expect the resulting 
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flow to be steady and laterally symmetrical. In fact, these assumptions 

are not correct because when the KCN (Keulegan-Carpenter Number = 

U TID) is sufficiently large, the eddies will form in the lee of the x,max 

cylinder. The developed configuration of the eddies in the wake of the 

cylinder is assymmetrical. Because of this assymmetrical configuration 

of the vortices a lateral lift force will act on the cylindrical member 

with the same frequency as vortices shed. In the design of offshore 

structures, lift forces should be carefully taken into account for 

several reasons: 

Firstly, they could be as large as drag forces under some circum-

stances. Secondly, they could give rise to the hydro-elastic oscillat-

ions and result in fatigue failure. This point may have more importance 

than the effect of drag forces, in particular when vortex shedding fre-

quency becomes equal or approaches the structural mode of vibration of a 

member. The severe vibrations of cables or riser pipes and members of 

fixed offshore structures are the result of this phenomenon. This 

phenomenon may cause failure due to fatigue. Thirdly, lateral vibrat-

ions of a member in response to lift forces may cause a significant 

increase in the magnitude of in-line forces. 

A non-dimensional form of lift force and vortex shedding frequency 

can be defined as follows: 

St = 
f D 

v 
------- = Strouhal Number 
U 

x,max 

(69) 

-- D . Q, (69-A) 

Some experimental research has been carried out to find the lift 

coefficients, C
L

, and Strouhal Number, St, for circular cylinders in 

the steady, and in the wavy or sinusoidally varying linear flows [14,15, 

17,18]. The results may be summarised as follows: 
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Roshko [17] reports that the Strouhal Number for circular cylinders 

in a steady flow appears to be proportional to the inverse of the drag 

coefficients. 

For Reynolds Numbers between 10 2 and 10 6 excluding the trans-

critical,region which is Re~106, the Strouhal Number is given as 

Bidde [18] reports that, lift force is dependent on KCN rather than 

Reynolds Number and lift force frequency (or vortex shedding frequency) 

is twice the wave frequency. Bidde's results should be applied very 

carefully since, the submerged end of the cylinder was completely free 
----

to generate a complex three-dimensional flow and influence vortex shedd-

ing. 

From Sarpkaya's [14,15] results it may be concluded that C
L 

depends on Ke~legan-Carpenter Number, for the Reynolds Numbers smaller 

than about 2xl04. For Reynolds Numbers which are between 2xl0 4 and 

lXl0 S C
L 

depends, to varying degrees, both on Reynolds Numbers and KCN. 

Above Re Numbers lxl0 S the dependence of lift coefficient on both KCN 

and Re Numbers is negligible. Sarpkaya also reports that the Strouhal 

Number and the ratio of frequency of vortex vibration over flow vibrat-

ion are functions of KCN and Re Numbers. Finally, he found that the 

vortex shedding frequency is not a pure multiple of the frequency of 

flow oscillation. Since Sarpkaya's results were obtained in the sinus-

oidally varying flow, one might expect lift coefficients to be differ-

ent in an ocean environment because of the variation of velocity vector 

with time as well as the depth and orientation of a member. 

2.1.6 Interference effects of closely spaced circular cylinders. Let 

two cylindrical members A and B having the radii Rl and Rz respectively 

be located along the x axes at a distance, d, from each other, and 

assume that R1/d and Rz/d are small and a stream is approaching the 
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cylinders at an angle a. If we also assume that flow has circulations 

,~, about cylinder A, and r2 about cylinder B, the complex flow potent-

ial is written as the summation of the stream potential and the doublets 

which represent the two cylinders in the following form. 

[Details of -the theory were given in 

iCl (R\2 R2) {-iCl W Z-~l + = U .ze + e - + 
z 

where z = x+;y, z - d ... 1 - -

ia e = Coso + i Sina 

j 

l 

-'. 

u~ 
~-~. --

/8 

d 

reference 

J:... [r .tnz 
21T 1 

Fig. 7. 

[1] and [36]] . 

1 

+ r in (z - z ) II 
2 1 J I 

J 

A 

(70) 

2 1 6 1 The calculation of wave force when a=O and rand r are zero: • • • 1 -- 2 

If we set a, r
1 

and r
2 

equal to zero, in equation (70) the complex 

flow potential becomes: 

R 2 R2 ] [X+iY + ~ + (X+d~ +iy. W = U 
x x+~y 

( 71) 

or 

R
1
2(x-iy) R:[ (x+d) -iy] 

-, 

[X+iY + 

, 

W = ~ + i1jJ = U + 
F F x r2 (x+d) 2 + y2 

(Ii-A) 

- R~X R 2(x+d) 1 
Ux lx 2 

~F = +-+ 
r2 (x+d) 2 + y2 J 

(72) 
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1JJF = u 
x 

(x+d) 2 + 
(73) 

In equation (72) the first term represents the potential of un-

di'sturbed flow, the second and third terms represent the effect on the 

flow field due to the existence of the first cylinder and second 

cylinder respectively. 

The wave force on cylinder A can be written per unit length of the 

cylinder as follows: 

dF 
x 

a<p -+ 
= - p II at ndS 

SM 

(from equation (28)), or 

-+ 
dF 

x 
au [ 

= - II p ~ x 
S at 

M 

(74) 

R 2x R 2(x+d) ] 
1 2 -+ 

+ -- + ----------- ndS 
R12 (x+d) 2 + y2 

(74-A) 

The integration can easily be obtained on the circular cylinder 

using polar co-ordinates: 

.., 
x = Rl Cose I 

y = Rl Sine 1 (75 ) , 

-+ 
ndS =-R 

1 
Cosede 

v 

Substituting the relations given at (75) into equation (74-A) the 

force equation becomes: 

27T aU 

[
2R

J 

~2(Rl Cose+d) 

d 2] 

Rl Cosede 
J 

x 
dF = P°at cose + 

x R 2 + 2Rl d cose + 0 1 
(76) 

We can also derive modified C coefficient to suit conventional 
M 

wave inertia force formulation for circular cylinders as follows. 

Using equations (55-A) and (76) the following relation may be 

written for C
M 

taking the effect of neighbouring cylindrical members 

into account: 

au r ~ 

1 

dF x 

au 
=pc 'lTR2 x 

M,A 1 at = p a/ t 2R~ 2'IT f s2 ~(cose+a) I 
'IT + J I ------- cose i de ~ 

o I (1+2a cose+a2
) 

I. 

( 77) 
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or 

C 
M,A 

JTI [6
2 

(Cos8+a) Cos8 Jl d8 

o 1+20. cos8+a2 
= 2 + --~~--------------~--

where a = d 
Rl 

, 

Similarly, wave forces 

aU 
x 

[2R22 ~ + dF = Pat x,B 

'IT 

on cylinder B may be written as 

27T [s' 2 R2 "(Case-a') case ] de } 
J 

(1-20.' cos8+a,2) 0 

(77-A) 

follows: 

( 78) 

and C
M 

coefficient for the same cylinder can be written as follows: 

C 
M,B 

j7T I 6,2 (Cos8-a') Cos8 l de 

o _I" 1-20.' cos8+a,2 ~ 
= 2 + --~----~~~~~--~ 

d where a' = 
R 

2 

7T 

6' = 

(79) 

The integrations in equations (77-A) and (79) have been carried 

out numerically to obtain C
M 

values and results for varying y=S/R
I 

and 6 (or 8') values were plotted in Figure 8-19 where S=d-(R +R ). 
1 2 

2.1.6.2 The calculation of wave force when 0.=90° and r
1 

and r
2 

are 

zero: If we set 0.=90° and r and r equal to zero in equation (70) the 
1 2 

complex flow potential becomes: 

+ i (x:L + -X-+-:-;-+-d) 1 (80) 

The velocity and stream potentials can be obtained from equation 

(80) as follows: 

CPF = U 
Y 

I
, R2y R2y 

Y + __ 1 __ + ____ 2 ____ __ 

I r2 (x+d)2 +y2 
; 

L ..J. 

R2X 
1 

x +--- + 
R 2

2(X+d) ~ 

(x+d)2 +y2 I 
The wave force on cylinder A and C

M 
coefficient for the same 

(81) 

(82) 

cylinder can be written using the procedure that has been followed 
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in the previous section 
-, 
I 

aU [ 2 'IT [13
2 

R\2 Sin
2

S 
] dS l dF = P --L 2R 2 'IT + J y,A at l 1 cose+cx2 

0 1+2cx 
...J 

(83) 

2 'IT 

r 13
2 Sin2e l J de 

cose+cx2 J c 2 + 0 ~1+2cx = 
M,A (84) 

'IT 

Similarly, the wave force and inertia coefficient take the follow-

ing form for the second cylinder: 

au 
dF =P~t y,B a 

2 'IT 
2R22 'IT + J 

o 

S,2 R22 Sin2e 

1+2cx' cose+cx,2 

C 
M,B 

2'IT r S' 2 Sin 28 J 
~ 11+2cx' Cos8+CX,2 de 

= 2 + --~----------------
'IT 

d8 (85) 

) 

(86) 

C
M 

values in equation (84) and (86) have been obtained numerically 

and results are shown in Figure 8-19 for various y and S (or S'). 

2. 1. 7 The calculation of wall effect on the inertia crefficients. The 

results obtained in the previous section can easily be extended to cal-

culate the effect of wall on the inertia coefficient calculations. If 

we consider two cylinders which have the same diameters and if the 

stream which has no circulation approaches perpendicular to the line of 

these cylinders' axes, then the stream surface which is normal to the 

line between the centres of the cylinders may be replaced by a rigid 

wall, see Fig. 20. 

The inertia coefficient taking the wall effect into account can be 

calculated from equation (84) setting S equal to 1: 

C 
M,W 'IT 

1 
; de 
I 

..J (87) 

In reference [19] added mass coefficient k=C -1 was calculated 
M 

using kinetic energy of the fluid to take the effect of wall proximity 
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into account. Added virtual mass coefficient is given as follows: 

k, = 1 + 2 
W 0. 2 (88) 

The results of equations (87) and (88) have been plotted for var-

ious values of a in Fig. 21. 

The results given in Fig. 21 may be used in the experimental work 

for the correlation of theoretical results with the experimental 

results. 

2.1 . 8 The change of drag forces on closely spaced circular cylinders. 

2.1.8.1 Drag force on circular cylinders in series (one cylinder behind 

the other): If a cylinder is placed in the wake of another cylinder 

the critical Reynolds Number for the rear cylinder reduces due to the 

high turbulence level of the wake. The experiments [20,21] carried out 

.. 
in a steady flow, show that the drag coefficient of the rear cylinder 

reduces considerably, while the drag coefficient of the front cylinder 

remains almost constant if Djd>0.25, see Figs 22 and 22-A. 
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The experiments mentioned above were carried out in the range of 

6 
Reynolds Numbers smaller than 5X10. (See also Chapter 6). 

2.1.8.2 Drag force on two circular cylinders side by side: According 

to reference [20], it was found from the tests in the sub-critical reg-

ion in steady flow conditions that when the spacing between the 

cylinders is more than five diameters the interference is nil, when the 

spacing is reduced to about two diameters, the drag reduces because the 

-separate vortex shedding system around each cylinder forms a single 

vortex system; when the spacing is reduced to one diameter the inter-

ference drag rapidly increases, Fig. 23. Since the experimental res-

ults were made non-dimensional by dividing the drag coefficient, includ-

ing the interference effects by that for a single cylinder, these res-

ults have been used in this study during wave loading' computations for 

the model scale. '(See also Chapter 6). 

In addition to the experimental work with cylinder arrays in steady 

flow [20,21], some experiments have also been carried out in oscillatory flow 

[22,23] and in waves [24]. In reference [23] it was reported that the 

blockage effect for cylinder arrays should be considered very carefully 

when the model test results are applied to the full scale which is in 

unconfined fluid. For groups of cylinders the blockage effect is quite 

different than that on a single cylinder, and the separation of block-

age from interference impossible. In reference [24] wave tank tests 

were reported on three cylinders which were normal to the wave propagat-

ion direction and situated side by side. The results show that, in the 

sub-critical region, when the spacing between two cylinders is less 

than about one diameter, wave forces increase significantly. Certainly-

more tests in waves are needed for a better understanding of the problem. 

2.1.9 Effect of inclinatioo angle of c.ylindrical rrenbers on wave forCE 

calculations. Inclined cylindrical members are mainly used as support 
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bracing elements in the design of fixed offshore structures and are less 

common in floating structures. There are two main problems in doing 

wave force calculations on such members; 

(i) The method to be used to apply the wave force equation (57) to an 

inclined member, and 

(ii) The value of CM and Co to be used in the calculations. 

In the literature [25,26,27] four different methods have been des-

cribed for the application of equation (57) as summarised in the 

following. 

1. In the first method inertia and drag forces are calculated as if 

they act on a vertical cylinder at any point along the inclined member 

and then normal components of those forces with respect to the inclined 

cylinder axes are taken into account. The method may be illustrated as 

follows: 

F 
T, 1 

where A = TI0
2/4., 

s 

+ 

Fig. 24. 

(89) 

C
M 

and CD' inertia and drag coefficients for a circular section 

respectively. 

2. The second method assumes that the acceleration and velocity 

vectors of the water particles always act normal to the inclined 

cylinder axis if the yaw angle is equal to or less than 60 degrees. 
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In comparison with the first method, the cosine factor is not used in 

. this method. When the yaw angle is greater than 60 degrees a correct-

ion factor is appl~ed. The meth d f d t b • 0 was oun 0 e quite conservative. 

The principle of this method is illustrated as follows: 

FT ,2 

where k = 

k = 

+ 

Fig. 25. 

l • 
lc f + + + 

- P [C A U k + A ululk] 
M s 2 D L 

0 

1 for 0° ~ a. (or S) ~ 60° 

7f S) ) tan (- - a. (or 
2 

tan30 

A = D 
L 

for a. (or S) 

dt 

~ 60° 

(90) 

CM and CD are the inertia and drag coefficients for a circular 

section respectively. 

3. In the third method only the normal components of the acceleration 

and velocity of the water particles with respect to the inclined 

cylinder's axis are assumed to give rise to the wave loading. It can 

easily be seen that the difference between number (1) above and this 

method is that the drag force term in this method has a cosine squared 

term which gives less total force in the case of wave loading calculat-

ions where drag forces are significant, i.e. fixed and jacket types of 

offshore structures. This method was used by the author during his 
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development of generalised equations for wave force and moment calculat-

ions on circular cylinders [28] and by Chakrabarti et aI, during their 

experimental investigations of the wave forces on randomly oriented 

tubes [27]. The method may be illustratea as follows: 

+ 

Fig. 26. 

l . 
FT ,3 = P J [CM As U cosa(l) + ~ CD AL U CosS(l) lucosS(l) I] di 

o 

where A = TID2/d , 
s 

(91 ) 

CM and CD are the inertia and drag coefficients for a circular 

section. 

4. The fourth method assumes that inertia and drag forces FT and FD 

act on the projected area of the inclined cylinder. This method, 

therefore, requires the C
M 

and CD coefficients to be known for ellipt-

ical sections whose major axes are always parallel to the inertia and 

velocity vectors of the wave particles along the length of the inclined 

member. This method is not very practicable, for the determination of 

wave loading on the fixed or jacket type offshore platforms. The 

method may be illustrated with the following figure: 

• 
~ 

U 
0< 

ELL/PSO'!) 

UNIT VOLUMe. 

\ 
\ 

+ ~---

Fig. 27. 
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t 

FT ,4= P J ICM ASCosa(t} Ii + ~ CD AL CosSet) 01 dt 
o 

where C
M inertia coefficient for elliptical section 

drag coefficient for elliptical section 

A - 'ITD2/4, s ~ = D 

(92) 

Regardless of which method is used to calculate the wave loading 

on the inclined cylindrical members of offshore structures, the C
M 

and 

CD coefficients will be quite different from the values found from the 

experiments carried out wi~ unyawed cylinders, simply because axial 

flow will occur. 

Very few experimental res.ults have been published on C and CD . M 

coefficients of inclined cylinders in w.avy or in steady flow. 

The experimental inves.ti.gation (29J done in steady flow conditions 

showed that the Reynolds Number at which the drag begins to decrease 

generally appears to decrease with increasing yaw angle, e. g. in refer­

ence [29] it is stated that the critical Reynolds Number decreased from 

3.65xlOS for an unyawed cylinder to 1.00xlOS for a 60° yawed cylinder. 

Therefore it becomes clear that the drag characteristics of an inclined 

cylinder cannot be related solely to the Reynolds Number based on 

nor.mal velocity components for Reynolds Numbers in and above the critical 

region. The results of the above mentioned work have been used in the 

wave loading computer programs develoepd by the author [30J for the com-· 

parison of theoretical calculations with model test results. 

Recently some experimental work has. been published [27J to report 

on the measurements of w-ave force coefficients on randomly oriented 

yawed cylinders in waves. The results have been presented for C
M 

and 

C values as a function of the Kuelegan-Carpenter Number. Although the 
D 

results once again verify that variation in CD and C
M 

coefficients is 

significant, as orientation and the yaw angle changes the test only 
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covers a very narrow sub-critical Reynolds Number and therefore further 

testing in the higher Reynolds Number range is vital so that the results 

can be used in the design of offshore structures. 

2.1.10 The effect of roughness on the wave force coefficients of 

circular cylinders. All structures in the sea enviornment, either by 

marine fouling or by corrosion become roughed. The forces exerted by 

waves are, in general, increased by this roughness. When growths 

accumulate on the surface of a cylindrical member there is an increase 

in diameter which gives higher inertia and drag forces. Apart from 

this obvious effect, inertia and drag forces are also a function of 

relative roughness kiD as was mentioned in Section 2.1.3. 

The experiments done in steady and OSCillatory flow [31,32] 

indicate that drag coefficients decrease considerably as relative 

roughness increases for the Reynolds Numbers below the critical region. 

Above the critical region drag coefficients increase as relative rough-

ness increases. The model test results both in waves [13] and in 

OSCillating flow [14,15] show that the drag coefficients are a reverse 

function of inertia coefficients, hence, inertia coefficients increase 

as Reynolds Numbers increase below the critical region. Above the 

critical region, inertia coefficients decrease as relative roughness 

increases. In this study steady flow results are used to take the effect of 

roughness into account, even though very approximate. Full scale 

experiments in waves are needed so that appropriate constants can be 

used in wave loading calculations for offshore structures. 

2.1.11 The non-linear effects on wave force calculations. Linearised 

free surface boundary conditions have been assumed in all equations 

concerned with wave particulars and wave loading. 
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The linearised free surface condition is the combination of the 

kinematic boundary condition, which states that normal velocities of 

the fluid and of the boundary surface must be equal, and the dynamic 

boundary condition which states that the pressure on the free surface 

must be atmospheric. If we assume that the vertical displacement of 

any point on the free surface may be defined by a function y=n(x,z,t) 

(for two dimensional flow y=n(x,t)) then if we write the substantial 

derivative of y-n 

D 
(y-n) ~- an _ 

u an _ u ~ - = 
Dt at at x ax z az 

Since on the free surface y=n, and 

~= u a¢ a¢ and U 
a¢ 

= u = = 
ay 

, 
ax az at y x z 

equation (93) can also be written in the following form 

a¢ --ay 
an _ .£!. ~ _ a¢ an = 0 
at ax ax az az 

an an 
If the wave elevation is small ax and az are small also. 

(93) 

(93-A) 

Therefore the last two terms in equation (93-A) can be ignored 

and the kinematic boundary condition is as follows 

a¢ = ~ 
ay at 

Equation (94) verifies the kinematic boundary conditions as 

defined above. 

The dynamic boundary condition can easily be obtained from 

Bernoulli's equation given in equation (23) 

= - 1. [~ + 1. V1¢V1¢] n g at 2 

(94) 

(95) 

By neglecting the last term we obtain a linearised equation for 

the free surface 

1 a¢ 
n=-gat 

" 

(96) 

- 59 -



Combining equations (94) and (96), the linear free surface bound-

ary condition becomes, 

a 2 <I> a <I> 
-+g-=O 
at2 ay 

on y = 0 (97) 

or, 

a <I> --
ay 

on y = 0 (97-A) 

(Since, <I> = c Sinwt.) 

To derive the non-linear free surface boundary condition exact 

solutions of equations (93) and (95) can be obtained or a combination 

of the kinematic and dynamic boundary conditions solved by defining 

the change of pressure on the moving free surface as constant, i.e. 

Q£ = (!t + V<I>V) p = 0 DE 0 
(98) 

If we substitute Bernoulli's equation (23) into equation (98), the 

exact free surface boundary condition can be obtained 

a
2

<I> + g a<I> + 2V<I>V ~<I>t + ; V<I>V (V<I>V<P) = 0 (99) 
at2 ay 0 

A function f(x,y,z,t) can be expanded around y using Taylor's 

series expansion as follows 

f(x,y,z,t) = f(x,o,z,t) + y(~f) + ~ y2(a
2!) + ---

Y y=O ay 
y=O 

(100) 

If we apply equation (100) to equation (99) the following set of 

free surface boundary conditions are obtained 

a<p ( 1 ) 

ay 
= 0 
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If we substitute the first order velocity potential of the 

undisturbed waves 

into equation (102) this potential also satisfies second order bound-

ary conditions, and therefore, we can state that the first order 

potential is a solution of the second-order boundary value problem. 

Equation (100) can also be applied to equation (95) to obtain 

the second-order correction for surface elevation 

1 [a¢ + 1 ~¢~¢] n = (103) g at 2 y=n 

1 [a¢ + 1 ~¢~¢] a {- 1 (a¢ + 1 ~cp~cp) } = + n g at 2 y=O ay g at 2 y=O 

1 (a¢ + 1 ~¢~cp 1 'acp a2cp 
= g at ayat)y=o g at 2 

If we substitute the velocity potential for undisturbed waves 

[ 
0 • 5g H ky ikx 

¢ = Re - i wee 
o W 

into equation (103) the surface elevation n takes the following form 

or 

n = 0.5 Hw Cos (kx-wt) - ; k(O.5 Hw)2 + k(0.5 Hw)2 Cos (kx-wt) 

(104) 

n = 0.5 Hw Cos (kx-wt) + ~ k(O.5 Hw)2 Cos2(kx-wt) (104-A) 

2.1.11.1 Second-order time dependent forces: Lighthill shows in 

reference [9] that linearisation of the free surface boundary condit-

ions requires a quadratic correction to the linear velocity potential, 

and this results in associated corrections to the wave forces. In 

addition to the correction due to the modified potential, the linear 

potential also gives rise to time varying second-order forces as was 
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shown in Section 2.1.1 equation (54). If we rewrite the second-order 

force part from equation (24) for a fixed member, it takes the follow-

ing form 

-+ II 1. p (V'~F) 2 
-+ F = - n dS (105) x,s,d S 2 x 

M 

where 

I~ I dS = - R cose de x 

Using undisturbed wave potential and doublet representation of 

a cylinder in waves from equation (72) the linear velocity potential 

may be written as 

~F,L = Ux [ X 

where 

U = 0.5 H weky Cos (kx-wt) x w 

R21 -- cose 
r I 

J 
(106) 

When F d is calculated by substituting equation (106) into equation X,s, 

(105) the result will be zero. But in reference [9] it was shown that 

~F,L should also include a response to IIfluctuating extensional motions ll
• 

Extensional motion is defined as the horizontal gradient of horizontal 

velocity. Hence, second-order forces will result from the interaction 

between the member's response to the oncoming wave's velocity and its 

extension. 

The velocity potential due to the response to the lIextension li is 

given as follows (Fig. 28) 

1 1 R4 
~E,L = - E (r2-2R2tnr) + - E (r 2 + --) Cos2e 

4 4 r2 
(107) 

where E represents the extensional motions of fluid particles and can 

be expressed as 

E(x,y,t) 
aU 

= ~ = - 0.5 H kweky Sin(kx-wt) ax w 
(108) 
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If we replace ~F with ~F,L + ~E,L in equation (j05) 

F 
x,s,d 

o 211' 1 2 

= - f f -2 p {V[U (r + ~) Cose + 4
1 

E(r2-2R2lnr) 
d. x r _ 0 

1 R'+ 2 
+ '4 E (r2 + -) Cos2e] r=R} R cose de dy 

r2 
(109) 

(V~)2 in cylindrical co-ordinates can be written as follows 

( 110) 

If we apply equation (110) to equation (109) F can be determined x,s,d 

in the following form 

o 211' 1 
F = - f f -2 P [(2U Sine + ERSin2e) 2 + (2U kRCose - k-

1
E)2] 

x,s,d -d 0 x x 

RCose de dy ( 111) 

The second bracket in equation (111) is the vertical velocity 

which was derived from the velocity potential given in equation (106) 

and the velocity potential of the undisturbed wave field given in 

equation (6-A). Calculating the above integral with respect to e, 
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F = x,s,d 

a a 
J - p U E7TR2dy = + f P g7T (0.5 H k) 2 e 2kYR2Sin (kx-wt) 

-d x -d w 

Cos (kx-wt) dy ( 112) 

or 

F = + 0.5 pg7T(0.5 Hw)2 kR2 [1_e2kd] Sin (kx-wt) Cos (kx-wt) x,s,d 

(112-A) 

This torce is called the second-order dynamic force and has half 

the value of the second-order correction force calculated in equation 

(54) • 

When a vertical cylindrical member penetrates the water surface, 

in the region between y=O and y=n, an additional force will be exerted 

on the member. This force is the result of hydrostatic pressure and 

the dynamic pressure force, and can be written in the following form 

where 

F = F - F X,s,W x,DYN x,HIDR 

27T a~' 

F = -x,DYN 
n 0 f f p ~ RCose de dy = 

e=o y=O 

Cos (kx-wt) de dy 

27T 
= f pgn 2 RCose de 

a 

21T n 
f f 

e=o y=O 

(113) 

0.5pg H RCose 
w 

(113-A) 

(It is assumed that dynamic pressure ,does not change between y=O and 

y=n. ) 

F = x,HIDR 

21T n 
J J 

e=o y=O 
pgy Reose de dy 

27T 1 
= f 2 pgn 2 RCose de 

o 
(113-B) 

If we substitute equation (96) in equations (113-A) and (113-B) I 

equation (113) becomes 

F x,s,w 

1 27T a~ 2 
= - J .R (-) Rcose de 

2 9 at 
a 

(114) 
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where 

Calculating the derivatives of ~ and ~ using equations (106) 
F,L 0 

and (6-A) respectively, F takes the following form x,s,w 

or 

F 
x,s,w 

1 21T 
= 2 f £g [Hw kg Sin(kx-wt) RCose - 0.5 H g Cos(kx-wt)]2 

o w 

R(- Cose) de (115) 

F = 2.0 pg1T (0.5 H )~ kR2 Sin (kx-wt) Cos (kx-wt) X,S,w w (l15-A) 

If we sum the second-order correction force given in equation 

(54), and the second-order dynamic and waterline forces given in 

equations (112-A) and (115-A) respectively, we may obtain a correction 

force to the wave force equation given in equation (57) as follows 

~F = F + F + F x,c X,s,c x,s,d x,s,w 
(116) 

or 

~F = pg1T (0.5 H )2 kR2 [2-0.5 (1_e2kd)] Sin (kx-wt) Cos (kx-wt) 
X,c w 

(l16-A) 

The effect of second-order forces is shown in Figs 29 and 30 for 

varying values of kR and HID. 
w 

The correction given in reference 

F terms and may written as follows 
X,s,w 

[9] only includes F and x,s,d 

F' = pg1T (0.5 H ) 2 kR2 [2+0.5 (l_e2kd)] Sin (kx-wt) Ce>s(kx-wt) 
x,c w 

(117) 

The results of equation (117) are also shown in Figs 31 and 32 for 

varying kR and Hw/D values. 
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2.1.11.2 Second-order time independent forces: In addition to the 

time varying second-order forces, it can be shown that the velocity 

potential ~ given in equation (106) produces second-order steady 
F,L 

forces. Since the velocity potential ~ is only valid for small 
F,L 

diameter members, i.e. D/A<0.2. The results given in this section 

are restricted to the members of offshore structures which are in 

inertia, intertia + drag or drag regimes. 

The second-order steady forces in the diffraction regime will also 

be discussed in Section 2.2. Second-order steady forces may have an 

important contribution in explaining the tilt phenomena which occurs 

during the semi-submersible model tank experiments [33]. 

The complete solution for second-order vertical forces on a sub-

. 
merged circular cylinder was given first by Ogilvie in reference [34]. 

In the following, the approximate solution will be summarised using 

the velocity potential given in equation (106). If we substitute 

equation (106) into the second-order force part in equation (24), the 

vertical force can easily be written in the following form (Fig. 33) 

Fig. 33. 
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+ 
F 
y,s 

1 =-p 
2 

+ 
n dS 

y ( 118) 

Replacing y = - (h-RSine), X = RCose and using the following 

relation given in reference [35] 

00 
aSine 

e = I (a) + 2 I (-1)1 I 2 '+1(a) Sin{(2j+l)e} o 
j=O J -

00 

+ 2 ~ (-l)j I2J' (a) Cos(2je) 
j=l 

where I, (a) are the "Modified Bessel ll Functions. 
J 

Equation (118) becomes 

where 

+ 
F y,s 

l 
= f 2 -2hR 2 + 

pgnHw kR e Cos wt 11 (2kR) dz j 
o 

The time average of a function can be written as 

1 T 
~ = lim -- f X(t) dt 

T-+Oo 2T -T 

If we apply equation 

l 

(121 ) 

~ 
f H )2 F = 2pgn (0.5 kR y,s w 
0 

to equation (120) 

-2hR + 
e Il (2kR) dz j 

I is the first kind modified Bessel function. 
1 

( 119) 

(120) 

(121 ) 

(122) 

The same equation can be obtained by replacing Cos 2wt = ~(1-Cos2wt) 

and only retaining the time independent part. The second-order time 

independent forces for horizontal circular cylinders beneath the free 

surface have been calculated and the results are shown in Fig. 34 for 

varying values of kR and Y/D. It was found from the comparison of 

steady tilt angle measurements with second-order steady force calculat-

ions that the maximum tilt angle occurs at about the same frequency at 

which the second-order steady forces reach a maximum value. 
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The second type of steady-state force occurs due to the time 

independent components of horizontal wave particle velocity, and, 

therefore, can be significant in the drag regime where members of 

offshore structures have relatively small sectional dimensions. These 

forces, the so-called drift forces, which are in the same direction as 

wave propagation, can be important in the design of riser systems, 

mooring cables, etc. 

We define the fluid particles' position with the position vector 

-+-r (x ,y ,t). If particles are displaced by a small amount, the new 
000 

-+-
position vector will be r(x,y,t). Similarly, velocity vectors of 

-+- -+-
fluid particles can be written as v (x ,y ,t) and v(x,y,t) for first 

000 

and second positions respectively. 

-+- -+- -+-
v = U (x ,y ,t) i + u (x ,y ,t) j 

0 x,o o 0 y,o o 0 
(123) 

-+- -+- -+-
v = u (x,y,t) i + u (x,y,t) j 

x y 

if we write Taylor's series expansions for {u ,u} and {u ,u} the 
xo x Yo Y 

following equations are obtained 

au au 
u = u + (x -x) ~+ (y-y 0) ~+ 

x,O x 0 ax ay 
(124) 

au au 
u (x -x) --Y. + (y-y 0) 

--Y. . 
u = + ay + y,o y 0 ax 

(124-A) 

where 

a~ 
w eky Cos (kx-wt) 0 0.5 H U =-= 

x ax w 
( 125) 

a~ 
w eky Sin(kx-wt) 0 0.5 H U = -= 

y ay w 
(125-A) 

If we integrate U and U with respect to time, the fluid particle 
x y 

trajectories can be determined as follows 

x - x o 
~ f U dt = - 0.5 H e

ky 
Sin(kx-wt) 

x w 
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Yo - Y ~ J u dt = 0.5 H e
ky 

Cos (kx-wt) y w ( 126-A) 

au 
e
ky 

Sin (kx-wt) 
x 

0.5 --= .,.. H w ax w ( 126-B) 

au 
x 

0.5 w k e
ky 

Cos (kx-wt) -= H ay w (126-C) 

au 
w k e

ky 
Cos (kx-wt) ~= 0.5 H ax w (126-0) 

au 
w k e

ky 
Sin(kx-wt) ~= 0.5 H ay w (126-E) 

If the above equations (126-126-E) are substituted into equations 

(124) and (124-A) the following water particle velocity vector compon-

ents can be obtained 

u = u + (0.5 H )2 w k 
2ky 

0.5 H W e
ky 

Cos (kx-wt) e = x,O x w w 

+ (0.5 H )2 w k 
2ky 

(127) e w 

U = U = 0.5 H w e
ky 

Sin(kx-wt) (127-A) y,o y w 

The second term in equation (127) is calculated first by Stokes 

[7] and called after his name as "Stokes' Drift" in the literature. 

By analogy to the drag forces given in Section 2.1.2 equation 

(56), the second-order steady horizontal forces (drift forces) may be 

written as follows 

.e. 
1 

F = f -p 0 u /u CD (Re) dz 
x,S 2 x x 

0 o,s o,s 
( 128) 

where 

U = (0.5 H ) 2 k 2ky w e 
x w 
o,s 

In Fig. 35 values of U versus ka and ware shown, and Fig. 36 
x o,s 

shows F versus Y/D, kR and w. 
x,S 
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2. 2 Wave Forces on Large Diarreter M:?rnbers 

When the members of an offshore structure are subject to wave 

loading in the diffraction regime where D/A>O.2 the velocity potential 

to take account of the interference between the structure and fluid 

particles cannot be represented by the relative flow between the 

member and the fluid as was given in equation (26). As the diameter 

of the cylindrical members increase, wave diffraction occurs. When 

the oncoming waves hit the cylinder, the resulting scattering potent-

ial flow field which satisfies the Laplace equation and the boundary 

and radiation conditions [equations (9-12) in Section 1] should be 

defined. The scattered waves must radiate in the direction of r>O and 

since oncoming waves are periodic in x the scattered waves should also 

be periodic in 8 with a period 2TI (see Fig. 37). 

/ 
,.-

---~-.-;;~ 
I 

~ ----
o---~-~ .... 

_1- __ ~---L.-4_----::,. 

z 

Fig. 37. 

By analogy to the oncoming wave potential, the scattering wave 

potential may be written as follows 

4> 
ky im8 -iwt 

= Re [- i R(r) e e e ] (129 ) 
s 
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If we put y=O, i.e. assume that the scattering potential is con-

stant along the y axis, equation (129) corresponds to the scattering 

potential of plane sound waves and must satisfy the following wave 

equation given in reference [36] 

a 24> 
s _ C 2 \]24> =0 

at2 0 s (130) 

where C celerity A w wave = - = -
0 T k 

a 24> 
1 

a4> 
1 

a 24> 
\]24> s s s = +--+ s ar2 r ar r2 ae 2 

When equation (129) is substituted into equation (130), the 

following differential equation is obtained 

(131 ) 

Equation (131) is Bessel's equation. Its general solution is a 

linear combination of Bessel functions of the first and second kinds, 

J (kr) and Y (kr) of order m, and can be written as 
m m 

R(r) = AJ (kr) + BY (kr) m m 
(132) 

Having replaced R(r) in equation (129) with (132) it can be seen 

that 4> does not satisfy the Sommerfeld radiation condition which is 
s 

given for two-dimensional cases [37] as follows 

a4> 
.tim rr (~ - i k 4> ) =0 

ar s 
(133 ) 

For outgoing scattered waves it was shown in reference [38] that 

[H (1) ( )] the first kind of Hankel function = J (x) + iY x m m m 

equation (133) and R(r) can be written as follows 

00 

R(r) = L 
m=O 

A H (1) (kr) 
m m 
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If we substitute equation (134) into equation (129) the following 

velocity potential for scattered waves is obtained 

00 

L 
m=O 

A H (1) (kr) eky eime ~iwt] 
m m (135) 

The total potential can be written by summing the velocity 

potentials of the oncoming waves and of the scattered waves as follows 

<P(r,e,y,t) = Re [<P (r,e,t) + <P (r,e,t)l ~iwt 
o s 

(136) 

The oncoming wave potential which has been given in cortesion 

co-ordinates can be written in terms of cylindrical co-ordinates using 

the following relation given in reference [39] 

ikRCose 
e = J (kr) + 2 

o 

00 

m=1 

i m 
J (kr) Cos (me) 

m 
( 137) 

Now <p given in equation (6-A) can be expressed in polar co-ord­
o 

inates using equation (137) as follows 

i O.5g H 
ky 00 

Cos (mS) ] . <p 
w 

e [Jo(kr) + 2 I .m J (kr) (138) = l. 
0 m 

w m=1 

or 

i O.5g H 
e

kY 

( am 

00 

Cos (mS) ] 
<Po 

w .m L J (kr) (138-A) = 1. m 
W m=O ( 

[<Po 
-iwt (138-B) and <P = Re e ] 

0 

where J (kr) are Bessel functions of the first kind and a =1 for m=O 
m m 

and a =2 for m~1. 
m 

-
For the complete determination of equation (135) the Am coeffic-

ients in that equation should be known. This can be achieved using 

the boundary condition given in equation (8) 

d<P o 
ar = -

d<P 
s -dr 

( 139) 

r=R r=R 
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or 

ky 
e 00 0.5g H ______ w~___ ,m 

CI. .1. L 
w 

= 

m m=o 

ky 
e 0.5g H 

w 
-----.;......-- CI. 

, -iwt 
J (kR) Cos (me) e = 

m 

00 , 
L A H (1) (kR) 

m m 
ky ime -iwt e e e 

m=O 

, 
J (kR) Cos (me) 

,m m 
.1. A 

m m H (1)' (kR) e ime 
m 

w 

(139-A) 

(139-B) 

where 

H (l) I (kR) = 
m 

, , 
J (kR) + i Y (kR) 

m m 
( 139-C) 

The following relations can also be written from reference [35] 

Ym+1 (x) 
2m 

- Y 1 (x) = - Y (x) 
x m m-

( 140) 

J m+1 (x) = 2m J (x) - J 1 (x) 
x m m-

( 140-A) 

, 
2J (x) = J m- 1 (x) - J 1 (x) m m+ 

(141 ) 

2Y I (x) = Y 1 (x) - Ym+1 (x) m m-
(141-A) 

If equation (139-B) is substituted into equation (135) the 

scattering potential becomes 

be 

I 

[ 

O. 5g H k 00 J m (kR) (l) 
~ s = Re - i w e y L CI. m i m ( 1) I H (kr) 

w m=O H (kR) m 
m 

-iwt 
Cos (me) e 

(142) 

Finally, the total velocity potential given in equation (136) can 

written as 

~(r,e,y,t) = Re 

ky 

[- 0.5g H e 00 

i 
w L ,m 

CI. .1. m 
w m=O 

8
m 

(I) (krj) Cos (me) ;;iwt 1 
-! 
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, 
J (kR) 

(J (kr) 
m -

m H (1) I (kR) 
m 

(143) 

] 



The total velocity potential of the flow field in waves in the 

above form was first given in the field of electromagnetic theory by 

Nicholson in reference [39] and of hydrodynamic theory by Havelock in 

reference [6]. It was first applied to the design of piles in waves 

by MacCamy and Fuchs in reference [40]. In the following, the wave 

elevation and pressure distribution around the circular cylinder will 

be given and the first and second-order wave forces will be calculated. 

2.2.1 Pressure distribution, wave elevation and first-order ti.rre 

dependent forces on large diameter circular cylinders. The pressure 

distribution around the large diameter circular cylinder can be 

obtained by substituting equation (143) into Bernoulli's equation (23) 

(second-order terms are neglected in Bernoulli's equation) . 

, 

p ~ Re [pg 0.5 
00 J (kR) 

Hm ( l) (kR») ky L am(i
m 

J (kR) m 
H e -

w 
m=O 

m H (1)' (kR) 

to 

-iwt 
Cos (m8) e 

m 

J' (kR) ) 
m Hm(l) (kR) can be shown to be equal 

H (l) (kR) 
m 

2i 

(nkR) H (l)' (kR) 
m 

using equations (139-C) - (141-A), and 

(144) 

and 'Wronskians' theorem which can be represented by the following 

equation [35 ] 

W{J (x), Y (x)} = J 1 (x) Y (x) 
m m m+ m 

equation (144) becomes 

r" 

i pg H e
ky 

( 00 

w L 
7TkR m=O 

p = Re a 
m 

,m+1 
~ 

2 
J (x) Y l(x) = m m+ 7Tx 

Cos (~8) ) eiwtJl 
H (1) (kR) 

m 

( 145) 

(146) 

Wave elevation around the circular cylinder can also be obtained 

from Bernoulli's equation and the result takes the following form 
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1 aq; n = -- g at -0 
y= 

Re[~( ~ m=O 
a 

m 
.m+1 
~ 

Cos (me) ) 
H (1)' (kR) 

m 

(147) 

The total horizontal time dependent force on the circular cylinder 

can be calculated by integrating the pressure given in equation (146) 

on the surface of the cylinder as follows 

F 
x 

= 
o 2'Tr 

f f 
-d 0 

o [2P9 H 
pRCose de dy = f Re w 

-d k 

ky 
e 

1 Jeiwt dy 
H (1)' (kR) 

1 

(148) 

The following relations from reference [35] will be used for the 

simplification of the above total force equation 

N = I H (1)' (x) I 
m m 

I ,2 ,2 
= J (x) + Y (x) 

m m 

e = arg H (1)' (x) 
m m 

= arc tan (_Y m_: (_X_») 
J (x) 

m 

, 
J (x) = N Cose m m m 

, 
Y (x) = N Sine 

m m m 

(149) 

( 149-A) 

(149-8) 

. (149-C) 

Using equations (139-C), (149) - (149-C) the total horizontal 

force equation (148) becomes 

where 

F x = 
o 2pg H 
f w 

-d k 

ky 
e 

Y 1 (kR) ( ' ) e = arc tan • 
J 1 (kR) 

Cos (wt-e) 

~' 2 ,2 J 1 (kR) + Y 1 (kR) 

, 1 
and J 1 (kR) = J 0 (kR) - -(k-R-) J 1 (kR) 

, 
Y 1 (kR) 

dy 

The J
1 

and Y
1 

values are shown in Figs 38 and 39 respectively. 

- A? -

(150) 
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Equation (150) can also be generalised for the application to 

circular members both in the inertia and diffraction regimes. If we 

set equation (55-A) equal to equation (150) the following relation can 

be obtained 

o 
F 

x 
= f pnR2 C w2 0.5 H e

ky 
Sin(kx-wt) dz = 

-d m w 

o 2Pg H 
f w 

where 
1 

fO (kR) = -------­

~:2(kR) + y:2(kR) 

-d k 

Cos (kx-wt+9) dz 

The right hand side of equation (151 ) can also be written as 

o 2pg H 
ky 

e 
0.5 nR2 w2 Sin (kx-wt) f. w 

fo(kR) Cos (kx-wt+9) 
Sin (kx-wt) -d k 0.5 TIR2 w2 

ky 
e 

(151) 

dz 

(l51-A) 

Comparing equation (151-A) and the left hand side of equation (151) 

it can be seen that C
M 

can be written as follows 

4 
C =­

M TI 
1 

(no/II.) 2 

Cos (kx-wt+9) 
Sin (kx-wt) 

or for the maximum value of C
M 

4 
C =­

M n 

1 

(TID/A) 2 

(152) 

( 152-A) 

Now the horizontal wave force on large diameter cylinders can also be 

written in the following form 

0 

F = f C
M 

P n 0
2/4 ax x -d 

(153) 

where C
M 

will be calculated from equation ( 152-A) 

and a = 0.5 H w2 eky Sin (kx-wt) • 
x w 

In Fig. 40 values of C
M 

versus 0/11. are shown. Figure 41 shows 

wave forces on a vertical circular cylinder in the inertia and diffract-

_ or= _ 
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ion regimes. In Figs 42, 43, the wave forces on circular members 

which are working in the inertia or on the diffraction regimes, calcul- I 
ated using equations (55-A) and (150), are compared. 

2.2.2 Application of Stokes I fifth-order wave theory to the wave 

loading calculations on large diameter cylinders. So far, the potential 

flow function for oncoming waves was assumed to satisfy linear-free 

surface boundaries, i.e. linear sinusoidal boundaries. This assumption 

is quite accurate in deep water where the ratio of wave height to wave 

length is small, except for short waves. The limiting value for that 

ratio is shown to be 0.14 in reference [3]. In shallow water the wave 

height/wave length ratio will increase (this can be proved using the 

principle of energy conservation) and in consequence the effect of a 

non-linear free surface will be significant. Non-linear solutions for 

incident waves were first given by Stokes in terms of a trigonometric 

series [7]. The coefficients in these series are lengthy and 'it is 

quite tedious to do the numerical calculations, unless computer programs 

are used. The convergence of this trigonometric series is restricted to 

certain values of H /'A and h/'A . (The subscript s used to discriminate 
w s s 

values in shallow water from those in deep water.) 

For the calculation of wave loading the potential function should 

first be defined. 

The series form for the potential of oncoming fifth-order waves was 

given in reference [8] as follows 

C 
s 

k 
s 

[(8A
ll 

+ 8 3A + 8 sA ) Cosh(k y) Sin(k x-wt) 
13 15 S S 

+ (8 3A3 3 + 8 SA3S ) Cosh(3k y) Sin3 (k x-wt) 
s s 

+ 8
4
A44 Cosh (4k y) Sin4(k x-wt) 

s s 

+ 8 sA Cosh (5k y) Sin5 (k x-wt)] 
55 S S 
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and the wave profile is given by 

where 

C 2 = g tanh (kh) 
o 

k 
s 

= 
27T 

A-
s 

8 Constant 

= ( T
A-) 2 

A- Wave length in deep water 

A- Wave length in shallow water 
s 

A .. , B .. , C. values are tabulated in Table I. 
~~ ~~ ~ 

( 155) 

( 156) 

(157) 

For the given values of wave height H , water depth h, and wave 
w 

period T,- the coefficient 8 and the wave length A can be determined 
s 

from the solutions of the following simultaneous equations 

and 

7TH 
w 

--= 
h 

h x-= 
h 

A-
s 

The complex 

~ = 
o,s 

where El = 

E2 = 

E3 = 

E4 = 

Es = 

velocity potential of oncoming waves will be 

r C 5 
ink x . t 1 

I S I 
-~w ! 

Re i- i E Cosh(nk y) e s e I 
I k n s 

n=1 i 
~ S .... 

8AII + 8
3 
A13 + 8 sA 

1 5 

8
2

A22 + 8
4
A24 

8 3A3 3 + 8 sA 3 5 

8
4
A44 

8 sAs 5 
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Equation (160) can also be written in terms of cylindrical co-

ordinates as follows 

~ = Re [- i :s I E Cosh(nk y) (a i
m Y J (nk r) 

o,s s n=l n s m m=O m s 
-iwt )~ 

Cos(m8) e J 
(161 ) 

where J (kr) are Bessel functions of the first kind and a =1 for m=O 
m m 

and a =2 for m~l. 
m 

Similar to equation (135) the potential function for scattering 

waves may be written as 

~ = Re [- i S,s 
~ A H (1) (nk r) e im8 ~iwt] 

m m s 
m=O 

(162) 

The A coefficients in the above equation can be determined using the 
m 

boundary condition given in equation (8) 

or 

C 5 00 

[am s I ,m I - E Cosh(nk y) ~ 
k n s 

s n=l 

A 
m 

C 5 

= - k
S I 
s n=l 

m=O 

00 

I A 

m=O 
m 

E Cosh(nk y) a 
n s m 

Cos (me)] • -iwt 
J (nk R) e 

m s 

• 
(1) (nk R) im8 -iwt 

H e e 
m 

,m 
~ 

s 

• 
J ,(nk R) Cos (m8) 

m s 

H (1)' (nk R) e im8 
m s 

= 

(163) 

(164) 

Finally, the total velocity potentIal for the Stokes' fifth-order 

waves becomes 

~T,S (r,8,y,t) 

• 

C 5 
i 2. I 

k s n=l 
E Cosh(nk y) 

n s 

J (nk R) 
_-.;;m~--....;;;s __ H (1) (nk r) Cos (m8) 
H (1)' (nk R) s 

m s 

.., I 
I -iwt I 

e / 
! 

.J 

(J (nk r) -
m s 

(165 ) 

The pressure distribution around the large diameter cylinder can 

be written by substituting equation (165) into Bernoulli's equation (23) 



and neglecting the second-order terms as follows 

ps = Re [p :s WrEn Cosh(nksY) [I a i m 
(J (nk R) -

s n=l m=O m m s 

I 

J (nkR) 
_-:-m~ __ H (1) (nk R») 
H (1) I (nkR) m s 

m 

l-iwt] Cos (me) J e (166) 

Similar to equatio~ (146) the above equation can also be written 

in the following simplified form 

,m+l 
.1. Cos (me) ) _' t] 

( 1) I l.W 
H (nk R) e 

m s 

(167) 

and the wave elevation around the circular cylinder becomes 

[2C w 5 (Jo ,m+l Cos (me) ) -iwt ] 
ns = Re kSR I e: Cosh(nk y) a .1. (1) I e 

s n=1 n s m 
H (nk R) 

m s 

(168) 

The integration of the above equation around the circumference 

gives the total horizontal force on the cylinder as follows 

o 27T 
= f f 

-d 0 

- P R Cose de dy = 
s 

or, similar to equation (150) 

o 4pC w 5 
= f s I 

-d ks n=l 

5 

[
Ie: Cosh(nk y) 

o 4pCs W n=l n s 
f Re -k--

-d s H (1) I (nk R) 
1 s 

(169) 

Cos (kx-wt + 8) 

(169-A) 

2.2. 3 SeCO'ld-order forces on large dianeter circular cylinders. The 

second-order forces on large diameter cylinders can be obtained by sub-

stituting the total velocity potential of the oncoming and scattered 
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waves given in equation (143) into the second-order force part in 

Bernoulli's equation (eq •. 23). 

The velocity poteptial given in equation (143) can be simplified 

as follows using the procedure followed to obtain equation (146) 

<P(r,Sy,t) 

. k 

t 
g HeY 00 

= Re - i w L 
'TrkRW m=O 

.m+l J a. 1. . 
m -1.wt 
( 1) 1 Cos (mS) e 

H (kR) 
m 

(170) 

or 

[-
1 1 

00 J (kR) - i Y (kR) 
<P(r,S,y,t) = Re i A 

ky L a. .m+l m m e 1. 
12 1 2 

m=O m 
J (kR) + Y (kR) m m 

Cos (mS) eiwt
] (170-A) 

where 

A = 
g H 

w 
'TrkRW 

Similarly to equation (118) the second-order force on large 

diameter cylinders takes the following form (Fig. 46) 

-+ 
F y,s 

1 
= - - P 2 ~~ {V [-iA 

00 

e
ky L 

m=O 
a. 

m 

1 , 

J (kR) - i Y (kR) 
.m+l m m 1. 12 12 

J (kR) + Y (kR) 
m m 

-iwt]}2 -+ Cos (mS) e . ny dS ( 171) 

If we evaluate equation (171) using equations (110) and (119) and 

replacing y by - (h-R SinS) F becomes y,s 

-+ 
F y,s 

,2 I' ,2 

.t [A2 -2kh J 1 (kR) - 2i J 1 (kR) Y 1 (kR) - Y 1 (kR) 
= f Re R: I 1 (2kR) 'TrR a. ~ , 2 , 2 2. 

o (J (kR) + Y 1 (kR») 

e2iwt ldz! (172) 
.. 

where 0.
1 

= 2. 

From equation (172) the time independent second-order forces on 

large diameter cylinders can be written as 

-+ 
F y,s 

.t 
= f 

o 

4 H 2 -2kh pg w e 
--...:.:...-- I1 (2kR) 

'Trk 3 R 3 
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, 2 , 2 

J 1 (kR) - Y 1 (kR) 

,2 ,2 2. 

(J 1 (kR) + Y 1 (kR» 

-+ 
dz j (173) 
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The second-order time independent forces for horizontal circular 

cylinders beneath the free surface have been calculated and the results 

are shown in Fig. 44 for varying values of kR and Y/D. 

In Fig. 45 second-order time independent forces given with equation 

(122) in drag or drag + inertia regimes compared with those given with 

equation (173) for diffraction regime. From the comparison it can be 

concluded that equation (173) can be valid for all regimes. 

h 

{- - / =F'f S / 
JI / 

./ 

Fig. 46. 

Similarly, second-order time dependent forces may be written as 

follows 

-+ 
F y,s 

o 8 2 -2kh .(.. pg H e 
= - f W 

7fk 3 R3 o 

II (2kR) 
---------- (J : (kR) Y: (kR) Sin2 (kx+wt) -

, 2 , 2 

(J 1 (kR) + Y 1 (kR)) 

(J : 2 (kR) _ Y: 2 (kR)) Cos2 (kX-wt)) dz j (174) 

The maximum values of second-order time dependent forces on large 

diameter cylinders are shown in Fig. 42 for varying values of kR and 

Y/D. 
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A 
1 3 

A 
33 

B 44 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

J/s 

-(1184c10-1440c8-1992c6+2641c4-249c2+18) 

1536s 11 

(192c 8-424c 6-312c 4+480c 2-17) 

768s 10 

(13-4c 2 ) 

64s 7 

(512c12+4224c10-6800c8-12,808c6+16,704c4-3154c2+107) 

4096s 13 (6c 2-1) 

(80c 6-816c 4+1338c 2-197) 

1536s 10 (6c 2-1) 

-(2880c10-72,480c8+324,000c6-432,000c4+163,470c2_16,245) 

61,440s 11 (6c 2-1) (8c 4-11c 2+3) 

c 

c(272c 8-504c 6-192c 4+322c 2+21) 

384s 9 

(88,128c14-208,224c12+70,848c10+S4,000c8-21,816c6+6264c 4-S4c2-81) 

12,288s 12 (6c 2-1) 

c(768c10-448c8-48c6+48c4+106c2_21) 

384s 9 (6c 2-1) 

(192,000C16_262,720C14+83,680C12+20,160C10-7280C8) 

12,288s 10 (6c 2-1) (8c 4-11c 2+3) 

+ 
(7160c 6-1800c 4-10S0c 2+225) 

TABLE I 

[From reference 8.] 
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TABLE I, contd: 

= 

= 

= 

= 

where 

(3840C12_4096c10+2592c8_1008c6+5944c4_1830C2+147) 

-512s 10 (6c 2-1) 

1 
4sc 

(12c 8+36c 6-162c 4+141c 2-27) 

192cs 9 

s = Sinh (2nh/A) 

c = Cosh (2nh/A) 
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Chapter 3: A GENE~~ METHOD AtID A COMPUTER 

PROGRAM TO CALCULATE WAVE LOADING 

ON THE CIRCULAR CYLINDRICAL MEMBERS 

OF FIXED AND OF FLOATING STRUCTURES 
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INrRODUCI'ION 

In this chapter a general method for calculating wave forces and 

moments on circular cylinders is derived. The wave loading on 

cylindrical members of fixed and of floating offshore structures 

oriented randomly in waves can be calculated using the method developed. 

The method uses the basic hydrodynamic theory and calculation proced-

ures summarised in Chapter 2. A computer program, based on a general 

three dimensional method, has been developed to determine wave loading 

in terms of nodal loads distributed throughout the structure. This 

format of output provides a ready means of input for structural response 

analysis. The same output may also be used for dynamic response 

analysis. The computer program requires the start and the end co-ordin­

ates of each member of an offshore structure and some information about 

intersecting members. All calculations for the geometrical details of 

the structure and the generation of nodal pOints are automatically per­

formed and stored by the program. The three dimensional graphical 

representation of the geometry of the structure can also be produced on 

ei ther screen or on a plotter using the same program so that the user 

can check the structure from different viewpoints to make sure that it 

is correctly defined. At the same time a summary list of the 

geometrical details of the structure, continuous and inter-costal 

members and the specifications for the corrections due to the inter­

costal members are printed-out, so that the user can check that all the 

calculations to specify the geometry are correctly carried out by the 

program. Once the geometrical data has been verified the wave loading 

program which has automatic access to the data file can be run to 

obtain the wave loading distributed throughout the structure, and the 

required corrections due to the covered up areas between continuous and 
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inter-costal.members, for varying angles of wave headings, draft, wave 

frequency and wave amplitude sets. 

In the following derivation of the general method, the wave load-

ing program and some examples on the usage of the program will be 

presented • 

. 
1. THE DERIVATION OF A GENERAL MEIHOD 'IO DETERMINE WAVE WADING ON 

CIRCUlAR CYLINDRICAL MEMBERS OF FIXED AND FIDATING OFFSHORE 

STRUCrtJRES 

Circular cylindrical members are the basic support elements in 

the design of offshore structures. They resist external dynamic loads 

as well as inte~al static structural loads. In general, the wave load-

ing on each member of the structure will be assumed to consist of the 

following force components. (See also Section 2 of Chapter 2.) 

1. Dynamic Pressure Force: (= Froude-Kry1ov Force): 

This force is due to the hydrodynamic pressure change below the surface 

of a wave while the wave is proceeding. It is assumed that the presence 

of the cylinder does not interfere with the flow field. 

2. Acceleration Force: 

The presence of the cylinder fixed relative to the waves gives rise to 

the acceleration force which is calculated by the product of the added 

virtual mass and the acceleration of the fluid particles. In order to 

calculate the wave acceleration forces on the ends of the cylinder, two. 

different approaches can be found in the literature: 

(i) Multiplying the acceleration of the water particles at the 

centre of top or bottom cross-sections of the cylinder by the added mass 

of a disk which has the same diameter as the cylinder in question. The 

method may be formulated as follows 
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(1) 

This method does not take into account the aspect ratio of the 

,-

cylindrical member in the added mass determination-. Present data shows 

that the effect of aspect ratio in different cylinder geometries such 

as rectangular, elliptical, etc., is significant and so for circular 

cylinders should be taken into account. This method has been used by 

Hooft in reference [1]. 

(ii) The method developed by Miller in reference [2] gives allow-

ance for the aspect ratio of the circular cylinder as well as taking a 

correction due to the three dimensional form into account. In the 

method the cylinder is divided into strips lengthwise, say n number of 

strips and the added virtual mass of n rectangular strips and the 

acceleration force on those strips are calculated. The total acceler-

ation force on the cylinder is obtained by summing the acceleration 

forces on each strip. The method, strictly speaking, requires the 

added mass coefficients to be known for each rectangular strip, but in 

reference [2] it was suggested that the average value for the aspect 

ratio of n strips can be defined and this can be used to determine the 

added mass values of all the strips. The method may be summarised as 

follows. (See Fig. 1.) 

I I 

z 

Fig. 1 

- 104 -



Aspect ratio of ith strip 2R Sine 
d 

'IT 

f (2R Sine) dx 

Mean aspect ratio of n strips 0 

2Rd 

'IT 

f 2R2 Sin2e de 
0 R'IT = = -

2Rd 2d 

The added mass of a fully submerged cylinder oscillating along the axis 

normal to its cross-sections is given as 

'IT 
m22 = f (R Sine)2 k22 p 'IT Kl R Sine de 

0 
(2) 

= ~ p 'IT R3 k K 22 1 

where k22 is the added mass coefficient for the rectangular strip having 

an aspect ratio of R'IT/2d, and Kl is the coefficient to take the effect 

of three dimensionality into account. As d decreases k22 approaches 1 

and m22 can be calculated as the added mass of a disk, hence equation 

(2) becomes 

4 R3 
, 8 R3 m22 = -p 'IT K = -p 

3 1 3 
(3) 

and K = 
2 

0.636 - = (4) 
1 'IT 

Now the wave acceleration force on the top or bottom sides of a 

cylinder can be calculated using the following equation 

. . 
F = (m ) 0.5 U = 0.424 P 'IT R3 k U 

Y 22 Y 22 Y 
(5) 

3. Drag Force: 

The drag force mainly results from the turbulent flow downstream of 

the body due to the viscous effects which are significant when diameter/ 

wave height <0.125 for circular cylinders. 
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In this study, as discussed in Section 2.1.9.3 of Chapter II; in 

the case of an inclined cylindrical member, the normal components of 

the acceleration and velocity of the water particles with respect to 

the inclined cylinders' axes are assumed to give rise to the wave load­

ing. 

The following basic philosophy has been employed to derive the 

general three dimensional method for wave loading calculations: 

(a) All the wave properties, i.e. dynamic pressure change, velocity 

and acceleration of water particles which are defined in the wave 

reference system are first transferred to the structure reference 

system and from the structure reference system to the member 

reference systems. 

(b) All force and moment calculations are carried out in the member's 

reference system and distributed over the nodes of each member. 

(c) The results of the force and moment calculations are transferred 

back to the structure reference system and summed up along the 

principle axes to obtain heave, surge and sway forces, as well as 

pitch, roll and yaw moments. 

1.1 The !):fini tion of Reference Systems 

In the most general case, we may define the wave properties, i.e. 

pressure, velocity and acceleration of water particles in the wave 

reference system (x, y, z). (See Chapter II equations (50-51).) 

The structural global reference system (X, Y, Z) is usually chosen 

in such a way that the origin of the system is at the centre of gravity 

for a floating or moored structure, but may be taken at any convenient 

point for a fixed structure. (u, v, w) are the reference axes for an 

individual member within the structure. (Fig. 2.) 
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To calculate the pressure acceleration and velocity forces the co-

ordinates defined in the (x,y,z) system are transferred to the (X,Y,Z) 

system using the following transformation matrix. 

2 

HEAVE 

direct-Ion of rob~..tion 
ROLL 

p ITC.H X 
Z 

Fig. 2. 

... 
x S 11 S12 S 13 X X 

0 

Y = S21 S22 S23 Y + Y (6) 
0 

z S 31 S32 S 3 3 Z Z 
0 

where, referring to Fig. 2 : 

- -

SII = CosS The Cosine of the angle between x and X axes. 

S12 = Cos (90) = 0 The Cosine of the angle between x and Y axes. 

S 13 
'IT 

S) The Cosine of the angle between x and Z axes. = Cos ('2 + 

S21 = Cos(90) = 0 The Cosine of the angle between y and X axes. 

S22 = Cos(O) = 1 The Cosine of the angle between y and Y axes. 

S23 = Cos(90) = 0 The Cosine of the angle between y and Z axes. 
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S 31 
1T 

S) = COS (- - The Cosine of the angle between and X 2 z axe§). 

S32 = Cos(90) = 0 The Cosine of the angle between and Y z axes. 

S33 = Cos(S) The Cosine of the angle between z and Z axes. 

and X = 0 
o ' 

Y = - Y and Z = O. 
0 w 0 

Now equations (6) can be written in the following form 

x CosS 0 - SinS X 0 

Y = 0 1 0 Y Y 
w 

(7) 

z SinS 0 CosS Z 0 

Using the transformation equations given in (7), the-velocity, 

acceleration and pressure equations of a water particle in the wave, by 

referring to the structural reference system, can be written as follows: 

Horizontal velocity: 

Vertical velocity 

Horizontal 
acceleration 

Vertical 
acceleration 

U = 0.5 H W ek(Y-Yw) Cos[k(X CosS - ZSinS) - wt] 
x (s) w 

(8-A) 

= 0.5 H w ek(Y-Yw) Sin[k(X CosS - ZSinS) - wt] 
w 

(8-B) 

= 0.5 H w2 ek(Y-Yw) Sin[k(XCosS - ZSinS) - wt] 
w 

(8-C) 

= - 0.5 H w2 ek(Y-Yw) Cos[k(XCosS - ZSinS) - wt] 
w 

(8-0) 

Pressure ( ) 0 5 H ek(Y-Yw) Cos[k(XCosQ = - P g Y-Y + . P g ~ w w 
- ZSinS) - wt] (8-E) 

To be able to make force and moment calculations on an individual 

member of the structure we have to transfer these velocity, acceleration 

and pressure equations which have been written in the structure reference 

system to the member reference system with the following matrix equation: 
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x 
, 

CL 11 CL
12 CL

13 
U Xl 

Y = CL
2l CL 22 CL 23 V + Y

l (9) 

Z CL
3l CL 32 CL

33 
W Zl 

where 

CL ll The Cosine of the angle between X and u. 

CL
12 

The Cosine of the angle between X and v. 

CL 1 3 The Cosine of the angle between X and w. 

CL The Cosine of the angle between 'If and u. 21 

CL 
22 

The Cosine of the angle between Y and v. 

CL
23 

The Cosine of the angle between Y and w. 

CL
31 

The Cosine of the angle between Z and u. 

CL 32 The Cosine of the angle between Z and v. 

CL The Cosine of the angle between Z and w. 
33 

The method of obtaining the direction Cosines will be given in the 

next section. 

1.2 The Determination of Direction Cosines 

In order to determine the direction Cosines (CL .. , i=1,3, j=1,3) we 
~J 

have to define the unit vector e
l 

which lies along the u axis and ~2 

-+ 
and e

3 
unit vectors which are perpendicular to each other as well as to 

-+ -+ -+ -+ 
the e

l 
vector. In other word?, e

l
, e

2 
and e

3 
are the orthogonal vectors. 

(See Fig. 2.) At the start of the problem the co-ordinates of the points 

-+ 
A and B in the structure reference system are known, so the e unit 

1 

vector can easily be determined as follows [3] 

-+ 
AB 

IABI 
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where 

-+ -+ -+ 
AB = GB -GA 

-+ -+ -+ -+ 
GB = X2i + Y . 

2 J + Z2k 

-+ -+ -+ -+ 
GA = X i + Y Ij + Z k 

1 1 
-+ -+ -+ -+ 

AB = (X -X ) i + (Y -Y ) j + (Z -Z ) k 2 1 2 1 2 1 

= ~X -X )2 + (Y -Y )2 + (Z -Z )2 
2 1 2 1 2 1 

-+ 
To determine the e 2 unit vector, the plane [Q] which passes through 

the point A and is perpendicular to the vector AS will be defined. It 

can be supposed that we have defined the equation of the plane [Q] and 

then chosen a point P(X,y,Z) on this plane. We can write the equation 

-+ 
of the vector AP as follows 

-+ -+ -+ -+ 
AP = (X-X )i + (Y-Y )j + (Z-Z )k 

1 1 1 
(11 ) 

-+ -+ 
Since the vector AB is perpendicular to the [Q] plane the vector AB 

should also be perpendicular to the vector AP. This gives us the follow-

ing equation to determine the equation of the [Q] plane 

-+ -+ 
AP-AB = 0 (12) 

or 

-+ 
Now we have to define the AP vector in terms of known quantities. 

If we choose any arbitrary XQ' Y
Q 

points in space and substitute them 

into equation (13) , the ZQ co-ordinate of point P can easily be obtained. 

If we replace the arbitrary co-ordinates X,Y,Z with the co-ordinates 

-+ 
X

Q
, Y

Q 
and ZQ in equation (11 ) we can obtain the vector AP. 

-+ 
-+ AP 

(14) e 2 = 
IAPI 
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+ 
From the orthogonality condition, e

3 
can also readily be obtained 

as follows 

+ 
e 

I 
A~ 

2 
(1S) 

Having obtained the unit vectors in a member reference system the 

direction Cosines can be written in the following forms 

++ ++ ++ 
all = . -e a

l2 = i-e a I 3 = i-e l. I 2 3 

++ + + ' + + 
a 21 = j-e a

22 = j-e a = j-e (16) 
I 2 23 3 

++ + + ++ 
a 3 I = k-e a 32 = k-e a 33 = k-e 

I 2 3 

1.3 calculation of Wave Forces 

1.3.1 Calculation of pressure force. The hydrodynami c pressure change 

with depth below the surface of a wave in the structural reference 

system is given in equation (8-E).' Equation (8-E) can be transformed 

to the member reference system, using matrix equation (9) as follows 

k (B+Y -Y ) { .} p(m) = 0.5 P g Hw e I W Cos k[A Cose - C Slone] - wt (17) 

where 

A = all u + a
l2 

v + a
l3 

W + Xl 

B = a
21 

u + a
22 

v + a 23 
W 

C = a
31 

u + a
32 

v + a 3 3 W + Zl 

The total pressure force on a member in this member's reference system 

can'be determined using the following integration equation 

+ 
FP, ( ) = lo, m 

t 21T + + 
f f (p(m) R Cos6 d6 du e 2 + p(m) R Sin6 d6 du e 3 ) 

u=o 6=0 
(18) 

Since 

dS = R d6 du 

+ n : unit normal vector to surface (positive outwards) 

+ + 
= Cose e

2 
+ Sin6 e

3 

_ •• 4 



-+-
FP, () becomes 

J., m 

-+-
FP, ( ) = 

J., m - I I P (m) ; dS 
S 

'IV 

v 

Fig. 3. 

( 19) 

Using the divergence theorem of Gauss [3], the surface integral 

-+-
form of FP, ( ) in equation (19) can be converted to the volume integral 

J., m 

for the sake of simplica~ •.. ' That is 

FPi,(m) = - fsf p(m) ; dS = - f£f Vp(m) dV 

where V is the volume bounded by a closed surface S and 

The pressure force components along the w and v axes can be 

written in the form of a volume integral as follows 

-+­
FP 

wi, (m) 
= - III a~ p(m) dV ~3 

V 
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or 

i R 27T , 
FP = - (0.5 P g H k I I I 0.23 

k (B +Y -Yw) 
wi, (m) w e 1 

u=O r=O e=o 

.e. R 27T 
cos{k [A 

, 
CosS - c' - wt} dV - I I I SinS] (0.13 CosS - a SinS) 

u=O r=O e=o 33 

, 
k(B +Yl-Y ) 

Sin{k[A 
, 

CosS - C 
, 

SinS] - wt}) e. w dV) (21-1 ) 

where 
, 

A = all u + 0. 12 r Cose + 0. 13 r Sine + Xl 
, 

B = 0.21 U + 0.22 r Cose + 0.23 r Sine 
, 

C = 0. 31 U + 0. 32 r Cose + 0. 33 r Sine + Zl 

dV = r de dr du 

v = r Cose and w = r Sine 

Since kv«1 and kw«1 in the case of small diameter cylinders 

(D/A<0.2) the terms involved with kv and kw can be neglected and 

therefore some more simplifications can be made in equation (21-1) 

FP 
wi, (m) 

= - (0.5 P g 'IT R2 H k 
w 

C~s{k[(all CosS - 0. 31 SinS) u + Xl CosS - Zl SinS] - wt} du -

.e. f (0.
13 

CosS - 0.
33 

SinS) ek(a2lu+Yl-YW} Sin{k[(all CosS - 0.31 SinS)u 
u=O 

+ Xl CosS - Zl SinS] - wt} du») (21-2)-

Similarly, the pressure force along the v direction can be obtained 

as follows 

= _ III dp(m) ~ 
dV dV e 2 

V 

(22) 
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= - (0.5 P g ~ R2 H k 
w 

Cosk[(a ll CosS - a 3l SinS) u + Xl CosS - Yl SinS] - wt) du 

a 3l SinS) u + Xl CosS - Zl SinSl - wt} du» ) .. (22-1) 

The pressure forces at the bottom and at the top of the cylindrical 

member can be written as follows 

R . 2~ 
FP 

u=O. ( ) 1., m 
= J J p(m) r dr d8 

r=O 8=0 
(23) 

Since the dynamic pressure change may be assumed to be constant 

across the diameter of the cylindrical member, equation (23) can take 

the following form 

FP = 0.5 P g Hw ~ R2 ek(Yl-YW) cos{k[X l CosS - Zl SinS] - wt} 
u=O. ( ) 1., m 

(24) 

Similarly the pressure force at the top end of the cylindrical 

member will be 

FP 
u=l. ( ) 1., m 

= 0.5 P g H ~ R2 ek(a2l1+Yl-Yw) 
w 

Cos{k [(alll + Xl) CosS - (a 3l1 + Z ) SinS] - wt} 
1 

(25) 

If we write the total pressure force acting on a member in the 

member and structure reference systems, the following equations are 

obtained 

~ 

FP. ( ) 1., m 
~ ~ ~ 

= FP e 3 + FP e 2 + (FP - FP _0 ) e l 
wi, (m) vi, (m) u=Oi, (m) u=.(.i, (m) 

(26) 
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~ 

FP. ( ) = 
l., S 

~ ~ ~ ~ ~~ ~ ~~ 

(FP . ( ). i) • i + (FP. ( ). j ) j + (FP. ( ). k) k 
l., m l., m. l., m (27) 

Using the direction Cosines, the pressure equation given above can 

also be written in the following form 

surge force components 

[FP '0. ~ w. ( ) 23 + FPv a22 + (FPu=O - FPU=D )a21 ]j 
l., m i, (m) i, (m) .(.. i, (m) 

heave force components 

~ 

[FP a 33 + FP a 32 + (FP 0 - FP
U

_ D )a31 ]k 
wi, (m) vi, em) u= i, em) =.(.. i, (m) 

4-

sway force components 

1.3.2 The calculation of acceleration force. The x and y components of 

acceleration of a water particle in the structure reference system have 

been given in equation (8-C) andre-D). These components can be trans-

ferred into the member reference system as follows 

(28-1 ) 

Assuming the change of acceleration with depth of cylinder can be 

neglected for small diameter cylinders the following simplifications can 

be made in equations (28) and (28-1) 

(29) 
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... ;-. 

(29-1 ) 

The above expressions for acceleration have been written in the 

member reference system but they are along lines which are parallel to 

the wave propagation. If we resolve them along the structure reference 

system's axes the following equations are obtained 

• 
= U CosS 

x em) 

. 
= U 

Y{m) 

= - U SinS 
x{m) 

(30) 

(30-1 ) 

(30-2) 

Now we can write the acceleration forces in the member reference 

system along the w and v axes 

! 
FA 

wi, em) 

! 
( J U Cos {w,X)dV + 

X{m) 
J U Cos {w,Y)dV 

u=O Y{m) 

! 
+ J 

u=O 

u=O 

u Cos (w,Z)dV) 
Z (m) 

(31 ) 

Substituting k33=1 (since the acceleration force is calculated 
. 

along the w axis on circular cylinders), and the values of Ux 
(m) 

, 

• • 
U ,U from equations (30), (30-1), (30-2) respectively and 

Y{m) Z{m) 
dV=~R2du into equation (31) the acceleration force equa~ion (31) becomes 

! 
+ J 

u=O 

! 
[ J 
u=O 

. 
U <l du] 

y em) 23 
(32) 

• 
If we replace U and U with the equations given at (29) and 

x em) y (m) 

(29-1) respectively, equation (32) can be written as follows 
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FA 
wi, (m) 

Cos{k[(a
ll 

CosS - a 31 Sina1u + Xl CosS - Zl SinS] - wt} du 

l 
J k(a u+Y -Yw) (aZI CosS - a 33 SinS) e Zl 1 

u=O 

Sin{k[(aI1 CosS - a 31 SinS)u + Xl CosS - Zl sinSl - wt} dull 

(33) 

If we compare equations (21-2) and (33) it can be seen that these 

two equations are identical, so it is proved that for circular cylinders, 

--' 

regardless of the direction of wave and position of -eyl£nder, the 

pressure force is equal to the acceleration forc~ along the direction 

which is normal to the cylinder's curved surface. 

A similar expression to that in equation (31) can be written to 

obtain FA 

or 

Vi, (m) 

FA 
vi, (m) 

FA 
vi, (m) 

l l 
= k zz P (J U Cos(v,X) dV + J u Cos(v,Y) dV 

o X(m) 0 Y(m) 

l 
+ J u Cos(v,Z) dV) 

o Z(m) 

l 
= - (0.5 P g n RZ H k ( J w u=O 

Cos{k[(a
11 

CosS - a 31 SinS)u + Xl CosS - Zl SinS] - wt} du 

Sin{k[(a ll CosS - a 31 SinS)u + Xl CosS - Zl SinS] - wt} dull 
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Finally, the acceleration forces on the end surfaces of a 

cylindrical member can be calculated as follows 

. 
FA 

u=o. ( ) 
~, m 

(Ux 
(m) 

Cos (u,X) + U Cos(u,Y) 
Y(m) 

+ U Cos(u,Z» 
z(m) 

(36) 

By using equations (5), (29), (29-1), (30), (30-1), (30-2), 

equation (36) can also be written· as 

FA = - (0.5 P g ~ H k 0.423 R3 k (a k(YI-YW) 
u=O . ( ) W I I 2 I e 

~, m 

Cos[k(X I CosS - Zl SinS) - wt] - (all CosS - N S~nS) 
\.AI 3 I .... 

(36-A) 

where kll is the added mass coefficient of a rectangle having an aspect 

ratio of ~R/2l. 

Similarly, the acceleration force on the bottom surface of a 

(37) 

1.3.3 The calculation of velocity force. As with the acceleration 

force calculations, if we neglect the velocity variation along the 

depth of the cylinder, and assuming that water particles move with a 

velocity equal to that at the centre of the cylinder cross-section, 

the following results can be obtained to calculate the velocity force. 

The x and y components of water particle velocity given in the 

structure reference system in equations (8-A) and (8-B) can be trans-
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ferred into the member reference system as follows 

(38) 

(38-1 ) 

The above expressions for velocity are written in member reference 

system but they are parallel to the direction of wave propagation. If 

we resolve them along lines which are parallel to the structure refer-

ence system's axes the following equations are obtained 

U = U CosS 
X(m) x(m) 

(39) 

U = U 
Y(m) Y(m) 

(39-1 ) 

U = - U SinS 
Z(m) x(m) 

(39-2) 

Now we can obtain the velocity forces in member reference systems 

along the w and v axes 

FV w, [

1. -
= ~CDPD J (U

X 
Cos (w,X) + UY Cos (w,Y) 

= 0 (m) (m) 

+ Uz cos(w,Z») i(ux Cos (w,X) 
(m) (m) 

+ U Cos (w,Y) + u Cos (W'Z»)~dU 
Y(m) Z(m) U 

(40) 

or, substituting equations (39), (39-1), (39-2) into equation (40) the 

drag force along waxes on each member may also be written as 
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FV 
wi, (m) 

= "CDPD r t (u ("13 CosS - "33 SinS) 
lu = 0 x (m) . 

+ U Cl23) I (u (Cl13CosS - Cl33SinS) 
y (m) I x(m) 

+ U Cl23J ] du 
Y(m) 

(40 -1 ) 

Similarly, the velocity force along the v axis will be 

FV 
vi, (m) 

= ~ CDP D [t (ux ("I2COSS - "32SinS) 
u = 0 (m) 

(41 ) 

The velocity forces on the end surfaces of a cylindrical member 

are neglected in wave loading calculations because of the uncertainties 

about both the viscous flow state and the appropriate drag coefficients. 

The error will not be large except for cases where the pressure and 

inertia terms cancel one another. 

1.3.4 Calculation of the total wave force. The total wave force will 

consist of hydrodynamic pressure force, acceleration force and velocity 

force. If we write the total force acting on the structure in the 

structure's reference system, the following resultant force components 

are obtained •. 

m 

L FT (s) = [ (FT 0.
13 

+ FT 
i=l 

w 
i, (m) vi, (m) 

{-

surge force 

m 

L [ (FT + 0.
23 

+ FT 

i=l wi, (m) vi, (m) 

heave force 
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0. 12 + FT 
ui , (m) 

0.
22 

+ FT 
ui , (m) 

0.
11

) ] 
~ 

i 

~ 

0. 2 1 ) ] j 

(42) 
contd. over 



m 
+ 2 [(FT a

33 
+ FT a

32 
+ FT a

31
)] k 

i=l Wi,(m) Vi,(m) Ui,(m) 

sway force (42) 

where 

FT = FP + FA + FV 
wi, (m) wi, (m) wi, (m) wi, (m) 

FT = FP + FA +FV 
vi, (m) vi, (m) vi, (m) v i, (m) 

FT = FP + FP 
u=!. ( ) 

+ FA + FA 
ui , (m) u=O. ( ) u=O. ( ) u=.i. ( ) :I., m :I., m l., m :I., m 

The terms in the last equation are to be determined according to 

the cylindrical members exposed ends to the wave. loading, i.e. if the 

member is inter-costal these terms will vanish. 

1.4 calculation of Total M:nent 

If we consider an individual element in a member reference system, 

the moments due to the wave forces about the member reference system's 

origin, A, can be written as follows (see Fig. 2) : 

e. 
A~ -+ 

J 
-+ '" -+ -+ 

mAo = [ue
l 

(FT e
3 

+FT e
2
)] du (43) 

du wi, (m) vi, (m) :I. u=O 

or 

! d 
! d -+ 

=-J -+ 
J mAo (FT ) u du e

2 + du 
(FT ) u du e

3 du Wi, (m) vi, (m) :I. u=O u=O 
(43-1) 

The total moment about the structure reference system's origin can 

easily be obtained using the moment transformation rule as follows 

-+ -+ -+ -+ -+ 
= mA + r A (FT e 3 + FT e + FT e 1 ) 

i Wi,(m) Vi,(m) 2 ui,(m) 
(44) 

where 
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and 

-+ -+ 
e

2 
and e

3 
should be replaced with the values which will be obtained 

from equations (14) and (15) respectively. 

The total moment acting on the structure 

-+ 
M = 

m 

L (45) 
i=1 

The total moment vector can also be analysed in terms of principal 

components as follows 

-+ 
M = 

where 

-+ 
ai 

(roll moment) 

+ + 

(yaw moment) 

-+ 
ck 

(pitch moment) 

m .e. d 
a = L [f du (a 13 FT 

i=1 u=o vi, (m) 
- aFT) u du 

12 W i, (m) 

+FT (y 1 a 33 - Z a 2 3) +FT (y 1 a 32 - Zl 
wi, (m) 1 vi, (m) 

+FT (y 1 a
31 

- Z (
21

)] 

U i , (m) 
1 

b = 
m .e. d 
L [f du (a23 FT - a 22 FTw ) u du 

i=1 u=O Vi, (m) i, (m) 

m .e. d 
c = L [f du (a 33 FTv 

i=1 u=O i, (m) 

(46) 

a 2 2) 

+FT (x 
1 

a 
23 

- Y 
1 

a ) + FT (X a - Y a ) 
13 v, () 1 22 1 12 wi, (m) ~, m 
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In the following the computer program which enables a user to 

calculate the wave loading using the above summarised method will be 

described. 

2. THE DFSCRIPI'ION OF A GENERAL THREE DIMENSIONAL WAVE LOADTIJ'G 

PR.:X;RAM EDR CIRCULAR CYLINDRICAL MEMBERS OF FIXED AND OF 

FIDATING OFFSHORE STRUCI'URES 

Having developed the general method, the next task was to develop 

a computer program which could use the calculation procedure based on 

this method. This computer program determines wave loading on the 

structure with minimum input data, space and time as well as having 

enough options to provide high flexibility and reliability. The wave 

loading calculations on the structure are done using two main programs: 

FILER: All the data regarding the geometry are fed into this 

program as input. A data file is generated with this information for 

use in the wave loading program. FILER also creates another data file 

which is used as input to the BONES program. BONES produces graphical 

representation of the geometry of the structure on screen or on plotter 

for visual check. 

WAVLOVA: This program calls a data file created by FILER and 

calculates the wave loading at nodal points of all the members 

2. 1 The Description of FILER 

The input data to the FILER program is the geometrical details of 

a structure which should be prepared as follows: 

.. (a) The structure should be idealised as a space frame system and 

preliminary nodal points should be defined. This can be done by join­

ing the start and end co-ordinates of each member with their centrelines. 

A nodal point (joint) can be either the free end of a member, e.g. the 

_ 1')") 



end of a hull, caisson, leg, etc., or the intersection between two or 

more members, in which case, one member and only one member must be 

continuous (see (~) below), and up to 8 members may end at this joint. 

The co-ordinates of the joints which are requested as input data by 

FILER actually refer to the co-ordinates of intersections or ends of 

-member axes. It is not permissible to have joints at which no members 

end. (See also Fig. 4.) 
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Fig. 4. 

Two problems can arise in the identification of members and 

joints: 

(i) If more than one continuous member passes through the same 

joint this case must be considered by dividing one of the 

continuous members into two, in other words making one member 

inter-costal while leaving the other one continuous. (See 

Fig. 5.) 

MEMSEJ! IT 

( INCORRECT) 

Fig. 5. 
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(ii) In the case of neither member being continuous at a particular 

joint, a new jOint must be introduced such that member 1 is 

. 
continuous at joint 1 and has a free end at jOint 2 and member 

2 ends at joint 1. (See Fig. 6.) 

" ::JOINT f .J OINT f 

fvJEMBll r MEM13E£ Ii 

( /NCOReFC T) 

MEMBER I 

(CORI<£C T) 

Fig. 6. 

(b) Once the nodes are determined, every member and each joint through-

out the structure must be given a unique number. The member node 

numbering system must also be devised so that all jOints on each member 

can be numbered starting from 1 up to a maximum of 10. (This number 

" can easily be increased by altering the neumber in the DIMENSION state-

ment of FILER). 

(c) Having defined the numbering system for nodes and members, the 

number of nodes on each member, the radius of the members and the co-

ordinates of each node should be tabulated. 

(d) The last part of the input data concerns end corrections. FILER 

determines at which joint members are continuous or inter-costal using 

the input information. At this stage the user may take account of the 

covered up areas at intersections. This procedure is explained by the 

following illustrative example. 
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I 
JOI}-/ T 1 

Fig. 7. 

In Fig. 7 the corrections which are to deduct the wave loading due to 

the covered up areas are considered separately by FILER for intersect-

ions between I & IV, I & III, I & II. 

If the user requires corrections for all of these three cases, 

since these three sets of corrections are performed independently of 

each other the total correction would be over-estimated. If only 

members II and IV are taken into consideration the total correction 

would be much closer to the true case. To obtain these corrections 

the end specification for member III at joint 1 should be entered as 

'0' and for members II and IV should be 1. 

When the final part of the data has been supplied regarding these 

end corrections FILER prints out the member and joint information as 

well as linking the geometrical data to the BONES program so that a 

three dimensional view of the structure can be represented on the 

plotter or on the screen. An example on the use of FILER is given in 

Section 3. 

2.2 The rescription of 'WAVI.DA 

WAVLOA was written to determine wave loading in terms of nodal 

loads distributed throughout the structure. Calculation procedures used 
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in the development of WAVLOA have been given in Section 1. WAVLOA uses 

geometrical information generated by FILER as input data as well as 

some additional data on wave particulars and draft of the structure 

which are to be supplied during each run. 

As was described in Section 2.1 FILER generates information on 

joints only, i.e. the start and end points of members or intersections 

between the members. WAVLOA generates additional nodal points in 

between the joints at which wave forces are calculated. The number of 

nodes is determined according to the required spacing between the 

nodes and adjusted to make the total node number even on each member 

so that Simpson's rule can be applied for integrations. WAVLOA also 

determines surface piercing members and adjusts the last node at which 

wave forces are calculated to be on the calm water surface. Similarly, 

the first node is generated to be at the starting point of an inter­

costal member at its intersection. 

The following output is produced by WAVLOA: 

(a) The transformation matrices for each member so that the direction 

of the u,v,w axes can be defined to determine the applied wave force in 

the correct sense. 

(b) Wave loadings in the v and w directions at each node point of each 

member. These are given as force per unit length. 

(c) At each joint, the end loads for each inter-costal member are 

uniformly spread over the appropriate length. (See Table VII, and Fig. 

14.) 

(d) Axial loads due to the exposed ends of members. 

(e) The total forces on each member. 

(f) The total forces on the structure. 

An example on the use of WAVLOA is given in Section 3. 
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2.3 The Description of BONES 

BONES was written to verify the co-ordinates of joints which are 

fed to the FILER program. It produces a graphical representation of a 

three dimensional structure. The structure may be viewed from any 

point in space to make sure that all members and nodes are registered 

into a data file as intended. BONES is linked to FILER and graphics 

are automatically produced after the data file regarding the geometry 
(. 

of a structure has been generated. 

The method employed in the BONES program was developed to 

produce the two dimensional diagram from the three dimensional 

structure using the co-ordinate transformations described in Section 

1.1. In the method all the nodal points of a structure defined in the 

structure reference system are transformed to a reference system (u,v,w) 

using the following equation 

[B] = [T] 
-1 

{ [A] - [c]} 

where 

X 

[A] = y , [B] 

Z 

-1 1 [T] [T] = adj 
ITI 

Ci. 1 1 Ci. 12 

[T] = Ci. 21 
0.

22 

Ci. 3 1 Ci. 32 

r' , 
1Ci.

11 
Ci. 21 

, 
adj [T] = jCi. 12 

Ci.
22 

I , 

lCi.
13 

Ci.
23 

u 

= v 

W 

Ci. 1 3 

Ci. 23 

Ci. 33 

, .., 
a. 3 I ' 
, 

Ci. I 
32 ! 

0. 33 J 
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Y (= View­
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a" - The cofactors of the elements 
1J of (T) matrix 



The origin of the (u,v,w) reference system is the viewpoint and 

the w axis on the line which connects the origin of structure reference 

system to the viewpoint. (See Fig. 8.) 

View plane 

x 

z 

Fig. 8. 

-+ -+ -+ 
The (u,v,w) system and the e

l
, e

2
, e

3 
orthogonal unit vectors are 

determined using the procedure described in Section 1.2. 

The graphics were drawn feeding only the (u,v) co-ordinates of 

each point into the "Graphic plotter Package" installed at the 

Hydrodynamic Laboratory's PDP 11/40 computer. 

Examples on the use of BONES are given in Section 3. 

3. AN EXAMPLE ON THE USE OF COMPUI'ER ProGRAMS 

The use of FILER, BONES and WAVLOA computer programs are illus-

trated by calculating wave loading on the members of a twin circular 

hull semi -submersible with the following example. The geometry and 

the main dimensions of the platform are shown in Fig. 9. 
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Fig. 10. 

In Fig. 10 a space frame idealisation of the platform is shown. 

Members are designated with Roman numbers and Joints with decimal 

numbers. In Tables I and II member and joint data to the FILER program 

are illustrated respectively. These data tables were prepared using 

Figs 9 and 10. 
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MEMBER DATA TABLE (Total number of members = 21) 

Member Number of Nodes Radius [meters] 

I 7 5.35 

II 2 4.10 

III 2 4.10 

IV 2 4.10 

V 2 5.35 

VI 7 4.10 

VII 2 4.10 

VIII 2 4.10 

IX 2 1.5 

X 2 1.5 

XI 2 1.5 

XII 2 1.5 

XIII 2 1.5 

XIV 2 1.5 

XV 2 1.5 

XVI 2 1.5 

XVII 3 Dummy 

XVIII 3 Dummy 

XIX 3 Dummy 

XX 3 Dummy 

XI 4 Dummy 

TABLE I. 
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JOINT DATA T~LE (Total number of joints = 24) 

Joint X Y Z - - -
Co-ordinates [meters] 

1 54.2 0.0 33.95 

2 38.7 0.0 33.95 

3 12.9 0.0 33.95 

4 0.0 0.0 33.95 

5 -12.9 0.0 33.95 
c· 

6 -38.7 0.0 33.95 

7 -61.0 0.0 33.95 

8 38.7 31.25 33.95 

9 0.0 31.25 33.95 

10 -38.7 31.25 33.95 

11 54.2 ) 0.0 -33.95 

12 38.7 0.0 -33.95 

13 12.9 0.0 -33.95 

14 0.0 0.0 -33.95 

15 -12.9 0.0 -33.95 

16 -38.7 0.0 -33.95 

17 -61.0 0.0 -33.95 

18 38.7 31.25 -33.95 

19 0.0 31.25 -33.95 

20 -38.7 31.25 -33.95 

21 38.7 31.25 0.0 

22 12.9 31.25 0.0 

23 -12.9 31.25 0.0 

24 -38.7 31.25 0.0 

TABLE II. 
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3.1 Input to FILER 

Geometrical information about the structure tabulated in Tables I 

and II is the main input to the FILER program. Since the programs 

prepared were of an interactive nature, to provide the data, a user only 

need answer the questions using Tables I and II. An example of the 

usage of the FILER program is illustrated in Table III. All information 

provided by a user is that typed after the asterisks. After all the 

geometrical data regarding the members and joints have been fed into 

FILER, the program automatically determines which member is continuous 

or inter-costal at each joint and asks if corrections due to the 

covered-up areas are required. 

3.2 OUtput of FILER 

When all the data for members and joints are completed FILER asks 

if those data are to be linked to the BONES program for graphical or 

for visual display and prints out a summary data table so that the user 

can check whether the geometry of the structure is understood and stored 

correctly by FILER. See Table IV. 

3.3 Usage of BONES 

Use of the BONES program is presented in Table V. The graphical 

displays from two different viewpoints are shown in Figs 11 and 12. 

3. 4 Input to WAVIJJA 

The wave loading calculations for the twin-circular hull type semi-

submersible (Fig. 9) were carried out for different wave orientations. 

The procedure to run WAVLOA is presented in Table VI. 

3. 5 output of WA. VIJJA 

The output begins by printing out the transformation matrices so 

that a user who wishes to carry out the structural response calculations 
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in the time domain can load the structure with the correct direction of 

wave forces and the corrections due to the intersecting members. In the 

output, member loads in their reference systems as well as total forces 

and moments on the structure in the structure reference system are given 

for t=Oand t=T/4 where T is the wave period. The output of WAVLOA is 

presented in Table VII. 

In the following the use of transformation matrices is illustrated 

to determine the member reference systems with respect to the structural 

reference system. 
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"4 ____ '.4 __ • _ " •• • _ _ ••• _ •••• 

:>HUN FILER 
EHTER STRUCTURE NAME .DAT ~ UPTO 13 CHARACTERS) * CIRHULLUB.DAT 
ENTER TOTAL NO OF MEMBERS AND JOINTS [INTEGERS] * 21,24 

ENTER NO OF NODES [INT~GER] AND RADIUS (METRES) [REAL] FOR MEMBER 1 * 7,5.35 
ENTER NO OF NODES [INTEGER] AND RADIUS (METRES) [REALl FOR MEMBER 2 * 2,4.1~ 
ENTER NO OF NODES [INTEGER] AND RADIUS (METRES) [REAL] FOR MEMBER 3 * 2,4.10 
ENTER NO OF NODES [INTEGER] AND RADIUS (METRES) [REAL] FOR MEMBER 4 * 2,4.10 
ENTER NO OF NODES [INTEGER] AND RADIUS (METRES) [REAL] FOR MEMBER 5 * 7,5.35 
ENTER NO OF NODES [INTEGER] AND RADIUS (METRES) [REAL] FOR MEMBER 6 * 2,4.10 
ENTER NO OF NODES [INTEGER] AND RADIUS (METRES) [REAL] FOR MEMBER 7 * 2,4.10 
ENTER NO OF NODES [INTEGER] AND RADIUS (METRES) [REAL] FOR MEMBER 8 * 2,4.1~ 
EHTER NO OF NODES [INTEGER] AND RADIUS (METRES) [REAL] FOR MEMBER 9 * 2,1.5 
EHTER NO OF NODES [INTEGER] AND RADIUS (METRES) [REAL] FOR MEMBER 10 * 2,1.5 
ENTER NO OF NODES [INTEGER] AND RADIUS (METRES) [REAL] FOR MEMBER 11 * 2,1.5 
ENTER NO OF NODES [INTEGER] AND RADIUS (METRES) [REAL] FOR MEMBER 12 * 2,1.5 
EHTER NO OF NODES [INTEGER] AND RADIUS (METRES) [REAL] FOR MEMBER 13 * 2,1.5 
EHTER NO OF NODES [INTEGER] AND RADIUS (METRES) [REAL] FOR MEMBER 14 * 2,1.5 
E H T ERN 0 0 F NOD E S [I N T E G E R] AND R A DIU S (M E T RES) [ REA L] FOR ME M B E R 1 5 :t: 2, 1 . 5 
ENTER NO OF NODES [INTEGER] AND RADIUS (METRES) [REAL] FOR MEMBER 16 * 2,1.5 
EHTER NO OF NODES [INTEGER] AND RADIUS (METRES) [REAL] FOR MEMBER 17 * 3,4.0 
EHTER NO OF NODES [INTEGER] AND RADIUS (METRES) [REAL] FOR MEMBER 18 * 3,4.0 
EHTER NO OF NODES [INTEGER] AND RADIUS (METRES) [REAL] FOR MEMBER 19 * 3,4.0 
ENTER NO OF NODES [INTEGER] AND RADIUS (METRES) [REAL] FOR MEMBER 20 * 3,4.0 
EHTER NO OF NODES [INTEGER] AND RADIUS (METRES) [REAL] FOR MEMBER 21 * 4,4.0 
EHTER X , Y AND Z COORDINATES (METRES) [REAL] FOR JOINT 1 * 54.2,~.0,33.95 
EHTER X , Y AND Z COORDINATES (METRES) [REAL] FOR JOINT 2 * 38.7,~.0,33.95 
ENTER X , Y AND Z COORDINATES (METRES) [REAL] FOR JOINT 3 * 12.9,0.0,33.95 
ENTER X , Y AND Z COORDINATES (METRES) [REAL] FOR JOINT 4 * 0.~,0.0,33.95 
EHTER X , Y AND Z COORDINATES (METRES) [REAL] FOR JOINT 5 * -12.9,0.~,33.95 
ENTER X , Y AND Z COORDINATES (METRES) [REAL] FOR JOINT 6 * -38.7,~.0,33.95 
E MY E R X Y AND Z COO R DIN ATE S (M E T RES) [R E A L] FOR J 0 I NT 7:1t ,-6 1 . ~ , 0 • ~ , 33 • 95 
ENTER X , Y AND Z COORDINATES (METRES) [REAL] FOR JOINT 8 * 38.7,31.25,33.95 
ENTER X , Y AND Z COORDINATES (METRES) [REAL] FOR JOINT 9 * 0.0,31.25,33.95 
EHTER X , Y AND Z COORDINATES (METRES) [REAL] FOR JOINT 10 * -38.7,31.25,33.95 
EHTER X , Y AND Z COORDINATES (METRES) [REAL] FOR JOINT 11 * 54.2,0.0,-33.95 
ENTER X Y AND Z COORDINATES (METRES) [REAL] FOR JOINT 12 * 38.7,~.~,-33.95 
ENTER X , Y AND Z COORDINATES (METRES) [REAL] FOR JOINT 13 * 12.9,0.0,-33.95 
EHTER X , Y AND Z COORDINATES (METRES) [REAL] FOR JOINT 14 * 0.0,0.0,'-33.95 
ENTER X Y AND Z COORDINATES (METRES) [REAL] FOR JOINT 15 * -12.9,0.~,-33.95 
ENTER X , Y AND Z COORDINATES (METRES) [REAL] FOR JOINT 16 * '-38.7,0.0,-33.95 
ENTER X , Y AND Z COORDINATES (MEfRES) [REAL] FOR JOINT 17 * -61.0,0.0,-33.95 
ENTER X Y AND Z COORDINATES (METRES) [REAL] FOR JOINT 18 * 38.7,31.25,-33.95 
ENTER X , Y AND Z COORDINATES (METRES) [REAL] FOR JOINT 19 * 0.0,31.25,-33.95 
ENTER X , Y AND Z COORDINATES (METRES) [REAL] FOR JOINT 20 * -38.7,31.25,-33.95 

-
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ENTER X , Y AND Z COORDINATES (METRES) [REAL] FOR JOINT 21 * 38.7,31.25,O.0 
ENTER X , Y AND Z COORDINATES (METRES) [REAL] FOR JOINT 22 * 12.9,31.25,e.0 
ENTER X , Y AND Z COORDINATES (METRES) [REAL] FOR JOINT 23 * -12.9,31.25,0.0 
ENTER X , Y AND Z COORDINATES (METRES) [REAL] FOR JOINT 24 * -38.7,31.25,0.0 
ENTER JOINT NUMBER OF NODE 1 ON MEMBER 1 [INTEGER] * 1 
ENTER JOINT NUMBER OF NODE 2 ON MEMBER 1 [INTEGER] * 2 
ENTER JOINT NUMBER OF NODE 3 ON MEMBER 1 [INTEGER] * 3 
ENTER JOlNT NUMBER OF NODE 4 ON MEMBER 1 [INTEGER] * 4 
ENTER JOINT NUMBER OF NODE 5 ON MEMBER 1 [INTEGER] * 5 
ENTER JOINT NUMBER OF NODE 6 ON MEMBER 1 [INTEGER] * 6 
EHTER JOINT NUMBER OF NODE 7 ON MEMBER 1 [INTEGER] * 7 
ENTER JOINT NUMBER OF NODE 1 ON MEMBER 2 [INTEGER] * 2 
ENTER JOINT NUMBER OF NODE 2 ON MEMBER 2 [INTEGER] * 8 
ENTER JOINT NUMBER OF NODE 1 ON MEMBER 3 [INTEGER] * 4 
ENTER JOINT NUMBER OF NODE 2 ON MEMBER 3 [INTEGER] * 9 
EHTER JOINT NUMBER OF NODE 1 ON MEMBER 4 [INTEGER] * 6 
EHTER JOINT NUMBER OF NODE 2 ON MEMBER 4 [INTEGER] * 10 
EHTER JOINT NUMBER OF NODE 1 ON MEMBER 5 [INTEGER] * 11 
EHTER JOINT NUMBER OF NODE 2 ON MEMBER 5 [INTEGER] * 12 
ENTER JOINT NUMBER OF NODE 3 ON MEMBER 5 [INTEGER] * 13 
ENTER JOINT NUMBER OF NODE 4 ON MEMBER 5 [INTEGER] * 14 
ENTER JOINT NUMBER OF NODE 5 ON MEMBER 5 [INTEGER] * 15 
ENTER JOINT NUMBER OF NODE 6 ON MEMBER 5 [INTEGER] * 16 
5NTER JOINT NUMBER OF NODE 7 ON MEMBER 5 [INTEGER] * 17 
ENTER JOINT NUMBER OF NODE 1 ON MEMBER 6 [INTEGER] * 12 
EHTER JOINT NUMBER OF NODE 2 ON MEMBER 6 [INTEGER] * 18 
EHTER JOINT NUMBER OF NODE 1 ON MEMBER 7 [INTEGER] * 14 
EHTER JOINT NUMBER OF NODE 2 ON MEMBER 7 [INTEGER] * 19 
ENTER JOINT NUMBER OF NODE 1 ON MEMBER 8 [INTEGER] * 16 
ENTER JOINT NUMBER OF NODE 2 ON MEMBER 8 [INTEGER] * 20 
EHTER JOINT NUMBER OF NODE ON MEMBER 9 [INTEGER] * 2 
EHTER JOINT NUMBER OF NODE 2 ON MEMBER 9 [INTEGER] * 21 
ENTER JOINT NUMBER OF NODE 1 ON MEMBER 10 [INTEGER] * 3 
EHTER JOINT NUMBER OF NODE 2 ON MEMBER 10 [INTEGER] * 22 
EHTER JOINT NUMBER OF NODE 1 ON MEMBER 11 [INTEGER] * 5 
ENTER JOINT NUMBER OF NODE 2 ON MEMBER 11 [INTEGER] * 23 
EHTER JOINT NUMBER OF NODE 1 ON MEMBER 12 [INTEGER] * 6 
ENTER JOINT NUMBER OF NODE 2 ON MEMBER 12 [INTEGER] * 24 
ENTER JOINT NUMBER OF NODE 1 ON MEMBER 13 [INTEGER] * 16 
EHTER JOINT NUMBER OF NODE 2 ON MEMBER 13 [INTEGER] * 24 
E N T E R J 0 I N T N U M B E R 0 F NOD E 1 0 N ME H B E R 1 4 [! N T E G E R] .jc 1 5 
ENTER JOINT NUMBER OF NODE 2 ON MEMBER 14 [INTEGER] * 23 
ENTER JOINT NUMBER OF NODE 1 ON MEMBER 15 [INTEGER] * 13 
ENTER JOINT NUMBER OF NODE 2 ON MEMBER 15 [INTEGER] * 22 
ENTER JOINT NUMBER OF NODE ON MEMBER 16 [INTEGER] * 12 
ENTER JOINT NUMBER OF NODE 2 ON MEMBER 16 [INTEGER] t 21 
ENTER JOINT NUMBER OF NODE ON MEMBER 17 [INTEGER] * 10 
ENTER JOINT NUMBER OF NODE 2 ON MEMBER 17 [INTEGER] * 24 
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EHTER JOINT NUMBER OF NODE 3 ON MEMBER 17 [INTEGER] * 20 
EHTER JOINT NUMBER OF NODE 1 ON MEMBER 18 [INTEGER] * 8 
ENTER JOINt NUMBER OF NODE 2 ON MEMBER 18 [INTEGER] * 21 
ENTER JOINT NUMBER OF NODE 3 ON MEMBER 18 [INTEGER] * 18 
ENTER JOINT NUMBER OF NODE 1 ON MEMBER 19 [INTEGER] * 8 
ENTER JOINT NUMBER OF NODE 2 ON MEMBER 19 [INTEGER] * 9 
EHTER JOINT NUMBER OF NODE 3 ON MEMBER 19 [INTEGER] * 10 
ENTER JOINT NUMBER OF NODE 1 ON MEMBER 20 [INTEGER] * 18 
EHTER JOINT NUMBER OF NODE 2 ON MEMBER 20 [INTEGER] * 19 
ENTER JOINT NUMBER OF NODE 3 ON MEMBER 20 [INTEGER] :It 20 
ENTER JOINT NUMBER OF NODE 1 ON MEMBER 21 [INTEGER] * 21 
EHTER JO I NT NUMBER OF NODE 2 ON MEMBER 21 [l NT EGER] :t: 22 
ENTER JOINT NUMBER OF NODE 3 ON MEMBER 21 [INTEGER] * 23 
EHTER JOINT NUMBER OF NODE 4 ON MEMBER 21 [INTEGER] * 24 
AT JOINT 1 , CONTINUOUS MEMBER: 0 INTERCOSTAL: 1, 
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 0) 
t1EMBER l:1t 1 
AT JOINT 2, CONTINUOUS MEMBER: 1 INTERCOSTAL: 2, 9, 
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 0) 
MEMBER 2 * 1 
liEMBER 9 * 1 
AT JOINT 3, CONTINUOUS MEMBER: 1 INTERCOSTAL: 10, 
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 0) 
MEMBER 10:tc 1 
AT JOINT 4, CONTINUOUS MEMBER: 1 INTERCOSTAL: 3, 
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 0) 
MEMBER 3 * 1 
AT JOINT 5, CONTINUOUS MEi~BER: 1 INTERCOSTAL: 11, 
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 0) 
MEMBER 11:+: 1 
AT JOINT 6, CONTINUOUS MEMBER: 1 INTERCOSTAL: 4, 12, 
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 0) 
MEMBER 4 * 1 
MEMBER 12:1t 1 
AT JOINT 7, CONTINUOUS MEMBER: 0 INTERCOSTAL: 1 , 
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 0) 
MEMBER l:1t 1 
AT JOINT 8, CONTINUOUS MEi~BER: 0 INTERCOSTAL: 2,18,19, 
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 0) 
t1EMBER 2:1t 0 
~IEMBER 18:1t 0 
M EM B E R 1 9 :11 ~ 

AT JOINT 9, CONTINUOUS MEMBER: 19 INTERCOSTAt: 3, 
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: a) 
i1HIBER 3:11 0 
AT JOINT 10, CONTINUOUS MEMBER: !3 INTERCOSTAL: 4,17,19, 
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 0) 
MEMBER 4 * 0 

-
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i'1EMBER 17:. 0 
MEMBER "19 * 0 
AT JOINT 11 , CONTINUOUS MEMBER: 9 INTERCOSTAL: 5, 
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 0) 
t1EMBER 5 * 1 
AT JOINT 12 , CONTINUOUS MEMBER: 5 INTERCOSTAL: 6, 16, 
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 9) 
MEMBER 6 * 1 
MEMBER 16 * 1 
AT JOINT 13 , CONTINUOUS MEMBER: 5 INTERCOSTAL: 15, 
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 0) 
t1EMBER 15 * 1 
AT JOINT 14 , CONTINUOUS MEMBER: 5 INTERCOSTAL: 7, 
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 0) 
MEMBER 7 * 1 
AT JOINT 15 , CONTINUOUS MEMBER: 5 INTERCOSTAL: 14, 
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 0) 
t1EMBER 14 * 1 
AT JOINT 16 , CONTINUOUS MEMBER: 5 INTERCOSTAL: 8, 13, 
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 0) 
MEMBER 8 * 1 
l'1 E M B E R 1 3 :~ 1 
AT JOINT 17 , CONTINUOUS MEMBER: 0 INTERCOSTAL: 5, 
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 0) 
MEMBER 5 * 1 
AT JOINT 18 , CONTINUOUS MEMBER: 0 INTERCOSTAL: 6, 18, 20, 
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 0) 
t1EMBER 6 * ~ 
t1EMBER 1 B * 0 
t1 E M B E R 2 0 :~ ~ 

AT JOINT 19 , CONTINUOUS MEMBER: 20 INTERCOSTAL: 7, 
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 0) 
MEMBER 7;f; 0 
AT JOINT 20 , CONTINUOUS MEMBER: 0 INTERCOSTAL: 8, 17, 20, 
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 0) 
MEMBER 8 * 0 
MEMBER 17 * 0 
MEMBER 20:. ~ 

AT JOINT 21 , CONTINUOUS MEMBER: 18 INTERCOSTAL: 9, 16, 21, 
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 0) 
MEMBER 9 * 0 
~1EMBER 16:." 
t1EMBER 21:1e" 
AT JOINl 22 , CONTINUOUS MEMBER: 21 INTERCOSTAL: 10, 15, 
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: ~) 
MEMBER 10 * 0.!3 
MEMBER 15 * 0.0 
AT JOINT 23 , CONTINUOUS MEMBER: 21 INTERCOSTAL: 11, 14, 
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HICH MEMBERS REOUIRE END CORRECTIONS(YES: 1 , NO: 8) 
EMBER 11:. 8.8 
EMBER 1-4:fc" • 8 
T JOINT 24 , CONTINUES MEMBER: 17 INTERCOSTAL: 12, 13, 21, 
HICH t1EMBERS REOUIRE END CORRECTIONS (YES: 1 , NO:. ") 
EMBER 12:11".8 
EMBER 13:." ." 
EMBER 21:."." 
RAPHICAL DISPLAY 1 (YIN) : Y 
AHE FOR NODE FILENAME : CIRHULLN.DAT 
AME FOR MEMBER FILENAME : CIRHULLM.DAT 

T6 -- STOP 

TABLE III. 
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UN DK4:[6,1] BONES 
PE 0 FOR SCREEN, 1 FOR PLOTTER : 1 
ITER NODE FILE NAME : CIRHULLN.DAT 
ITER MEMBER DATA FILE : CIRHULLM.DAT 
ITER VIEUING COORDINATES (X,Y,Z) : 1.0,2.0,1.0 
,OT = 1 PLOTTER SELECTED 
IBEL NODES 1 (Y IN) : Y 
IARACTER SIZE : 0.5 
lOT HER VIEUPOINT 1 Y 
ITER VIEUING COORDINATES (X,Y,Z) -1.0,2.0,1.0 
.OT = 1 PLOTTER SELECTED 
IBEL NODES 1 (YIN) : Y 
fARACTER SIZE : 0.5 
fOTHER VIEUPOINT 1 N 
r6 -- STOP 

>RUN UAVLOA 

TABLE V. 

:NTER STRUCTURE NAME .DAT * CIRHULLWB.DAT 
:HTER ANGLE OF ORIENTATION (DEGREES) AND DRAFT (H) * 0.0,21.30 
:HTER UAVE FREQUENCY (HZ) AND UAVE AMPLITUDE (M) • 0.08,6.0 
'T 6 -- STOP 
,RUN UAVLOA 
:HTER STRUCTURE NAME .DAT * CIRHULLUB.DAT 
:HTER ANGLE OF ORIENTATION (DEGREES) AND DRAFT (H> • 45.0,21.30 
:HTER UAVE FREQUENCY (HZ) AND UAVE AMPLITUDt (H) * 0.08,6.0 
T6 -- STOP 
RUN UAVLOA 
HTER STRUCTURE NAME .DAT * CIRHULLUB.DAT 
NTER ANGLE OF ORIENTATION (DEGREES)- AND DRAFT (H) * 90.0,21.30 
HTER UAVE FREQUENCY (HZ) AND UAVE AMPLITUDE (H) * 0.08,6.0 
T6 -- STOP 

TABLE VI. 
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.For member I the following direction cosines can be written for 

the angles between structural reference system's axes and the individual 

reference system's axes from the output shown in Table VII. 

all: The Cosine of the angle between X and u = -1 + All = 180° 

The Cosine of the angle between X and v = 

The Cosine of the angle between X and w = 

The Cosine of the angle between Y and u = 

The Cosine of the angle between Y and v = 

The Cosine of the angle between Y and w = 

The Cosine of the angle between Z and u = 

The Cosine of the angle between Z and v = 

The Cosine of the angle between Z and w = 

o + A21 = 90° 

o + A = 90° 
33 

Since all the angles between the structure and the individual 

reference systems' axes are known the individual member reference 

system can be drawn using this information. (See Fig. 13.) 

The same procedure can be repeated to find all individual reference 

systems' axes. Some of the members' reference systems are shown in 

Fig. 13. 

In Fig. 14 the distribution of wave loading on the nodal points 

throughout the structure is presented. Figs 15 - 20 show the principal 

forces and moments on the structure in the frequency domain for differ-

ent wave headings. 

- 146 -



8 

R~fer~nce System 2::::Z::::Z~z~~~~~L..::::::===::::=::::::=--2:"='2:.=i~ 
For V~rticai Columns 

7 5 4 

Wav~ Loading On Th~ Cov~red Up Ar~as At 

Int~rsections 

R~f~renc~ Syst~m 
For Hull 

Wav~ Frequeny = 0.5 Rads I Sec 

o 100 200 300 kN 
I I, I , I 

Visual Scat~ 
Fig. J..4. 

Wave Amplitud~ 

Angl~ Of Wav~ 
H~ading 

Distribution Of Wav~ Loading On Th~ Nodal Points Of ~ Twin 

Circular Hull D~sign S~mi Subm~rsible 

- 147 -

=. 6.0 M~ters 
=. 4 5 ~ 



...... 
~ 
00 

3 

2 

1 

o 

Surge Force (K N ) )( 1 0- J 

Wave Amplitude 

.., 

0.02 

Angle Of Orientation, 0° 

Angle Of Orientation, 45° 

. ..-.------."" 
./ .\ 

./ -------, "\ / --- .......... 

/ " //-,// ''-'" "\ 
/ " / ~ 

. \ 
" , ~ 

/ /,,' \"" 
. " \ , / 

' " ,," ......... ~ .... ' ~ -' .... 
/' 

/ 

0.04 0.06 0.08 

Fig. 15. 

0.10 

FreqlJElncy (Hz) 
I 

0.12 



3 

2 

-~ 
\0 

1 

0'0 

Heave Force (k N) J 
-------)( 10-
Wave Amplitude ( m) 

~ 

... --., " " , , , 
/ \ , , 

I , 
A I \ 

I \ 
I \ , \ 

Angle Of Orientation
l 

0° 

---- : Effect Of Inclined Bracing Included I \ 

" , 
-------- : Effect Of Inclined Bracing Excluded I \ 

I \ 
I \ , \ , , , , 

I \ 
I \ 

I \ , \ 
I \ 

I \ 
I \ , \ , \ 

I \ 
I \ " \ I \ 

I \ 
I \ 

I \ 
I \ 

I \ 
I \ 

I \ 
", 1 \,." 

" I \ ",'" 
, I \ " 

" I \ / 
, I \ / 

\ I , / 
\ I \ I 
\ I , I \ I , I. 

\ I , I 
\ I , I 
\ I \ I 

/ 

0.02 0.04 0.06 0.08 0.10 0.12 

Fig. 16A. 
frequency (Hz) 



...... 
U1 
o 

3 

2 

1 

Heave force (kN) .. 
------- )( 10-· 
Wave Amplitude (m) ---".. ...... , " / , 

/ \ 
/ \ 

Angle Of Orientation,45° 

/ \ 
/ \ 

/ \ 
: Effect Of Inclined Bracing Included 

I \ 
I \ 

/ \ 
/ \ 

/ \ 
/ \ 

/ \ 
I \ 

I \ 
/ \ 

I \ 
I \ 

I \ 
I \ 

I \ 
I \ 

I \ 
I \ 
I \ 
I \ 
I \ ...... , I \ 

" I \ 
" I \ 

' I \ \ I 

\ I \ / 
\ I \ I 
\ I \ I \ I . 

\ I 

- - - - -: Effect Of Inclined Bracing Excluded 

" 

o I I I I 

o 0.02 0.04 0.06 

Fig. 168. 

0.08 0.10 0.12 
Frequency(H z} 



....... 
lTl 
....... 

3 

2 

t-leave Force (kN) -:I 
-------)( 10 
Wave Anlllitude( m ) 

: Effect Of I~clined Bracing Included 

---- - : Effect Of Inclined Bracing Excluded 

;' 

.",-- ........ , 
,,/' , 

'" , '" \ 
// \ 

/ \ 
/ \ 

/ \ 
I \ 

I \ 
II ~ 

I \ 

/ 
I 

I 
I 

I 

/ 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 
I 

, I 
, I 
, I 
\ I 

\ I 
\ I 
\ I 
\ I 

Angle Of OrientatiDr1, 90
0 

I 
I 

I 
I 

I 
I 

I 
I 
I 

~ I 
\ I 
\ I 
\ I 
\ I 
\ I 
\ I 
\ I 
\ I 
\ I 
\ I 
\ I 
\ I 
\ , 
\ I 
\ I 
\ I 
'\ I 
\ I 
\ I 
\ I 
\ I 
\ I 

I 
I 

/ 
I 

I 

\ I 
\ I 

o I '.1 » II 
\ I Frequency (Hz) 

\ 

o 0.02 0.04 0.06 0.08 0.10 0.12 

1.-'1 g. 16C. 



I 
I'J 

6 
Sway forc~ (kN) -J 

... • J i )( 10 

4 

2 
.; 

Angle Of Orientation) 90
0 

Angle Of Orientation) 45
0 

~ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ , , , , 
" 

frequency (H z) 
O+I------------~~------------~------------~------------~------------~------------~~---

° 0.02 0.04 0.06 0,08 0.10 0.12 

Fi(]. 17. 



0 0 
0 It) 
Q) ~ .. 

. §" .~ 
1ft 

·0 -)( 
- -3 " -c c 
.~ .~ ... ... 
0 0 - -E E '. - - -0 0 \ 

Z GI 
~ -,:::J - :J 

.!! .!! 
en en - -i 

.-
Q. 

E E 
0 ~ 

c: c: 
~ ~ 

I 
% GI I - > 
(5 " 0:: ~ 

I 
I 
I 

/ 
/ 

I , 
I , 
\ 
\ 
\ 
\ 
\ 

/ 
/ 

\ 
\ 

/ 
/ 

/ 
/ 

/ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 

/ 
/ 

/ 

\ 
\ 

\ 
\ 

\ 

/ 

/ 
/ 

/ 

/ 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

N 
~ 

o 

o .-o 

co 
0 
0 

U) 
q 
0 

~ o 
d 

N 
o 
d 

__ ~ __________ ~ __________ ~ ___________ -1o 
o 

- 153 -

GO .... 
. 

C' 
...; 
r.. 



~ 

lJ1 
~ 

4.5 

4.0 

3.0 

2.0 

1.0 

0'0 

Yaw Moment (kN.rn> 

Wave Amplitude ( rn> 

Angle Of Orientation, 90 0 

-------; Angle Of Orientation, 45 0 

,; 

,/ 
/ 

/ 
/ 

0.02 

/' 
/' 

./ 
/' 

/' 

0.04 

./ 

./ 
./ 

"..­
./ 

"..-, 
"..­

----- ................ -- ....... " 

0.06 0.08 

Fi<]. 19. 

" 
" 

" ", 
\. 

\. , 
" 

" 

0.10 

" 
' .... -

Frequency (H z) 
I 

0.12 



7"" ..... 
11l 
11l 

1.50 

1.25 

1.00 

0.75 

0.50 

0.25 

Pitch Moment ( kN. m) -s 
--------)( 10 
Wave Amplitude em) 

Angle Of Orientation, 0° 

Angle Of Orientation, 45° 

Angle Of Orientation, 90° 

'" 

/'~'~ 

/1 .,\ 
/ .' \ 

~. . 

/ . ------ \ 
",/ -

/
. ///' ..... ",. \ 

// \ 

// ' 
/ ' 

/ ' 
// ' 

/ ' 
// ' 

// ' 
. / " .i/// \ ,\' \ 

// \ 

. / 

y/ \ . \'\, \ 
, . 

" , '-
" " _____ frequen~y(Hz) 

0+1----------~----------~----------~----------~----------~----------~--
o 0.02 0.04 0.06 0.08 0.10 0.12 

r·'iq. 20. 



"'1/",1' 

-U1 
m 

STRUCTlmE CIR.ftJLLWB.OAf 

[)f.;AFl 21. 3l!WJ (M) AN~LE OF ORIEN1ATION it:::,. (i:tf.",(1 (DLbHEES) 

WAVE LENGTH 243.955 (M) WiWE FREl~tJENC), ~j • i-.ltltiJ (HZ) WAVE AMPL I HIDE 6. @!1t!) (M) 

============================================~========================================= 

TABLE VII. (Contd. over •• :) 



.:s~~ 
~~;...;..; 

"_l -

2. 

w-

~--

II 

l: 

z--

s,'S's 
.::~~ 

z 
0::. , 

w:: 
... 
~ 

Q..: ::";::. 

..:..~ 

_ "..;:0." -. 

II 

ii 

ZX~N 

" lJ.! 

~'S'S: 
~S'~ 

~~'"'" 

Ii 

CU 
ZX~N 
I..i.1 
Z 

__ " 3 

&'?s.. 
..:;.,;--

:.,,;;..- ."" ~ 

~-..c!'. 

Ii 

LlJ-
!..W 
ZX>-N 
UJ 
E--

:2'S'So 
~ "3' ~ 

c:" ~ 
3: :? ~ 

il 

" Ll,!-
ttl 

~X~N 
W 
E--

3: ~ ~ 
3:S'S 

~'SI'"'" 

Ii 

-. 

:S.- -.....: ;,..:....; 
:: ~ ..... ...:: 

3.: ::-" ~ 
3:-01'-.. 

ZX~N 

If 

-. 
CC" 
" '"'" 

~~J: 
So''': 

~T~ 
3: ~:: I'-.. 

II 

" 

S::t-:::r 
3:..c1'-. 

!l 

157 

- ~ "" 

-- - ~ 

3," CD :::­
_ ..c ~ ... " 

II 

:.;...; ... ~ 
3:>01'-.. 

-::r::~~ 

'""' 

Ii 

w-

!:: 

E-

.-, 
~ 

S:J~ 
3:..c1'-. 

Ii 

~ 
£X~f".,; , 
E--

--=-

.,;.." ~ ~,.-: 
,.-' 

~ ,=. s 
S:S'S: 

':s:s""-! 
,..; i 

2. 

" w-
t:"": 

~ X. ~ N 

~ 

($)~C 
~,..: 

.s;o:~ 
:2>0r-.,. 

-~-

£X~f".,; 

E--

" .. ; 

2. 
.-, -­, 

__ ' 3" 

:S:~~ 

~::;S: 

£-

Si~~ 
~~Si 

($),....,S 



~ 

.­
V1 
CD 

NFMF:n·-;· 1 .. IJ~:iI) I.) [s n;: [BU f [I)N'3 

MEf'lE::ER NO 1 

DUHRIBUTION. OF LArERAL LOADS ALONG HiE U AXIS 
._---------------------------------------------

N.DDE NO AXIAL OISrANCE FROM 
F IRSl JOlN·' I)N MEM[:E.F;: 

(METf,'EB) 

1 
') 
"-

:3 
4 
5 
6 
7 
13 
9 

10 
1.1. 
12 
1.3 

101 AL MEME::Er-< FORCE: 
HH AL MEMBER MOMEN r : 

1;(1.000 
1/. 6~WJ 

1. 1"1: 2~J1;(1 
2f:l.B00 
:m.400 
4B.000 
57. ~llilft1 
67 . ;!~lI!l 
711.01il1il 
BI.>.40(1 
96.01ilftl 

HJ~:". 1.>00 
11. ~5. 21!WI 

(AE::OU1 FIRST JOINl ON MEME::ER) 

CI)t;:m-::CTIIlW; nm TNTEf,SEC rING MEItIDEF~!:; 

JOINr NO INTERSECTING MEltlrn~R AXIAL DIsr FROItI SfARf 
------------------ Pl OF MEM8ER TO START 

PT OF LOADING lM) 

,., 
~-

4 
6 
2 
3 
5 
I!I 

-----------------------
::.! 
3 
' .. 
9 

10 
1.1 
1.2 

1 OJ AL. MEME::Ef.: em,. r ORCE : 
ro f AL MEMBER COR. MOMEN r : 
({'tE:I.IUJ F Jr.:Sl ,lIUNl (IF MEMI::[J;:.I 

I 

1.1..q~~ 

50. 100 
80.80~ 

14.000 
39.000 
65.600 
91.400 

v DU;:EcrHIN 
LUAD 

l t<N/ItI ) 

-45.501 
-26.BI4 

-7.1.76 
12.B30 
32.585 
51.440 
68.786 
03.999 
96.543 

105.961 
111.904 
114.149 
112,860 

6524.5f:l3 
S61068.012 

END F'r I.lF LOAD I t,H;i 
( 1'1 ) 

19.600 
58.300 
97.000 
17.000 
42.8U0 
68.600 
9q.40~ 

TABLE VII. 

V 1.)1 F'FC r [I.lN 
LtIM) 

I. I~N/M ) 

0.00~ 

0.000 
0.080 

-66.327 
-63.610 
-47.214 
-20.524 

-593.203 
-26196.965 

fl/"\"= 1,1.1,11,1 

I.' D.mEt: r HIN 
LOAD 

( t<N/M ) 

-149.301 
-150.056 
-161.421 
-159.742 
-153.761 
-143.1.>13 
-129.473 
-111.632 
-90,Q18 
-66.50Q 
-40.319 
-12.1.>37 
15.130 

-12458.317 
-521994.969 

(,' D [ F' 1:'.1.: I [ON 
I .. OA[I 

( I~N/I" ) 

268.196 
219.365 
66.00) 
61.~52 

58.681 
Q3.4~~ 

18.891 

5~85.2qR 

205975.187 



y 

...... 
U1 
\0 

AXIAL FORCE AT END 1. (LJ DIRECTION, 2076. '7 ... 1~:;( t<:.N ) 

AXIAL FORCE AT END 2 «.U DIRECTION) 1,22. l1l2{ I-<.N ) 

MEMBEr,: NO .. ) .... 

1J1.·;II·'[UUi I.ON OF 1:·,II:·'~":iL.. UJt-iIY3 (iUJi}l~; nl!:: I.J (i)(.!>; 

NUDE NO 

1 
,.) 
A-

3 

AXIAL DISTANCE FHI.lM 
FIRSl JOINl UN MEMBER 

(MEn~ES ) 

5.350 
13. 32~; 
21. :50i'.) 

101AL MEMBER FORCE: 
TOT AI.. MEMBER MOMEN r: 
(ABDUl FIRST JOINT ON MEMBER) 

CORRECTIONS FOR INTERSECTING MEMBEHS 

JOINT NO INTERSECTING MEME~R AXIAL DI8T FROM START 
............. - ............. _._.-... _ ........ _ .. _............. F'l Dr MEMf:::FF·: ·1 n b"l Af(J 

PT OF LOADING eM) 

TOTAL MEMBER COR. FORCE: 
1 01 AL MEMBEr·: COR. MOM!:.Nl: 
(ABOUT FIRST JOINT OF MEMBER) 

v [) Ui:EC r .UJN 
LO()\) 

«-I"<.N/M) 

-11.654 
-15.713 
-21.409 

-254.967 
-3604.243 

END prOF LOAD INI~ 
( ,,, ) 

TABLE VII. 

V DJHECTIUN 
I...O()[) 

( 1'<.tVM ) 

I~]. (.:'Wll!.l 
0.1100 

I,J DI.;·ECfrON 
LO()I) 

( I{N/M ) 

11.654 
15.713 
21.409 

::? ~.:.~ /4 t (? t) ($ 

V)WI.24··;> 

l,I I.) IT,'ce r [1.11'1 
L[I(.:,[l 

( I"<N/M) 

1-:1. Hklkl 
0. (:1(-1(:1 



.-

'" o , 

PiEMI:CEF< NU 3 

DIS TR I BUT I ON OF LA TERAL LOADS AUm!;; nil:: U AX. I S 

NODE NO 

1 
~) ,,-
3 

AXIAL DISTANCE FRUM 
FIF<Sl JOINT UN MEME::EJ~: 

(METHES) 

5.350 
13. 32::i 
21. .300 

T01 AL MEM8ET..: FOF<CE: 
TOTAL MEMBER MOMENT: 
(ABUU'J FIRST JOlNT UN MEMBER) 

com;:ECTIONS FOR INTERSECT IN!;' MEMBERS 

JOINT NO INTERSECTING MEMBER AXIAL DIST FROM START 
.-.............................. - .. -......................... p" OF MEMt:!::}·: ., U bl ()f(l 

PT OF U]('lI)INH (M) 

nn AL MEMBER COR. FOf\:CE: 
1 en AL MEMBER cm.;. MOMENT: 
(ABOUr FIRST JOINT OF MEMBER) 

I'i[.f'1!::E t, rm it 

i'II ::; I !. ; i:;U , i. !IN UI I. t, r, . ."tlL I .. ' L ',1):'.; ('I.!.i, II;; fI II." iJ fiX .1:::; 

NI.IDE NU 

1 
", .:. 

J 

t-,X1AI ... 1) [ST,~r·II.::E f'F:III"l 
FIRSl JUINl UN MEMULF< 

(MEmES) 

5. ~~5(O:l 
13. 32~:i 
21. ~~(O:W1 

lOlAL MEME::EF< FORCE: 
TO r AL MEMDER MOMEN r : 
(AE::OUl FH:Sl .HI] Nl liN MEMr::r:H) 

CI]I;:I~EI.: T (lJNS FUR INTEf\:SEC T" 1Mi; MEMBcm,; 

JUINT" NO INTERSECTING MEMBER AXIAL DIsr FROM srART 
------------------ PT OF MEME::ER 11.1 SlAR1 

PT OF LOAO[NG (M) 

rOT AL MEME:ER CUF,. FOr.:CE: 
1 fJ1 At. MEMBEF< cor,. MOMENT: 
(ABOUT FH~~:;r JOINT UF MEMBE.~) 

I,) D If~EC H UP 
LOAD 

( t<JVM ) 

41..2:=:;0 
1.19. 7::.~B 
59. 6~:;;3 

797.036 
1101.0.478 

END P T" IJF LOAD IN!;; 
( M) 

'J I) r r~EC r r liN 
1 ... (11')1) 

( I'(I'J/M ) 

7'-1 .. 3'."L~ 
</1.161 

11.1.. ~11.'i' 

1461.1.117 
203~4.695 

EM) prOF Ll.lADHU;; 
( M I 

TABLE VII. 

v OIHECTWN 
LOAD 

( I"<-N/M) 

O. '.i"lIZll,1 
tl.t:H:l0 

v ornE!:: r [UN 
U)t..r) 

(1~.rUM ) 

,;.). ~101,;1 
((I. ("-1('1(') 

bl D li~FI.: T" [l]N 

LOAD 
( t<Jh 1'1 , 

-41.258 
-1.19.720 
-59.653 

-797.036 
-11.01.0.489 

W [) U:;:ECT ION 
LOAD 

( I~.N/N ) 

H. fll:)!) 
iii. (')('1('\ 

t·J [) l.I~r:l.: r l:!.JtJ 
L(.If"',1J 

( t<I'I/M , 

-74.J~3 

-91.16] 
-11.1.819 

-1464.118 
-28J84.117 

t" I.) [F'E':: r [I)~I 
I. 1.1(11.1 

( l~t!lN I 

n. HilI:) 
1'1.IiII'IH 

~ 
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MEMP-ER NO 16 

DISTRIBUTION OF LATERAL LOADS ALONG THE U AXIS 
----------------------------------------------

NODE NO AXIAL DISTANCE FROM 
FI~S1 JOIN1 ON MEMBER 

(METRES) 

1 
~) ,,-
,3 

nn AL MEMBEf;: FORCE: 
TOTAL MEMBER MOMENT: 

5.350 
10.1.100 
31..1.151. 

<ABOUT FIRST JOIN1 ON MEMBER) 

CORRECT IONS FOR HHEm:iECT 1M.; MEMBEHS 

JOINT NO INTERSECTING MEMBEH AXIAL DIST FROM START 
------------------ PT (W MEMBER TO START 

PT (W LOADING (M) 

TOT AL MEMBER cm~. Hn~CE : 
T01 AL MEMBEJ{ cor..:. MOI>1ENT: 
(ABOUT f' IF,ST JOINT OF MEMBEH) 

hl.lftlM(.ilcr or nn AI... rm,CEb ~~N[) MUMEN" E; ON '1 HE ~:nl·:UC'1 Uf.;!::. 

" (.',Uhl:. ,n '" AHI.Il.I! til·; I \ .. .I.i' \.IF TIIF (;"1"1.:\.1[" r ur·:F r·:E.F. ~:) I ~ .'1 L "1 .J 

Tn rAL SUR'.;E FOF~CE: 26'i'.Ii.lBli (. t<N ) 

n:n r~L ,··IE.AVE. F m~cE.== -··lbl:30. ~;IB ( I-(N ) 

TOTAL SWAY FORCE = ····.:5::!5. ,?::.!~"! (. t<.N ) 
1 en AL ROLL MOME.N·':::: -··91~;f1. 1.30 ( I-(N. M ) 

TOTAL YAW MOMENT= 161.97(1. L~5 ( t<.N. M ) 
l01AL PITCH MOMENT= 76615. ~.:.i0B ( t<N. M ) 

V DH~FCTION 
I...OA() 

( K.N/M ) 

9.528 
11.Q89 
13.798 

301. 3~:;f:J 
5787. 9711 

END PT (W LOADING 
( M ) 

( .\ 1. /"I:::: ~J. ~WJ ) 

TABLE VII. 

v [)IRECT"ION 
L.OAD 

( I{N/M ) 

0.~W)0 
(.;1.11[10 

101 [) [PEe r HHJ 
LCIAD 

( t<.N/M ) 

5. :5'-1'.;.' 
~'.:,. 3 /43 
'-t.637 

1.:37.27B 
2474.21HI 

l" [) Jm~CT [ON 
I...U(I[) 

( I-<.N//'tl ) 

1-:1. qHH 
I~I . (;WI(·:l 

I I 



..... 
'" '" 

".., :·,1 ,!. LJ){,L> I) [S 1"1-,' fF:U r IONS 

MEMBER NO 1 

DISTRIBUT WN OF LATERAL LOADS ALONt;) THE U AX.U, 
----------------------------------------------

NOOE NO AXIAL DISTANCE n;'UM 
FIRSl JOINT ON M~M8ER 

(METRES) 

1 
~) ,,-
3 
4 
~5 
6 
7 
f:J 
9 

HI 
11 
12 
13 

TOT AL MEMBEr;: FORCE: 
TOTAL MEMBER MOMENT: 

0.1-:1~J0 

c: .... 600 
19.2(,<)0 
20.001'1 
3B. lf00 
lJEl.01!.'0 
57.600 
67. 2~)0 
76.H1!J0 
(OJ£.. lI00 
'16.0f!J0 

1111:=:,.1..-00 
115. 201!i 

(ABOIJ'J F IF·:ST JOINT ON MEME,:ER) 

CORf"EC r IONS FOR INn::RHI:::CT IN!; MEMBEF~S 

JOINT NO INTERSECTING MEMBER AXIAL OIST FROM START 
.--.--.-.-.---.-.--.--.. --.----.-.- VI Of' MEM[-:EF, '11.1 l:n AR'! 

. ., 
"-

II 
6 
2 
.3 
'5 
6 

:~ 

3 
q 
9 

Hl 
11. 
1:'-~ 

101 AL ME.MBER em·:. FORCE.: 
TlHAL MEME:EF~ cor-\:. MOMENT: 

PT OF LOA!) I NI; (M) 

11.400 
51'1.100 
00.000 
Ill. 000 
39.800 
65.£.00 
91.400 

< A(·:(:II.I'I F] RST .TCJlNl (:IF ME't1E,:U::) 

AX(AL FORCE AT EN!) 1 (U oJ:m::crIlJN) 3"1l\l'. :':;~U~ K.N ) 

Ale. [AI. FORCE A TEND 2 (ll 0 [REC TION ) 47'1.1'.1,34< K.N ) 

V D U;:ECT JI.lN 
LUAD 

t. I~.N/M ) 

105.B40 
111.039 
11l1.1l13 
112.905 
10B.512 
101.1'165 
90.733 
77.750 
62.457 
45.222 
2t.,.~H6 

6.1:.167 
····1.3.1'11'.1 

070l1.139 
359924.031 

END pr OF LOADING 
(M) 

19.600 
50.300 
97.00~ 

17.000 
42.B01!J 
6B.600 
94.400 

TABLE VII. 

) 

v omECTHIN 
LOA[) 

( t<N/M ) 

0.000 
0.000 
0.000 

-65.068 
-62.378 
-lI6.169 
-19.952 

-S8~.701 

-·25688.8~1 

r 1.~ r·", 1].2:':; 

l" [) [I~'E I: r [() tJ 
U)AI) 

( t<.N/M ) 

-M.~5 

-lIl'1.739 
-13.074 
15.2E~ 

43.464 
70.518 
95.51~ 

117.532 
135.756 
]lI9.476 
158.150 
161.Q30 
159.681 

9~lIQ.571 

795607.5~8 

l" D .IT·ET r [ON 
LUAU 

( I,(N/M ) 

2~7.698 

203.262 
51.976 
59.893 
5;.~17 

Q2.lI97 
IB.366 

47Q0.529 
186256.875 
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MEMBEH fJU :2 

',I·;II.I./:"(I.UI'I Ill' Ll=dli;:F,L U)rll)~; AU.l.'j·; 111:- IJ AX!:::; 

NOUE NI] 

1 
~. 

"-

3 

AXIAL DIS rAt·ICE Ff;'UM 
F H:Sl JOINT DN MEME:ER 

<. METRES) 

5.350 
13.3::::::; 
~~1 . 30!--1 

1 m Al. MEMBEr..: F[If...:q:.: 
TOTAL MEMBEf': MOMEt·H: 
(ABDUl FIRSl JUINl ON MEMBER) 

com,'EC nONS FOR INTERSECTINt;; MEMBEI;:S 

JOHH NO INTERSECTING MEMBER AXIAL DIsr FROM SfARr 
------------------ PT DF MEMBER TO SlARl 

F'r OF LWiDlN';; (M) 

roT AL MEMBER COR. F()r~CE: 

'1 m AL M[MBE];; cor.;. MUMENT : 
<. AE:OUT .FIRST JOINT OF MEME:D~) 

ME ME::H: NO 3 

OVHfUBUHON OF LATER(~L LOADS AI...ONI;; THE U AXIS 

NODE NO 

1 
, . ., ,-
,3 

AXIAL DISfANCE FROM 
r IF.;S1 ,J 01. NI UN MEME::Er';; 

(MEH~EB ) 

~i. 35~ 

13. 32~:i 
21.3~1il 

1 01 AL MEME:Er...: FORCE: 
TOTAL MEMBER MOMENT: 
(AE':OlH F IF.;fH JOIN" tiN MEMf,::EI:;:' 

CORRECTIONS FOR [NfERSECTING MEME~RS 

JotNT NO INTERSECTING MEMBER AXIAL DIsr FROM SfARr 
-_ .. _-_ ..... _-_ ...... _ ... _ ........................ _ .. v, ur MEME·:Fr·: 11.1 !:il AI'(I 
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(AE~nJf FIRST JOINf OF MEMBER) 

I.) [) H~EC r [UN 
UJA[I 

( t<.N/M ) 

76.638 
94.892 

115.531 

1511.338 
2096.3.291 

END prOF U:lAD I NI;; 
( M ) 

I) D I.F·O.: r [UN 
LfJAr) 

<. t\N/M ) 

64.Q83 
79.562 
98.Q19 

1278.942 
17761.721 

ENI) F' r UF LUAU WI.;; 
( ''II 

TABLE VII. 

V D u;n::T TlJN 
1...0,::-.1) 

( !~N/M ) 

1'1. ~'m~l 
0.000 

\) D U\'H: f ION 
L.IJA[I 

I. I<.tJIM ) 

~I. l.i)rJl;1 
11. 11[10 

W DIREcrtoN 
LOAD 

(kN/M) 

-16.6.58 
-9Q.092 

-115.531 

-1511.3~B 

-20963.316 

1,.1 I) If,'EI: r .tUN 
LOA[.1 

(. I<.N/"l ) 

0, ~)i,WI 
1'1. {JI,I[I 

l.J IHHEC r[llN 
L(.I(.~LI 

( I~N/M ) 

-6Q.Q8J 
-79.562 
'-98.419 

-1278.UQ4 
-17761.7Q4 

I" D WEI.: Hilt' 
L (I()[) 

( I~N/M ) 

1;1.1;1"'1-1 
(/I. I'.lrll~ 



SlJ"' .... t,I·:t or: 1 C:fI AL f OI':(:E!:; r~NLJ MUMENT B ON "HE. STF·:lJCl UHf: 

~ f"'('I''I[tll!. ABOLl1 ur':U;:l!l (W HIt ~;H';IH'HII':L r·:EF. Sn,lI:/"',' ( T1 n == (1. 2~j ., 

TOTAL SURGE FORCE= -';'HJ5. ';'b2 ( t<,N ) 
101AL HEAVE FOF<CE= 974 l" 171 ( I-(N ) 
TOTAL Sl,JAY FORCE = 25501. 55(;' ( t<,N ) 
10lAL ROLL MOMEN',::: -~,2300q. 37~, ( t<.N. i" ) 

TOTAL YAW MOMENT= -148119.453 (KN. M ) 
"01 AL PIlCH MOME.NT:: -"qlllH 92. 219 ( I<N. M) 

SUrw.MAR'r OF MAXIMUM nJRCES AND MOMENrs ON rHE: smUCTur,'E 

MAX. SU~;:GE FonCE= (71W;'. ';'37 ( t<.N ) 
MAX. HEAVE. rOF<CE== lU04~i. 2r"l ( I(N ) 
MAX. Sl,JAY For.:CE == 255(;-).3. ~)41 (. t<.N ) 

Y MAX. FmLL MOMENT:: !,:i230l:1l4. l40'-' ( KN. M ) 
MAX .. YA!,J MOMENT= 2l (;'ll·-11. 71. ,;' (t<.N. M) 

...... MAX . PITUi MOME.N1= q~'07~''j1. 21.9 <KN.t'" 
0'\ 
,J:I. 

TABLE VII. 



Chapter 4: MOTION RESPONSE OF FLOATING 

OFFSHORE PLATFORMS UNDER WAVE 

EXCITATION 
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INI'R)Du:::TION 

In this chapter, the hydrodynamic loading due to the motion of 

floating structures which are composed of circular cylinders, the 

structural loading due to the acceleration and the velocity of the 

structure, and the restoring forces and moments will be discussed. 

The motion equations will be obtained by combining the wave and hydro-

dynamic loading with the restoring forces using Newton's second law. 

The effect of the free surface and that of the interference between 

closely spaced circular members on hydrodynamic coefficients are also 

discussed. 

'1. HYDRODYNAMIC LOADrnG DUE TO RIGID BODY MJrICN OF FLOATrnG 

STRUCTURES 

The wave excitation on floating stable platforms will result in 

small amplitude rigid body motions which can be resolved into heave, 

surge, sway, roll, pitch and yaw. In this section the calculation 

procedure will be presented to determine the hydrodynamic loading and 

the resulting motions of such structures. 

When we consider a rigid body oscillating arbitrarily in an 

unbounded fluid the forces and the moments acting on this body can be 

written as follows. (Fig. 1.) 

F = - P d~ II ~ ; dS 
SM 

where ~(X,y,Z,t) 
6 

= R [ 2 
e . 1 J= 

-iwt 
X. <P.(X,y,Z)e ] 

J J 

( 1) 

(2) 



'\ 
\ - \ r X¥=ROLL 

? X 
4 ., 

XG= PITCH / 
/ X,=5U1<6 E 

/ 

J S (X 'J Z) '== 0 M ) I, 

Fig. 1. 

Here ~. (X,Y,Z) represents the velocity potential of a rigid body 
J 

motion with unit amplitude and ~(X,Y,Z,t) should satisfy the 

appropriate boundary conditions on the surface of a body. That is, 

(3) 

where ~ = X.~. 
J J 

-+ -+ -+ -+ 
U = U1i + U

2
j + U

3
k 

n -+ -+ -+ 
= U4i + U sj + Usk 

-iwt 
j=1,2, Since U. = Re[-iwX.e ] 

J J 
6, ~ can satisfy the boundary 

condition given in equation (3) provided that ~. satisfies the follow­
J 

ing conditions: 

a~ . 
~= an - iwn. 

J 
j=1,2,3 (4 ) 
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j=4,5,6 (5) 

Equations (1) and (2) can also be written in the following form: 

-+ d 
6 

L II -iwt -+ 
F = - p Re[- ( (X.4> . e ) ndS)] dt 

j=l SM 
] ] 

(6) 

or 

3 
-+ 

Re[ L II -iwt -+ 
F = p (iwX.4>. e ) ndS] 

j=l SM 
] ] 

(6-A) 

Similarly, 

6 
-iwt -+-+ -+ 

L II M = P Re[ (iWX.4> . e ) (rAn). 3 dS] 
j=4 SM 

] ] ]-
(7) 

, 
If we replace r with r by assuming that the centre of rotation 

coincides with the centre of the space fixed reference system, 

equation (7) becomes: 

6 
M = P Re[ I II 

j=4 SM 

-iwt -+, -+ 
(iwX.4>. e )(r An). 3 dS] 

] ] ]-
(7-A) 

Equations (6-A) and (7-A) can be combined, using the boundary 

conditions given in (4) and (5), in the following equation: 

6 
F. = - p Re[ L 
~ 

j=l 

a4>. 
II ~ 4>.x. 
S on ]] 

M 

-iwt 
e dS] i=1,2, . •• 6 ( 8) 

By analogy to Newton's second law, equation (8) can be expressed 

in the following form: 

6 
F. = Re[ L 
~ 

where C .. = 
~] 

j=l 

~iwt) ] (C .. X. 
~] ] 
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Initially it is assumed that the body is arbitrarily oscillating 

in an unbounded fluid, in which case C, , becomes: 
1.J 

C, . m .. w2 

1.J = 1.J 

and equation (9) becomes: 

or 

6 
F. = - Re[ L (m .. w2 X, ~iwt)] 

1. j=l 1.J J 

F. = 1. 

6 

L 
j=l 

• 
m .. U. 

1.J J 
i=1,2, ... 6 

i=1,2, ... 6 

The hydrodynamic forces due to the motions of a circular 

cylinder are shown with the following matrix. (Fig. 2.) 

y 

z 

Unboun ded 

Fig. 2. 
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F O.424p7TR 3k 0 0 0 0 0 r u 1 1 1 1 

F2 0 

F3 0 

= 

F 0 
~ 

FS 0 

o 

... 

P7TR2i 

0 

0 

0 

+i/2 
P7TR2JXdX 

-i/2 

0 

P7TR2i 

0 

+i/2 
P7TR2JXdX 

-i/2 

o 

0 0 

+i/2 
0 p7TR2JXdX 

-i/~ 

0 0 

+i/2 
0 P7TR2JX 2 dX 

-i/2 

o o 

+i/2 
p7TR2JXdX 

-i/2 

0 

0 

0 

+i/2 
P7TR2JX2dX 

-i/2 

(12) 

where kll is the added mass coefficient for a rectangular strip, 

• 
U 

2 

• 
U3 

• 
U~ 

• 
Us 

• 

F I : Surge Force, F2 : Heave Force, F3: Sway Force, F
4

: Roll Moment, 

FS: Yaw Moment, F6: Pitch Moment. 

m, , matrix is assembled according to the geometry of the circular 
~J 

cylinder, and m, ,=m" because of the symmetry of the circular 
~J J~ 

cylinder geometry with respect to X,Y,Z axes. 

When we consider a body oscillating in or near the free surface 

C, , becomes complex as a result of the free surface. That is, 
~J 

C, , = w2 a" - iwb, , (13) 
~J ~J ~J 

and equation (9) becomes, 

6 -iwt 
F, = Re[ I (W 2 a, , - iwb, ,) x, e ] 
~ 

j=l ~J ~J J 
(14) 

or 

6 

I 
• 

F. = (a .. U. + b .. u. ) 
~ j=l ~J J ~J J 

( 14-A) 

- 170 -

-", 



The added mass tensor m" in the unbounded fluid differs from the 
~J 

added mass tensor a, , in the fluid domain with a free surface. Since 
~J 

elements of the b" tensor give forces proportinal to the body velocity 
~J 

they are called damping coefficients. a d b t b , ,an " ensors can e 
~J ~J 

obtained by determining the ~,(X,y,Z) velocity potential. It can 
J 

easily be shown that the a
ij 

and b
ij 

values are frequency dependent. 

As stated in Section 1 of Chapter 2 ~, should satisfy Laplace's 
J 

equation (2.9), the free surface equation (2.11), the radiation condit-

ion (2.12) and the kinematic boundary conditions (4) and (5). 

If we write the linear free surface boundary conditions as w+O 

and w+oo the following conditions are obtained: 

d~ , 
~= 0 on y=O for w+O (15) dy 

~, = 0 on y=O for w+oo 
J 

Equations (15) and (16) show that ~, will be frequency dependent 
. J 

hence the C, , values will also be dependent on the frequency. 
~J 

Theoretical and experimental investigations were carried out by 

several authors [1-5] for the determination of hydrodynamic coeffic-

ients of swaying, heaving and rolling cylinders in a free surface. 

These investigations show that as oscillation frequencies approach 

zero a, , values in surge, sway and yaw modes approach the 'correspond­
~J 

ing m, , values in an unbounded fluid. On the other hand as oscillat­
~J 

ion frequencies approach infinity a, , values in heave, roll and pitch 
~J 

modes approach corresponding m, . values in an unbounded fluid. The 
~J 

elements of the damping tensor approach zero as oscillation frequencies 

approach either zero or infinity. Similarly, as the depth of an 

oscillating body below the free surface increases, a .. values for all 
~J 

modes approach the corresponding m .. values in an unbounded fluid. 
1.J 
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Since the principal parts of all members of offshore structures are 

deeply submerged in their operational mode, the unbounded added-mass tensor 

will be used to calculate the hydrodynamic forces on floating offshore 

structures. However, in Section 3 a simple approach will be given to 

take into account the free surface effect in added-mass calculations 

for circular cylinders oscillating close to the free surface. 

2. DERIVATION OF A GENERAL .MEmfOD TO CAlCULATE HYDRODYNAMIC LOADING 

ON THE CIRCtJLAR CYLINDRICAL MEMBERS OF OFFSHORE STRUCI'URES 

In order to determine the hydrodynamic loading due to the rigid 

body motion of the floating platform, the hydrodynamic loading on each 

individual member will be estimated in terms of the velocities and 

accelerations of the structure in its translational and rotational 

modes. The total hydrodynamic loading will be obtained by summing 

these forces along the principal axes of the structure reference 

system (X,Y,Z). The velocities and the accelerations of the structure 

can be determined from the solutions of the motion equations which 

will be discussed in Section ? 

If we choose the origin of the structure reference system to be 

at the centre of rotation which is generally assumed to be the centre 

of gravity of the floating platform, the translational velocity and 

acceleration of any point on an individual member can be defined in 

terms of the structure's velocities and accelerations in translational 

and in rotational modes as follows (see Fig. 3). 

The velocity and the acceleration of a point on an individual 

member in this member's reference system will be: 

-+ 
A R 

-+ -+ -+-+ 
= u + U A (r + AC) 

S'T S'R 
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• • 
-+ -+ 
uM 

= U 
'T,S S'T 

or 

• • 
-+ -+ 
U = U 

M'T,S S'T 

-+ 
where Us = U 

1 
'T (S) 

-+ 
U = U 
S'R 1+ (S) 

• • 
-+ 
U = U 
S'T 1 

(S) 

• • 
-+ 
Us = U 

1+ 
'R (S) 

y 

Fig. 3 • 

• 
-+ -+ -+ -+ 

+ U A (US A R) + u 
S'R 'R S'R 

-+ -+ -+ -+ 
+ U A [us A (r + AC)] 

S'R 'R 

-+ -+ -+ 
i + U

2 
j + U

3 
k 

(S) (S) 

-+ -+ -+ 
i + U j + U k 

5 (S) 6 (S) 

• • 
-+ -+ -+ 
i + U j + U k 

2 3 
(S) (S) 

• • 
-+ -+ -+ 
i + U j + U k 

5 6 
(S) (S) 

- 173 -

-+ 
A R 

• 
-+ 

+ U A 

S'R 

-+ 
(r 

Vel oci tj 

Acce le ro.ti Oh 

( 18) 

-+ 
+ AC) 

( 18-A) 



a .. : Transformation matrix for the (X,Y,Z) and (u,v,w) systems. 
~J 

The second term in equations (18) and (18-A) can be omitted since the 

rigid body motion of the floating structure will be of a small ampli-

tude. 

The equations (17), (18) and (18-A) written in the member 

reference system are along lines parallel to the structure's reference 

system. These velocity and acceleration vectors can also be written 

with reference to lines parallel to the member reference system's axes 

using the following transformation matrix: 

-+ [T]T -+ 
UM = U 

'T,M M'T,S 
(19) 

• • 
-+ [T]T -+ 
U U 

M'T,M M'T,S 
(20) 

where 

all a 2l a 3l 

[T]T = a 12 a 22 a 32 

• • 
-+ -+ -+ -+ The U , U , U , U , vectors can also be written 

M'T,S M'T,S M'T,M M'T,M 

explicitly with reference to the chosen axes system of a member, the 

rigid body velocities of the structure and the member co-ordinate u 

as follows: 

-+ 
= [U l + Us (Zl + ua 13 ) - U

6 
(Y

I 
+ ua

I2
)] i 

-+ 
+ [u 2 + U 6 ( X I + ua 1 I) - U 4 (Z I + ua I 3)] j 

-+ 
+ [U

3 
+ U

4 
(Y

I 
+ ua l2 ) - Us (Xl + ua I1 )] k 
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• 
-+ • • • U = [U 1 + Us (Z 1 + u(

13
) U6 (Y 1 ua l ) ] 

-+ 

M'T,S 
+ i 

• • • -+ + [U 2 + U6 (X 1 + ua ll ) - U4 ' (Z1 + ua l 3) ] j (22) 

• • • + [U 3 + U (Y 1 + ua ) (Xl + ua 11) ] 
-+ - Us k 4 12 

-+ -+ -+ -+ U = A (u) e l + B (u) e
2 + C (u) e

3 (23) 
M'T,M 

where 

A(u) = A1(u)a ll + B1(u)a
21 + C1(u)a

31 

B(u) = A1(u)a
12 

+ B1 (u)a + C1 (u) a 
22 32 

C(u) = A1(u)a
13 

+ Bl (u)a + C1 (u) a 
23 33 

and, 

Al(u) = Ul + Us (Zl + ua l 3) U6 (Y 1 + ua ) 
12 

B1 (u) = U
2 + U6 (Xl + ua ll ) U4 (Z + ua l 3) 1 

C1 (u) = U
3 + U4 (Y 1 + u(

12
) Us (X 1 + u(

11
) 

Similarly, 

• 
-+ • -+ • -+ • -+ 
U = A(u) e 1 + B (u) e

2 
+ C (u) e

3 (24) 
M'T,M 

where 

• • • • A(u) = Al(u)a ll + Bl (u) a
21 + C 1 (u) a 31 

• • • • B (u) = Al(u)a
12 + Bl(u)a

22 + Cl (u)a
32 

• • • • C(u) = A1 (u) a + B1 (u) a + C1 (u) a 
1 3 23 33 

and, 

• • • • 
A1(u) = U1 + U5 (Zl + ua 1 3) U6 (Y 1 + u( 12 ) 

• • • • Bl(u) = U
2 

+ U6 (Xl + ua l1 ) U
4 (Z 1 + ua l 3) 

• • • • 
C1(u) = U

3 
+ U4 (Y 1 + u(

12
) - U (X 1 + u(

11
) 5 

The total hydrodynamic loads and moments on an individual member 

can be written in this member's reference system as follows: 
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+ 
{[a

11
A(u) 

• + F. = + b 11A(U) ]u=o + [a
11

A(u) + b A (u)] .e) e 
~'M 11 u= 1 

.e. 
f • + 

+ (a
22

B(u) + b 22B (u)) du e (25 ) 
u=O 2 

l 
f • + 

+ (a C(u) + b C(u)) du e 
u=O 33 33 3 

+ l 
f + • + 

M. = [e 1 A [(a 22B(u) + b 22B(U)) e 2 ~'M u=O 
(26) 

• + 
+ (a

33
c(u) + b

33
C (u)) e 3] udu 

The first component of the force vector given in equation (25) is 

to be determined according to the cylindrical members' exposed ends to 

the wave loading, i.e. if the member is inter-costal this component 

will vanish. 

The moment due to hydrodynamic loading about the origin of the 

structure's reference system can be written as follows: 

+ + + + 
M. = M. + rAF. (27) 
~'s ~'M ~'M 

The total hydrodynamic forces and moments are calculated to obtain 

the principal components as follows: 

+ + + + 
F = - (ai + bj + ck) 

-r -r (28) 

(surge force) (heave force) (sway force) 

+ + + + 
M = (di ej fk) 

-r -r -r (28-A) 

(roll moment) (yaw moment) (pitch moment) 

where 

m 
a = I [all F + a F + a F ] 

1 , i (m) 12 
2, i (m) 1 3 

3, i (m) i=l 
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m 
b = L [a21 F + a F + a F ] I 22 2, i (m) 23 3 , i (m) i=l ' i (m) 

m 

L [a 31 
. 

c = F + a F + a F ] 
i=l l'i (m) 32 2, i (m) 33 3, i (m) 

• • 
+ bl~A(U) ]u=o + FI = [aIIA(U) [aIIA(U) + b I I A (u) ] U =l 

, i (m) 

l • 
f F2 = (a 22B(u) + b 22B (u) ) du 

, i (m) u=O 

l 
f 

• 
F3 = (a 33 C(u) + b 3 3C (u) ) du 

, i (m) u=O 

Using equations (26) and (27) the principal components of the 

hydrodynamic moment vector can be written as follows: 

where 

m , 
d = ~ [a 13 M2 - a l2 M3 · + YICi - Zlbi ] 

i=l 'i(m) 'i(m) 

m , 
e = ~ [a23 M2 - a 22 M + zlai - X1ci ] 

i=l 'i(m) 3'i(m) 

m 

f = L 
i=l 

M 
2'i(m) 

M 
3, i (m) 

l 
= f 

u=O 

= 

, 
- a 32 

M + X b. - Y a.] 
3, i (m) 

+ b C(u)) udu 
33 
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The general method derived above can also be summarised with 

matrix notations which may be found suitable for the numerical applic-

ations. The hydrodynamic force can be written as, 

[F] = - {[T] ([AM] [AT] [AIF] [0] + [DM] [AT] [AIF] [u] ) } (29) 

where 

[F] = 

a l2 a l 3 all 0 0 

a 22 a 23 [AM] = 0 a 22 0 

a 32 a 3 3 0 0 a 3 3, 
i --

all in [AM] matrix will be determined according to both ends of the 

cylindrical member, i.e. if the member is inter-costal all takes the 

negative sign 

[AT] = 

Where Q
l 

and Q
2 

are the operators according to which 

will be calculated. 

A1F matrix 

A. When Q is in use AIF matrix takes the following forms: 
1 

(a) Both ends of the member are submerged 

2 0 0 0 (2Z
l 

+ £(
13

) - (2Y + £a 2) l 
1 1 

[A1F]Q = 0 2 0 -(2Z +£(
3

) 0 (2X
l 

+£a
ll

) 
1 1 

1 
0 0 2 (2Y l + £(

12
) -(2X + £a 1) 

1 1 
0 



(b) The end of the member is submerged where U = 0 

1 0 0 0 21 -y 
1 

[A1F] Q = 0 1 0 -2 0 Xl 1 1 

0 0 1 (Y1 + £(
12

) - (Xl + £(
11

) 0 

(c) One end of the member is submerged where U = l 

1 0 0 0 (2
1

,+ £(
13

) - (Y + £a )1 
1 12 

[A1F]Q = 0 1 0 - (2 + £a ) -0 Xl + £a ) 1 13 11 1 
0 0 1 (Y 1 + £(

12
) -(Xl + £(

11
) 

B. vlhen Q
2 

is in use [A1F] matrix takes the following form: 

2 2 
£ 0 0 0 (2 £ + ~£ a ) - (Y £ + ~£ a ) 

1 13 1 12 
2 0 2 

[A1F] Q -- 0 £ 0 - (2
1 

£ +!z£ (
13

) (Xl £ + ~£ all) 
2 

2 2 
0 0 £ (Y £ + ~£ a 2) - (Xl £ + ~£ all) 0 

1 1 

o o 

[DM] = o o 

o o 
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• ~ 

u
1 u

1 

U
2 U 2 

U U
3 • 3 

[U] = [U] = 
U 

UI+ 1+ 

U 
Us 5 

U
6 U

6 

Similarly, the hydrodynamic moment can be written as, 

[M] = - ( [TM] [Mi] + [G] [F]) (30) 

where 

[M] = 

0 0.
13 

-0.
12 

[TM] = 0 0.
23 

-a. 
22 

lO a. 33 -a. 
32 

• 
[Mi ] = [AM] [BT] [AiM] [U] + [DM] [BT] [AiM] [U] 

and 

£ 2 1 ~ ~2 1 1 ~Q,2 0 (Z -+-e,-' a ) - (Y - + -£ 3 a ) 
0 0 1 2 3 13 1 2 3 12 

i2 1 £2 1 
0 (X -+-~'a ) \ [AIM] = 0 ~Q,2 0 - (Z -+ -i3o. ) 1 2 3 11 1 2 3 13 

Q, 2 1 Q, 2 1 ! 
~Q, 2 (YI2+3£3o.I2) -(X _+-£30. ) 0 J 0 0 1 2 3 11 
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o 

[G] = 

-y 
1 

-z 1 

o -x 1 

o 

In the following an example is given to determine the hydrodynamic 

forces on a horizontal circular cylinder member of a floating structure 

oscillating under the free surface using the calculation procedure 

developed above. (See Fig. 4.) 

y 
Free Surface 

. "i" 

6 == Grovi f,y Centre 0/ the F!oot;ny Structure. 

X 
Z 

y 

A (- ~/2. ;'(,) 0) B ( ~/2) y,) 0) 
l.l -

W 
I 

'(/2 I .f./2 
< >t-- ... 

Fig. 4. 

The Hydrodynamic forces can easily be calculated by determining 

the matrices given in equation (29). 

1 o o 

[T] = 0 1 o (31 ) 

o o 1 
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O.424P7fR 3k 
1 1 

o o 

[AM] = o o (32) 

o o 

1 Q1 
0. 0.. 

[AT] = 0. 1 Q
2 

0. 

(33 ) 
0. 0. 1 Q

2 

2 0. 0. 0. 0. -2Y 
1 

[AIF] Q = 0. 2 0. 0. 0. -l ( 34-A) 
1 

0. 0. 2 2Y
1 

0. 0. 

l 0. 0. 0. 0. -Y l 
1 

[AIF] 0. = 0. l 0. 0 0. 0. (34-B) 
-2 

0. 0. l Y1l 0. 0 
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If equations (31), (32), (33) and (34) are substituted in 

equation (29) and neglecting the damping terms, the following matrix 

equation is obtained: 

• 

Fl 0.84"8P7TR 3k 11 0 0 0 0 3 ~ 11 U=O 
-YI0.M8P7TR kll 

U 1 I u=l 

P7TR2l 
• 

F2 = 0 0 0 0 0 U2 

P7TR2l Y1lp7TR2 • 
F3 0 0 0 0 U3 ( 35) 

• 
U

4 

• 
Us 

• 
U6 

If we transfer the centre of rotation of the cylinder to the 

centre of rotation of the structure by setting Y
1
=0 equation (35) 

becomes identical to equation (12). 

Similarly, the hydrodynamic moments can be obtained using 

equation (30) as follows. (See Fig. 4.) 
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o o o 

[TM] = 0 o -1 (36) , 

o 1 o 

~lR2 0 0 

[AM] = 0 P'ITR 2 0 

0 0 P7rR2 

all = 0.424 P7TR3 -k 
11 ,> 

0 0 0 

[AIM] = 0 1. 12 0 
2 

0 0 1. 12 
2 

(38) , 

0 

0 

y 1.e. 2 

2 

[G] = 

o 

o 

-y 
1 

[BT] 

0 

0 

= 

1 3' - -l 
12 

o 

o l/2 

-l/2 o 

1 0 0 

0 1 0 

0 0 1 

0 

_1 13 
12 

0 

If we substitute equations (35) - (40) into equation (30) the 

hydrodynamic moment equation becomes, 

o o 

= o o o 

o o 

o 

o 

o o 

o 

o 

Y~O .848 P'ITR 3k 11 

+ _1_ .e. 3 P'ITR t 
12 

(37) 

(39) 

(40) 

• 

(41 ) 

If we transfer the centre of rotation of the cylinder to the centre 

of rotation of the structure by setting Yl=O, then matrix equation (41) 

becomes identical to equation (12). 
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The total hydrodynamic forces and moments on the structure can be 

calculated by summing the forces and moments on each individual member 

as follows: 

m 
[FT] = I 

i=l 

m 
[MT] = I 

i=l 

[F], 
~ 

(42) 

[Ml. 
~ 

(43) 

3. CORRECrIONS m THE ADDED MASS VALUE rn UNBOUNDED FLUID DUE TO 

THE FREE SURFACE AND INTERFERENCE EFFECr OF CLOSELY SPACED 

MEMBERS 

As mentioned in Section lone may obtain added mass and damping 

coefficients including free surface effects, i.e. the frequency 

dependence of the added mass and the damping coefficients, by finding 

the velocity potential ~.. In the literature basically two approaches 
~ 

have been used to determine ~. values due to the harmonic rigid-body 
~ 

motion of floating structures. The first approach was initiated by 

Ursell whose work may be considered the beginning of the modern history 

of theoretical work on forced-oscillation problems [1,2]. 

Ursell derived the velocity potential for a circular cylinder 

oscillating on the free-surface by an infinite series of non-orthogonal 

polynomials (multipoles) and then adding to this a suitable wave source 

at the origin of the cylinder. This superposition satisfies the 

physical phenomena since the oscillating cylinder produces standing 

waves in its vicinity and propagating waves at a large distance from 

the cylinder. 

Multipole and source potentials satisfy the Laplace equation and 

linear free surface conditions. The source potential also satisfies 
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the radiation condition. The only unknowns in the multipole potential 

which are source strengths can be determined from the boundary condit-

ions on the body surface. In this section Ursell's results will be 

used in the suggested procedure to correct added mass values when the 

circular cylindrical members of offshore structures are working near 

to the free surface. 

An alternative approach to Ursell's solution is the method of 

integral equations following the application of Green's theorem. 

The potential function due to the rigid body motion may be obtained 

in a manner similar to that in which the scattering wave potential has 

been obtained in equation 2.17. The Fredholm integral equation in this 

case takes the following form: 

( 44) 

where N = n. for j = 1,2,3 
J 
-+ -+ 

N = (rAn). 3 ·for j=4,5,6. 
J-

Equation (44) can only be solved numerically to find f. values and 
J 

this requires a considerable amount of computer space and time. Since 

in this study unbounded added-mass values have been used, a correction 

procedure will be suggested to take the free surface effect into 

account. In Section 2.1.7 of Chapter 2 the effect of fixed boundaries 

on the wave intertia coefficients has been calculated. The same 

calculation procedure may be applied to take into account the interfer-

ence effect between the free surface and the body as follows: 

2h 
where a. = 

R 

21T 

J 1+2a.Cos8+a.2 d8 
1 + ~o __________________ __ 

1T 

(45) 

h: The distance between the free surface ann the centre of cylinde~. 



Initially equation (45) was derived in Section 2.1.7 of Chapter 2 

to take the wall effect into account for the fluid or body motion 

parallel to the wall. However, Yamamoto, in reference [7], shows that 

the added mass coefficient given with the following expression to take 

the effect of wall proximity into account is independent of direction 

of oscillation: 

(46) 

Since equations (45) and (46) are similar, the result of independ-

ence of direction of motion with respect to the free surface in equation 

(46) may be applied to equation (45). See also Fig. 21 of chapter 2. 

To correct the frequency dependence of the added mass coefficients 

Ursell's results will be used to correct the unbounded added mass 

values in heave oscillation [1,2]. The added mass values of a heaving 

circular cylinder on the free-surface given by Ursell can be represented 

by the following approxiruation~ 

k
22

(kR) = O.6348(kR)-O.26035 for kR> 0 (47) 

Either equation (45) or (46) may be combined with equation (47) 

to correct unbounded added mass values for the free surface effect 

with the following steps. The free surface effect vanishes as the 

ratio of submergence/diameter approaches 2.5. 

(a) Calculate the increase, say a, in the unbounded added mass as a 

percentage due to the fixed free surface from either equation (45) 

or (46). If the increase is 2.0% or less it is not necessary to 

correct the added mass values for frequency dependence. 

(b) If the increase in (a) is 2.0% or more obtain an increase or 

decrease of the unbounded added mass values, say b, due to the 

frequency dependence from equation (47). 
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Combination of (a) and (b) takes the following form: 

a = m (1+a) (1+b) 
22 22 (48) 

where 

2 'IT 

f 
o 

de 1+2aCose+a2 
2 

a = --------------------- or 
'IT 

b = O.634~~O.26035 - 1 

Added mass values calculated using this approximate method are compared 

with those obtained from the complete solutions based on Green's theorem 

[11,13) in Figure 5. 

Similarly, added mass values in sway motion may be corrected for 

the free surface with the following approximation: 

a 3 3 = m 3 3 ( 1 +a) (49) 

The correction in the added mass values due to the circular 

cylindrical members' close proximity may be obtained by using the 

equations (2.77-A), 2.79), 2.84) and (2.86) given in Chapter 2. 

4. DErERMINATION OF DAMPING COEFFICIENTS 

Damping coefficients relate the floating structures rigid body 

velocities to the hydrodynamic damping (or drag) forces as was defined 

in Section 1. Two types of damping forces may be experienced on the 

floating structures which oscillate near or on the free surface. 

(a) Wave damping forces due to the dissipation of energy in the form 

of surface waves which are generated as a result of rigid body 

motion of floating structures. 

(b) The viscous damping forces which are due to the turbulent flow in 

the lee of a body. 
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4.1 Wave Damping Forces 

As was mentioned in Section 1, wave damping forces can be obtained 

with procedures similar to the determination of the hydrodynamic added 

mass forces, by calculating the velocity potential ¢. (X,Y,Z) [1,2,3]. 
J 

Newman [8] shows a relation between the wave exciting forces and 

the wave damping forces using the energy radiation of the oscillating 

structure at infinity. In the three dimensional· case the relation 

between the damping coefficient and exciting force was given in refer-

ence [8] as: 

wk 27f 
b" =-----J 
~~ 47fpg2(0.5 H )2 0 

W 

(50) 

where S: Angle of oncoming wave propagation. 

In reference 9 the relation between damping coefficients and 

the exciting wave forces for a body which is symmetrical about x=O 

plane was given as: 

b. I = 
~~ 

W F 2 

pg2 (0.5 H )2 i 
w 

The wave damping forces associated with the free surface 

approaches zero as the depth of the submergence/diameter ratio 

(51) 

approaches 2.5. Since generally the principal parts of all members of 

semi-submersible type floating platforms are deeply submerged in their 

operational modes the wave damping is of little significance. However, 

the free surface effect in added-mass and damping coefficients may be 

of importance for some of the floating offshore structures such as 

crane or pipe laying barges. 

Experimental values of added virtual mass and damping coefficients 

for the geometries of cylinder~rectangle and sphere oscillating near 
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the free surface are presented in reference [12]. They are also 

presented in Figs. 6,7. 

It may be of interest to point out the similarity between the 

added mass coefficients given in Figs 6 and 7 and the added mass 

values for circular cylinders given in Fig. 5, which were produced 

according to the suggested method in Section 3. -

4.2 Viscous Damping Forces 

The viscous damping forces occur due to a deviation of the 

pressure distribution from its ideal fluid value. Similar to the wave 

drag force calculations, viscous damping forces may be expressed as a 

quadratic function of the structure's rigid body velocity and the drag 

coefficient will be determined for the appropriate Reynolds number 

However, when viscous damping forces are calculated as a quadratic 

function of the velocity, the motion equation (68) cannot be linear 

any longer and this adds complications to the solution of the differ-

ential motion equations. 

Blagoveschchensky [10] suggest a method of calculating non-linear 

viscous damping forces using equivalent linear viscous damping 

coefficients and the linear velocity terms. The linear drag coeffic-

ient is obtained by setting the energy dissipation due to the linear 

viscous forces equal to the energy dissipation of non-linear viscous 

forces. That is, 

b .. 
~~ 

T 
4 
J U.

3 
dt 

~ 
o 

replacing U. with U. Sinwt in equation (5·2) b .. becomes 
~ ~'M ~~ 

8U. 
~'M 

b .. = --- CD 
~~ 

31T 
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or 

b,. = 
~~ 

( 53-A) 

To determine b" values 
~~ 

U, =WX, should be known and this can 
~'M ~ 

only be achieved by assuming an amplitude of motion. 

Assuming an amplitude of motion linear damping coefficients are 

calculated and then the motion equations are solved. Motion ampli-

tudes obtained from these equations can now be used to determine new 

linear damping coefficients and the motion equations again solved. 

This iteration procedure con~~n~es until two su~cessive linear damp-

ing coefficients are close enough to each other. 

5. CALCUIATICN OF RESTORING FORCES 

In this section the restoring forces and moments which are due to 

the displacement of a floating structure from its equilibrium state 

will be discussed. The restoring forces and moments can be hydrostatic 

or elastic. The total force and moments due to the mass of the body 

plus the external forces such as mooring forces, must be in equilibrium 

at rest. When the floating structure's under water displacement 

changes by movements in translational or in rotational modes, restoring 

forces and moments occur to satisfy the static equilibrium. 

For floating structures the hydrostatic restoring forces and 

moments can be related to the translational or rotational displacements 

with the following matrix equation by making use of standard naval 

architectural formulae [6]. 
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F 0 0 0 
.., 

1 0 0 0 
I 

Xl 

F2 0 pgAW 0 0 0 0 X2 

F3 0 0 0 0 0 0 X3 
= (54) 

F4 0 0 0 pg~GM 
T 

0 0 X4 

F 0 
5 

0 0 0 0 0 Xs 

F6 0 0 0 0 0 pgVG~ X6 
L. L .J HIDR 

where 

AW: Total water plane area of surface piercing members. 

V: Displacement of the floating structure. 

GMT' GML : Transverse and the longitudinal metacentric heights 

respectively and given as 

GM = KB + BM - KG 
T,L T,L 

where 

KB: Centre of immersed volume 

IT = Total moment of inertia of the water plane area of surface 

piercing members about X axis. 

IL = Total moment of inertia of the water plane area of surface 

piercing members about Z axis. 

KG = Centre of gravity of the floating structure. 

In this study the effects of catenary mooring systems in motion 

response calculations are neglected. The mooring forces have to be 

calculated as a function of the displacements of the floating 

structure and the catenary and the elastic properties of the mooring 

lines and their hydrodynamic interactions with the waves and the 

currents. No attempt has been made to solve this problem here. 
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6. CALCULATION OF BODY FORCES 

In this section inertia forces and moments defined from Newton's 

second law as the multiplication of actual mass of a cylinder element 

pMdV and the absolute body acceleration of the structure will be 

calculated • 

• 
~ ~ 

F = MUG (55) 

• 
~ 

fff 
~ ~ 

M = PM r
A 

A U, dV (56) 
V 

~ 

where M Total mass of the floating structure 
. 
~ 

UG : Acceleration vector at the gravity centre of the platform 

-

Position vector of centre of rotation from the centre of 

gravity 

PM: Mass density 
• 
~ 

U, : 
~ 

Acceleration vector at 

y 

I 

Fig. 8 

r, = Position vector of the mass element (i) from the centre of rotation. 
~ 

The total force vector can be calculated in terms of translational 

and rotational acceleration and the total mass as follows. 
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Since 

• • • 
-+ -+ -+ -+ 
U

G = U + U A rG (57) 
S'T S'R 

where 
• 
-+ • -+ • -+ • -+ 
U = U1i + Uzj + U

3
k 

S'T 
• 
-+ • -+ • -+ • -+ 
U = U,+i + U . + U k 

S'R 5 J 6 

-+ -+ -+ -+ 
rG = XGi + Y . 

GJ + ZGk 

If equation (57) is substituted in equation (55) the total force 

vector becomes: 

(58) 

-+ -+ -+ -+ -+.+-+ 
If we replace r

A 
with rG+r; and U, with Us +US ArG in equation 

• ~ 'T'R 
(56), the following equation is obtained to calculate moments due to 

the structure's rigid body acceleration: 

(59) 

, The basic definitions to find the mass and mass moments of 

inertia can be written as follows: 

M = PM Iff dV 
V 

(60) 

IXX = PM fff (y ,2+z ,2) dV 
~ ~ 

V 
(61-A) 

Iyy = PM Iff 
V 

(X ,2+Z ,1 
~ ~ 

dV (61-B) 

I
ZZ = PM Iff (X ,2+y h dV 

~ ~ 
V 

(61-C) 
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Ixy = IyX = - P III x.y. dV 
M 

V ~ ~ 
(61-D) 

IXZ = IZX = - P Iff x.z. dV 
M ~ ~ 

V 
(61-E) 

I yZ = I Zy = - P Iff y.z. dV 
M ~ ~ v 

(61-F) 

Equations (58) and (59) can be summarised with the following 

matrix equation using equations (60) - (61-F): 

= 

M 

o 

o 

o 

-MY 
G 

o 

M 

o 

-MZ 
G 

o 

o o MZG 

o o 

M 

o 

-MY 
G 

MXG 

o 
(62) 

For structures having cylindrical members, the mass moment of 

inertia values can be generalised in terms of the mass distribution 

and reference system for each member. It will be assumed that the 

mass of each volume element can be concentrated at the centre of this 

volume. Since the diameter over length ratio is generally small this 

assumption may be acceptable and can be formulated as follows: 

PM Ilf dV = 
V 

(63) 

Following the above statement the X., y. , Z·. co-ordinates can be 
~ ~ ~ 

written in the individual member's reference system as: 

X. = ua ll + Xl (64-A) 
~ 

y. = ua
21 + Y I (64-B) 

~ 

z. = ua 3 I + Zl (64-C) 
~ 
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If we substitute equations (64-A) - (64-C) into equations (61-A) -

(61-F) the following mass moment of inertia values are obtained for an 

individual member: 

iXX. 
[1 i 2 2 + 0. 3;) + i (Y 10.21 + Zl ( 31) 

2 + z 2] (65-A) = m. '3 (0.21 + Y 1 1. 1 
1. 

iyy. 
1 i2 2 + a3~) +i(x 1a 11 + Zl( 31) + X 2 + Z 2] (65-B) = m. ['3 (all 

1. 1 1 
1. 

izz. 
1 i 2 2 + a2~) +i(X 1a 11 + Yl ( 21) + X 2 + Y 2] (65-C) = m. ['3 (all 

1. 1 1 
1. 

i XY [~ i2alla21 
i 

(Y 1 all + x 1( 21 ) Xl y 1] (65-D) = m. +- + 
1. 2 

1. 

ixz. [~ i2a11a31 
i 

(Zl a 11 + x 1( 31 ) + X Z ] (65-E) = m, +-
1. 2 1 1 

1. 

1 i 2 i 
(Z l a. 21 +.Yl ( 31) + Y1Z1] (65-F) iyz. = m. [3 0. 21 0. 31 + -

1. 2 
1. 

The total moment of inertia of mass can be calculated by summing 

equations (65-A) - (65-F) as follows: 

m 

IXX = L ixx. 
i=l 1. 

(66-A) 

m 

Iyy = L iyy. 
i=l 1. 

(66-B) 

m 
I ZZ = L i zz 

i=l 1. 

(66-C) 

m 

IXY = L i xy . 
i=l 1. 

(66-D) 

m 
I = L ixz XZ i=l 1. 

(66-E) 

m 
I yZ = L iyz. 

i=l 1. 

(66-F) 
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7. DERIVATICN AND SOLUI'ION OF t-mION RESPONSE EQUATIONS 

Calculation procedures have been developed to determine the wave 

forces due to the absolute fluid particle motion (Chapter 3), and the 

hydrodynamic and body-inertia forces due to the absolute platform 

motion in this chapter. Since these forces should be in balance at any 

instant the following equilibrium equation can be written as the motion 

response equation: 

(67) 

where 

+ 
F = Wave excited force and moment vector given in equations w 

( 3. 42) and (3. 46) , 

+ 
FH = Hydrodynamic force and moment vector given in equations 

(28) and (28-A), 

+ 

FHlDR = Restoring force vector given in Section S. 

+ 
Fl = The body-inertia force and moment vector given in 

equations (55) and (56). 

Equation (67) can be rearranged as motion dependent terms on the 

left hand side and time dependent forcing terms on the right hand side 

to obtain the following form of six linear simultaneous, second-order 

differential equations: 

where 

[M] [X] + [C] [X] + [K] [X] = [F ] 
w 

[T] [AM] [AT] [AiF] 
[M] = [BM] + ----------------

[MHi] + [MH2] 

[BM]: Body-mass matrix derived in equation (62) 

[MHi] = [TM] [AM] [BT] [AiM] 

[MH2] = [G] [T] [AM] [AT] [AiF] 
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[CH1] = [TM] [DM] [BT] [A1M] 

[CH2] = [G] [T] [DM] [AT] [A1F] 

[K]: The restoring force matrix defined in equation (22) 

[X] = [u]: Column matrix of acceleration of the structure 

[x] = [u]: Column matrix of velocity of the structure 

[x] Column matrix of translational and rotational 

displacement of the structure 

[TM] ,[AM], [AT] , [A1F],[DM] : Defined in equation (29) 

[G] , [A1M], [BT] Defined in equation (30). 

The six simultaneous second-order linear differential equations 

given above which take the coupling effects between the different 

motion modes into account can be solved using standard computer 

library programs. One may also reduce the motion equations to a set 

of single degree of freedom equations for the corresponding principal 

motion modes by omitting the coupling terms. For example, the follow-

ing single degree of freedom equation can be written for the heave 

motion of a floating structure. 

where 

F 
w,HV 

M~2 Added mass of the structure in heave motion 

(69) 

C
22 

Damping coefficient of the structure in heave motion 

A 
w 

F w,HV 

= pgA 
w 

Total water plane area of surface piercing members 

Total heave force on the structure. 

Although F HV in equation (69) is not a constant harmonic type 
w, 

function due to its variation with motion, it will be regarded as 
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constant at each discrete frequency and the standard solution for a 

single degree of freedom system will be applied to solve equation (69) 

as follows: 

where X2 o 

F w,HV 

(70) 

(70-A) 

The phase angle between the applied force and the motion is given by: 

-1 
a. = tan (70-B) 

It is usually convenient to write equation (70-A) in terms of 

frequency ratio and damping ratio as follows: 

F w,HV 

and phase angle 

-1 2rd 
a. = tan 

1-r2 

where 

w forcing 
r = -= 

w natural 
n 

K22 
w = n M +M22 

frequency 
frequency 

d = -------------- = 
damping value 

critical damping value 

(71) 

(71-A) 

(71-B) 

(71-C) 

(71-D) 

The amplitude of response can also be represented in dimension-

less form by defining the magnification factor, Q as follows: 

motion amplitude 
Q = equivalent static displacement 

(72) 
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Q = 

X 
2,0 

= 
1 

(72-A) 

An analysis of equation (72-A) reveals that if the forcing 

frequency is less than the natural frequency, the motion response is 

controlled by restoring forces and the mass of the structure and 

damping would have very little effect in controlling the response. 

If the forcing frequency is near, or equal to the natural frequency, 

the motion response will be very much larger than the static displace-

ment, particularly when the damping is low. In the design of stable 

floating platforms this resonance region must be avoided, in the 

region of higher frequencies the response is reduced and controlled by 

the mass of structure and damping is not significant. 

The single degree of freedom equations of heave and roll motion 

are applied to the semi-submersible model structure shown in figure 29 

of Chapter 5 (details of the model are given in Chapter 7). The heave 

and the roll motion response predictions are compared with the experi-

mental results in figures 9 and 10 respectively. Agreement between the 

, 
predictions and the experimental results for heave is reasonably good. 

The over prediction of the heave results around the second peak may be 

explained by the changes in the heave forces ~ue to roll motion. In 

addition, the harnesses which hold the model against drift forces may 

also effect the heave motion. These effects only become significant 

when heave magnitudes are large. The roll motion predictions do not 

agree with the experimental results as well as the heave motion pre-

dictions do. Possible reasons for this are: 

a) The assumed centre of rotation may not be close to the 

actual centre of rotation while the structure is 

oscillating in heave and roll modes. 
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b) Changes in the restoring and forcing moments due to 

heave motion are not. taken into account. Some 

suggestions to improve heave and roll motion pre­

dictions will also be discussed in Section 8. 

Figure 11 shows phase angle between the heaving force and the 

heaving displacement, and figure 12 shows the angle between the rolling 

moment and the rolling motion. These values will be used for finding 

the motion induced structural loading, as will be described in ChapterS. 

The method of motion prediction summarised in the above sections 

was also applied to the full scale semi-submersible design shown in 

figure 43 of Chapter 5. 

Figure 13 shows the effect of the bracing members on the magnific-

ation factor. This shows that the effect of bracings becomes important 

around the resonance region only. 

In figures 14, 15 and 16 the heave responses were plotted for head, 

quarter and beam seas with and without bracing members being included. 

When the wave loading variations on this semi-submersible (see figures 

15-20 of Chapter 3) are studied along with figures 13, 14, 15 and 16 it 

becomes clear that the optimisatio~ of this particular geometry of the 

semi-submersible to obtain minimum vertical force around the natural 

frequencies was carried out without the bracing members by the designer 

who determined this particular geometry. When the bracing members are 

included in the calculation, motion response significantly changes due 

to the wave loading on the bracing members. 

Figures 17 and lE show the variations in roll and pitch motion of 

the structure for various wave heading angles. 
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8. DERIVATION AND SOLUTION OF NON-LINEAR COUPLED 
MOTION RESPONSE EQUATIONS 

During the derivation of the motion equations given in (68) and 

(69) it was assumed that the motion amplitudes of the floating structure 

would be small, thus wave and hydrodynamic force formulations were 

carried out which neglected the space variation of the structural 

members during a wave cycle. In other words, wave and hydrodynamic 

forces were calculated at the mean draft level of the structure. As 

shown in figures 8 and 9, this linearisation gives reasonable predictions 

of motion response for small amplitude motions. 

In the previous sections, motion equations, including the coupling 

effects between the different motion modes due to the geometry of the 

structure, were formulated (see equations 29, 30 and 62) . When a 

floating offshore structure moves with large amplitude rotational motions, 

coupling between the various modes of the rotational motions should also 

be included in the motion response equations. 

Coupled velocity and acceleration vectors fixed in the X, Y, Z 

structure reference system can be shown with the following motion 

sequences: 

1. The structure is rotated by positive amount X about the X axis. - 4 0 

Let the rotational velocity and the acceleration about the X axis 
o 

be U and U respectively (Figure 19). 
4(s) 4(s) 
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The total rotational velocity and acceleration vector can be 

written as: 

_~Jl) ..... 
Us = U i (73 ) 

4 (s) 0 , 
R 

• (I) • -+ 7 (73-A) 
Us = U i , 4 (s) 0 

·R 

The structure is now rotated by positive amount Xs about the Y1 

axis. Let the rotational velocity and the acceleration about 

. 
the Yraxis be Us and U respectively (Fig. 20). 

(s) 5 (s) 

? 
y ;i- ~2 
1'5 / 

/ 

y, 

~ 

d, 

6 

..... 
(, 

~--
~ 

tf) 

Z if 
2 Fig. 29 
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2. (Cont'd) 

The total velocity and acceleration vectors from ~quations (73) and 

(73-A) and figure 20 can be written as: 

(74) 

• (2) 

(74-A) 

3. Finally, the structure is rotated by positive amount X6 about the 

Z2 axis. Let the rotational velocity and the acceleration about 

the Z2axis be U and U respectively (Fig. 21). 
6(s) 6(s) 

G 
~ 
\ 
\ 

y, 

X, 

Fig. 2I 

The total velocity and acceleration vectors from equations (74) 

and (74-A) and from figure 20 can be written as: 
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3. (Cont'd) 

(75) 

• (3) 

US, = [U4 Cos(X5) Cos (X
6

) + U
5 

Sin(X
6

)] 12 
R 

(75-A) 

X
2

, Y
2 

' Z2 reference system forms the fixed structure reference 

system and the rotational velocity and acceleration vectors given in 

equations (17) and (18) should be replaced with equations (75) and 
, 

(75-A) to take into account the coupling effects between the rotational 

motion modes. 

Now the change in the wave force and moment vector due to the large 

amplitude of motion of the floating platform will be determined. In 

Chapter 3, wave loading was formulated for cylindrical members of fixed 

and of floating structures oriented randomly in waves. The main 

variables in the formulation are the end co-ordinates of each member, 

the draft of the structure and the wave heading angle. As the floating 

structure moves the new values of each of those variables can be sub-

stituted/ 

- 218 -



substituted into the wave loading equations given in Chapter 3. Let 

us assume a point A (a, b, c) on the structure in the fixed X', Y, Z 

structure co-ordinate system and study the variation of these co-ordinates 

a, b, c in terms of motion response values as the platform moves. The 

aim is to determine the new co-ordinates of A in the original X, Y, Z 

fixed structure reference system after the platform has undergone trans-

lational and rotational movements. 

Let us assume that the floating structure will be displaced in the 

rotational and the translational modes with the following motion sequences: 

a) The floating structure will be rotated about the X axis by a 

positive amount X
4 

(Fig. 22). The co-ordinates of point A 

in the fixed reference system (X, Y, Z) can be written in 

terms of the same point's co-ordinates in the new reference 

system (X, Y
l

, Zl) and the rotation angle X4 as: 

(76) 

Cz - b Sin(X
4

) + C Cos (X
4

) (76-A) 

11 'z 
1 

0 Y 

AI 
G "Z,\ .... / "'\ 

........ 
/ Cz. 

by \ X~ 

2 G 

Fig. 22 
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b) The floating structure ¥ri11 now be rotated by a positive 

amount ,X
S 

about the Y
l 

axis. The co-o~dinates of point A 
. 

in the (X, Yl , Zl) reference system can be written in terms 

of the same point's co-ordinates in the new reference. system 

(Xl' Yl , Z2) and the rotation angle Xs as (Fig. 2j): 

(77) 

Cz =-a Sin(X
S

) + c Cos (X
S

) 
1 Xl Z2 

(7-7-A) 

Fig. 23" 

Cz I 
~/ Cz I 

)< 

c} Finally, the floating structure'is rotated by a positive 

amount X6 about the Z2 axis. The co-ordinates of point A in the 

(Xl' Y 
l' Z2) reference system can be written in terms of the 

same point's co-ordinates in the new reference system (X 2 ' 
Y

2
, Z2) 

and the rotation angle X6 as follows (Fig. 24) : 
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c) (Cont' d) 

Fig. 2a 

a = a~ Cos (X
6

) - b Sin(X
6

) 
Xl ~2 Y2 

(78) 

(78-A) 

Since (X
2

, Y
2

, Z2) reference system is the rotated form of the structure 

reference system (X, Y, Z), and point A is fixed in the structure 

reference ·system, the following equations will be valid: 

a = a (79) 
X 

2 

b = ~2 
(79-A) 

c = c 
Z2 

(79-B) 

Equations (76), (76-A) and (77) can be written to obtain co-ordinates 

of a point A in the original reference system (X , Y, Z), after the fixed 

structure reference system has undergone X
4

, X
S

' and X6 rotational dis-

plac~ments, using (78-(79-B» as follows: 
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I' 

N 
tJ 
N 

(e) (Cont'd) 

a 
X 

Cos (XS)Cos (X
6

) -COs(XS)Sin(X
6

) 

b = y 

e z 

cos(X
4

)Sin(X
6

) + Sin(XS)cos(X
6

)Sin(X
4

) 

Sin (X
4

) Sin (X
6

) - Cos (X
4

) Sin (X
S

) Cos (X
6

) 

Cos (X
6

)Cos (X
4

) - Sin(X
4

)Sin(X
S

)Sin(X
6

) 

Sin (X
4

) Cos (X
6

) + Cos (X
4

) Sin (X
S

) Sin'(X
6

) 

+ 
[a] (X,Y,Z) 

or 

[a] (X,Y,Z) [R] [a] (X ,Yo'Zo) 
o 

+ 
[R] 

b 

Sin (X
S

) 

-Sin(X
4

)Cos(X
S

) 

Cos (X
4

) Cos (X
S

) I Ie 

a 

+ 

(80) 

[alex Y ,Z2) 
~' 2' 

(80-A) 

(d) Now, the floating structure is displaced in surge (Xl)' heave (X
2

) and sway (X
3

) modes successively. The 

co-ordinates of point A in the original reference system after the translational motion has taken place be-

come (Fig .25) 

[a] (X,Y,Z) 

where, [T] = 

[R] [a] (X
2

,Y
2

,Z2) 

Xl 

X
2 

X3 

+ [T] [R] [a] (X ,Y ,Z ) + [T] (81) 
000 



G 

Fig. 25 

When the large amplitude of motion is considered, the restoring 

force and moment matrix expression given in equation (54) becomes: 

= 

FS 

F 
6 

HIDR 

o 0 

o pgA (X) 
w 

o o 

o o 

o o 

o o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

pgV'GM
T 

(X) 

o 

o 

o o 

o o 

o o 

o o 

o o 

o pgV'GML(X) 

X 
1 

X 
3 

Sin(X ) 
4 

The motion response equation given in (68) can be rewritten, 

taking into account the large amplitude of motion, as: 

* 

(82) 

[M(X,t)] [RC (X,t] [x] + [C (X,t)] [RC (X,t)] [xl + [K(X) 1 [x] = [F (X,t)] w 

(83) 

or 

* [MC (X, t) ] [x] +[CC (X, t) ] [x] + [K (X) ] [x] = [F (X,t)] 
w 

(83-A) 
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where 

[MC (X,t)] = [M(X,t)] [RC (x,t)] 

[CC (X,t)] = [C (X,t)] [RC (X,t)] 

* [x] = 
X 

3 

Sin(X ) 
4 

[M(X)], [C(X)], [K(X)] can be determined as described in 

equation (68) using the displaced co-ordinates of each member. 

Similarly, Fw(X) can be calculated with the displaced co-ordinates 

at each time increment from equations (3.42) and (3.46). 
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In order to complete the analysis a solution method for the 

non-linear coupled motion equations given in (83-A) will be dis-

cussed. The same method applies to the solution of the equations 

given in (68). Since the right and left hand sides of these equat-

ions are completely arbitrary in respect to time and position in 

space, solution is only possible if numerical integration proced-

ures are used. There are various numerical integration procedures 

available in the literature and these are discussed in detail in 

references [14,15,16,17]. Computer library programs are also avail-

able for the direct usage of these numerical methods [18]. Amongst 

the various step-by-step integration procedures the linear acceler-

ation method has been found to be the most suitable one for the 

solution of the motion equations given in (83-A). This method will 

be summarised as follows (see also ref. 4 of Chapter 5): 

The period of a wave cycle will first be divided into an equal 

number of spaces. Starting from t = 0, at each time increment, the 
1 

variables in the motion equations will be calculated using the form-

ulations described previously and acceleration, velocity, and the 

displacement values will be determined from the equilibrium of the 

system. 

Solutions can be obtained using the initial values of the 

system. In the rigid body motion problem the initial conditions 

will be initial displacement and the velocity values of the rigid 

body. 

When t 

written as: 

= t , the equations of the motion given in (83-A) can be 
1 
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[MC(X,t 1 )] [X(t 1 )] + [CC(X,t )] [X(t )] + [K(X)] [X(t )] = [F (X t )] 
1 1 1 w' 1 

(84) 

A small ~t time later equations (84) become: 

[MC (X + ~X , t 1 + ~ t) ] [X (t 1 + ~ t)] + [CC (X + ~X, t 1 + ~ t) ] [X (t 1 + ~ t) ] 

+ [K(X +~X)] [X(t + ~t)] = [F (X+ ~x,t + ~t)] (85) 
1 w 1 

When equation (85) is subtracted from equation (84), the incre-

mental form of equations of motion becomes: 

(86) 

where 

[~fl(X,t)] = [MC(X+llX,t
1 
+~t)][X(t +~t)] - [MC(X,t )][X(t)] 

. 1 1 1 

[~f2(X,t)] = [CC(X +~X,t +~t)] [X(t + ~t)] - [CC(X,t )] [X(t )] 
1 1 1 1 

[~f3 (X,t)] = [K(X +~X)] [X(t
1 

+ ~t)] - [K(X)] [X(t
1
)] 

[~F (X,t)] =[F (X+~x,t +~t)] -[F (X,t)] w w 1 W 1 

The equations given in (86) can also be written, from the 

equilibrium of the system, as: 

[MC(X,t )] [~X(t)] + [CC(X,t )] [~~(t)] + [K(X)] [~X(t)] = [& (X,t
1

)] 
1 1 w 

(87) 

When we assume that acceleration varies linearly, velocity 

varies quadratically, and displacement varies cubically during the 

time increment, the following relations can also be written using 

Taylor's expansion series: 
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Acceleration: 

(88) 

Velocity: 

(89) 

Displacement: 

(90) 

Equations (89) and (90) can also be written in the following 

form by setting T equal to 6t: 

(91 ) 

!::.X(t) = X (t
1

) 6t + 5{(t) (6t) 2 + 6X (t) (6t) 2 
1 2 6 (92) 

Equation (92) can be rearranged to obtain M(t) as follows: 

(93 ) 

When equation (93) is substituted into equation (92) ~X(t) can 

be obtained as: 

6X (t) = A3t !::.X(t) - 3X(t ) - 6t X(t ) 
u 1 2 1 

(94) 

The following equations can be written by using equations (93) 

and (94) to redefine the incremental form of motion equations given 

in (87): 
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where 

[MC(X,t 1 )] ( 6 2 [D.X(t)] - -fi- [X(t)]"- 3[X(t )]\ 
(D.t) ut 1 1 ') 

+ [K(X)] [D.X(t)] = [& (X, t )] 
W 1 

Equation (95) can also be written as: 

[K(X)] [D.X (t)] = [llP (X,t )] 
w (. 1 

3 
[MC(X,t )] + ~ [CC(X,t )] 

lut 1 
[K (X)] = [K (X)] + 6 

(D.t) 2 

[,,"P(X,t1l]= [ill'W(X,t1l] + [MC(X,t1l](:t [X(t1l] +3[X(tll~ 

+ fcc (X, tl l ] ~ [X (t 1 l ] + ""J [x (t1 l ~ 

The step-by-step integration procedure, which is based on the 

linear acceleration method, can be summarised to solve non-linear 

coupled motion equations with the following steps: 

1. Define the initial velocity and displacement values. Let us 

say [x] = [X] = 0 when tl = O. 

2. Solve equation (84) to obtain [X(t
1
)] values as follows: 

3. Obtain load increments from equation (96) 

+ [MC(X'tll](~6t [X(t1l] + 3[X(t1lJ 

+ [CC(X,t 1l](3[X(t 1l] + ~t [X( t l l0 
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4. Determine the stiffness increments from equation (96) 

6 
[K (X)] + [MC (X, t 1) ] 

(~t) 2 

[K (X)] = 

5. Calculate [~(t)] from equation (96) 

[~X(t)] = [K(X)]-l [6p(X,t)] 
1 

6. Calculate velocity increments from equation (94) 

= 3 [6X(t)] _ 3[X(t)] _ 6t [X(t
1
)] 

6t 1 2 

7. Calculate new displacement and the velocity factors 

[X(t ) + 6t)] = [X(t )] + [6X(t)] 
1 1 

8. Using the new displacement and the time values calculate: 

[MC(X+6x,t
1
+6t)], [CC(X+6X,t

1
+6t)], [K(x+6X)] and 

[F w (X + 6x , t 1 + 6 t)] ma tr i ce s • 

9. Repeat the procedure again starting from step 2. 

The accuracy of the step-by-step integration procedure summar-

ised above will be based on the following points: 
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(a) Correct choice of the time increment 6t which will be depend-

ent on: 

" 
(i) The rate of variation Df applied load; 

(ii) Variation in the damping and the stiffness functions; 

(iii) Natural frequencies of the system. 

(b) Correct knowledge of the damping function. 
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Chapter 5: STRUCTURAL RESPONSE OF FLOATING 

OFFSHORE PLATFOID1S UNDER WAVE 

EXCITATION 
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INTRODUCTION 

In this chapter, the calculation procedure to determine the 

structural response values, i.e. axial force, shear force and bending 

moment on the members of a floating structure, will be discussed. The 

floating platform subject to dynamic loading, i.e. wave, hydrodynamic 

and platform mass-inertia loads, was divided into beam elements and 

analysed as a space frame to yield internal joint reactions in the 

frequency domain. 

Firstly, determinate floating structures will be discussed to 

establish the calculation procedure for structural response under quasi-

static and dynamic loading. (Here, the term quasi-static implies that 

loading on the floating structure will be assumed to be static at any 

instant over a wave cycle, i.e. local vibrations of the structural 

members will not be taken into account for the structural response cal­

culations.) 

Secondly, indeterminate floating structures will be analysed using 

the classical rigid frame analysis procedure based on the stiffness 

method. The plane frame analysis procedure and the associated computer 

programs will also be summarised in this chapter. 

The theoretical structural response calculations were verified by 

testing a semi-submersible model in regular waves. (See also Chapter 7.) 

1. CALCULATION OF STRUcruRAL RESPONSE FOR DEI'ERMINATE FLOATING 

STRUCTURES UNDER WAVE LOADING 

In Naval Architecture applications, structural response values are 

calculated by assuming a whole ship structure to be a single free-free 

beam of varying cross-section loaded with wave force (due to pressure, 

acceleration and velocity of water particles), hydrodynamic force (fluid 

force induced by rigid-body motion), restoring force (hydrostatic force) 

and ship mass-inertia force (due to the rigid body acceleration of the 



structure) distributions [1-3]. Since these applied forces on the 

structure are in balance at every instant, the equilibrium equations can 

be written between external and internal forces to determine the 

structural response values. To obtain these values a portion of the 

structure is isolated by cutting it at the points where the structural 

analysis is desired. Since numerical integrations are involved in the 

structural response calculations, the absolute value of a calculated 

axial force, shear force or bending moment may differ depending on the 

side of a structure which is taken to be the free end in writing the 

equilibrium equations between external and internal forces. This 

problem may be overcome by averaging with sign the structural response 

values obtained for both sides of the cut. 

The structural loading and response calculations for a ship 

(= a single beam) will be summarised to indicate the calculation pro-

cedure as an introduction to the analysis of floating structures with 

more complex geometry. 

At the start of the structural response analysis, it will be 

assumed that mass distribution of the ship, ship cross-sectional areas, 

rigid body motion responses and phase angles of these responses, as 

well as wave and hydrodynamic loading distributions along the ship 

length are known. These loading distributions can be represented by 

the following diagrams. 
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Since the complete system of forces on the structure are in balance 

at every instant, the area under the structural loading curve given in 

Fig. l-D should be zero, i.e. the shear forces should be zero at both 

ends of the ship. This can be expressed in the following equations: 
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or 

i 
J p(X,t) dX =0 

X=O 

SF(O,t) = 0 and 

(1) 

SF({,t) = 0 ( l-A) 

As with equation (1) or (i-A) the following equations should also 

be satisfied from the equilibrium of external forces acting on the ship, 

i.e. the total external moment acting on the ship beam should be zero. 

or 

i 
J SF(X,t) dX = 0 

X=O 

BM(O,t) = 0 and 

(2) 

BM(i,t) = 0 (2-A) 

Shear forces and bending moments may be calculated at any point 

along the ship length by averaging the shear forces and bending moments 

computed separately for the two ends of the ship as follows (taking due 

account of sign convention used) . 

X
A 

X 
A 

SF(XA,t) = ~ [ J p(X,t). dX + J p (X,t)1 dX 
X=O x=L 

(3) 

X X X
A 

X 
1 [ A 

A 
f / p (X,tl] dX BM(XA,t) = - J J p(X,t) dX dX + dX 

2 X=O X=O x=i x=i 
(4) 

or 

X X 
1 [ A 

/ SF (X ,tl] dX BM(XA,t) - - J SF(X,t) dX+ 
2 X=O x=l 

(4-A) 

The calculation of the structural loading function 9(X,t)requires an 

accurate knowledge of the following parameters. 

(a) Wave loading distribution along the ship length, which is a function 

of ship geometry and the sea state. 

(b) Motion responses and their phase angles which are functions of wave 

loading, ship geometry, and ship mass. 
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(c) Hydrodynamic load distribution, which is a function of motion 

responses, their phase angles and ship geometry. 

(d) Restoring force distributions which are a function of motion 

responses, their phase angles and ship geometry. 

(e) Ship mass-inertia force distribution, which is a function of motion 

responses and their phase angles as well as ship mass distribution. 

The structural loading function can be broken down into two 

categories as follows: 

(a) Input forces = Wave loading. 

(b) Output forces = Hydrodynamic, restoring, mass-inertia forces. 

The total input forces will be equal in magnitude and opposite in 

sign to the total output forces as written in equation (1). As was 

shown in Fig. l-D, the structural loading along the ship length will be 

the algebraic sum of the input and output force distributions. Since, 

as summarised earlier, a high number of variables are involved in the 

calculation of output force distributions, some errors due to various 

uncertainties, for example in mass distribution, added mass or damping 

coefficients, will generally be unavoidable. These errors in output 

force distribution will generally cause a reduction in the structural 

loading distribution and consequently an underestimation of maximum 

structural response values along the ship length. One point of import­

ance is that the final form of structural loading is obtained as the 

algebraic summation of a number of very large magnitudes and a small 

percentage of errors in anyone of them can produce a serious error in 

the final answer, e .. g. the answer may be of the order 10 6 but be 

obtained as the difference of numbers of the order 10 8
• This statement 

is supported by the experiments carried out in reference [2] and by the 

present author's own calculations (Sect. 1.4). Therefore, the author 

suggests that a consideration only of wave loading and the assumption 
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that the ship is somehow restrained in waves may avoid the under-

estimation of the structural response values for preliminary design 

purposes. 

The shear force and the bending moment values written in equations 

(3) and (4) do not reflect the full dynamic phenomena. When we 

consider the problem in dynamic terms the elastic deflections of the 

beam which represent the ship deformations jn waves may be described 

with the following equation using elastic deflection-load relation 

(Euler-Bernoulli equation) [4J 

E Od~2 (I (X) ~::) = p (X,t) (5) 

(Shear deformations and rotary inertia terms are neglected.) 

a2 y ay J where p(X,t) = fw(X,t) - [(M(X) +M;2 eX» --+c ex) -+ K~~ (X)·y (5-A) - ae 22 at .... 

or equation (5) becomes 

E aa~2 (I(X) ~~i }+(M(X) +M;2 (X» ~~i + <;;z(X) ~~ +IS2(X) Y = fweX,t) (6) 

If we consider the undamped free vibration of the ship, equation 

(6) becomes 

a 2 (e) 0
2 

y } + (M eX) + M I (X» ~2 Y2 + K ex) y = 0 
E a Xl I X a x~ 2 2 at 2 2 

(7) 

Since the total mass of a ship is distributed non-uniformly over 

the ship length, the ship in waves represents a multi-degree-of-

freedom system and, therefore, there will be an infinite number of 

discrete natural frequencies. 

A solution of equation (7) can be obtained by separation of 

variables assuming that the solution has the following form 

Yd(X,t) = ~(X) T(t) (8) 

where ~(X) represents a shape of the free vibrating beam and T(t) 

represents the variation of the amplitude of this vibrating beam 

with time. The following equation is obtained by substituting 
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equation (8) into equation (7) 

When both sides of equation (9) are divided by [M(X) +M;2 (XU ~(X) T(t) 

the following form is obtained 

( all ~ ) E 1 K2 2 (X) 32 T 1 
I (X) ax2 M(X) + M' (X) ~ (X) + M(X) + M' (X) + at2 T = a 

22 22 
(10) 

Since the first two terms are only a function of X and the third 

term is only a function of T, equation (10) can only be satisfied for 

abritrary X and t values if the following equation holds 

(10-A) 

Equation (10-A) generates two differential equations which can 

be solved as follows 

( 11 ) 

If we set C = w2 the following form of solution for an ordinary 

differential equation is obtained 

T (t) = A cos (wt - a) (11-A) 

where A and a can be obtained from the systems initial conditions. 

The second differential equation from equation (la-A) takes 

the following form 

a2 ~ E 1 ~2 (X) 
aX2 (I (X) ax2) M eX) + M I (X) ~ (X) + M (X) + M' (X) = w

2 

2 2 22 

E 
When both sides of equation (12) are divided by M (X) + M; 2 (X) 

and rearrangement of equation (12) gives 

w2 [M (X) + M; 2 (X)] 

E 
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or 

where a.(X) = W
2 (M (X) + M; 2 (X) ) - ~ 2 (X) 

E 

(13-A) 

when a.(X) = 0 in equation (13-A) this case corresponds to the rigid 

body vibration of the ship with the following frequency 

R, 

f ~ 2 eX) dX 
o 

i 
f (M (X) + M; 2 (X) ) dX 
o 

The solution of the ordinary dif~erential equation given in 

(13-A),which represents undamped free vibration of a be~ should be 

in the following form 

(14) 

The following r~lations can also be written from the boundary 

conditions of the free-free beam 

~I EI (X) ax2 

X = 
- ElI (X) ~"(X) 

o,i X = o,i 

EI (X) ~ I = EI eX) ~III ex) ax3 

X = 0,R, X = o,i 

When equation (14) is substituted into equations (15) and 

(is-A) the following simultaneous equations are obtained 

Al~i'(o) + A2CPZ (0) + A3CP3' (0) + A4CP4' (0) = 0 

Al ~'" (0) + A2<P2" (0) + A 3 CP3" (0 ) + A4~1II (0) = 0 

A 1 CPt ( R,) + A2CPi' (i) + A3<P31 (i) + A4 c1l.;' (R,) = 0 

A cP III (i) + A24>2" (i) + A3tP:3" ' (i) + A4tP4" (i) = 0 
1 1 

- 2..39 -

(15) 

(1S-A) 

(16) 

( 16-A) 

(16-B) 

(16-C) 



AI' A2 , A3 and A4 can only exist if the following determinant 

vanishes 

The above determinant provides an equation which will be in w 

and its roots will be the natural frequencies of free-free beam. 

For each wi value the AI' A2 , A3 and A4 values and the corresponding 

shape function ~i(X) can be found. 

The forced vibration of the beam given in equation (6) may be 

solved using the mode superposition analysis. Details of the mode 

superposi tion analysis are given in reference [4J and the application 

of the forced vibration for the ship case were discussed in 

references [5, 6J . 

Once Yd (X,t) values are obtained the dynamic structural response 

values can be determined directly as follows 

n a2Yd 
BM(X, t) = L: EI (X) (17) 

i = 1 
ax2 

n (32 Yd 
SF (X, t) = L: EI (X) aX2 

(17-A) 

i = 1 

It should also be noted that for most types of loadings the 

contributions of the various modes generally are greatest for the 

lowest frequencies and tend to decrease for the higher frequencies. 

Consequently, it is not usually necessary to include all the higher 

modes of vibration in the superposition process (in equations (17) 

and (17-A)). The summation can provide enough accuracy with the 

first few terms. 
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When floating offshore structures are considered, theoretical 

predictions for the structural response become more difficult simply 

because the above summarised procedures for a beam which represents the 

ship should be applied for an array of beams which comprise the floating 

structure. Therefore, a high number of equations will be involved in 

quasi-static or in dynamic analysis. Solutions of these equations 

require extensive use of computers. 

in this study, the structural response analysis for floating off-

shore platforms is carried out to find the shear forces, bending 

moments and axial forces along the structural members of the platform 

by analysing the entire structure as a space frame. Having obtained 

wave loading, hydrodynamic loading, restoring forces and platform mass 

inertia distributions along the members of the floating structure, a 

frame analysis can be carried out. (The procedures to determine wave 

loading were described in Chapter 3, and the hydrodynamic loading, 

restoring forces and platform-mass inertia forces were derived in 

Chapter 4.) 

In this section a structural analysis procedure will be summarised 

for a determinate floating structure for the following cases: 

(a) Structure is restrained in waves, loading is quasi-static. 

(b) Structure is free-floating, loading is quasi-static. 

(c) Structure is restrained in waves, loading is dynamic. 

(d) Structure is free-floating, loading is dynamic. 

Here the term quasi-static implies that the deformations of the 

members under the time varying loading are the same magnitude as would 

have occurred if the loading were static. The term of dynamic loading 

implies that structural response values are calculated by taking the 

dynamic deformations of the members into account. 

~ 241 -
~ 



An analysis of these four different loading conditions will be made 

to study the effects of rigid-body and local vibrations on the structural 

response evaluations. 

1.1 Floating Structure is Restrained in Waves, Loading is Quasi-Static 

At the first stage of analysis, let us assume that the floating 

structure comprises two vertical cylinders and a horizontal beam as 

shown in Fig. 2. It will also be assumed that the structure is somehow 

prevented from all rigid body motions. However, no physical boundaries 
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are introduced for the structural response analysis at this stage since 

response values depend on the boundary conditions. Therefore, the 

analysis will be carried out as if the floating structure is in quasi-

equilibrium at each instant over the given wave period and axial force, 

bending moment and shear forces at any point throughout the structure 

are calculated by writing the equilibrium equation between the external 

and the internal forces at that particular point. The structural 

response analysis procedure for the floating structure shown in Fig. 2 

may be summarised as follows. 
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(a) Representation of the structure as a frame system and the 

division of each member into a finite number of beam elements. The 

number of beam elements is chosen arbitrarily depending on the size of 

.-
the global elements. 

(b) Calculation of wave loading on each node (Fig. 3). At each 

wave frequency the corresponding period is divided into 20 steps and 

calculations are carried out at each time step throughout the full 

cycle. The calculation procedure is discussed in detail in Chapter 3. 

When wave loading computations are done using the "WAVLOA" program the 

generation of the nodal points and the distribution of wave loading 

over the nodal points are performed simultaneously by the computer 

routine. 
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(c) Determination of the structural response to the wave loading at 

each time step. A calculation procedure to obtain shear forces, bending 

moments and the axial forces due to wave loading for the structure shown 

in Fig. 3 is given in the following. 
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Global Member: I: 

Shear Forces: SF. (u,t) = 
~ [ 2f

V
'; +( f V,i+1 - fV'i) (u _ i~U)] b.

2
U • E. 

'~~ ~ 

where 

+ SF. l(U,t) 
~-

u=(i-l)~u (18) 

SF, (u,t) 
~ 

Shear force variation along the member i. (u,v) is the 

local co-ordinate system for each member. 

f . ,f ,. Wave force magnitude on the node i. f . ,f ,values 
w,~ u,~ w,~ u,~ 

are functions of time and the structure's orientation in waves. 

E. = 1 
~ 

E, = 0 
~ 

for i < 5 

for i = 5 

b.u: The distance between the two nodes, if this distance differs 

on each member, equation (18) can be written as: 

where 

where 

f 
v,i+l 

f 
v,i 

i ru
, 

I 

L n~u) T · SF,(u,t) = [2f . + I U -
~ v,~ 

~u. 
\ 

n=l 
~ 

+ SF. 1 (u,t) i 
~- L n~u u= 

n=l 

b.u,: The distance between the two nodes of member i. 
~ 

Similarly bending moments may be written as, 

BM. (u, t) = 
~ 

f[3f . + f v ,i+l t v,~ u 

- f 
v,i (u 

1 + BM. 1 (u, t) 
~- U=(i-l)~UJ 

BM. (u,t): Bending moment variation along the member i. 
~ 

E. = 1 
~ 

for 

for 

i < 5 

i = 5 
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v 

Axial forces on Global Member I may be written as, 

AF,(u,t) = - f 
~ u,l 

Global Member: II: 

I LlU 
.J II. 

(~ 17 (!) go ~.z) SM· 
~ 

t. u. 
~~ 

~ 
\] 5 {v", ± I '7 
= 

7. ~ 
If f 

T @ ] v'4 
J fv 

@ 13 

2- {V, 2. m , 

Shear Forces 

Bending Moments: 

J\ -= 

8 

II 

Fig. 4 

SF, (u,t) = - f 
~ . u,l 

BM, (u,t) 
~ 

+ SF
4 

(u,t) (H-D) - f 
u,l 

Axial Forces AF, (u,t) 
~ 

= - SF 4 (U,t) 
u =4u 1 

where u
1 

shows the distance on global member I. 
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Global Member: III: 
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(jJj 
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(5) 7j \ =' 
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~ 1 fv,~ fV,ll 12 
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J fV'3 
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f'1l3 ( /3 

® 
f v, 2 
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2 fv,ILf ~ 
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-

1 
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Af 

Shear Forces: 

SF. (u,t) 
~ 

where e::. = 0 
~ 

Fig. 5 

for i = 10 

for i > 10 

Bending Moments: 

BMi (u,t) = BM
4

(u,t) + SF 4 (U,t) [H - D - li] 

_ f[3f . _ (fv'i - fV'i+I) (u - (i-l0)6U)] 
1 v,~ 6u 

(6u) 
2 l 

6 • e::. + BM i _ 1 (u, t) e:: . 1 e:: i ( 

where e::. = 0 
~ 

Axial Forces: 

~ u=(i-l0)6u ~- ~ 

for i = 10 

for i > 10 

AF. (u,t) = f 1 
1. U, 
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So far, structural response values have been obtained by writing 

the equilibrium equations between external and internal forces in the 

form of an integration which is calculated starting from the left hand 

side of the structure. The same procedure may also be followed start-

ing from the right hand side of the structure. The response values of 

a point on the structure should be independent of the integration route. 

However, this may not hold ~n the case of the calculation procedure 

given above because external forces acting on the structure may not be 

in balance at every instant over a given wave cycle. The structural 

non-compatibility problem can be overcome by introducing fictitious 

supports on the frame representation of the floating platform. These 

support points should be chosen in such a way that their influences on 

the response values will be minimal. (This aspect will be discussed 

later.) For the present case it is suggested that structural response 

predictions should be made by averaging the shear force, bending moment, 

and axial force values obtained from the equilibrium equations integrated 

from both the left and the right hand sides of the structure. 

This may be formulated as, 

Shear Forces (27) 

Bending Moments: BMi (u,t) = ~[BMi (u,t)LEFT + BMi (u,t)RIGHT] (28) 

Axial Forces (29) 

where, SF. (u,t), BM. (u,t), AF. (u,t) are the average shear force, bending 
~ ~ ~ 

moment and axial force values of a point on the structure respectively. 

To find out the maximum structural response values at a particular 

wave frequency, calculations should be repeated throughout the corres-

ponding wave period. In this study calculations are repeated 21 times 

throughout one wave cycle. However, if symmetry exists in the wave load-

ing, depending on geometry and orientation of the structure in waves, it 

may be sufficient to consider only a quarter of a wave cycle. 
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The structural response to the wave loading will be determined by 

introducing successively two fictitious fixed supports at convenient 

points on the right and left hand sides of the floating structure. 

." 

Response calculations will be carried out for both cases and then the 

required response values will be the average of these two results. In 

this procedure response values on the supports should not be taken into 

account, i.e. the actual values on the supports will be zero. The 

procedure may be illustrated as follows. 

(a) Introduction of the fixed end support on the last node at the 

right hand side of the structure, Fig. 6. 

(b) Calculation of the structural response values when the last 

node at the right hand side is fixed for translational and rotational 

movements. 
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(c) Introduction of the fixed end support on the last node at the 

left hand side of the structure, Fig. 7. 

- 248 -



, ,~ 7 (j)' g ® q @ 10 

= 

2. r---.-; 

4 (j) f 
,"""" ,,"7T, f --, V, I 

s~ (~I+)I~:o 0 

1JM1 (ld) La =- 0 

A f, (\A, t) ,,~= 0 =- 0 

w 
" " 

Fig. 7 

(d) Calculation of the structural response values when the last 

node at the left hand side is fixed for translational and rotational 

movements. 

(e) The structural response values at any point on the structure 

may be obtained as follows: 

SF,(u,t) = ; {SFi (U,t)}RIGHT + {SFi (U,t)}LEFT 
~ HAND HAND 

(30) 

SIDE FIXED SIDE FIXED 

BM, (u,t) = ; {BMi (u,t)}RIGHT HAND + {BM, (u, t)} Fr 
~ ~ LE HAND 

(31 ) 

SIDE FIXED SIDE FIXED 

AF, (u,t) = ~ {AFi (U,t)}RIGHT HAND + {AFi (U,t)}LEFT 
~ HAND 

(32) 

SIDE FIXED SIDE FIXED 

Equations (30-32) are identical to the equations given in (27-29). 

This can also be shown with the following calculations. If single 

horizontal and vertical point loads are assumed to be applied on the 

first and the last members of a floating structure shown in Fig. 2 (this 

loading case is chosen for the sake of simplicity) the following 
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structural response values can be obtained for the unsupported structure 

case shown in Fig. 8. 
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the left hand side: 

SF1(u,t) = f (33-A) 
1, v 

BMl (u, t) = - f • u (33-B) 
l,v 

AF (u,t) = - f (33-C) 
1 1,U 

SF
2

(u,t) = - f l,u 
(34-A) 

BM (u,t) = - f • H + f • u (34-B) 
2 1, V 1, u 

AF (u,t) = - f (34-C) 
2 1,V 

SF (u, t) = - f (35-A) 
3 1,V 

BM (u,t) = - f (H-u) + f • B (35-B) 
3 1, V 1 ,u 

AF (u, t) = f (35-C) 
3 1 ,u 
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(b) Integration from the right hand side: 

Global Member: I: 

Shear Forces SF (u,t) = f 
1 3,V (36-A) 

Bending Moments: BM (u,t) = - f u + f • B 1 3, V 3, u (36-B) 

Axial Forces : AF (u, t) = + f 
1 3, u (36-C) 

Global Member: II: 

Shear Forces SF (u, t) = f 
2 3, U 

(37-A) 

Bending Moments: BM (u, t) = - f • H + f • (B-u) 
2 3,V 3, u 

(37-B) 

Axial Forces AF (u, t) = - f 
2 3,V (37-C) 

Global Member: III: 

Shear Forces SF (u, t) = - f 
3 3, v (38-A) 

Bending Moments: BM .(u,t) = - f (H-u) 
3 3,v 

(38-B) 

Axial Forces AF (u ,t) = - f 
3 3, U 

(38-C) 

(c) The structural response values along the members: 

Global Member: I: 

Shear Forces SF (u, t) = ~[f + f ] 
1 l,V 3,V 

(39-A) 

Bending Moments: BM (u, t) = ~[Bf - (f + f ) u] 
1 3, U 1,V 3,V 

(39-B) 

Axial Forces AF (u, t) = ~[- f + f ] 
1 1, U 3, U 

(39-C) 

Response values for Member I will be valid if u>O; for u=O; 

SF 1 (O,t)=O; BM1 (O,t)=O; AF1 (O,t)=O. 

Global Member: II: 

Shear Forces SF (u, t) = ~[- f + f ] (4O-A) 
2 I, u 3, U 

Bending Moments: BM (u, t) = ~[u(f + f ) - H(f + f ) + Bf ] 
2 1 ,u 3,u I, V 3, V 3, u 

(4O-B) 

Axial Forces AF (u, t) = ~[- f - f ] (4O-C) 
2 1 ,V 3, V 
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Global Member: III: 

Shear Forces SF (u,t) = ~[- f - f ] (41-A) 
3 I,V 3,V 

Bending Moments: BM (u,t) = ~[Bf - (H-u) (f + f )] (41-B) 
3 l,u I,V 3,V 

Axial Forces AF (u,t) = ~[f - f ] (41-C) 
3 . l,u 3,u 

Response values for Member III will be valid if u<H; for u=H; 

SF 3 (H, t) =0; BM 3 (H, t) =0 ; AF 3 (H, t) =0. 

The structural response values given by equations (33-A - 41-C) were 

calculated using the formulations written in equations (18-29). 

The same results as were given in equations (33-A), (35-C) can be 

obtained by introducing a fixed support at the end of Member III (Fig. 

9-B). Similarly, when the fixed. support condition is applied at the 

beginning of the first member, response values calculated for this load-

ing case (Fig. 9-C) will be identical to the values given in (36-A -

38-C). The average of these two cases will give the total response 

values as identical to the ones given in equations (39-A - 41-C) . 

I .>l c:! 

IT If 11 

~; ! TIT I I ill I I ][ 
I - -t--

2- 2 

f ~v f. ~v 
> 1,V 

flY ~ 

<" ., /1 

if f r if 1 r flU -.;. 

1, l.4 ~l! )., 

-, ~..4 

Fig. 9-A Fig. 9-B Fig. 9-C 

The introduction of the fixed support conditions and the applicat-

ion of the calculation procedure suggested above for the determination 
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of structural response values solves the non-compatibility problem and 

provides a suitable form of analysis for general structural analysis 

procedures which require some kind of physical boundaries to exist on 

the structure. A general analysis procedure will be important in the 

case of indeterminate frame analysis problems as will be discussed in 

Section 2. 

Now, the response values of the structure shown in Fig. 8 will be re-

calculated for different support conditions, (Fig. 10). 

B 
./>/1 . ,/ 

\ 7 II '\ 7 

I 

H r m -

f -G 
/ v <: 

Fig. 10 

Global Member: I: 

Shear Forces SF (u,t) = f 
1 1, v 

(42-A) 

Bending Moments: BM (u, t) = - f • U 
1 1,V 

(42-B) 

Axial Forces AF (u, t) = - f 
1 1,U 

(42-C) 

Global Member: II: 

(u, t) 
H (f f ) Shear Forces SF = - -

2 B 1, V 3, v 
(43-AO 

Bending Moments: BM (u, t) = H[f - U(f - f )] 
2 1 I V B Ilv 3, v 

(43-B) 

Axial Forces AF (u, t) = - f 
2 l,v 

(43-C) 
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Global Member: III: 

Shear Forces SF (u,t) = - f 
3 3,V 

(44-A) 

Bending Moments: BM (u,t) - - f (H-u) 
3 3,V 

( 44-B) 

Axial Forces AF (u,t) = - f 
3 3,U 

(44-C) 

The comparison between equations (39-A - 41-C) and (42-A - 44-C) 

shows that two different support conditions give completely different 

response values. (Under some special loading cases, some of the response 

values can be identical in both cases.) This comparison also reveals 

that the structural analysis of floating offshore structures will be 

sensitive to the distribution of the output forces (distribution of 

hydrodynamic, restoring and mass-inertia forces) which replaces the 

physical support forces of the examples given above. Thus very precise 

knowledge of mass distribution, added mass and damping coefficients, 

motion response values, phase angles, hydrostatic parameters and the 

kinematic body velocity and acceleration distributions will be essential. 

If some of the output force distributions cannot be predicted with any 

certainty the author suggests that a structural response analysis should 

be carried out under the input force distributions alone (wave loading) 

using the most pessimistiC fictitious support conditions. 

1.2 Floating Structure is Free in Waves, Loading is Quasi-Static 

When a structure is free floating, applied input wave forces will be 

balanced by the external output forces at any instant over a wave cycle. 

As long as the output force distributions are determined correctly, 

a structural analysis can be carried out either using the procedure des-

cribed for a determinate structure by ~quations (18-26) in which case 

integrations from either the left or the right hand side will be suffic-

ient, or using any other structural analysis procedures. Since support 

forces will be zero, as the applied external forces are in balance at any 
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instant, any support conditions can be applied arbitrarily for a chosen 

analysis procedure whenever necessary. 

In the following, the effects of the output forces will be analysed 

using the simple loading case shown in Fig. 11. It will be assumed that 

weight of Member II will be neglected and that the geometry and the 

weight distributions are identical for Members I and III. 

I B I 
~ 

Y >t I 

I 
! 

Z 
Xl. 

\. ,. 
~ -
X3 /v 

X X1 XI 
H ..:D 

Fig. 11 

Case ( a) f = f and f = - f 
1,U 3,U 3,V 1,V 

When horizontal forces are equal in magnitude and opposite in sign 

to each other, there will be no output forces due to sway. Similarly, 

since vertical forces f and f are equal to each other in sign and 
1,U 3,U 

in magnitude, there wil"l be no rolling induced output forces. The only 

output forces will be due to the heave motion. The relation between 

input wave forces and the output forces can be written using the 

equation given in (69) of Chapter IV . 

. . 
(M+M' )X + C X + K X = f + f 

22 2 22 2 22 2 l,u 3,u 
(43) 
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where 

MX Body-mass inertia force. 
22 

M' X ,C X Hydrodynamic force induced due to heave acceleration 
22 22 22 2 

K X 
22 2 

and heave velocity respectively. 

Hydrostatic force. 

The distribution of the input and the output forces ,is shown in the 

following diagram. (It is assumed that input wave force frequency w is 

greater than natural frequency of rigid body motion W .) 
n 

or 

HID 

dF! 
M •• 

= 2H X2 du 

H 

= f elF! du 
u=O 

F 
2 

= 

. 
M' X + C X 

22 22 22 2 

K X 
22 2 

2 

K 

dF 3 = 2X
z 

= --E.. du 
2 

F = 
3 

D 

f dF du 
3 

u=D-X
22 

F
1
+F

2
-F

3 
= f = f 

1,U 3,U 
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The structural response values can be determined by writing the 

equilibrium equations between externally applied loads and internal 

response loads at points where structural analysis is sought. 

Global Member: I: 

-.----......,-- - -----

H 
D 

Shear Forces 

4-dF -- - ---- -- ---
3· 

i-
.J, 

~dFf 
~ 

L 
,J, 

~ 

;> f( J 

t ~'4 
IV 

1 f2 

Fig. 12 

SF1(u,t) = f 1,V 

Bending Moments: BM1 (U,t) = - f 
1, v 

• u 

U 
Axial Forces AF1(U,t) = J dF 1 +F

2
-

U=O 

D+X 
2 2-J dF 3 -f 1 

u=D 

(45-A) 

(45-B) 

,U 

(45-C) 

If we compare equations (45-A - 45-C) and (39-A - 39-C) for the 

present loading case it will be found that shear forces will be the same 

for both cases. On the other hand, bending moments will be under-

predicted by equation (39-B) and axial forces will be overpredicted by 

equation (39-C). 
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Global 
Member:. II: &ll 

Shear Force 

Bending Moments: 

Axial Forces 

Fig. 13 

D+X H 

SF 2 (U,t) = f 
U=O 

f 
22 

dF +F - dF
3
-f 

I 2 I , u 
u=D 

= 0 

(46-A) 

BM2 (U, t) = (F + F - F - f ) u - f • H = - f • H 
I 2 3 I,U I,V 1,V 

(46-B) 

AF
3

(u,t) = - f 
I , v (46-C) 

A comparison of equations (40-A - 40-C) with equations (46-A - 46-C) 

reveals that axial and shear forces are identical in both cases and 

bending moments are underpred~cted by equation (40-B). 
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Global Member: III: 

B .. 

5L x;;l ~it' df.- -- -------- -- -,.t - ---
i.! 3 d~ :-1, _V = , 1 + .: 

H 

~ {.. 

" " D tdf1 d:r, .!o .. .. ~ 

u. 

• I 
~ I 
~ f I 
.1- I , 
~ _ ~v 

Fig. 14 

Shear Forces SF 3 (u, t) = - f 
I, v (47-A) 

Bending Moments: BM (u, t) = (F + F - F - f ) B - f (H-u) 3 I 2 3 I,U I,V 

= - f (H-u) (47-B) l,v 

Axial Forces AF (u,t) = F +F -F - f = 0 (47-C) 
3 I 2 3 I , u 

The comparison between equations (47-A - 47-C) and (41-A - 41-C) 

shows that shear and axial for ces in both cases are the same, and 

bending moments on Member III are underpredicted by equation (41-B). 

Case (b) f = - f and f = - f 
3,u l,u 3,V I,V 

In this case the output forces will be induced due to roll motion 

only. 

As with equation (43) the relation between input wave forces and 

the output forces can be written as follows: 

(I +I') X +C X +K X = ~B(f +f ) =Bf =Bf (48) 
XX xx 4 44 4 44 4 3,u I,u 3,u I,u 

where 

I
XX

X
44

: Body mass inertia moment 

- 259 -



Hydrodynamic moment induced due to roll acceleration and 

roll velocity respectively 

Hydrostatic moment. 

The distribution of the input and the output forces are shown in 

the following diagrams. 

I 

, 

:11 
\] : 'iJ 
';' 

~- ~yj--~ 
~ 

H 
r f--

~ '6· 
E' X {. 

16 
I 

+ 
G 

, 

Ll, !. 
) 

I , 
( • 

80DY- /-14S5 INERTIA 

f:ORCE J)/S7RISUTIOJ./ 

/)U£ 70 ROLL MoT. 

Fig. 15 

~. I 
dr.? 

1,1/ j t=" T2 1 
2,U IU ~ 

HYDRODYN,A,VlIC AN/) 

HYD Ro S T,...1TIC FoRCE 

JJ/ST'R/8U TION J)Ul 

TO ROLL /'-10710/<./. 

The velocity and the acceleration of any point along Members I and 

III can be written for roll motion using equations (17) and (18) of 

Chapter IV. 

or 

Similarly 

-+ 
'" r i 

(49) 

(49-A) 

-+ -+ = X (Y,k - Z,j) 
~ ~ 

(50) 

Using the acceleration relation given in equation (50) the body 

inertia force distribution can be determined as follows: 

dF = - X·Z, dm 
1 I U 4 ~ 

( 51-A) 
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where 

dF 1 = + X I. Y; dm 
,V ....... 

dm 
M 

= - du 
2H 

(51-B) 

The moment vector due to body inertia force can also be written as 

follows: 

or 

+ + 
M = 2r A 

1 i 

H 
+ .. f M =2x 

1 4 
u=O 

H 

f 
u=O 

+ + M 
j + dF 1 ,v k) 2H du 

2 2 M + 
(Z. + Y.) - dui = 

~ ~ H 
.. + 

I X i 
XX 1+ 

(52-A) 

(52-B) 

Similarly, hydrodynamic force distribution along the structure can 

be determined as follows: 

where 

F = - (X Z.M' + X Zib ) 
2,U 4 ~ U 4 22 

M' 
u 

dM' 
v 

3 
= 0.424 P 'ITR k22 

= 'IT P R2 a du = 'IT P R2 du 
33 

( 53-A) 

(53-B) 

The moment due to hydrodynamic forces takes the following form: 

or 

where 

+ + + 
M = 2r. A (F j + 

D 

f +k ) dF du 
2 ~ 2,u 

u=O 
2,V 

R 

f 
u=O 

. 
y2 du + X 

i 

Equation (54-A) can also be written as 

D ~ 

r (B '\2 P R2 f y~ dul I ' = 2 :M' - + 'IT 
XX L u 2) u=o 

~ 

[( B \2 
D 

f y~ 
, 

C 4 1+ = 2 "2) b
22 

+ b
33 

du I 
u=O 

~ J 

61 -

(54) 

( 54-A) 

(54-B) 



The hydrostatic force distribution due to roll motion can be 

obtained as follows: 

dF 3 

pgY'GM.r 
du ~ 

B2X 
(55) 

1+ 

and 

D+BX I+/2 

F3 = f dF 3 (55-A) 
u=D 

Having obtained the output force distributions for the loading case 

shown in Fig. 15 the structural response values can be determined as 

follows. 

Global Member: I: 

Shear Forces 

Bending Moments: 

Axial Forces 

where 

SF 1 (u, t) = f -
1, V 

u 

f (dF 1 + dF ) 
'
v 2,V 

U=O 
(56-A) 

BM (U,t) = -f • u+ J (dF 1
,V + dF

2
,V I u du 

1 1 ,V U=O du du / 

(56-B) 
u 

AF
1

(u,t) = f - f I, U u=o 
(dF - E·dF ) - FI 

I,U 3 ,U 

( 56-C) 

E = 0 if u ~ D 

e: = 1 if u > D 

A comparison of equations (39-A - 39-C) with equations (56-A - 56-C) 

reveals that shear forces and axial forces are overpredicted by equations 

(39-A) and (39-C), and bending moments are underpredicted by equation 

(39-B) . 

Global Member: II: 

Shear Forces SF (u,t) 
2 

= f 
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1, U 

H 

f 
u =0 

1 

dF + 
1 ,u 

H 

f 
u =D 

1 

dF 
3 

-F 
2, u 

(57-A) 



H D+BX1+/ 2 
Bending Moments: BM2 (u, t) = f dF u - ( f dF 3) u 

u =0 
1 ,u 

u =D 1 1 

H D 
+ F • u + f dF u l + f dF u l (f l ·u+f l • H) 2/u l,v 2,v 

U =0 U =0 ,u ,v 
1 1 

(57-B) 

H D 
Axial Forces AF 2 (u,t) = f dF + f dF 2 - f 

u =0 
1 ,v 

u =0 
,v ,v 

1 1 
(57-C) 

(Note: u implies that integration will be carried out along the 
1 

Member I.) 

The comparison between equations (40-A - 40-C) and (57-A - 57-C) 

shows that shear and axial forces are overpredicted by equations (40-A) 

and (40-C). Bending moment predictions vary depending on the position 

of the centre of rotation. If E/(H-E) > 1, the bending moment value at 

the centre of Member II will be overpredicted by equation (40-B) and for 

E/(H-E)<l the bending moment value at the same point will be under-

predicted by equation (40-B). When E/(H-E) = 1 the bending moment value at 

the centre obtained by equation (40-B) will be the same as that obtained 

from equation (57-B). 

Global Member: III: 

Shear Forces 

Bending Moments: 

Axial Forces 

where 

s = 0 if 

SF
3

(U,t) = - f -3,v 

H-u 

f ( 58-A) 
u=H 

H-u dF dF '-
BM (u, t) = - f (H-u) - f ( ~ ,v + ;' v ) u du 

3 3,V "u U ( u=H 
(58-B) 

H-u 
AF

3
(u,t) = - f + f (dF 1 + dF 2 - sdF 3 ) 

3 U ,u ,u ,u , u=H 

(58-C) 

and 

s = 1 if H-u > D - X • B 
'+ 
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It can be concluded from a comparison of equations (58-A - 58-C) 

and (56-A - 56-C) that shear forces and axial forces are overp'redicted 

by equations (41-A) and (41-C), bending moments are underpredicted by 

equation (58-B). 

Case (c) f = f and f = f = 0 
l,v 3,V 3,U 1,U 

In this case, the output forces will be due to sway motion as well 

as roll motion. The input and output force relations can be written as 

follows: 

(M+M I) X +C X = - f - f = - 2f = - 2f 
3 33 3 l,v 3,v 1,V 3,V 

(59) 

(I +II )X +C X +K X =2f eE=2f eE 
XX XX 4 44 4 44 4 l,v 3,v 

(60) 

where 

MX Body mass inertia force 
3 

IXXX4 Body mass inertia moment 

MIX , C X Hydrodynamic force induced due to sway acceleration 
3 33 3 

and sway velocity respectively 

Hydrodynamic moment induced due to roll acceleration 

K X 
44 4 

and roll velocity respectively 

Hydrostatic moment. 

The distributions of the input and the output forces are shown in 

the following diagrams. 
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dF = ~PR2 a X + b X ~du 
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= (7TPR
2 X 

. 
')du + b X 

3 33 3 I 

dF 
M •• 
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dF 
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(61-A) 

(61-B) 

(61-C) 

. ) =-(M' Z. 
.. 

+ Z. b X (61-D) F X 
4,U U ~ 4 ~ 22 4 

F = (X Y. dM' + X Y. b ) (61-E) 
4, V 4 ~ V 4 ~ 33 

where 

M' = 0.424 p1TR 3 k 
U 22 

dM' = 7TpR2 a 33 
du = 7TpR2 du 

V 

dF ~ 

pgVG~ 
du (61-F) 

5 B2X 
4 
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Having obtained the output force distributions for the loading case 

shown in Fig. 16 the structural response analysis may be carried out as 

follows. 

Global Member: I: 

Shear Forces 

Bending Moments: 

Axial Forces 

SF 1 (u,t) = 

BM (U,t) = 

AF (U,t) = 
1 

where E = 0 if u ~ D 

E = 1 if u > D 

f 
l,v 

- f • U 
l,V 

dF 
3, U 

(dF 1 + dF + dF + dF ) 
2 3,V '+IV 

u 

J
Q 

u=D 
EdF 

5 
F 

4,U 

(62-A) 

(62-B) 

(62-C) 

The structural response equations given in equations (39-A - 41-C) 

are not valid for this asymmetrical loading case. However, a comparison 

can be made between the set of equations given in (33-A - 35-C) and 

(36-A - 38-C). 

A comparison between equations (62-A - 62-C) and (33-A - 33-C) shows 

that, the structural response values for shear forces and bending moments 

will generally be overpredicted by equations (33-A - 33-B) unless roll 

induced output forces are dominant. On the other hand axial forces can 

only be predicted by equation (62-C). 

Global Member: II: 

Shear Forces 

Bending Moments: 

SF
2

(u,t) = 

BM (u,t) = 
2 

H 

H 

BX
4 

D+-
2

-

J dF - J dFs-F (63-A) 
u=O 

3,u 4,U 
u=D 

---

H (dF dF dF dF 

J 
1 2 3,v 4,V 

- f • H+ --+--+ + ---.:....-
l,v U =0 du du du du 

u du 

1 

+ C ~o \ (H 
dF

3 
\u+ J 

,u • u (63-B) 

1 
I u =D 

1 
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Axial Forces: AF
2

(u,t) = - f + 
l,v 

D 
+ JdF = 0 

4-~ 
u = 0 ' 1 

H 

J dF
1 

+ 
U =0 1 

D H 

J dF + J dF 
2 3,v 

U =0 U =0 1 1 

. (63-C) 

The conclusion for Member II is similar to that given for Member I. 

The bending moments and the axial forces will generally be overpredicted 

by equations (34-B - 34-C) , unless roll induced output forces are dominant. 

On the other hand shear forces can only be predicted by equation (63-A). 

Global Member: III: 

Shear Forces SF
3

(u,t) = + f 
3,v 

H 

J (dF + dF + dF + dF ) 
1 2 3,v ,.,v 

u=u 

Bending Moments: 

Axial Forces 

If 

If 

u > (H-D) 
G 

u
G 

~ (H-D) 

BM 3 (u, t) = f • (H-U
Q

) 3,v 

AF
3

(u,t) = 

€ - 1 

€ = 0 

H 

J 
u=u 

Q 

dF + 3,u 

Q (64-A) 

H dF dF dF dF ~ 
J (

1 2 3,v ,.,v 
-+--+-- + 
du du du du u=u 

Q 

H-D 

J 

BX,. 

2 

(64-B) 

(64-C) 
u=u 

Q 

The conclusion for Member III will be the same as that given for 

Global Member I. 

The loading conditions discussed above had equal input loading in 

magnitude in each case. If loading on the first and third members is 

not equal, the superposition of the above given cases can be employed. 

The following diagram illustrates this (Fig. 17). 

Although the mass of the second member was not included in the 

structural response analysis for the purpose of a simple comparison 

between the fixed and the floating cases given above, the same procedure 
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as was given for Members I and III may be applied to Member II for 

structural response analysis. 

7 

-+ 

t t 

Case " ~ 

Fig. 17 

1. 3 Structure is Restrained or Free in Waves, Loading is Dynamic 

In sections 1.1 and 1.2, the input and the output loadings on the 

structure were determined at any instant over a wave cycle and the 

structure was loaded with those quasi-static loads, i.e. time varying 

load is assumed to be static at any particular instant and structural 

response calculations were carried out under that static equivalency of 

the time varying load. Consequently, structural response values only 

correspond to the static deflections of the individual members. 

Here a simplified procedure for calculating the structural response 

values for floating platforms which take dynamic deformations of the 

individual members into account will be discussed. 
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The structural response analysis of offshore platforms under 

dynamic loading require a larger amount of computational effort due to 

the high number of elements. If the offshore structure under consider­

ation is a floating one, the size of the problem becomes much larger, 

simply because a floating platform is an unconstrained and generally 

indeterminate structure. In this study, no attempt has been made to 

bring a unified solution to the problem, and only a general description 

of the problem has been made. Some simplified dynamic loading calcul­

ations were carried out for the twin circular hull model semi-submersible 

on which the rigid body motions and the bending moment values on the 

deck were measured. The main aim of this simplified approach may be 

summarised as follows: 

(a) To determine whether the fundamental frequency of the ~ember deform­

ations is near to the forcing frequencies which correspond to the 

maximum structural response values. 

(b) To obtain the structural response values under the dynamic loading 

when the forcing frequencies which correspond to the maximum 

structural response values are near to the fundamental frequency. 

When the fundamental frequency of the structure and the frequencies 

which correspond to the maximum structural response values, as well as 

the frequencies which correspond to the maximum energy of the sea where 

the platform is operated, are in the same region, a more detailed 

dynamic analysis is needed. 

A unified dynamic analysis procedure for fixed and floating plat­

forms is summarised in reference [7]. Reference [8] gives an analysis 

procedure for the dynamic response of fixed gravity platforms. 

The dynamiC loading concept for floating structures will be demon­

strated with the following examples. 
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Consider a rigid floating object and a mass attached with a canti-

lever beam onto this floating body, the forces on that structure are 

shown in the following figure. 

y 

z 

MASSLESS CA!l/TILEVC~ 

l!JEAM ~ 
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X 

(B) 

" Of:" T~£ CI'O$S S£C T. : I 

L ~ {u -+-*-;,_1 -+-----'-~ 
f: 
'''' 

f . , 
1/ U. / 

'''-.. 

r (A) 
h 

Fig. 18 

'V 
-
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The total force on the mass (A) may be written as follows 

F = F - f T,u l,u l,u 

F' = F - f 
T,v l,v l,V 

(65) 

(65-A) 

If the floating object is assumed to be restrained in waves, equations 

(65) and (65-A) become 

F = - f T,u l,u 
(65-B) 

F = - f (65-C) 
T,v l,v 

where f ,f 
l,U l,v 

F ,F l,u l,u 

Wave induced forces on mass (A) in u and in v direct­

ions respectively. 

Rigid body motion induced forces on mass (A) in u and 

in v directions respectively. 
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f ,f ,F ,F 
l,u l,v l,u l,v can also be written in the following form 

f = f cos (wt) 
I, u 0 , 1 ,U 

(66-A) 

f = f cos (wt-a.) 
I,V 0 , I, V 

(66-B) 

F = F cos (wt-S) 
I,U 1 , 1 

,U 
(66-C) 

F = F cos (wt-y) 
2,V 0, 2 ,v 

(66-D) 

where W: Input wave force frequency 

a.: Phase angle between f and f 
I,U I,V 

S: Phase angle between f and F 
I,U I, U 

y: Phase angle between f and F 
I,U 2,U 

The structural response values for the cantilever beam under quasi-

static loading become 

Shear Forces SF (v, t) = - F (67-A) 
s T,u 

Bending Moments: BM (v,t) = - F • v (67-B) 
s T,u 

Axial Forces AF (v,t) = - F (67-C) 
s T,v 

A structural response analysis of the cantilever beam and mass 

system under dynamic loading may be carried out as follows: 

v 

u 

Fig. 19 
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If we assume that the cantilever beam is massless and that its 

geometrical and material properties A,E,I are known, the following 

differential equations can be written to determine the local deformations 

of the cantilever beam and mass system due to mass (A) and time varying 

F and F loads on the mass. T,u T,v 

(m+m' )u + k u = 
1 1 22 

where m' . Added mass 
2 2 

. 
m' . 11 • Added mass 

F 
T,U 

F 
T,v 

" 
of object 

of object 

A in 

A in 

k 11 : Stiffness of the beam in U 

k : 22 Stiffness of the beam in v 

u,v: Acceleration of mass A due 

cantilever beam in u and v 

u,v: Displacement of mass A due 

cantilever beam under time 

ions respectively. 

(68-A) 

(68-B) 

u direction 

v direction 

direction 

direction 

to elastic deformations of the 

directions respectively 

to elastic deformations of the 

varying loads in u and v direct-

The solutions of equations (68-A) and (68-B) can be written as 

follows 

F 
0, / kll 

T,u (69-A) u = 
0 I {I (Wn~jT 

and 

F 
0, / k22 

V 
T,v (69-B) = 

0 I [I ~ (W W )212 n, 22 J 
where u ,v 

o 0 
Maximum displacements of mass A due to elastic deformat­

ions of the cantilever beam, in u and v directions 

respectively. 

F ,F 
0, 0, T,u T,v 

Maximum total loads applied in u and v directions 

respectively. 
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Natural frequency of beam and mass system in horizontal 

vibration mode 

=!S m+m; 2 

Natural frequency of beam and mass system in vertical 

vibration mode 

=15-m+m' 
3 3 

The following relations between the applied forces, static displace-

ment and the stiffness can be written using beam theory as 

F h 3 

o'T = ,u 
u 
0, 3E 

s 
(70) 

F 
o'T ,u 

or u = 0, k 
s 1 1 

( 70-A) 

where k 
3EI = 1 1 
h 3 

F • h 
o'T 

= ,v 
v 
0, AE 

s 
and (71) 

F 
o'T ,v 

v = 
0, k22 S 

or (71-A) 

where k22 
AE 

= 
h 

The maximum dynamic displacements u,v can also be defined in 
o 0 

terms of static displacements u 
0, 

s 
and v 

0, 
s 

as follows 

u = u 
0 

V = v 
0 

where Q 
n'll 

0, s 

0, 
s 

(72) Q 
n'll 

Q 
n, 22 

( 72-A) 

Magnification factor for the horizontal mode of vibration 

1 
= 
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Magnification factor for the vertical mode of vibration 

Q 
n,2.2. 

1 

The elastic curve for the cantilever beam can easily be determined 

using the relations between applied load and the translational and the 

rotational displacements of the beam. 

Fig. 20 

rXo 
IS 

2f1 

If we consider a cross-section of the beam at distance v from the 

origin, the following static displacements occur in the u direction at 

that section due to the bending moment and the shear force. 

- BM(v) (h-v) 2. SF(v) (h-v) 3 

U(v,t)static = 2EI + 3EI (73) 

or F • v • (h-v) 2. F (h-v) 3 

-
u(v,t) t t' s a ~c 

o'T o'T ,u ,u 
= ----~------------ + ----~------2EI 3EI 

( 73-A) 

The first term on the right hand side of equation (73) or (73-A) 

gives the translational displacement of the cantilever beam due to the 

bending moment, the second term on the right hand side of equation (73) 

or (73-A) gives the translational displacement of the cantilever beam 
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due to the shear force. (It is assumed that F does not induce any 
o'T ,v 

horizontal displacement.) 

As with equation (73-A), the maximum dynamic displacements of the 

cantilever beam can be written using equation (72) as follows 

-
u(v,t)d ' 

ynam~c 
= u(v,t) t t' • Q 

s a ~c n, 11 

r 
F v (h-v) 2 F (h-v) 3 ] 

0, 0, = T,u + ____ T~,_u ____ __ 
2EI 3EI 

The horizontal displacements of the beam over a complete wave 

cycle can be expressed as follows 

[ 
v (h-v) 2 + (h-v) 3 ] 

u(v,t) = 2EI 3EI F 

where 0: 

o'T ,u 
cos (wt-O) • Q 

n'll 

Phase angle between F and f 
T,u 1,U 

( 74) 

(75) 

u(v,t) can also be expressed in terms of static displacements as follows 

u(v,t) = u(v,t) t t' • Q 
sa~c n'll 

(75-A) 

Similarly, dynamic axial displacements of the cantilever beam take 

the following form 

v(u)d ' 
ynam~c 

= v (t) t t' • Q s a ~c n, 22 

and v (t) 

where 14J: 

F h 
o'T ,v 

=--~-

= .E... F 
AE o'T ,v 

AE 

Phase angle between F and f 
T,v 1,u 

v(t) can also be expressed in terms of static displacements as 

follows 

v (t) 

(76) 

(77) 

( 78) 

The structural response values can be determined in terms of the 

dynamic displacements as follows 

Shear Forces: [SF(V,t)]d ' 
ynam~c 

(79) 
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If we substitute equation (75-A) into equation (79) the following 

relation is obtained 

[SF(v,t)]d ' = [SF (v, t) ] • Q 
ynam~c static n'll 

Bending Moments: [BM (v, t) ] d ' - EI 
a 2u = 

ynam~c 
av2 

or [BM(V,t)]d ' = [BM(v,t)] , • Q 
ynam~c stat~c n'll 

F 

Axial Forces: [AF (t) ] d ' 
ynam~c 

= 
o'T ,v 

--AE-":"'- cos (wt-1jJ) • h· Q
n 

[AF(t)]d ,= [AF(t)] t t' • Q 
ynam~c s a ~c n'11 

(79-A) 

(80) 

(80-A) 

(81 ) 
'22 

(81-A) 

The beam mass vibration problem for an n degrees-of-freedom system 

may be summarised as follows. Consider two submerged objects attached 

to the cantilever beam to represent a two degrees-of-freedom system. 

If the mass and the added mass of the first object are m and m' respect-
1 1 

ively, and the time varying applied force on this object is F
T
(l) , and if ,u 

the mass and the added mass of the second· object are m2 , m~ respectively, 

and the time varying applied force is F
T
(2) (for simplicity only horiz-
,u 

ontal applied forces are considered) then 

(.2.) m 
F. .2 --

./ " 
~u. f 

'> 
\ 
\ 

'--

At ~t 

~ hi, ./ - '-
(/) ,r 

0 ,iJ. > 
\ 

Fig. 21 
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The equilibrium equations for the beam and two masses system shown 

in Fig. 21 may be written as follows 

(m 1 +m i ) U 1 + k 1 1 U 1 + k 1 2 U 2 
)2.2 

= F (1) 
T,u (82) 

(82-A) 

where u 1 'u2 : Horizontal displacements of the first and the second mass 

respectively. 

k i . Stiffness coefficients which may be defined as the force 
J 

at point (i) due to a unit displacement at point (j). 

(1 ) d F (2 ) . . d 11 . f d' 11 Since F an are S1nUS01 a y varY1ng orces, u r an u 2 W1 
T,u T,u 

also vary sinusoidally, and therefore the following relations between 

acceleration and velocity can be written as 

.. w2u u 1 = 1 
(83) 

.. w2u u 2 = 2 
(83-A) 

If equations (83) and (83-A) are substituted in equations (82) and 

(82-A) the following equations are obtained 

[k 11 - (m +m l )w2 Ju +k u = F (1) (84) 
1 1 1 12 2 T,U 

'22 

k21 U1 + [k 22 - (m 2+m2)w2]u2 = F (2) (84-A) 
'22, 

T,U 

Equations (84) and (84-A) may also be converted into matrix form as 

follows 

(k - (m +m I ) w 2 ) k12 U 
1 1 1 1, 1 

22-

k~1 (k - (m +m I )w2) u 2 22 2 2, 
22 

Equation (85) can also be written as follows 

, r kll 

I 

4-

[K] .. 
1J 

m1+mi 
'2.2. 

o 

o m2+m~ 

4-

[M] .. 
1J 
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F 
(1) .., 

T,u 
= (85) 

F (2) 
T,u 

fF (1)l 
I T ,U 
i 
I , (86) = 
i 
I 
I F (2) l T,u I , , 

..J 

4-

[F], 
1 



{ [K] . . - W
2 [M] .. } [U]. = [F

T 
1. 

~J ~J ~ ,U ~ 

where [K] .. : Stiffness matrix of the beam two mass system 
~J 

[M] . . Mass matrix 
~J 

[F
T 

].: Force matrix. ,u ~ 

(86-A) 

In order to find the natural frequencies of the system shown in 

Fig. 21 the right hand side of equation (86-A) can be set to zero 

{ [K] . . - w2 [M] .. } [u]. =0 
~J ~J ~ 

[U]. values can only exist if the following determinant is zero 
~ 

(87) 

II {[Kl. . - w2 [M], .} II = 0 (88) 
~J ~J 

Equation (88) is called the frequency equation of the system. The 

N roots of this equ~tion (W1
2, W22, ... Wn~ repres~nt the natural 

frequencies of the N modes of the vibration which are possible in the 

system. The roots of the following equation give the natural frequencies 

of the system shown in Fig. 21. 

(89) 

where M1 

It is also possible to define the equations of motion in terms of 

the flexibility influence coefficients 8 .. which are defined as the dis­
~J 

placement at i due to a unit force at j. For the system shown in Fig. 

21 the displacements can be written using flexibility coefficients as 

(90) 

u = 821 
F + 8 F (90-A) 

2 1 22 2 

For the forced vibration problem F1 and F2 become 

F (1) .. 
F = - M

l
u 1 1 T,u 

F (2) .. 
F = - M u 

2 T,u 2 2 
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and for the free vibration problem 

.. 2 
Fl = - MIU I = MIW u l 

F2 = - M2U2 = 2 M2W u 2 

For the free vibration problem equations (90) and (90-A) can also 

be wri tten as 

(91 ) 

(91-A) 

Equations (91) and (91-A) can be expressed in matrix form as 

u 1 011 Ml 0 12 M 1 

f U

l 

1 
2 

= w2 
(92) 

u 2 0 21 Ml 0 22 M2 I u 2 ~ 
... J 

u 1 and u 2 can only exist if the following determinant vanishes 

= 0 (93 ) 

When the determinant given in equation (93) is calculated the following 

equation can be obtained 

1 
4"­
W 

1 1 
If it is assumed that the roots of equation (94) are -- and --

WI W2 

the following polynomial equation may be written 

(94) 

(95 ) 

A comparison between equations (94) and (95) leads to the following 

equation 

1 
-+ 
W 2 

1 

1 

W 2 
2 

o M + 0 M 11 1 22 2 

Ml M2 
=-+---= 

kll k22 
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1 
---+ 

2 
W11 

1 (96) 



Natural frequency of the system which corresponds to the first 

mode. It is also called fundamental frequency. 

W
2 

Natural frequency of the system which corresponds to the 

second mode. 

W
II 

The natural frequency of the system when only the first mass 

is present. 

W
22

: The natural frequency of the system when only the second mass 

is present. 

Since the natural frequency of the second mode will be higher than 

the fundamental frequency the following form of equation (96) can be 

written 

1 
-::::: 

W 2 
1 

1 --+ 
2 

WI I 

1 (97) 

Equation (97) can be extended to any number of degrees-of-freedom to 

obtain fundamental frequency as follows 

1 1 1 1 -:::::-+--+-+ 
222 2 

WI W11 W22 W33 

1 

W 2 
nn 

(97-A) 

Equation (97-A) is known as Dunkerly's equation [9]. Various applic-

ations of this equation can be found in references [10,11]. 

The natural frequencies of the beam-mass system shown in Fig. 21 may 

be written from equation (94) 

(98) 

where 011 
h = 3EI 

- h
2

{h
1
-h

2
)2 (h

1
-h

2
)

3 

°21 = °12 = + 
2EI 3EI 

(h -h ) 3 

°22 

1 2 
-

3EI 
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The two roots of equation (98) correspond to natural frequencies for 

the first and the second modes of vibration. 

It is also possible to determine the natural frequency for the first 

mode (= fundamental frequency) of the same system using Dunkerley's 

equation as given in (97) using equation (96) 

(98-A) 

Structural response values for two or higher degrees-of-freedom 

systems can only be found by solving the motion equations given in 

(86-A) . Since the structure was analysed as a two mass system, 

dynamic structural response values can be obtained as 

Shear Forces [SF (v, t) ] d 

Bending Moments: [BM (v, t) ] d 

where QI 

[u (h 1 ' t) ] d . = ynam~c 

[u (h 1 ' t)] t t' s a ~c 

Similarly, 

Shear Forces [SF(V,t)]d 

Bending Moments: [BM (v, t)] d 

where Q = 
2 

[u(h 2 ,t)]d . 
ynam~c 

[u (h 2 ' t)] t t' s a ~c 

= [SF (v, t) ] static • QI for 

= [BM (v , t)] t t' • Q 1 for 
s a ~c 

= [SF (v, t)] t t' • Q 2 for 
s a ~c 

= [BM (v , t)] t t' • Q for 
s a ~c 2 

o < v < h 2 

(99) 

o < v < h2 

(99-A) 

h ~ v < 2 hI 

( 100) 

h ~ v < h 
2 1 

(100-A) 

The examples given above can be extended to include N degrees-of-

freedom systems following the same procedure. 

As a second group of examples, the floating structure shown in Fig. 

22 will be analysed under dynamic loading with the following assumptions: 
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(a) The weight of the vertical columns and the horizontal beam are 

neglected. 

(b) The input wave forces as well as output forces on the columns are 

neglected. 

(c) The mass of the circular volumes is concentrated in the centre of 

those volumes. 

(d) The geometrical and the structural properties for both columns are 

identical. 

(e) The masses and the geometrical properties for bo~~ circular volumes 

are identical. 

The dynamic loading analysis of the floating structure shown in Fig. 

22 will be carried out for the restrained and the free floating cases. 

(i) Structure is restrained in waves 

In this case basically two different types of loading and the corres-

ponding support conditions may be chosen. The loading on the structure 
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at any instant over a given wave cycle can be found as the superposition 

of those two systems. 

(i-l) Horizontally applied wave loading is symmetrical about the vertical 

centre-line: Since two horizontal forces which are equal in magni-

tude and opposite in sign to each other act on the system, the structure 

will be supported with the simple supports at the horizontal beam, as 

shown in Fig. 23. 

B 

® 

H 

(S 
® 

Fig. 23 

The differential equations describing the displacements of mass (1) 

and mass (2) can be written as 

(M 1 +M 1 ) VI + k V = f (l01) 
,33 V 1 1,V 

{M2+M2 )v 2 + kvV2 = f2 (lOl-A) 
,33 ,v 

Because of the symmetry in the structural and the geometrical 

properties, as well as in wave loading, equations (101) and (lOl-A) will 

be identical and therefore these two equations can be represented by a 

single equation as follows 
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(102) 

where MI Mass of the first circular volume 

Added mass of the first circular volume in the horizontal 

mode of translation 

k Stiffness of the system against the horizontal displace-
v 

f 
I,V 

ment of mass MI 

Horizontal wave input force. 

Stiffness of the system against the horizontal displacement can be 

determined as follows. 

The lateral displacements of mass (1) and mass (2) under quasi-

static loading can be determined using Castigliono's 

(i 
2 B 

2 
au a Ml du M2 du 

vI + V 2 = = + J + 
ail ail 

2E1l 2EI2 u=O u=O 
IV IV 

where u Total strain energy of the system 

-
f l,v 

Ml = 

M2 = 

M3 = 

Quasi-static wave force 

f l,v • U 

f 
1,V • H 

-
f • 1,V 

(H-u) 

theorem [12] 

H M3
2 

du ) 
f 2EIl u=O 

(103) 

(103-A) 

(103-B) 

(103-C) 

When equation (103) is determined using equations (103-A - 103-C), 

the lateral displacements of mass (1) and (2) become 

= 2v
l 

= 2v 2 = (104) 

Now k value can easily be obtained from equation (104) as follows 
V 

kV = 62 (2H 1 3B ) 
H -+­

Ell EI2 

(105 ) 

The differential equation which represents the free vibration of the 

system becomes 
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(M 1 +M 1 ) V 1 + k • v = 0 
, 3 ~ V 1 

(106) 

and the natural frequency of the system in symmetrical horizontally vibrat-

ing mode 

(107) 

The displacement values of masses (1) and (2) can be obtained from 

equation (102) as follows 

v 1 (t) = v 2 (t) = f Ik • Q 
l,v"-v s'h 

where Q 
s'h 

1 

(i-2) Vertically applied arbitrary load or horizontally applied 

(108) 

arbitrary load: In this case, the structure will be supported by 

the fictitious supports on the right and left hand sides of the structure 

successively, and a similar calculation procedure to that carried out in 

the previous case will be used to obtain the natural frequencies, and the 

horizontal and the vertical displacements of masses (1) and (2) under the 

wave loading. The procedure may be illustrated as follows. 

@ 
£I4, 

® tI, 

@ 

r.'Iig. 24 
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The displacement of mass (1) in the horizontal and vertical modes may 

be described with the following uncoupled differential equations 

(M 1 +M 1 ) VI + k • v = f 
'33 V 1 I,V 

(M I +M I ) U 1 + k u • U I = 
'22 

f 
I,U 

where M
I

: Mass of the first circular volume 

(109) 

(l09-A) 

Added mass of the first circular volume in the hori­

zontal and the vertical mode of translation respectively 

k ,k v u Stiffness of the system against the horizontal and the 

vertical mode of translation respectively 

f ,f 
l,v l,u 

Wave forces in the horizontal and the vertical direct­

ions respectively. 

Stiffness values in the horizontal and the vertical modes can be 

determined using Castigliano's theorem as was done in the previous case. 

k and k values are found as follows 
v u 

3 
1 

k = 
V H2 2H 3B 

--+ 
Ell EI2 

(l10) 

3 
1 

k = 
U B2 B H 

--+ 
Ell EI2 

(110-A) 

Strictly, k should also include the stiffness due to hydrostatic 
u 

restoring forces giving 

k 
u = 

1 

B H -+ 
EI I EI2 

+ pg A 
w 

where A: Waterplane area of Member I. 
w 

(l10-B) 

Since generally the hydrostatic stiffness of floating platforms is 

very small compared to elastic stiffness, in this study hydrostatic stiff-

ness is neglected in the dynamic structural response calculations. 
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The natural frequency of the " system in the horizontal vibrating mode 

becomes 

w 
aS'h 

=1-1 3 
.R ( ) (2H M1+M 1 -r- + 

, 33 E 1 

(111 ) 

The natural frequency of the system in the vertical vibrating mode 

takes the following form 

w as, 
v 

(111-A) 

The displacement of mass (1) in the vertical and the horizontal 

directions becomes 

where 

u (t) = 
1 

Q = 
aS'h 

f 1 /k ,v v 
• Q 

aS'h 
(112) 

(112-A) 

1 

1 

Similarly, displacement of mass (2) in the vertical and horizontal 

modes becomes 

f 2 ,v/kv • Qas 'h 

(113) 

(113-A) 

The procedures for finding dynamic displacements, given above, will 

be used to obtain the structural response of a floating structure shown 

in Fig. 25 as follows. 
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Fig. 25 
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The wave forces on this floating structure-will be broken down as 

the symmetrical and the asymmetrical forces as shown in Fig. 26. The 

dynamic structural response values will be determined following the pro-

cedure used earlier to obtain equations (79-A), (80-A) ,81-A) in conjunct-

ion with equations (108), (112), (112-A), (113), (113-A). 
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Global Member: I: 

Shear Forces SFl{u,t) = f • Q + 1.. [ (f -f ) Q 2,v s'h 2 l,v 2,v aS'h 

- f 
2,u : • Qas 'v] (l14-A) 

Bending Moments: BM (u, t) = - f • u • Q + ; [ - (f -f ) • u • Q 1 2,V s'h l,v 2,v as, 
h 

+f .B. uQ J 
2,u H as 'v 

(l14-B) 

Axial Forces AFl{u,t) =~[fl +f ] 
,u 2,u (114-C) 

Global Member: II: 

Shear Forces SF 2 (u, t) = ~ [f +f ] Q 
1, U 2, U as 'v 

(liS-A) 

Bending Moments: BM 2 (U,t) = f • H· Q +.!.. [-(f -f ). H· Q 
2,v s'h 2 l,v 2,v aS'h 

+ f 2 • B • Q - (f -f ). u • Q ] 
,u aS'h l,u 2,u as,v 

(liS-B) 

Axial Forces AF
2

(u,t) = - f + ~ [- (f -f ) = ~ [-f -f ] 
2,v I,V 2,V I,V 2,V 

(liS-C) 

It should be noticed that equations (llS-A - liS-C) become identical 

to equations (40-A - 40-C) when Q = Q = Q = 1. 
s'h as'h as,v 

Global Member: III: 

Shear Forces SF 3 (u, t) = 1 [ f • Q + - - (f -f ) 
2,v s'h 2· l,v 2,v 

• Q 
aS'h 

- f • - • Q B ] 
I, U H as,v 

( 116-A) 

Bending Moments: BM3 (u,t) = - f 
2,v 

(H-u) • Q + .!.. [- (f -f ) (H-u) • Q 
s'h 2 l,v 2,v as'h 

1 , U f • B ] 
-...;........H--· u· Qas,v (116-B) 

Axial Forces AF (u, t) = + ~ [-f -f ] 
3 I,U 2,U 

(116-C) 

where Q ,Q ,Q values were defined in equations (108) ,(112) and 
s'h as'h as,v 

respectively. 
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(ii) Structure is free-floating in waves 

In this case the output forces (= hydrodynamic, restoring and mass­

inertia forces) on the circular volumes should be calculated. 

The structural response values can be obtained using equations 

(114-A - 116-C) after the force terms have been replaced with the sum of 

the wave input and output forces. 

The approximate method summarised above was applied to predict the 

bending moment values at the deck of a twin circular hull model semi-sub­

mersible. Since the deck structure of the model was built to be flexible 

in order to obtain higher and stable strain output from the strain gauges, 

the method of dynamic analysis was applied for the more reliable compari­

son between the experimental and the theoretical results. The results 

will be discussed in the next section. 

Here it should be mentioned that in general most of the existing 

semi-submersible type floating structures have sufficiently rigid overall 

structural integrity between the members, so that the local mode of member 

deformations can be neglected in their analysis and therefore quasi-static 

analysis will be sufficient. However, the particular type of floating 

platform shown in Fig. 27 should also have been checked for dynamic load­

ing. For this type of geometry, approximate analysis can easily be done 

using the model shown in Fig. 19. The Author was unable to obtain the 

structural particulars of this rig for the dynamic loading calculations, 

but the accident involving the breaking of the leg suggests that the 

actual loading may have been higher than expected. 

Another type of semi-submersible design, shown in Fig. 28, also has 

flexible connections between the rigid deck structure and the main legs. 

Structural response calculations of those flexible connections under 

dynamic loading could have been important to the structural design. The 
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Figure 27 (From Reference 20) 

LONGI'TUDINAL SECTION 

figure 28 
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UPPER BRACIIoI3S AND DECK ARRANGEMENT 

LOWER BRACIN6S AND PONTOONS ARRANGEMENT 

Figure 28 (From Reference 21) 
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troubles experienced by those two types of design suggests that greater 

attention should be paid to those cases when the structural arrangements 

are such as to bring the natural frequencies down towards the wave 

frequencies. 

The dynamic structural response analysis also becomes important and 

necessary in the following cases: 

(a) In the design of structural members of a floating rig when they 

extend into deeper draught, i-. e. riser cables, tension leg cables, 

cooling pipes of OTEC platforms, etc. 

(b) Structural response of floating structures under impact loading. 

Impact loading may occur during vessel-platform collision or wave 

breaking between the members of a floating structure. 

(c) Damage assessment of the whole structure after the damage has 

occurred. 

1.4 calculation of Structural Response Values for Twin Circular Hulled 

Semi -Subnersible Model 

The calculation procedures described in sections 1.1 - 1.3 (see 

also section 2.2) to obtain the structural response values were applied 

to a twin circular hulled semi-submersible model, shown in Fig. 29. 

(The full characteristics of the model are given in Appendix 1. In Fig. 

30, the structural response analysis results for maximum bending moment 

at the centre of the deck in beam sea conditions are shown. In this case, 

the structure was assumed to be restrained and the results represent the 

linear quasi-static loading, non-linear quasi-static loading and non-

linear dynamic loading. Input wave loading and the output force calculat-

ions were carried out using the computer program FLUID4A which is a wave 

loading, motion and structural response analysis program for twin circular 

hull multi-column type semi-submersibles. (FLUID4A is described in detail 
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in Chapter 6.) Non-linear loading calculations take into account non­

linear free surface boundary conditions, as well as the effect of the 

second-order forces. 

In Fig. 31, the bending moment values at the centre of the deck for 

the free floating model were presented. Loading conditions were taken 

to be the same as in the previous case. 

In Fig. 32, a comparison is made between the bending moments at the 

centre of the deck for the restrained and the free floating model cases. 

In the case of the restrained model, the support conditions were chosen in 

the theoretical model such that the structural response values would be 

maximum. (See equations (40-A - 40-C) and (llS-A - llS-C).) Figure 32 

shows that the bending moments are generally overpredicted in the restrained 

model case. However, in the region where excitation frequencies approach 

the natural frequencies for the rigid body oscillation modes, the bending 

moment predictions for the free floating model are greater than the res-

trained model case. This may be due to the high output force distributions. 

The experimental results are generally in good agreement with the theoret­

ical predictions. Some differences between the theoretical predictions 

and the experimental results may be due to the approximations involved in 

the motion response equations (see also Chapter 4), and in the prediction 

of dynamic structural response values. Some effects of the harnesses 

which hold the model in position in the waves may also be expected in the 

region where excitation frequencies approach the natural frequencies of 

the rigid body oscillations. 

Although the theoretical predictions compare reasonably well with 

the experimental results in the case of a restrained mathematical model, 

one might have expected the theoretical predictions of the bending moments 

at the deck to be higher than the experimental results. This combined 

with the fact that the underestimation of the bending moment values :or 
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the free floating model case suggest that wave inertia coefficients should 

be higher than the values used in these predictions. In general, to deter-

mine the structural response values using the restrained mathematical 

structural model should give safer results. However, a designer who is 

going to use a structural analysis computer routine for the restrained 

model, must also choose support conditions which will give maximum struct-

ural response values under the particular wave loading. 

In Fig. 33, various components of the bending moment values in the 

restrained model case under qu~si-static loading were plotted against 

excitation frequency. This shows that the bending moment values on- the 

deck are highly dominated by the wave loading on the hulls over a large 

range of excitation frequencies. 

2 • CALCULATION OF THE STROCTURAL RESPONSE FOR 

INDErERMINA'IE STROCTURES UNDER WAVE LOADrnG 

In this section a structural analysis procedure to obtain shear 

force, bending moment and axial force values for an indeterminate 

floating structure will be discussed. In the case of an indeterminate 

structure the calculation procedure in terms of loading calculations 

and the selection of boundary conditions will be similar to the case of 

determinate structures. 

In order to perform the structural response analysis of a floating 

offshore rig, the use of a computer routine will be necessary. One 

may either write a structural analysis program for a certain geometry, 

boundary conditions and the type of loading, using classical engineering 

methods [13J. [14J or use general purpose frame analysis routines [lSJ 

[16J . 
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In this study a general purpose two-dimensional frame analysis 

program FRAN2 was used. FRAN2 was originally written in BASIC language 

by I. Smith of the Civil Engineering Department, Glasgow University and 

converted to FORTRAN language and modified to include frame and load 

definition files by the author and C. Bradley, Computer Software 

Assistant, of the Naval Architecture and Ocean Engineering Department. 

In this study, structural analysis calculations were carried out 

for symmetrical geometries, therefore a two-dimensional frame analysis 

computer routine was sufficien~ following the procedure explained in 

section 2.2. In the case of asymmetric geometries, or when there are 

no limitations in terms of time, cost and the storage capability of the 

computer, general purpose three-dimensional space frame computer 

routines are more appropriate. 

2.1 Analysis' of Rigid Plane Frames 

2.1.1 Loading is static or quasi-static. In this section the method 

which was used in FRAN2 will be summarised. The method was first 

devised by Livesley of Manchester University [17, 18J and is known as 

the Stiffness Method in the literature. 

When a single loaded member whose section area is A, second moment 

of inertia I and Young's modulus E, is taken from a frame system, the 

th f and the deflections can be written. following relations between e orces 

For simplicity, the general form of a deflected member can be 

replaced with the superposition of the six cases as shown in Fig. 34. 
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For each case, the well-known relations between the forces and the 

displacements for a cantilever beam can be written [13]. Superposition of 

these cases gives the relations between the end forces and the end dis-

placements of a member. This can be expressed with the following equations. 

[f 1] = [k 11] [d 1 ] + [k 12 l [d2 ] (117) 

[f 2 ] = [k 21 ] [d 1 ] + [k 22 ] [d 2 ] (117-A) 

where 

f f 
Xl x 2 

[f 1] = f , [f 2] = f 
Yl Y2 

m
1 -

m
2 

. EA 
0 0 T 

[k 11 ] 0 
12EI 6EI 

= --
1.. 3 1..2 

0 
6EI 4EI 

-r 1..2 

EA 
0 0 -y 

[k 12] 0 
12EI 6EI 

= 1.. 1.. 2 

6EI 2EI 
0 - -- -r 

1.. 2 

EA 
0 0 -y 

[k
21 

1 
12EI 6EI 

= 0 1.. - -r 
6EI 2EI 

0 -r 
1.. 2 
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EA 0 
T 0 

[k
22 

] 0 12EI 6EI = --y-
,e. 

0 6EI 4EI -- -r t 2 

oX l OX
2 

[d l ] = OYI [d2] = OY2 , 

8
1 82 

The relations between the end forces and the displacements of a 

member can also be expressed in a general form 

f EA 
0 EA 

rox
1 xl -r 0 -y 0 0 

f 0 
12EI 6EI 12EI 6EI -- 0 -- OY 1 Y1 .e. 3 ,e.2 ,e.3 ,e.2 

0 
6EI 4EI 

0 6EI 2El ml -- -y- - -- -y 8
1 t 2 ,e.2 

= • (118) 

f EA 
0 0 

EA 
oX

2 X2 
-7 T 0 0 

f 0 
12EI 6EI 

0 
12EI 6El 

oY 2 1 
- -- - --Y2 ,e.3 .e.2 ,e.3 ,e.2 

i 

0 
6EI 2EI 

0 
6EI 4El ; 

82 1 
m2 - -y- -- TJ t 2 ,e.2 J 

i- i- i-

Force Matrix Stiffness Matrix Displacement 
of a member of a member Matrix of a member 

The stiffness equations written in equations (117) and (117-A) are 

related to the local axes of a member. However, in the case of frame 

systems some members may be inclined at different angles to any direction. 

Therefore it is necessary to choose an overall reference system for a given 

general system. In Fig. 35, the forces and displacement vectors on a 

member are shown with respect to the local and overall axes. 
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The' relation between end forces and displacements of a member in 

local axes and in overall axes can be shown as follows 

F = f cosljJ - f sinljJ 
x'l x, 1 Y, 1 

( 118-A) 

F = f sinljJ + f cosljJ 
Y'l x'l Y'l 

(l18-B) 

Ml = ml 
( 118-C) 

and displacements 

~Xl = OX 1 cosljJ - OX 2 sinljJ (l19-A) 

~Y1 = OX l 
sin-ljJ + OX 2 

cosljJ (119-B) 

81 = 8 1 
(l19-C) 

or, in matrix form 

F cosljJ - sinljJ 0 f 
x, 1 xl 

F = sinljJ cost); 0 f 
Y, 1 Yl 

( 120-A) 

M1 0 0 1 m
1 

-t ~ f 

[F l] = [T] • [f 1 ] 



and 

b.x cosl/J - sinl/J 0 ox 1 1 

b.Yl = sinl/J cosl/J 0 oX
2 (120-B) 

6 1 0 0 1 6 1 

'" '" '" [b.
1 

] = [T] • [d
1 

] 

Similarly it can be shown that. 

(121-A) 

(121-B) 

If we substitute equation (117) into equation (120-A) 

[F ] = [T] • ([k [d] + [k ] [d ]) 
1 11 1 12 2 (122) 

The following relations can also be written from equations (120-B) 

and (121-B) 

[d 1 ] = [T] -1 [b. 1 ] 

[d
2

] = [T] -1 [b. 2] 

When equations (123 ) 

the following relation is 

or 

Similarly 

where [S ] 
1 1 

(123) 

(123-A) 

and (123-A) are substituted into equation (122) 

obtained 

( 124) 

(124-A) 

( 124-B) 

, 

Equations (135-A) and (135-B) are the stiffness equations for any 

individual member of the frame system with respect to the overall axes. 

After having obtained stiffness equations for a member of the frame 

system, the procedure which was followed in the FRAN2 computer program to 



obtain the ends' reactions as well as the joint forces of the frame 

systems can be summarised as follows: 

1. An overall axes system for the frame is chosen and ends 1 and 2 for 

all members are specified. 

2. The frame system is replaced by two cases. In case 1, joints of 

loaded members are fixed and end reactions are calculated. In case 

2, the response of the system to fixed end moments and jOint loads 

is calculated using the stiffness method as follows: 

2.1 Stiffness matrices are formed for each individual member. 

2.2 At each joint the equilibrium equation is written taking into account 

external and internal loads. This process is repeated for all joints. 

2.3 Internal force values are replaced in the equilibrium equations, then 

all the external load values and known displacements are inserted. 

In this way a set of equations can be obtained in which the joints' 

displacements are unknown. 

2.4 The appropriate equations are solved to obtain displacement values. 

2.5 Displacement values are inserted into the stiffness equations to 

obtain the forces and displacement values with respect to overall 

axes for each member. 

2.6 Using the transformation matrices the forces are also obtained at the 

member reference system. 

3. Each members' end forces are obtained from case 2, and superposition 

of case 1 and case 2 gives the structural response values of loaded 

members throughout their spans. 

In the following, the application of the stiffness method will be 

illustrated by calculating the member forces of the frame shown in Fig. 36. 
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Case 1: Fixed end moments for ends 1 and 2 will be 

FEMI 
'B 

= - FEM 
2 , 

B-

WL 2 
= --

12 

" 

Similarly, vertical end reactions take the following form 

CAS!;: 2 

(125) 

(125-A) 

Case 2: There are two internal forces and one external force at both 

points B and C. If we write the equilibrium equations at these points 

[F 2 ] + [F 1 ] 
'B 'B 

(126) 

(126-A) 

The following force equations can be written using equations (135-A) 

and (135-B) 

(127) 

[F 1 ] = 
'B 

(127-A) 
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[F 2 ] = 
'c 

(128-B) 

(128-C) 

Since ends A and B are fixed 

(129 ) 

(129-A) 

When equations (128 - 128-A) are substituted into equation (127) and 

equations (128-B - 128-C) are substituted into equation (127-A) and also 

making use of equations (129) and (129-A), the following simultaneous 

equations are obtained 

(130 ) 

[LC] = [ S 2 1 ]. [6B] + [S ] • [6c] + [S ] [6 ] 
'BC 22'BC 11,CO C 

( 130-A) 

In equations (130) and (130-A) the external loads [LB] and [LC] are 

known, as are the [Sij] matrices. The only unknowns 6B and 6c can be 

obtained from these two simultaneous equations as follows 

= 

[S22 ] + [Sll ] 
, AB 'BC 

[s 21 ] 
'BC 

[S 12 ] 
'BC 

[S22 ] + [Sll ] 
'BC 'CD 

-1 

(131 ) 

The forces at the ends of the members with respect to the local axes 

are as follows 

Member AB, End 1 : [EF 1] = [T ]-1 [S 12 ] [6B] 
AB 'AB 

(132-A) 

End 2: [EF 2] = [T ] -1 [ S 2 2 , AB] [6B] AB 
(132-B) 

Member BC, End 1: [EF 1] 

End 2: [EF 2] 



Member CD, End 1: [EF 1] (132-E) 

End 2: '(132-F) 

2.1.2 Example of the use of FRAN2. The two-dimensional frame analysis 

program FRAN2 is used with the two subsidiary programs DEFRAME and DELOAD. 

DEFRAME was written to store the details of the frame geometry in a 

file. Similarly, DELOAD stores a particular loading case in a file so 

that the effect of changing the structure's geometry and boundary condit-

ions, while retaining the original loading case, can easily be studied. 

The use of DEFRAME, DELOAD and FRAN2 is illustrated with the follow-

ing example. 

In the example, the member forces of the frame shown in Fig. 37 will 

be determined by means of computer input and output. 

2 kN/tn. 

c 

/0.0 
m. 

A 

Fig. 37 

Geometrical Properties of the frame shown in Fig. 37: 

Member Area of Cross-Section Second Moment of Area 
.. 

(mm2 ) (mm4) No. 

1 30 X 10 3 150 X 10 7 

2 30 X 10 3 150 X 10 7 

3 30 X 10 3 150 X 10 7 

Young's Modulus = 210 KN/mm
2

• 
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,>I'(un JJI'\!O: J..1~t" I'(An~ 

ENTER NAME FOR FRAME DEFINITION FILE BEAM3.FRM 

DO YOU UANT FULL DIAGNOSTICS? (YIN) * Y 
HUMBER OF MEMBERS IN FRAME (MAX=40) * 3 
HUMBER OF SUPPORTS (MAX=TOT MEMBERS - 1) * 2 
SUPPORT NUMBER 1 IS NODE NO * 1 
SUPPORT NUMBER 2 IS NODE NO * 4 

DATA ENTERED SO FAR 

FULL DIAGNOSTICS Y 
TOTAL MEMBERS 3 
TOTAL SUPPORTS 2 
SUPPORT NODES 4 
DO YOU UISH TO RETYPE ANY DATA? (YIN) : N 

NUMBER OF SECTION TYPES * 1 

SECTION TYPE 1 
AREA * 30000.0 
I-VALUE *150.0E07 

DATA ENTERED : 

NUMBER OF SECTION TYPES : 

I AREA I-VALUE 

1 0.300000E+05 0.150000E+10 
DO YOU UISH TO RETYPE ANY SECTION DATA ? * N 

***** MEMBER NUMBER 1 ***** 
START NODE NUMBER (MAX = TOT MEMBERS) * 

IS THE NODE A PIN ? : N 
IS THE NODE FIXED IN X,Y,M ? (3*Al) : YY1 

END NODE NUMBER (MAX = TOT MEMBERS) * 2 
IS THE NODE A PIN ? : N 
X PROJECTION FOR CURRENT MEMBER * 0.0 
Y PROJECTION FOR CURRENT MEMBER * 20.0 
SECTION TYPE OF CURRENT MEMBER * 1 

DATA READ FOR CURRENT MEMBER 

START NODE NUMBER = 
FIXED IN X,Y,M ? : Y Y Y 

END NODE NUMBER = 2 
XPROJECTION = 0.000000E+00 Y PROJECTION = 0.2~0000E+02 
SECTION TYPE = 

DO YOU UISH TO RETYPE ANY DATA? (YIN) * N 

~**** MEMBER NUMBER 2 ***** 
START NODE NUMBER (MAX = TOT MEMBERS) * 2 

IS THE NODE A PIN? : N 
END NODE NUMBER (MAX = TOT MEMBERS) * 3 

IS THE NODE A PIN? : N 
X PROJECTION FOR CURRENT MEMBER * 10.0 
Y PROJECTION FOR CURREKT MEMBER * 0.0 
SECTION TYPE OF CURRENT MEMBER * 1 

DATA READ FOR CURRENT MEMBER : 
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START NODE 
END NODE 

XPROJECTION = 
SECTION TYPE = 

NUMBER = 2 
NUMBER = 3 

0.1 0~HJ00E+02 
1 

'Y PROJECTION = 

DO YOU UISH TO RETYPE ANY DATA? (YIN) * N 

***** MEMBER NUMBER 3 ***** 
START NODE NUMBER (MAX = TOT MEMBERS) * 3 

IS THE NODE A PIN ~ : N 
END NODE NUMBER (MAX = TOT MEMBERS) * 4 

IS THE NODE A PIN ~ : N 
IS THE NODE FIXED IN X,Y,M ? (3*Al) : tyy 
X PROJECTION FOR CURRENT MEMBER * 0.0 
Y PROJECTION FOR CURRENT MEMBER * -20.0 
SECTION TYPE OF CURRENT MEMBER * 1 

DATA READ FOR CURRENT MEMBER : 

START NODE NUMBER = 3 
END NODE NUMBER = 4 

FIXED IN X,V,M 1 : Y Y Y 

0.000000E+00 

XPROJECTION = 0.000000E+00 Y PROJECTION = -0.200000E+02· 
SECTION TYPE = 1 

DO YOU UISH TO RETYPE ANY DATA? (YIN) * N 

YOUNG~S MODULUS * 210.0 
IS VALUE 0.210000E+03 O.K. ? (YIN) * Y 
TT6 STOP 
:> 

- 313 -



>RUN DK0: DELOAD 
. ENTER LOADING CASE FILENAME : BEAM3.LOA 

LOADED MEMBER NO * 2 
NUMBER OF POINTS ON SPAN UHERE YOU UANT MOMENT AND SHEAR * 3 
POINT NUMBER 1 FRACTION OF SPAN * 0.0 
POINT NUMBER 2 FRACTION OF SPAN * 0.5 
POI NT NUHBER_ 3 FRACT I ON OF SPAN * 1.0 
VALUE OF JOINT LOAD (ZERO ENDS LIST) * 0.0 
VALUE OF JOINT MOHENT (ZERO ENDS LIST) * 0.0 
VALUE OF POI~r LOAD (ZERO ENDS LIST) * 0.0 
VALUE OF RE~TAHGULAR LOAD (ZERO ENDS LIST) * -2.0 
LOAD DIRECTION- V,H,N- RET FOR DIRN COS'S * V 
START OF LOAD - FRACTION OF SPAN * 0.0 
END OF LOAD - FRACTION OF SPAN * 1.0 
VALUE OF RECTANGULAR LOAD (ZERO ENDS LIST) * 0.0 
VALUE OF TRIANGULAR LOAD (ZERO ENDS LIST) * 0.0 
MOMENT ON SPAN (CLOCKUISE +VE, ZERO ENDS LOADS ) * 0.0 
ARE THERE ANY MORE LOADED MEMBERS? (YIN) * N 
TT6 -- STOP 
:> 

:>RUN DK0: FRAN2 
LISTING DEVICE : BEAM3.RES 

IS THERE A FRAME DEFINITION FILE? (YIN) * Y 
ENTER NAME OF FRAME DEFINITION FILE: BEAM3.FRM 
1ST HER E A LOA DIN G CAS E F I L E ? (y IN) :t: Y 
~HTER LOADING CASE FILENAME : BEAM3.LOA 

SAME FRAME UITH HEU LOAD CASE? (YIN) * N 
TT 6 -- Slap 
>PIP BEAM3.RES/SP 
> 
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F· 1:;'/" ·,··"E· .•. ' .. J .... L··· .. ·'-· I ,-. '-'L''- G~ , r'·.I-I'1 \'·1".1"'1 I·::;' .::;, t-r,.:I_i'·r,.'I:-iI';\ FF:~IN2 

MEMBEP 1 .... '-·EEDOMf"' I-I"," .. 0 0 0 0 1 2 '"l' 
w 

MEME:EF: 2 FF:EEDOc'tjS 1 ,.., -z 4 r.:- , 
" .... 'oJ . ..J 0 

MEiTJBE)::~ 3 rr'EEC o'~r- r=+ I:' 6 .... ,.... ) P.::5 
...J 0 0 0 

TOT(!'IL NUME:EF: OF FF:EEDOMS .. _. 
1:"::1 

NUMBEF: OF MEME:EF:S = .... 
..:.:; 

YOUNG"S MODUlIJE; = 0. 2100E+03 

MEME:E)::: XPF:DJ 'YPF:OJ (~iF~EA I 

1 0.000 20.000 30fZlfZl0. 01:;j0 0.150012)E+10 
2 10.000 0.000 30 (.?)QJ0 • 000 0. 150~t0E+10 
'7( 
'J 0. fZl00 ····::,::0. t:a00 30000. 0t;'3t:a 0. 15000E+10 

***** START OF LOADING CASE ***** 
******** MEMBER NUME:ER ******** 

INTENSITY OF DISTRIBUTED LOAD = "-2.000 
W COMPONENT IN X DIRN = 0.000000 
W COMPONENT IN Y DIRN = -2.000000 
LOAD STARTS AT 0.000000 ENDS AT 
LOAD INTENSITY -2.000000 
END 1 
IN LOC(::iL CDOF:D5 
AXII;L FOF:CE 
F:E(~iCT I ON 
MOMENT 

0.000000 
10.000000 

IN GLOE:f:iL COOF:DS 
FORCE IN X DIRECTION -
FORCE IN Y DIRECTION = 
END 2 
IN LOCPIL coor\D~3 
I'

v I "L F·'(··I··CE Hi .... i·:, •• J '\ .. 
F:Ej~iCT I ON 
(fIOMENT 

0.000000 
10.000000 
16.666666 

IN GLOE:j:iL COOl:;:D5 
FORCE IN X DIRECTION -
FORCE IN Y DIRECTION -
TOTAL HOLDING FORCES 

END 
END 

1 

X 

0.000 
0.000 

0.000001Z/ 
10. 00tt000 

0. 012)001Z\0 
10.000000 

'( 

10.0tt0 
10.000 

10.000000 

···-1 t,666. 6t,6 
166.S6, ,~66 

FREEDOM ACT FORCES CALC FORCES (BEFORE CORRECTS) 
1 0.000000 '-0.000000 

"V , .... ' 

r.:. 
. ..J 

c., 

~I. 0DEI0~~tZl 

. ... liZ! . 0 ~J IJ ~) 1;~1I:1 

.... 16666.666016 

[I, [1000[16 
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DEFLECTIONS x y F.:OTATION 

1 - END 1 
- END 2 

0. 000000E+00 0. 000000E+00 0. 000000E+00 
0.495964E-03 -0. 317460E-01 0. 132294E-03 

MEME:EF~ 2 - END 1 
- END 2 

0.495964E-03 -0. 317460E-01 0. 132294E-03 
-0.495867E-03 -0. 317460E-01 -0.132294E-03 

MEME:EF~ 3 - END 1 -0. 495867E-03 
- END 2 0. 000000E+00 

-0. 317460E-'01 
0. 000000E+00 
COF~F~ECTS ) 

-·0. 132294E·-03 
0. 000000E+00 

FREEDOM 
1 

ACT FORCES CALC FORCES (AFTER 
0.000000 0.000000 

,.., 
~ -10.000000 -10.000002 
3 16666.666016 
4 0.000000 
5 -10.000000 

16666.6679.69 
0.000000 

-'10.000001 
6 -16666,666016 -16666.664062 

MEME:EF\ FORCES 
AXU,L TENS +~'E 
MOM SHEAR +VE IF ·-H . .JE V 1,1.}f\:T MEME:EF..: DIF..:ECTION U 

STAF..:T END 

MEME:Efi: NUME:Ef..: 
AXIAL 
MOMENT 
SHEAR 

MEME:ER NUME:EF..: 
AXIAL 
MOMENT 
SHEAR 

AT SPAN LENGTH 

AT SPAN LENGTH 

AT SPAN LENGTH 

MEME:ER NUME:EF~ 
AXIAL 
MOMENT 
SHEAR 

1 
-10.000001 
-4.164909 

0.624853 

2 
-0.624854 

8.332160 
-10,000000 

0.000000 

5.1)00000 

10.000000 

3 
-1~1. 000001 

8.332161 
O · ...... .'181- ..... -- • 6~{-r . ::.J-'::' 

-'10,000001 
8.332161 
0.624853 

O ' .... 4,..,r::-4 ._. .0":': 0 .... 1 

8.332163 
10.000000 

i"iOMENT == 0. 8332160E+01 

MOMENT == -·0. 1 .. , , .... (""'4r.:- ~ 0"" bb\:,/ C) .::.., ....... '.:.:.. 

i'riO~iENT .- o 0 .............. 1 ' ...... -4.01 
J • 0..;)..;)":':' 0-'::'1:;.'." 

····10. 00001~1 
·_·4. 16·-:f909 
--I~. 62.:t853 
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2.2 Calculation of Stnlctural ReSp?I1se Values for '!Win Circular Hulled 

Semi -Su1::rrersible M:Xiel with Bracings 

The twin circular hulled semi-submersible model whose space frame 

representation is shown in Fig. 38, will be analysed in order to obtain 

the structural response values using FRAN2 with the procedure described 

in the following. 

Fig. 38 
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When the platform is considered to be restrained in beam seas, the 

structural loading may be represented as the superposition of the follow-

ing cases in order to analyse a three-dimensional structure with a series 
,-

of two-dimensional frame representations. 

Case (a): 

10 XVIII 7 

"(' ;,' 

1Il II 

_---'--------J-4--___ .......... 3 __ ;_~ _---+-.2.--1 v:) W 

,./' w'x 

> r I I I I 1 I I tIl 11 J I 111 1 I I 11 JJ ~ 
ITIIJ !IID l1lIl rrrn 

Case (b): 

C" 'I J .2 I / 

~~~------~~------~M------~~--' 

Fig. 39-b 
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Case (c): 

7 17 
~--------~--~---------

1.2 ' 

12. 

"""IE'Ec---' 1< + i? 
2, V 3.1 V 

12/2 v t P13" _. ---~> 
I / 

111 
2,w T e.3/ w 

I 12 12 -t ,w 

Fig. 39-c 

Case (a): It is assumed that the hull (Member I) columns (Members II,III, 

IV,V) and longitudinal deck girder (Member XIII) can be isolated from the 

structure and loaded in u-w plane with wave loading (Fig. 39-a). The frame 

is constrained from nodes 7,10 with simple supports. Structural analysis 

under this loading yields axial forces on the hull, on the columns and on 

the longitudinal deck girder, as well as shear forces and bending moment 

values for the longitudinal deck girder. The analysis also yields shear 
, 

forces and bending moment values for the hull in u-w plane. A similar 

analysis is carried out for the right hand side of the structure, i.e. 

"Members VI,VII,VIII,IX and X. 

Case (b): The hull is constrained with simple supports (which are 

assumed to be provided by the extended column ends in the hull) and loaded 

in the u-v plane with wave loading (Fig. 39-b). This case yields the 

shear force and bending moment values in u-v plane. The total shear force 

and bending moment values on the hull will be the vectorial summation of 

the two groups of results obtained in Cases (a) and (b). The same proced-

ure is repeated for the second hull (Member VI) . 
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Case (c): The loading case shown in Fig. 39-c was chosen to determine 

the structural response values on the transverse deck girder as well as on 

the horizontal and inclined bracings. R, 
~/W 

and R, values are column 
~, 

v 
reactions obtained from Cases (a) and (b) respectively. 

The structural response analysis of the frame shown in Fig. 39-c is 

carried out by breaking the wave loading down as symmetrical and asymmet-

rical forces and choosing the constraints of the structure as illustrated 

in Fig.- 39-c-l. 

17 

v 

1+ 
XV!I 

122 1" f(3 
I v IV 

~R = (R
12 

+ R ) - (R + R ) 
13 , 2 I 3 I 'v V V v 

~f = (f + f ) - (f + f ) 
v'VII v/VIII V'II v'III 

Fig. 39-c-l 

Finally, structural response values for columns can be determined 

from the following loading cases as illustrated in Fig. 39-d and 39-e. 
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GENERAL VIEr, OF TIlE SEI11-SUlJ!'ERS 1BLE 

'fODEL rnTH BP-ACI:iG ARPA'iGE~'EIiTS 

\ 
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Case (d): 

II 

\J 'l 
-

1<.2.11 'gJ 

1<21 'i. V 11 
I 

~ .-- +<:; 
I v 

Fig. 39-d f l? 
2, W 

Case (e): 

Fig. 39-e 

t~ 
3, w 

Structural response values for Members III - V and VII - X can be 

obt~ined with similar representations. 

Maximum shear force and bending values on the columns will be the 

vectorial summation of the two groups of results obtained in Cases (a), 

(d) and (e). 

The analysis procedure summarised above was applied to the twin 

circular hull semi-submersible model shown in Fig. 40. (Structural 

details of the model are given in Appendix 1 and frame representation 

of the model shown in Fig. 38.) The bending moment values at the 
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centre of the transverse deck beam were calculated and results are shown 

in Fig. 41. The results of the experimental measurements for the same 

model were also plotted in the same figure. The theoretical predictions 

and the experimental measurements of axial forces on an inclined bracing 

of the same structure are shown in Fig. 42. 

Fig. 41 and Fig. 42 show that the theoretical predictions compare 

reasonably well with the experimental predictions. However, as was 

the case where the model had no bracings, the theoretical predictions 

for the restrained mathematical model should have been found higher than 

the measured values of the free floating model. This may also indicate 

that the inertia coefficients used in the predictions should be higher 

than the estimated values. The increase in the wave inertia 

coefficients may be due to a hull-column interference effect which has 

not been studied in this research. The study reported in reference [19J 

also shows that measured wave inertia coefficients in sway mode for a 

semi-submersible model which was held fixed in waves are 20 - 50% higher 

than the calculated wave inertia coefficients. 

The nature of the increase may be studied more in detail by 

measuring the wave forces on the elements of the structure individually 

and on the complete assembly of the structure. 

2.3 Calculation of Structural Response Valoos for 

FUll Scale Twin, Circular Hull Semi-Submersible 

The structural response calculation procedure for a restrained 

mathematical model summarised in this chapter was applied for a twin 

circular hull semi-submersible design with bracing arrangements. The 

geometrical and the structural details of the semi-submersible are given 

in Fig. 43 and the space frame representation of the structure is shown 

in Fig. 44. 
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Fig. 41 
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Fig. 43 
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The structural response calculations were carried out for the head 

and beam sea conditions under the non-linear wave loading. Results 

have been presented to indicate maximum response values on each 

structural element versus excitation frequency. 

Comparisons between Figs. [(45-a) - (45-c)] and [(46-a) - (46-c)l 

indicate that since the maximum structural response values on the hull 

and on the longitudinal deck girder occurred in beam seas, it may be 

suqqested that the beam seas case should dictate the structural design 

of longitudinal strength members. Comparisons of structural response 

values on the columns [Figs. (45-a) - (45-c), (46-a) - (46-c) and (47-c)] 

show that beam seas should also dictate the structural design of columns. 

Figures ~(47-a) - (47-c~, ~(48-a) - (48-e~ and [(49-a) - (49-c)] show 

the structural response values of the transverse strength members. 

These figures show that the effect of bracing elements on the structural 

response of the transverse deck girder is considerable. The addi tion 

of the horizontal bracing also significantly reduces the structural 

response values on the columns and on the inclined bracing elements. 

If lower horizontal bracings had existed between legs D and C as 

well as on C and B on the structure shown in Fig. 28, the Alexander 

Kielland accident, due to failure of the lower horizontal bracing 

between legs E and D would possibly have been avoided. 

The result presented in Figs. (45) - (47) can be readily incorporated 

into the spectral analysis to determine the statistical values for a 

detailed structural analysis. 
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Chapter 6: DESCRIPTION OF THE COMPUTER 

PROGRAM FLUID4A 
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INTRODUCTION 

In this chapter the FLUID4A computer program will be de-

scribed. FLUID4A is a special purpose program which has been 

written for a semi-submersible geometry of twin circular hulls 

with four columns in ~rder to compare theoretical calculations 

with the experimental results. 

FLUID4A consists of several subroutines which calculate the 

wave loading distributions on the members of the above mentioned 

geometry, as well as the motion and structural responses under the' 

calculated wave loading. 

FLUID4A has been written in FORTRAN programming language and 

runs on the Hydrodynamic Laboratory's PDP 11/40 computer at the 

University of Glasgow. 

storage space. 

FLUID4A requires about 30K words of 

1. DESCRIPTION OF SUBROUTINES 

1.1 Subroutine FLUID4A 

This subroutine reads the input data from the terminal and 

generates the nodal points on the hull where the force distrib­

utions due to wave and rigid body motion will be calculated. 

Subroutine FLUID4A calculates the wave loading distribution 

on the hull in head sea conditions. The calculation procedures 

are based on the theoretical formulations given in chapters 2 and 3. 

Subroutine FLUID4A calls the following subroutines: 
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1) MOT 

2) r·1OTl 

3) COLUMN 

4) FLUID3 

Subroutine FLUID4A also writes the following data onto 

output file: 

a) The title 

b) Summary of the geometrical data 

c) Summary of the wave data 

d) Summary of the vertical and horizontal forces 

on the structure in head sea conditions 

e) Distribution of the vertical and horizontal 

forces on the hull in head sea condition 

1.2 Subroutine FLUID3 

This subroutine calculates wave loading distributions on 

the hull in beam sea conditions. As with the subroutine FLUID4A, 

calculation procedures are based on the theoretical formulations 

given in chapters 2 and 3. 

The geometrical and the wave data are transferred from the 

subroutine FLUID4A to FLUID3A. 

Subroutine FLUID3 calls the following subroutines: 

1) FLUID 

2) COLUMN 

3) FRAN 1 

4) MOT 2 
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Subroutine FLUID3 writes the following data into the 

output file: 

1.3 

a) Summary of the vertical and the horizontal 

forces on the structure in beam seas 

b) Distribution of the vertical and the horizontal 

forces on the hull in beam sea conditions 

Subroutine COLUMN 

This subroutine generates the nodal points along the columns 

of the structure (Fig. 1). 

It provides the data to subroutine FLUID2 which calculates 

the wave loading on the columns of the structure. 

Subroutine COLUMN writes the following data into the 

output file: 

a) Distribution of drag and inertia coefficients 

along the nodal points of the columns 

b) Distribution of Reynolds and the Keulegan­

Carpenter numbers along the nodal points of 

the columns 

c) Distribution of the drag, acceleration and the 

total forces along the nodal points of the 

columns 

d) Total horizontal column forces and moments 

(about the free-surface) 

Subroutine COLUMN calls the subroutine FLUID2 and returns 

the calculated values to subroutine FLUID4A and FLUID3. 
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1.4 Subroutine FLUID2 

This subroutine calculates total wave forces on the vertical 

circular cylindrical members which are working in any wave loading 

regime, such as drag, drag + inertia, inerUa or diffraction. 

FLUID2 calls the subroutine LARGE for the wave loading calculations 

in the diffraction regime. For the circular cylindrical members 

which are working in drag or drag + inertia regimes FLUID2 divides 

the vertical column into 20 equal spaces along the length starting 

from the still water level and calculates wave particle velocity 

and acceleration as well as Reynolds and Ke\\legan-Carpenter numbers 

at each division. Drag coefficients and drag forces are calculated 

and transferred to FLUID2 by subroutine FLUID. 

FLUID2 calculates the inertia coefficients at each division 

as a function of K~~.legan-Carpenter number and the drag coefficients 

using the semi-empirical relations given in Figs. 2 and 3. 

Once the inertia coefficients are determined FLUID2 calculates 

the inertia forces and the total inertia and drag forces at each 

division. 

FLUID2 also calculates the total wave force and the moment (about 

the still water level) on the vertical column by carrying out the 

integration over the 21 divisions. 

used to perform the integrations. 

Simpson's integration rule was 

FLUID2 returns the following data to subroutine COLUMN: 

a) Drag and inertia coefficients on each division 

(Total of 21 divisions along the column length 

under the water) 
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b) Reynolds and Ke.l!legan-Carpenter numbers on 

each division 

c) Drag, acceleration and total forces on each 

division 

d) Total force and moment on each vertical column 

FLUID2 writes the following data into the output file: 

a) Diameter over wave length ratio 

b) Total drag force on the vertical column 

c) Total inertia force on the vertical column 

d) Total drag and inertia force on the vertical 

column 

e) Total moment on the vertical column 

(Moment is taken about the still water surface) 

f) Centre of total force (from the water surface). 

1.5 Subroutine LARGE 

When a vertical column is working in the diffraction regime, 

force calculations are performed by LARGE. This subroutine uses 

the calculation procedure described in chapter 2 for the large 

-
diameter circular cylinders. 

LARGE calls the subroutine BESSEL for the determination of 

the Bessel functions of the first and second kinds. 

LARGE subdivides the vertical column into 20 equal spaces 

and determines the wave coefficients (C ) and the total forces at 
M 

each division. 
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LARGE also calculates the total force and the moment on the 

vertical large column by integrating the force values calculated 

on each division. 

the integrations. 

Simpson's integration rule was used to perform 

LARGE writes the following data into the output file: 

a) Diameter over wave length ratio 

b) Total force on the large column 

c) Total moment on the large column 

(Moment is taken abo~t the still water surface) 

d) Centre of total force (from water surface) 

1.6 Subroutine BESSEL 

This subroutine calculates BESSEL functions of the first and 

second kinds and returns the data to LARGE for the calculation of 

the wave forces on large diameter circular cylinders. 

1.7 Subroutine FLUID 

FLUID calculates the drag coefficients and the water part­

icle velocity induced forces on the circular cylindrical members. 

At the time of the writing of this computer program, the only 

experimental "data on drag coefficients available over a large 

Reynolds number range, and which took into account the changes in 

the flow field due to the surface roughness as well as the inter­

ference effects between the closely spaced circular cylinders, were 

steady flow results. This design data, published in Ref. 1, was 

used to develop subroutine FLUID. 
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In order to calculate the drag coefficients for a given 

diameter of cylinder and a given water particle velocity using 

the design data presented in Ref. 1 FLUID requires the following 

input: 

a} Kinematic viscosity of the fluid domain 

b) Surface roughness ratio E/D where E is mean 

surface roughness 

c} Angle between the flow velocity vector and 

the cylinder axis 

d) The distance between the circular cylinder on 

which wave forces are calculated and the 

neighbouring cylinder which is in close proximity 

e) The ratio of the mean square value of the longi-

tudinal component of fluctuating velocity in the 

flow field over the water particle velocity, i.e. 

lu2 Iv 
00 

f) The ratio of the diameter of a circular cylinder 

over the lateral integral of free-stream turbulence 

i.e. D/L 
s 

Input requirements defined in (e) and (f) can be found in 

Ref. 1 for various environmental conditions. 

Subroutine FLUID calculates the drag coefficients with the 

following steps: 

1} 

2) 

Calculate the Reynold's number 

If Reynold's number smaller than 10
4 

obtain 

C coefficients from Fig. 8 or 9, otherwise 
D 

continue with step 3 
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Obtain turbulence factor from Figs. 4 and 5 

4) Obtain roughness factor from Fig. 6 

5) Obtain CD coefficient from Fig. 7 using 

Reynold's number as well as turbulence and 

the roughness factor 

FLUID also corrects the drag coefficients obtained from the 

measurements taken from the single cylinder in order to take into 

account the interference, using the information contained in Figs. 

22 and 23 of chapter 2. 

If this subroutine is to be modified for the calculation of 

drag forces on full-scale structures, taking the interference into 

account, the drag coefficients obtained from the experiments which 

were carried out in the high Reynold's number range need to be used. 

Extensive model testing carried out with circular cylinder arrange­

ments in a wind tunnel and reported in Ref. 3 could provide sub­

stantial data for the modification of this subroutine for the drag 

force calculations in super-critical Reynold's number ranges. 

However, the most reliable estimates of drag forces on a full-scale 

floating structure with a complex geometry could only be obtained 

from experiments in which the whole complex structure is tested in 

the super-critical Reynold's number range. 

A comparison of the measurements of the forces obtained from 

a complex offshore structure model and the computer calculations 

of the forces on the same structure using the available experimental 

results of the simple member configurations would also provide a 

reliability margin for the computer calculations. 
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FLUID calls the following subroutines: 

1) FACE 

2) REAR1, REAR2, REAR3, REAR4, REARS 

Subroutine FLUID returns the drag coefficient to the 

subroutine FLUID2 and writes the following data into the output 

file if required: 

a) Reynold's number of a single cylinder, the 

critical Reynold's number and the corrected 

Reynold's number 

b) A single cylinder's drag coefficient, and the 

drag coefficient corrected for interference 

c) Total drag force on the single cylinder, and 

the drag force corrected for interference 

1.8 Subroutine FACE 

FACE calculates relative roughness (roughness height/cylinder 

diameter) in order to call appropriate subroutines which contain 

CD values of Fig. 7. When the relative roughness value in a 

particular case is different for the value which is plotted in 

Fig. 7, FACE carries out the linear interpolation between the two 

C curves whose relative surface roughness parameters are close to 
D 

the relative roughness of the particular case in question. 

Subroutine FACE calls the following subroutines: 

INTER1, INTER2, INTER3, INTER4, INTERS, INTER6, INTER7, 

INTER8, INTER9, INTR10, INTR11, INTR12. 

Subroutine FACE returns the drag coefficients of a single cylinder 

to subroutine FLUID. 
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1.9 Subroutines INTER1, INTER2, INTER3, INTER4, INTERS, 
INTER6, INTER7, INTER8, INTER9, INTR10, INTRll , INTR12 

These subroutines contain the drag coefficients for the 

twelve different relative _~urface roughness parameters given in 

Fig. 7. In each of these subroutines 28 drag coefficients, 

corresponding to Reynold's numbers which are modified by the 

surface roughness and the turbulence factors, were stores. These 

subroutines call subroutine INTER and return the single cylinder's 

drag coefficients to subroutine FACE. 

1.10 Subroutine INTER 

-

INTER carries out the linear interpolation between stored 

drag coefficients for a given modified Reynold's number and returns 

the interpolated value to a subroutine which calls INTER. 

1.11 Subroutines REAR1, REAR 2 , REAR 3 , REAR4, REARS 

The drag coefficients of a cylinder situated behind another 

cylinder in a steady flow for five difference Reynold's numbers 

(Fig. 22 of chapter 2) are stored, for varying spacings between the 

cylinders, in subroutines REAR1, REAR 2 , REAR 3 , REAR4, REARS. 

When the Reynold's number of a particular cylinder is differ-

ent from the value plotted in Fig. 22 of chapter 2, these subroutines 

carry out a linear interpolation between the two CD curves whose 

Reynold's number parameters are close to the Reynold's number of 

the particular cylinder in question. 

These subroutines return the drag coefficients of a rear 

cylinder to subroutine FLUID. 
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For the purpose of linear interpolation between the 

Reynold I s numbers REAR2 calls REAR1, REAR3 calls REAR 2 , REAR4 

calls REAR3 and REARS calls REAR4. 

1 . 12 Subroutine MOT 

This subroutine basically re-arranges the geometrical data 

to be used for subroutines HYDRaS and NAT. The geometrical par-

ticulars of the semi-submersible are passed to MOT from FLUID4. 

MOT calls subroutines HYDRaS and NAT and returns the 

calculated values to FLUID4A and to NAT. 

1.13 Subroutine HYDRaS 

Subroutine HYDRaS was written in order to generate data for 

the construction of the hydrostatic curves of a twin-circular 

hulled semi-submersible with 8 columns and bracings (see Table 1). 

HYDRaS divides the draft into 20 equal levels and it calculates the 

following variables at each level: 

a) Cubic displacement 

b) Mass displacement 

c) Vertical centre of buoyancy 

d) Longitudinal centre of buoyancy 

e) Transverse BM 

f) Longitudinal BM 

g) Water plane area 

h) Total wetted surface area 

HYDRaS calls the subroutine HYDRO and returns the calculated 

values to subroutine MOT. 
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HEIGHT DISPLACEMENT ( CM*3 ) DISPLACEMENT (GRS) t<E: LCE: 
2.25 4612.95 4728.27 1.33 7-' -,C' .:.. • ..:.;.;1 

4.50 12337.11 12645.54 2.64 72.25 
6.75 21221.49 -'17C'-' 0-' "" ;;;J.:... .:.. 3.89 72.25 
9.00 26335.95 26994.34 4,56 7'" ,.,C' .:.. • .:....J 

11. 25 31472.25 32259.06 4.62 72,25 
13.50 39092.08 40069.38 5.48 7'" '"').:-.:..,:".J 

15.75 4C"C'C'8 -,'") ..J;;J;;J • .:...:.. 46697.17 7.19 7-' -,1:" .:.. • .:...0;) 

18.00 46963.09 48137.17 7.48 72.25 
20.25 48367.97 49577.17 7.82 72.25 
"" co0 .:..:..IJ 49772.84 51017.16 8.20 7'" '"').:-.:.. • .:..;J 

24.75 51177.72 52457.16 8.62 7-' -,1:" .:.. • .:..;.;1 

27.00 ':-'")':-8-' 60 ;J.:..;;J .:.., 53897.16 9.08 7'" ,.,C' .:.. . .:..~ 
"9 ")co .:. • ..:.iJ 53987.47 55337.16 9.58 7'" -,C' .:.. • .:..;;J 

31.50 55392.35 56777.16 10.11 7'") -,.:-.:... • .:..;;J 

33.75 56797.22 58217.15 10.66 72.25 
36.00 58202.10 59657.15 11.25 7'" '")C' .:.. • .:..;J 

38.25 59606.97 61097.14 11.86 72.25 
40.50 61011.85· 62537.14 12.49 7'-' -,C' .:.. • .:..;J 

42.75 62416.72 63977.14 13.15 72.25 
45.00 63821.60 65417.14 13.82 7'") ,.,1:" 

.:.. • .:..;.;1 

HEIGHT E:M ElML WATER PLANE AREA TOTAL SURFACE AF~EA 

2.25 2689.01 4484.09 2971.93 3334.65 
4.50 544.72 533.01 3779.17 4874.59 
6.75 339.21 331.53 4043.42 6207.69 
9.00 261.92 256.18 3877.34 7524.56 

11.25 181.25 177.74 3214.92 8992.07 
13.50 67.85 66.84 1501.69 11169.17 
15.75 23.'97 23.34 624.39 13137.45 
18.00 23.26 22.64 624.39 13694.17 
"0 ")5 .... ..:.. -,.-, C'8 

.:...:...;.;1 21.98 624.39 14250.89 
22.50 21.94 21.36 624.39 14807.61 
24.75 21.34 20.78 624.39 15364.33 
27.00 20.77 20.22 624.39 15921.06 
"9 '"'C" ... • ..:...,J 20.23 19.70 624.39 16477.78 
31.50 19.72 19.20 624.39 17034.50 
33.75 19.23 18.72 624.39 17591.22 
36.00 18.77 18.27 624.39 18147.95 
38.25 18.32 17.84 624.39 18704.67 
40.50 17.90 17.43 624.39 19261.39 
42.75 17.50 17.04 624.39 19818.11 
45.00 17.11 16.66 624.39 20374.83 

TABLE 1 
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1.14 Subroutine HYDRO 

Subroutine HYDRO calculates the hydrostatic variables 

listed in section 1.13 for a given draft level. In addition 

for the whole structure, if required, HYDRO writes the following 

information into the data file for each member of a semi-submersible: 

a) Co-ordinates 

b) Volume 

c) Volume centre 

d) Wetted surface area 

HYDRO returns the calculated values to subroutine HYDRaS. 

1.15 Subroutine NAT 

Subroutine NAT calculates the added-mass in the heave mode 

and the mass moment of inertia, as well as the added mass moment of 

inertia in the roll and pitch modes, using the formulations given in 

chapter 4. 

NAT also ca~culates the natural frequency of the structure 

in the heave, roll and p"ti.tch modes using the hydrostatic data 

calculated by HYDRaS. 

NA~ calls the subroutine FIT and returns the calculated 

values to MOT. 

1.16 Subroutine FIT 

Subroutine FIT contains the curve-fit form of the added-mass 

and added-mass moment of inertia data for vertically oscillating 

rectangular strips in unbounded fluid. FIT returns the added-mass 

and added-mass moment of inertia coefficients to subrountine NA~. 
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1.17 Subroutine t1arl 

Subroutine Marl calculates the heave and the pitch responses 

of a twin circular hulled semi-submersible in head sea condition. 

In addition to the response values, it also calculates the heave and 

pitch rigid-body accelerations and the phase angles between the 

exciting force and the motion. MOT 1 is based on the calculation 

procedure to determine the motion response of single degree of 

freedom system which was discussed in chapter 4. 

file: 

Subroutine MOTl writes the following data into the output 

a) Heave response and translationa~ rigid-body . 

acceleration of centre of rotation in head sea 

condition 

b) Pitch response and rotational rigid-body 

acceleration in head sea condition 

c) Motion response operators, i.e. Heave response/ 

wave height, Pitch response/wave height 

d) Phase angle between the heave force and heave 

response and phase angle between the pitching 

moment and pitch response. 

1.18 Subroutine MOT2 

Similarly to MOT1, subroutine MOT2 calculates the heave and 

roll responses of a twin circular hulled semi-submersible in beam 

sea condition. 

Mar2 writes the following data into the output file: 
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1.19 

a) Heave response and translational rigid-body 

acceleration of the centre of rotation in beam 

sea condition 

b) Roll response and rotational rigid-body 

acceleration in beam sea condition 

c) Motion response operators, i.e. Heave response/ 

wave height, Roll response/wave height 

Subroutine FRAN1 

Subroutine FRAN1 calculates the maximum axial force, shear 

force and bending moment values at the deck of a twin circular 

hulled semi-submersible model. The model represents a determinate 

structure and FRAN1 uses the formulation given in chapter 5 for a 

determinate structure with restrained boundary conditions. 

FRAN1 writes the following data into the output file: 

a) Maximum axial force on the deck 

b) Maximum shear force on the deck 

c) Maximum bending moment on the deck 

d) Maximum bending moment/wave height 

Table 2 summarises overlay tree of program FLUID4. 

As more data on wave coefficients become available from 

either laboratory experiments or full-scale measurements, relevant 

subroutine modules can easily be replaced with improved ones for 

better simulation of the motion and structural response of twin 

circular hulled semi-submersibles. 
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Subroutine FLUID2 and the associated subroutine modules 

can be easily adopted to any other program with which the calculation 

of wave loading on a circular cylinder is sought. Similarly, sub-

routine FLUID and the associated subroutine modules can be adapted to 

any other program with which the current-drag or wind-drag forces on 

circular cylinders are to be predicted. 

2. DESCRIPTION OF INPUT AND OUTPUT DATA 

2.1 Input Data 

The input data consists of the geometrical characteristics 

of the platform, as well as the wave particulars. Additional data 

in relation to the flow field and the control parameters for the 

output files were included as fixed data in FLUID4A in order to 

minimise the input information for frequency domain calculations. 

The variables of fixed data are defined as follows: 

U : Control number. If U = 1.0, subroutine FLUID writes 

the data described in seciton 1.7 into the output file. If 

U = 2.0, this data is not written into the output file. 

TF : Turbulence factor which is defined as the mean square 

value of the longitudinal component of the fluctuating velocity in 

the flow field over the water particle velocity. 

for TF can be found in Table I of Ref. 1. 

Appropriate values 

TS : Turbulence scale which is defined as the ratio of the 

diameter of the circular cylinder over the lateral integralof free-

stream turbulence. 

Table I of Ref. 1. 

Appropriate values for TS can also be found in 
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A : The angle between the axis of a circular cylinder and 

the flow direction. 

AS : The distance between the circular cylinder on which wave 

forces are calculated and the nearest neighbouring circular cylinder. 

SR Surface roughness ratio. This value can be calculated 

using the typical effective roughness height of various materials 

given in Table II of Ref. 1. 

PC : Control number to identify the position of the cylinder 

for drag force calculations by taking the interference into account. 

If PC = 1.0, cylinders are situated one behind the other, and if 

PC = 2.0, cylinders are situated side by side. 

The units system used in the program is summarised in Table 3. 

The input data should be compatible with these units. 

UNIT 

LENGTH 

AREA 

DISPLACEMENT (CUBIC) 

DISPLACEMENT (MASS) 

ACCELERATION 

DENSITY 

VISCOSITY 

DAMPING COEFFICIENTS 

FREQUENCY 

FORCE 

1-10MENT 

FULL-SCALE MODEL-SC~.LE 

Meters Centimeters 

Meter-square Cms-square 

Meter-cub Cms-cub 

Tons Grams 

m/sn2 cm/sn2 

Tons/m3 Grs/cm3 

cm2 /sn 

Non-dimensional 

Rad./sec. 

K-Newtons 

KN-Meters 

TABLE 3 
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The input data required to run FLUID4A is prompted by the 

main programme on the user's terminal as seen in Fig. 1. 

has to enter the data after the asterisks. 

The user 

2.2 Output Data 

FLUID4A was run for the geometry of twin circular hulled 

semi-submersible model whose details are given in Appendix 1. The 

typical output of this run is shown in Table 4. The motion and 

the structural response values calculated using FLUID4A were shown 

in chapters 4 and 5.respectively. 

The variable names used in the output can be interpreted as 

follows: 

VHPF 

VHAF 

THF 

VCF 

TF 

THFI 

HHPF 

HHAF 

HHVF 

THHF 

The ratio of instantaneous time during a wave 

cycle to the wave period 

vertical wave pressure force on the hull 

vertical wave acceleration force on the hull 

Total wave force on the hull 

Total wave force on the column 

Total vertical wave force on the hull and 

column (Head sea condition) 

Integration of TF along the hull length 

Horizontal wave pressure force on the hull 

Horizontal wave acceleration force on the hull 

Horizontal wave velocity force on the hull 

Total horizontal wave force on the hull 

(Beam Sea condition) 
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TVF 

CD 

CM 

REN 

CKN 

Tota1 vertical wave force on the hull and 

column (Beam sea condition) 

Drag coefficient 

Inertia coefficient 

Reynold's number 

Keulegan-Carpenter number 
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l 

UAVE LOADING, MOT I ON AND STRUCTURAL RESPONSE CALCULAT IONS 
FOR TUIN HULL TYPE SEMI-SUBMERSIBLES 
.---~--------- - -- - ------ - - --------. ---- - - - - - -- --------- -- -- -----. 

GEOMETRICAL DATA: 
-----------­.----

LENGTH OF STRUCTURE=144.59 DEPTH OF STRUCTURE= 57.00 
UIDTH OF STRUCTURE= 104. 9S 
DRAFT= 38. ie PONTOON D I AMETER= 14.99 
DIAMETER OF COLUMNS= 11. 4e, 8.39 
DISPT= 59606.82 GM= 6.22 GML= 4.44 
NATURAL HEAVING FREQUENCY= 2.36 
NATURAL ROLLING FREQUENCY= 1.15 
NATURAL PITCHING FREQUENCY= 1 .12 
UAVE DATA: 
----------
UAVE HEIGHT= le.ge 
UAVE FREQUENCY= 3.09 (RAD/SEC) 
ACCL.OF GRAVITY=981.00 
DENSITY= 1.00 
VISCOSITY=0. 15E -01 
UAVE LOADING 
_.--------- ---- - - -----
HEAD SEAS 

lOTAl VERTICAL FORCES AND MOMENTS ON THE HULL 

Tl/T=0.000 

TOTAL HULL FORCE= -1396991.37 
TOTAL COLUMN FORCE= 1181472.75 

TOTAL HULL+COLUHN FORCE= -215518.63 
CENTRE OF TOTAL FORCE= -9.~0 

lOTAL FORCES ON THE STRUCTURE= -431037.25 
lOTAL MOHENT ON THE STRUCTURE= 12. e0 

~ODES VHPF VHAF THF 
1 -4106.62 -4106.62 -8213.24 
2 -4418.87 -4418.87 -8837.74 

21 -4557.08 -4557.98 -9114.16 
3 -4682.83 -4682.83 -9365.65 

29 -4795.77 -4795.77 -9591.54 
4 -4984.15 -4984.15 -9968.30 

19 -5116.61 -5116.61 -10233.23 
5 -5150.25 -5150.25 -10390.59 

18 -5176.42 -5176.42 -10352.84 
6 -5194.91 -5194.91 - HJ389 • 82 
7 -5209.83 -5209.83 -19419.65 
8 -5194.91 -5194.91 -10389.82 

14 -5176.42 -5176.42 -10352.84 
9 -5159.25 -5159.25 -10309.59 

15 -5116.61 -5116.61 -19233.23 
19 -4984.15 -4984.15 -9968.30 
16 -4795.77 -4795.77 -9591.54 
11 -4682.83 -4682.83 -9365.65 
17 -4557.08 -4557.08 -9114.15 
12 -4418.87 -4418.87 -8837.74 
13 -4U6.62 -4106.62 -8213.24 

VCF 
0.00 
e.00 

32833.75 
32833.75 
32833.75 

0.00 
26076.08 
26976.08 
26976.08 

0.ge 
0.99 
e.~0 

26"76.08 
26076.08 
26076.08 

e.e9 
32833.75 
32833.75 
32833.75 

0.90 
e.ee 

TF 
-8213.24 
-8837.74 
23719.59 
23468.09 
23242.20 
-9968.30 
15842.86 
15775.58 
15723.24 

-10389.82 
-19419.65 
-10389.82 

15723.24 
15775.58 
15842.86 
-9968.3~ 

23242.21 
23468.10 
23719.60 
-8837.74 
-8213.24 
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TABLE 4 

THFI THHI 
e.00 e.ee 

-97190.59 6447744.00 
-148353.59 9412948.0" 
-201020.97 12165414.00 
-255049.00 14681285.0e 
-368007.09 18958394.00 
-484670.91 22032310.00 
-527278.44 22823454.00 
-570134.13 23441422.00 
-612656.56 23879248.01 
-698495.69 24232826.~e 

-784334.81 23879248.~0 

-826857.25 23441422.09 
-869712.94 22823454.90 
-912320.44 220323HL00 

-1028984.25 18958306.00 
-1141942.37 14681288.e~ 

-1195970.37 12165"'7.~0 

-1248637.87 9412952.00 
-1299810.75 6447749.08 
-1396991.37 6.0i 



COLUMN NUMBER=l 
---------------

NODES CD CM REN CI{N DIAMETER/UAVE LENGTH= 0.02 
22 1. 08 1. 87 9147.04 2.21 SINCE D/L<0.2 MORISON EG. IS USED 

DRAG FORCE ON THE CIRCULAR CYLINDER= 22260.982 23 1. 09 1. 86 9664.66 2.34 -

24 1. 10 1. 84 10211.57 2.47 ACCL. FORCE ON THE CIRCULAR CYLINDER= -79894.438 
TOTAL FORCE ON THE,CIRCULAR CYLINDER= -57633.453 ')to 1. 12 1.83 10789.44 2.61 
TOTAL MOMENT ON THE CIRCULAR CYLINDER= -682734.312 

~ ... 
26 1. 13 1. 82 11400.00 2.75 

NO[IES IDF TAF TCF CENTRE Of TOTAL FORCE= 11.846 (FROM UATER SURFACE) 
22 720.45 -3020.18 -2299.73 
23 813.57 -3169.72 -2356.15 
24 918.60 -3325.02 -2406.41 
r,c 
...... 1037.09 -3486.18 -2449.09 
26 1170.38 -3653.39 -2483.00 

LV 
'-.I COLUMN NUI~BER=2 (j) 

---------------

NODE.S CD CM REN CKN DIAMETER/UAVE LENGTH~ 0.01 '17 1. 01 1.80 6659.69 3.04 SINCE D/L<0.2 MORISON EO. IS USED 
L I 

28 1. 02 1. 79 7036.55 3.21 DRAG fORCE ON THE CIRCULAR CYLINDER= 18365.928 29 1. 03 1. 77 7434.74 :3.39 ACCL. FORCE ON THE CIRCULAR CYLINDER= -13990.322 . 30 1. 05 1. 75 }8SS.47 3.58 TOTAL FORCE ON THE CIRCULAR CYLINDER= 4375.605 31 1.06 1. 74 8300.00 3.78 TOTAL MOMENT ON THE CIRCULAR CYLINDER= 39829.582 HODtS TDF TAF TCF CENTRE OF TOTAL FORCE= 9.103 (FROM UATER SURFACE) 27 594.93 -531.42 63.50 
28 671.24 -556.44 114.79 
29 7':J7.69 -582.33 175.36 
.30 855.42 -609.12 246.30 
J 1 965.91 -636.84 329.07 

TABLE 4 (Cont'd) 



~.,~,---

w 
".J 
".J 

COLUMN NUH/:IER~3 

---------------

NODES C[I 
32 1. 8 1 
33 1.02 
34 1. 03 
35 1. 05 
J6 1. rJ6 

NOVES TOF 
32 594.93 
33 671.24 
34 757.69 
35 855.42 
36 965.91 

COLUMN NUMBER=4 
---------------

NOBES CD 
37 1. 08 
38 1. 09 
39 1. 1 0 
40 1. 12 
41 1. 13 

NODES TlIF 
37 720.45 
38 813.57 
39 918.60 
40 1037.09 
41 1170.39 

eM 
1. 88 
1. 79 
1.77 
1. 75 
1. 74 

TAF 
531.42 
556.44 
582.33 
609.12 
636.84 

eM 
1.87 
1.86 
1.84 
1. 83 
1. 82 

TAF 
3020.18 
3169.72 
3325.02 
3486.18 
3653.39 

REN 
6659.69 
7036.55 
7434.74 
7855.47 
83"".00 

TCF 
1126.35 
1227.68 
1340.02 
1464.54 
1692.75 

REN 
9147.04 
9664.66 

10211.57 
10789.44 
11400.00 
TCF 

3740.63 
3983.28 
4243.62 
4523.27 
4823.77 

CKN 
3.84 
3.21 
3.39 
3.58 
3.78 

CI{N 
2.21 
2.34 
2.47 
2.61 
2.75 

------------------------------------------------------------
TOTAL COLUMN FORCE ON THE STRUCTURES= 162507.66 

T01AL COLUMN MOMENT ON THE STRUCTURES= 1793065.00 
CENTRE OF TOTAL FORCE= 11.03 

------------------------------------------------------------
MO fION RESPONSE 

H E A V E ~: E S F' 0 N S E. = -1 .23 PITCH RESPONSE= 
HEAVE ACCELERATION= 1 1 ."7 PITCH ACCELERATION= 
HEAVE ~ESF'ONSE/H= -0. 12 PITCH"RESPONSE/H= 
PHASE ANGLE B.F.H= -11.71 PHASE ANGLE B.F.P= 

!.L 01 
.- 0.00 

0.00 
-4.95 

------------------------------------------------------------

DIAMETER/~AVE LENGTH= 0.01 
SINCE D/L<0.2 MORISON Ea. IS USED 
DRAG FORCE ON THE CIRCULAR CYLINDER= 18365.928 
ACCL. FORCE ON THE CIRCULAR CYLINDER= 13990.322 
TOTAL FORCE ON THE CIRCULAR CYLINDER: 32356.248 
TOTAL MOMENT ON THE CIRCULAR CYLINDER= 365479.625 
CENTRE OF TOTAL FORCE: 11.295 (FROM WATER SURFACE) 

DIAMETER/WAVE LENGTH= 0.02 
SINCE D/L<0.2 MORISON EO. IS USED 
DRAG FORCE ON THE CIRCULAR CYLINDER~ 22260.984 
ACCL. FORCE ON THE CIRCULAR CYLINDER: 79894.438 
TOTAL FORCE ON THE CIRCULAR CYLINDER= 102155.430 
TOTAL MOMENT ON THE CIRCULAR CYLINDER= 1173957.625 
CENTRE OF TOTAL FORCE; 11.492 (FROM WATER SURFACE) 

TOTAL HORIZONTAL COLUMN FORCES= 81253.83 
TOTAL HORIZONTAL COLUMN MOMENTS= 896532.50 

TABLE 4 (Cant'd) 



B E A M 5 E A S 
----------------
TOTAL FORCES AND MOMENTS ON THE HULLS 
-------------------------------------

T1/T=0.000 
TOTAL VERTICAL HULL FORCE= -2758283.00 

TOTAL VERTICAL COLUMN FORCE= 2327931.50 
TOTAL HUlL+COLUMN FORCES= -430351.5g 

----------------------------------------------------------------------

TOTAL HORIZONTAL HULL FORCE= 240434.44 
TOTAL HORIZONTAL HULL HOMENT= 7453467.50 

CENTRE OF TOTAL HORIZONTAL FORCE= 31.00 (FROM UATER SURFACE) 
----------------------------------------------------------------------

HULL NUMBER=l 

NODES 
1 
2 

21 
3 

20 
4 

1 9 
5 

18 
6 
7 
8 

1 4 
9 

1 5 
10 
16 
11 
1 7 
12 
1 3 

NODES 
1 
2 

21 
3 

20 
4 

19 
5 

18 
6 
7 
8 

14 
9 

1 5 

1 " 
16 
11 
1 7 
12 
1 3 

VHf'F 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 

HHF'F 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 

VHAF 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 
-4772.12 

HHAF 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 
2090.27 

TVHF 
-9544.23 
-9544.23 
-9544.23 
-9544.23 
-9544.23 
-9544.23 
-9544.23 
-9544.23 
-9544.23 
-9544.23 
-9544.23 
-9544.23 
-9544.23 
-9544.23 
-9544.23 
-9544.23 
-9544.23 
-9544.23 
-9544.23 
-9544.23 
-9544.23 

HHVF 
831 .95 
831 .95 
831 .95 
831 .95 
831.95 
831 .9"5 
831 .95 
831 .95 
831.95 
831 .95 
831 .95 
83 i .95 
831.95 
831.95 
831 .95 
831.95 
831 .95 
831.95 
831.95 
831.95 
831.95 
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VCF 
0.00 
0.00 

33459.80 
33459.80 
33459.80 

0.00 
24161.56 
24161.56 
24161.56 

0.00 
0.00 
0.00 

24161.56 
24161.56 
24161.56 

0.00 
33459.80 
33459.80 
33459.80 

0.00 
0.00 
THHF 

5012.49 
5012.49 
5012.49 
5~12.49 

5012.49 
5012.49 
5.012.49 
5012.49 
5012.49 
5012.49 
5012.49 
5012.49 
5012.49 
5012.49 
5012.49 
5012.49 
5012.49 
:1012.49 
5012.49 
501:.4'~ 

5012.49 

TVF 
-9544.23 
-9544.23 
23915.57 
23915.57 
23915.57 
-9544.23 
14617.33 
14617.33 
14617.33 
-9544.23 
-9544.23 
-9544.23 
14617.33 
14617.33 
14617.33 
-9544.23 
23915.57 
23915.57 
23915.57 
-9544.23 
-9544.23 

-'\J 

+l 
c: 
o u 



HULL HUMBER=J 

COLUMN HUMflER=l 

--------------- COLUMN NUMBER-l 
---------------

NODES CD CH REN CKN 
22 1. 08 1.87 9147.04 2.21 
23 1.09 1.86 9664.66 2.34 DIAHETER/UAVE LENGTH= 0.02 
24 1. 10 1. 84 10211.57 2.47 SINCE D/L<0.2 HORISON EO. IS USED 
25 1.12 1 .83 10789.44 2.61 DRAG FORCE ON THE CIRCULAR CYLINDER= 23117.990 
26 1. 13 1.82 11400.00 2.75 ACCL. FORCE ON THE CIRCULAR CYLINDER= 73140.188 

NODES TDF TAF TCF TOTAL FORCE ON THE CIRCULAR CYLINDER= 96258.180 
22 748.19 2764.86 3513.04 TOTAL HOHENT ON THE CIRCULAR CYLINDER= 1104931.000 
23 844.89 2901.75 3746.64 CENTRE OF TOTAL FORCE= 11 .479 (FROH UATER SURFACE) 
24 953.97 3043.92 3997.89 
25 1077.01 3191.46 4268.47 
26 1215.44 3344.53. 4559.97 

COLUMN NUHBER=2 COLUHN NUHBER=2 
------------------------------

W 
--...J 
U) NODES CD eM REN CKN 

27 1. 0 1 1.80 6659.69 3.04 DIAHETER/UAVE LENGTH= 0.01 
28 1. 02 1.79 7036.55 3.21 SINCE D/L<0.2 HORISON EO. IS USED 
29 1. 03 1.77 7434.74 3.39 DRAG FORCE ON THE CIRCULAR CYLINDER= 15768.054 
30 1. 05 1.75 7855.47 3.58 ACCL. FORCE ON THE CIRCULAR CYLINDER= 37222.750 
31 1. 06 1. 74 8300.00 3.78 TOTAL FORCE ON THE CIRCULAR CYLINDER= 52990.801 

NODES TDF TAF TCF TOTAL MOMENT ON THE CIRCULAR CYLINDER= 607202.43} 
27 510.77 1413.90 1924.67 CENTRE OF TOTAL FORCE= 11.459 (FROM UATER SURFACE) 
l8 576.29 1480.47 2056.76 
29 650.51 1549.35 2199.86 
30 734.42 1620.63 2355.05 
31 829.28 1694.38 2523.66 

TABLE 4 (Cont'd) 



COLUMN NUl'tflER:3 
--------------- COLUHN NUHBER:3 

---------------
NODES CD CM REN CI<N 

32 1. 91 1. 89 6659.69 3.94 DIAKETER/UAVE LENGTH= 9.91 33 1. 02 1.79 7036.55 3.21 SINCE D/L<8.2 KORISON EO. IS USED 34 1.03 1.77 7434.74 3.39 DRAG FORCE ON THE CIRCULAR CYLINDER= 15768.854 35 1. 05 1.75 7855.47 3.58 
ACCL. FORCE ON THE CIRCULAR CYLINDER= 37222.750 36 1. 06 1 .74 8300.00 3.78 
TOTAL FORCE ON THE CIRCULAR CYLINDER= 52990.801 NODES TDF TAF TCF 
TOTAL KOHENT ON THE CIRCULAR CYLINDER= 607202.437 32 510.77 1413.90 1924.67 
CENTRE OF TOTAL FORCE= 11 .459 (FROH UATER SURFACE: 33 576.29 1480.47 2056.76 

34 650.51 1549.35 2199.86 
35 734.42 1620.63 2355.05 
36 829.28 1694.38 2523.66 

COLUHN NUHBER=4 
COLUKN NUKBER=4 --------------- ---------------

w 
(X) NODES C[I 0 CH REN CI<N 

37 1.08 1.87 9147.04 2.21 DIAHETER/UAVE LENGTH= 0.02 38 1. 09 1.86 9664.66 2.34 SINCE D/L<9.2 HORISON EO. IS USED 39 1. 1 0 1.84 10211.57 2.47 DRAG FORCE ON THE CIRCULAR CYLINDER= 23117.990 40 1.12 1.83 10789.44 2.61 ACCL. FORCE ON THE CIRCULAR CYLINDER= 73140.188 41 1. 13 1.82 11400.00 2.75 TOTAL FORCE ON THE CIRCULAR CYLINDER= 96258.180 NODES TDF TAF TCF TOTAL MOHENT ON THE CIRCULAR CYLINDER= 1104931.00j 37 748.19 2764.86 3513.04 CENTRE OF TOTAL FORCE= 11.479 (FROH UATER SURFACE) 38 844.89 2901.75 3746.64 
39 953.97 3tl43.92 3997.89 TOTAL HORIZONTAL COLUMN FO~CES= 298497.97 40 1077.01 3191.46 4268.47 TOTAL HORIZONTAL COLUMN HOHENTS: 3424267.09 41 1215.44 3344.53 4559.97 

--------------------------------------------------._---------

TABLE 4 (Cont'd) 



HULL HUHBER=2 
-------------

HODES VHPF VHAF TVHF VCF TVF 
1 -4772.12 -4772.12 -9544.23 0.0e -9544.23 
2 -4772.12 -4772.12 -9544.23 0.00 -9544.23 

21 -4772.12 -4772.12 -9544.23 33459.89 23915.57 
3 -4772.12 -4772.12 -9544.23 33459.80 23915.57 

28 -4772.12 -4772.12 -9544.23 33459.88 23915.57 
4 -4772.12 -4772.12 -9544.23 B.08 -9544.23 

19 -4772.12 -4772.12 -9544.23 24161.56 14617.33 
5 -4772.12 -4772.12 -9544.23 24161.56 14617.33 

18 -4772.12 -4772.12 -9544.23 24161.56 14617.33 
6 -4772.12 -4772.12 -9544.23 0.ee -9544.23 
7 -4772.12 -4772.12 -9544.23 0.ee -9544.23 
8 -4772.12 -4772.12 -9544.23 0.0e -9544.23 

1 4 -4772.12 -4772.12 -9544.23 24161.56 14617.33 
9 -4772.12 -4772.12 -9544.23 24161.56 14617.33 

15 -4772.12 -4772.12 -9544.23 24161.56 14617.33 
10 -4772.12 -4772.12 -9544.23 e.00 -9544.23 
16 -4772.12 -4772.12 -9544.23 33459.80 23915.57 
11 -4772.12 -4772.12 -9544.23 33459.80 23915.57 
17 -4772.12 -4772.12 -9544.23 33459.80 23915.57 
12 -4772.12 -4772.12 -9544.23 0.e0 -9544.23 
13 -4772.12 -4772.12 -9544.23 0.0e -9544.23 

HODES HHPF HHAF HHVF THHF 
1 2090.27 2090.27 831 .95 5J12.49 
2 2098.27 2090.27 831 .95 5012.49 

21 2098.27 2898.27 831.95 5812.49 
3 2090.27 2898.27 831.95 5012.49 

20 2090.27 2890.27 831 .95 5012.49 
4 2090.27 2890.27 831 .95 5012.49 

19 2898.27 2898.27 831 .95 5012.49 
5 2890.27 2090.27 831.95 5e12.49 

18 2098.27 2098.27 831 .95 5012.49 
6 2898.27 2090.27 831 .95 5e12.49 
7 2098.27 2090.27 831 .95 5012.49 
8 2890.27 2090.27 831 .95 5012.49 

14 2090.27 2090.27 831 .95 5012.49 
9 2090.27 2090.27 831 .95 5012.49 

15 2090.27 2090.27 831 .95 5012.49 
10 2090.27 2090.27 831 .95 5012.49 
16 2e90.27 2898.27 831.95 5012.49 
11 2898.27 2890.27 831 .95 5012.49 
17 2098.27 2898.27 831 .95 5012.49 
12 2090.27 2090.27 831 .95 5012.49 
13 2090.27 2098.27 831 .95 5012.49 

----------------------------------------------------------------------

TABLE 4 (Cont'd) 
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~. 
HULL HUHlJER=2 

~. 

COlUHN NUHBER=l COLUMN NUHl:IER=l --------------- ---------------
NODES CD CH REN CKN 

22 1.08 1.87 9147.14 2.21 DIAHETER/UAVE LENGTH: 0.02 
23 1. 19 1.86 9664.66 2.34 SINCE D/L<0.2 HORISON EO. IS USED 
24 1. 1 I 1 .84 10211.57 2.47 DRAG FORCE ON THE CIRCULAR CYLINDER: 23117.990 
25 1 .12 1.83 10789.44 2.61 ACCL. FORCE ON THE CIRCULAR CYLINDER= -73148.188 
26 1.13 1.82 11400."" 2.75 TOTAL FORCE ON THE CIRCULAR CYLINDER= -50822.191 

NODES TDF TAF TCF TOTAL HOHENT ON THE CIRCULAR CYLINDER= -594796.508 
22 748.19 -2764.86 -2016.67 CENTRE OF TOTAL FORCE= 11.891 (FROH UATER SURFAI 
23 844.89 -2981.75 -2056.86 
24 953.97 -3843.92 -2189.95 
25 1877.01 -3191.46 -2114.45 
26 1215.44 -3344.53 -2129.09 

COLUHN NUHBER=2 COLUttN NUttBER=2 
--------------- ---------------w 

ro 
N NODES CD CM REN CKN 

27 1. 11 1. 8" 6659.69 3.04 DIAHETER/UAVE LENGTH: 0.01 
28 1. 02 1 .79 7136.55 3.21 SINCE D/L<I.2 "ORISON EO. IS USED 
29 1. "3 1.77 7434.74 3.39 DRAG FORCE ON THE CIRCULAR CYLINDER: 15768.054 
30 1. "5 1.75 7855.47 3.58 ACCL. FORCE ON THE CIRCULAR CYLINDER= -37222.759 
31 1. 96 1. 74 8311."9 3.78 TOTAL FORCE ON THE CIRCULAR CYLINDER= -21454.69~) 

NODES TDF TAF 1 CF TOTAL MOHENT ON THE CIRCULAR CYLINDER: -259224.422 
27 511.77 -1413.98 -903.13 CENTRE OF TOTAL FORCE= 12.082 (FROtt WATER SURFACE) 
28 576.29 -1480.47 -984.18 
29 658.51 -1549.35 -898.84 
30 734.42 -1620.63 -886.21 
31 829.28 -1694.38 -865.10 

TABLE 4 (Cont'd) 



W 
ill 
W 

COLUMN NUMBER~3 

NO[lES 
32 
33 
34 
35 
36 

NODES 
32 
33 
34 
35 
36 

CD 
1." 1 
1. 02 
1. 03 
1. 05 
1. 06 

TDF 
510.77 
576.29 
650.51 
734.42 
B29.2B 

COLUMN NUMBER=4 

NODES 
37 
38 
39 
40 
41 

NODES 
37 
38 
JY 
40 
41 

CD 
1. 08 
1. 09 
1. 10 
1. 1 2 
1. 1 3 

TlIF 
74B.19 
844.89 
953.97 

1077.01 
1215.44 

eM 
1. 8" 
1.79 
1. 77 
1. 75 
1. 74 

TAF 
-1413.90 
-14B0.47 
-1549.35 
-1620.63 
-1694.3B 

eM 
1. 87 
1. B6 
1. B4 
1. B3 
1. 82 

TAF 
-2764.B6 
-2901.75 
-3043.92 
-3191.46 
-3344.53 

REN 
6659.69 
7036.55 
7434.74 
7B55.47 
B300.00 

TCF 
-903.13 
-904.1B 
-898.84 
-886.21 
-865.10 

I~EN 

9147.04 
9664.66 

10211.57 
10789.44 
11400.00 
TCF 

-2016.67 
-2056.86 
-2089.95 
-2114.45 
-2129.09 

CKN 
3.04 
3.21 
3.:39 
3.58 
3.78 

CKN 
2.21 
2.34 
2.47 
2.61 
2 "'7'­

• I J 

------------------------------------------------------------

TABLE 4 (Cont'd) 

COLUHN NUHBER=3 

DIAMETER/UAVE LENGTH= ".01 
SINCE D/L<".2 HORISON EG. IS USED 
DRAG FORCE ON THE CIRCULAR CYLINDER= 15768.054 
ACCL. FORCE ON THE CIRCULAR CYLINDER= -37222.750 
TOTAL FORCE ON THE CIRCULAR CYLINDER= -21454.695 
TOTAL HOHENT ON THE CIRCULAR CYLINDER= -259224.422 
CENTRE OF TOTAL FORCE= 12.082 (FROH UATER SURFACI 

COLUMN NUMBER=4 

DIAME'TER/UAVE LENGTH; 0.02 
SINCE D/L{0.2 MORISON EO. IS USED 
DRAG FORCE ON THE CIRCULAR CYLINDER~ 23117.990 
ACCL. FORCE ON THE CIRCULAR CYLINDER= -73140.18~ 

TOTAL FORCE ON THE CIRCULAR CYLINDER= -50022.191 
TOTAL MOMENT ON THE CIRCULAR CYLINDER= -594796.~00 

CENTRE OF TOTAL FORCE= 11.891 (FROM WATER SURFACE) 

TOTAL HORIZONTAL COLUMN FORCES= -142953.78 
TOTAL HORIZONTAL COLUMN MOMENTS= -1708041.87 



TOTAL COLUMN FORCES.ON THE STRUCTURE= 155544.19 
TOTAL COLUMN MOMENTS ON THE STRUCTURE= 1716225.12 
CEHTRE OF TOTAL FORCE= 11.03 (FROM WATER SURFACE) 
TOTAL HORIZONTAL FORCE ON THE STRUCTURE= 395978.63 

.------------- - ---- -- - ---- ------- - ------- ----- ---- --------- -------- ---

STRUCTURAL RESPONSE 
------------------------------------
MAXIHUM AXIAL FORCE AT THE DECK (STRUCTURE HAS NO BRACINGS) 

AF= 1649625.75 -
MAXIMUM SHEAR FORCE AT THE DECK (STRUCTURE HAS NO BRACINGS) 

SF= 1298174.99 
MAXIHUM AXIAL FORCE AT THE DECK (STRUCTURE HAS NO BRACINGS) 
MAXIMUM BENDING HOHENT AT THE DECK (STRUCTURE HAS NO BRACINGS) 

BM= 36964296.99 
HR= 3696429.59 (BENDING MOMENTJIJAVE HEIGHT) 

------------------------------------------------------------------------------------
MOTION RESPONSE 
----------------------------
HEAVE RESPONSE= 
HEAVE ACCELERATION= 
HEAVE RESPONSE/H= 

PHASE ANGLE B. F • H= 

-1 .23 ROLL RESPONSE= 
11.95 ROLL ACCELERATION= 
-0.12 ROLL RESPONSE/H= 

-11.71 PHASE ANGLE B.F.R= 

/ 

TABLE 4 (Cont'd) 
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Chapter 7: CONCLUSIONS 
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1. CONCLUSIONS OF CHAPTER 2 

In this chapter, a review of the basic hydrodynamic principles 

for calculating the wave forces on circular cylinders in the drag, 

drag + inertia and diffraction regimes have been presented. 

An approximate method has been given in order to take into 

account the interference between circular cylinders which are dom­

inantly subject to wave inertia forces. 

Under the light of eXisting theoretical and experimental know­

ledge it is believed that further experimental stUdies with large 

size of models are essential in order to determine correct wave 

coefficients taking the interference effects into account properly 

for the structures which are dominantly subject to drag or drag + 

inertia forces, i.e. jacket structures, guyed towers, etc. 

Analytical procedures have been presented for calculating the 

second-order forces on circular cylinders. Since these forces may 

occur at the frequencies near to the natural frequency of surge or 

sway mode of rigid-body motion of the floating structure they must 

be taken into account during the design of riser or mooring systems. 

Second-order vertical time independent forces would also cause 

undesirable steady-tilt angles as was experienced during the model 

tests with semi-submersible designs in regular waves. 

The effect of non-linear free-surface and the second-order time 

dependent forces was found to cause an increase in wave loading on 

circular cylinders by an amount of 20%. 
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A formulation of the wave loading on a circular cylinder which 

is working in the inertia or in the diffraction regime has been pre­

sented using the Stokes' fifth-order wave theory for the shallow water 

applications. 

2. CONCLUSIONS OF CHAPTER 3 

A general method and a computer program have been devised to 

calculate the wave force and moments on the circular cylindrical 

members of fixed--and of floating offshore structures. In the com-

puter calcul~tions the following points were not taken into account 

due to the limitations in capacity of the computer (PDP 11/40) on 

which WAVLOA was developed. 

(a) The effects of non-linear boundary conditions and second-order 

forces. However, one may determine these effects manually using the 

appropriate graphs presented in Chapter 2, or integrate WAVLOA with 

additional subroutines which could be written using the calculation 

procedures presented in Chapter 2 on a larger capacity computer. 

(b) The variation of drag and inertia coefficients along the length 

of a member. This can easily be taken into account by compiling 

WAVLOA with subroutine FLUID2 on a larger capacity computer. FLUID2, 

which is described in Chapter 6, calculates the variation of 

drag and inertia coefficients along the length of a member. 

It is hoped that the developed computer program WAVLOA will 

provide a basic tool to the designer, who can select and vary the 

configuration of the floating or fixed offshore structure on which 

he calculates the wave loading without any restriction. 
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As desc~ibed in Chapter 4, ft7AVLOA forms a basic part in 

the calculation method developed for the non-linear, coupled motion 

response of a floating offshore platform. 

-
Finally, it is hoped that the method and the computer program 

developed here will be used in further investigations of the force 

and moment measurements on randomly oriented yawed cylinders for the 

better understanding of the inertia and the drag forces. 

3. CONCLUSIONS OF CHAPTER 4 

In this chapter a general method to obtain the rigid-body motion 

induced loading on the circular cylindrical members of floating off-

shore structures has been derived. Rigid-body motion induced loading 

and wave forces are combined to obtain motion equations. Linear, un-

coupled single degree of freedom system equations are applied to the 

model and a full scale semi-submersible type floating offshore plat-

form to predict the motion responses. Comparisons between the pre-

dictions and the model test results show reasonably good agreement 

for small amplitude motions. The general method has been extended to 

include large amplitude motions by deriving non-linear, coupled 

motion equations in a six degrees of freedom system. A solution pro-

cedure for these equations has been discussed. 

The formulations derived in this chapter also provide an effic-

ient tool to study the non-linear dynamic stability of floating 

structures in waves. 
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4. CONCLUSIONS OF CHAPTER 5 

1. Calculation procedures were developed in order to predict the 

structural response values for determinate and indeterminate floating 

platforms. These procedures were applied to model and full-scale 

semi-submersible design. The comparisons between the theoretical 

predictions and the test measurements indicate an acceptable level 

of agreement. However, the comparison of the theoretical predictions 

which were made using the restrained mathematical model and the experi­

mental results obtained from the free-floating model suggests that 

wave coefficients should be higher than the values used in these 

predictions. It is believed that better agreement should be obtained 

between the theoretical predictions which employ the free-floating 

mathematical model and the experimental results if the solutions of the 

linear uncoupled motion response equations are replaced with the 

solutions of non-linear coupled motion response solutions. 

2. At the initial stage of the floating platform design, structural 

response calculations need to be performed for each member several 

times by varying the wave frequencies, wave heading angles and the 

structural properties of the members before the final decision on 

the scantlings of members is· reached. 

3. The analysis carried out with the restrained and the free-float­

ing mathematical models showed that the difference in magnitude of 

response between these two cases had a maximum of ± 20% in the oper­

ational region. The free-floating mathematical model uses the solut­

ions of the linear uncoupled motion response equations. Since the 

rigid body motion-induced loading tends to decrease the structural 
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response values over a large frequency region, the use of a res-

trained structural model was found to lead to more accurate calcul-

ations and affords a factor of safety in design. 

4. In the case of floating platforms, unlike in the ship case, it 

is not possible to define a critical wave length/structural length 

ratio at which maximum structural load occurs in waves. Thus in 

-
order to define maximum design loads structural response calculat-

ions should be carried out in the frequency domain for various wave 

heading angles. The probabilistic values of design loads can also 

be obtained readily from these frequency domain calculations by 

employing the methods of spectral analysis. 

5. Since the bracing members reduce the structural response values 

considerably, extreme design load calculations for the individual 

strength members should include consideration of a failure or an 

accident involving the bracing members. 

6. Maximum structural response values on the longitudinal and on 

the transverse strength elements of twin circular hulled design 

semi-submersibles occurred in beam seas. Again, for the same type 

of design, the maximum structural response in the strength members 

of the deck was dominated by the wave loading on the hulls. 

7. The effect of the non-linear free surface and the second-order 

forces induces a maximum increase of 10% in the bending moment values 

on the transverse deck beam of a model structure. An increase of the 

same order was found for the restrained and the free-floating model 

cases. 
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8. It may generally be said that floating platforms can be accepted 

as rigid structures; therefore, structural response calculations can 

be carried out under quasi-static loading for overall structural res­

ponse. However, structural response under dynamic loading may 

become important for flexible support members, such as bracings or 

columns in the case of a failure or an accident involving those 

flexible members. Similarly, impact loads due to wave breaking can 

be important for the dynamic loading analysis. These cases suggest 

that a redundancy analysis should be incorporated into the dynamic 

analysis. 

9. A simplified method has been suggested to determine the struct­

ural response values under dynamic loading. The bending moment values 

on the flexible deck connections of the semi-submersible model given 

by this method agree better with the experimental measurements than 

the quasi-static case where response values reach a peak. 

5. CONCLUSIONS OF CHAPTER 6 

Various computer routines for the prediction of structural load­

ing and response of a twin circular hulled semi-submersible geometry 

were described. Although the entire FLUID4A program is restricted 

to a twin circular hulled semi-submersible geometry, various routines 

can be separately integrated with other programs in order to calcul­

ate wave, current and wind drag forces on circular cylinders as well 

as hydrostatic characteristics. 

Since, at the time of the writing of these routines, the only 

experimental data on drag coefficients available over a large 

- 391 -



Reynold's number range was steady flow results, these were used in 

the appropriate subroutines. However, as more experimental data on 

drag, inertia and lift coefficients obtained from oscillating water 

column tests, wave tank tests, or from full scale measurements (see 

also Chapter 2) become available, the relevant subroutines which 

could make use of this new information should be updated. 

One may also study the sensitivity of these coefficients 

obtained from steady, oscillating or wavy flow, to the structural 

loading and response by adding appropriate subroutines which contain 

new data to the FLUID4A main program. 

Finally, when FLUID4A is run for a twin circular hulled semi­

submersible which is floating near to the free-surface, routines 

which calculate added-mass and added-moment of inertia values for 

the columns and the hulls should be modified to include frequency 

dependent effects. 

6. CONCLUSIONS OF APPENDIX 1 

The set up for the measurements of the motion and the struct­

ural response of the twin circular-hulled semi-submersible model in 

regular waves has been described. Considering the regularity 

obtained in the time domain records and the consistency of the ampli­

tude measurements plotted in the frequency domain, it may be con­

cluded that the set up was reliable enough for the measurements dis-

cussed in the Appendix. 
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The initial aim of these experiments was to compare the calcul­

ated motion and the structural response predictions with the measure­

ments. Although reasonable agreement was found between the theoret­

ical predictions and the experimental measurements, in the light of 

the conclusions drawn in Chapters 4 and 5 it is still believed that 

further testing is essential for a thorough understanding of the 

following points: 

(1) The effect of the harnesses which stop the model drifting along 

the tank. The motion and the structural response values should 

be measured as the location of the harnesses on the model is 

varied. Measurement of the forces exerted by the harnesses 

would also be very helpful. 

(2) The effect of the interference between the following elements 

of the model: 

(3) 

(a) two hulls 

(b) two vertical columns 

(c) one hull an~ one vertical column. 

The effect of structural dynamics. It is necessary to carry 

out further tests with the complete semi-submersible model 

restrained against rigid-body movements and designed and in­

strumented in such a way that the dynamic effects in waves, 

especially in the condition whereby a bracing has failed, are 

easily measured. A comparison of such measurements with the 

summed measurements obtained from the individual components 

under (2) above will clarify the difference between the quasi-
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static and dynamic loading (provided that the force measure­

ments under (2) are carried out with a rigid mounting system) . 

These tests would also provide a comparison between the 

structural response calculations which were carried out for 

the restrained model and the measurements. 

Items (2) and (3) should be repeated by oscillating the model in calm 

water in order to determine the motion induced loading. 

(4) The effects of the orientation of the model in waves as it is 

displaced during roll and pitch motion. The model can be 

fixed at typical configurations, i.e. the model may be fixed 

as it is heeled at a certain angle of roll, and force and moment 

measurements can be carried out. 
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AEpendix 1: DESCRIPTION OF MOTION AND STRUCTURAL 

RESPONSE EXPERIMENTS 
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INTRODUCTION 

In order to compare the calculation procedures developed for 

the prediction of motion and structural response with the experimental 

measurements, model tests were carried out. A twin circular hulled 

semi-submersible model, as shown in Fig. 1-A, was tested in regular 

waves by varying the range of frequencies from 1 rad/sec to 8 rad/sec 

and wave heights from 5 cms to 15 ems in the 77 x 4.6 x 2~4 (metres) 

testing tank at Glasgow University. 

The tests were performed in order to measure the heave and roll 

response of the model, as well as the bending moments at the centre of 

the transverse beams and the axial forces on the inclined bracings in 

beam sea conditions. 

1. DESCRIPTION OF MODEL 

A twin circular hulled semi-submersible model was constructed 

in two halves and, at the first stage, connected with two transverse 

beams to represent a determinate structure (Figs. 1-A and 1-B) • At 

the second stage, inclined and horizontal bracings were added to the 

model to represent an indeterminate structure (Fig. 1-0). 

The following materials were used during the construction of 

the elements of the model: 

Elements 

Hulls 

Columns 

Decks 

Transverse Beams 

Horizontal and Inclined Bracings 
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Material 

P.V.C. Tubes 

P.V.C. Tubes 

P.V.Cg and Aluminium Sheets 
(Fig. 1-c) 

Squared section aluminium 
beams 

Brass Tubes (Fig. 1-0) 



All elements of the model were constructed using the work-

shop machinery at Glasgow University's test tank. Care was taken 

to ensure the even and symmetrical distribution of element masses 

throughout the model. 

The P.V.C. parts were connected to each other with poV.C. 

welding. Aluminium and PoVoC o elements, as well as all aluminium 

elements, were bolted to each other (Fig. I-C). 

At the second stage of the experiments, inclined and horiz­

ontal bracings were bolted to the model. 

The bracing elements can easily be mounted on and dismounted 

from the model. 

The model was ballasted to the desired draft level using 

special ballast containers placed in each corner column. These 

containers restricted the movement of the ballast during the motions 

of the model. 

Harnesses were attached between the model and the tank walls 

so that the model could be stopped from drifting along the tank. 

The location of the harnesses on the model was at about the centre 

of gravity of the model. 

The mass distribution of the model is summarised in Table 1. 

The structural properties of the elements used in the construction 

of the model are also given in Table 2. 

Picture 1 shows the model during the test in regular waves. 
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TABLE 1 

MASS DISTRIBUTION OF THE TWIN CIRCULAR HULLED SEMI-SUBMERSIBLE 

Element Number Mass (KSIs) Distance from Base 
Line (ems) 

Hull 2 6.55 7.00 

Vertical Column 8 1.0 35.50 

Deck 2 4.7 57.00 

Transverse Beam 2 0.82 58.25 

Empty Ballast 4 0.635 17 0 13 
Container 

Ballast 4 6.25 9 088 

Inclined Bracing 4 0.451 41.00 

Horizontal Bracing 2 0.601 14.70 

TABLE 2 

STRUCTURAL PROPERTIES OF THE TWIN-CIRCULAR-HULLED SEMI-SUBMERSIBLE 

Element Cross Sectional Second Moment Elasticity 
Area (cm2 

) of Area (cmf) Modulus (N/mm2 
) 

Hull 17.10 1582. 34.76 x 10
3 

Vertical Column 12015 742.5 34.76 x 10
3 

(large diameter) 

Vertical Column 12.25 374.2 34.76 x 103 

(small diameter) 

Deck 3.22 0.03 7.2 x 10
4 

Transverse Beam 2084 2.16 7.2 x 10
4 

Empty Ballast 12.25 374.2 34.76 x 10
3 

Container 

Inclined Bracing 1 .64 3.10 10.03 x 10
4 

Horizontal Bracing 1.93 8.16 10.03 x 10~ 
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2. INSTRUMENTATION 

2.1 Instrumentation for Motion Response Experiments 

During the motion response tests, the instrumentation was 

set to record the amplitudes of the regular wave trains as well as 

the amplitude of the heave and roll motions of the model
o 

Regular waves were created by a plunger type wave-maker 

driven by an electronically controlled hydraulic pump (Fig. 2). 

Across the tank width 5 resistance-type wave probes were 

installed. These probes induce an electrical signal whose strength 

changes as the waves pass the probes. These signals were amplified 

and recorded on the pen recorder. The pen recorder draws the vari-

ation of wave elevation versus the real time. 

The heave and roll motions of the model were recorded with 

a pair of gravity-type linear vertical transducers. They were 

attached to the sub-carriage and connected to the deck of the model 

with piano wires suspended over a pair of pulleys. The weights of 

the vertical displacement transducers were balanced in order to avoid 

any acceleration being induced on the transducers during the motion 

of the model. The signals induced as a result of the model's 

motion in regular waves were sent to the pen recorder via an amplifiel 

to record heave and roll displacements versus real time. Since the 

motion signals received from the model were the total displacements 

due to heave and roll (pitch) motion a special amplifier was used to 

add the signals received from the transducers to obtain a heave signal 

and to subtract to obtain a roll (pitch) signal. 
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2.2 Instrumentation for Structural Response Test 

During the structural ~esponse experiment, the instrument-

ation was set to record the amplitudes of the regular wave trains 

as well as bending moment variations at the centre of the trans-

verse beams and the variation in axial force on the inclined 

bracings. 

In order to measure the bending moments, two pairs of 

strain-gauges were mounted on the top and bottom surfaces of the 

framework beams, as seen in Fig. 3. 

/ f 
I 
7 

\ 
\ 
I L f 7 

! 
j 

/ 
I 

Fig. 3: Strain Gauges on Transverse Beam 

The strain gauges were connected such that when the beam was, 

d ' ts and axial forces, they simultaneously, subject to ben ~ng momen 

could induce signals only due to the bending moments. Details 

of this type of strain-gauge instrumentation can be found in 

Reference 1. 
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Similarly, in order to measure the a . 1 f x~a orces on the 

inclined bracings, two pairs of strain-gauges were mounted on 

the brass tubes, as shown in Figs. 1-D and 4. 

f 

FACE: 1 FACE: 2 

Fig. 4: Strain Gauges on Brass Tube 

These strain gaU.ges were also connected such that they 

could induce signals only due to the axial forces when the bracing 

were subject to both axial forces and bending moments. Details 

of this type of strain-gauge instrumentation can also be found in 

Reference 1. 

The signals received from the strain-gauges were sent to 

the pen recorder via strain-gauge amplifiers to record bending 

moment or axial force values versus time. 

Picture 2 shows the recording instruments. 

3. DESCRIPTION OF CALIBRATION PROCEDURES 

3.1 Calibration of Wave Probes 

All wave probes were submerged up to 3/4 of their lengths 

into the tank when the water was calm and zero readings on the wave 

probe amplifiers were taken. At the same time, the pens' positions 

corresponding to the zero wave elevation was marked on the recorder. 
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The calibration process was continued, by lifting the wave probes 

gradually at 5 cms interva~s up to 15 ems, and at each step the 

pens' new positions were marked on the recorder. From the calib-

ration records a linear relationship was found between the displace­

ments of the wave probes and the pens' displacements on the recorder. 

as: 

Finally, the slope of the calibration curve was calculated 

CFW = Probe displacement (=wave elevation) [cms] 
Pen displacement [cms] 

3.2 Calibration of Linear Displacement Transducers 

The model was floated at the required draft level in the 

calm water and the displacement transducers were attached to the 

deck at both sides of the model (Fig. 2). 

First, zero readings were taken from both transducers and 

corresponding zero lines were marked on the pen recorder. 

Secondly, the transducers were displaced = 10 cms using a 

vertical vernier attached to the piano wire which connects the 

model to the transducer. At the same time, the pen's pOSition 

corresponding to the displacement of the transducer was marked. 

The same procedure was carried out with the second transducerG 

From the calibration records it was found that the responses 

of both transducers were identical and linear within the range of 

calibration. 
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The slope of the calibration curve was calculated as: 

CDF = Transducer displacement (= model's displacement) [ems] = 200 
Pen displacement [ems] 1.0 

303 Calibration of Strain-Gauges on the Transverse Beams 

In order to read direct bending moment values from the re-

cords, the strain-gauges were calibrated on the actual model. The 

model was set for calibration in calm water, as seen in Fig. 50 

F 

Fig. 5: Calibration of Strain-Gauges on the trans­
verse deck 

After taking the zero readings from the strain-gauges 

mounted on both transverse beams, the bending moment values on 

the beams were step by step increased by increasing the applied 

force on the hulls from 1 kgf to 8 kgf. During this process, 

displacements of the pens corresponding to the applied moment values 

were marked on the pen recorder at each 1 kgf increase of the applied 
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force. The responses of the strain-gauges were found to be 

linear. It was also found that there was a small difference in 

the slopes of the calibration curves belonging to the first and the 

second beams. The difference may be due to a slight difference ,_ 

in alignment and/or to a difference in the adhesion of the strain-

gauges during mounting. 

The slope of the calibration curve for bending moment 

measurements recorded from both transverse beams was calculated 

by taking the average value as follows: 

CFS = 1.:.[ (Bending Moment [N ems]) 
2 Pen dispmacement [ems] BEAM 1 

(Bending Moment [N ems]) ] 
+ Pen displacement [ems] BEAM 2 

3.4 Calibration of Strain-Gauges on the Inclined Bracings 

In order to calibrate the strain-gauges mounted on the 

bracings, the simple set-up shown in Fig. 6 was prepared: 

STRAIN GAUGES 

BRASS TUBE 

F 

Fig. 6 
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The calibration process to record axial force versus pen 

displacements on the recorder was the same as that described in 

the previous section. 

The responses of the strain-gauges were found to be linear 

and as with the case mentioned in the previous section, there was 

a small difference in the responses of the strain-gauges mounted 

on the first and the second bracings. 

The slope of the calibration curve used for the axial force 

measurements recorded from both bracings was calculated taking the 

average value as follows: 

CFSB = ![(Axial Force [N] ) + Axial Force [N] ) ] 
2 Pen displacement BRACING 1 (pen displacement BRACING 2 

4. DESCRIPTION OF THE RECORDS 

Three groups of tests were carried out with the twin circular 

hulled semi-submersible model in regular beam seas. 

, 

During the first group of experiments, wave, heave and roll 

displacements versus real time were recorded. (Figs. 6, 6-A and 6-B) • 

Each run was continued until the first wave train reached the slotted 

beach (Fig. 2) in order to avoid any possible wave reflection be-

tween the transverse tank walls and any wave resonance o 

In order to find the motion and wave amplitudes at each test 

frequency, each record was analysed manually by taking the average 

of 5 amplitude readings. 
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These val~es were plotted as wave frequencies versus 

response amplitudes in Chapter 4. 

Before the model was tested in waves for the measurements 

of motion amplitudes, free motion experiments were carried out 

using the same set up as for the motion response experiments
o 

During these experiments the natural heave and roll period, as 

well as the heave and roll damping coefficients, were measured. 

These values are shown in the following table: 

TABLE 3 

Mode of Natural Period (Sec) Damping 
Motion Calct. Measured Coefficients 

Heave 2.66 2.4 0.075 

Roll 5.46 3 0 9 0.071 

A second group of experiments was carried out to measure 

the amplitudes of the waves and the bending moments at the centre 

of the transverse beams. During this group of experiments bracings 

were not mounted on the model. . Some records from this group's runs 

are shown in Figs. 7-(8-A). 

The analysis of the measurements recorded during the second 

group of runs was performed in the same way as that described for 

the first group. The results of the analysis were plotted as wave 

frequency versus bending moment/wave amplitude in Chapter 5. 
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In the final group of experiments, the semi-submersible 

model with inclined and horizontal bracings was tested in order 

to measure the amplitudes of bending moment at the centre of the 

transverse beams, of axial forces on the inclined bracings and 

of wave amplitudes at each wave frequency. Some records from 

this group's runs are shown in Figs o 9 and 9-A. 

The records of this group of runs were analysed in the same 

way as described earlier for the first and second group of runs. 

This group's measurements were plotted as wave frequency versus 

bending moment/wave amplitude and wave frequency versus axial force/ 

wave amplitude in Chapter 5. 
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o,s o,S 

~ 
s,s 

C 
s 

k 
s 

E: 
n 

: Velocity potential of scattered waves in shallow water 

Wave elevation in shallow water 

Wave celevity in shallow water 

Wave number in shallow water 

Hydrodynamic pressure in shallow water 

Coefficients defined in equation (160) 

a,S,a' ,S': Coefficients used in equations (77 - 79) and (83 - 85) 

(s) Subscripts (s) are used in the second-order force equations 
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NOMEN:IATURE OF a-:APrER 3 

x,y,z 

X,Y,Z 

u,v,w 

F 
Y 

u ,U ,U 
x y z 

. . . 
U ,U ,U 

x y z 

p 

R 

D 

g 

k .. 
1.J 

CD 

s .. 
1.J 

CI.. . 
1.J 

x ,Y ,Z 
000 

Co-ordinates in the wave reference system 

Co-ordinates in the structure reference system 

Co-ordinates in a member reference system 

HydrodynarnLc force on a circular disk due to rigic-

body acceleration of the disk oscillating along 

y aXis 

Components of the velocity vector of the fluid 

particles in x,y,z directions respectively 

Components of the accelaration vector of the fluid 

particles in x,¥,z directions respectively 

Hydrodynamic pressure 

Radius of a circular cylinder 

D.iameter 

Density of fluid 

Grav.itational accelerati.on 

A coeff.icient defined in equation (2) in order to 

take the effect of three dimensionality into account 

Added-mass coeff.icient tensor 

Drag coeff.icient 

Coeffic.ients of a tensor defined in equation (6) in 

order to transfer the co-ordinates. defined in the 

wave reference system to the structure reference 

system 

Coeff.icients of a tensor defined in equation (9) 

in order to transfer the co-ordinates defi:1ec: i:,. 

the structure reference system to a member reference 

system 

co-ordinates of the origin of the st~lcture refer-

ence system 
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~~~ 

i,j,k 

H 
w 

w 

k 

G 

~ 

n 

~ ~ ~ ~ 

AB ,GB ,GA,AP 

r, e,u 

A,B,C 

AI ,B I ,C I 

FP 

FA 

FV 

~ 

FT 

-+ 
M 

Orthogonal unit vectors of the structure 

reference system 

Orthogonal unit vectors of the member re::erence 

system 

Ends co-ordinates of a member defined in the 

structure reference system 

Member length 

Wave height 

Wave frequency (Rad./Sec.) 

Wave number (= 2n/A) 

Wave length 

Centre of gravity of the structure 

Normal unit vector of the surface of a member 

Space vectors. defined in equation (10) 

Equation of a plane defined in equations (12) and 

(13) 

Polar co-ordinates in a member reference system 

The vector di.fferential operator 

d~ d~ d-+ = - el + _. e2 + - e3 
dU dV dW 

Variables defined in equation (17) 

vari.ables defined in equation (21-1) 

Wave press.ure force 

Wave accelerati.on force 

Wave velocity force 

Total wave force vector 

Total moment vector due to the wave forces on 

the structure 

Moment vector calculated about the origin of the 

member reference system 

- 440 -



-+ 
r 

a,b,c 

Moment vector calculated about the . of orl.gin 

the structure reference system 

Positi.on vector shown in figure 2 

CoefficLents of the moment vector defined in 

equation (46) 

Matrices defined in equation C471 

Subscripts u,v,w denote the forces calculated 

along u,v,w axes respectively. 

Subscript (m) denotes the forces and moments 

expressed in a member reference system. 

Subs~ript (s) denotes the forces and moments 

expressed in the structure reference system. 

ei) denotes the calculations carried out on an 

individual member. 

NCMENCIA'IURE OF CF.APTER 4 

X,Y,Z 

u,v,w 

-+ -+ -+ 
k,j,k 

X. 
] 

U. 
J . 

U. 
J 

w 

Co-ordinates in the structure reference system 

Co-ordinates in a member reference system 

Orthogonal unit vectors of the structure 

reference system 

Orthogonal unit vectors of the member re~erence 

system 

Components of the rigid-body motion vector 

Components of the rigid-body velocity vector 

Components of the rigid-body acceleration vector 

Motion frequency (Rad. /Sec. ) 

Veloci ty potential of fluid due to rigid-cody ::-Dticn 
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cp, 
J 

-+ 
n 

-+ 
u 

-+ n 
-+ -+ -+ 
r ,r' ,r 

o 

R 
e 

p 

-+ 
F 

-+ 
M 

F, 
1. 

C, , 
1.J 

m, , 
1.J 

a, , 
1.J 

b, , 
1.J 

-+ -+ -+ 
R,r,AC 

a.. , 
1.J 

A(u) ,B(u) ,C(u) 
Al(u) ,Bl(u) ,Cl(u) 

A(u) ,13 (u) ,Ceu) 
il(u),~l(u),Cl(u) 

a,b,c,Fl,F2,F3 

d,e,f,a' ,b' ,c', 
M2 ,M 3 

Velocity potential of flui.d due to unit rigid­

body motion 

Normal unit vector of the surface of a member 

Rigid-body translational velocity vector 

: Rigid-body rotati.onal velocity vector 

Space co-ordinate vectors shown in figure 1 

Real part of a complex equation 

Density of fluid 

: Hydrodynamic force vector due to rigid-body motion 

Hydrodynamic moment vector due to rigid-·body motion 

Hydrodynamic force and moment vector components 

Coeffici.ents defined in equations (9) I (10) and (13) 

Added-mass tensor of a body oscillating in an 

unbounded fl ui.d 

Added-mass tensor of a body oscillating near or 

on the free-surface 

Damping coefficients tensor of a body oscillating 

near or on the free-surface 

Space co-ordinate vectors defined in fi~lre 3 

Coefficients of a tensor used in equations (IS-A), 

(19) and (20) in order to transfer the co-ordinates 

defined in the structure reference system to a 

member reference system 

Vari.ables defined in equation (23) 

Variables defined in equation (24) 

Coefficients of the force vector defined in 

equation (2S) 

Coefficients of the moment vector defined L~ 

equation (28-A) 
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r T 1 I [AM] I [AT] I 

CAlF 1 I [DMJ 

[TM 1 I [Ml] I [G 1 ' 
[BT] I [AlM] 

g 

R 

k .. 
~J 

S(x,y,z) 

dS 

G 

f 

a. 

a,b 

k 

H 
w 

s 

A 
w 

KB 

BM 

Matrices defined in equation (29) 

Operators defined in equatLon (29) 

t-1atrices defined in equation (30) 

Graviati.onal acceleration 

Radius of cylinder 

Coefficients of added-mass tensor of a body 

oscillating in an unbounded fluid 

Length of member 

End co-ordinates of a member defined in the 

structure reference system 

Total hydrodynamic force matrix 

Total hydrodynamic moment matrix 

Mathematical description of a member surface 

Surface area element 

Green's function defined in equation (13) 

Source strength defined in equation (13) 

A variable defined in equation (45) 

Variables defined in equation (48) 

Wave number (=2iT/>-l 

Wave length 

Wave height 

Angle of oncoming wave propagation 

Damping coefficient 

Total water plane area of surface piercing members 

Displacement of the floating st~cture 

Transverse and longitudinal metacentric heichts 

respectively 

Centre of immersed volume 

I/V 
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IXX,Iyy,IZZ 

IXy,IYX,IXZ,IZX 

IYZ,I Zy 

iXX,iXy,iZZ,iXY 

iXZ,iyZ 

[M J ' [C ] ' [BM] , L MH lJ : 
[MH2} , [CHI] ' [CH2] 

[K1 

[X] = I u I 
[X1 

w 
n 

d 

Q 

a,b,c 

IRC1 
[MC] ,ICC] , Lx] * 

[F~'11 

[L1fll, [L1fz]' [L1f 3J 

Total moment of inertia of the water flane area 

of surface piercing members about X axis 

Total moment of inertia of the water plane area 

of surface pi.ercing members about Z axis 

Centre of gravity of the floating structure 

Mass density 

Total mass of the structure 

Position vectors shown in figure 8 

Mass moment of inertia about X,y,Z axes respectively 

Mass moment of inertia values defined in 

eqautions C61-D) I C61-E) , (61-F) 

Mass moment of inertia values defined in 

equations (65-A) - C65-·F) 

Matri.ces defined in equati.on (68) 

The restoring force matrix defined in equation (22) 

Column matrix of acceleration of the structure 

Column matrix of translational and rotational 

displacements of the structure 

Natural frequency (Had. /Sec. ) 

Phase angle between the force Cor moment) and the 

rigid-body motion 

A constant defined in equation C7l--D} 

Magnifi.cation factor defined in equation (72) 

Co-ordinates of a point A on the structure given 

in the structure reference system 

Matrix defined in equation (83) 

Matrices defined in equation (83--A) 

Wave force matrix 

Incremental form of equation of :lotien <::e :ine':: 

in equation ( 86) 
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6t 

6X 

T 

[6P ] 
w 

[K] 

Time increment 

Displacement increment 

Time 

Wave load increment matrix 

Stiffness increment matrix 

Subscripts (M) denotes the velocities, acceler­

ations, forces and moments expressed in a member 

reference system. 

Subscripts (S) denotes the velocities, acceler 

ations, forces and moments expressed in the 

structure reference system. 

Subscripts (T) denotes translational accelerat­

ion and velocity vector components. 

Subscripts (R) denotes rotational acceleration 

and velocity vector components. 

NCMEN::LATURE OF CHAPrER 5 

M(X) 

p (X, t) 

SF(X,t) 

BM(X,t) 

E 

A 

I 

Mass distribution of the ship along X axis 

Structural load distribution along the ship 

length 

Shear force distribution along the ship length 

Bending moment distribution along the ship 

length 

Ship length 

Elasticity modulus 

Sectional areas 

Moment of inertia of ship cross-sections 
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f (X, t) 
w 

Yd(X,t) 

<P (X) 

T (t) 

w 

SF (u,t) 

BM (u,t) 

AF(u,t) 

u,v,c. 

H,B,D 

f ,f ,f 
u v w 

SF,BM,AF 

X,Y,Z 

Distribution of wave loading along the ship 

length 

Distribution of added-mass of the ship in heave 

mode of motion 

Distribution of damping coefficients of ship 

sections in heave mode of motion 

Distribution of restoring coefficients of ship 

sections in heave mode of motion 

Vertical displacements due to dynamic loading 

on the ship 

Shape function 

Variation of amplitude of the vertical displace­

ments of the ship 

Natural frequency of rigid body oscillations of 

the ship (Rad./Sec.) 

The coefficients defined in equation (14) 

Shear force distribution along the members of 

the floating structure shown in Fig. 2 

Bending moment distribution along the members 

of the floating structure shown in Fig. 2 

Axial force distribution along the members of 

the floating structure shown in Fig. 2 

Local co-ordinates shown in Fig. 3 

Height, beam and draft of the floating structure 

shown in Fig. 2 respectively 

Increments along the u axis 

Wave forces along u,v and waxes respectively 

Average shear force, bending moment and axial 

force respectively 

Co-ordinates in the structure reference system 
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-+ -+-+ 
i,j,k 

x. 
~ 

M 

M' 
22 

Fl,F2,F3,F4,FS 

IXX 

C'+4 

b .. 
~J 

u.,u. 
~ ~ 

E 

g 

Orthogonal unit vectors of the structure re!er­

ence system 

Translational and rotational rigid-body dis­

placements 

Mass of the floating structure shown in Fig. 2 

Added-mass of the floating structure shown in 

Fig. 2 in heave mode of motion 

Damping coefficient of the structure shown in 

Fig. 2 in heave mode of motion 

Restoring coefficient of the structure shown in 

Fig. 2 in heave mode of motion 

Mass-inertia, hydrodynamic and restoring forces 

on the structure shown in Fig. 2 respectively 

Mass moment of inertia of the structure shown 

in Fig. 2 in roll mode of motion 

Added-mass moment of inertia of the structure 

shown in Fig. 2 in roll mode of motion 

Damping coefficient of the structure shown in 

Fig. 2 in roll mode of motion 

Restoring coefficient of the structure shown in 

Fig. 2 in roll mode of motion 

Moment vectors due to rigid-body inertia force 

and hydrodynamic forces respectively 

Damping coefficients tensor of a body oscillat­

ing near or on the free-surface 

Components of rigid-body velocity and acceler­

ation vector respectively 

The distance between the centre of gravity of 

the structure shown in Fig. 2 and the base line. 

(See also Fig. 15.) 

Gravitational acceleration 
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p 

R 

e: 

a .. 
~J 

F ,F 
I,U I,V 

a.,S,y 

m 

, 
m .. 
~~ 

k .. 
~~ 

w .. 
n,~~ 

II 

m. ,m ... 
~ ~,JJ 

k .. 
~J 

<5 •. 
~J 

w . 
n, J 

M. 
~ 

" M. + M ... 
~ ~,JJ 

A 
w 

Density of fluid 

Radius of the columns of the structure shown in 

Fig. 2 

Transverse metacentric height 

Displacement of the structure shown in Fig. 2 

Constant defined in equations (56), (58), (62) ,(64) 

Added-mass tensor of a body OSCillating near or 

on the free-surface 

Rigid-body motion induced forces on mass (A) 

shown in Fig. 28 in u and v directions respect­

ively 

Phase angles defined in equation (66) 

Mass of object A 

Added-mass tensor of object A 

Stiffness of the beam shown in Fig. 18 

Natural frequencies of the beam-mass system 

shown in Figs 18 and 19 

Magnification factors defined in equation (72) 

Masses and added-masses of the system shown in 

Fig. 21 respectively 

Stiffness coefficients of the system shown in 

Fig. 21 

Flexibility influence coefficients of the system 

shown in Fig. 21 

Natural frequencies of the system shown in 

Fig. 21 

, 
m. + m .. , 
~ ~,JJ 

Masses and added-masses of the structure shown 

in Fig. 22 

water plane area of the structure shown in =ig. 22 
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[ f] 

[d] 

[F] 

[6] 

[T] 

[S] 

R 

Member force matrix of the member shown in Fig. 

35. (Defined in the member reference system.) 

Stiffness matrix of the member shown in Fig. 35 

Displacement matrix of the member shown in Fig. 

35. {Defined in the member reference system.} 

Member force matrix of the member shown in Fig. 

35. (Defined in the structural reference 

system. ) 

Displacement matrix of the member shown in Fig. 

35. (Defined in the structural reference 

system. ) 

Transformation matrix which converts forces and 

displ~cements defined in the member reference 

system to the structural reference system 

Matrix defined in equation (124) 

Reaction forces on the structure shown in Fig. 

39 

- ~49 -


	346759_0001
	346759_0002
	346759_0003
	346759_0004
	346759_0005
	346759_0006
	346759_0007
	346759_0008
	346759_0009
	346759_0010
	346759_0011
	346759_0012
	346759_0013
	346759_0014
	346759_0015
	346759_0016
	346759_0017
	346759_0018
	346759_0019
	346759_0020
	346759_0021
	346759_0022
	346759_0023
	346759_0024
	346759_0025
	346759_0026
	346759_0027
	346759_0028
	346759_0029
	346759_0030
	346759_0031
	346759_0032
	346759_0033
	346759_0034
	346759_0035
	346759_0036
	346759_0037
	346759_0038
	346759_0039
	346759_0040
	346759_0041
	346759_0042
	346759_0043
	346759_0044
	346759_0045
	346759_0046
	346759_0047
	346759_0048
	346759_0049
	346759_0050
	346759_0051
	346759_0052
	346759_0053
	346759_0054
	346759_0055
	346759_0056
	346759_0057
	346759_0058
	346759_0059
	346759_0060
	346759_0061
	346759_0062
	346759_0063
	346759_0064
	346759_0065
	346759_0066
	346759_0067
	346759_0068
	346759_0069
	346759_0070
	346759_0071
	346759_0072
	346759_0073
	346759_0074
	346759_0075
	346759_0076
	346759_0077
	346759_0078
	346759_0079
	346759_0080
	346759_0081
	346759_0082
	346759_0083
	346759_0084
	346759_0085
	346759_0086
	346759_0087
	346759_0088
	346759_0089
	346759_0090
	346759_0091
	346759_0092
	346759_0093
	346759_0094
	346759_0095
	346759_0096
	346759_0097
	346759_0098
	346759_0099
	346759_0100
	346759_0101
	346759_0102
	346759_0103
	346759_0104
	346759_0105
	346759_0106
	346759_0107
	346759_0108
	346759_0109
	346759_0110
	346759_0111
	346759_0112
	346759_0113
	346759_0114
	346759_0115
	346759_0116
	346759_0117
	346759_0118
	346759_0119
	346759_0120
	346759_0121
	346759_0122
	346759_0123
	346759_0124
	346759_0125
	346759_0126
	346759_0127
	346759_0128
	346759_0129
	346759_0130
	346759_0131
	346759_0132
	346759_0133
	346759_0134
	346759_0135
	346759_0136
	346759_0137
	346759_0138
	346759_0139
	346759_0140
	346759_0141
	346759_0142
	346759_0143
	346759_0144
	346759_0145
	346759_0146
	346759_0147
	346759_0148
	346759_0149
	346759_0150
	346759_0151
	346759_0152
	346759_0153
	346759_0154
	346759_0155
	346759_0156
	346759_0157
	346759_0158
	346759_0159
	346759_0160
	346759_0161
	346759_0162
	346759_0163
	346759_0164
	346759_0165
	346759_0166
	346759_0167
	346759_0168
	346759_0169
	346759_0170
	346759_0171
	346759_0172
	346759_0173
	346759_0174
	346759_0175
	346759_0176
	346759_0177
	346759_0178
	346759_0179
	346759_0180
	346759_0181
	346759_0182
	346759_0183
	346759_0184
	346759_0185
	346759_0186
	346759_0187
	346759_0188
	346759_0189
	346759_0190
	346759_0191
	346759_0192
	346759_0193
	346759_0194
	346759_0195
	346759_0196
	346759_0197
	346759_0198
	346759_0199
	346759_0200
	346759_0201
	346759_0202
	346759_0203
	346759_0204
	346759_0205
	346759_0206
	346759_0207
	346759_0208
	346759_0209
	346759_0210
	346759_0211
	346759_0212
	346759_0213
	346759_0214
	346759_0215
	346759_0216
	346759_0217
	346759_0218
	346759_0219
	346759_0220
	346759_0221
	346759_0222
	346759_0223
	346759_0224
	346759_0225
	346759_0226
	346759_0227
	346759_0228
	346759_0229
	346759_0230
	346759_0231
	346759_0232
	346759_0233
	346759_0234
	346759_0235
	346759_0236
	346759_0237
	346759_0238
	346759_0239
	346759_0240
	346759_0241
	346759_0242
	346759_0243
	346759_0244
	346759_0245
	346759_0246
	346759_0247
	346759_0248
	346759_0249
	346759_0250
	346759_0251
	346759_0252
	346759_0253
	346759_0254
	346759_0255
	346759_0256
	346759_0257
	346759_0258
	346759_0259
	346759_0260
	346759_0261
	346759_0262
	346759_0263
	346759_0264
	346759_0265
	346759_0266
	346759_0267
	346759_0268
	346759_0269
	346759_0270
	346759_0271
	346759_0272
	346759_0273
	346759_0274
	346759_0275
	346759_0276
	346759_0277
	346759_0278
	346759_0279
	346759_0280
	346759_0281
	346759_0282
	346759_0283
	346759_0284
	346759_0285
	346759_0286
	346759_0287
	346759_0288
	346759_0289
	346759_0290
	346759_0291
	346759_0292
	346759_0293
	346759_0294
	346759_0295
	346759_0296
	346759_0297
	346759_0298
	346759_0299
	346759_0300
	346759_0301
	346759_0302
	346759_0303
	346759_0304
	346759_0305
	346759_0306
	346759_0307
	346759_0308
	346759_0309
	346759_0310
	346759_0311
	346759_0312
	346759_0313
	346759_0314
	346759_0315
	346759_0316
	346759_0317
	346759_0318
	346759_0319
	346759_0320
	346759_0321
	346759_0322
	346759_0323
	346759_0324
	346759_0325
	346759_0326
	346759_0327
	346759_0328
	346759_0329
	346759_0330
	346759_0331
	346759_0332
	346759_0333
	346759_0334
	346759_0335
	346759_0336
	346759_0337
	346759_0338
	346759_0339
	346759_0340
	346759_0341
	346759_0342
	346759_0343
	346759_0344
	346759_0345
	346759_0346
	346759_0347
	346759_0348
	346759_0349
	346759_0350
	346759_0351
	346759_0352
	346759_0353
	346759_0354
	346759_0355
	346759_0356
	346759_0357
	346759_0358
	346759_0359
	346759_0360
	346759_0361
	346759_0362
	346759_0363
	346759_0364
	346759_0365
	346759_0366
	346759_0367
	346759_0368
	346759_0369
	346759_0370
	346759_0371
	346759_0372
	346759_0373
	346759_0374
	346759_0375
	346759_0376
	346759_0377
	346759_0378
	346759_0379
	346759_0380
	346759_0381
	346759_0382
	346759_0383
	346759_0384
	346759_0385
	346759_0386
	346759_0387
	346759_0388
	346759_0389
	346759_0390
	346759_0391
	346759_0392
	346759_0393
	346759_0394
	346759_0395
	346759_0396
	346759_0397
	346759_0398
	346759_0399
	346759_0400
	346759_0401
	346759_0402
	346759_0403
	346759_0404
	346759_0405
	346759_0406
	346759_0407
	346759_0408
	346759_0409
	346759_0409a
	346759_0410
	346759_0411
	346759_0412
	346759_0413
	346759_0414
	346759_0415
	346759_0416
	346759_0417
	346759_0418
	346759_0419
	346759_0420
	346759_0421
	346759_0422
	346759_0423
	346759_0424
	346759_0425
	346759_0426
	346759_0427
	346759_0428
	346759_0429
	346759_0430
	346759_0431
	346759_0432
	346759_0433
	346759_0434
	346759_0435
	346759_0436
	346759_0437
	346759_0438
	346759_0439
	346759_0440
	346759_0441
	346759_0442
	346759_0443
	346759_0444
	346759_0445
	346759_0446
	346759_0447
	346759_0448
	346759_0449
	346759_0450
	346759_0451
	346759_0452
	346759_0453
	346759_0454
	346759_0455
	346759_0456
	346759_0457
	346759_0458
	346759_0459
	346759_0460
	346759_0461
	346759_0462
	346759_0463
	346759_0464
	346759_0465

