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SUMMARY

In this thesis an investigation into the wave loading, motion
and structural response of floating offshore piatforms is presented.
The aim of Fhe study was to develop an analysis procedure which
could be applied by an offshore designer to various platform designs

for accurate and safe calculations.

The investigation starts with a review of the basic hydro-
dynamic principles of wave loading on floating structures. In this
part the effects of interference between the closely spaced circular
cylinders, second-order forces, and the non-linear free surface

conditions on load calculations are presented.

During the next part of the studf, generalised calculation
methods for circular cylindrical members of of fshore platforms have
been devised in order to determine the hydrodynamic and the structural
loads under wave excitation. The wave and motion induced load cal-
culations are also coupled with the structural analysis to predict
the structural response of individual members of a floating platform.
This load information provides basic input data for the accurate and

safe determination of member scantlings.

The developed calculation procedures were implemented in various
computer routines for practical applications. These methods were
applied to model and full-scale semi-submersible designs for the

determination of motion and structural response.

Finally, model tests have been carried out and the comparisons

between the theoretical predictions and the test measurements are

presented.



Chapter 1: INTRODUCTION




INTRODUCTION

The design and construction of floating offshore plat-
forms for relatively calm waters started in the early 1960s.
In the 1970s, with the discovery of oil and gas fields in the
North Sea, a wide range of platforms (wide, that is, both in
respect of underwater geometry and of column and bracing arrange-
ments) was designed and built (Fig. 1). These structures, which
were built for the purpose of drilling, production, storage,
pipe-laying and installation of deck modules on fixed platforms,
are operated in moderate weather conditions, and must survive

most severe conditions.

During the early development of North Sea drilling
activities, various investigators developed linearised methods
to predict the motion response of semi-submersible type floating
platforms. Details of these methods are given in References 1,
2, 3. The features common to all of these studies may be

summarised as follows:

a) Airy wave theory is adopted. Amplitudes of wave and
platform motions are assumed to be small so that linear
hydrodynamic methods may be used. This assumption
permits the linear superposition of the wave forces
acting on the restrained structure due to the wave
particle motions, and hydrodynamic forces acting on the
structure due to the rigid-body oscillations of the
structure in calm water. The relative motion concept

is discussed in detail in References 4, 5, 6.
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b) Sectional dimensions of members of the floating structure
are small compared to the wave lengths. The floating
structure can be divided into small volume elements if
the dimensions of these elements are less than about 1/5
of the wave length. The wave and motion induced forces
can be assumed to be concentrated in the centre of these
volume elements. If one of the dimensions of these
volume elements is large compared to the wave length,
the strip theory approach is adopted [4]. The wave and
motion induced forces are calculated on each volume
element, assuming that the rest of the structure is not

present, in other words, the interference between the

elements of the structure is not taken into'account.

c) Since most of the volume elements of a floating structure
are deeply submerged, the free-surface effects are

neglected.

d) Hydrodynamic forces due to rigid-body velocity are
linearised and the calculation methods derived in Refs.
2 and 3 neglect the wave forces due to wave particle

velocities.

All these methods, reported in References 1, 2, 3, give
a good estimation of the wave induced motions of semi-submersible

type platforms.

Following the successful development of motion prediction
methods, optimisation studies were carried out to find the best
geometrical configurations from the point of view of minimum motion

response [7,8,9,10,11].



Despite the significant progress achieved in the field of
structural analysis with the development of various computer pro-
" grams which were based on finite element methodé, (12, 13, 14],
there was not any agreed structural design philosophy to apply to
this new generation of floating vessels. The wide range of
structural arrangements in the existing designs (Fig. 1) indicates
that insufficient interaction took place between the advanced:
fields of hydrodynamic and of structural analysis during the early
development of floating platforms. The literature reveals that
designers or classification societies carried out very refined
finite-element analyses for a certain type of floating structure
under loading conditions which are computed by poising the struc-
ture statically on a wave of a certain height and length [15].
(Wave length was usually taken to be half of the pontoon length
and wave height corresponded to a significant wave height of in

the area where the platform was operated).

As experience from the floating platforms operated in the
North\Sea gave evidence of the shortcomings in the design calcul-
ations, the need was felt for more rational design methodoloéies
[16]. Towards the middle of the 1970s some large design and
con;truction companies, as well as some classification societies,
either sponsored research or in their own organisations initiated
analytical studies in order to develop computational methods for

the structural design of floating platforms [17,18,19,20,21 of

chapter 5].

The features common to these new computational methods of

structural analysis may be summarised as follows:



a)

d)

e)

£)

All members of the structure are assumed to
deform in the elastic region under static and

time-dependent quasi-static loading

The member forces are determined under static
and time-dependent loading using finite
element methods. The structure is usually
represented with beam elements for the overall

structural response analysis

The whole structure is analysed under time-
dependent quasi-static loading to determine

member forces in the frequency domain

These memnber forces are divided by the wave
amplitudes to obtain the transfer functions
which will be used for the statistical analysis.
These transfer functions will be correct only

if the member forces vary linearly Qith the wave
amplitudes. This is largely true for the

floating platforms which operate in most areas.

The transfer functions for each member are com-
bined with the spectral characteristics of the
operational enviromment of the platform to arrive
at the member force and moment spectra for the

critical locations of the structure

The response spectra for member forces and moments
are analysed to obtain significant or extreme
design stresses as well as the fatigue resistance
of the joints. Details of the statistical
analysis procedures can be found in References

21, 22 and 23.



g) Extreme design stresses on, and the fatigue
resistance of, a member are compared with the
existing design codes which take saféty factors
into account. These comparisons will enable
the designer or the certifying authority to
make the decision as to whether to retain the
scantlings used throughout the design calcul-
ations or to modify the scantlings and repeat

the calculations.

The conceptual philosophy for the overall structural
response analysis, which is summarised above, can be accepted
as a rational approach for the design calculations. The
development of calculation routines based on this new structural
analysis procedure was reported to be completed in late 1976
[24,25]. However, since they were the property of a small number
of institutions, the calculation routines were inaccessible to a
large group of designers who would have been able to understand
and use them as design tools. On the other hand, these developed
routines, as far as the author can conclude from the relevant
published literature, were in any case restricted in use to design
calculations on a limited range of gecmetry. The accidents in-
volving floating platforms bear witness to the shortcomings of
the developed design procedures [26,27]. Table 1, which was
taken from Reference 27, shows the number of accidents, between
1970 and 1980, involving floating platforms in relation to the

hydrodynamic and structural aspects.

As drilling activities are, in recent years, being extended

to deeper waters and more hostile enviromments, it becomes



essential to develop and verify calculation procedures by
merging the latest methods of hydrodynamic load calculations
with the most modern and thorough structural analysis tech-
niques. The calculation methods should be devised and
documented in such a form that an offshore designer can success-
fully and safely apply them to different designs which may vary
in geometrical and structural configuration, size and operational

environment.

In this study an attempt is made to derive generalised
calculation methods by which the hydrodynamic and the structural
loading on a floating platform under wave excitation can be pre-

dicted.

The methods developed are suitable for use with any
structural configuration which is composed of circular cylindrical

elements.

Wave loading calculations are carried out for a model and

a full-scale semi-submersible.

Model experiments were performed in order to compare the
predictions of motion and structural response with the measure-

ments.



TABLE 1

(From Reference 27)

FLOATING PLATFORMS
Initiating Structural Loss
Event Total Severe Damage Minor { No. SuM
Weather 3 10 22 17 8 60
Collision 2 2 11 18 12 45 |
—

Blow-out 5 7 9 7 S 34
Leakage - 1 3 - 2 7%
Machine, etc. - 1 4 5 - 11

. (1) :
Fire 1 2 12 12 - 4Bi
e . () |
xplosion - 2 4 6 - 1%J
Out-of-posit. - - 2 - 4 6%
Foundering 1 - - - - 1i
Grounding -1 3) 2 2 1 12
Capsizing 11 4 1 1 - 17
Structural y 4 14 0
Strength(z) 2 2 41
Other - - - 8 10 18
SUM 25 | 40 84 97 a5 | 201 |

Number of Accidents involving floating platforms operated world-wide
during 1.1.1970-31.12.1980 (Records were obtained from Lloyd's

Register of Shipping).

1) Fires and explosions occurring in connection with blow-outs do
not belong to this category as the initiating event in this case

is the blow=-out.

2) This category includes structural failures that are not apparently
indiced by rough weather or accidental loads. Hence accidents

caused by a deficient structure belong to this categoryv.

- 10 -



Chapter 2: WAVE LOADING ON CIRCULAR CYLINDRICAL

MEMBERS OF OFFSHORE STRUCTURES 1IN

DIFFERENT REGIMES




INTRODUCTION

This chapter summarises the methods used in the evaluation of wave
loading on structures for different sizes of members on, or beneath the
free surface. Throughout the report the geometry of circular cylinders
is used for the numerical procedures and examples. At first, the
general hydrodynamic problem is outlined and this is followed by a
detailed analysis of the inertia and diffraction regimes. The analysis
is primarily based on irrotational (no viscosity), incompressible pqtent-
ial flow theory. Allowances are made for small diameter members which
give rise to the viscous forces. In addition, non-linear effects and
the additional loading generated by the quadratic potential and second-

order loading generated by linear potential are summarised and their

importance in design calculations is shown.

1. BASICS OF THE HYDRODYNAMIC PROBLEM

Our concern is to estimate the wave loading on the cylindrical
members of a structure which can be fixed or floating amongst the waves.
In the simple case it may be assumed that the waves are plane progress-
ive waves of small amplitude with sinusocidal time dependence. It is
also assumed that the wave amplitude is sufficiently small to satisfy

linearisation.

If the fluid motion is irrotational it was shown that the follow-
ing relations exist between fluid particle velocity U(x,y,z,t) and a
scalar potential which will depend on the three space co-ordinates
(x,y,z) and times [1,2].

7
i

- _ 31,0872, 37
Uu=Vd(x,v,2z,t) , Vv = e + 3y j o+ s k (1)

where 3 denotes the velocity vector of the fluid, and

$ denotes the velocity potential.



[y

The time dependence of the fluid motion to be considered here is simple

harmonic motion and therefore ¢ may be expressed as:

¢ = Re[d)(x,y,z,t)]éimt . (2)

The mathematical condition specifying the incompressibility of the
fluid is:
-5
Veu = 0 (3)

If equation (1) is substituted in equation (3) the basic differential

equation of irrotational, incompressible fluid is obtained:

V20 = 0 (4)
A%
% T
A X
T\f >
N?\ //\<7X
\/’F
s -0
Z Ny \ X S(X1512>_
& s o\ o X
\-‘f ‘/Xé / s.XL,
3 V4
4
o
zy
[
a
Fig. 1.

Since we assume that incident wave is sufficiently small in ampli-
tude and the structure in the wave is stable, the resulting motions

will be proportionatekfsmall. Then the velocity potential ¢ for the

floating structure amongst waves can be given as follows:

6 .

-iwt

®(x,y,z,t) =Re {[d (x,y,2) +¢_(x,y,2) + ) X.9. (x,y,2)]e" "}

\o S — j=1 J J
\/ (5)
%a
or
6 -iwt

@(XIYIZIt) = Re {[¢A(XIYIZ) + z xj(b] (XIYIZ)]e } (5"A)

j=1
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If the structure is fixed amongst the waves the velocity potential takes

the following form:

d(x,y,z,t) = Re {¢A(x,y,z)éiwt} (5-B)

The first two terms in equation (5) are due to the incident waves
and their interaction with the structure respectively. These potentials
are independent of the body motions. The third term in equation (5) is

due to the structure's rigid body motions in waves.

The velocity potential associated with an incident wave is given

by:
0.5gH Coshlk (h+y) ]

. ikx
o W Cosh[kh]

e (6)

for the deep water waves equation (6) becomes:

0.5gH .
6 = - i W eky e1kx

(6-A)
o w

On the surface of the structure elements the following boundary

condition should be satisfied:

3¢A
-_— =0 on S(XIYIZ) =0 (7)
on
where
3¢ 3¢ e 3¢
A > _"'A “'a A
don V¢A' n T3k %k * oy ny T3z Pz
since
3¢ 3¢ a¢
A o) s _
¢A = ¢o * ¢s and dn  on * on 0
) d
_22 = _.J?E (8)
on on

Equation (8) shows the kinematic boundary condition on the struct-

ure's surface.

In addition to the kinematic boundary condition given by equation
(7) or equation (8) ¢S must also satisff the following boundary condit-
ions:

- 14 -



(a) Laplace equation:

2 =
% ¢s =0 | (9)

(b) Bottom boundary condition:

3¢

S
oy

=0 at y > - (10)

(or, at y = - h for shallow water core)

(c) Free surface condition:

el

2
S w
5;— -‘:; ¢S =0 on y =20 (11)

(d) Radiation condition:

m 8¢S iw
£im —= -, -
im «r . il 0 (12)
r—>co
where m = (n-1)/2 n: the number of dimensions
r : radial distance, r = /x2%+z?
c : wave celevity, c = A/T

It can easily be shown that the incident wave potential ¢O given
by equation (6) satisfies the boundary conditions given by equations

(9),(10) and (11).

The scattering potential, in the most general form, can be
represented by a distribution of wave sources over the immersed surface
of the structure using Green's function. The scattering potential

function is given by Wehausen and Laitone [3] as follows:

6 (x,v,2) = 5= [[ £(EN,0) Glx,y,2,Em,D) (13)
S

where f£(£,n,f) represents the source strength,
(§,n,C) denotes a point on the surface of the structure,
G(x,vY,2,£,N,C) shows Green's function, and
ds is the differential area on the immersed surface of the

structure.

- 15 -



Fig. 2.

The Green function which satisfies the Laplace equation (9) is

given by John [4] as:
G =—+ G* (14)

where
R=[(x=£)% + (y-n) 2% + (z-7)?]7

and

MR osh 1 (n+h) ] Cosh [u (y+h)]
1

0 -
1 (u+v) e

G* = — + 2P.V.
rRY 2P.V £ U Sinh(¢h) - Vv Cosh (uh)

Jo(ur) du

2 2
+ 1 2T (k“=-v*) Coshl[k (n+h)] Cos[k(y+h)]J

o (kr)
k%h - v?h + v

(P.V. denotes the principal part of the above integration.)
where

Vv

oleg

= ktanh(kh), R' = [(x-E)2 + (y+2h+ﬂ)2 +(Z'C)2]%

r= [(x-0)? + (z-%)]%
An alternative form of the Green function in series form was given

in reference [4] as follows:

2_,2
¢ = —2TC %) coshlk(n+h)] Coshlk (y+h) ][y (kr) - iJ_ (kz)]
k2h - V2n + v © ©
@ (u2+v?)
+4 ) Cos[u_(y+h)] Cos[u_(n+h)] K (ur)
m m (@]

m=1 (u;h+v2h-v)

- 16 -



where Jo and Yo are Bessel functions,
Ko modified Bessel function, and

um is the real positive roots of the following equation.
um tan(umh) +V =90 (16)

Equation (13) satisfies all the boundary conditions except the

kinematic boundary condition on the immersed surface of the structure.

Substituting equation (13) into equation (8) and taking the inte-

gration around the source into account the following result is obtained:

39
o 1 1 3G
S A =7 £yt fé £(Em,2) == (x,v,2,E,n,0) 4S (17)
From equation (6)
R0 g0.5 H k . .
o _ Wl Sinh [k (y+h) ] + in Cosh[k (y+h)] ikx (18)
on W y  Coshl[kh] My T Coshlkn] ©

Finally the following Fredholm integration is obtained as follows:

1 9G
- fx,y,2) + o fé £(&,Nn,2) Py (x,y,2,&£,n,5) 48

_ 290.5 Hwk n Sinh[k (y+h)] + in Cosh [k (y+h) ] ikx
w y  Cosh[kh] X  Coshl[kh]
(19)

Equation (19) may be solved numerically by subdividing the immersed
surface into N panels and assuming the source strength £(§,n,l) remains
constant over each panel. Numerical solution of this equation and esti-

mation of ¢s are discussed in detail in reference [5].

Green's function method is very suitable in cases of complex geom-
etries, and moreover for the definition of the flow field so as to be
able to calculate wave forces on members of the structure taking the
interaction between the members into account. It is worth noting that
numerical solution of equation (19) to obtain ¢S takes up much comput-

ing time from the point of view of development, large storage space and

it is quite costly to run.

- 17 -



Havelock [6] presented a scattering potential function
as an infinite series using the polar co-ordinates diameter r, and

angle 6 for circular cylinder geometry in waves:

‘.gO.S H 3 t
. -iw
Am Cosme[Jm(kr)-+1Ym(kr)]e

Coshk [y+d] w
q)S(r’e’y) = = L oS Ly+ ] z

w Cosh (kd)
m=0
(20)
where Am are numerical constants, and
Jm(kr) and Ym(kr) are Bessel functions.
The application of equation (20) is given in Section 2.2 to calculate
the wave forces on large diameter cylindrical members of offshore

structures.

The last term in equation (S-A).¢j(x,y,z) represents the velocity
potential of a rigid body motion with unit amplitude in the absence of
the incident waves. For example viz. Fig. 1, if the structure is forced
to heave with unit amplitude in calm water, the resulting fluid field
can be represented by potential ¢2(x,y,z). The appropriate boundary
,conditions can be obtained by equating the normal derivatives of the
potential to the normal vector of the rigid structure velocity on the
surface S(x,y,z) = 0:

¢
—d = jun. j=1,2,3 (21)
on b

3¢,
—J = iw(;AK)j—

— j=4,5,6 (22)

3
In addition to the kinematic boundary condition on the body sur-
face each potential ¢j should also satisfy the Laplace equation (9),

the freé surface equation (11) and the radiation condition (12).

The forced motion potentials ¢j can be obtained from the solutions
of the radiation problem and they only depend on the structure geometry

and the boundary conditions.

-18_



Having summarised the components of equation (5) we can easily
achieve our main aim of the calculation of wave loading on the struct-
ure using Bernoulli's equation:

9% 1

1
- E-(p-pA) =5 + —-V@V@ + gy (23)

Substituting equation (5) into equation (23) the pressure can be

obtained in terms of velocity potential:

6 .
= pWw Re ¢o(x,y,z) + ¢S(x,y,z) + jzl xj¢j(x,ylz) iélwt
1 )
iy l:( (d) (X,y¥,2) +¢ (x,y,z))> ( (¢> (x,¥,2) +¢ (X,v, z))w 2
+ (g—z (6 (x,¥,2) + d)s(x,y,z)) 2| gleut (24)

6 /
1 ) 2 8 2
2 L Gemssora)t + (B xgoy )

) 2l -i2wt
('a‘z’ X304 (x'y’zﬁJ T - pay

The second and third terms in equation (24) are neglected usually for

+

the force and moment calculations on the structure, but since they give
rise to the time independent forces they may be significant on some
structures. The evaluation of steady-state forces will be given in

Section 2.1.11.2.

The force F and moment M can easily be obtained using equation (24):

F ff pKdS

(25)

=¥
i
—
—
o
A
>
o
(o
0

The mathematical background outlined in this section is based on
linear theory, i.e. linear incident wave and linear surface conditions
are assumed. Non-linear solutions for incident waves were given by
Stokes [7]. These solutions are based on the systematic power series

in the wave amplitude. But convergence of these power series 1is

- 19 -



restricted to certain values of the wave steepness H/A and relative
water depth. (Depth of structure/%ater depth.) Some applications of
Stokes' higher order theory were given by Skjelbreia and Hendrickson in
reference [8]. Non-linear effects can be significant on offshore
structures which are working in shallow water. The gravity type plat-
form can be a typical example whereby it may be important to consider
non-linear forces. 1In Section 2.2 calculation of these forces are

shown.

Finally, the theory for quadratic correction of the velocity
potential ®(x,y,z,t) and of the associated forces due to the assumption
of a non-linear free surface condition was developed by Lighthill in
reference [9]. The applications of Lighthill's theory in design calcul-

ations are shown in Section 2.1.11.

2. ESTIMATION OF WAVE FORCES ON THE MEMBERS OF OFFSHORE STRUCTURES

In this section the wave force calculations on the members of off-
shore structures are considered, basically in two flow regimes. These
regimes are mainly controlled by the structure's characteristic length,

such as diameter for circular cylinders and the wave length.

When the ratio between diameter and wave length is less than 0.2,
force caltulations are carried out in the inertia regime. Within the
inertia regime as the ratio between diameter and ﬁhe wave height gets
smaller viscous forces become significant. The inertia regime may be
summarised from Fig. 3 as follows:
when D/H > 0.2, inertia increasingly dominant

0.125 < D/H < 0.2, 1inertia + drag significant

D/H < 0.125 drag predominant.

As the ratio between diameter and wave length gets larger

(D/A>0.2 or kR>0.63) the wave force calculations should be done in

- 20 -
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diffraction regime. If we assume linear-free surface conditions, in
other words the wave height is small compared to the wave length
(H/A<0.14 for deep water waves) in diffraction regime the viscous

forces become negligible.

Various regimes are summarised as a function of D/)\ and Heky/D in

Fig. 4.

2.1 Wave Forces on Small Diameter Members

2.1.1 Inertia force. The summarised results of the linear potential

flow theory will be applied to calculate wave forces on small diameter
members of offshore structures. In the absence of the structure the
fluid motion can be described by a velocity potential @o(x,t), here @o
is unsteady in time, but the change with time is slow and length scale
@O/IV®ol is small compared to the characteristic length of a member and
for simplicity it is assumed that the wave particles' velocity is

09
U = =— and is parallel to the x axis at a member and that the member

X ox
has symmetry in respect to the whole reference axis: The disturbance
of the wave.flow due to a member, depends only on the relative flow
between the member and the fluid. (Here a member of the structure is
isolated from other members of the structure, in other words it is
assumed that there is no interference due to the other members.) The
total potential including the effect of the structure in the flow field
is given by:
¢ = @o + (UX-UI) ¢1 : (26)
Here U1 is the velocity of a member and ¢1 the corresponding veloc-
ity potential. The second term in equation (26) identical to the rigid
body velocity potential representation in equation (5). In equation
(26) the velocity term was used to include the effect of interference

between the structure velocity and fluid velocity. When the velocity

potential of a rigid body is written in the above form the kinematic

‘ N - 23 -
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boundary conditions on the body surface would also be different from

those given in equation (21). They would take the following form:

0.
gl = n, j=1,2,3
(27)

L

5L = ()

0 -3 j=4,5,6

Substituting equation (23) in equation (25) the hydrodynamic force

vector can easily be written in terms of velocity potential as follows:

- y pnds = - pff (— + = \7<I>V<I>> nds (28)

M

Newman [10] gives two alternative forms to equation (28) as

follows:
d )
'F*=-pd—tfj@nds+pfj< vq>-—vq>vq>n/ (29)
M
oxr
E=-pditff @nds—pff[ V@—K%V@V@J (29-A)
M

Fig. S.
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If we substitute equation (26) in equation (29-A) F. becomes:

X
P = d #a(bo 3¢>1
x= " Pag/l @ +W -u)é)nas-p [f 3ot (U0 e
S S
C C
3o 3¢
o) 1 1 2
r-——ax +(Ux—U1) E—A y nX [Vd + (UX-UI)VdJl] das (30)

o

The following relations can also be used to estimate the value of

—

From the divergence theorem of Gauss:
fff Vadv = ff ands (31)
v S

In equation (27) if we multiply both sides by ¢i and integrate

over SM the following equation is obtained:

39,
éicpié?lds:gfcpinj ds (32)

If we suppose that we are only considering the value of the force
due to the structure velocity potential substituting equation (26) into
equation (28) and neglecting the second-order terms the following equat-

ion can easily be written:

-»> d -> i >
= — 3 — S

o= P [J U mas=p g [[ ¢ na (33)
S
M

If we substitute equation (32) into equation (33) FT M becomes:
14
ou

= I § 0.,

Foow = Pae [0 das (34)
SM on

By analogy to Newton's second law equation (34) can be expressed

in the following form:

N BUi
= T 35)
From = iy 3¢ (
From the definition it becomes clear that:
00,
miy TP [J oy 4 46 (36)
SM on
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Here mij is the added-mass tensor. Using the divergence theorem

of Gauss:

3¢ .
m =0 g[ 6, 5Hl-d85=p fé[ v<¢iV¢j) av =p jé[ <v¢iv¢j> av  (37)
M

From the definition of kinetic energy of the fluid:
1 1
T=>p [f[ (VOV®) av = = o [[[ U, U, V$.V. av (38)
2 v 2 i] i 73
\%
Combining equations (37) and (38):

T=suuy 38
2 P UUymg (38-)

This result is very useful for finding the added-mass values of differ-

ent geometries.

As an example, the kinetic energy of the fluid in the case of a
circular cylinder which is moving with U constant speed can be written
using the definition of kinetic energy expression as follows:

1 " 2n Ll
T = 7P f dr f U?rdd = > P R2y? (39)
R o
Equating (38-A) and (39) muj can easily be obtained for circular

cylinders per unit length:

2
m,, = TPR
ii P

In reference [11] the kinetic energy of flow is given for differ-
ent geometries of moving or rotating bodies. Now we can use the results

obtained in equations (31)-(39) to calculate the first integral in equat-

ion (30):
3@0
[[ le_ + (W -U)é,] nds = f{gf s dv £ Zmp, (U -U)
s
" (40)
=UV+=m, (U-U)
or
-0 ﬁ% [f [& + (U001 nds = (pvim; ) U =m0, (40-3)
S
M
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If we write the terms in the second integral after the multiplicat-
ions of the terms in brackets the following form is obtained:

90 3% 3¢,
o _ 1 o _
P éf [—an + (U -U) 5— H——ax + (U U J

1 | 2
> nx [V@o + (UX-UI) V¢1} ds

JQQ od 8¢ a¢ a¢
= _0Z2 _ _o "1 _ %1 % 1.2
pff ( )n + (U 9) ) " 9% +(U U ) = 3x (Ux U) (ax Ly n
C L '
“‘1‘11 (V®)2+2(U—U)V<DV¢ + (U - 2 o2
2 x a x "1 o'% < 9;) (V¢f, ds (41)

Since Laplace equations V2®o and V2¢, are satisfied throughout the

1

entire region of S, equation (41) becomes:

C
3 3¢ 3% 3¢ )
o) 1 o 1 i
P(U_-U,) é[ il el el W vq;J ds (41-A)

C

For sufficiently large radial distance r from the body, the potent-
ial due to the structure's rigid body motion can be written in terms of

dipole moments:

d., = A, . 2 1 as r > ® (42)
i ij axj r

Dipole moments A'j were calculated using Green's theorem and given as
i

follows [10]:

1 .
2 + i =1’2,3 (43)
Aij an (Véij mij/p) i,] |

From the symmetry of the structure Aij = 0 if i#j here:
0 i#]
i]
1 i=3

Assuming that control surface S_ is sufficiently distant from a

cC
member of the structure, we can then substitute equations (42) and (43)

into equation (41-A) to obtain the following form for the second inte-

gration in equation (30):
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T3¢ ., 3% .,
1
Zr  (PVHm, ) (U -U)) ff [-——-9——-(i9 TR (i) n V9V ——-(1} ds

4m 2 X dnox r
C ax
(44)
or

‘ 529 \
1 d /1 1 3 o 1
7= (Pv+m ) (U -U = (T -= = -n V2 (
i N L L TIE

(44-3)
Using Green's theorem inside the control surface SC the velocity

potential ¢i(x,y,z) can also be given as follows:

, .
¢i(XIYIz) = = E ff ¢ —(—)- = —= ds (45)
SC ;

Using equation (45) and the Laplace equation, the final form of
the second integral in equation (30) will be:

320
(@]

- (pv+m ) (U_-U) (46)

ax2
If we replace equations (40-A) and (46) with the first and second
integrals in equation (30) respectively, we obtain the total horizontal

force Fx on a member in the following form:

dU
[ [ x
FX = (pV+m11) UX - mll U1 + (pV+m11)(Ux-U1) = (47)
or
[ ] aUx [ ]
Fx = (pv+m, ) Ux + (UX—UI) = m,,U, (47-A)

Similarly the Fy, Fz components of the force vector can be written as

follows:
[ ] BU ®
F = (pV+m,,) U+ (U -U)) 551 -m, U0, (47-B)
. aUz .
FZ = (OV+m33) Uz + (UZ—U3) 32 m33U3 (47-C)

Equations (47-3),(47-B) and (47-C) are the fundamental expressions

for the calculation of wave loading on the members of offshore structures.

We may interpret equation (47-A) to give the physical meaning of

each component:
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ouU

- . . _ _X _ .
Fx pVUX + m11Ux + (pV+m11)(UX Ul) - m“U1 (48)

The first term on the right hand side of equation (48) is the dyn-
amic pressure force due to undisturbed wave field. This§ can easily be
understood by comparing equation (40) or (40-A) with the first term in

question. This force is also called the Froude-Krylov force.

The second term is the acceleration force due to the presence of

a member in the wave field. The third term takes the interaction
between water particle velocity and body velocity intoc account, as
well as the variation of fluid particle velocity along the cross-
section of a member. We may call this term a "correction force for
disturbance of the wave field due to the body" and it has a second
order effect. The third term is usually neglected in the practical
calculations. The last term of equation (47-A) is due to the member's
motion. If we set the sum of all Fx's for individual members equal to
the.product of the total mass of the structure and 61 we can also

obtain the motion equation as:

I
il B
ey |
]
e~—g

1[(pvi+m11,i) Ux’i - mn'iul] (48)

or

m -
<M+ Z m11,%> Ul - _Z [(pvi+m11,i)} Ux,i (48-2)
i=1 i=1

If we want to show the use of equation (47-A) by calculating the
horizontal wave forces on a circular cylinder, if we assume that the
cylinder is stationary and the wave field is described with a velocity

potential given in equation (6-A):

-i 0.5g H ,
o = - W eky eJ.kx (49)
o
| )
/=i 0.5g H . . .
9 ( w ky ikx -lwt) v
UX Re<l < K m e e e y
) J
ky .
Ux = 0.5 Hw w e Cos (kx-wt) (50-A)
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oU
N 2 ky _.
Ux = SE—-_ 0.5 Hw w< e Sin(kx~-wt) (51)

7 X
Fig. 6.
BUX K
— =-0.5H wke Y Sin (kx-wt) (52)
ox W
Since the member is assumed to be stationary:
u, =0 (53)

If we substitute the equations (50-3A)-(53) into equation (47-3)

bN

F can be written as:

X

L k 2k
F_= [¢ (omR? + pmR?) (0.5 B W’ e ¥ sin(xx-wt) - 0.5% B2 0 k

o

Sin (kx-wt) Cos (kx-wt) ¢ dz (54)
or

¢ K k
F_= [ 20mR? 0.5 B w? ¥ sin(kx-ut) (1-0.5 H_k e Y Cos (kx-wt)) dz

o

(55)

If we neglect the second term in brackets Fx becomes:

Fo= 20mR* 0.5 H W’ Y Sin(kx-wt) dz (54-A)

o

Finally, equations (47) can be written as a function of wave

properties and the geometry of a structure in waves:
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L
F - [ ] _ [ ]
N p£ (a_(1+k ) U_ - Ak U) (55)
Here AS : cross—-sectional area of a structure
k : added mass coefficient.

11

Usually 1+k11 is written as CM and therefore equation (55) takes the

following form:

—

'
F, =0 J (a, ¢
(@)

U,) dz - (55-A)

UX - AS k11 )

M
If we substitute As=ﬂR2, k11=1 or CM=2' and U1=O for stationary circular

cylinders into equation (55-A) we obtain an equation identical to the

expression given in equation (54-3a).

2.1.2 Drag force. The theoretical wave force predictions given in

Section 2.1.1 use ideal potential fluid theory and are proportiocnal to
the local acceleration of the fluid relative to the body, hence they are
"inertia forces". But as was mentioned earlier in Section 2, when the
body's characteristic length becomes smaller compared to the wave ampli—
tude (D/H<0.125), the situation in the flow field is fundamentally
different and we should also include viscous forces which are due to the
turbulent flow in the lee of a body. The wave force due to the viscos-

ity of the flow can be represented as follows:

F =

1

0

where AL = 2R , U; is replaced by UXIUXI to ensure that FD acts in the

same direction as the fluid velocity.

The main difficulty comes with CD coefficients in the drag force
calculations in waves, simply because CD coefficients in waves are not
only the function of the Reynolds Number which changes throughout one
wave cycle, but they are also related to the inertia coefficients with
the Keuwlegan-Carpenter Number which is defined as UXT/D. (The details

of CM—CD relation are discussed in Section 2.1.4;) Therefore the most

- 31 -



1

accurate viscous force prediction in the waves could be obtained from
the experimental results with time averaging where flow is sinusoidally
oscillating or from real wave data. In practice one tends to use steady
flow results for estimating the CD value for the prediction of drag
forces in waves, although the published values of drag coefficients in
waves show similarity to the drag coefficients in steady flow, where CD
decreases considerably with Reynolds Number over the approximate range
10*<Re<10°®. cCare must be taken if steady flow results are applied to sea-
wave flows, because of the two main flow phenomena which do nét exist in
steady flow or in the sinusoidally oscillating flow:

(a) The water particle motions are orbital, and

(b) Irregularities of sea-waves.

If a member of the structure is relatively large with respect to the

wave height, the viscous drag coefficient becomes less sensitive to

Reynolds Number and steady flow results may be more suitable.

2.1.3 Total wave force. As was mentioned earlier, in the region where

0.25<D/Hw<0.2 inertia and drag forces both become significant. In this
region despite the interaction between the inertia and drag forces, the
total wave force on a cylindrical member of the structure may be assumed
to be predicted as a summation of the inertia and drag forces which are
given in equations (54-a) and (56).

FT = FI + FD or

(57)
Fp = P £(CM Bs ‘."x*'i'% AL lele)dz
This form of total force was first proposed by J.R. Morison for the
design of pile supported offshore structures [12]. If we replace ﬁx by
(w2 O.5Hw) and replace Ux by (w O.SHw) it follows that the ratio of
maximum viscous forces to the maximum inertial forces is proportiocnal to:
x o w? (O.SHw)2 ¢y D cy EV_’.
D

2 2 “TCe
cM p mD%/4 w (O.SHw) M

(58)
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In Fig. 3 ratios of maximum inertia force/maximum drag force is
given as a function of HW/D. When equation (57) is used the coeffic-.
ients should be chosen very carefully for the appropriate values of
Reynolds Number, Keylegan—Carpenter Number (=Ux,max T/D), the relative

roughness (=k/D) and instantaneous time (=#t/T). In other words equat-

ion (57) can be generalised and written as:

FT = f(Ux,max’ D, p, v:. T, £, k) . (59)

A sim?le dimensional analysis of the equation (57) shows that total

force FT will be a function of the following variables:

F ' :

T = £ Ux,max D Ux,max T E_ E_ (60)

pDUi nax v ! D "'p' T -
4 .

Combining equation (60) with equation (57) the force coefficients CM

and C_ can take the following form:

D
Ux,max D Ux,max T k t
CM = f > ’ 5 ¢+ 3T (61)
U D U T
ax k t
e = f ( S T b g s

2.1.4 Experiments for CM and CD values. As is seen from the equations

(61) and (61-A) C_ and CD can only be obtained from the experiments

M
where flow is time dependent. For accuracy and easy usage of the
experimental resuits one has to eliminate time dependence by introduc-
ing time-invariant averéges. This was done by Ke&ylegan-Carpenter using
Fourier analysis [13]. Since Fp is periodic and f£low has symmetry the
following relations can be deduced:

Fp(®) = - F (0+) (62)

and from equation (60):

F A Sinb® + A_. Sin36 + A_ Sin58 + --- +
T 1 3 5
- (63)
2 i -
p D Ux,max B, Cos6 + B, Cos30 + B, Sin56 +

t
where 6 = wt = 2T T
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Observation of the force curve suggested that the best method for
the determination of An' Bn coefficients in equation (63) will be the

use of the Fourier analysis as follows:

) 2m FT Sin (nB)
An=Ff " das
o P Ux,max D
(64)
2 F_ Cos(nf)
_ 1 T
B, == f - ae
o pU
X ,max

Using equations (50-A) and (51) the total inertia and drag force

equation can be written in the following non-dimensional form:

F C
T D
=Lc =29 sing - —B-COSG!COSGI (65)
2 4 MU 2
p U D X ,max
X,max
Since Cosf|Cos8| = S cosh + —§—-Cos36 + -—-
3w 15m

equation (63) can also be written, taking the first terms only, as:

F 31B
T .
= A Sinf + ---

- - CosB|CosB| + --- (66)

P Ux,max
Equations (66) and (65) are identical, therefore the following

relation can be written to obtain CM and CD coefficients in terms of the

total measured experimental wave force values:

2
_ T Dw _T° D
A =7 % o, 2 M T v __
! ! (67)
8 1
B, =-37 7%

Using equations (64) and (67):

5 U max T 2T FT Sin6d6
CM = £ X,D f (68)
73 pu2
X ,max

3 2T FT CosBdb
c. = - —-f _ (68-A)
D 4 2
o pU D
X ,max

From equation (68) it becomes clear that CM is related to CD with

Ux,max T
Keéulegan-Carpenter Number ———B————andCM, CD can easily be obtained Zrom
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the experimental results using equations (68) and (68-A).

In the experimental towing tanks and in wind or water tunnels
several experiments have been done to evaluate the inertia and drag cé-
efficients on various geometries having different orders of surface
roughness [13-15]. Experimental results are always at Reynolds Numbers,
generally two to three orders of magnitude smaller than prototype
Reynolds Numbers. It is strongly believed that ccefficients obtained
at relatively low Reynolds Numbers may not be applicable at higher
Reynolds Numbers with linear interpolations. A review of the existing

literature giving explicit C_ and o values has been made by Hogben [16].

M
In the same reference recommended values of inertia and drag coeffic-
ients for offshore structures are given. These values have been mostly
used in this study. Some large oil companies have joint experimental
programs to evaluate these coefficients for offshore structures in the

real sea environment, but none of these data have been made available

to the public as yet.

Still further experimental work is required to find out the inter-
ference effects between the neighbouring members, the effect of inclin-
ation and wall-proximity effect in the determination of wave force co-
efficients. The experimental study of wave and current combination and
its results in the force coefficient is also one of the areas in which
research is needed. However, a simple theoretical method has been
developed by the author to determine inertia coefficients in the ideal
fluid, taking into account the interference effects between neighbour-
ing members and wall-proximity. The results are given in Sections 2.1.6
and 2.1.7. 1In Section 2:.1.8 some experimental work to determine the

effect of inclination on the wave force coefficients will be summarised.

2.1.5 Lift force. When a member is placed in a steady flow, or sinus-

oidally oscillating flow, or wavy flow, one might expect the resulting

- 35 -



flow to be steady and laterally symmetrical. In fact, these assumptions
are not correct because when the KCN (Keulegan-Carpenter Number =
x,maxcm“n is sufficiently large, the eddies will form in the lee of the
cylinder. The developed configuration of the eddies in the wake of the
cylinder is assymmetrical. Because of this assymmetrical configuration
of the vortices a lateral lift force will act on the cylindrical member
with the same frequency as vortices shed. 1In the design of offshore

structures, lift forces should be carefully taken into account for

several reasons:

Firstly, they could be as large as drag forces under some circum-
stances. Secondly, they could give rise to the hydro-elastic oscillat-
ions and result in fatigue failure. This point may have more importance
than the effect of drag forces, in particular when vortex shedding fre-
guency becomes equal or apprcaches the structural mode of vibration of a
member. The severe vibrations of cables or riser pipes and members of
fixed offshore structures are the result of this phenomenon. This
phenomenon may cause failure due to fatigue. Thirdly, lateral vibrat-
ions of a member in response to lift forces may cause a significant

increase in the magnitude of in-line forces.

A non-dimensional form of lift force and vortex shedding frequency

can be defined as follows:

1 2 C 69)
L,xn‘ax‘/2p Ux,max AL L (
fv D
St = = = Strouhal Number A =D.Z (69-A)
X ,max

Some experimental research has been carried out to find the lift

coefficients, C and Strouhal Number, St, for circular cylinders in

L’
the steady, and in the wavy or sinusoidally varying linear flows (14,15,

17,18]. The results may be summarised as follows:
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Roshko [17] reports that the Strouhal Number for circular cylinders

in a steady flow appears to be proportional to the inverse of the drag

coefficients.

For Reynolds Numbers between 102 and 10° excluding the trans-

critical\region which is Rezloe, the Strouhal Number is given as

S=O.23/CD.

Bidde [18] reports that, lift force is dependent on KCN rather than
Reynolds Number and lift force frequency (or vortex shedding frequency)
is twice the wave frequency. Bidde's results should be applied very
carefully since, the submerged end of the cylinder was completely free
to gé;érate a complex three-dimensional flow and influence vortex shedd-
iﬁg.

From Sarpkaya's [14,15] results it may be concluded that C#
depends on- Kewlegan-Carpenter Number, for the Reynolds Numbers smaller
than about 2x10". For Reynolds Numbers which are between 2x10* and
1x10° CL depends, to varying degrees, both on Reynolds Numbers and KCN.
Above Re Numbers 1X10° the dependence of 1lift coefficient on both KCN
and Re Numbers is negligible. Sarpkaya also reports that the Strouhal
Number and the ratio of frequency of vortex vibration over flow vibrat-
ion are functions of KCN and Re Numbers. Finally, he found that the
vortex shedding frequency is not a pure multiple of the frequency of
flow oscillation. Since Sarpkaya's results were obtained in the sinus-
oidally varying flow, one might expect lift coefficients to be differ-

ent in an ocean environment because of the variation of velocity vector

with time as well as the depth and orientation of a member.

2.1.6 Interference effects of closely spaced circular cylinders. Let

two cylindrical members A and B having the radii R, and R, respectively
be located along the x axes at a distance, d, from each other, and

assume that Rl/d and R,/d are small and a stream is approaching the
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cylinders at an angle o. If we also assume that flow has circulations
'E, about cylinder A, and Fz about cylinder B, the complex flow potent-
ial is written as the summation Qf the stream potential and the doublets
which represent the two cylinders in the following form.

[Details of the theory were given in reference [1] and [36]].

R2 R?2 )
-1 i 1 2 i =
W=u0$zet® 4+ &% =+ + = I|T Lnz + T £n(z-z )1? (70)
. z z-z1 2T 1 2 1 Jx
J
where z = x+iy, 2z, = -d

1

i . .
e & CosO + i Sino

, C

B
sz

|

%

| [
/ L2 A 7;;/‘Q“/
-:" 1 ' .8 —> X

Fig. 7.

2.1.6.1 The calculation of wave force when 0=0 and Tl and F2 are zero:

If we set q, Tl and Fz equal to zero, in equation (70) the complex

flow potential becomes:

R 2 R
W=1U X+iy + L4 2 (71)
X X+iy (x+d) +iy
or
r R *x-iy) R [(x+d)-iy] '
w=294e_ +iy_=U tx+iy + + ; (71-3)
F F X r? (x+d)2 + y2 R
- 2 2
R’x R “(x+d) 1 _
1 2
b =U [x + + (72)
F X rz (x+d)2 + YZJ
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Y, =U_ |y - - (73)
F r (x+d) % + y?

In equation (72) the first term represents the potential of un-
disturbed flow, the second and third terms represent the effect on the
flow field due to the existence of the first cylinder and second

cylinder respectively.

The wave force on cylinder A can be written per unit length of the

cylinder as follows:

_ ¢ -
de =-p éf ¢ nds (74)
M
(from equation (28)), or
N ou R %x R Ax+d)
X 1 2 >
de = - [/ 0 pyaal S + nds (74-1)
Sy Rl2 (x+d) 2 + y?

The integration can easily be obtained on the circular cylinder

using polar co-ordinates:

X = R1 Cosf

y =R, Sin6 / (75)
;

nds =-R, Cosbd8 5

Substituting the relations given at (75) into equation (74-A) the

force equation becomes:

27 18]

. .
ar_ = f 3T 2R, Cosf +

2
Ry(R, Cosf+d) R1 Cos6df

R12 + 2R, d Cos6 + a2

(76)
We can also derive modified CM coefficient to suit conventional

wave inertia force formulation for circular cylinders as follows.

Using equations (55-A) and (76) the following relation may be

written for C  taking the effect of neighbouring cylindrical members

M

into account:

~
!

( 2 2 i
ou ou 2m fB (CosB+a) 1 *
dF =p C mTR? =2 = 0 == 2R§ T + f | N Cosf | db F

M,A 1 at
X (1+20. CosB+a?) _
(77)

L
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or

27T 2 -T
f [B (Cosf+a) CoseJ a8

_ o 1420 Cos6+a?
CM,A = 2 + (77-3)

m

o

2

d
where o = — = —=
o BTR

Similarly, wave forces on cylinder B may be written as follows:

ou 21 |B'2 R XCosB-a') Cosb
aF _=p=2LIi2R?7T+ [ 2 a8
X,B ot 2 2 (78)
- o (1-20' Cosb+a'‘)
and CM coefficient for the same cylinder can be written as follows:
[
? {B'Z(Cose—a') CosGT ae
_ o | 1-2a' Cosb+a'?
CM,B =2 + (79)
m
, _ 4 C D
where o' = = , B' =g
2 2

The integrations in equations (77-A) and (79) have been carried
out numerically to obtain CM values and results for varying Y=S/R1

and B (or B') values were plotted in Figure 8-19 where S=d—(R1+R2).

2.1.6.2 The calculation of wave force when 0=90° and Pl and Fz are

zero: If we set 0=90° and Fl and Fz equal to zero in equation (70) the

complex flow potential becomes:
2 2
R R,

W= Uy (=x=-iy)i + 1 <x+iy + xriy+d (80)

The velocity and stream potentials can be obtained from equation

(80) as follows:

i Ry 2 Y
@F =U y + + ! (81)
y’ r? (x+d)2+y2 |
L H
Rlzx Rzz(x-l-d) |
Y =U | -x + + & (82)
Y [ r? (x+d)2 +y? |

The wave force on cylinder A and CM coefficient for the same

cylinder can be written using the procedure that has been followed
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in the previous section

]
du J 2m | 8% R ? 5in%8 |
o 1+20. Cosf+a :
S
27 2 , 2
f [ B“ sin“H 2} 46
_ o |1+20 CosbH+a
CM,A =2 + (84)

m

Similarly, the wave force and inertia coefficient take the follow-

ing form for the second cylinder:

du 2m | B'? R22 Sin?6
@ o= 0 a—t-‘l- 2R 21+ [ ‘ as (85)
! o |1+2a' Cosf+a'?
J
2m V2 a2
f { B'“ s8in“H ] a9
. o |1+2a' CosB+0.'2
CM,B =2 + (86)

™

CM values in equation (84)

and results are shown in Figure

2.1.7 The calculation of wall effect on the inertia coefficients.

and (86) have been obtained numerically

8-19 for various Y and B (or B').

The

results obtained in the previous section can easily be extended to cal-

culate the effect of wall on the inertia coefficient calculations.

we consider two cylinders which
stream which has no circulation
these cylinders' axes, then the
line between the centres of the

wall, see Fig. 20.

If
have the same diameters and if the
approaches perpendicular to the line of
stream surface which is normal to the

cylinders may be replaced by a rigid

The inertia coefficient taking the wall effect into account can be

calculated from equation (84) setting B equal to 1:

2T .2 7]

f sin“8 ide
c -0 4 o 1+20, CosfB+q“ J (87)
M,W

T

In reference [19] added mass coefficient k=CM—1 was calculated

using kinetic energy of the fluid to take the effect of wall proximity
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into account. Added virtual mass coefficient is given as follows:

2

0.2

k'w =1+ (88)

The results of equations (87) and (88) have been plotted for var-

ious values of o in Fig. 21.

The results given in Fig. 21 may be used in the experimental work

for the correlation of theoretical results with the experimental

results.

2.1.8 The change of drag forces on closely spaced circular cylinders.

2.1.8.1 Drag force on circular cylinders in series (one cylinder behind

the other): 1If a cylinder is placed in the wake of another cylinder

the critical Reynolds Number for the rear cylinder reduces due to the
high turbulence level of the wake. The experiments [20,21] carried out
in a steady flow, show that the drag coefficient of the rear cylinder
reduces considerably, while the drag coefficient of the front cylinder

remains almost constant if D/d>0.25, see Figs 22 and 22-A.
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The experiments mentioned above were carried out in the range of

6
Reynolds Numbers smaller than 5X10 . (See also Chapter 6).

2.1.8.2 Drag force on two circular cylinders side by side: According

to reference [20], it was found from the tests in the sub-critical reg-
ion in steady flow conditions that when the spacing between the
cylinders is more than five diameters the interference is nil, when the
spacing is reduced to about two diameters, the drag reduces because the
sepaféte vortex shedding system around each cylinder forms a single
vortex system; when the spacing is reduced to one diameter the inter-
ference drag rapidly increases, Fig. 23. Since the experimental res-
ults were made non-dimensional by dividing the drag coefficient, includ-
ing the interference effects by that for a single cylinder, these res-
ults have been used in this study during wave loading computations for

the model scale. (See also Chapter 6).

In addition to the experimental work with cylinder arrays in steady
flow [20,21], some experiments havé also been carried out in oscillatory flow
[22,23] and in waves [24]. In reference t23] it was reported that the
blockage effect for cylinder arrays should be considered very carefully
when the model test results are applied to the full scale which is in
unconfined fluid. For groups of cylinders the blockage effect is guite
different than that on a single cylinder, and the separation of block-
age from interference impossible. In reference [24] wave tank tests
were reported on three cylinders which were normal to the wave propagat-
ion direction and situated sideAby side. The results show that, in the
sub-critical region, when the spacing between two cylinders is less
than about one diameter, wave forces increase significantly. Certainly-

more tests in waves are needed for a better understanding of the problem.

2.1.9 Effect of inclination angle of cylindrical members on wave force

calculations. Inclined cylindrical members are mainly used as support
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bracing elements in the design of fixed offshore structures and are less

common in floating structures. There are two main problems in doing

wave force calculations on such members;

(1) The method to be used to apply the wave force equation (57) to an
inclined member, and

(1i) The value of CM and CD to be used in the calculations.

In the literature [25,26,27] four different methods have been des-
cribed for the application of equation (57) as summarised in the
following.

1. In the first method inertia and drag forces are calculated as if

they act on a vertical cylinder at any point along the inclined member
and then normal components of those forces with respect to the inclined
cylinder axes are taken into account. The method may be illustrated as

follows:

Fig. 24.
; 5 0 +Lc a T|U] cosB)] al (89)
= = os
Fro o [ [, A, U Cosa(®) + 3 Cy A UU|
o
where A = ﬂD2/4“, A = b
S L
CM and CD, inertia and drag coefficients for a circular section
respectively.
2. The second method assumes that the acceleration and velocity

vectors of the water particles always act normal to the inclined

cylinder axis if the yaw angle is equal to or less than 60 degrees.
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In comparison with the first method, the cosine factor is not used in
this method. When the yaw angle is greater than 60 degrees a correct-
ion factor is applied. The method was found to be quite conservative.

The principle of this method is illustrated as follows:

+
Fig. 25.
F_ = ?[c Tx+ic a T[Tk a
T,?_—pé wBs Uk +3 DALU|U|] (90)
where k = 1 for 0° £ a (or B) £ 60°

tan(g—oc (or B)) :
k = - for o (or B) > 60°
tan30

A = mD%/4 , A =D
CM and C_ are the inertia and drag coefficients for a circular

section respectively.

3. In the third method only the normal components of the acceleration
and velocity of the water particles with respect to the inclined
cylinder's axis are assumed to give rise to the wave loading. It can
easily be seen that the difference between number (1) above and this
method is that the drag force term in this méthod has a cosine sgquared
term which gives less total force in the casé of wave loading calculat-
ions where drag forces are significant, i.e. fixed and jacket types of

offshore structures. This method was used by the author during his
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development of generalised equations for wave force and moment calculat-
ions on circular cylinders [28] and by Chakrabarti et al, during their
experimental investigations of the wave forces on randomly oriented

tubes [27]. The method may be illustrated as follows:

Fig. 26.

r _ ?[C 3 ¢ 1 - - !

T3 =P I iey, A_ U Cosa (L) + 5 C, AU CosB(£) |UCosB(£) |1 aL

) (91)
= T =
where As D°/4 , AL D

CM and C_ are the inertia and drag coefficients for a circular
section.

4, The fourth method assumes that inertia and drag forces FT and FD
act on the projected area of the inclined cylinder. This method,
therefore, requires the CM and CD coefficients to be known for ellipt-
ical sections whose major axes are always parallel to the inertia and
velocity vectors of the wave particles along the length of the inclined
member. This method is not very practicable, for the determination of
wave loading on the fixed or jacket type offshore platforms. The

method may be illustrated with the following figure:

Al

- —— ELLIPS2IT
UNIT VOLUME,

ELLIPSO!D ,
UNIT YOLUME. .




2 . L3
F = C
T,y P i I M

-> 1 — >
A_Cosa(2) U + = C A CosB(2) U] ag (92)

N

where CM : inertia coefficient for'elliptical section

CD : drag coefficient for elliptical section

A = D% /4, A =D

Regardless of which method is used to calculate the wave loading
on the inclined cylindrical members of offshore structures, the CM and
CD coefficients will be quite different from the values found from the

experiments carried out with unyawed cylinders, simply because axial

flow will occur.

Very few experimental results have been published on CM and CD

coefficients of inclined cylinders in wavy or in steady flow.

The experimental investigation @9] done in steady flow conditions
showed that the Reynolds Number at which the drag begins to decrease
generally appears to decrease with increasing yaw angle, e.g. in refer-
ence [2?] it is stated that the critical Reynolds Number decreased from
3.65x10° for an unyawed cylinder to 1.00x10° for a 60° yawed cylinder.
Therefore it becomes clear that the drag characteristics of an inclined
cylinder cannot be related solely to the Reynolds Number based on
normal velocity components for Reynolds Numbers in and above the critical
region. The results of the above mentioned work have been used in the
wave loading computer programs develoepd by the author [?Q] for the com~-

parison of theoretical calculations with model test results.

Recently some experimental work has been published [?j] to report
on the measurements of wave force coefficients on randomly oriented
yawed cylinders in waves. The results have been presented for CM and
C wvalues as a function of the Kuelegan-Carpenter Number. Although the
results once again verify that variation in CD and CM coefficients is

significant, as orientation and the yaw angle changes the test only
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covers a very narrow sub-critical Reynolds Number and therefore further
testing in the higher Reynolds Number range is vital so that the results

can be used in the design of offshore structures.

2.1.10 The effect of roughness on the wave force coefficients of

circular cylinders. All structures in the sea enviornment, either by

marine fouling or by corrosion become roughed. The forces exerted by
waves are, in general, increased by this roughness. When growths
accumulate on the surface of a cylindrical member there is an increase
in diameter which gives higher inertia and drag forces. Apart from
this obvious effect, inertia and drag forces are also a function of

relative roughness k/D as was mentioned in Section 2.1.3.

The experiments done in steady and oscillatory flow [31,32]
indicate that drag coefficients decrease considerably as relative
roughness increases for the Reynolds Numbers below the critical region.
Above the critical region drag coefficients increase as relative rough-
ness increases. The model test results both in waves [13] and in
oscillating flow [14,15] show that the drag coefficients are a reverse
function of inertia coefficients, hence, inertia coefficients increase
as Reynolds Numbers increase below the critical region. Above the
critical region, inertia coefficients decrease as relative roughness
increases. In this study steady flow results are used to take the effect of
' roughness into account, even though very approximate. Full scale
experiments in waves are needed so that appropriate constants can be

used in wave loading calculations for offshore structures.

2.1.11 The non-linear effects on wave force calculaticons. Linearised

free surface boundary conditions have been assumed in all equations

concerned with wave particulars and wave loading.
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The linearised free surface condition is the combination of the
kinematic boundary condition, thch states that normal velocities of
the fluid and of the boundary surface must be equal, and the dynamic
boundary condition which states that the pressure on the free surface
must be atmospheric. If we assume that the vertical displacement of
any point on the free surface may be defined by a function y=n(x,z,t)

(for two dimensional flow y=Nn(x,t)) then if we write the substantial

derivative of y-n

D gy =0y _9n_y 3N _ 4 9N

Dt (y=n) ot at Ux ax Uz 0z (93)
Since on the free surface y=n, and

§l= =-8;Q \ =§g =§g

ot Uy dy ! Uy = 3% and U, =73

equation (93) can also be written in the following form

3 _pn 98 3n _ 30 3n _ )
5y 3t  dx 5x 8z 3z O (93-2)

If the wave elevation is small %E-and %E-are small also.
Therefore the last two terms in equation (93-A) can be ignored

and the kinematic boundary condition is as follows

9% _ on (94)

Equation (94) verifies the kinematic boundary conditions as

defined above.

The dynamic boundary condition can easily be obtained from

Bernoulli's equation given in equation (23)

B Ry R (95)
n=- 25 F v

By neglecting the last term we obtain a linearised equation for
the free surface

ad
n=-== | (96)

t

Q |
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Combining equations (94) and (96), the linear free surface bound-

ary condition becomes,

2
§—9-+ g ¢ =0 on y =20 (97)
3t? 9y :
or,
aﬁ_@i@:o on y:O (97-a)
3y ¢

(Since, ® = ¢ Sinwt.)

To derive the non-linear free surface boundary condition exact
solutions of equations (93) and (95) can be obtained or a combination
of the kinematic and dynamic boundary conditions solved by defining

the change of pressure on the moving free surface as constant, i.e.

Dp _ 2 -

If we substitute Bernoulli's equation (23) into equation (98), the

exact free surface boundary condition can be obtained

, |
9% | 5 3% | Hyey §%-+ %-v¢v (V&V3) = O (99)

g2 - d

A function f(x,y,z,t) can be expanded around y using Taylor's

series expansion as follows

£ 1 8%f
f(x,y,z,t) = £(x,0,2,t) + y(g—) + E-yz(__;) + ——- (100)
! y=0 9y y=0

If we apply equation (100) to equatiocn (99) the following set of

free surface boundary conditions are obtained

(1) (1)
329 30~ _ 101
- + g 5y - 0 ( )
ot
(1) |
8@ 0™y e 120l g /32@(1)_+g 5(1)
T 9 T oy 3t g ot dy | > 3y /
at? ot
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If we substitute the first order velocity potential of the
undisturbed waves

0.5g H P
Qo = Re |- i W eky e1kx elwt
w _

into equation (102) this potential also satisfies second order bound-
ary conditions, and therefore, we can state that the first order

potential is a solution of the second-order boundary value problem.

Equation (100) can also be applied to equation (95) to obtain

the second-order correction for surface elevation

1 .30 1
=-S5 e+ 3 va1>v<1>]y=n (103)
=192 1 9 (1 3% 1
= - sl t 3 v¢v¢]y=o +n 5o { - (= + 3 v¢v¢)}y=o,

1 30 | 1 1 30 329
T E. SE'+ E.VQVQ g ot Byat)y=0

If we substitute the velocity potential for undisturbed waves

C0-39 Ho o ikx -iwt
——— e e

W

into equation (103) the surface elevation N takes the following form

1 2 2
= - - = .5 H C kx-wt)
n =0.5 Hw Cos (kx-wt) 5 k(0.5 Hw) + k(0.5 w) os (

(104)
or

n =0.5H Cos(kx-wt) + =~ k(0.5 H )2 Cos2 (kx-wt) (104-2)
w 2 w

2.1.11.1 Second-order time dependent forces: Lighthill shows in

reference [9] that linearisation of the free surface boundary condit-
ions requires a quadratic correction to the linear velocity potential,
and this results in associated corrections to the wave forces. 1In
addition to the correction due to the modified potential, the linear

potential also gives rise to time varying second-order forces as was

- 61 -



shown in Section 2.1.1 equation (54). If we rewrite the second-order

force part from equation (24) for a fixed member, it takes the follow-

ing form
-> - l 2 ->
Fe,s,a = [[ 50 (Ve )" n_ds (105)
S
M
where
- -
Inxl dS = - R Cos6 46

Using undisturbed wave potential and doublet representation of
a cylinder in waves from equation (72) the linear velocity potential

may be written as

2 2
R°X R
o) = + ———] = -——1
F,L Ux X S| Ux r + " Cos6 (106)

where
ky

U =0.5H uwe Cos (kx-wt)

X w
When Fx s.d is calculated by substituting equation (106) into equatiocn

’ ’
(105) the result will be zero. But in reference [9] it was shown that
@F L should also include a response to "fluctuating extensional motions".
’

Extensional motion is defined as the horizontal gradient of horizontal

velocity. Hence, second-order forces will result from the interaction

between the member's response to the oncoming wave's velocity and its
extension.

The velocity potential due to the response to the "extension" is

given as follows (Fig. 28)

4

) =1z (r?-2R%8lnx) + g (r2 + 2 cos26 (107)
E,L 4 4 r2

where E represents the extensional motions of fluid particles and can

be expressed as

E(x,y/t) = 5= = - 0.5 H_ xwe™Y Sin (kx-wt) (108)
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RESPONSE TO EXTENSION = MONOPOLE RESPONSE + QUADRUPOLE E{S\PONSZV
y
LE(r2 2p? 1Lp(r B

FE(rt 2R%ar) o E(r =, ) G 20

Fig. 28. (From reference [9].)

If we replace @F with QF,L + ®E,L in equation (105)
m 2

%ﬁp {V[Ux(r + %;ﬁ Cosf + %-E(rz—ZRzlnr)

F

0O “—N

0

X,s,d B -_Q'

+1E@? Bi) cos20]___}° R cos8 a8 d (109)
2 r=R 4

4
r

(Vd))2 in cylindrical co-ordinates can be written as follows

2 . 347, L1342, 39,7
If we apply equation (110) to equation (109) Fx 5.g can be determined

in the following form

™
%— [(2Ux Sin® + ERSin20)2 + (2kaRCose -k IE)Z]

x,s,4

i “—0
0O “—N

d

RCos6 dé Qy (111)

The second bracket in equation (111) is the vertical velocity
which was derived from the velocity potential given in equation (106)
and the velocity potential of the undisturbed wave field given in

equation (6-a). Calculating the above integral with respect to 9,
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o o
= _ 2 = 2 2Ky 2.
x,s,d £ p U ETR"dy = + [ogm(0.5 H_ k) e "'R"Sin(kx-wt)

- -d

Cos (kx-wt) dy (112)

or

o
I

+ 0.5 pgT (0.5 H )> kR2[1-259] sin(kx-wt) Cos (kx-wt)

(112-3)

This force is called the second-order dynamic force and has half

the value of the second-order correction force calculated in equation

(54).

When a vertical cylindrical member penetrates the water surface,
in the region between y=0 and y=n, an additional force will be exerted
on the member. This force is the result of hydrostatic pressure and

the dynamic pressure force, and can be written in the following form

Fx,s,w B Fx,DYN - Fx,HIDR (113)
where
2mr n 3¢5 2r N
F DYN _ I f P 3t RCosf db dy = f f 0.5pg Hw RCosH
X 8=0 y=0 8=0 y=0

Cos (kx-wt) d6 dy
2T
= [ pgn® RCosb df (113-3)

o

(It is assumed that dynamic pressure does not change between y=0 and

y=n.)
2T N 2T 1
F = [ [ ogy Rcos® @8 dy = [ = pgn® RCos® a0 (113-B)
x,HIDR o2 g 12

If we substitute equation (96) in equations (113-A) and (113-B),

equation (113) becomes

2T 2
_1% p 2% 114
=3 £ 3 (Bt) RCos6 db ( )
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where

o a<I>F,L + aq>o

3t ot ot

Calculating the derivatives of ¢ and @o using equations (106)

F,L
and (6-A) respectively, Fx w takes the following form

1Sy

2T
1 .
s §'£ g'[Hw kg Sin(kx-wt) RCosb - 0.5 H g Cos (kx-wt)]?

R(- Cosf) 46 (115)
or

= 2 2 ] - - -
X,S W 2.0 pgm (0.5 Hw)‘ kR Sin(kx-wt) Cos (kx-wt) (115-3)

If we sum the second-order correction force given in equation
(54) , and the second-order dynamic and waterline forces given in
equations (112-A) and (115-A) respectively, we may obtain a correction

force to the wave force equation given in equation (57) as follows

AF = F + F + F (116)
X,C X,s,C Xx,s,d X,8,W

orx

AF ogm (0.5 Hw)2 krR? [2-0.5 (1—é'2kd)] Sin (kx-wt) Cos (kx-wt)

X,C

(116-2)

The effect of second-order forceé is shown in Figs 29 and 30 for

varying values of kR and Hw/D.

The correction given in reference [9] only includes F 4 and
. 14

'S

F terms and may written as follows
X,S,W

F' o = Pgm (0.5 Hw)2 kR? [2+0.5 (1-2%%) ] sin (kx-wt) Coslkx-wt)

’

(117)

The results of equation (117) are also shown in Figs 31 and 32 for

varying kR and Hw/D values.
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2.1.11.2 Second-order time independent forces: In addition to the

time varying second-order forces, it can be shown that the velocity
potential @F L given in equation (106) produces second-order steady
14

forces. Since the velocity potential @F L is only valid for small
14
diameter members, i.e. D/A<0.2. The results given in this section

are restricted to the members of offshore structures which are in

inertia, intertia + drag or drag regimes.

The second-order steady forces in the diffraction regime will also
be discussed in Section 2.2. Second-order steady forces may have an
important contribution in explaining the tilt phenomena which occurs

during the semi-submersible model tank experiments [33].

The complete solution for second-order vertical forces on a sub-
merged circular cylinder was giéen first by Ogilvie in reference [34].
In the following, the approximate solution will be summarised using
the velocity potential given in equation (106). If we substitute
equation (106) into the second-order force part in equation (24), the

vertical force can easily be written in the following form (Fig. 33)

Fig. 33.
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-> _ 1 ky ->
Foe="3P £f [VE we™ X Coswt)]? n ds (118)
. M
g & 2m 2k
=3 P f f p[sz w2e“ Y cos?uwt (1+k2x2)] RSin6 46 dz -:T
z=0 06=0
Replacing y = - (h-RSinf), ¥ = RCosf and using the following

relation given in reference [35]

Sin® < -
ea in = Io(a) + 2 z (_1)3 I

k3 25+1 (a) sin{(2j+1)86}

[o o]
+2 } (-1)7 1_.(a) cos(238) (119)
5=1 23

where Ij(a) are the "Modified Bessel" Functions.

Equation (118) becomes

£
> -2hR
F = [ pgmH2kR a°"® cos?ut I (2kR) dz 3 (120)
Y¢S 5 w 1

The time average of a function can be written as

T
W= Lim 5o [ x(®) at : (121)
T -T

If we apply equation (121) to equation (120)

—t £
F = [ 2pgm (0.5 H )? kR S?PR 1 (2kR) dz 3 (122)
Y8 o w 1

where I1 is the first kind modified Bessel function.

The same equation can be obtained by replacing Cos?uwt = % (1-Cos2wt)
and only retaining the time independent part. The second-order time
independent forces for horizontal circular cylinders beneath the free
surface have been calculated and the results are shown in Fig. 34 for
varying values of kR and Y/D. It was found from the comparisocn of
steady tilt angle measurements with second-order steady force calculat-

jons that the maximum tilt angle occurs at about the same frequency at

which the second-order steady forces reach a maximum value.
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The second type of steady-state force occurs due to the time
independent components of horizontal wave particle velocity, and,
therefore, can be significant in the drag regime where members of
offshore structures have relatively small sectionél dimensions. These
forces, the so-called drift forces, which are in the same direction as

wave propagation, can be important in the design of riser systems,

mooring cables, etc.

We define the fluid particles' position with the position vector
;o(xo,yo,t). If particles are displaced by a small amocunt, the new
position vector will be ;(x,y,t). Similarly, velocity vectors of
fluid particles can be written as go(xo,yo,t) and 3(x,y,t) for first —
and second positions respectively.

v

>
= t) i + U
U (xo,yo, ) i

>
X t) j
o) X,0 o) ( o'¥o! J

’

(123)

> > -+
v Ux (x,y,t) 1 + UY (x,y.t) 3

if we write Taylor's series expansions for {Ux 'Ux} and {Uy ,Uy} the

o) o)
following equations are obtained
BUX BUX
= -x) =—+ (y=y ) 55+ = (124)
Ux,o U * (xo X) ox (y yo) dy
o ' 124-3)
= - + (y- + - (124-A
Uy,o Uy * (xo x) ox (y yo) oy
where
od
y ==—2=0.58 e Cos(kx-ut) (125)
X ax w
ad
U =—2=0.58 weY sin(kx-ut) (125-2)
y oY w

1f we integrate U_ and Uy with respect to time, the fluid particle
p 4

trajectories can be determined as follows

Ky ..
x -x =/ u dt = - 0.5 H e Sin (kx-wt) (126)
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y ~y=/[ Uy dt = 0.5 Hw eky Cos (kx-wt) (126-3)
- -0 ky .. ’
il .5 Hw we Sin (kx-wt) (126-B)

_ ky
— = 0.5 Hw wke Cos (kx-wt) (126-C)
0.5 ky
e . Hw wke Cos (kx-Wwt) (126-D)

-2 = 0.5 Hw wk eky Sin (kx-wt) (126—E)

If the above equations (126-126-E) are substituted into equations
(124) and (124-A) the following water particle velocity vector compon-

ents can be obtained

U —U + (0.5H)2 wk XY o5 u Y Cos (kx-wt)
X,0 . X w w
+ (0.5 Hw)2 w k e2KY (127)
ky ..
U =U =0.5H we Sin(kx-wt) (127-2)
Y0 Y w

The second term in equation (127) is calculated first by Stokes

[7] and called after his name as "Stockes' Drift" in the literature.

By analogy to the drag forces given in Section 2.1.2 equation
(56) , the second-order steady horizontal forces (drift forces) may be

written as follows

£
1 _
= = D U C R dz (128)

Fx,s f 2 P Ux l X l D (Re)

o Q,s o,s

where
U = (0.5 H)? wk e 2kY
O,S
In Fig. 35 values of UX versus ka and w are shown, and Fig. 36
o,s

shows F < versus Y/D, kR and w.
X



SECOND-ORDER HORIZONTAL WATER PARTICLE VELOCITIES
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SECOND-ORDER WAVE DRIFT FORCES
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2.2 Wave Forces on Large Diameter Menbers

When the members of an offshore structure are subject to wave
loading in the diffraction regime where D/A>0.2 the velocity potential
to take account of the interference between the structure and fluid
particles cannot be represented by the relative flow between the
member and the fluid as was given in equation (26). As the diameter
of the cylindrical members increase, wave diffraction occurs. When
the oncoming waves hit the cylinder, the resulting scattering potent-
ial flow field which satisfies the Laplace equation and the boundary
and radiation conditions [equations (9—12) in Section 1] should be
defined. ’The scattered waves must radiate in the direct;on>of r>0 and
since oncoming waves are periodic in x the scattered waves should glso

be periodic in 6 with a period 2T (see Fig. 37).

Fig. 37.

By analogy to the oncoming wave potential, the scattering wave
potential may be written as follows
k imf -iwt

Y o e ]

= Re [- i R(x) e (129)

]
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If we put y=0, i.e. assume that the scattering potential is con-
stant along the y axis, equation (129) corresponds to the scattering
potential of plane sound waves and must satisfy the following wave

equation given in reference [36]

320

S
2

2 % 7% O (130)

where C_ : wave celerity = A-= w
o) T k

2 2
2y - 0 @s 1 8@8 L L ) @S
S dr? r dr r? 362

When equation (129) is substituted into equation (130), the
following differential equation is obtained

2 2
9°R 1 3R m (131)

Equation (131) is Bessel's equation. Its general solution is a
linear combination of Bessel functions of the first and second kinds,

Jm(kr) and Ym(kr) of order m, and can be written as

R(r) = AJ (kr) + BYm(kr) (132)

m(
Having replaced R(r) in equation (129) with (132) it can be seen
that @S does not satisfy the Sommerfeld radiation condition which is
given for two-dimensional cases [37] as follows
0d
Lim Vr (== - ik &) =0 (133)
or s
r—)w
For outgoing scattered waves it was shown in reference [38] that
1 . e
the first kind of Hankel function [Hm( ) - Jm(x) + iYm(x)] satisfies
equation (133) and R(r) can be written as follows

R(r) = ) A Hm(l)(kr) (134)
m=0
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If we substitute equation (134) into equation (129) the following

velocity potential for scattered waves is obtained

©

@S = Re [- i Z AIn Hm
m=0

() (ex) &Y o1m° éiwt] (135)

The total potential can be written by summing the velocity

potentials of the oncoming waves and of the scattered waves as follows

®(r,0,y,t) = Re [9_(r,0,t) + ¢_(r,0,t)] siwt (136)

The oncoming wave potential which has been given in cortesion

co-ordinates can be written in terms of cylindrical co-ordinates using

the following relation given in reference [39]

oo
LiRCosE g_kr) +2 [ 1% 3 (kr) Cos(mé) (137)
1

m=
Now ¢o given in equation (6-A) can be expressed in polar co-ord-

inates using equation (137) as follows

i 0.5g H eky © o
¢ = - Ll [J (kr) +2 J i J_(kr) Cos(me)] (138)
(o) (@) m
w m=]1
or
i0.5g 8 &Y m '
o = - ad [a i 7 3 (kx) Cos(me)] (138-3)
(o] m m
w =0
= gtwt (138-B)
and @o = Re [¢o e ]

where J (kr) are Bessel functions of the first kind and am=1 for m=0
m
and am=2 for m21.

For the complete determinatién of equation (135) the Am coeffic-
jents in that equation should be known. This can be achieved using

the boundary condition given in equation (8)

0d
s

r
r=R 8

oo
o

———

or

(139)

Yr=
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orxr

0.5g Hw eky o o LWt
o i® ¥ J'(kR) Cosm8) &¥F =
m m
w n=0
w ' » .
-V a =& (1) (kR) KY elme ciwt
m m
m=0
(139-2)
0.5g H eky J'(kR) Cos (m8) -
A = - L o it 2 (139-B)
m © I R
m
where
(1)’ ' '
H (kR) = J (kR) + i ¥ (kR) (139-C)
m m m

The following relations can also be written from reference [35]

Y o X)) = %?-Ym(x) - Y (%) (140)
I 4 X = Zx’ﬂ J x) =3 _,x) (140-2)
23 (x) =3 (%) =3 (x) (141)
2¢° (x) =Y __ (x) - ¥ . (x) (141-2)

If equation (139-B) is substituted into equation (135) the

scattering potential beccmes
. s
0.5g H © J_ (kR) 1 —iwt
¢ = Re]:— i ————vieky Z o im-——m——--—Hm( )(kr) Cos (m) &

(142)

Finally, the total velocity potential given in egquation (136) can

be written as

0.59 B &Y o . J;(kR)

@(r,@.y:t) = Re - 1 z Ol.m i (Jm(kr) - (1)'
w m=0 Hm (kR)
am“) (kz)) Cos (m8) éi‘*’tT, (143)

|
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The total velocity potential of the flow field in waves in the
above form was first given in the field of electromagnetic theory by
Nicholson in ;eference [39] and of hydrodynamic theory by Havelock in
reference [6]. It was first applied to the design of piles in waves
by MacCamy and Fuchs in reference [40]. 1In the following, the wave
elevation and pressure distribution around the circular cylinder will

be given and the first and second-order wave forces will be calculated.

2.2.1 Pressure distribution, wave elevation and first-order time

dependent forces on large diameter circular cylinders. The pressure

distribution around the large diameter circular cylinder can be
obtained by substituting equation (143) into Bernoulli's equation (23)

(second-order terms are neglected in Bernoulli's equation).

o - 3 (kR) | (1)
p =Re | pg 0.5 H e b4 Z a <i J (kR) - - H (kRJ
v m=0 o g D kr) B
m
Cos (me) at¥t (144)
J' (kR) (1)
<J (kR) - (T) H (kR)> can be shown to be equal
o H (KR)
m
21
to O using equations (139-C) - (141-A), and
(TKR) Hm (kR)

and 'Wronskians' theorem which can be represented by the following

equation [35]

_ 2
w{Jm(x), Ym(x)} =J ., x) Y (x) - J_(x) Y, (x) = (145)

equation (144) becomes

- kY &

P Hw © .m+1 Cos (m9) -iwt1 4
pere —% [T a i 19) ) 3 (146)

. mkR m=0 g (kR

- m

Wwave elevation around the circular cylinder can also be obtained

from Bernoulli's equation and the result takes the following form
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fa 7 .
n = - 1.92. = Re EE%’( I o ™ ij;?e) ) gtut (147)
9 °*ly=0 m=0 B ' (kR)

The total horizontal time dependent force on the circular cylinder

can be calculated by integrating the pressure given in equation (146)

on the surface of the cylinder as follows

o 2T o 2pg H eky 1 —iwt
= [ f - pRCosB db dy = f Re L Tk ™" ay
-d o -d k H (kR)

(148)

The following relations from reference [35] will be used for the

simplification of the above total force equation

no=|m 7 //J x) + ¥ 0 (149)
' . Y' (x)
9 = arg H (1) (x) = arc tan | — (149-3)
m m '
J_(x)
m
' = (149-B)
Jm(x) Nm Cosem
' = i " (149-C)
Ym(x) Nm Slnem (
Using equations (139-C), (149) - (149-C) the total horizontal

force equation (148) becomes

o 2pg H eky Cos (wt-0)
F o= [ L dy (150)
X

-d k

//.2 12
J, (kR) + Y, (kR)

where
Y, (kR)
8 = arc tan| ——
J, (kR)
' 1
and Jl(kR) = Jo(kR) - (kR) J (kR)
' - Y (kR) - —— ¥, (kR)
Yl(kR) =¥ (kR)

The J' and Y; values are shown in Figs 38 and 39 respectively.
1
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Equation (150) can also be generalised for the application to
circular members both in the inertia and diffraction regimes. If we
set equation (55-A) equal to equation (150) the following relation can
be obtained

© 2pg H eky

o
F = [ omR?2 ¢_ w? 0.5 B &Y sin(kx-wt) dz = i w £ (kR)
a - w A N D

Cos (kx-wt+6) dz (151)

where
1

fD(kR) =

/12 12
J1 (kR) + Y, (kR)

The right hand side of equation (151) can also be written as

k
o Y
2pg H e 0.5 TR? w? sin(kx-wt)

Sin (kx-0t) Cos (kx-wt+0) dz

. fD(kR)
-d k 0.5 mR? 2

(151-a)

Comparing equation (151-A) and the left hand side of equation (151)

it can be seen that CM can be written as follows

4 1 Cos (kx-wt+0)
C == - £f_(kR) (152)
M 1 (ﬂD/K)z Sin (kx-wt) D
or for the maximum value of CM
4 . (152-3)
CM = E' fD(kR)

(mD/A) 2

Now the horizontal wave force on large diameter cylinders can also be

written in the following form

o
= 2 153
F_ -£ Cy P T D*/4a, (153)

where CM will be calculated from equation (152-A)

and a = 0.5 Hw w? eky Sin (kx-wt) .

In Fig. 40 values of CM versus D/A are shown. Figure 41 shows

wave forces on a vertical circular cylinder in the inertia and diffract-
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ion regimes. In Figs 42, 43, the wave forces on circular members
which are working in the inertia or on the diffraction regimes, calcul-

ated using equations (55-A) and (150), are compared.

2.2.2 Application of Stcokes' fifth—order wave theory to the wave

loading calculations on large diameter cylinders. So far, the potential

flow function for oncoming waves was assumed to satisfy linear-free
surface boundaries, i.e. linear sinusoidal boundaries. This assumption
is quite accurate in degp water where the ratio of wave height to wave
length is small, except for short waves. The limiting value for that
ratio is shown to be 0.14 in reference [3]. 1In shallow water the wave
height/wave length ratio will increase (this can be proved using the
principle of energy conservation) and in consequence the effect of a
non-linear free surface will be significant. Non-linear solutions for
incident waves were first given by Stokes in terms of a trigonometric
series [7]. The coefficients in these series are lengthy and ‘it is
quite tedious to do the numerical calculations, unless computer programs
are used. The convergenée of this trigonometric series is restricted to
certain values cof Hw/)\s and h/KS. (The subscript s used to discriminate

values in shallow water from those in deep water.)

For the calculation of wave loading the potential function should

first be defined.

The series form for the potential of oncoming fifth-order waves was

given in reference [8] as follows

?:‘l()
0

_ 3 5 . _
¢o,s = [(6a  + &°A ¢ S A15) Cosh(ksy) Sln(ksx wt)
s

2 4 . _
+ (8“A__ + 6 Azu) Cosh(ZkSy) Sln2(ksx wt)

22

+ (83a_, + 65A35) Cosh(3ksy) Sin3(ksx—wt)

33

4 .
-wt
+ 87A,, Cosh(4ksy) Sln4(ksx wt)

+ 55A55 Cosh(5k_y) Sin5 (ksx-wt)] (154)
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and the wave profile is given by

=1 2
ng = ks[G Cos(k x-wt) + (8°B,, + §"B,,) Cos2(k_x-ut)
3 5
+ (6 B,, + ) B,,) Cos3(ksx—wt) + S“qu Cos4(ksx—wt) e
5 -
+ 6§ B55 CosS(kst wt) ] (155)
where
cO2
2 _ _© 2 4
cS =z (1 + 8 c, + S c,) (156)
s
c?= g tanh(kh) = A)®
o - 9 =\7 (157)
2T
ks =%
s
§ : Constant
A : Wave length in deep water

As : Wave length in shallow water
A,..,, B,,, C, values are tabulated in Table I.
ii ii i
For the given values of wave height Hw, water depth h, and wave

period T, the coefficient § and the wave length As can be determined

from the solutions of the following simultaneous equations

TTHw 1 . .
h (/X)) (8 + 67Byy + 87(Byg + Bgy)] (158)
a B- 2 tannge.n)lt + 8%, + 8] (159)
an >\ B >\ an ]<S' 1 2
S

The complex velocity potential of oncoming waves will be

r ¢ s . o]
i nk x -iwt |
® = Re |- i = z € Cosh(nk y) et s* o | (160)
O,s 1k n S i
U s n=1 -
_ 3 5
where € = éAll + 6 A13 + & A15
Y 4
€, = S Azz + 6 Azu
_ <3 5
€, = 6°A;, + §7A
e
€y 7 6 Ay
Y-
Eg = 07AL
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Equation (160) can also be written in terms of cylindrical co-

ordinates as follows

C

o = -1 =
o,s Re i "

o)
-iwt )
S n

,m
, €, Cosh(nksy) a i mio Jm(nksr) Cos(mf) e

Il o~1n

(161)
where Jm(kr) are Bessel functions of the first kind and am=1 for m=0

and am=2 for m21.

Similar toc equation (135) the potential function for scattering

waves may be written as

¢ = Re |- 1 Z A Hm(l)(nksr) eime giwt (162)

The Am coefficients in the above equation can be determined using the

boundary condition given in equation (8)

c 2 m s ' -iwt
= z €_ Cosh(nk y) (o i z J (nk R) Cos(mB)| e =
k o n s m = m S
s n=1 m=0
v ' im -iwt
-7 a5 kg ™M (163)
m m <
m=0
or
c 5 _3_(ak_R) Cos @)
s .
A =-— ) € Cosh(nk y) o i , . (164)
m kS =1 P s m Hm(1) (nksR) elme

Finally, the total velocity potential for the Stokes' fifth-order

waves becomes

[ cC 5 o
i S .
o (rleIYIt) = Re - i— z € COSh(nk Y) Z Q i (J (nk r) -
T,S 1 ks n=1 n s =0 m m s
3’ (nk R) T
~ : = H(1)(1'1k r) Cos (mH) }elmt » (165)
g Y (nk R) S ) J‘
m s

The pressure distribution around the large diameter cylinder can

be written by substituting equation (165) into Bernoulli's equation (23)
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and neglecting the second-order terms as follows

o 5 o
= S m
= R —_ ; _
Py e [p = L €, Cosh(nk_y) mEO o, i (I (nk_R)
J'(nkR) )
oy H (1)(nksR)) Cos(me).] % | (166)
B (nkR) ]

Similar to equatiom (146) the above equation can also be written

in the following simplified form

S k R m (1)

Csw 2 o | +1 8
p_ = Re |20 y e, Cosh (nk_y) R Cos (mb) —iwt
s n=1 m=0 H (nk_R) ©

(167)

and the wave elevation around the circular cylinder becomes

1 L]
S ksR n=1 m=0 H (1) (nk R)
m s

2C W 5 ®
S . m+1 Cos (m8) -iwt
N = Re [ z sn Cosh(nksy) Z am i > e J
(168)

The integration of the above equation around the circumference

gives the total horizontal force on the cylinder as follows

Il o~

o 27 : o 4pcsw n=1 E:n Cosh(nksy)
F = [ [ -pRCost a0 dy = [ Re |
*(s) -do S -d s Mk R)
Hy ' (kg
éiwt]dy (169)
or, similar to equation (150)
o 4pC w 5
-wt 6
F = [ —= 7 e cosh(nk_y) Cos (kx-ut + 9
X&) -a K n=t P e 2
(s 7. (nk R) + Y. (nk R)
1 [ 1 s
(169-2)

2.2.3 second-order forces on large diameter circular cylinders. The

second-order forces on large diameter cylinders can be obtained by sub-

stituting the total velocity potential of the oncoming and scattered
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A

waves given in equation (143) into the second-order force part in

Bernoulli's equation (eq.. 23).

The velocity poteptial given in equation (143) can be simplified

as follows using the procedure followed to obtain equation (146)

g Hw eky ® o im+1 ,
®(r,0y,t) = Re |- i ) TR Cos (@) 1%t | (170)
TkRW m=0 H (kR)
m
orx
] 1
© J (kR) - i ¥ (kR)
®(r,0,y,t) = Re [— ia eky X o im-’-1 -Eul'[ 1?
m=0 J  (kR) + Y (kR)
m m
Cos (mf) at¥t (170-2)
where
TKRW

Similarly to equation (118) the second-order force on large

diameter cylinders takes the following form (Fig. 46)

® J (kR) - i ¥ (kR)
F_=- %—p [[ 3V |-ia R Y o it 2 =
¥rS s m=0 J “(kR) + Y_ (kR)
M m m
-iwt| |2 >
Cos (m@) e } . ny das (171)

If we evaluate equation (171) using equations (110) and (119) and

replacing y by - (h-R SinQ) Fy s becomes

’

l2 |2

) ]
4 2 =-2kh J. (kR) - 2i J_(kR) Y, (kR) - Y. (kR)
1 . 1 1 1
F. =] Re |2-S 1 (2kr) TR a2
¥Y:S R2 1 1 S, 2 ' 2 2
° (J1 (kR) + Y (kR))
S2iut ]dz 3 (172)

-’

where @, = 2.

From equation (172) the time independent second-order forces on

large diameter cylinders can be written as

- 12 v 2
L 4pg sz e2kh : Jl (kR) - Yl (kR) >
= - I. (2kR) dz j (173)
y.,s o TTk3 R3 1 12 12

2
(J1 (kR) + Y, (kR))
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The second-order time independent forces for horizontal circular
cylinders beneath the free surface have been calculated and the results

are shown in Fig. 44 for varying values of kR and Y/D.

In Fig. 45 second-order time independent forces given with equation
(122) in drag or drag + inertia regimes compared with those given with
equation (173) for diffraction regime. From the comparison it can be

concluded that equation (173) can be valid for all regimes.

ac

Fig. 46.

Similarly, second-order time dependent forces may be written as

follows
2 gpg m?2 akh I, (2kR) , ,
F = - f w (J (kR) Y. (kR) Sin2 (kx+wt) -
Y./S 5 3 RS ' 2 ' 2 1 1
(J1 (kR) + Y1 (kR))
|2 |2 -5
(3, (kR) - ¥, (kR)) Cos2 (kx—wt)) dz 3 (174)

The maximum values of second-order time dependent forces on large
diameter cylinders are shown in Fig. 42 for varying values of kR and

Y/D.
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22

24

33

35

by

55

22

24

33

38

4y

55

s

-c? (5¢2+1)

8s®

-(1184c!%-1440c%-1992¢%+2641c*-249c2+18)

1536st!

gs"

(192c®-424c%-312c*+480c2-17)

768s1?

(13-4c?)

64s’

(512c'2+4224c1%-6800c8-12,808c%+16,704c*~3154c2+107)

,, 4096s'3 (6¢c2%-1)

(80c®-816c"+1338c2-197)

1536s'? (6c?-1)

- (2880c!%-72,480c%+324,000c%-432,000c*+163,470c2-16,245)

61,440s'! (6c?-1) (8c*-11c2+3)

(2c?+1)
— C

453

c(272c®-504c%-192c"*+322c2+21)

384s?

3(8cf+1)

64s®

(88,128c!%-208,224c1%+70,848c1%+54,000c%-21,816c%+6264c*-54c2-81)

12,288s'? (6c2-1)

c(768c!%-448c%-48c%+48c*+106c%-21)

384s? (6c%-1)

(192,000c?®-262,720c!*+83,680ct%+20,160ct?-7280c?8)

12,288s!% (6c?-1) (8c*-11c?+3)

(7160c®-1800c*-1050c2+225)
12,288s% (6c?-1) (8c"*-11c2+3)

-+

TABLE I

[From reference 8.]
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TABLE I, contd:

(8c*-8c2+9)

C =
1
8s"
o - [3840c’?-4096c!°+2592c°-1008c°+5944c"~1830c?+147)
2 -
512s'° (6c?-1)
1
F - d4sc
c = Ml2c’+36c°-162c"+141c%-27)
* 192cs’
where
s = Sinh(27h/A)
¢ = Cosh(2mh/\)
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Chapter 3: A GENERAL METHOD AND A COMPUTER
PROGRAM TO CALCULATE WAVE LOADING

ON THE CIRCULAR CYLINDRICAL MEMBERS

OF FIXED AND OF FLOATING STRUCTURES
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INTRODUCTION

In tﬁis chapter a general method for calculating wave forces and
moments on circular cylinders is derived. The wave loading on
cylindrical members of fixed and of floating offshore structures
oriented randomly in waves can be calculated using the method developed.
The method uses the basic hydrodynamic theory and calculation proced-
ures summarised in Chapter 2, A computer program, based on a general
three dimensional method, has been devéloped to determine wave loading
in terms of nodal loads distributed throughout the structure. This
format of output provides a ready means of input for structural response
analysis. The same output may also be used for dynamic response
analysis. The computer program requires the start and the end co-ordin-
ates of each member of an offshore structure and some information about
intersecting members. All calculations for the geometrical details of
the structure and the generation of nodal points are automatically per-
formed and stored by the program. The three dimensional graphical
representation of the geometry of the structure can also be produced on
either screenor on a plotter using the same program so that the user
can check the structure from different viewpoints to make sure that it
is correctly defined. At the same time a summary list of the
geometrical details of the étructure, continuous and inter-costal
members and the specifications for the corrections due to the inter-
costal members are printed-out, so that the user can check that all the
calculations to specify the gecmetry are correctly carried out by the
program. Once the geometrical data has been verified the wave loading
program which has automatic access to the data file can be run to
obtain the wave loading distributed throughout the structure, and the

required corrections due to the covered up areas between continuous and
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inter-costal members, for varying angles of wave headings, draft, wave

frequency and wave amplitude sets.

In the following derivation of the general method, the wave load-
ing program and some examples on the usage of the program will be

presented.

1. THE DERIVATION OF A GENERAL METHOD TO DETERMINE WAVE LOADING ON
CIRCULAR CYLINDRICAL MEMBERS OF FIXED AND FLOATING OFFSHORE
STRUCTURES

Circular cylindrical members are the basic support elements in
the design of offshore structures. They resist external dynamic loads
as well as internal static ;tructural loads. In general, the wave load-
ing on each member of the structure will be assumed to consist of the

following force components. (See also Section 2 of Chapter 2.)

l. Dynamic Pressure Force: (= Froude-Krylov Force):
This force is due to the hydrodynamic pressure change below the surface
of a wave while the wave is proceeding. It is assumed that the presence

of the cylinder does not interfere with the flow field.

2. Acceleration Force:

The presence of the cylinder fixed relative to the waves gives rise to
the acceleration force which is calculated by the product of the added
virtual mass and the acceleration of the fluid particlés. In order to
calculate the wave acceleration forces on the ends of the cylinder, two.

different approaches can be found in the literature:

(1) Multiplying the acceleration of the water particles at the
centre of top or bottom cross-sections of the cylinder by the added mass
of a disk which has the same diameter as the cylinder in question. The

method may be formulated as follows
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. 4
F = (m 0.5U =—pR3U
g = 3PR U (1)

y 22)disk
This method does not take into account the aspect ratio of the
cylindrical member in the added mass determination- Present data shows
that the effect of aspect ratio in different cylinder geometries such
as rectangular, elliptical, etc., is significant and so for circular

cylinders should be taken into account. This method has been used by

Hooft in reference [1].

(ii) The method developed by Miller in reference [2] gives allow-
ance for the aspect ratio of the circular cylinder as well as taking a
correction due to the three dimensional form into account. In the
method the cylinder is divided into strips lengthwise, say n number pf
strips and the added virtual mass of n rectangular strips and the
acceleration force on those strips are calculated. The total acceler-
ation force on the cylinder is obtained by summing the acceleration
forces on each strip. The method, strictly speaking, requires the
added mass coefficients to be known for each rectangular strip, but in
reference [2] it was suggested that the average value for the aspect
ratio of n strips can be defined and this can be used to determine the
added mass values of all the strips. The method may be summarised as

follows. (See Fig. 1.)

, 939
- f’”‘*‘\\\ 1\@—,
' Q/ e
| . “}
. . e 23 >_><
D
. o
' _—
\\\_// N dxZ ETmids
\ 7
Fig. 1
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Aspect ratio of 1 strip 2R Sinb

il
{ (2R sin6) ax

Mean aspect ratio of n strips

'2Rd
T
[ 2r? sin%s ap
=9 - RU
2Rd 2d

The added mass of a fully submerged cylinder oscillating along the axis

normal to its cross-sections is given as

m
m,, = [ (R sin®)? k
o

4 3
3pTTR k22K1

2o P T K1 R Sinf 46

(2)

where k,, is the added mass coefficient for the rectangular strip having
an aspect ratio of Rm/2d4, and K1 is the coefficient to take the effect
of three dimensionality into account. As d decreases k,, approaches 1

and m can be calculated as the added mass of a disk, hence equation

22

(2) becomes

-4 3 g =8 g3
m,, =3 0T R* K 3P R (3)
2
and K === 0.636 (4)
1 m )

Now the wave acceleration force on the top or bottom sides of a
cylinder can be calculated using the following equation

3 L]
= . = 0. R® k U (5)
Fy (m22) 0.5 Uy 0.424 o m 20 Oy

3. Drag Force:

The drag force mainly results from the turbulent flow downstream of
the body due to the viscous effects which are significant when diameter/

wave height <0.125 for circular cylinders.
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In this study, as discussed in Section 2.1.9.3 of Chapter II, in
the case of an inclined cylindrical member, the normal components of
the acceleration and velocity of the water particles with respect tq
the inclined cylinders' axes are assumed to give rise to the wave load-

ing.

The following basic philosophy has been employed to derive the

general three dimensional method for wave loading calculations:

(a) All the wave properties, i.e. dynamic pressure change, velocity
and acceleration of water particles which are defined in the wave
reference system are first transferred to the structure reference
system and from the structure reference system to the member

reference systems.

(b) All force and moment calculations are carried out in the member's

reference system and distributed over the nodes of each member.

(c) The results of the force and moment calculations are transferred
back to the structure reference system and summed up along the
principle axes to obtain heave, surge and sway forces, as well as

pitch, roll and yaw moments.

1.1 The Definition of Reference Systems

In the most general case, we may define the wave properties, i.e.
pressure, velocity and acceleration of water particles in the wave

reference system (x, y, 2z). (See Chapter II equations (50-51).)

The structural global reference system (X, Y, 2) is usually chosen
in such a way that the origin of the system is at the centre of gravity
for a floating or moored structure, but may be taken at any convenient
point for a fixed structure. (u, v, w) are the reference axes for an

individual member within the structure. (Fig. 2.)
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To calculate the pressure acceleration and velocity forces the co-
ordinates defined in the (Xx,¥,2) system are transferred to the (X,Y,2)

system using the following transformation matrix.

/\3)\/ B (X Y. 7 )
2,12,%<2
- ~__ % /

tL}YAVV

’

%

d S X/

z 2
A% ALY Z)
HEAVE | [ /J8 T\ by
A w
Z i .G__w ,,Z _,,\‘
A Positive direction of rotation
ZTSWAY  SURGE ROLL
PITCH X
Fig. 2.
o - F B - - - p— —

X 11 B12 B13 X Xo

y = B, B,, B, Yoo+ Y (6)

z B31 B32 B33 2 Zo

L B - -l " - - =

where, referring to Fig. 2:
811 = CosB o : The Cosine of the angle between x and X axes.
812 = Cos(90) = 0 : The Cosine of the angle between x and Y axes.
813 = Cos(g-+ B) : The Cosine of the angle between x and Z axes.
821 = Cos(90) = 0 : The Cosine of the angle between y and X axes.
822 = Cos(0) =1 : The Cosine of the angle between y and Y axes.
323 = Cos(90) = 0 : The Cosine of the angle between y and Z axes.
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T
831 = Cos(i-— B) : The Cosine of the angle between z and X axes.
832 = Cos(90) = 0 : The Cosine of the angle between z and Y axes.
833 = Cos (B) : The Cosine of the angle between z and Z axes.
and X =0, ¥ =-% and Z_ = 0.

o ©] W o

Now equations (6) can be written in the following form

- b - - - - . -
b CosB 0 - SinR X 0
Y = 0 1 0 Y - Y (7)
w
z SinB 0 CosR Z LO J

Using the transformation equations given in (7), the-velocity,
acceleration and pressure equations of a water particle in the wave, by

referring to the structural reference system, can be written as follows:

Horizontal velocity: Ux = 0.5 Hw w ek(Y-YW) Cos[k (X CosB - 2SinB) - wt]
(s)
(8-4)
. . k(Y=-Y.) .. .
Vertical velocity : U - = 0.5 H we Sin[k (X CosB - 2ZSinB) - wt]
Y (s)
(8-B)
. : 2 k(Y-yv.) _. .
Horizontal UX = 0.5 Hw W e W’ Sin(k (XCosB - ZSinB) - wt]
acceleration : (s)
(8-C)
Vertical U = - 0.5 Hw w? ek(Y_YW) Cos [k (XCosB - 2SinB) - wt]
acceleration : y(s)
(8-D)
k(Y-Y
Pressure : p(s) = -0 g(Y-Yw) + 0.5pg Hw e ( W) Cos [k (XCosB
- 2SinB) - wt] (8-E)

To be able to make force and moment calculations on an individual
member of the structure we have to transfer these velocity, acceleration
and pressure equations which have been written in the structure reference

system to the member reference system with the following matrix equation:
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11 12 13 1

Y = %21 %22 %3 v * ¥ (9)
. Za L %3 %32 %33 LY . Zl -

where

@,, ¢ The Cosine of the angle between X and u.
Q,, : The Cosine of the angle between X and v.
ala : The Cosine of the angle between X and w.
a21 : The Cosine of the angle between ¥ and u.
a22 : The Cosine of the angle between Y and v.
Gy, ¢ The Cosine of the angle between Y and w.
Oy, The Cosine of the angle between Z and u.
Q,, : The Cosine of the angle between Z and v.
a33 : The Cosine of the angle between Z and w.

The method of obtaining the direction Cosines will be given in the

next section.

1.2 The Determmination of Direction Cosines

In order to determine the direction Cosines (aij' i=1,3, j=1,3) we

>
have to define the unit vector 31 which lies along the u axis and e,

and ga unit vectors which are perpendicular to each other as well as to

> -> - ->
the e, vector. In other words, e, e, and e, are the orthogonal vectors.
(See Fig. 2.) At the start of the problem the co-ordinates of the points

>
A and B in the structure reference system are known, so the e, unit

vector can easily be determined as follows [3]

->
e =2 (10)
| 28|
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> .7 x >
GB = X,i+ Y,j + Z,k
> -> > >
GA=Xi+Y3j+2Zk
1 1 1
AB = (X -X )1 + 1 r
= (X,-Xx))1i (Y,-¥ )] + (z,-2,)k

> _ 2 _ »
|aB| = VQXZ X%+ (¥,-Y )%+ (zz-zl)2

To determine the Zz unit vector, the plane [Q] which passes through
the point A and is perpendicular to the vector Ag will be defined. It
can be supposed that we have defined the equation of the plane [Q] and
then chosen a point P(X,Y,Z) on this plane. We can write the equation
of the vector AE as follows

AD = (x-xl)I + (Y—y1)§ + (z-zl)ﬁ (11)

- -
Since the vector AB is perpendicular to the [Q] plane the vector AB

should also be perpendicular to the vector AP. This gives us the follow-

ing equation to determine the equation of the [Q] plane

> >
AP*AB = 0 (12)

or

~

[Q] = (X-X,) (X,-X)) + (Y-Y)(Y,-Y)) + (2-Z)(Z,-Z,) = O (13)

>
Now we have to define the AP vector in terms of known quantities.

, Y points in space and substitute them

Q" Q

into equation (13), the Z_co-ordinate of point P can easily be obtained.

Q

If we choose any arbitrary X

If we replace the arbitrary co-ordinates X,Y,Z with the co-ordinates

>
XQ' YQ and ZQ in equation (11) we can obtain the vector AP.
>
g =iP_ (14)
2 ->
|ap|
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>
From the orthogonality condition, e, can also readily be obtained

3

as follows

-> ->
e =¢e A

>
e
3 1 2

(15)

Having obtained the unit vectors in a member reference system the

direction Cosines can be written in the following forms

o =712 + > > >
11 ¢, G, = 1°%e, Gy = 1°8,
> > -.>+I- > >
= L =] = ° = <Se
@, = 3°¢, %, = 1€, %3 T 37, (16)
I{»-)- E—> E-»
3y < € Ggp = k%8, Gy ™ X°€,

1.3 Calculation of Wave Forces

1.3.1 Calculation of pressure force. The hydrodynamic pressure change

with depth below the surface of a wave in the structural reference
system is given in equation (8-E). Equation (8-E) can be transformed
to the member reference system, using matrix equation (9) as follows

K (BHY -Y)

=0.5pg Hw Cos{k[A CosB - C SinB] - wt} (17)

P (m)

where

C=aqa u+ Qo v+ Q w + Z

The total pressure force on a member in this member's reference system

can be determined using the following integration equation

£ 27
g =- [ ]

i, (@) u=0 6=0 2

> . >
(p(m) R Cosf dO6 du e, + p(m) R Sinf 46 du e3)

(18)

Since
ds = R d6 du

; . unit normal vector to surface (positive outwards)

-> ->
= Cosf e, + Sin6 e,

— 414



. Fig. 3.
-
FP, becomes
i, (m)
-> ->
FP = -
i, (m) fsf Py B 98 (19)

Using the divergence theorem of Gauss [3], the surface integral

->
form of FP, in equation (19) can be converted to the volume integral

i, (m)
for the sake of simplicity. . That is
- > '
FPi,(m) = - {! P(m) ® as = - fif Vp(m) av (20)

where V is the volume bounded by a closed surface S and

The pressure force components along the w and v axes can be

written in the form of a volume integral as follows

-> 9 ->
FP =-[[[=p, , ave (21)
Wi (m) v ow ~ (m) 3
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ox

4@ R 2T k(B'
FP_ =-(.5pgH k [ [ [ a B Y
. W 23
i, (m) u=0 r=0 6=0
) ' ' £ R 2w
cos{k[a' cosB - c' sinB] - wep av - [ f [ (@, , CosB - a__ SinB)
. u=0 r=0 6=0 33
. 1
k(B +Y.~-Y 1
e. 1Y) sin{k[a' cosB - c' sinB] - wt}) av) (21-1)
where
[ ]
A = ¢,,u+a,r Cosf6 + G, T Sinf + X,
B =a,, u+aq,,r Cosf + Ay 3 T Sin6
C = G , u + Q,, T Cos6 + G ; T Sinf + Z,

dv = r d8 dr du

r Cosb and w = r Sin6

<
1

Since kv<<l and kw<<1l in the case of small diameter cylinders
(D/A<0.2) the terms involved with kv and kw can be neglected and

therefore some more simplifications can be made in equation (21-1)

4
FP =-(0.5pgmR*H k [ oK (G2 u+Y=Y)
w w 23
i' (m) u=0
Cqs{k[(a11 CosfB - Q,, SinfB) u + X, CosfB - Z, sinf] - mt} du -
£ ko, u+t¥,-¥ ) . .
f (a,, CosB - a,, SinB) e 21771 "W Sln{k[(oz11 Cosf - a,, Sinf)u
u=0
+ X, CosB - z, SinB] - wt} au)) (21-2)-

Similarly, the pressure force along the v direction can be obtained

as follows \

dp

% - - —m gv 2

FP =-[[[ 57— ave, (22)
i, (m) \'
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ﬂ
> k(a,,ut+¥,~-Y )
FP = - . T R2 21
(0.5 pg R“H k f a,, e 1 “w

Vi, (m) u=0

Cosk[(a1 CosB - %y, SinR) u + X, CosBR - Y, Sinf] - wt) du

1

ek(OL21u+Y1-Yw)

- (@,, CosB - a,, SinB) Sin{k[(a11 CosB -

@,, SinB) u + X, CosB - z, SinB] - wt} du)) : (22-1)

The pressure forces at the bottom and at the top of the cylindrical
member can be written as follows

;T
FP _ = P r dr 46 (23)
U0, m) r=0 6=0 ™

Since the dynamic pressure change may be assumed to be constant

across the diameter of the cylindrical member, equation (23) can take

the following form

FP =0.5pgH T g2 K (¥17%) c°s{k[x1 CosB - Z, sinB] - wt}

u=0;  (m)
(24)

Similarly the pressure force at the top end of the cylindrical

member will be

_ 2 k(a,  £+¥,-Y )
FPu=£i - =0.5pg Hw T R® e w
Cos{k[(alll + xl) CosB - (a31£ + Zl) SinB] - wt}

(25)

If we write the total pressure force acting on a member in the

member and structure reference systems, the following equations are

obtained

-> > =
FP. = FP es + FP e2 + (FP = - FP = ) el
i, (m) i, (m) Vi, (m) 404, (m) uJ'i.(m)
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‘1)1 + (FP. Kk (27)

> > > >
s 2
i, (s) (Fpi,(m) i, (m) J)J * (Fpi,(m)

Using the direction Cosines, the pressure equation given above can
also be written in the following form
Ya,,]1
i
. v, =0, = 11
i, (m) i, (m) "=, (m) u"zi,(m)

¥

surge force components

[FP ‘o, . + FP a,, + (FP__ - FP__ )a ]3
i, (m) Vi, (m) 9=0; (m) w2

¥

heave force components

[FP, 0, +FP a,, + (FP__ -FP__, oy lk
i, (m) i, (m) - i, (m) i, (m)
¥
sway force components

1.3.2 The calculation of acceleration force. The x and y components of

acceleration of a water particle in the structure reference system have

been given in equation (8-C) and (8-D). These components can be trans-

i

ferred into the member reference system as follows

9)
X

k (B+Y) -Y,) sin[k{(A CosB - C SinB)} - wt] (28)

0.5 w? H e
(m)

k(B+Y1—Yw)

=-0.5uH e Cos[k{ (A CosB - C sinB)} - wt]

6Y
(m)
(28-1)

Assuming the change of acceleration with depth of cylinder can be
neglected for small diameter cylinders the following simplifications can

be made in equations (28) and (28-1)

U = 0.5 w? Hw Sin[k{(allu + X,) CosB

- (aj,u + 2,) SinB} - wt] (29)
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'

e k(a21u+Y1—Yw)

- _ 2
Uy,(m) 0.5 w Hw e Cos[k{(allu + Xl) CosB

- (a;,u + 2,) SinB} - wt] (29-1)

The above expressions for acceleration have been written in the
member reference system but they are along lines which are parallel to
the wave propagation. If we resolve them along the structure reference

system's axes the following equations are obtained

U =U CosR (30)
Xm)  *m)

U = C (30-1)
Y  Ym)

U = -0 Sinf (30-2)
% (m) * (m)

Now we can write the acceleration forces in the member reference

system along the w and v axes

£ L,
FA =k,,p ([ U Cos(w,X)dv + [ U Cos (w,Y)dv
im0 uw=0 ) 0 Y@

+ [ U Cos (w,2)dv) (31)

Substituting k33=1 (since the acceleration force is calculated

along the w axis on circular cylinders), and the values of Ux ’
(m)
UY , UZ from equations (30), (30-1), (30-2) respectively and
(m) (m) -
dv=TR2du into equation (31) the acceleration force equation (31) becomes

£ .
= 2 _ .
FAW =pm™R* [ f Ux (or.13 CosB gy SinfB) du
i, (m) =0 (m)
£ L[]
3
+ o, o, dul (32)

u=0 (m) ~

If we replace 6x and ﬁy with the equations given at (29) and
(m) (m)

(29-1) respectively, equation (32) can be written as follows
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£
- 2
FA_ =-(0.5pgmR® H_ ki f a,, e
i, (m) u=0

k(a21u+Y1-Yw)

Cos{k[(a11 Cosf - a, Sinfju + X, CosB - 2, sinf] - wt} du

- [ (o, cosB - a,, Sing) okt (0 Uty ¥y

=0 21

Sin{k[(a11 CosB - a,, Sinf)u + X, CosB - 2, sinf] - wt} du))

(33)

If we compare equations (21-2) and (33) it can be seen that these
two equations are identical, so it is proved that for circular cylinders,
regardless of the direction of wave and position of-eyliﬂaer, the
pressure force is equal to the acceleration force along the direction

which is normal to the cylinder's curved surface.

A similar expression to that in equation (31) can be written to

obtain FA
v,
i, (m)
z . Z .
FA, =k,, P (f U,  Cos(v,X) dv + i u, Cos(v,¥) &
i, (m) o (m) o (m)
‘e L] .
+[uU Cos (v,2) av) (34)
Z
o (m)
orxr
£ k(o,,u+Y,-Y, )
FA =-(0.5pgmRE k ([ a,,e 3117w
Vi,(m) u=0

Cos{k[(or.11 Cosf - o, SinB)u + X, CosB - Z, sinf] - wt} du

2
- fo (a,, CosB - a,, SinB)

ek(a21u+Y1-Yw)

Sin{k[(a11 CosB - %, SinB)u + X, CosB - Z1 SinB] - wt} du) )

(35)
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Finally, the acceleration forces on the end surfaces of a

cylindrical member can be calculated as follows

.

FA _ =m (U Cos(u,X) +U Cos(u,Y)
4 0i,(m) H x(m) Y(m)

+ UZ Cos(u,Z)) - (36)
(m)

By using equations (5), (29), (29-1), (30), (30-1), (30-2),

equation (36) can also be written as

- _ 3 k(Y -Y.)
FAu=0, (0.5 pgm Hw k 0.423 R k11 (a21 e 1 "W
i, (m)
Cos[k(x1 CosB - Z1 SinfB) - wt] - (a11 CosB - Oy, SinR)
ek(Yl'Yw) Sin[k(x1 CosB - Z, SinB) - wt])) (36-3)

where k11 is the added mass coefficient of a rectangle having an aspect

ratio of WR/24.

Similarly, the acceleration force on the bottom surface of a

cylinder will be

- 3 k(o, 2+Y =Y )
= - (0.5pgm Hw k 0.423 R® k;, (o, , e 21 1w

‘Cos{k[(allﬁ + X,) CosB - (a,,£ + Z,) SinB] - wt}

k(a21£ + Y, -Y)

- (o,, CosB - Oy SinB) e

11

sin{k([(a, £ + X ) CosB - (a,,& +2,) Sing] - wt} (37)

1.3.3 The calculation of velocity force. As with the acceleration

force calculations, if we neglect the velocity variation along the
depth of the cylinder, and assuming that water particles move with a
velocity equal to that at the centre of the cylinder cross-section,

the following results can be obtained to calculate the velocity force.

The x and y components of water particle velocity given in the

structure reference system in equations (8-A) and (8-B) can be trans-
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ferred into the member reference system as follows

k(a21u+Y1—Yw)

Ux(m) =0.5wH_ e Cos[k{(allu + X,) CosB

- (@3,u + 2,) SinB} - wt] ' (38)
Uy(m) =0.50H, @2 ginfie{ (e, u + X,) CosB

- (@5,u + Z,) SinB} - wt] - (38-1)

The above expressions for velocity are written in member reference
system but they are parallel to the direction of wave propagation. If
we resolve them along lines which are parallel to the structure refer-

ence system's axes the following equations are obtained

Ux =U CosPB (39)
(m) * (m)
UY =U (39-1)
(m) Y (m)
U = ~-U Sinf (39-2)
Z (m) % (m)

Now we can obtain the velocity forces in member reference systems

along the w and v axes

L )
FVv. = %C pD J (U Cos(w,X) + U Cos (w,Y)
w, D _ 0 X (m) Y (m)
+ U Cos(w,Z)) (U Cos (w,X)
Z X
(m) (m)
+ U Cos(w,Y) + U Cos(w,Zﬂ du (40)

Y(m) Z(m)

or, substituting equations (39), (39-1), (39-2) into equation (40) the

drag force along w axes on each member may also be written as
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I

N

@]

©

o
— 1
‘-—L—\h
N

a

(13 CosB - a33 SinB)

"1, (m) P lu=0 *@m)
+ U as3) (Ux (a;3CosB - a33SinB)
(m) (m)
+ UY 0.23) du (40-1)
(m)

Similarly, the velocity force along the v axis will be

£
FVV, = l~!CDQD J. (UX (G12COSB - 0325inf)
i, (m) u=0 (m)
+ Uy 0.22) (Ux (G12COSB - G325in8)
(m) (m)
t U aso) | |du (41)
(m)

The velocity forces on the end surfaces of a cylindrical member
are neglected in wave loading calculations because of the uncertainties
about both the viscous flow state and the appropriate drag coefficients.
The error will not be large except for cases where the pressure and

inertia terms cancel one another.

1.3.4 Calculation of the total wave force. The total wave force will

consist of hydrodynamic pressure force, acceleration force and velocity
force. If we write the total force acting on the structure in the
structure's reference system, the following resultant force components

are obtained..

m
->
FT = ) [(FT &.. + FT Q.. + FT a,.)] i
13 12 11
L = B P Vi, (m) %, (m)
¥
surge force
m
+ .Z [(FT Q,, + FT a,, + FT a, )] 3
i=1 i, (m) i, (m) i, (m)
¥
heave force (42)

contd. over ...
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m .
+ 3 [(FT a,, + FT_ a,, + FT a,,)] x
i=1 i, (m) i, (m) %1, (m)
¥
sway force (42)
where
FT = FP_ + FA + PV
i, (m) i, (m) i, (m) i, (m)
FT,_ = FP_ + FA_ + FV
i, (m) i, (m) i, (m) i, (m)
FT = FP __ + FP__ + FA _ + FA _
%, (m) 4=0 , m) u=L, | (m) =0, , (m) wst; (m)

The terms in the last equation are to be determined according to
the cylindrical members exposed ends to the wave, loading, i.e. if the

member is inter-costal these terms will wvanish.

1.4 Calculation of Total Mament

If we consider an individual element in a member reference system,
the moments due to the wave forces about the member reference system's

origin, A, can be written as follows (see Fig. 2):

14
-> -> d - -> ->
m, = [ Tue, A5 (FT,, e, + FT_ e,)] du (43)
i u= i, (m) i, (m)
or
L ' L
d - a -
m =-f—-(1-"I' )udue+f—(FT ) udue
Bl w=0 M Yy m 2 =0 M Yy (m) 3

(43-1)

The total moment about the structure reference system's origin can

easily be obtained using the moment transformation rule as follows

-> -> > -> >
m, =m_ +rl (FT e, + FT e + FT °.)  (44)
G, A, W, v, 2 u, 1
1 1 i, (m) i, (m) i, (m)
where
-> - -»> > ->
r=GA=X_1i1+Y¥Y j+2 k
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and
>
e

-
2 and e, should be replaced with the values which will be obtained

from equations (14) and (15) respectively.

The total moment acting on the structure

EEG (45)
1 (1)

>
M=

I ~>8

i

The total moment vector can also be analysed in terms of principal

components as follows

-> > > ->
M = ai + b3 + ck (46)
+ ¥ ¢
(roll moment) (yaw moment) (pitch moment)
where
m ? a
a= ) [ — (a,, FT - o, FT ) u du
13
i=1 u=0 du Vi,(m) 2 i, (m)
+ FT (Y, a,y =2, 0,,) + FT_ (Y, @y, = 2; 0y,)
i, (m) i, (m)
+ FT, (¥, &, =2, 0,,)]
i, (m)
R
b = [ — (a FT - O FT ) u du
23 22 )
i=1 u=0 du vi.(m) wl.(m)
+ FTw (z1 O, = X, aaa) + FTV' (Z1 o, - x1 aaz)
i, (m) ll(m)
+ FT . (Zl (111 - Xl 0(.31)]
lr(m)
m L 4
c= ) ([ = (o,, FT -a,, FT )
i=1 u=0 M Vi m) i, (m)
+ FT (X o -Y o ) + FT (X o -Y o )
) 22 12
wi,(m) 23 1 13 i, (m)
+ FT, (x, @, =Y a“)]
i, (m)
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In the following the computer program which enables a user to
calculate the wave loading using the above summarised method will be

described.

2. THE DESCRIPTION OF A GENERAL THREE DIMENSICNAL WAVE LOADING
PROGRAM FOR CIRCULAR CYLINDRICAL MEMBERS OF FIXED AND OF
FLOATING OFFSHORE STRUCTURES

Having developed the general method, the next task was to develop
a computer program which could use the calculation procedure based on
this method. This computer program determines wave loading on the
structure with minimum input data, space and time as well as having
enough options to provide high flexibility and reliability. The wave

loading calculations on the structure are done using two main programs:

FILER: All the data regarding the geometry are fed into this
program as input. A data file is generated with this information for
use in the wave loading program. FILER also creates another data file
which is used as input to the BONES program. BONES produces graphical
representation of the geometry of the structure on screen or on plotter

~

for visual check.

WAVLOVA: This program calls a data file created by FILER and

calculates the wave loading at nodal points of all the members

2.1 The Description of FILER

The input data to the FILER program is the geometrical details of

a structure which should be prepared as follows:

‘(a) The structure should be idealised as a space frame system and
preliminary nodal points should be defined. This can be done by join-
ing the start and end co-ordinates of each member with their centrelines.

A nodal point (joint) can be either the free end of a member, e.g. the
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end of a hull, caisson, leg, etc., or the intersection between two or
more members, in which case, one member and only one member must be
continuous (see (i) below), and up to 8 members may end at this joint.
The co-ordinates of the joints which are requested as input data by
FILER actually refer to the co-ordinates of intersections or ends of
member axes. It is not permissible to have joints at which no members

end. (See also Fig. 4.)

CONTINUOUS
U oy ® i r r/,/MEMBE»Q xm

12 u o lom A - 4 7 % o ‘50 : = lﬂ_
v vy gll@Z lT\\\\”ID\ v
= Pl = = > =
@ ||l@ [o]] | Ll ® X|&

a Lif 13 I i3 Th £ T 13

e 5T e 3l1 27 i) /;;N (e .TI\

7Y N ® I Z I W/ INTERCOSTAL "=,

* \/ @ MEMBER @

CONTINUOUS MEMBER
Fig. 4.
Two problems can arise in the identification of members and
joints:

(i) If more than one continuous member passes through the same
joint this case must be considered by dividing one of the
continuous members into two, in other words making one member

inter-costal while leaving the other one continuous. (See

Fig. 5.)

JOINT {

MEMBER T

Memrrz o1

3 MEMSE2 11

(INCORRECT) (Cocescr)

Fig. 5.
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(1i) In the case of neither member being continuous at a particular
joint, a new joint must be introduced such that member 1 is
continuous at joint 1 and has a free end at joint 2 and member

2 ends at joint 1. (See Fig. 6.)

JOINT ¢

_JOINT JOINT 2
g ¥
MEMBER T MEMBER IT MEMBER T
MEMBER T
(/INCoREECT) (CokercT)
Fig. 6.

(b) Once the nodes are determined, every member and each joint through-
out the structure must be given a unique number. The member node
numbering system must also be devised so that all joints on each member
can be numbered starting from 1 up to a maximum of 10. (This number

=

can easily be increased by altering the neumber in the DIMENSION state-

ment of FILER).

(c) Having defined the numbering system for nodes and members, the
number of nodes on each member, the radius of the members and the co-

ordinates of each node should be tabulated.

(d) The last part of the input data concerns end corrections. FILER

determines at which joint members are continuous or inter-costal using
the input information. At this stage the user may take account of the
covered up areas at intersections. This procedure is explained by the

following illustrative example.

_]:25_



Fig. 7.

In Fig. 7 the corrections which are to deduct the wave loading due to
the covered up areas are considered separately by FILER for intersect-

ions between I & IV, I & III, I & II.

If the user requires corrections for all of these three cases,
since these three sets of corrections are performed independently of
each other the total correction would be over-estimated. If only
members II and IV are taken into consideration the total correcticn
would be much closer to the true case. To obtain these corrections
the end specification for member III at joint 1 should be entered as

'0' and for members II and IV should be 1.

When the final part of the data has been supplied regarding these
end corrections FILER prints out the member and joint information as
well as linking the geometrical data to the BONES pfogram so that a
three dimensional view of the structure can be represented on the

plotter or on the screen. An example on the use of FILER is given in

Section 3.

2.2 The Description of WAVLCA

WAVLOA was written to determine wave loading in terms of nodal

loads distributed throughout the structure. Calculation procedures used
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in the development of WAVLOA have been given in Section 1. WAVLOA uses
gecmetrical information generated by FILER as input data as well as
some additional data on wave particulars and draft of the structure

which are to be supplied during each run.

As was described in Section 2.1 FILER generates information on
joints only, i.e. the start and end points of members or intersections
between the members. WAVLOA generates additional nodal points in
between the joints at which wave forces are calculated. The number of
nodes is determined according to the required spacing between the
nodes and adjusted to make the total node number even on each member
so that Simpson's rule can be applied for integrations. WAVLOA also
determines surface piercing members and adjusts the last node at which
wave forces are calculated to be on the calm water surface. Similarly,
the first node is generated to be at the starting point of an inter-

costal member at its intersection.
The following output is produced by WAVLOA:

(a) The transformation matrices for each member so that the direction
of the u,v,w axes can be defined to determine the applied wave force in

the correct sense.

(b) Wave loadings in the v and w directions at each node point of each

member. These are given as force per unit length.

(c) At each joint, the end loads for each inter-costal member are
uniformly spread over the appropriate length. (See Table VII, and Fig.

14.)

(d) Axial loads due to the exposed ends of members.
(e) The total forces on each member.
(f) The total forces on the structure.

An example on the use of WAVLOA is given in Section 3.
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2.3 The Description of BONES

BONES was written to verify the co-ordinates of joints which are
fed to the FILER program. It produces a graphical representation of a
three dimensional structure. The structure may be viewed from any
point in space to make sure that all members and nodes are registered
into a data file as intended. BONES is linked to FILER and graphics

are automatically produced after the data file regarding the geometry

-

of a structure has been generated.

The method employed in the BONES program was developed to
produce the two dimensional diagram from the three dimensional
structure using the co-ordinate transformations described in Section
1.1. In the method all the nodal points of a structure defined in the
structure reference system are transformed to a reference system (u,v,w)

using the following equation

-1
[B] = [T] = {[al - [cl} (47)
where
X u X
[a] = Y| , [B] = v o, [c] = Y (= View-
point)
Z w Z
d - - - -
-1 1 ,
[T] = —— adj [T]
7|
G G2 Ay,
[T] = %y PP Qs
_a31 Gy Gis
r' ] ] S
Oy % gy
] | | ]
i = .. = T f f
adj(T] o, o, aaz! % 5 he cofactors of the elements

of (T) matrix

Q-
Q
Q



The origin of the (u,v,w) reference system is the viewpoint and
the w axis on the line which connects the origin of structure reference

system to the viewpoint. (See Fig. 8.)

A .
/\VI View /D(ane

\J

Fig. 8.

-> ->
e e

3 orthogonal unit vectors are

>
The (u,v,w) system and the e e,

determined using the procedure described in Section 1.2.

The graphics were drawn feeding only the (u,v) co-ordinates of
each point into the "Graphic plotter Package" installed at the

Hydrodynamic Laboratory's PDP 11/40 computer.

Examples on the use of BONES are given in Section 3.

3. AN EXAMPIE ON THE USE OF COMPUTER PROGRAMS

The use of FILER, BONES and WAVLOA computer programs are illus-
trated by calculating wave loading on the members of a twin circular
hull semi-submersible with the following example. The gecmetry and

the main dimensions of the platform are shown in Fig. 9.
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Fig. 10.

In Fig. 10 a space frame idealisation of the platform is shown.
Members are designated with Roman numbers and Joints with decimal
numbers. In Tables I and II member and joint data to the FILER program

are illustrated respectively. These data tables were prepared using

Figs 9 and 10.

- 131 -



MEMBER DATA TABLE (Total number of members = 21)

Member Number of Nodes Radius [meters]

I 7 5.35
II 2 4.10
III 2 4.10
Iv 2 4.10
\' 2 5.35
VI 7 4.10
VIiI 2 4.10
VIII 2 4.10
IX 2 1.5
X 2 1.5
XI ' 2 1.5
XII 2 1.5
XIII 2 1.5
XIv 2 1.5
Xv 2 1.5
XVI 2 1.5
XVII 3 Dummy
XVIII 3 Dummy
XIX 3 Dummy
XX 3 Dummy
XI 4 Dummy

TABLE I.
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JOINT DATA TABLE (Total number of joints = 24)

Joint X Y z

Co-ordinates [meters]

1 54.2 0.0 33.95
2 38.7 0.0 33.95
3 12.9 0.0 33.95
4 0.0 0.0 33.95
5 -12.9 0.0 33.95 .
6 -38.7 0.0 33.95
7 -61.0 0.0 33.95
8 38.7 31.25 33.95
9 0.0 31.25 33.95
10 -38.7 31.25 33.95
11 54.2 ,0.0 -33.95
12 38.7 0.0 -33.95
13 12.9 0.0 -33.95
14 0.0 0.0 -33.95
15 -12.9 0.0 -33.95
16 -38.7 0.0 -33.95
17 -61.0 0.0 -33.95
18 38.7 31.25 -33.95
19 0.0 31.25 -33.95
20 -38.7 31.25 -33.95
21 38.7 31.25 0.0
22 12.9 31.25 0.0
23 -12.9 31.25 0.0
24 -38.7 31.25 0.0
TABLE II.
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3.1 Input to FILER

Geometrical information about the structure tabulated in Tables I
and II is the main input to the FILER program. Since the programs
prepared were of an interactive nature, to provide the data, a user only
need answer the questions using Tables I and II. An example of the
usage of the FILER program is illustrated in Table III. All information
provided by a user i; that typed after the asterisks. After all the
geometrical data regarding the members and joints have been fed into
FILER, the program automatically determines which member is continuous
or inter-costal at each joint and asks if corrections due to the

covered-up areas are required.

3.2 Output of FILER

When all the data for members and joints are completed FILER asks
if those data are to be linked to the BONES program for graphical or
for visual display and prints out a summary data table so that the user
can check whether the geometry of the structure is understood and stored

correctly by FILER. See Table IV.

3.3 Usage of BONES

Use of the BONES program is presented in Table V. The graphical

displays from two different viewpoints are shown in Figs 11 and 12.

3.4 Input to WAVLOA

The wave loading calculations for the twin-circular hull type semi-
submersible (Fig. 9) were carried out for different wave orientations.

The procedure to run WAVLOA is presented in Table VI.

3.5 Output of WAVLOA

The output begins by printing out the transformation matrices so

that a user who wishes to carry out the structural response calculations
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in the time domain can load the structure with the correct direction of
wave forces and the corrections due to the intersecting members. 1In the
output, member loads in their reference systems as well as total forces
and moments on the structure in the structure reference system are given
for t=0 and t=T/4 where T is the wave period. The output of WAVLOA is

presented in Table VII.

In the following the use of transformation matrices is illustrated
to determine the member reference systems with respect to the structural

reference system.

=
SP
a
=
<
bq
=

Fig. 13.
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~RUN FILER

ENTER STRUCTURE NAME

ENTER TOTAL NO OF MEMBERS AND JOINTS CINTEGERST = 21,24

ENTER
ENTER
ENTER
ERTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER
ENTER

NO
NO
NO
NO
NO
NO
NO
NO
ND
NO
NO
NO
NO
NG
NO
NO
NGO
NO
NO
NO
NO

OF
OF
0F
OF
OF
OF
0F
oF
13
OF
OF
OF
OF
OF
0F
OF
OF
OF
0F
0F
0F

ENTER

2€C 2C 3K 3C € 2K € 3 3K < < > DK K € < DK > DK <

M W@ W W W W W W W W W W w W w e w - e -

< <X € KL=k kL L L~ < —<

NODES
NOGDES
NODES
NODES
NODES
NODIES
NODES
NODES
NODES
NODES
NODES
NODES
NODES
NODES
NODES
NODES
NODES
NODES
NODES
NODES
NODES
AND
AND
AND
ANT
AND
AND
AND
AND
AND
ANT
AND
AND
AND
AND
AND
AND
AND
AND
AND

NN NN ANNNNNNNRNNNNRNRNNN

>
=
[ —
~

CINTEGER]
[INTEGER]
CINTEGER]
[CINTEGER]
CINTEGER]
CINTEGER]
CINTEGER]
LINTEGER]
[LINTEGER]
CINTEGER]
[CINTEGER]
[INTEGER]
CINTEGER]
CINTEGER]
[INTEGER]
CINTEGER]
[INTEGER]
CINTEGER]
CINTEGER]
[INTEGER]
CINTEGER]
COORDINATES
COORDINATES
COORDINATES
COORDINATES
COORDINATES
COORDINATES
COORDINATES
COORDINATES
COORDINATES
COORDINATES
COORDINATES
COORDINATES
COORDINATES
COORDINATES
COORDINATES
COORDINATES
COORDIIINATES
COORDINATES
COORDINATES
COORDINATES

AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AN

RADIUS
RALITUS
RADIUS
RADIUS
RADIUS
RADIUS
RANIIUS
RADIUS
RADIUS
RADIUS
RADIUS
RADIUS
RADNIUS
RATITUS
RADINIUS
RADITUS
RADIUS
RADIUS
RADIUS
RADIUS
RADIUS
(HETRES)
(HETRES)
(METRES)
(METRES)
(METRES)
(METRES)
(HETRES)
(METRES)
{METRES)
(METRES)
(METRES)
(METRES)
(METRES)
{HETRES)
(METRES)
(METRES)
(METRES)
(METRES)
(METRES)

(METRES
(METRES
(METRES
(METRES
(METRES
(METRES
(METRES
(METRES
(METRES
(METRES
(METRES
(METRES
(METRES
(METRES
(METRES
(METRES
(METRES
(METRES
(METRES
(METRES
(METRES
(REAL]
CREAL]
(REALI]
(REAL]
[REAL]
[REAL]
[REAL]
CREAL]
(REALI
[REAL]
[REAL]
CREAL]
[REAL]
CREAL]
(REAL]
[REAL]
(REAL]
CREAL]
CREAL]

(METRES) [REAL1]

TABLE III.
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) [REAL]
) [REALT
) [REAL]
) [REAL]
) [REAL]
) [REAL]
) [REAL]
) [REAL]
) [REAL]
) [REAL]
) CREAL]
) [REAL]
) [REAL]
) [REAL]
) [REALI
) [REAL]
) [REAL3]
) [REAL]
) [REAL]
) [REAL]
) [KEAL]

FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR

JOINT
JOINT
JOINT
JOINT
JOINT
JOINT
JOINT
JOINT
JOINT
JOINT
JOINT
JOINT
JOINT
JOINT
JOINT
JOINT
JOINT
JOINT
JOINT
JOINT

FOR
FOR
FOR
FOR
FOR
FOR
FOR
FOR

FOR

FOR
FOR
FOR
FOK
FOR
FOR
FOR
FOR
FOR
FOR
FOR

2
o
o

S 0 00 NO-WD o

11

o]
&

13
14
13
16
17
18
19

29

MEMBER
MENRER.
MEMEER
MEMEEK
MEHBER
MEMEER
MEMEER
MEMBER
MEMEER
MEMBEK
MEMEER
MEMBER
MEMEER
MEMEER
MENMRER
MEHEER
MEMBER
MEMEER
MEMEER
MEWEKER 29
' HEHBER 21

*

-DAT ( UPTO 13 CHARACTERS ) * CIRHULLWE.DAT

[ S A
s B =

0 00 NN BN —
SRR~ R A R~ R &) |

-—
—

[

— —
o d

03 N~ o~ A

QO SWWAA O TNl e — Gf = = — Gl

- - -

(N(’J(AL'»JOJQ-
~ 0 0

U~ G a1 i

38.7,31 .33 29
94.2,8.9,-33.99
38.7,3.8,-33.95
12.9,8.9,-33.95
2.9,9.9,-33,95
-12.9,0.9,-33.95
-38.7,8.9,-33.95
-61.6,8.9,-33.95
33.7 ,31 -‘\J,‘\JS 25
9.9,31.25,-33.95

-38.7,31.25,-33.95

(Contd. over ..



ENTER

X, Y AND Z COORDINATES (HMETRES) [REAL] FOR JOINT 21 * 33.7,31.25,9.9
ENTER X , Y AND Z COORDINATES (METRES) [REAL] FOR JOINT 22 % 12.9,31.25,9.9
ENTER X , Y AND Z COORDINATES (METKES) (REAL] FOR JOINT 23 * -12,9,31.25,9.9
ENTER X , Y AND Z COORDINATES (METRES) CREAL] FOR JOINT 24 = -38.7,31.25,9.9
ENTER JOINT NUMBER OF NODE 1 ON MEMEER 1 CINTEGER] # 1
ENTER JOINT NUMBER OF NODE 2 ON MEMEER 1 CINTEGERJI = 2
ENTER JOINT NUMBER OF NODE 3 ON MEMBER 1 CINTEGER] + 3
ENTER JOINT NUMBER OF NODE 4 ON MEMBER 1 [INTEGER] * 4
ENTER JOINT NUMBER OF NODE 5 ON MEMBER 1 CINTEGER] * S
ENTER JOINT NUMBER OF NODE & ON MEMEER 1 CINTEGER] * 4
ENTER JOINT NUMBER OF NODE 7 ON MEMEER 1 CINTEGER] * 7
ENTER JOINT NUMBER OF NODE 1 ON MEMEBEK 2 CINTEGER] #* 2
ENTER JOINT NUMBER OF NODE 2 ON MEMBER 2 [INTEGER] + 8
ENTER JOINT NUMBER OF NODE 1 ON MEMERER 3 [INTEGER] * 4
ENTER JOINT NUMBER OF NODE 2 ON MEMEER J LINTEGER] * 9
ENTER JOINT NUMBER OF NODE 1 ON MEMEBER 4 [INTEGER] * &
ENTER JOINT NUMBER OF NODE 2 ON MEMBER 4 CINTEGER] * 14
ENTER JOINT NUMEBER OF NODE 1 ON MEMEER 9 [INTEGER]I * 11
ENTER JOINT NUMBER OF NOIE 2 ON MEMBER 9 [INTEGER] * 12
ENTER JOINT NUMBER OF NODE 3 ON MEMEER 9 [INTEGER] * 13
ENTER JOINT NUMBER OF NOLE 4 ON MEMEER o [INTEGER] +* 14
ENTER JOINT NUMBER OF NODE S ON MEMEER 9 CINTEGER] # 15
ENTER JOINT NUMEER OF NODE & ON MEMBER 9 [INTEGER] * 16
ENTER JOINT NUMBER OF NODE 7 ON MEMEER 9 [INTEGER] = 17
ENTER JOINT NUMBER OF NODE 1 ON MEMBER & LINTEGER] # 12
ENTER JOINT NUMBER OF NODE 2 ON MEMEEK 6 CINTEGER] * 18
ENTER JOINT NUMBER OF NODE 1 ON MEMBEK 7 CINTEGER] * 14
ENTER JOINT NUMEBER OF NODE 2 ON MEMBER 7 UINTEGER] =* 19
ENTER JOINT NUMBER OF NODE 1 ON MEMEER 8 [INTEGER] * 14
ENTER JOINT NUMBER OF NODE 2 ON MEMBER 8 [INTEGER] % 24
ENTER JOINT NUMBER OF NODE 1 ON MEMERER 9 CINTEGER] % 2
ENTER JOINT NUMBER OF NODE 2 ON MEHWEBER 9 CINTEGER] = 21
ENTER JOINT NUMBER OF NODE 1 ON MEMBER 14 [INTEGER] # 3
ENTER JOINT NUMBER OF NODE 2 ON MEMBER 16 [INTEGER] * 22
ENTER JOINT NUMBER OF NODE 1 ON MEMERER 11 [INTEGER] % 9
ENTER JOINT NUMBER OF NODE 2 ON MEMBER 11 CINTEGER] * 23
ENTER JOINT NUMBER OF NODE 1 ON MEMBEER 12 C[INTEGER] * 6
ENTER JOINT NUMBER OF NODE 2 ON MEMBER 12 [INTEGER] * 24
ENTER JOINT NUMBER OF NODE 1 ON MEMBER 13 LINTEGER] #* 14
ENTER JOINT NUMBER OF NODE 2 ON MEMBER 13 UINTEGER] # 24
ENTER JOINT NUMEBEK OF NOIE 1 ON MEMEER 14 CINTEGER] « 15
ENTER JOINT NUMBER OF NODIE 2 ON MEMEER 14 [INTEGER]I * 23
ENTER JOINT NUMRER OF NODE 1 ON MEMBER 15 CINTEGERY % 13
FNTER JOINT NUMBER OF NODE 2 ON MEMBER 15 [INTEGER] # 22
ENTER JOINT NUMBER OF NODE 1 ON MEMBER 16 C[INTEGER] * 12
ENTER JOINT NUMBER OF NODE 2 ON MEMBER 16 [INTEGER] # 21
ENTER JOINT NUMBER OF NODE 1 ON MEMBER 17 CINTEGER] * 194
ENTER JOINT NUMBER OF NODE 2 ON MEMBER 17 CINTEGER] * 24

TABLE III. (Contd. over ...
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ENTER JOINT NUMBER OF NODE
ENTER JOINT NUMBER OF NODE
ENTER JOINT NUMEER OF NODE
ENTER JOINT NUMRBER OF NODE
ENTER JOINT NUMBER OF NODE
ENTER JOINT NUMBER OF NODE
ENTER JOINT NUMBER OF NODE
ENTER JOINT NUMEER OF NOLE
ENTER JOINT NUMBER OF NODE
ENTER JOINT NUMBER OF NODE
ENTER JOINT NUMBER OF NODE
ENTER JOINT NUMBER OF NODE ON MEMBER 21 [INTEGER] =
ENTER JOINT NUMBER OF NODE ON MEMBER 21 [INTEGERI] :
ENTER JOINT NUMBER OF NODE 4 ON MEMBER 21 [INTEGER] -
AT JOINT 1 , CONTINUOUS MEMBER : 8 INTERCOSTAL :
WHICH MEMBERS REQUIRE END CORKRECTIONS(YES: 1 , NO: @)
MEMBER 1 # 1

AT JOINT 2 , CONTINUQUS MEMEER : I INTERCOSTAL : 2
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: @)
MEMBER 2 % 1

MEMBER 9 * 1

AT JOINT 3 , CONTINUOUS MEMEER : ! INTERCOSTAL : 19,
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 8)
MEMBER 18 * 1

AT JOINT 4 , CONTINUOUS MEMEER : 1 INTERCOSTAL : 3,
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 8)
MEMBER 3 + 1

AT JOINT 5 , CONTINUOUS MEMEER : I INTERCOSTAL : 11,
WHICH MEMBERS REQUIRE END' CORRECTIONS(YES: 1 , NO: 9)
MEMBER 11 % 1

AT JOINT 6 , CONTINUOUS MEMEER : | INTERCOSTAL : 4,
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 4)
MEMEER 4 * 1

MEMBER 12 * 1

AT JOINT 7 , CONTINUOUS MEMBER : @ INTERCOSTAL : 1,
WHICH MEMBERS REQGUIRE ENI CORRECTIONS(YES: 1 , NO: @)
MEMBER 1 % 1

AT JOINT B , CONTINUOUS MEMBER : 8 INTERCOSTAL : 2,
WHICH WEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 9)
MEMBER 2 * @

MEMEER 18 * 4

MEMEER 19 = 4

AT JOINT 9 , CONTINUOUS MEMBER : 19 INTERCOSTAL : 3,
WHICH MEMEERS REQUIRE END CORRECTIONS(YES: 1t , NO: 6)
MEMBER 3 « @

AT JOINT 18 , CONTINUQUS MEMBER : 3 INTERCOSTAL : 4,
WHICH MEMKERS REGUIRE END CORRECTIONS(YES: t , nN0: 4)
MEMBER 4 % @

ON MEMEER 17 [INTEGER] #
ON HEMBER 18 LINTEGER] *
ON MEMBER 18 [INTEGER] *
ON MEMBER 18 [INTEGER]
ON MEMBER 19 [INTEGER]
ON MEMEER 19 [INTEGER]
ON MEMBER 19 LINTEGER] *
ON MEMBER 28 [INTEGER] *
ON MEMBER 28 CINTEGER] #
ON MEMBER 24 L[INTEGER]
ON MEMBER 21 [INTEGER]

r

*

F 3

1

A = Y~ 3 -G P)

TABLE III.
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MEMBER 17 + @

MEMBER “19 * 4

AT JOINT 11 , CONTINUOUS MEMEER : 4 INTERCOSTAL : 5,
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: @)
MEMBER 5 * 1 |

AT JOINT 12 , CONTINUOUS MEMBER : 5 INTERCOSTAL : 4,
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: )
MEMBER 6 * 1

MEMBER 16 * 1

AT JOINT 13 , CONTINUOUS MEMBER : S INTERCOSTAL : 15,
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: @)
MEMBER 15 * 1

AT JOINT 14 , CONTINUOUS MEMBER : 5 INTERCOSTAL : 7,
WHICH MEMBERS REQUIKE END CORRECTIONS(YES: 1 , HO: 4)
MEMBER 7 * 1

AT JOINT 15 , CONTINUQUS MEMBEK : 5 INTERCOSTAL : 14,
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 4)
MEMBER 14 * 1 |
AT JOINT 16 , CONTINUOUS MEMBER : 5 INTERCOSTAL : 8,
WHICH MEMBERS KEQUIRE END CORRECTIONS(YES: 1 , NO: 8)
MEMEER 8 # 1

MEMBER 13 + 1

AT JOINT 17 , CONTINUOUS MEMBER : @ INTERCOSTAL : 5,
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 4)
MEMBER 5 # 1

AT JOINT 18 , CONTINUOUS WEMBER : @ INTERCOSTAL : &,
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 4)
MEMEER & *

MEMEER 18 * 9

MEMBER 28 + ¢

AT JOINT 19 , CONTINUOUS WEMBER : 28 INTERCOSTAL : 7,
WHICH MEMBERS REQUIKE END CORRECTIONS(YES: 1 , NO: )
MEMBER 7 % 2 |

AT JOINT 24 , CONTINUOUS MEMBER : @ INTERCOSTAL : 8,
WHICH MEMBERS KEQUIRE END CORRECTIONS(YES: 1 , NO: 8)
MEMBER 8 # &

MEMBER 17 % ¢

MEMBER 28 # §

AT JOINT 21 , CONTINUOUS MEMBER : 18 INTERCOSTAL : 9,
WHICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 8)
MEMBER 9 + 2

MEMBER 16 % &

MEMBER 21 * ¢

AT JOINT 22 , CONTINUOUS MEMBER : 21 INTERCOSTAL : 14,
WHICH MEMBERS REQUIKE END CORRECTIONS(YES: 1 , NO: #)
MEMBER 18 + 3.9

MEMBER 195 + 6.9

AT JOINT 23 , CONTINUOUS MEMBER : 21 INTERCOSTAL : 11,

L]

TABLE III.
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HICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NO: 4)
ENBER 11 = 4.9

EMBER 14 * 4.9

T JOINT 24 , CONTINUES MEMBER : 17 INTERCOSTAL : 12, 13, 21,
HICH MEMBERS REQUIRE END CORRECTIONS(YES: 1 , NG: 9)
EMBER 12 = 4.9

EMBER 13 + 4.4

EMBER 21 % 4.9

RAPHICAL DISPLAY 7 (Y/N) : Y

ANE FOR NODE FILENAME : CIRHULLN.DAT

AME FOR MEMBER FILENAME : CIRHULLM.DAT

T4 -~ STOP

TABLE III.
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SUMmMaE T OF DATa Fide STEGCTIEE o O ERep e eE, AT

MEMEBER DATA

MEMEER NUMEER START JOINT END JOINT &) OF JUINTS FAD TLY LENGBTH

1 1 7 7 5. 350 115, 206
2 2 & 2 _ } 4. 106 31, 250
3 4 9 2 | 4,180 31,250
4 6 1@ o . | 4. 108 31, 256

11 17

&

~N
0

. 4715 115, 200

b 12 18 2 4. 160 31,250

~N

14 187 2 4. 199 1,254
2] 16 20 2 4. 160 31, 25e

K

e
ro
-
I
.F

£506) A6, 143
16 ' 3 2 2 1. 560 44,143
11 5 23 2 1. %09 48,143
15 6 24 2 1. 560 46, 143
13 16 24 2 1. 560 44,143
14 15 23 @ 1. 500 46,143
15 13 22 2 1. 590 4o, 152
16 12 1 2 1. 5060 46, 14X
17 19 20 3 4, 900 &7 P00
16 & 16 3 4. Dpe &7 . Yol
19 8 ' 19 3 4., B0V 77,490
20 16 20 3 4, Ben 77, 406
3] 21 24 4 4., 99 7. am

TABLE IV. (Contd. over ...)
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UN DH4:[4,1] BONES
PE  FOR SCREEN, 1 FOR PLOTTER : 1

TER NOUE FILE NAME : CIRHULLN.DAT

TER MEMBER DATA FILE : CIRHULLN.DAT

TER VIEWING COORDINATES (X,Y,2) : 1.4,2.4,1.8
0T = 1 PLOTTER SELECTED

BEL NODES 7 (Y/N) : Y

IARACTER SIZE : 4.5

IOTHER VIEWPOINT 7 Y |

ITER VIEWING COORDINATES (X,Y,Z) : =1.9,2.9,1.0
0T = 1 PLOTTER SELECTED

\BEL NODES 7 (Y/N) : Y

{ARACTER SIZE : 8.5

{OTHER VIEWPOINT ? N

6 -- STOP

TABLE V.

'‘RUN WAVLOA

NTER STRUCTURE NANE .DAT *% CIRHULLWR,DAT
NTER ANGLE OF ORIENTATION (DEGREES) AND DRAFT (M) -
NTER WAVE FREQUENCY (HZ) AND WAVE AMPLITUDE (M) #
T6 =-- STOP

RUN WAVLOA

NTER STRUCTURE NAME .DAT * CIRHULLWB.DAT

NTER ANGLE OF ORIENTATION (DEGREES) AND DRAFT (M)
NTER WAVE FREQUENCY (HZ) AND WAVE AMPLITUDE (M) *
T6 -- S8T0P

RUN WAVLODA

NTER STRUCTURE NAME .DAT * CIRHULLUB.DAT

NTER ANGLE OF ORIENTATION (DEGREES) AND DRAFT (M)
NTER WAVE FREQUENCY (HZ) AND WAVE AMPLITUDE (M) »
16 -- STOP

TABLE VI,
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For member I the following direction cosines can be written for
the angles between structural reference system's axes and the individual

reference system's axes from the output shown in Table VII.

@,,: The Cosine of the angle between X and u = -1 - A, = 180°
a,,: The Cosine of the angle between X and v = 0 - A, =90°
O, The Cosine of the angle between X and w = 0 - A, = 90°
Oy, The Cosine of the angle between Y and u = 0 - A,, = 90°
a,,: The Cosine of the angle between‘Y and v. = 0 ~> A,, = 90°
Q,5: The Cosine of the angle between Y andw = 1 > A,, = 0Q°
ST The Cosine of the angle between Z and u = 0 - A ;, = 90°
a32: The Cosine of the angle between Z and v = 1 - A32 = Q°
a33: The Cosine of the angle between 2 and w = 0 - A33 = 90°

Since all the angles between the structure and the individual
reference systems' axes are known the individual member reference

system can be drawn using this information. (See Fig. 13.)

The same procedure can be repeated to find all individual reference
systems' axes. Some of the members' reference systems are shown in

Fig. 13.

In Fig. 14 the distribution of wave loading on the nodal points
throughout the structure is presented. Figs 15 - 20 show the principal
forces and moments on the structure in the frequency domain for differ-

ent wave headings.
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DEAFT

WAVE LENGTH 243,955 (M)

HTRUCTURE CIRHULLWE, DAT

21,386 (1)

WAVE FREQUENCY

ANGLE OF ORIENTATION

W, 8u8 (HZ)

TABLE VII.

4%, bl (DEGREES )

WAVE amFL I TuDE

4. 098 (M)

(Contd. over ...)
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MEMEER MNO

1

DISTRIBUTION OF LATERAL LDADS ALONG THE 1) AXIS

NODE NO

-
>

M

-y

-y

(LRSI

Y
o

AaxIialL DIST
FIRST JOINT
CMET

9.

v,
19
28,
343,
a8,
S57.
b7.
76.
86,
V6.
1 . 165,
13 115,

b
S CENPUDEN-

-

P s

TMIAL MEMEER FORCE!:
TOTAL. MEMBER MOMENT:
CABOUT FIRST JOINT ON MEMEER)

FOR INTERSECTING mMEMEERS

0 INTERSECTING mMEME

U ———— T R Y| 4

9
19
11

12

TOTAL MEMEER COK., FORCE:
TOTAL MEMEER COR., MOMENT:
CABOLET Fl 1RGT JOINT OF MEMEER )

MIEMETR L)) DISTELED O IDES

ANCE FRUOM

0N MEMEER

RES)

)
600
2199
800
449
31417
A0
200
8094
400
51%]7]
600
209

¢ AXIAL DIST FROM START
TO START (
FT OF LOADING (M) T

M MEE R

11,499
50, 100
8. 399
14, 666
39. 3990
65, LB
21, 499

YV DIRECTION

LG
CKN/M)
=45, 591
b, 8014

~7.176
127, 836
32,585
1, 44948
68,7846
03, vy
P6H, 543
10%., Y61
111,994
114,149y
112,840

6L, 583

. S67063,81°2

R
19,
S,
4
17,
4.2,
&8,
P,

TABLE VII.

END FT OO LOAD ING

M)

H
300

. )

e@e
a1l 15}
&G0
461

U DIRFLCT NN

1..0aD
CRN/M)

9. 9
¢, 060
9. ¥
b, 327
~63. 679
~47
)

~HY3, 203

Ti/7T= .04

U DIRECT [UN
L.Oah
CRN/HM)
=149, 3
~158. 054
=~1é61. 420
~1GY.742
~153. 7467
=143, 613
=139, 473
B 0 B Y
=, 478
=&, G

=12, 637
15. 738

=1 2458, 317

DANERA, P4

W DIRESTLON
1..0AD
CRN/M)

SO TV A

58, 617
ax, oy
19, B9

SO, AT

20597%5,187
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AXIAL FORCE

AXIAL FORCE

MEMBETR Nt

NUDF NU

LDRR!:.I TLONS

e aows siow smne somy boce suss sone wmme maws avke e bass

JOINI Nt

AT END 1 () DIRECTION) 2876, 7A5CEN)

AT END 2 <) DIRECTION) HI2, 4720 KN)

=)
S

(DA RRRN G fl WELON O Lo

Paval, LD allidis THE 1) axdy

AXTAL DISTANCE FROM

FLIRST
(METRES)

1 9. 3..:9
2 13X, 325
3 21,309

TOTAL MEMEER FORCE:
TOTAL MEMEBEER MOMENT!
CAROUT FIRST JOINT ON MEMEER)

¥ l)l\ JN!E'h EL T[Nl-) MEMEERS
INTER LLI |Nl-) MF Mr AN AX Ial. DIST FROM

s o e s s T CIFE MEMEER T0

I" T 0r ! l)ﬁl)[Nl)

TAOTAL MEMBER COR. FORCE:
TOTAL MEMEER COR. MOMENT:
CABOUT FIRST JOINT OF MEMEBER)

JOLNT O MEMEET

STaRT
START

(. N ) amt sase sees auen sunm sran amas teas sane mres ore

TABLE VII.

END FT

V DIRECTLON
L.OAD
CRN/M)
-11. l)";’l
-1%,.713
=271 . 48y

-GN, 967
~3o6e, 243

OF LOaD INe U DIRECTION
(M) L.OaD

1. B\

W DIRECTION
LOAD
CHKN/M)
|1 He ;4
213
..‘1 . A4y

209, v a6u
Jad, 247

W DIRESTOM
L.O
CRM/M)

1), )
@, (e



MEMEER NO 3

DISTRIBUT[ON OF LATERAL

LDADS ALIDNG THE U axis

SN -

TOTAL MEMEER
TOTAL. MEMBER
(AEOUT FIRST

CORRECTIONS FOR INTERSEC

JOINT NO

FoTAL MEMEBER
T0TAL MEMEER
CABEOUT FIRST

= €91 -

mEMEER NGO 4

TOTAL MEMEBER
TOTAL MEMEBER
CABOUT FIRST

G '"\ht [ r[nN‘) Fl)h

INTERS

JIHNT M)

TOTAL MEMEER
T07AL MEMBER
CABOQUT FIRST

AL LU tbadens CHn

3 n,rIN'n MEM

AXTIAL DISTANCE FROM

FIKST JOINT ON MEMBER

( MF TN: S)

5. 350
13,325
21, 3009

FORCE:?

MOMENT !
JOINT ON MEMEER)

TING MEMBERS

lN TI'FSL(.. T [NL-» MEMEE

U AXTAL DIST FROM
FToOF MEMEER T0

START
HTART

V DIRECY LN
LOAD
CRN/ZMD)

59, 6\:3

797 .036
110189.478

EMD FT 0F LO0AD ING

(M)

COR. FORLCE:
COR., MOMENT:
JOINT OF  WEMERER )

poaxEn

AXTAL DISTAMIE FRDMm
FIRST ]UJNI O MEMEET
RIZS

13,325
21, 300

FORCE:
MOMENT

JOINT QN MEMEER )

[N TF-"F‘"SFC rr NU MEMI-‘-‘FE’.F\‘ES

¢ AxIal DIST FROM
FT OF MEMEER T0
F r l]l

STarRT
STOHRT

VODTRES T TN
LOND
CKMN/M)
7'| 1W) 3
v1.161
111.819

1464,117
20394, 495

EMD FTOOF LUAD INS

(M)

COR. FORCE:
COR. MOMENT:
JOINT OF MEMEER)

TABLE VIT.

W DEIRECTE LN
LOND
CREH )
~ey 258
-4, 728
"'J? 453

~797 ., Q36
-11010, 489

UV DIRECTION W DIRECTION
L.OAD L.OAD
CKN/M) CFNSMD)

(SIS IN ]G
@ . Gt

2. 9993
. Qo

WoDLRCCT N
1Ok
CRN/AMD
{7 N 3
“]. 16l
ol U W & 5

=164,
- 20304,

118
717

W ODLEEST NN
[MW=18) 1 Gy
CRMN/MD CRKM/M)

U DIRECTLOM

), 39 . )
@, (0a (1, (e
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MEMEER NO 16

DISTRIEUTION OUF LATERAL LOADS ALUNG THE U AXIS

NODE NO

~r

-

TOTAL MEMEEFR FORCE:
TOTAL MEMEER MOMENT:
CABEOUT FIRST JOINT ON MEMEER)

CORRECTIONS FOR IMTERSECTING MEMEBERS

JOINT NO

INTERSECTING MEMEER AaxIal
e s s s s e s s [T O ME MEER
T OOF LDADIMS (M)

TOTAL MEMEBER COR. FORCE!
TOTAL MEMEER COR. MOMENT!
CABOUT FIRST JOINT OF MEMBER)

GumMmaly OF ToTal FORCES A MOMENTS

ek e AaROuT stk i OF

TOTAL SURBE FORCE=
TOVAL HEAVE FORCE=
TOTAL SWAY FORCE =
TOTAL ROLL MOMENT=

TOTAL YAW MOMENT=
107AL FITCH MOMENT=

THI

269,934
-16138, 583
~ 325,922
~91%@, 138
161979.125
76615, 508

AXTIAL OISTANCE
FIRST JOINT ON MEMEER
(METRES )

5.358
18. 484
31.451

DN THE  STRUCHURE

STRLCTURY BEF. Oy OTEMD

CKN)
(KN
(RN
(KN. M)
(RN, M)
(KN. M)

FROM

DIHT FROM 3
TO

V DIRECTION
1.0AD
C(KN/MD)

[ Y

11,469
13.7°48

A\, 3548
5787.974

END BT 0OF LOAD ING
(M) 1.0AD
e e s et s e e (KN/M)

0. N4
@, 06a

CT171= @,06)

TABLE VII.

V DIRECTION

W DIRECTION

L.0ONAD

(KRN/M)

5. 549
C, AR

4. 637

137.278
2474, 248

W DIRECTION
1Ok
(KN/M)

9. K
(. (e
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B LDAD DESTRIEUT EONS PlsT= 1), 29

MEMEER NO 1

DISTRIEBUTIUN OF LATERAL LOADS ALUNG THE 4 AXI[S

NODE NO AXIAL DISTANCE FROM UV DIRECT LON W DIRECTION
e e FIRST JOINT ON MEMEER L.0OAD L.OAD
(METRES ) CHN/MD) CKN/MD)

1 9. NIY 1895, 8413 —Hb, BT

2 9, 406 111,639 @, 73

3 19. 200 114.143 ~13.8374

q 26, GO¢ 112,985 15, 269

5 36, 4849 198.512 43, 464

6 4¢3, Ao 101 . 165 780,516

7 57 . 6890 9,733 9. 519

8 67 . 200 77.758 117, B3

@ 76. 1391 H2. 457 135.756

. 10 6. 406 Q5,220 149,474

11 P4, A3 26.516 158, 150

12 : 105, 600 6,867 161,430

13 115,200 -13, 149 159, 6131

TOTAL MEMEER FORCE: 8704, 139 Y@aq, L7 1
TOTAL MEMEER MOMENT! 359924, 931 7954607 . 501
C(ABOUT FIRST JOINT ON MEMEER)

CORRECTLONS FOR INTERSECTING MEMEERS
JOINT NO INTERSECTING MEMEER axIAL DIST FROM START  END FT OF LOAD NG V DIRECTION W DIRECTION
- - e BT OF MEMEER TO STAKT (M) LOAD LUAD
FT OF LOADING (M) e o o CKN/M) CKN/M)

2, 11,409 19, 6000 0. 99 . HPY)
3 S50, 100 5. 306 a. pon L 262
q as, 3909 ?7 .10 (% 5 151%) 91976
9@ 14, 008 17. 060 6%, 068 LY. 693
19 3?. 309 - 42,8949 k3 378 N2 Vg
13 65. 600 4. 600 ~4b, 169 42,497
12 1. 499 gd. 409 =19, 952 18, 346

ML DS

TOTAL MﬁMBER COr. FORCE:! -Gk, 7611 a474au, L2y
TOTAL MEMEER COR. MOMENT: -~ 25608 . 9497 186254, 8375
CAHOUT FIRST JOINT OF MEMEER)

AXIAal. FORCE AT END 1 (U DIRECTION) J44., 5270k

Aaxial. FORCE AT END 2 (U DIRECTION) A74. 934 KM )

TABLE VII,
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ME MESEF: (210 B4

AR TR HfIUN WY LATERAEL LADS AL (-7 1) ax s

HIJI)F' NL) AXIAI [‘I“)H\Nl £ FRM
FIKST JOINT ON MEMEER
CMETRES)
9. 350
13,325
21,389

[ A

1076l MEMEER FORCE:
TOTAL MEMEBER MOMENT:
CABOUT FIRST JUINT ON MEMEER)

CORRECTIONS FOR [N.TERSECTINI_-‘; MEMIEE:ERS

JOINT NO

i BTOF MEMEER TO START

FT OF LOADENG (M)

TOTAL. MEMEER COR. FORCE:!
TOTAL MEMEBER COR, MOMENT:
CAEDUT .FIRST JOINT OF MEMEER)

MEMF.-!ER NO 3

I‘%"\IHH lﬂN OF LATERAL LDADS aAlLONG THE 1) AXIS

NUDE NO) AXIAI DISTANCE FROM
e ———— FIRGT JOINT O MEMEER
(METRES )

IN TFR SEL T INl-r Ml— MI“ ER axIal OIST FROM START

5. 350
13,325
21. 309

Y DIRECTINN
. L.OAD
( KN/M )
76,4631
Y4, Gy
115,531

1511, 338
209463, 2v1

END FT OF  LOAD TG
(M) | RU=1))

v, gl
6. 00a

VoD IREC T LON
1.0AD
CRN/M)

4)4. ‘IIB._’)
79,562
73,41y

V DIRECTTON

TOTAL FORCE: 1278, 842
TOTAL MEMEBER MOMENT!: 17761721
CABOUT F1RST JOINT ON MEMEER)

CORRECTIONS FOR [N TERSECT .[Nlii MEMEZFRS
JOTINT Nrf) INTERSECTING mMEMEER Ax LAl DIST FROm START END FUDF LOaD [iig U DIRECTION
U SIS SYSI S —————— <t T | R 1 TR S WIS Y R | (M) ..Aan
FT l."‘— I ”An ING (M) Lert cena waas v o e e s s Shen e e sras  ane annn Sase (KM/M)

TOTAL. MEMBER COR., FORCE! 6. O
TOTAL MEMEER COR. MOMENT: @, Hen
CABOUT FIRST JOINT OF MEMEEFR )

TABLE VII.

$

W DIRECTION
L.OAD
CHEN/M)
= 7. H30
-4, Ay
-11%, 531

~1511, 346
20763, 314

W DIRESTLOM
1..0AD
CRNsM)

€. i)
@, gan

W DIRECTION
L.
CRNAM )

- ()’l.
-2,

|r\).) .

=178,
«~17761.

4 l') 5
T

A1y

G449
744

W DIRECTLON

[AT218)

C(KN/M)

2 1519)
(A K]
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SUmMmSHT OF TOTAL FURCES AND MOMENTS ON THE STRUCTURE

il TG ARGUT W1 EY0 OF

TOTAL SURGE FORCE=
TO0TAL HEAVE FORCE=
TOTAL SWAY FORCE =
TOTAL ROLL MOMENT =
TOTAL YAW MOMENT=
TOTAL FITCH MUOMENT=

T ST

~71895, Y462
¥744,171
25581, 559
—-S23004, 375
~1481197. 43533
~34419%, 219

B REF, SYSTLee

(RN
(KN
(KN
(KN, )
(KN, M)
(KN, M)

SUMMARY 1OF MAXIMUM FORCES AND MOMENTS DN THE S TRUCTURE

MAaX., SURBE FORCE=
MAX. HEAVE FURCE=
MAX., SWAY FORCE =
MAX, ROLL MOMENT=

MAX. YAL MOMENT=
MmAax., FITCH MOMENT=

197,937
18645, 279
25593, 641

523004, 406
219421.719Y
450751, 219

CRND)
(KN)
C(KN)
(KN. M)
(KN, M)
(KN.M)

TABLE VII.

(T1/7T= @,25)



Chapter 4: MOTION RESPONSE OF FLOATING

OFFSHORE = PLATFORMS UNDER WAVE

EXCITATION
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INTRODUCTION

In this chapter, the hydrodynamic loéding due to the motion of
floating structures which are composed of circular cylinders, the
structural loading due to the acceleration and the velocity of the
structure, and the restoring forces and moments will be discussed.

The motion equations will be obtained by combining the wave and hydro-
dynamic loading with the restoring forces using Newton's second law.
The effect of the free surface and that of the interference between
closely spaced circular members on hydrodynamic coefficients are also

discussed.

1. HYDRODYNAMIC LOADING DUE TO RIGID BODY MOTION CF FLOATING
STRUCTURES

The wave excitation on floating stable platforms will result in
small amplitude rigid body motions which can be resolved into heave,
surge, sway, roll, pitch and yaw. In this section the calculation
procedure will be presented to determine the hydrodynamic loading and

the resulting motions of such structures.

When we consider a rigid body oscillating arbitrarily in an
unbounded fluid the forces and the moments acting on this body can be

written as follows. (Fig. 1.)

F=-p=[[0onas (1)
M
> ol > >
M=-paff®(r"n) as (2)
s
M
6 -iwt
where $(X,Y,2,t) =R [ ) X, ¢,(X,Y,2)e" ]
eyl 373
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J

[UNBOUNDED ZLUI

L

Fig. 1.

Here ¢j(X,Y,Z) represents the velocity potential of a rigid body
motion with unit amplitude and ¢(X,Y¥,Z,t) should satisfy the

appropriate boundary conditions on the surface of a body. That is,

¥ 3.3 4+8 (3)
on

Since U, = Re[—iwxjélwt] j=1,2, ... 6, ¢ can satisfy the boundary
condition given in equation (3) provided that ¢j satisfies the follow-

ing conditions:

—L= - iun, j=1,2,3 (4)
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00 .
—L = - i@,

3n 5-3 =4.5,6 (5)

Equations (1) and (2) can also be written in the following form:

> d 6 -iwt, -
F=-pRelz ( Y [ x.¢. ey nas)] (6)
: 13
j=1 s
M
or
> 3 -iwt, >
F = p Rel Z ff (lwX.9. e ) nds] (6=3)
j=1 §, )
Similarly,

6 .
M=pRel ¥ [f (iux élwt)(zAK)j

j=4 s

j « ] ( )
M

If we replace r with r' by assuming that the centre of rotation
coincides with the centre of the space fixed reference system,

equation (7) becomes:

M=prel | ff (iuxs, e ' am .

5-3 ds] (7-3)

Equations (6-A) and (7-A) can be combined, using the boundary

conditions given in (4) and (5), in the following equation:

F = - Re[ Ezs ff.mq)x éiwt
i P . on "]
j=1 SM

ds] i=1,2, ... 6 (8)

By analogy to Newton's second law, equation (8) can be expressed

in the following form:

F. = Re[ J (c..X, a™¥%] i=1,2, ... 6 (9)
PR S B
j=1
8¢i
where Ci' = -0 gf . ¢j as

- 168 -



Initially it is assumed that the body is arbitrarily oscillating

in an unbounded fluid, in which case C. ., becomes:
1]

C., m, B w? - |
ij = 1ij - (10)

and equation (9) becomes:

6 .
F, = -Rel )} (m . w?x, a®%] i=1,2, ... 6 (11)
i = ij 3
j=1
or
6
F, =- ) m,, U, i=1,2, ... 6 (11-A)
1 . 13 3
j=1
The hydrodynamic forces due to the motionstof a circular
cylinder are shown with the following matrix. (Fig. 2.)

Unbounded Fluid

Fig. 2.
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- - . \
F1 0.424pTR k11 0 0
F, 0 OTR2L 0
F, 0 0 PTR%L
Fu 0 0 0
+£/2
F, 0 0 pmR?[xdx
-L/2
+£/2
F, 0 pTR? [xdx 0
-L/2

0 0
+£/2
0  pmR?*[xax
-2/2
+£/2
pTR? [xdx 0
-£/2
0 0
+£/2.
pmR? [x%2ax 0
-2/2
+£/2
0  pmrR?[x%dx
-£/2 4L

(12)

where k,, is the added mass coefficient for a rectangular strip,

F.: Surge Force, F_,: Heave Force, F

2

: Yaw Moment, FG: Pitch Moment.

x Sway Force, Fu

: Roll Moment,

m,, matrix is assembled according to the geometry of the circular

cylinder, and mi'=mji because of the symmetry of the circular

cylinder geometry with respect to X,Y,Z axes.

When we consider a body oscillating in or near the free surface

That 1is,

Cij becomes complex as a result of the free surface.
c.. =w? a,. - iuwb (13)
1] 1] 1]
and equation (9) becomes,
6 -iwt
F. = Re| z (w? a,, - iwb,.) X, e ] (14)
i , ij i
j=1
or
6 *
F, =- ) (a,. U, +b,. U,) (14-2)
i . 1] 3] i3]
j=1
- 170 -
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The added mass tensor mij in the unbounded fluid differs from the
added mass tensor aij in the fluid domain with a free surface. Since
elements of the bij tensor give forces proportinal to.the body velocity
they are called damping coefficients. aij and bij tensors can be
obtained by determining the ¢j(x,Y,Z) velocity potential. It can
easily be shown that the aij and bij values are frequency dependent.

As stated in Section 1 of Chapter 2 ¢j should satisfy Laplace's

equation (2.9), the free surface equation (2.11), the radiation condit-

ion (2.12) and the kinematic boundary conditions (4) and (5).

If we write the linear free surface boundary conditions as w0

and w?*» the following conditions are obtained:

00 .
'é?l =0 on y=0 for >0 (15)
¢j =0 on y=0 for W

Equations (15) and (16) show that ¢j will be frequency dependent
hence the Cij values will also be dependent on the frequency.
Theoretical and experimental investigations were carried out by
several authors [1-5] for the determination of hydrodynamic coeffic-
ients of swaying, heaving and rolling cylinders in a free surface.
These investigations show that as oscillation frequencies approach
zero aij values in surge, sway and yaw modes approach the correspond-
ing mij values in an unbounded fluid. On the other hand as oscillat-
ion frequencies approach infinity aij values in heave, roll and pitch
modes approach corresponding mij values in an unbounded fluid. The
elements of the damping tensor approach zero as oscillation frequencies
approach either zero or infinity. Similarly, as the depth of an
oscillating body below the free surface increases, aij values for all

modes approach the corresponding mij values in an unbounded fluid.
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Since the principal parts of all members of offshore structures are
deeply submerged in their operational ﬁode,the unbounded added-mass tensor
will be used to calculate the hydrodynamic forces on floating offshore
structures. However, in Section 3 a simple approach will be given to
take into account the free surface effect in added-mass calculations

for circular cylinders oscillating close to the free surface.

2. DERIVATICN OF A GENERAL METHOD TO CALCULATE HYDRODYNAMIC LOADING
ON THE CIRCULAR CYLINDRICAL MEMBERS OF OFFSHORE STRUCTURES

In order to determine the hydrodynamic loading due to the rigid
body motion of the floating platform, the hydrodynamic loading on each
individual member will be estimated in terms of the velocities and
accelerations of the structure in its translational and rotational
modes. The total hydrodynamic loading will be obtained by summing
these forces along the principal axes of the structure reference
system (X,Y,2). The velocities and the accelerations of the structure
can be determined from the sclutions of the motion equations which

will be discussed in Section 7.

If we choose the origin of the structure reference system to be
at the centre of rotation which is generally assumed to be the centre
of gravity of the floating platform, the translational velocity and
acceleration of any point on an individual member can be defined in
terms of the structure's velocities and accelerations in translational

and in rotational modes as follows (see Fig. 3).

The velocity and the acceleration of a point on an individual

member in this member's reference system will be:

- > > > -> > > ->
U = US + US ~ R = US + US ~ (r + AC) (17)
M'T’S [T IR IT IR
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Us = Yaw Velocity A

(s)
' N
Us'(s).'—'\{aw ACCC‘.CI’C(%)OI’?

Ul‘ Heave VG[OCI{y Uq() = Roll Vc’[OC/JCj

(9 1
U, = Heave Acceleration 6
z(i) ca n &

-

[~
{

Ub Pl{clw Veloc:i'j U,-Surje Velo«:t{y
( S)
Z
' U3" Swaj Ve(oa{:u
USE SWOJ Acceleration
(s)
Fig. 3.
M’T,S S'T S'R SIR SIR
or
é —[% +-6 [G (++A_E)]+I.J (++Z;.>C)
- ~ ~ (x ~ (7
Mro,s Sy SR S'r Sip
(18-Aa)
> > >
where US =U i+0, 3+ u, v
T (s) (S) (s)
g u i+u I +u x
= i+ 3
SIR '-G(S) S(S) s(s)
5 e , . R
US, =U i+ U2 j + U3 k
T (S) (S) (S)
P
Uug, =U i+U j +U X
‘R (S) (S) (s)
- 173 -
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-> > -> ->
AC = u(alll +0,,] +a,, k)

aij: Transformation matrix for the (X,Y,2) and (u,v,w) systems.

The second term in equations (18) and (18-A) can be omitted since the
rigid body motion of the floating structure will be of a small ampli-

tude.

The equations (17), (18) and (18-A) written in the member
reference system are along lines parallel to the structure's reference
system. These velocity and acceleration vectors can also be written
with reference to lines parallel to the member reference system's axes

using the following transformation matrix:

> T >
Uy = [T] Uy (19)
T,M 'r,s
5 T3
9] : [T] UM (20)
T,M 'T,s
where
PP PP Qs
T
[T]" = Ja,, Gy, Oy,
%3 %3 a33
L. -
3 > 3 |
The UM ’ UM p UM , U , vectors can also be written
'T,S '?,S ‘T,M ‘T7,M

explicitly with reference to the chosen axes system of a member, the
rigid'body velocities of the structure and the member co-ordinate u

as follows:

> >
UM, = [U1 +U, (2, +uo ) - U, (Y + ualz)] i
T,S
e
+ [U2 + U6 (X1 + uall) - U, (Z1 + ua13)] 3 (21)
>
+ [U3 +U, (Y, + ua,,) - U (X, + ua11)] k
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_ [ ] * L] —.)-
U = [0, +U; (2, +ua ) - Ug (¥, +ua )] 1

] ] * -
+ [0, + Ug (X, + ua,,) - U, (2, + ua, )] J (22)

. . . ->
+ + -
[U3 Uu (Y1 + ualz) U5 (X1 + uall)] k

> - - >
UM = A(u) e, + B (u) e, + C(u) e, (23)
’
T, M
where
A(u) = Al(u)a11 + Bl(u)a21 + c1(u)a31
B(u) = Al(u)oc12 + Bl(u)OL22 + Cl(u)oc32
C(u) = Al(u)oc13 + Bl(u)OL23 + C1(u)OL33
and,
Al (u) = U1 + U5 (Z1 + uala) - U6 (Y1 + ualz)
Bl(u) = U2 + U6 (x1 + uall) - Uu (zi + uala)
Cl(u) = U3 + U“ (Y1 + ualz) - Us (X1 + uall)
Similarly,
:) . ] . >
UM, = A(u) e, + B (u) e, + C(u) e, (24)
T,M
where
A(u) = Ai(u)a11 + Bl(u)a21 + Cl(u)oc31
B(u) = Al(wa,, + Bl(wa,, + Cla,,
C(u) = Al(u)or.13 + Bl(u)a23 + Cl(u)OL33
and,
Al(u) = U, + U, (2, +ua,,) - U, (Y, + ua,,)
Bl (u) = u, + U, (x1 + uall) - U, (z1 + uala)
él(u) = U, +U, (Y1 + ualz) - 65 (x1 + uall)

The total hydrodynamic loads and moments on an individual member

can be written in this member's reference system as follows:
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->

> .
F, = {[la,,A(0) + b ,AM] _ L1=1,'} e,

i'M + [allé(u) + bllA(u)]

0

£ . N
+ u£0 (azzB(u) + bzzB(u)) du e, (25)

£
. >
+
u£0 (a, C(w) +b_c(w) due,

> _ £ > . B >
M, = [ [e; ~ [(a,,B(u) +Db,,B(w) e, -
M u=0
(26)
+ (asaé(u) + b, .C(a)) 33] udu

The first component of the force vector given in equation (25) is
to be determined according to the cylindrical members' exposed ends to
the wave loading, i.e. if the member is inter-costal this component

will vanish.

The moment due to hydrodynamic loading about the origin of the

structure's reference system can be written as follows:

> >
M, = M, + rAF (27)
i,g

The total hydrodynamic forces and moments are calculated to obtain

the principal components as follows:

- - - -
F=- (ai + bj + ck)
¥ ¥ ¥ (28)
(surge force) (heave force) (sway force)
> - -> ->
M= - (di ej fk)
¥ ¥ ¥ (28-a)
(roll moment) (yaw moment) (pitch moment)
where
m
a= ) lo, F, ta,F, ta  F ]
i=1 i(m) i (m) i(m)
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i=t 2V i) 22244 (m) 23 344 (m)
Iil
c = [ F + Q + 0 F ]
i=1 31 l'i(m) 32 2, (m) 33 3'1(111)
F, = la A + b a@] o+ la AW +b aw]l__,
i(m)
/e [ ]
F, = [ (a,,B(u) + b,,B(u)) du
i(m)  u=0
E L ]
F, = | (a,,C(u) + b, ,Clu)) du
"1 (m) u=

Using equations (26) and (27) the principal components of the

hydrodynamic moment vector can be written as follows:

m L L
a= 7 la, My, SO, My o+ ¥ -2Z)b]
i=1 i (m) i(m)
m 1 ]
e = 2 [o,, le- -a, Ms,_ +2za, - chi]
i= i(m) i(m)
m ) ]
£= ) la,, M, -a,, M +Xb, -Yal
i=1 i (m) i(m)
where
1
a. =qo,, F + F +qa,, F
11 12 13 .
+ *1 (m) ’{ (m) ’1 (m)
1
b, = a F + F + Q F
21 22 T2 23 ~ 3
+ "i (m) "i(m) "i (m)
c, =0 F + a F +a,.. F
31 32 T2 33 .
+ "1 (m) "i(m) i (m)
K L ]
M . = [ (a22B(u) + bzzB(u)) udu
i(m) u=0
Z [ )
M , = f (a33C(u) + b33C(u)) udu
i(m) u=90
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The general method derived above can also be summarised with

matrix notations which may be found suitable for the numerical applic-

ations.

(F]

where

[F]

[T]

The hydrodynamic force can be written as,

= - {[T] ([aM] [aT] [a1F] [O] + [DM] [aT] [a1F] [U]) } (29)
-Fl_
= F2
F3
R-J"ll C"12 0.13 -all 0 O-
= 1% PP Q3 [aM] = | 0 252 0
LD REP) asi 0 0 233l

a,, in [AM] matrix will be determined according to both ends of the

cylindrical member, i.e. if the member is inter-costal a takes the

11

negative sign

Where Ql

r ’ R
%1 % %1 9 %3; 9
%15 9 % 9 %35 2

%13 % %3 9 %33 9 |

and Q2 are the operators according to which AlF matrix -

will be calculated.

A. When Ql is in use AlF matrix takes the following forms:
(a) Both ends of the member are submerged
- 1
2 O o 0 (221-+£al3) —(2Yl-+£a12)
[AlF]Q = {0 2 o) —(2zl-+2a13) o) (2xl-+2all)
. 0 o) 2 | (2Yl+2a12) —(2Xl+2all) o)



(b)
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The end of the member is submerged where U = O

1l O 0] 0] Z -
1 Yl
AlF] = o) 1 0 -Z 0
[ 9 1 Xy
0] 1 Y + - (X +
_-O ( 1 2&12) (Xl Rall) 0
(c) One end of the member is submerged where U = 4
1 0 0 0 (Z. + 2. ) ~(Y_ + % )]
1 13 1 12
AlF] = o} 1 0 - + 2 - X. +2
(Al 9 (Z) + o)) © T AYy)
Y + -(X_ +
0 0 1 (l lalz) (l Rall)
B. When Q2 is in use [AlF] matrix takes the following form:
i 2 2
L +5%2 -(Y_2 + %2
2 0 0 0 (Zl b al3) (l L o,
(AlF] = 0 2 O ~-(Z 2-+%22a ) © (X 2-+%22a )
Q2 1 13 1 11
2 2
p L - + %4 O
0 0 2 (zlz+72 al2) (xlz L all)
r ——
b11 0 0
[DM] = 0 b,, 0
0 0 b33

)

-




Similarly, the hydrodynamic moment can be written as,

[M]

where

[TM™]

(M1]

[a1M] =

5

- ([t™] [M1] + [G]IF])

L

13

23

33

[aM] [BT] [A1M] [U] + [DM][BT] [A1M] [U]
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- (X.—+ =%

12

1
3

11

(30)

22 1 3
-— __.+-—
(Yl > 32 a

22 1,
— =
(Xl 5 32 a

12

11




(6] =

In the following an example is given to determine the hydrodynamic

forces on a horizontal circular cylinder member of a floating structure

oscillating under the free surface using the calculation procedure

developed above.

A-42,Y,0)

(See Fig. 4.)

A
' # y Free Sur/ace
& EGfUV/{j7 Centre o/ Zhe F[oa{/n\? SfoC?ZUFC
X
|
|
Av i
| 8(4/2,Y, 0)
R -
]
; |
Y2 o g2
Fig. 4.

The Hydrodynamic forces can easily be calculated by determining

the matrices given in equation (29).

-

1

0

.
0 0
1 0
0 1

(31)
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(aT] =

[a1F] 0

[a1F]

10

0

i 3
0.424pTR k11

PTR

2Y
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If equations (31), (32), (33) and (34) are substituted in
equation (29) and neglecting the damping terms, the following matrix

equation is obtained:

- Qr -

F 0.848p1rR3k11 0 0 0 0 —Y10.348pﬂR3k11

F.| = - 0 oTR2L 0 0 0 0 62

F 0 0 pmR%L ylzpr2 0 0 63 (35)

If we transfer the centre of rotation of the cylinder to the
- centre of rotation of the structure by setting Y1=O equation (35)

becomes identical to equation (12).

Similarly, the hydrodynamic moments can be obtained using

equation (30) as follows. (See Fig. 4.)
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- [ -
0 0 0 0 0 Y,
[tMl =0 o -1| (30, el =0 o £/2 (37)
0 1 oJ Y, -£/2 0
g 2 - ul -
a R 0 0 1 0 0
[aM] = | o0 pmr? 0 (38), [BT] = |0 1 0 (39)
0 0 pTR?| o 0 1
= 3
a;, = 0.424 p7R® %k
- -
0 0 0 0 0 0
1 ,» 1 3
AIM] = = L
[A1M] 0 5 4 0 0 2 0 B £ (40)
1,2 1424 _ 1 ps
0 0 > L 5 ¥ £ 0 |
If we substitute equations (35) - (40) into equation (30) the

hydrodynamic moment equation becomes,

F, 0 0 YlpﬂRZK Y?pﬂRZK 0 0 U,
F_ |= 0 0 0 0 z—aanz 0 U
S 12 2
v20.848pmR%k | ||,
3
F. -Y,0.848pmR’k,, O 0 0 0 + I%'KapﬂRz U,
=3 -]
v,
Us
s
(41)

If we transfer the centre of rotation of the cylinder to the centre
of rotation of the structure by setting Y1=O, then matrix equation (41)

becomes identical to equation (12).
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The total hydrodynamic forces and moments on the structure can be
calculated by summing the forces and moments on each individual member

as follows:

(FT]

I
I ~8

(¥, (42)

[MT] = [M]i (43)

e B

3. CORRECTIONS TO THE ADDED MASS VALUE IN UNBOUNDED FLUID DUE TO
THE FREE SURFACE AND INTERFERENCE EFFECT OF CLOSELY SPACED
MEMBERS

As mentioned in Section 1 one may obtain added mass and damping
coefficients including free surface effects, i.e. the frequency
dependence of the added mass and the damping coefficients, by finding
the velocity potential ¢i. In the literature basically two approaches
have been used to determine ¢i values due to the harmonic rigid-body
motion of floating structures. The first approach was initiated by
Ursell whose work may be considered the beginning of the modern history

of theoretical work on forced-oscillation problems [1,2].

Ursell derived the velocity potential for a circular cylinder
oscillating on the free-surface by an infinite series of non-orthogonal
polynomials (multipoles) and then adding to ﬁhis a suitable wave source
at the origin of the cylinder. This superposition satisfies the
physical phenomena since the oscillating cylinder produces standing

waves in its vicinity and propagating waves at a large distance from

the cylinder.

Multipole and source potentials satisfy the Laplace equation and

linear free surface conditions. The source potential also satisfies
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the radiation condition. The only unknowns in the multipole'potential
which are source strengths can be determined from the boundary condit-
ions on the body surface. In this section Ursell's results will be
used in the suggested procedure to correét added mass values when the

circular cylindrical members of offshore structures are working near

to the free surface.

An alternative approach to Ursell's solution is the method of

integral equations following the application of Green's theorem.

The potential function due to the rigid body motion may be obtained

in a manner similar to that in which the scattering wave potential has

been obtained in equation 2.17. The Fredholm integral equation in this

case takes the following form:

. 1 3G _
- £ (x,y,2) + 3o éf £,(€M,0) 5 (x,y,2,8m,0) dS = 1K, (44)

where N = n, for j=1,2,3

> - i
N = (r/\n)j_3 for j=4,5,6.

Equation (44) can only be solved numerically to find fj values and
this requires a considerable amount of computer space and time. Since
in this study unbounded added-mass values have been used, a correction
procedure will be suggested to take the free surface effect into
account. In Section 2.1.7 of Chapter 2 the effect of fixed boundaries
on the wave intertia coefficients has been calculated. The same
calculation procedure may be applied to take into account the interfer-

ence effect between the free surface and the body as follows:

?ﬂ sin?H a6
5 1+2aCosB+0L2
_ 2
a,, = a3 = 1 + OTR (45)
1
2h
where a = R

h: The distance between the free surface and the centre of cylinder.
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Initially equation (45) was derived in Section 2.1.7 of Chapter 2
to take the wall effect into account for the fluid or body motion
pafallél to the wall. However, Yamamoto, in reference [7], shows that
the added mass coefficient given with the following expression to take
the effect of wall proximity into account is independent of direction

of oscillation:
— — ( 1 i 2 .
a,, = a,,; = + o"2) OTR (46)

Since equations (45) and (46) are similar, the result of independ-
ence of direction of motion with respect to the free surface in equation

(46) may be applied to equation (45). See also Fig. 21 of chapter 2.

To correct the frequency dependence of the added mass coefficients
Ufsell's results will be used to correct the unbounded added mass
values in heave oscillation [1,2]. The added mass values of a heaving
circular cylinder on the free-surface given by Ursell can be represented

by the following approximation:

k,, (kR) = 0.6348(kR) 0 2093 for kr>0 (47)

N

Either equation (45) or (46) may be combined with equation (47)°
to correct unbounded added mass values for the free surface effect

with the foilowing steps. The free surface effect vanishes as the

ratio of éubmergence/diameter approaches 2.5.

(a) Calculate the increase, say a, in the unbounded added mass as a
percentage due to the fixed free surface from either equation (45)
or (46). If the increase is 2.0% or less it is not necessary to

correct the added mass values for frequency dependence.

(b) If the increase in (a) is 2.0% or more obtain an increase or
decrease of the unbounded added mass values, say b, due to the

frequency dependence from equation (47).
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Combination of (a) and (b) takes the following form:

a22 = m22(1+a)(1+b) -~ (48)
where
2T
I sin?%6 36
1+20CosB+q2
_ 2
a = or a ==
m o

b = 0.6343R0-26035 _ |

Added mass values calculated using this approximate method are cempared

with those obtained from the complete solutions based on Green's theorem
[11,13] in Figure 5.

Similarly, added mass values in sway motion may be corrected for

the free surface with the following approximation:

a,, = m33(1+a) (49)

The correction in the added mass values due to the circular
cylindrical members' close proximity may be obtained by using the

equations (2.77-a), 2.79), 2.84) and (2.86) given in Chapter 2.

4. DETERMINATION OF DAMPING COEFFICIENTS

Damping coefficients relate the floating structures rigid body
velocities to the hydrodynamic damping (or drag) forces as was defined
in Section 1. Two types of damping forces may be experienced on the

floating structures which oscillate near or on the free surface.

(a) Wave damping forces due to the dissipation of energy in the form
of surface waves which are generated as a result of rigid body

motion of floating structures.

(b) The viscous damping forces which are due to the turbulent flow in

the lee of a body.
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4.1 Wawve Damping Forces

As was mentioned in Section 1, wave damping forces can be obtained
with procedures similar to the determination of the hydrodynamic added

mass forces, by calculating the velocity potential ¢, (X,Y,2) [1,2,3].
J

Newman [8] shows a relation between the wave exciting forces and
the wave damping forces using the energy radiation of the oscillating
structure at infinity. In the three dimensional:. case the relation
between the damping coefficient and exciting force was given in refer-
ence [8] as:

" 21

b,, = [ [F (B)]? aB | (50)
* 4mpg? (0.5 BE)?o 7

where B: Angle of oncoming wave propagation.

In reference 9 the relation between damping coefficients and
the exciting wave forces for a body which is symmetrical about X=0

plane was given as:

b, = = F 2 (51)

ii 2 z 1
pPg” (0.5 Hw)

The wave damping forces associated with the free surface
approaches zero as the depth of the submergence/diameter ratio
approaches 2.5. Since generélly the principal parts of all members of
semi—subiersible type floating platforms are deeply submerged in their
operational modes the wave damping is of little significance. However,
the free surface effect in added-mass and damping coefficients may be
of importance for some of the floating offshore structures such as

Ccrane or pipe laying barges.

Experimental values of added virtual mass and damping coefficients

for the geometries of cylinder,rectangle and sphere oscillating near
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Damping Coeflicient In Heave Motion
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the free surface are presented in reference [12]. They are also

presented in Figs. 6,7.

It may be of interest to point out the similarity between the
added mass coefficients given in Figs 6 and 7 and the added mass
values for circular cylinders given in Fig. 5, which were produced

according to the suggested method in Section 3. -

4,2 Viscous Damping Forces

The viscous damping forces occur due to a deviation of the
pressure distribution from its ideal fluid value. Similar to the wave
drag force calculations, viscous damping forces may be expressed as a
quadratic function of the structure's rigid body velocity and the drag
coefficient will be determined for the appropriate Reynolds number
However, when viscous damping forces are calculated as a quadratic
function of the velocity, the motion equation (68) cannot be linear
any longer and this adds complications to the solution of the differ-

ential motion equations.

Blagoveschchensky [10] suggest a method of calculating non-linear
viscous damping forces using eguivalent linear viscous damping
coefficients and the linear velocity terms. The linear drag coeffic-
ient is obtained by setting the energy dissipation due to the linear
viscous forces equal to the energy dissipation of non—linéar viscous

forces. That is,

T T
4 4

b, f U.2dt = ¢ f u’at (52)
o o}

replacing U, with Ui Sinwt in equation (52) bii becomes
1 ’
M

C (53)
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or

8wxi
Py T p (53-2)
3T
To determine bii values Ui =wWX, should be known and this can
’
M .

only be achieved by assuming an amplitude of motion.

Assuming an amplitude of motion linear damping coefficients are
calculated and then the motion equations are solved. Motion ampli-
tudes obtained from these equations can now be used to determine new
linear damping coefficients and the motion equations again solved.
This iteration procedure continues until two successive linear damp-

ing coefficients are close enough to each other.

5. CALCULATION OF RESTORING FORCES

In this section the restoring forces and moments which are due to
the displacement of a floating structure from its equilibrium state
will be discussed. The restoring forces and moments can be hydrostatic
or elastic. The total force and moments due to the mass of the body
plus the external forces such as mooring forces, must be in equilibrium
at rest. When the floating structure's under water displacement
changes by movements in translational or in rotational modes, restoring

forces and moments occur to satisfy the static equilibrium.

For floating structures the hydrostatic restoring forces and
moments can be related to the translational or rotational displacements
with the following matrix equation by making use of standard naval

architectural formulae [6].
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r i “r -
F1 0 0 0 0 0 0 X,
F A
2 0 Pg W 0 0 0 0 X,
F, 0 0 0 0 0 0 X,
= - (54)
F, 0 0 0 Pg¥GM o} 0 X,
F 0 0 0 0 0 0 X,
F. 0 0 0 0 0 ngGML X,
L -l S L -J
HIDR =
where
AW: Total water plane area of surface piercing members.
V : Displacement of the floating structure.
GMT' GML: Transverse and the longitudinal metacentric heights
respectively and given as
GM = KB + - K
T,L BMT,L G
where
KB: Centre of immersed volume
I
_T,L
BMr L T
IT = Total moment of inertia of the water plane area of surface
piercing members about X axis.

IL = Total moment of inertia of the water plane area of surface
piercing members about Z axis.

KG = Centre of gravity of the floating structure.

In this study the effects of catenary mooring systems in motion
response calculations are neglected. The mooring forces have to be
calculated as a function of the displacements of the floating
structure and the catenary and the elastic properties of the mooring
lines and their hydrodynamic interactions Qith the waves and the

currents. No attempt has been made to solve this problem here.
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6. CALCULATION OF BODY FORCES

In this section inertia forces and moments defined from Newton's
second law as the multiplication of actual mass of a cylinder element

pMdV and the absolute body acceleration of the structure will be

calculated.
> 3
F = MUC (55)
> -> >
Mm=p [[[r ~u, av (56)
M A i
v
where M : Total mass of the floating structure
i
U Acceleration vector at the gravity centre of the platform

-> ->
r. + r,
A G i

>

rG: Position vector of centre of rotation from the centre of
gravity

p,,: Mass density

M

> .
Ui: Acceleration vector at the centre of the mass element i.

Y/

Fig. 8
—_ .
r = Position vector of the mass element (i) from the centre of rotation.

The total force vector can be calculated in terms of translational

and rotational acceleration and the total mass as follows.
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Since

Ky

(57)

where

(=]

"
Cle
ey

-y

i
Ce
g

If equation (57) is substituted in equation (55) the total force

vector becomes:

—Fy _ e L) L) —.} [} . [ >
= M(U1 + USZG - UGYG)l + M(U2 + UGXG - UuZG)J
. . . .
+ M(U, + U4YG - stG)k (58)

> > > 3 3 5 >
If we replace I with rG+ri and Ui with

+ n . .
US'T US’R rG in equation

(56), the following equation is obtained to calculate moments due to

the structure's rigid body acceleration:

> _ _ ° ) L) 2 2 _ . . _ L] -‘>
M=op féf {l- 20, +yp, + U, (¥2}) - x,v.0 - X201

. L] L] L] 2 2, [ —.>
- - + - U.Y
+ (20 - XU, - UY. X, + U (XH+27) - Ug ;12413

[ [ [ . ] 2 2 e o
- - - + kt dv 59
+ - YU+ XU, - Z XU, - ZY. U+ U (XAYE) } (59)
. The basic definitions to find the mass and mass moments of

inertia can be written as follows:

Moo=, fé[ av (60)
Iy = Py f‘f]f (vA4z 5 av (61-A)
Iy = Py [éf (x 425 av ' (61-B)
I, = Py f‘f,f (x 2y 2 av (61-C)
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Tey = Iyx = = Py féf X,Y, v (61-D)

XY ~ Tvx
Iyz = Ipx = = Py féf X.Z, av (61-E)
I, = Iy = = Py fif Y.z, dv (61-F)

Equations (58) and (59) can be summarised with the following

matrix equation using equations (60) - (61-F):
- - - T T =T

F - L ]

) M 0 0 0 MZG MYG U,
F 0 M 0 - ;

2 MZG 0] MXG U2
F 0 - :

3 0 M MYG MXG 0] U3

= . (62)

F 0 -MZ MY I

4 G XX Txy Txz Yy
F MZ 0 - I ]

5 G MXG ¥X IYY IYZ US
F _ L]

6 MYG MXG 0 IZX IZY IZZ Us

For structures having cylindrical members, the mass moment of
inertia values can be generalised in terms of the mass distribution
and reference system for each member. It will be assumed that the
mass of each volume element can be concentrated at the centre of this
volume. Since the diameter over length ratio is generally small this

assumption may be acceptable and can be formulated as follows:

£

oy [[[ av =p, [ mR® av (63)
\Y u=0

Following the above statement the Xi'Yi'zi co-ordinates can be

written in the individual member's reference system as:

xi = ua,, + X, (64-4)

= -B
Yi uo, , + Y, (64-B)
Z. = ud + 2 (64-C)

i 31 1
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If we substitute equations (64-A) - (64-C) into equations (61-A) -
(61-F) the following mass moment of inertia values are obtained for an

individual member:

2

1 52 2 2
m, [3 L (@, + a“) +IZ(Y10L21 +Z,0,,) +Y

Txx, = 2+ 2% (65-a)
1
i =m [li,z(a2+oc2)+£(xoc +Z20a.) +X.%2+2.2%] (65-B)
Yy, i 13 11 31 1%11 1%3, 1 1
i =m [l-ﬂz(a 2+ 0,y +8(Xa, . +Y.a. ) +X2+7Y.2] (65=C)
22, i '3 11 21 1%11 1%23 1 1
i - m [+ 2%, 0 + £ (Y + X ] 5
Ixv. i 43 11%21 * 5 (1,04, 1%21) + XY, (65-D)
1
i = m [—1-£2aoc +[—'(Za + Xa,.) +X.2.] (65-E)
X2 i '3 11%31 7 3 4,0, 1%31 191
i =m [i-ﬂza a + ﬁ-(z Q + Yo, ) +Y.2.] (65-F)
Yz i 43 21%31 T 5 (4,95, T 5,04, 121
1

The total moment of inertia of mass can be calculated by summing

equations (65-A) - (65-F) as follows:

m
_ . -A
Ixx .z lxx- (66-A)
i=1 i
m
I, = IZ ioy (66-B)
i=1 i
m
- . 66-C
IZZ .z lZZ. ( )
i=1 i
m
= i 66"D)
IXY .z lXY_ (
i=1 i
m
i=1 i
m
= i (66_F)
Lyz ,z vz
i=1 i
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7. DERIVATION AND SOLUTION OF MOTION RESPONSE EQUATIONS

Calculatién procedures have been'developed to determine the wave
forces due to the absolute fluid particle motion (Chapter 3), and the
hydrodynamic and body-inertia forces due to the absolute platform
motion in this chapter. Since these forces should be in balance at any
instant the following equilibrium equation can be_ﬁritten as the motion

response equation:

-
+F =0 (67)

where

+ (]

Fw = Wave excited force and moment vector given in equations
(3.42) and (3.46),

>

FH = Hydrodynamic force and moment vector given in equations
(28) and (28-a),

F

HIDR = Restoring force vector given in Section 5.

>

FI = The body-inertia force and moment vector given in

equations (55) and (56).

Equation (67) can be rearranged as motion dependent terms on the
left hand side and time dependent forcing terms on the right hand side
to obtain the following form of six linear simultaneous, second-order

differential equations:

(M1[%] + [c][X] + [K][X] = [F ] (68)

where

[T] (amM] [AT] [A1F]
[MH1] + [MH2]
[BM]: Body-mass matrix derived in equation (62)

[TM] (AM] [BT] [A1M]

[MH1]

[G] [T] [aM] [AT] [A1F]

[MH2]
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[T] [DM] [AT] [A1F]

[cH1] + [cH2]

[cH1] [TM] [DM] [BT] [Aa1M]

[cH2] [G] [T] [DM] [AT] [A1F]

[K]: The restoring force matrix defined in equation (22)

[X] = [U]: Column matrix of acceleration of the structure
[X] = [U]: Column matrix of velocity of the structure
[x] : Column matrix of translational and rotational

displacement of the structure
[TM], [aM], [aT], [A1F], [DM] : Defined in equation (29)

(], [a1M], [BT] : Defined in equation (30).

The six simultaneous second-order linear differential equations
given above which take the coupling effects between the different
motion modes into account can be solved using standard computer
library programs. One may also reduce the motion equations to a set
of single degree of freedom equétions for the corresponding principal
motion modes by omitting the coupling terms. For example, the follow-
ing single degree of freedom equation can be written for the heave

motion of a floating structure,

M+ M), )X, + C,,X, + K, X, = Fw’HV (69)
where

Méz : Added mass of the structure in heave motion

C,, : Damping coefficient of the structure in heave motion

K22 = pgAw

A : Total water plane area of surface piercing members

w

F : Total heave force on the structure.

w,HV

Although F HV in equation (69) is not a constant harmonic type
w

14

function due to its variation with motion, it will be regarded as

——= 201 -
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constant at each discrete frequency and the standard solution for a
single degree of freedom system will be applied to solve equation (69)

as follows:

X, =X, Coswt (70)

Fw,HV

where X2 = (70-A)

o] - " 2,2 2 2
/(x M +M8 Ywh) 2+ c2w

22

The phase angle between the applied force and the motion is giben by:

-1 SPPL
o = tan (70-B)

K,, - (M+ M") w2

It is usually convenient to write equation (70-A) in terms of

frequency ratio and damping ratio as follows:

Fw HV
14
X, = (71)
0 K.y/(1-r%)2 + (2rd)?
and phase angle
-1 ‘
o = tan”' 222 (71-A)
1-x2
where
r = w _ forcing frequency (71-B)
wn natural frequency
: - K
o = | ——— (71-C)
n M+M,,
C .
4 = 22 _ damping value (71-D)

critical damping value

2/(M+M52)K22

The amplitude of response can also be represented in dimension-

less form by defining the magnification factor, Q as follows:

motion amplitude
Q= . - . (72)
equivalent static displacement
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2,0 1
Q=—""" = (72-3a)

F av/Kaz J(1-r%)? + (2rd)?

An analysis of equation (72-A) reveals that if the forcing
frequency is less than the natural frequeﬁcy, the motion response is
controlled by restoring forces and the mass of the structure and
damping would have very little effect in controlling the response.

If the forcing frequency is near, or equal to the natural frequency,
the motion response will be very much larger than the static displace-
ment, particularly when the damping is low. In the design of stable
floating platforms this resonance region must be avoided, in the
region of higher frequencies the response is reduced and controlled by

the mass of structure and damping is not significant.

The single degree of freedom equations of heave and roll motion
are applied to the semi-submersible model structure shown in figure 29
of Chapter 5 (details of the model are given in Chapter 7). The heave
and the roll motion response predictions are compared with the experi-
mental results in figures 9 and 10 respectively. Agreement between the
predictions and the experimental results for heave is reasonably good.
The over prediction of the heave results around the second peak may be
explained by the changes in the heave forces due to roll motion. In
addition, the harnesses which hold the model against drift forces may
also effect the heave motion. These effects only become significant
when heave magnitudes are large. The roll motion predictions do not
agree with the experimental results as well as the heave motion pre-

dictions do. Possible reasons for this are:

a) The assumed centre of rotation mav not be close to the
actual centre of rotation while the structure is

oscillating in heave and roll modes.
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b) Changes in the restoring and forcing moments due to
heave motion are not. taken into account. Some
suggestions to improve heave and roll motion pre-

dictions will also be discussed in Section 8.

Figure 11 shows phase angle between the heaving force and the
heaving displacement, and figure 12 shows the angle between the rolling
moment and the rolling motion. These values will be used for finding

the motion induced structural loading, as will be described in Chapter 5.

The method of motion prediction summarised in the above sections
was also applied to the full scale semi-submersible design shown in

figure 43 of Chapter 5.

Figure 13 shows the effect of the bracing members on the magnific-
ation factor. This shows that the effect of bracings becomes important

around the resonance region only.

In figures 14, 15 and 16 the heave responses were plotted for head,
quarter and beam seas with and without bracing members being included.
When the wave loading variations on this semi-submersible (see figures
15-20 of Chapter 3) are studied along with figures 13, 14, 15 and 16 it
becomes clear that the optimisation of this particular geometry of the
semi~submersible to obtain minimum vertical force around the natural
frequencies was carried out without the bracing members by the designer
who determined this particular geometry. When the bracing members are
included in the calculation, motion response significantly changes due

to the wave loading on the bracing members.

Figures 17 and 18 show the variations in roll and pitch motion of

the structure for various wave heading angles.
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8. DERIVATION AND SOLUTION OF NON-LINEAR COUPLED
MOTION RESPONSE EQUATIONS

During the derivation of the motion equations given in (68) and
(69) it was assumed that the motion amplitudes of the floating structure
would be small, thus wave and hydrodynamic force formulations were
carried out which neglected the space variation of the structural
members during a wave cycle. In other words, wave and hydrodynamic
forces were calculated at the mean draft level of the structure. As
shown in figures 8 and 9, this linearisation giv;s reasonable predictions

of motion response for small amplitude motions.

In the previous sections, motion equations, including the cdupling
effects between the different motion modes due to the geometry of the
structure, were formulated (see equations 29, 30 and 62). When a
floating offshore structure moves with large amplitude rotational motions,
coupling between the various modes of the rotational motions should also

be included in the motion response equations.

Coupled velocity and acceleration vectors fixed in the X, Y, Z

structure reference system can be shown with the following motion

sequences:
1. The structure is rotated by positive amount X4 about the Xoaxis.
Let the rotational velocity and the acceleration about the Xoaxis
[}
be U4 and U4 respectively (Figure 19).

(s) _ (s)
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1. (Cont'dy

) U‘/(s)

The total rotational velocity and acceleration vector can be

written as:

= U . i (73)
U% 4(5) o
R
(1) . R :
u = U .1 (73-3)
S’ 4(5) o
R
2. The structure is now rotated by positive amount X5 about the Y,

axis. Let the rotational velocity and the acceleration about

the Yj-axis be U5 and 65 respectively (Fig. 20).
(s) (s)




2. (Cont'd)

The total velocity and acceleration vectors from equations (73) and

(73-A) and figure 20 can be written as:

(2)

> - > -
= X )1l + . i
US, U4 Cos ( 5) 1 U5 Il+ U4 Sln(XS) kl (74)
R
. (2)
> . > . T o >
= U Cos(X 1_+4+ U7 + U 68Si -
US, 4 s ( 5) 1 57y 4 1n(X5) k2 (74-n)
R

3. Finally, the structure is rotated by positive amount X_ about the

6
Zzaxis. Let the rotational velocity and the acceleration about
the Z axis be U and U respectively (Fig. 21).
2 6 6
(s) (s)
ZN Al
\
\ X
A6
2 V| 4, —
1 /§
// é -
c 7 > %
7 9
4 * |
2

The total velocity and acceleration vectors from equations (74)

and (74-A) and from figure 20 can be written as:
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3. (Cont'Qd)

»(3) >
U = [U, Cos(X i i
s, [ 4 os ( 5) Cos(X6) + U5 Sln(A6)]12
R
+ [U. Cos(X ) U, C 3
S _ . x
[ 5 Cos (X, 4 os(XS) Sln(x6)] 3, (75)
U, S x
+ + i
[U6 4 1n(X5)] k2
- (3) ;
U, = 1[0, cos(x.) Cos(x.) + 0_ sin(x )] 1
s, 4 5 6 5 SRR T
R
[0_ Cos(x ) - U 13
+ _ . N _
U5 os 6 4 Cos(XS) Sln(XG) 32 (75-3)
[, + ¢ ] k
4 .
U6 U4 Sln(XS) k2
X Y , Z_, reference system forms the fixed structure reference

2" "2 2

system and the rotational velocity and acceleration vectors given in
equations (17) and (18) should be replaced with equations (75) and

(75-A) to take into account the coupling effects between the rotational

motion modes.

Now the change in the wave force and moment vector due to the large
amplitude of motion of the floating platform will be determined. In
Chapter 3, wave loading was formulated for cylindrical members of fixed
and of floating structures oriented randomly in waves. The main
variables in the formulation are the end co-ordinates of each member,
the draft of the structure and the wave heading angle. As the floating

structure moves the new values of each of those variables can be sub-

stituted/
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substituted into the wave loading equations given in Chapter 3. Let -

us assume a point A(a, b, ¢) on the structure in the fixed X, ¥, Z
structure co-ordinate system and study the variation of these co-ordinates
a, b, ¢ in terms of motion response values as the platform moves. The
aim is to determine the new co-ordinates of A in the original X, Y, Z
fixed structure reference system after the platform has undergone trans-

laticonal and rotational movements.

Let us assume that the floating structure will be displaced in the

rotational and the translational modes with the following motion sequences:

a) The floating structure will be rotated about the X axis by a
positive amount X4 (Fig. 22). The co-ordinates of point A
in the fixed reference system (X, Y, Z) can be written in
terms of the same point's co-ordinates in the new reference
system (X, Yl' Zl) and the rotation angle X, 6 as:

4

= - i 76
b in Cos(X4) ch Sln(X4) (76)

o . 76-A
c. = in Sln(X4) + Czl Cos(X4) ( )

Ty

61\/ - /\




b) The floating structure will now be rotated by a positive
amountLX5 about the Yl axis. The co-ordinates of point A
in the (x, Yl' Zl) reference system can be written in terms
.of the same point's co-ordinates in the new reference.system

(xl, Yl' ZZ) and the rotation angle X_ as (Fig. 23):

5

aX = aX . Cos(XS) + cZ Sin(XS) (77)

1 2

=-a Sin (X + ¢ 77-
c . xl in( 5) Zz Cos(XS) (77-A)

)Qr )7-><!
6 % /I//
7 / >
X G
§ 22/ CZ
Q /
/ X__J
[
Z
2 ;:2
Fig. 23
c) Finally, the floating structure is rotated by a positive
amount X6 about the 22 axis. The co-ordinates of point A in the
(Xl, Yl, 22) reference system can be written in terms of the

same point's co-ordinates in the new reference system (X2, Y2, Z2)

and the rotation angle X_ as follows (Fig. 24):

6
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c) (Cont'd) \
\ Q
\ al As
\ XG Ofa_ — /7%\\0\(
(‘1/ - \ L _~ X
< -

S,
X
2:2
Fig. 22
aX = aX Cos(x6) - bY Sin(x6) (78)
1 2 2 ‘
b = a Sin(X_.) + b Cos (X)) (78-A)
Y1 X2 6 Y2 6

Since (X.,, Y ZZ) reference system is the rotated form of the structure

2 2’

reference system (X, Y, Z), and point A is fixed in the structure

reference system, the following equations will be valid:

a = a (79)
X2 :
b = 'bY (79-A)
2
c = cC (79-B)
Z2

Equations (76), (76-A) and (77) can be written to obtain co-ordinates
of a point A in the original reference system (X , ¥, 2), after the fixed
structure reference system has undergone X4, X5, and X_ rotational dis-

6

placements, using (78-(79-B)) as follows:
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(c) (Cont'd)

T r B

a Cos (X)Cos (X ) ~Cos (X,) Sin (X,) Sin (X,) 1/(a]

b, | =| Cos(X,)Sin(X ) + Si i - Si i i -Si

v os( ) Sin(X ) +Sin(X,)Cos (X )Sin (X)) Cos (X;)Cos (X,) = §in(X,)Sin(X.)Sin(X,) $in(X,)Cos (X.) | |b (80)
Sin(X,)Si - i i i in

cZ in( 4) 1n(X6) Cos(X4)Sln(X5)Cos(x6) Sln(X4)Cos(X6)-+Cos(X4)Sln(X5)Sln(X6) Cos(X4)Cos(X5) c

L J J L

fa) ' '

a

(X,Y,Z) R o [a] Y
[R] - (Xy¥y,2Z,)
or
= R -
(a] (4 v, 2) R fal o (80-2)
o oo
|
[\
tJ
N
i
(Q) Now, the floating structure is displaced in surge (Xl)' heave (X2) and sway (X3) modes successively. The

co-ordinates of point A in the original reference system after the translational motion has taken place be-

come (Fig.25)

' = = [r]Ial + [7]
[a](X,Y,Z) [R][a](xz,Yz,Zz) i [T] (Xo'Yo'Zo) (81)
o
Xl
where , [T] = X2
u..X3.-




Ks
4\\f 7‘2
s Xy
v/ Xe
13
. X ~
b c 7 X
- 6'= X, €+ X2 7+ X3 &
Z.
Fig. 25

When the large amplitude of motion is considered, the restoring

force and moment matrix expression given in equation (54) becomes:

Fl 0 0 0 0 0 0 X1
F2 0 pgAw(X) 0 0] 0 0 X2
F3 0 0 0 0 0 0] X3
= | (82)
F, 0 0 0 ngGMT(X) 0 0 Sln(Xu)
Fs 0] 0 0] 0 0 0 X5
.FGA _O 0 0 0 0 ngGML(X) LSJ.n(XG)
HIDR ]

The motion response equation given in (68) can be rewritten,

taking into account the large amplitude of motion, as:

MX,t)] [RC(X,t] [X] + [c(x, )] [RC(X,t)] [R] + [K(X)] [x]* = [Fw(x,t)]

(83)
or

[MC (X, t)] [¥] +[cc (x,t) ] [X] + [K(X)] [x]* = [Fw(x,t>] (83-a)
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where
MC(x,8)] = M(X,t)] [RC(x,t)]

[ccx,t)] = [Cc(X,t)][RC(X,t)]

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
[RC(X)] =
0 0 0 Cos(xs)Cos(Xs) Sin(xs) 0
0 0 0 —Cos(xs)Sin(XG) Cos(XG) 0
| 0 0 0 Sin(xs) 0 1
[ x
1
X
2
X
* 3
(x] =
Sin(X )
4
X
5
| Sin(X )

Mx)], [cxX)], [K(X)] can be determined as described in
equation (68) using the displaced co-ordinates of each member.
Similarly, FW(X) can be calculated with the displaced co-ordinates

at each time increment from equations (3.42) and (3.46).
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In order to complete the analysis a solution method for the
non-linear coupled motion equations given in (83-A) will be dis-
cussed. The same method applies to the solution of the equ;tions
given in (68). Since the right and left hand sides of these equat-
ions are completely arbitrary in respect to time and position in
space, solution is only possible if numerical integration proced-
ures are used. There are various numerical integration procedures
available in the literature and these are discussed in detail in
references [14,15,16,17]. Computer library programs are also avail-
able for the direct usage of these numerical methods [18]. Amongst
the various step-by-step integration procedures the linear acceler-
ation method has been found to be the most suitable one for the

solution of the motion equations given in (83-A). This method will

be summarised as follows (see also ref. 4 of Chapter 5):

The period of a wave cycle will first be divided into an equal
number of spaces. Starting from t1 = 0, at each time increment, the
variables in the motion equations will be calculated using the form-
ulations described previously and acceleration, velocity, and the

displacement values will be determined from the equilibrium of the

systemn.

Solutions can be obtained using the initial values of the
system. In the rigid body motion problem the initial conditions

will be initial displacement and the velocity values of the rigid

body.

When t = tl, the equations of the motion given in (83-A) can be

written as:
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MC (X, £ )] [X(e )]+ [ce(x,t )] R+ R [x(£)] = [F (X,t )]
1 w 1

(84)
A small At time later equations (84) become:
[MC(X’+AX,t1 +At)] [X(t1 +At)] + [CC(x+ AX, e, +AE) ] [X(t +At)]
+ [KE+A0][x(t +At)] = [F_(x+Ax,t +At)]  (85)
When equation (85) is subtracted from equation (84), the incre-
mental form of equations of motion becomes:
[Af, (x,0)] + [Af (x,t)] + [Af, (X,t)] = [AFw(X,t)] (86)

where

[Af (X,t)] = [MC (X +A0X,t +At) ] [X(-t1+ At)] - [MC(X,tl)][ii(tl)]

[Af, (x,£)] = [cC(X +4X,t +At) ] [X(t +At)] - [cex, e )T R(E )]

[Af, (X, 8)] = [RX +AX) ] [x (£, + AD)] - [R(X) ] [X(t )]

[AFW(X,t)] = [FW(X+AX,t1+ At)] - [Fw(X,tl)]

The equations given in (86) can also be written, from the
equilibriup of the system, as:

[MC(x,tl)] (AR (£)] + [ccx, £ NTIAR (D) ] + R ] [Ax(B)] = [AFw(x'tl)]

(87)

When we assume that acceleration varies linearly, velocity
varies quadratically, and displacement varies cubically during the
time increment, the following relations can also be written using

Taylor's expansion series:
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Acceleration:

X(1T)

= X(tl) + At * T (88)
Velocity:
c . AR(e) | 12
X(t) = X(tl) + X(tl)ﬂr + T TR (89)
Displacement:

AX (t)
At

. . TZ T3
X(T) = X(tl) + x(tl)-'l‘+ X(tl) '2—' + . ? (90)

Equations (89) and (90) can also be written in the following

form by setting T equal to At:

AX(t) = R(t)At + AX(t) %; (91)
2 2
AX (t) = X(t)At + X(t)) (A;) + AX(t) (Ag) (92)
Equation (92) can be rearranged to obtain AS('({) as follows:
X(t))

Rp) = g X&) _ o 1 as
AX (t) 6 A 2 AT 3X(t1) (93)
When equation (93) is substituted into equation (92) AX(t) can

be obtained as:

. 3 e At

AX (t) = it AX (t) 3X(t)) > X(t)) (94)

The following equations can be written by using equations (93)
and (94) to redefine the incremental form of motion equations given

in (87):
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6 6 s .
C , - —— - 7
[MC (X tl)] ((At)z [AX (t)] X [X(tl)] 3[X(t1)])
ylccx,t)] [ = (axe)] - 3lke)] - L& %
"1 At 1 - X(tl)] (95)

+ [RX)][Ax(v)] = [AFW(X'tl)]

Equation (95) can also be written as:

[kx)I[ax(e)] = [APW(g,tl)] (96)
where
- 6 3
[kx)] = [K(X)] + TRY MC(x, £ )] + g (CC(x,t))]
[Ap(xt)]-[AF (Xt)]+[MCXt)]<A6t[ )] + 3[X(t ))

+[CC(X,t1)](3[X (t )]+— [X(t )])

The step-by-step integration procedure, which is based on the
linear acceleration method, can be summarised to solve non-linear

coupled motion equations with the following steps:

1. Define the initial velocity and displacement values. Let us

say [X] = [X] = O when t = 0.
2. Solve equation (84) to obtain [X(tl)] values as follows:

(%t )] = Mcx, e N]7HF, (e - [cc, e 1R (ED] - K0 [x(t))])

3. Obtain load increments from equation (96)

[AP(x,t )] = [AF (X,t))]

+

[MC(X,tl)]<'A% [i(tl)] + 3[5i(t1)9

rleca, e (3tkee] + A5 e >])
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4. Determine the stiffness increments from equation (96)

(KX = k()] + [MC (X, t )]

(At) 2

3
+ oo lecx, e )]

5. Calculate [AX(t)] from equation (96)

[AX(t)] = [k(x)]? [Ap(x,t )]

6. Calculate velocity increments from equation (94)
. __g_ . At .
[Ax(t)] = 7= [Ax(e)] - 3[x(e))] - 5= [X(t))]
7. Calculate new displacement and the velocity factors

IX(tl) + At)] = [X<t1)] + [AX(t)]

[x(£, +Aa8)] = [X(£))] + [&X()]

8. Using the new displacement and the time values calculate:

[MC (X +Ax,tl+At)], [cC(X+ AX,t1+At)], [K(X+ AX)] and

[Fw (X +Ax,t1 + At)] matrices.

S. Repeat the procedure again starting from step 2.

The accuracy of the step-by-step integration procedure summar-

ised above will be based on the following pointsﬁ

- 229 -



(a) Correct choice of the time increment At which will be depend-
ent on:
(1) The rate of variation 6f applied load;
(ii) Variation in the damping and the stiffness functions;

(iii) Natural frequencies of the system.

(b) Correct knowledge of the damping function.
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Chapter 5: STRUCTURAL RESPONSE OF FLOATING

OFFSHORE PLATFORMS UNDER WAVE

EXCITATION
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INTRODUCTION

In this chapter, the calculation procedure to determine the
structural response values, i.e. axial force, shear force and bending
moment on the members of a floating structure, will beé discussed. The
floating platform subject to dynamic loading, i.e. wave, hydrodynamic
and platform mass-inertia loads, was divided into beam elements and

analysed as a space frame to yield internal joint reactions in the

frequency domain.

Firstly, determinate floating structures will be discussed to
establish the calculation procedure for structural response under quasi-
static and dynamic loading. (Here, the term gquasi-static implies that
loading on the floating structure will be assumed to be static at any
instant over a wave cycle, i.e. local vibrations of the structural
members will not be taken into account for the structural response cal-

culations.)

Secondly, indeterminate floating structures will be analysed using
the classical rigid frame analysis procedure based on the stiffness
method. The plane frame analysis procedure and the associated computer

programs will also be summarised in this chapter.

The theoretical structural response calculations were verified by

testing a semi-submersible model in regular waves. (See also Chaptgr 7.

1. CALCULATION OF STRUCTURAL RESPONSE FOR DETERMINATE FLOATING
STRUCTURES UNDER WAVE LOADING

In Naval Architecture applications, structural response values are
calculated by assuming a whole ship structure to be a single free-free
beam of varying cross-section loaded with wave force (due to pressure,
acceleration and velocity of water particles), hydrodynamic force (fluid
force induced by rigid-body motion), restoring force (hydrostatic force)

and ship mass-inertia force (due to the rigid body acceleration of the

N AAA



structure) distributions [1-3]. Since these applied forces on the

structure are in balance at every instant, the equilibrium equations can

be written between external and internal forces to determine the
structural response values. To obtain these values a portion of the
structure is isolated by cutting it at the points where the structural
analysis is desired. Since numerical integrations are involved in the
structural response calculations, the absolute value of a calculated
axial force, shear force or bending moment may differ depending on the
side of a structure which is taken to be the free end in writing the
equilibrium equations between external and internal forces. This
problem may be overcome by averaging with sign the structural response

values obtained for both sides of the cut.

The structural loading and response calculations for a ship
(= a single beam) will be summarised to indicate the calculation pro-
cedure as an introduction to the analysis of floating structures with

more complex geometry.

At the start of the structural response analysis, it will be
assumed that mass distribution of the ship, ship cross-sectional areas,
rigid body motion responses and phase angles of these responses, as
well as wave and hydrodynamic loading distributions along the ship
length are known. These loading distributions can be represented by

the following diagrams.

g M ()

] |

X , 5 X

A A
1 A " a . >

o { 2, 3. q. 5 6. 7 g, 2 /0,
| MASS DISTLIRUTIO Y JF T

Fig. 1-A
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Since the complete system of forces on the structure are

at every instant,

Fig. 1-D should be zero,

ends of the ship.

Ol o~ WAVE FOEC{j

Fig. 1-D
in balance
the area under the structural loading curve given in

i.e. the shear forces should be zero at both

This can be expressed in the following equations:
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4
x[-O p{X,t) dx =0 (1)

or

SF(O,t) =0 and SF(({,t) =0 (1-3)

As with equation (1) or (1-A) the following equations should also
be satisfied from the equilibrium of external forces acting on the ship,

i.e. the total external moment acting on the ship beam should be zero.

pa
[ sFx,t) ax =0 (2)
X=0
or
BM(O,t) = 0 and BMM,t) =0 (2-3)

Shear forces and bending moments may be calculated at any point
along the ship length by averaging the shear forces and bending moments
computed separately for the two ends of the ship as follows (taking due

account of sign convention used).

X X
L A A
SF (X, ,t) = 3[ [ px,t) ax + | p(X,t)] ax (3)
X=0 X=L
1 X, X, X, X,
BM (X, ,t) = 5( [ [ px,v) axax+ [ p(X,t)]dX ax (4)
X=0 X=0 x=£ x=4
or
) *A Xa
BM(X ,t) = 5[ [ sF(x,t) ax + [ SF(X,t)} ax (4-A)
A X=0 X=£

The calculation of the structural loading function 3 (X,t)requires an

accurate knowledge of the following parameters.

(a) Wave loading distribution along the ship length, which is a function

of ship geometry and the sea state.

(b) Motion responses and their phase angles which are functions of wave

loading, ship geometry, and ship mass.
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(c) Hydrodynamic load distribution, which is a function of motion
responses, their phase angles and ship geometry.

(d) Restoring force distributions which are a function of motion
responses, their phase angles and ship geometry.

(e) Ship mass-inertia force distribution, which is a function of motion

responses and their phase angles as well as ship mass distribution.

The structural loading function can be broken down into two
categories as follows:
(a) Input forces = Wave loading.

(b) Output forces = Hydrodynamic, restoring, mass-inertia forces.

The total input forces will be equal in magnitude and opposite in
sign to the total output forces as written in equation (1). As was
shown in Fig. 1-D, the structural loading along the ship length will be
the algebraic sum of the input and output force distributions. Since,
as summarised earlier, a high number of variables are involved in the
calculation of output force distributions, some errors due to various
uncertainties, for example in mass distribution, added mass or damping
coefficients, will generally be unavoidable. These errors iq output
force distribution will generally cause a reduction in the structural
loading distribution and consequently an underestimation of maximum
structural response values along the ship length. One poiﬂt of import-
ance is that the final form of structural loading is obtained as the
algebraic summation of a number of very large magnitudes and a small
percentage of errors in any one of them can produce a serious error in
the final answer, e.g. the answer may be of the order 10% but be
obtained as the difference of numbers of the order 10%. This statement
is supported by the experiments carried out in reference [2] and by the
present author's own calculations (Sect. 1.4). Therefore, the author
suggests that a consideration only of wave loading and the assumption
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that the ship is somehow restrained in waves may avoid the under-
estimation of the structural response values for preliminary design

purposes.

The shear force and the bending moment values written in equations
(3) and (4) do not reflect the full dynamic phenomena. When we
consider the problem in dynamic terms the elastic deflections of the
beam which represent the ship deformations_}n waves may be described
with the following equation using elastic deflection-load relation

(Euler-Bernoulli equation) [41

2 2
E aaxz (I (X) gxz = p(X,t) (5)

(Shear deformations and rotary inertia terms are neglected.)

2 -
where p(X,t) = £,(X,t) - [(M(X) +M, (X)) 2123"+C22 (x) 2—{+ K,, (X)*y] (5-)

or equation (5) becomes -

32 3? , h 3
E g (10 o)+ ) +mp, () 546,00 2L+, (X) v = £,(%,t) (6)

If we consider the undamped free vibration of the ship, equation

(6) becomes

9? P’y oy _
E o (T(x) e }+ (M(X) + M), (X)) o5+ K, (X)y=0 (7)

Since the total mass of a ship is distributed non-uniformly over
the ship length, the ship in waves represents a multi-degree-of-

freedom system and, therefore, there will be an infinite number of

discrete natural frequencies.

A solution of equation (7) can be obtained by separation of
variables assuming that the solution has the following form
Yq(X,£) = ¢(X) T(t) (8)
where ¢(X) represents a shape of the free vibrating beam and T(t)

represents the variation of the amplitude of this vibrating beam

with time. The following equation is obtained by substituting
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equation (8) into equation (7)

92 32 : 2
B (T(x) ax—j) T(t)+ [:M(X) + M (X)] gtzT $(X) +K,, (X) ¢(X) T(t) =0  (9)

When both sides of equation (9) are divided by [ﬁ(x)-kM;Z(Xi]¢(X)T(t)

the following form is obtained

2w I = : i il

X % M) FM (X)) $(X) M) +M, (0 se T O (10)

Since the first two terms are only a function of X and the third
term is only a function of T, equation (10) can only be satisfied for
abritrary X and t values if the following equation holds

32
ox?

E 1 K, (X) oo dT

3 ¢
33 5w M (X) $(X) M)+, (%) Tt T

X

(10-3)

Equation (10-A) generates two differential equations which can
be solved as follows

2% T
ot?

+C T(t) =0 | (11)
If we set C=w® the following form of sélution for an ordinary
differential equation is obtained
T(t) = A cos(wt-a) (11-3)

where A and o can be obtained from the systems initial conditions.

The second differential equation from equation (10-A) takes

the following form

3 3 ¢ E 1 2 K
e (10X 57) M)+ ML, (X)) 9(X) M(X) + M) (X)

= @? (12)

E
M(X) + M), (X)

When both sides of equation (12) are divided by

and rearrangement of equation (l2) gives

> (rx 2y L o oo+, (X)]_ K, X

X axz) b (X) E E

(13)
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92 92
or 5% (I(X) Bxf ) - a(X) ¢(X) =0 (13-3)
2 1 -
where a(X) = w (M(x)4'M2§(X)) K, , (X)
when a(X) = 0 in equation (13-A) this case corresponds to the rigid

body vibration of the ship with the following frequency

L
[ %, (x)ax
Q

w* =

)
{((x) + M, (X))ax
(@]

The solution of the ordinary differential equation given in
(13-A), which represents undamped free vibration of a beam, should be

in the following form

$(X) = A191(X) + Ay¢,(X) + Azda(X) + AL, (X) (14)

The following relations can also be written from the boundary

conditions of the free-free beam

3% ¢

EI(X) e = BI(X) ¢"(X) (15)
X = o0,% X =o0,%

EI (X) %;ﬁ = EL(X) 6™ (X) (15-a)
X = 0,4% X =0,»%

Wwhen equation (14) is substituted into egquations (15) and

(15-a) the following simultaneous equations are obtained

ALof (0) + Bndf (0) + Azed (o) + Audl (o) = O (16)
A1¢1u- (o) + A2¢2|n (o) + A3¢3u| (o) + AL*M" (o) =0 (1e-A)
A1¢f(2) + A2¢£(2) + Agdg' (L) + ALdy'(R) = 0 (16-B)

I
(@

Ag" () + A" (R) + Agd™ (2) + A4 (R) (16-C)
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Ay A,, A, and A, can only exist if the following determinant
vanishes
$7 (0) 43 (o) 93 (0) b1 (o)
¢]l.ll (O) ¢2|ll (O) ¢é!l (O) ¢Llll (O)
=0 (16-D)
¢y () $5(2) $3(2) ¢y (2)
¢ill (9‘) ¢éﬂ (21) ¢l3ll (2’) ¢LLII (2‘)

The above determinant provides an equation which will be in w
and its roots will be the natural frequencies of free-free beam.
For each wj value the A;, A,, A; and A, values and the corresponding

shape function ¢, (X) can be found.

The forced vibration of thé beam given in equation (6) may be
solved using the mode superposition analysis. Details of the mode
superposition analysis are given in reference [4] and the application
of the forced vibration for the ship case were discussed in

references [3,6].

Once yg (X,t) values are obtained the dynamic structural response

values can be determined directly as follows

n azyd
BM(X,t) = - I EI(X) —= (17)
. 3%
l=
n azy
SF(X,t) = - I EI(X) 7559- (17-2)
i=1

It should also be noted that for most types of loadings the
contributions of the various modes generally are greatest for the
lowest frequencies and tend to decrease for the higher frequencies.
Consequently, it is not usually necessary to include all the higher
modes of vibration in the superposition process (in equations (17)

and (17-a)). The summation can provide enough accuracy with the

first few terms.
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When floating offshore structures are considered, theoretical
predictions for the structural response become more difficult simply
because the above summarised procedures for a beam which represents the
ship should be applied for an array of beams which comprise the floating
structure. Therefore, a high number of equations will be involved in
quasi-static or in dynamic analysis. Solutions of these equations

require extensive use of computers.

In this study, the structural response analysis for floating off-
shore platforms is carried out to find the shear forces, bending
moments and axial forces along the structural members of the platform
by analysing the entire structure as a space frame. Having obtained
wave loading, hydrodynamic loading, restoring forces and platform mass
inertia distributions along the members of the floating structure, a
frame analysis can be carried out. (The procedures to determine wave
loading were described in Chapter 3, and the hydrodynamic loading,
restoring forces and platform-mass inertia forces were derived in

Chapter 4.)

In this section a structural analysis procedure will be summarised
for a determinate floating structure for the following cases:

(a) Structure is restrained in waves, loading is quasi-static.

(b) Structure is free-floating, loading is quasi-static.

(c) Structure is restrained in waves, loading is dynamic.

(d) Structure is free-floating, loading is dynamic.

Here the term quasi-static implies that the deformations of the
members under the time varying loading are the same magnitude as would
have occurred if the loading were static. The term of thamic loading
implies that structural response values are calculated by taking the

dynamic deformations of the members into account.

- 241 -



An analysis of these four different loading conditions will be made
to study the effects of rigid-body and local vibrations on the structural

response evaluations.

1.1 Floating Structure is Restrained in Waves, Loading is Quasi-Static

At the first stage of analysis, let us assume that the floating
structure comprises two vertical cylinders and a horizontal beam as
shown in Fig. 2. It will also be assumed that the structure is somehow

prevented from all rigid body motions. However, no physical boundaries

W
~l'<1

T
o
X -

Fig. 2

are introduced for the structural response analysis at this stage since
response values depend on the boundary conditions. Therefore, the
analysis will be carried out as if the flbating structure is in gquasi-
equilibrium at each instant over the given wave period and axial force,
bending moment and shear forces at any point throughout the structure
are calculated by writing the equilibrium equation between the external
and the internal forces at that particular point. The structural

response analysis procedure for the floating structure shown in Fig. 2

may be summarised as follows.
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(a) Representation of the structure as a frame system and the
division of each member into a finite number of beam elements. The

number of beam elements is chosen arbitrarily depending on the size of

-

the global elements.

(b) Calculation of wave loading on each node (Fig. 3). At each
wave frequency the corresponding period is divided into 20 steps and
calculations are carried out at each time step throughout the full
cycle. The calculation procedure is discussed in detail in Chapter 3.
When wave loading computations are done using the "WAVLOA" program the
generation of the nodal pcints and the distribution of wave loading

over the nodal points are performed simultaneously by the computer

routine.
\"
1
X @ 72 I & ®» 1 3
U G . '?. v
3 @ %
g5 19 Fus fu, g
= o X D ’
y £ f, 12
I o) Y 112 § ® I
3 b {V )CV, ”3
u ® '3 Y v D
- 'Fv,z -’Cv’”i /’#
« S > Ty > 5
A 7] { /4
Vis
f I
Y4 M5
Fig. 3

(c) Determination of the structural response to the wave loading at
each time step. A calculation procedure to obtain shear forces, bending
moments and the axial forces due to wave loading for the structure shown

in Fig. 3 is given in the following.
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Global Member: I:

. £_ . - £ .
hear Forces: SF v,itl V.l - ] Bu |
She J._(u,t) [2fv,i +( (u iAu) 3 €.

Au .
+ SFi—l(u't)
u=(i-1)Au (18)
where
SFi(u,t) : Shear force variation along the member i. (u,v) is the
local co-ordinate system for each member.
£ .,£ .: Wave force magnitude on the node i. f _,f . values
wll ull w,l u,l

are functions of time and the structure's orientation in waves.
e, =1 for i<5
e, =0 for i=25
Au: The distance between the two nodes, if this distance differs

on each member, equation (18) can be written as:

N S E Bay
SF, (u,t) = 2f .+ L L ‘u - Z nAu) —_— . ¢
i v,1i 2
Aui n=1

+ SF__l(u,t) i
* u= ] nlu (18-A)
n=1

where

Aui: The distance between the two nodeé of member 1i.

Similarly bending moments may be written as,

- 2
Sit ;1 . Au)

BM. (u,t) = - J[Bf .+ v,itl V.l (u - 1Au4 ( e £,

i [ v,i i

u
+ BM,_I(u,t) l
. u=(i-1)du | (19)
where
BMi(u,t): Bending moment variation along the member i.
g, =1 for i<5
i

e, =0 for i=25
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Axial forces on Global Member I may be written as,

AF.(ult) = - f
i u,l

Global Member: II:

< N
X AU i | i;g
U < 3 7 @ Lg Z) L AFL
3 R
Vs fus = v
® ‘ -
g <
I Q iy
3 f
U @ / Y3 S
2 |
y X i@ ij’ﬁﬁz
I <FV . "2
‘ R
fo,,
Fig. 4
Shear Forces : SF.(u,t) = - £
i u,l
Bending Moments: BM, (u,t) = - {BMh(u,t)
* u1=4Au
+ SF, (u,t) (H-D) - fu 1 Ei}
u1=4Au !
Axial Forces : AF (u,t) = - SFu(u,t)
1 u1=4u

where u, shows the distance on global member I.
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Global Member: III:

Iy
A 5 ?ﬁ 72 3 y
r
jg_f 9 - Tvs
N &)
y {v
® )
T 38 . £,
@ 3
2 <® FWZ
I T {94
&,{
Fig. 5

Shear Forces:

£ i+1
vz ) (u - (i-10)Au)

[
V,1
SF, (u,t) = SF, (u/t) - l[?fv,i - < -

Au
> e, + SFi_l(u,t)

s €, s £, (24)
u=(i-10)Au

where Ei =0 for i =10

e, =1 for 1i>10

Bending Moments:

BM, (u,t) = BM, (u,t) + SF, (u,t) [H-D-4,]
1 1

£ - £
- {[éfv - ( Vel V'l+1) (u - (i-lO)Auﬂ
! Au

(b ” S % (25)

« €, + BM, _(u,t) . .
6 i u=(i-toydu H ot

where Ei =0 for i=10
e. =1 for i > 10

Axial Forces: AF, (u,t) =£ (26)
i u,
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So far, structural response values have been obtained by writing
the equilibrium equations between external and internal forces in the
form of an intégration which is calculated starting from the left hand
side of the structure. The same procedure may also be followed start-
ing from the right hand side of the structure. The response values of
a point on the structure should be independent of the integration route.
However, this may not hold iﬁ the case of the calculation procedure
given above because external forces acting on the structure may not be
in balance at every instant over a given wave cycle. The structural
non-compatibility problem can be overcome by introducing fictitious
supports on the frame representation of the floating platform. These
support points should be chosen in such a way that their influences on
the response values will be minimal. (This aspect will be discussed
later.) For the present case it is suggested that stru;tural response
predictions should be made by averaging the shear force, bending moment,
and axial force values obtained from the equilibrium equations integrated

from both the left and the right hand sides of the structure.

This may be formulated as,

Shear Forces : SFi(u,t) = %[SFi(u,t)LEFT + SFi(u't)RIGHT] (27)

Bending Moments: BMi(u,t) = %[BMi(u,t)LEFT + BMi(u't)RIGHT] (28)
i . AR = %

Axial Forces : AF, (u,t) = 5[AF, (u,t) oo + AF, (0,t) ol (29)

where, é?i(u,t), ﬁﬁi(u,t), gﬁi(u,t) are the average shear force, bending

moment and axial force values of a point on the structure respectively.

To find out the maximum structural response values at é particular
wave frequency, calculations should be repeated throughout the corres-
ponding wave period. In this study calculations are repeated 21 times
throughout one wave cycle. However, if symmetry exists in the wave load-
ing, depending on geometry and orientation of the structure in waves, it
may be sufficient to consider only a quarter of a wave cycle.
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The structural response to the wave loading will be determined by
introducing successively two fictitious fixed supports at convenient

points on the right and left hand sides of the floating structure.

Response calculations will be carried out for both cases and then the

required response values will be the average of these two results. In

this procedure response values on the supports should not be taken into
account, i.e. the actual values on the supports will be zero. The

procedure may be illustrated as follows.

(a) Introduction of the fixed end support on the last node at the

right hand side of the structure, Fig. 6.

(b) Calculation of the structural response values when the last

node at the right hand side is fixed for translational and rotaticnal

movements.
/]
¢ 7 g- ? /9
v 5 ‘(vl < T"Hl ” V
= ] ® =
o | s ,
4 {v /P -
- T @ i)
v - /3
.T 3 0________? {V,S 4 13 | mmm—— {
© 3 71,
2 b {V /] ‘Lf B
0 2 ’ 9 /5

Fig. 6

(c) Introduction of the fixed end support on the last node at the

left hand side of the structure, Fig. 7.
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05 2 fus v
= . =
q | f,
3 @ -’£V;3
2 ° {W:
Jw;fz)rr"* fu,
SF, (u,+)l -0 f
u=0 7(u
15
M, (u,{)}l_o = 0
AT, (wt)],_o= O o

(d) Calculation of the structural response values when the last
node at the left hand side is fixed for translational and rotational

movements.

(e) The structural response values at any point on the structure

N

may be obtained as follows:

- 1
SFy (w,8) = 5 {SF, () }prm ganp * 1575 000 b pen panp (30)
SIDE FIXED SIDE FIXED
BM, (u,t) = = {BM, (u,t)} + {BM, (u,t)} (31)
it 2 i "’ 7" 'RIGHT HAND i 7’7" LEFT HAND
SIDE FIXED SIDE FIXED
AF, (u,t) = = {aF, (u,t)} + {aF, (u,t)} (32)
i 2 i RIGHT HAND i LEFT HAND
SIDE FIXED SIDE FIXED

Equations (30-32) are identical to the equations given in (27-29).
This can also be shown with the following calculations. If single
horizontal and vertical point loads are assumed to be applied on the
first and the last members of a floating structure shown in Fig. 2 (this

loading case is chosen for the sake of simplicity) the following
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structural response values can be obtained for the unsupported structure

case shown in Fig. 8.

v B
'I\O‘la | 7 B

7 N— V
%)N
u
Hi (T~ T
v e
v X
> ] _ ﬁ:v -E,v |
~ * 7 ——eed
T A
‘F'IIA S'U
Fig. 8
(a) Integration from the left hand side:
Global Member: I:
Shear Forces : SFl(u,t) = f1 v (33-3)
Bending Moments: BMl(u,t) = - f1 v s (33-B)
!
Axial Forces : AF (u,t) = - £ (33-C)
| 1 1,1
Global Member: II:
Shear Forces : SF (u,t) =-¢£ (34-2)
2 1,u
Bending Moments: BM_(u,t) = - £ * H+ £ *u (34-B)
2 1,v 1,u
Axial Forces : AFz(u,t) = - f1 v (34-C)
Global Member: III:
Shear Forces : SF3(u,t) = - f1 v (35-2)
i : ,8) = - £ H- + f * B (35-B)
Bending Moments BM3(u ) v (H=u) Lu
Axial Forces : AFs(u,t) = f1 u (35-C)
[
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(b) Integration from the right hand side:
Global Member: I:
Shear Forces SF (u,t) = £
S | 3,V
Bending Moments: BM (u,t) = ~ f u f
1 3,V 3,4
Axial Forces ' : AF (u,t) = + f
1 3,1
Global Member: II:
Shear Forces SF (u,t) = f
2 3,4
Bending Moments: BM (u,t) = - f *H+ £
2 3.V 3
Axial Forces AF (u,t) = - £
2 3,V
Global Member: III:
Shear Forces SF (u,t) = - f
3 3,V
Bending Moments: BM (u,t) = - f v (H=~u)
3 3y
Axjal Forces AF (u,t) = - £
3 3,40

(c) The structural response values

* (B-u)

along the members:

Global Member: I:

Shear Forces SF (u,t)
1

Bending Moments: BM (u,t)
1

Axial Forces AF (u,t)
1

Response values for Member I will be valid if u>0;

5(f
1

é?l(o,t)=o; éﬁl(o,t)=o; Aﬁl(o,t)=o.

Global Member: II:

Shear Forces §§2(u,t)

Bending Moments: éﬂz(u,t)

Axjal Forces Aﬁz(u,t)

5(- £
klu(e
5(- £
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for u=0;

(36-A)
(36-B)

(36-C)

(37-3)
(37-B)

(37-C)

(38-a)
(38-B)

(38-C)

(39-3)
(39-B)

(39-C)



Global Member: III:

]
W
| guse ]

I
Hh

|
H

Shear Forces : éﬁa(u,t) (41-1)

Bending Moments: éﬂa(u,t) = %[Bf1 a (H-u) (f + £ )] (41-B)

’ 1/V 3

Axial Forces : AF (u,t) = %[f - £ ] (41-C)
3 1

A’ 3,u
Response values for Member III will be valid if u<H; for u=H;

SF,(H,t)=0; BM,(H,t)=0; AF,(H,t)=0.

The structural response values given by equations (33-A - 41-C) were

calculated using the formulations written in equations (18-29).

The same resulfs as were given in equations (33-7A), (35-C) can be
obtained by introducing a fixed support at the end of Méﬁber III (Fig.
9-B). Similarly, when the fixed support condition is applied at the
bgginning of the first member, response values calculated for this load-
ing case (Fig. 9-C) will be identical to the values given in (36-A -
38-C). The average of these two cases will give the total response

values as identical to the ones given in equations (39-A - 41-C).

L -

' T 1] T
Hl 1 m| _ 11 i +é T T
: - 2

I f i
Sl e —s rrirm TN «
T b “

‘ﬁ {; ‘ﬁ;u

] 3 W
Fig. 9-A Fig. 9-B Fig. 9-C

The introduction of the fixed support conditions and the applicat-

ion of the calculation procedure suggested above for the determination
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of structural response values solves the non-compatibility problem and
provides a sgitable form of analysis for general structural analysis
procedures which require some kind of physical boundaries to exist on
the structure. A general analysis procedure will be important in the
case of indeterminate frame analysis problems as will be discussed in

Section 2.

Now, the response values of the structure shown in Fig. 8 will be re-

calculated for different support conditions, (Fig. 10).

\/ B
X S —
‘B_,u 7“ 1
v
X
vy
H I i
u
X
v \ \'f {;\’ -
V4
A 7 My A
41 .
Fig. 10 {1
AV ig ;u
Global Member: 1:
Shear Forces : é%l(u,t) = f1 v (42-3)
Bending Moments: ﬁﬁl(u,t) = - f1 v * 1 (42-B)
7
Axial Forces : AF (u,t) = - £ . (42-C)
1 1,4
Global Member: II:
— H
: = = (f - f (43-20
Shear Forces : SFz(u,t) 5 ( v 3,v)
— u
i : = - —(£f - £ (43-B)
Bending Moments: BMZ(u,t) H[f1,V B( v 3,v)]
Axial Forces : i%z(u,t) = - f1,V (43-C)
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Global Member: III:

Shear Forces : SF (u,t) = - £ v (44-2)
3 3,

Bending Moments: ﬁﬁa(u,t) = - £ (H-u) (44-B)
3s

Axial Forces : AF (u,t) = - £ (44-C)
3 3,41

Thé comparison between equations (39-A - 41-C) and (42-A - 44-C)
shows that two different support conditions give completely different
response values. (Under some special loading cases, some of the response
values can be identical in both caseé.) This comparison also reveals
that the structural analysis of floating offshore structures will be
sensitive to the distribution of the output forces (distribution of
hydrodyﬁamic, restoring and mass-inertia forces) which replaces the
physical support forces of the examples given above. Thus very precise
knowledge of mass distribution, added mass and damping coefficients,
motion response values, phase angles, hydrostatic parameters and the
kinematic body velocity and acceleration distributions will be essential.
If some of the output force distributions cannot be predicted with any
certainty the author suggests that a structural response analysis should
be carried out under the input force distributions alone (wave loading)

using the most pessimistic fictitious support conditions.

1.2 Floating Structure is Free in Waves, Loading is Quasi-Static

When a structure is free floating, applied input wave forces will be

balanced by the external output forces at any instant over a wave cycle.

As long as the output force distributions are determined correctly,
a structural analysis can be carried out either using the procedure des-
cribed for a determin&te structure by equations (18-26) in which case
integrations from either the left or the right hand side will be suffic-
ient, or using any other structural analysis procedures. Since support

forces will be zero, as the applied external forces are in balance at any
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instant, any support conditions can be applied arbitrarily for a chosen

analysis procedure whenever necessary.

In the following, the effects of the output forces will be analysed
using the simple loading case shown in Fig. 11. It will be assumed that
weight of Member II will be neglected and that the geometry and the

weight distributions are identical for Members I and III.

| b x
Y
Xs’\. XZ
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’lu '{z u

~
i

C £ = £ and £ = -f
~~ase (a) 1,1 3,4 3,V 1,V

When horizontal forces are equal in magnitude and opposite in sign
to each other, there will be no output forces due to sway. Similarly,
since vertical forces fl, and g,u are equal to each other in sign and
in magnitude, there will be no rolling induced output forces; The only
output forces will be due to the heave motion. The relation between
input wave forces and the output forces can be written using the

equation given in (69) of Chapter 1IV.

" )X +C X +K X =f¢ + £ (43)
(M+M22)X2 22 2 22 2 1,4 3,4
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where
MX : dey-mass inertia force.
M;ZXZZ, szxz: Hydrodynamic force induced due to heave acceleration

and heave velocity respectively.

KZZX,2 : Hydrostatic force.

The distribution of the input and the output forces is shown in the
following diagram. (It is assumed that input wave force frequency w is

greater than natural frequency of rigid body motion wn.)

B
X 3
: | é_
: - AT T T e e s s T LT A —_——
% Kaz i- 4 df R 3 \V
M p N
i 1l
| | J
f N/
HiD L dF d, |
| } v
| ! |
| ! -Fflv {?z\/ ¢
YN ___L D e @—\L
| f, ., I
My (44)
dF1 = oH X2 du
r 44-1)
F, = f dF1 du (
u=0
F - M;2X22 + CZZXZ (44_3)
2 2
K X
_ 2272 _ 22 (44-C)
dF3 = ox ; du
2
y (44-D)
_ -D
F, = ) [ dF, du
u=D-X,,
2(F +F,~F,) = £+ fa,u (44-E)
- = = (44-F)
or F +F,-F, fl,u fs,u
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The structural response values can be determined by writing the
equilibrium equations between externally applied loads and internal

response loads at points where structural analysis is sought.

Global Member: I:

/
- T e —— —
g %] [{{cFs. v
) t -
v
\:
H
D tdﬁ
4 b
¥
, X L
A v
.
?;
Fig. 12
Shear Forces : SFl(u,t) = f1 v . (45-A)
Bending Moments: BMl(u,t) = - f1 o o U (45-B)
14
; u D+ X
. ) 22
Axial Forces : AF, (u,t) = f dF, +F, - f dr, -fl,u
u=0 u=D
(45-C)

If we compare equations (45-A - 45-C) and (39-A - 39-C) for the
present loading case it will be found that shear forces will be the same
for both cases. On the other hand, bending moments will be under-
predicted by equation (39-B) and axial forces will be overpredicted by

equation (39-C).
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T "’
f
lﬂ
Fig. 13
H D+X
22
Shear Force : SF (u,t)= [ aF +F - [ - "daF, -£ =0
2 1 2 3 l,u
u=0 u=D
(46-A)
Bending Moments: BMZ(u,t) = (F1+-F2-F3-flru)u-fl'v°E{= —fl,v. H
(46-B)
Axial Forces : AFa(u,t) = - f1 v (46-C)

A comparison of equations (40-A - 40-C) with equations (46-A - 46-C)
reveals that axial and shear forces are identical in both cases and

bending moments are underpredicted by equation (40-B).
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Global Member: III:

|
oy

1

{ "
X FRFgE T ! X
X 3 T S I
g_ .Iti 3 dﬁ? :t jY
$ ¢ =
4 A w
: Jdr |
H|1D Wdf, o
| V)
) |
M [
+ I
+ ﬁ |
X ¥ W N
iy
i
Fig. 14
Shear Forces : SFs(u,t) = - f1 v (47-A)
Bending Moments: BM_(u,t) = (F. +F -F -f£f )B- £ (H=u)
3 1 2 3 1,u 1,Vv
= - fl’V(H—u) (47-B)
Axial Forces : AF (u,t) =F +F -F - f =0 (47-C)
3 1 2 3 1,4

The comparison between equations (47-A - 47-C) and (41-A - 41-C)
shows that shear and axial for s in both cases are the same, and

bending moments on Member III are underpredicted by equation (41-B).

Case (b) £ = - f and f = - £
3,u 1,u 3,v 1,v

In this case the output forces will be induced due to roll motion

only.

As with equation (43) the relation between input wave forces and
the output forces can be written as follows:

' oo . = = = 48
(1 +Ixx) xq+c“x“+1<wx‘+ %B(fs +f ) = Bf Bfl (48)

XX ' 1,u 3,u yu

where

X inertia moment
Ixquu' Body mass
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' (X A
Ixxxu' Cuux

KXy

L °

Hydrodynamic moment induced due to roll acceleration and

roll velocity respectively

Hydrostatic moment.

The distribution of the input and the output forces are shown in

the following diagrams.

BODY- MASS INERTIA

FORCE D/STE/BUTION
DUE To RoLL MOT.

Fig.

15

HYDEDDYN AN /C
HYD Pp STATIC
D/ST#E/BUTION
70

3 B
| —a ‘ ! i
:-II r ; ‘] sz—;’ BL oiF, —_—
; RS = A A R
I Y R = T R e T
z 1T 13 H| = _?_x e+ ) m
l'_‘ X‘ z‘ 6 /,1::: EG 4t O:I ;6 ‘:
= ' —rdF, ’ = = ‘ —d7,
KR RN Y /‘%* M ’ i D <
{1 | ‘F . 1'V ' :FJ/»/ ?
iy | 3 2
v ‘ v ‘F ‘ 2,u v

AND
FORCE
DUE

EOLL MOTIOA.

The velocity and the acceleration of any point along Members I and

III can be written for roll motion using eguations (17) and (18) of

Chapter 1IV.
* > -> ¢ > >
= ] = i A . + 7
u, X,1i r, X, i (Y3
or
. —> —.>
u, = X, (Y.k - Z.3)
i i
Similarly
hd cc-> -> [ X -+ —‘}
u, = ¥i~r, =X (¥,k - 2,3])
i L i i i

(49)

(49-3)

(50)

Using the acceleration relation given in equation (50) the body

inertia force distribution can be determined as follows:

dr
1,4

- ¥z, dm
1

N
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ar vt XL}Yi dm (51-B)

The moment vector due to body inertia force can also be written as

follows:
M, =27 ? a&F F+dr, K) =
L= ri / ( 1,4 j + 1 v k) ﬁ du (52-A4)
u=0
or
> =2 % H 2 2, M > . >
M =2%, uif—o (z;+ ¥’ gdul=1 X3 (52-B)

Similarly, hydrodynamic force distribution along the structure can_.

be determined as follows:

= - se . ' + * _
Fz,u (X“ZlMu Xuzibzz) (53-2a)
dFZ,V = (XuYi dM; + quibsadu) (53-B)
where
' — 3
Mu = 0.424 0 TR k22

dM' =T p R? a du =7 p R? du
v 33

The moment due to hydrodynamic forces takes the following form:

D
> -> -> T
= A 3 54
M, =2r, A (F, 3+ i aF, duk ) (54)
u=0
or
2 R 2 D N
> “ (B . . 2 2 * E» g 2 1 .
M-Z{XM(EJ Mu-+X47TpR f Yi du+ X (2 b22-+Xu f Yi b33 du“1 i
u=0 ! u=0
(54-A)
Equation (54-A) can also be written as
— v 32 2 54-B
M= I..X, + C,.X, ( )
where
e B‘Z ? 2 *‘
, ' 2 i
I! =2'M'(— + T p R Y4 du
XX Mu 2) uzo * l
D |
. B\2 2 )
c =2 (—- b+ [ ¥¥b,, du]
4L [2/ 22 1=0 1 ]
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The hydrostatic force distribution due to roll motion can be

obtained as follows:

PgVGM,,
dF3 2 —— du (55)
B?x
4
and
D+BX4/2
F3 = J' dF3 (55-4)
=D

Having obtained the output force distributions for the loading case
shown in Fig. 15 the structural response values can be determined as

follows.

Global Member: I:

u
Shear Forces : SFI(u,t) = fl,v - f (dFl,V + sz, ) (56-3)
u=0
u ,dar dr W
di Moments: BM (u,t) =-f e u+ f 1'V+ Z'V»udu
Bending : . ’ 1,V o du du /
(56-B)
u
Axial Forces : AF,(u,t) = fl,u.- f (dFll -€°dF3) - Fl’u
u=0
where (56-C)

A comparison of equations (39-A - 39-C) with equations (56-A - 56-C)
reveals that shear forces and axial forces are overpredicted by equations
(39-a) and (39-C), and bending moments are underpredicted by equation

(39-B) .

Global Member: II:

3 2,11

(57-a)

H
Shear Forces : SFz(u,t) = f - f arF + f dF -F
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H D+BX, /2
Bending Moments: BMz(u,t) = f dF1 u-( f dF3> u
,u
u1=0 u,=D
H D
+ F ° + — . L
2 g U { ar, Ly f aF, u, (£, [ tu+f, H)
ul_o u1=0 ’ ’ 4
(57-B)
H D
Axial F : = -
ial Forces AF, (u,t) f dFl,v + f dFZ,v £ v
u1=0 u1=0
(57-C)

-

(Note: u implies that integration will be carried out along the

Member I.)

The comparison between equations (40-A - 40-C) and (57-A - 57-C)
shows that shear and axial forces are overpredicted by equations (40-3a)
and (40-C). Bending moment predictions vary depending on the position
of the centre of rotation. If E/(H-E) >1, the bending moment value at
the centre of Member II will be overpredicted by equation (40-B) and for
E/(H-E)< 1 the bending moment value at the same point will be under-
predicted by equation (40-B). When E/(H-E) =1 the bending moment value at
the centre obtained by equation (40-B) will be the same as that obtained

from equation (57-B).

Global Member: III:

H-u

Shear Forces : SF,(u,t) = - fs,v - u[ (d}?l’V + dF2,V) (58-3)

H-Ll i dF \\

. : l,v Z,V)
Bending Moments: BMs(u,t) = -fslv(H—u)-ui ( ™ rew du
(58-B)

H-u
Axial Forces : AFa(u,t) = -fa’u-+ {H (dFllu-+dF2’u-edF3,u)

+ F (58-C)

where
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It can be concluded from a comparison of equations (58-A - 58-C)
and (56-A - 56-C) that shear forces and axial forces are overpredicted
by eguations (41-A) and (41-C), bending moments are underpredicted by

equation (58-B).

Case (c) £ £ and £ = f =0
3,V 3

1, ' Fae! 1,u

In this case, the output forces will be due to sway motion as well

as roll motion. The input and output force relations can be written as

follows:
(M#M")X +C X =-f -f = - 2f = -2f (59)
3 33 3 1,V 3.V 1,V 3,V
(I _+I' )X +C X +K X =2f _°*E=2f _ *E 60
XX XX' oy by oy by oy 1,V 3,V (60)
where
M23 : Body mass inertia force
I_ X : Body mass inertia moment
XXy
M'¥ , ¢ X : Hydrodynamic force induced due to sway acceleration
3 33 3
and sway velocity respectively
1., cC X : Hydrodynamic moment induced due to roll acceleration

XX by oy

and roll velocity respectively

K X : Hydrostatic moment.
by b

The distributions of the input and the output forces are shown in

the following diagrams.

- ) |
| - L. uf < jij
v Y. .YJi_ <1 v 7
: = T —] | -— = = :——< -
b I ! o —1 - = ]
|z k I3 = o] i A b ' .
-56—- - sl -S = - . -
Ly £, d¥, d7 ¥,
'V

BODY- MASS /NELT/A HYDEDDY N AV FOICE

Fopck D/STRPIBUTION DiSTerrpTIoNn SUs T
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¥ th - 7 i~ = > o —— , 7 =
,,,/f' | Xy iE\QF Q%LL? ! Xy E
! f Al Iy - ‘ -
6 4 + e
‘f s u : A
<is dfy - | -
At o § 5 H-dF,
JF, " df, =" | v
s/v "I‘/ T
A
Hlu q/‘u
BODY- MASS /NERT/A HYDRODYNAMIC AND A YDE2STATIC
FORCE D/STR/IBUTION Forcr DISTR/IBUTION DUE 7O
DUE 7O ZoiL MoTIoN, RolLL  MOT/ON
Fig. 16
M .
= — 61
dF1 oH X3 du (61)
ar = (waz a ¥ +b X \;du (61-A)
2 33 3 33 3,
=<1rpR2 ¥ +Db X )du
3 33 3 ,
F = --2% z du (61-B)
3,4 2H 4 1
M ..
- M (61-C)
ng,v SH Xu Yi du
F —-(m" 2, ¥ +2, b X (61-D)
4,u u »l 4 1 22 4
F = (X Y., dM' +X Y. b ) (61-E)
4,V y 1 v 4 1 33
where
' — 3
Mu = 0.424 pmR k22
_ 2 2
dM; = MPR" a,, du TPR® du
PgVG
dF = ————EE- du (61-F)
> B2X
4
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Having obtained the output force distributions for the loading case
shown in Fig. 16 the structural response analysis may be carried out as
follows.

Global Member: I:

u
o
Shear Forces : SF_(u,t) = f - f (dF . + dF _ + &F + dF )
1 l1,v u=0 1 2 3,v 4V
(62-2)
u
' 2 dF1 sz dFa dFu )
Bending Moments: BM (u,t) = - £ . < + 4 L
g t) Lyt Y io & Tt o u du
(62-B)
u u
Q
Axial Forces : AF (u,t) = - f dar - f €dF - F (62-C)
1 3,u 5 ,u
u= u=
where £ =

0 if wuw €D

€=1 if u > D

The structural response equations given in equations (39-A - 41-C)
are not valid for this asymmetrical loading case. However, a comparison
can be made between the set of equations given in (33-A - 35-C) and

(36-A - 38-C).

A comparison between equations (62-A - 62-C) and (33-A - 33-C) shows
that, the structural response values for shear forces and bending moments
will generally be overpredicted by equations (33-A - 33-B) unless roll
induced output forces are dominant. On the other hand axial forces can

only be predicted by equation (62-C).

Global Member: II:

D+BX1+
H 2
: = - - - 63-A
Shear Forces : SF,(u,t) i dF3,u f aF Fu 4 ( )
u=0 u=
H /dF dF dF
Bendi M ts: BM_(u t) = - £ e H+ f 1 2_+_ 3,V b,V u du
sheing Homents: 27! 1,v 20 du du du du
H \‘ H \
* < f dFa,u,'u + ( f dF, ' u + Fu,u *u (63-B)
u1=0 Y u1= /



H D H
Axial Forces: AF , = -
, (u,t) £ o * [ dF  + i dF, + [ aF,
D ul—O u1=0 ul=0
+ JdF =0
w =o v . (63-C)

1
The conclusion for Member II is similar to that given for Member I.

The bending moments and the axial forces will generally be overpredicted
by equations (34-B - 34-C), unless roll induced output forces are dominant.

On the other hand shear forces can only be predicted by equation (63-A).

Global Member: III:

H

Shear Forces : SF = -
ear Fo Jt) =4 - (dF1+dF2+dF3’V+dFk'V)
u=uQ
(64-A)
H dF1 sz dF3 v dF“ v
Bending Moments: BM_(u,t) = f * (H- ' !
J  (2r) 3,v ( uQ) f (du " TTan TTa
u=u
Q
(u-u_ ) du (64-B)
Q
hp o
H 2
Axial Forces : AFs(u,t) = f dF3,u + f EdFs (64-C)
u=u u=u
Q Q
> - -
If uG (H-D) £ 1
If < - =
uG (H~D) € 0

The conclusion for Member III will be the same as that given for

Global Member I.

The loading conditions discussed above had equal input loading in
magnitude in each case. If loading on the first and third members is
not equal, the superposition of the above given cases can be employed.

The following diagram illustrates this (Fig. 17).

Although the mass of the second member was not included in the
structural response analysis for the purpose of a simple comparison

between the fixed and the floating cases given above, the same procedure
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as was given for Members I and III may be applied to Member II for

structural response analysis.

Y ¥ v ¥V ¥

Il
+

¥- >>'£ Case . a Coss ¢

Fig. 17

1.3 Structure is Restrained or Free in Waves, Loading is Dynamic

In sections 1.1 and 1.2, the input and the output loadings on the
structure were determined at any instant over a wave cycle and the
structure was loaded with those quasi-static loads, i.e. time varying
load is assumed to be static at any particular instant and structural
response calculations were carried out under that static equivalency of
the fime varying load. Consequently, structural response values only

correspond to the static deflections of the individual members.

Here a simplified procedure for calculating the structural response
values for floating platforms which take dynamic deformations of the

individual members into account will be discussed.
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The structural response analysis of offshore platforms under
dynamic loading require a larger amount of computational effort due to
the high number of elements. If the offshore structure under consider-
ation is a floating one, the size of the problem becomes much larger,
simply because a floatiﬁg platform is an unconstrained and generally
indeterminate structure. In this study, no attempt has been made to
bring a unified solution to the problem, and only a general description
of the problem has been made. Some simplified dynamic loading calcul-
ations were carried out for the twin circular hull model semi-submersible
on which the rigid body motions and the bending moment values on the
deck were measured. The main aim of this simplified approach may be
summarised as follows:

(a) To determine whether the fundamental frequency of the member deform-
ations is near to the forcing frequencies which correspond to the
maximum structural response values.

(b) To obtain the structural response values under the dynamic loading
when the forcing frequencies which correspond to the maximum

structural response values are near to the fundamental frequency.

When the fundamental frequency of the structure and the frequencies
which correspond to the maximum structural response values, as well as
the frequencies which correspond to the maximum energy of the sea where
the platform is operated, are in the same region, a more detailed

dynamic analysis is needed.

A unified dynamic analysis procedure for fixed and floating plat-
forms is summarised in reference [7]. Reference [8] gives an analysis

procedure for the dynamic response of fixed gravity platforms.

The dynamic loading concept for floating structures will be demon-

strated with the following examples.
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Consider a rigid floating object and a mass attached with a canti-
lever beam onto this floating body, the forces on that structure are

shown in the following figure.

l
i<

25«/’//: %

LLLLLLLL

MASSLESS CAMNTILEVER (B)
CROSS SECT. ARZA: A g)

MOMENT OF /AELT/A
v OF 7H4E CPOSS Stcr. w T

A ;
v
Ak
L L > F )
“ \ / fu
~._l
(A)

Fig. 18

The total force on the mass (A) may be written as follows

(65)

(65-A)

If the floating object is assumed to be restrained in waves, equations

(65) and (65-A) become

= - f (65—8)
F’I‘,u l,u
F = - f (65—C)
T,v 1,v
where £ ,f1 . wWave induced forces on mass (A) in u and in v direct- /
’ !
ions respectively.
F1 ,F1 : Rigid body motion induced forces on mass (A) in u and
’u ,u

in v directions respectively.
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f £ F F

l,uo 1,v l,u 1,v
flru=fr
1,u
f1 v = £
o
’ 'l,V
Fl u B Fl
4 '1,1.1
F2 v = F
' O'Z,V
where W:

a: Phase angle between f1

R: Phase

Y: Phase

can also be written in the following form

cos (wt)

cos (wt-a)

cos (wt-R)

cos (wt-Y)

angle between £
1

angle between £
1

FRs!

4

Input wave force frequency

and £

The structural response values for the

static loading become

Shear Forces

Bending Moments:

Axial Forces

SF (v,t)
S

AF (v,t)
s

BM t
s(v, )

(66-3)

(66-B)

(66-C)

(66-D)

cantilever beam under quasi-

(67-3)

(67-B)

(67-C)

A structural response analysis of the cantilever beam and mass

system under dynamic loading may be carried out as follows:

/—‘F"’\f\\-‘
=
\ ,
\\I,// @
T
Ty
Fig. 19
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If we assume that the cantilever beam is massless and that its

geometrical and material properties A,E,f are known, the following

differential equations

of the cantilever beam

.y
(m+m11)u + kzzu

loads on
v

1 < —
(m+m22)v +k,,v =

1 .
where m,,:

mll:

k“:

k22:

Added mass

Added mass

can be written to determine the local deformations

and mass system due to mass (A) and time varying

the mass.
FT,U. (68_A)

of object A in u direction

of object A in v direction

Stiffness of the beam in u direction

Stiffness of the beam in v direction

Acceleration of mass A due to elastic deformations of the

cantilever

beam in u and v directions respectively

Displacement of mass A due to elastic deformations of the

cantilever

beam under time varying loads in u and v direct-

ions respectively.

The solutions of equations (68-A) and (68-B) can be written as

follows

F

o

11

and

where u ,v
o’ o

(69-A)

(69-B)

n,

——
—
|
VR
£
€

W

Maximum displacements of mass A due to elastic deformat-

ions of the cantilever beam, in u and v directions

respectively.

Maximum total loads applied in u and v directions

respectively.
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11

n'zz.

Natural frequency of beam and mass system in horizontal

vibration mode

k11

'
m+m2 2

Natural frequency of beam and mass system in vertical
vibration mode

k22

m+m'
33

The following relations between the applied forces, static displace-

ment and the stiffness can be written using beam theory as

i

o)
's
or u
Oy
S
where k
11
and v
O,
s
or v
o,
s
where Xk
22

The maximum dynamic displacements us vy

F h
géu (70)
FO
4
- T,u (70-3)
11
3EI
h3
F_ eh
'iév (71)
FO
v (71-3)
k22
AE
h

can also be defined in

terms of static displacements ug and v as follows
's s
u_ = 0 (72)
o Org "Rirpy
v =v_ 9Q (72-A)
o] o, n,,,
where Q Magnification factor for the horizontal mede of vibration
11
o _ 1
B )
{ -
w
N
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Qn, : Magnification factor for the vertical mode of vibration
22
1

%, ¢ /[< — >2 2

Nypy

The elastic curve for the cantilever beam can easily be determined
using the relations between applied load and the translational and the

rotational displacements of the beam.

E
|
|
1

Fig. 20

If we consider a cross-section of the beam at distance v from the
origin, the following static displacements occur in the u direction at

that section due to the bending moment and the shear force.

- _ BM(v) (h-v) 2  SF(v) (h-v)°
BVt ratic T T 2ET + 3EI (73)
or F *v °(h—v)2 F (h—v)3
- Orpu Crp oy
= ’ 73-A
BVt vatic 2EI * 3EL ( )

The first term on the right hand side of equation (73) or (73-A)
gives the translational displacement of the cantilever beam due to the
bending moment, the second term on the right hand side of equation (73)

or (73-A) gives the translational displacement of the cantilever beam
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due to the shear force. (It is assumed that F does not induce any
1oLy
horizontal displacement.)

As with equation (73-A), the maximum dynamic displacements of the

cantilever beam can be written using equation (72) as follows

u(V't)dynamic B u<V't)static ) Qn,11
Fo v (h-v) 2 F (h-v) 3
_ ‘T,u . T ' 24
2EI 3EI Qn, (74)

. 11
The horizontal displacements of the beam over a complete wave
cycle can be expressed as follows

v(h—v)2 + (h—v)3
2ETI 3EI

J F cos (wWt-8) * Q (75)
©rp,u 11

u(v,t) = [

where §: Phase angle between FT 3 and f1

’ ’

u(v,t) can also be expressed in terms of static displacements as follows

. (75-a)

ulv,t) = u(V't)static n,

Similarly, dynamic axial displacements of the cantilever beam take

the following form

V(u)dynamic - V(t)static ) Qn,22
Fo h
’
= —Iv g (76)
AE N2
and v(t) = g%-F *Q cos (wt-y) (77)
O’T,v Braa
where Y: Phase angle between FT,V and fl’u

v(t) can also be expressed in terms of static displacements as

follows

- . (78)
vi(t) V(t)static Qn'zz

The structural response values can be determined in terms of the

dynamic displacements as follows
33%u

Shear Forces: (SF(V't)]dynamic = - EI — (79)
v
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If we substitute equation (75-A) into equation (79) the following

relation is obtained

[SF(v,t)] = [SF(v,t)]

dynamic static Qn,11 | (79-a)

Bending M : = 3%u
g Moments: [BM(v,t)]d , = - EI — (80)

ynamic 8V2

BM(V,t = . _
or [BM (v, )]dynamic [BM(V't)]static Qn,11 (80-2)
F
: Crp,v
3 - = —_._'._ - [ 3

Axial Forces: [AF(t)]dynamic E cos (Wt=yP) * h inzz (81)
[AF(t)]dynamic = [AF(t)]static ) Qn, (81-A)

11
The beam mass vibration problem for an n degrees-of-freedom system
may be summarised as follows. Consider two submerged objects attached
to the cantilever beam to represent a two degrees-of-freedom system.

If the mass and the added mass of the first object are m and m; respect-

1
ively, and the time varying applied force on this cbject is Fé L, and if
’

the mass and the added mass of the second-object are m, m.: respectively,

2
and the time varying applied force is Féz) (for simplicity only horiz-
7

ontal applied forces are considered) then

LLLLLLLLLL

]
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F 2
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The equilibrium equations for the beam and two masses system shown

in Fig. 21 may be written as follows

e _ (1)
(m1+mij)u1 +k,u, +k,u, = FT,u (82)
22
(m,+m!)u, + k,,u, + k = F(2)
272] “2 21 22%2 T,u (82-2a)
where u ,u,: Horizontal displacements of the first and the second mass
respectively.
kij : Stiffness coefficients which may be defined as the force
at point (i) due to a unit displacement at point (j). ;
. (1) (2) : . : .
Since F and F are sinusoidally varying forces, u, and u_ will
T,u T,u 1 2

also vary sinusoidally, and therefore the following relations between
acceleration and velocity can be written as
i, = - 0y, (83)

i, = - wu, (83-A)
If equations (83) and (83-A) are substituted in equations (82) and

(82-A) the following equations are obtained

_ )2 - pt) 84
[k11 (m1+mliw ]u1+k12u2 FT,u (84)
2
k k,, - (m+m})w?lu, = F\°) (84-2)
21% 1 [Kgy T mptmpiwiiu, = Fao

122

Equations (84) and (84-A) may also be converted into matrix form as

follows
i 1T (1) 7
- 1) w2 F
(kll (ml+m1)w ) k12 4 T,u
122 = (85)
) 2 (2)
- ! F
K21 (kzz (mz+m2%f ) %2 T,u
_Equation (85) can also be written as follows
- - - - -v| l, -
| (1)
k k m.+m! 0 L F
11 12 1, f 1 ! T,u
| - w? 0y o= (86)
; i ! i
! i (2)
] ! {
? 21 K22 0 m2+m2” B {FT,u
: B _ "2. L |
- ¥ ¥ < y
(M], (F]
(k] ij
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{[K]ij - w? [M]ij} v, = (5, 1, (86-A)
where [K]ij : Stiffness matrix of the beam two mass system
[M]ij : Mass matrix
[FT,u]i: Force matrix.
In order to find the natural frequencies of the system shown in
Fig. 21 the right hand side of equation (86-A) can be set to zero
{[K]ij - w? [M]ij} [ul, =0 ' (87)

[U]i values can only exist if the following determinant is zero

||{[K]ij - wZFM]ij}ll =0 (88)

Equation (88) is called the frequency equation of the system. The
N roots of this equétion (w1% uba cos ugs represent the natural
frequencies of the N modes of the vibration which are possibie in the
system. The roots of the following eéuation give the natural frequencies
of the system shown in Fig. 21.

L 2 2 - =
w @IMZ - (le k,, +M,u k11) (k12 k,,+ k., kzz) 0 (89)

where Ml = m,+m!

|
B
+
B8

Mz Bas)

It is also possible to define the equations of motion in terms of
the flexibility influence coefficients éij which are defined as the dis-

placement at i due to a unit force at j. For the system shown in Fig.

21 the displacements can be written using flexibility coefficients as

(90)

I
o
|
-+
o
|

u
u_ =6 F o+ S F (90-3a)

For the forced vibration problem F, and F, become

_ (1) s
F1 = FT,u Mlu1
_ L (2)
F2 = FT,u 2u2
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and for the free vibration problem

For the free vibration problem equations (90) and (90-A) can also

be written as

u

2 2
! MW u1611 + MW u2612 (91)

o
I

2 2
M W ulcS21 + MW u2622 (91-A)

Equations (91) and (91-A) can be expressed in matrix form as

- -

- W (92)

u, and u, can only exist if the following determinant vanishes

1
611 My -~ 12

€

= 0 (93)

5 M 5. M, - =
w

When the determinant given in equation (93) is calculated the following

equation can be obtained

1 1
ot ;3'(611M1'+622M2)*'(511622"612621) Myt M, =0 (94)
. . 1 1
If it is assumed that the roots of equation (94) are Zr-and o
1 2

the following polynomial equation may be written

I

A comparison between equations (94) and (95) leads to the following

\ /11
\,=.1__[_1_\(_1_+L\+.1__1_=o (95)
/ R 5 ]

2 ) - 2
2, w WY 2/ 1 %2

equation

M M
1 2 1
_1_ + _1_ = CS M + o) M = + = + 1 (96)
2 2 111 222 k11 k22
W w, Wi W
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where wl

11°

22°

Natural frequency of the

mode. It is also called

Natural frequency of the

second mode.

The natural frequency of

is present.

The natural frequency of

is present.

system which corresponds
fundamental frequency.
system which corresponds

the system when only the

the system when only the

to the first

to the

first mass

second mass

Since the natural frequency of the second mode will be higher than

the fundamental frequency the following form of equation (96) can be

written

L
2
wl

~

1 1
_—-—+_—

w

2 2
1 w22

(97)

Equation (97) can be extended to any number of degrees-of-freedom to

obtain fundamental frequency as follows

1

—— TN

2
wl

Equation (97-A) is known as Dunkerly's equation [9].

1 1 1

+ - e —

2 2 2 (1)2
nn

ations of this equation can be found in references [10,11].

~

(97-3)

Various applic-

The natural frequencies of the beam-mass system shown in Fig. 21 may

be written from equation (94)

"
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1 1 2 2
= 5-(M1611+-M2622) * //Z'(Mléll"Mzszz) + M1M2612
_h
3EI
2 )3
. _—hz(hl-hz) . (h,-h,)
12 2EI 3EI
3
(h,-h,)
3EI
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The two roots of equation (98) correspond to natural frequencies for

the first and the second modes of vibration.

It is also possible to determine the natural frequency for the first
mode (= fundamental frequency) of the same system using Dunkerley's

equation as given in (97) using equation (96)

3 - 3 _
Mlh Mz(hl hz)

o] T 3ET T 3EI (98-a)

1

Structural response values for two or higher degrees-of-freedom
systems can only be found by solving the motion equations given in
(86-34) . Since the structure was analysed as a two mass system,

dynamic structural response values can be obtained as

. = . < <
Shear Forces : [SF(V,t)]d [SF(v,t)]static Q, for 0 < v <h,
(99)
. . = . < <
Bending Moments: [BM(v,t)]d [BM(v,t)]static Q for 0<v<h,
(99-a)
[u(hl,t)]gynamic
where Q1 = ot t)]
1"/ “gtatic
Similarly,
. = . <
Shear Forces : [SF(v,t)]d = [SF(v,t)]Static Q, for h, € v h,
(100)
Bending Moments: [BM(v,t)Jd = [BM(V,t)]Static‘ Q2 for h2 g v < h1
(100-2)
where Q2 = o o) ]
Uiy static

The examples given above can be extended to include N degrees-of-

freedom systems following the same procedure.

As a second group of examples, the floating structure shown in Fig.

22 will be analysed under dynamic loading with the following assumptions:
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Fig. 22

(a) The weight of the vertical columns and the horizontal beam are
neglected.

(b) The input wave forces as well as output forces on the columns are
neglected.

(c) The mass of the circular volumes is concentrated in the centre of
those volumes.

(d) The geometrical and the structural properties for both columns are
identical.

(e) The masses and the geometrical properties for both circular volumes

are identical.

The dynamic loading analysis of the floating structure shown in Fig.

22 will be carried out for the restrained and the free floating cases.

(1) Structure is restrained in waves

In this case basically two different types of loading and the corres-

ponding support conditions may be chosen. The loading on the structure
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at any instant over a given wave cycle can be found as the superposition

of those two systems.

(i-1) Horizontally apglied wave loading is symmetrical about the vertical

centre-line: Since two horizontal forces which are equal in magni-

tude and opposite in sign to each other act on the system, the structure

will be supported with the simple supports at the horizontal beam, as

shown in Fig. 23.

Vv 23
by S v
| @ 1, X
\V4 ________;V n
T =
H YIET, I, | 2

Fig. 23

The differential equations describing the displacements of mass (1)

and mass (2) can be written as

(101)

I
th

(M. +M )v1 + kvv1

1 1,33 1,v

£ (101-3)

M,+M
( 27702 2,v

)W, + k. V
733 2 v 2

Because of the symmetry in the structural and the geometrical
properties, as well as in wave loading, equations (101) and (101-a) will
be identical and therefore these two equations can be represented by a

single equation as follows
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(M1+M1’33)V1 tkotvy = £ (102)

where M, : Mass of the first circular volume

M1 : Added mass of the first circular volume in the horizontal

r33
mode of translation

k : Stiffness of the system against the horizontal displace-

ment of mass M1

f1 v’ Horizontal wave input force.

14

Stiffness of the system against the horizontal displacement can be

determined as follows.

The lateral displacements of mass (1) and mass (2) under quasi-

static loading can be determined using Castigliono's theorem [12]

2 2 2
Ju 3 (? M; du . ? M," du . ? M, dui} 103)
v,+ Vv, = =
1 2 _ — E
S R o B U e
'V ,V
where u : Total strain energy of the system
fl v’ Quasi-static wave force
’
M, =Ff _*u (103-3)
1 1,v
= £ L 103"B
M, fl,v H ( )
M, = £ ¢ (H-u) (103-C)
3 l,v

When equation (103) is determined using equations (103-A - 103-C),

the lateral displacements of mass (1) and (2) become

f H -
l1,v 2H 3B
v.+v, = 2v, = 2v, = 4 < + > (104)
EI1 EIZ

Now k value can easily be obtained from equation (104) as follows
\Y

1
Kk = & (105)
v 2 | 2B 3B

H —
EI EI,

1
The differential equation which represents the free vibration of the

system becomes
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(M1+M1, )v
33

. t kv. v, =0 (106)

and the natural frequency of the system in symmetrical horizontally vibrat-

ing mode

. -t/ °
S,h H (

2
M.+M )_H__*.i
17, EI EI
33 1 2

The displacement values of masses (1) and (2) can be obtained from

(107)

equation (102) as follows

fl,v/kv .Qs,

vl(t) = vz(t) (108)

h

where Qs =
’
h 1_((»
ws
'h

(i-2) Vertically applied arbitrary load or horizontally applied

arbitrary load: In this case, the structure will be supported by

the fictitious supports on the right and left hand sides of the structure
successively, and a similar calculation procedure to that carried out in
the previous case will be used to obtain the natural frequencies, and the
(1) and (2) the

horizontal and the vertical displacements of masses under

wave loading. The procedure may be illustrated as follows.

ET,
Er ET @ ' = (r
! ! = QD <:> + QD
W
X f I~ - { {;

~ig. 24
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The displacement of mass (1) in the horizontal and vertical modes may
be described with the following uncoupled differential equations

(M1+M1

v, +k_ = f
,33) 17 % N (109)

1,v

(M, +M, (109-a)

u, +k *u, =f
’22) ! u

1 l,u

where Ml: Mass of the first circular volume

M M : Added mass of the first circular volume in the hori-

zontal and the vertical mode of translation respectively

kv’ku : Stiffness of the system against the horizontal and the
vertical mode of translation respectively
f1 V,fl 4 Wave forces in the horizontal and the vertical direct-
/ 4

ions respectively.

Stiffness values in the horizontal and the vertical modes can be
determined using Castigliano's theorem as was done in the previous case.

kV and ku values are found as follows

K = = __._1__ (110)
v o g2 (2H | 3B
EI1 EI2
k, = Biz T—i——ﬁ—— (110-a)
EI1 EI2

Strictly, k_should also include the stiffness due to hydrostatic
u

restoring forces giving

- T
3 1
= = + A (110-B)
ku 52 B H P9 \4
EI1 EI2
- -
where Aw: Waterplane area of Member I.

Since generally the hydrostatic stiffness of flecating platforms is
very small compared to elastic stiffness, in this study hydrostatic stiff-

ness is neglected in the dynamic structural response calculations.
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The natural frequency of the system in the horizontal vibrating mode
becomes

3
" =%/ | (111)
L

as, 2H 3B
+ S =
(M, M1,33)<EI1 E12>

The natural frequency of the system in the vertical vibrating mode

takes the following form

w == (111-3)
as, B B H >
v <M1+M1'22)<EE:-+ EE:-

The displacement of mass (1) in the vertical and the horizontal

directions becomes

vl(t) = fl’v/'kV .Qas, , (112)
h

= * 112-a)

ul(t) f1,u/ku Qas,V (
where
1

Qas,h -
Qas,V -

Similarly, displacement of mass (2) in the vertical and horizontal

modes becomes

v, (t) (113)

N
]
[a)
N
<
>
X0

(113-3)

>
©

uz(t)

The procedures for finding dynamic displacements, given above, will

be used to obtain the structural response of a floating structure shown

in Fig. 25 as follows.
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Fig. 25

The wave forces on this floating structure-will be broken down as
the symmetrical and the asymmetrical forces as shown in Fig. 26. The
dynamic structural response values will be determined following the pro-
cedure used earlier to obtain equations (79-a), (80-a),81-A) in conjunct-

ion with equations (108),(112),(112-a),(113),(113-3).

A AV V. Z e
9 + @ @l 4+ |9 @)
f X i
Nl i__"” 4 T o g

Fig. 26
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Global Member: I:

Shear Forces : SFl(u,t)
Bending Moments: BMl(u,t)
Axial Forces AFl(u,t)
Global Member: II:

Shear Forces SFZ(u,t)
Bending Moments: BMz(u;t)
Axial Forces AFz(u,t)

It should be noticed that equations

to equations (40-aA - 40-C)

Global Member: III:

Shear Forces : SFs(u,t)

Bending Moments: BM,(u,t)
Axial Forces AF, (u,t)
where Q /Q ’Qas

Sry @Sy '
respectively.

1
= £, cQ  +=|(f -t
2,v s,h 2 [ 1, 2,v) Qas,h
B
- f _— -
2,u H Qas, ] (114-n)
v
= - f *u°*Q + L. (£ ~-f JeueQ
2,v s,h 2 l,v 72,v as,h
B
+ f ® — -
2,0’ H u Qas, ] (114-B)
v
= %[fl,u+f2,u] (114-C)
=%[f +f -
5 [ _— 2,u] Qs, (115-a)
= - f *H- +=I!-(E, -f ) <H-
2,v erh { 1, 2, Qas,h
g TBr R, T R W) Tu e, ]
h v

(115-B)

5 [-£ -f ]

l,V 2,V

(115-C)

=t %[_(fl v i, v) -

14 4 4

(115-A - 115-C) become identical

= = =1.
when QS N Qas h Qas -

1
= - £ +=|-(f, -f  )*Q
2,v Qs,h 2 [ ( 1, v 2,v as,h
B
- * - 116—A
fl,u H Qas, J ( )
v
1
= - - . — - - H_ o
fz, (H-u) Qs'h+ > [ (fl,v lev)( u) ° Q
f1 *B
- ! eus Q (116-B)
as,
v
=+ %[_fl u—fz u] (116-C)

values were defined in equations (108),(112) and
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(ii) Structure is free-floating in waves

In this case the output forces (= hydrodynamic, restoring and mass-

inertia forces) on the circular volumes should be calculated.

The structural response values can be obtained using equations
(114-A - 116-C) after the force terms have been replaced with the sum of

the wave input and output forces.

The approximate method summarised above was applied to predict the
bending moment values at the deck of a twin circular ﬁull model semi-sub-
mersible. Since the deck structure of the model was built to be flexible
in order to obtain higher and stable strain output from the strain gauges,
the method of dynamic analysis was applied for the more reliable compari-
son between the experimental and the theoretical results. The results

will be discussed in the next section.

Here it should be mentioned that in general most of the existing
semi-submersible type floating structures have sufficiently rigid overall
structural integrity between the members, so that the local mode of member
deformations can be neglected in their analysis and therefore quasi-static
analysis will be sufficient. However, the particular type of floating
platform shown in Fig. 27 should also have been checked for dynamic load-
ing. For this type of geometry, approximate analysis can easily be done
using the model shown in Fig. 19. The Author was unable to obtain the
structural particulars of this rig for the dynamic loading calculations,
but the accident involving the breaking of the leg suggests that the

actual loading may have been higher than expected.

Another type of semi-submersible design, shown in Fig. 28, also has
flexible connections between the rigid deck structure and the main legs.
Structural response calculations of those flexible connections under

dynamic loading could have been important to the structural design. The
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UPPER BRACINGS AND DECK ARRANGEMENT

LOWER BRACINGS AND PONTOONS ARRANGEMENT

NOTE = LEG D WAS BROKEN

Figure 28 (From Reference 21)
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troubles experienced by those two types of design suggests that greater
attention should be paid to those cases when the structural arrangements
are such as to bring the natural frequencies down towards the wave

frequencies.

The dynamic structural response analysis also becomes important and
necessary ig the following cases:

(a) In the design of structural members of a floating rig when they
extend into deeper draught, i.e. riser cables, tension leg cables,
cooling pipes of OTEC platforms, etc.

(b) Structural response of floating structures under impact loading.
Impact loading may occur during vessel-platform collision or wave
breaking between the members of a floating structure.

(c) Damage assessment of the whole structure after the damage has

occurred.

1.4 Calculation of Structural Response Values for Twin Circular Hulled
Semi-Sukmersible Model '

The calculation procedures described in sections 1.1 - 1.3 (see
also section 2.2) to obtain the structural response values were applied
to a twin circular hulled semi-submersible model, shown in Fig. 29.

(The full characteristics of the model are given in Appendix 1. In Fig.
30, the structural response analysis results for maximum bending moment
at the centre of the deck in beam sea conditions are shown. In this case,
the structure was assumed to be restrained and the results represent the
linear quasi-static loading, non-linear quasi-static loading and non-

linear dynamic loading. Input wave loading and the output force calculat-
ions were carried out using the computer program FLUID4A which is a wave
loading, motion and structural response analysis program for twin circular

hull multi-column type semi-submersibles. (FLUID4A is described in detail
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(BENDING MOMENT ON THE DECK)

Fig. 30
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in Chapter 6.) Non-linear loading calculations take into account non-
linear free surface boundary conditions, as well as the effect of the

second-order forces.

In Fig. 31, the bending moment values at the centre of the deck for
the free floating model were presented. Loading conditions were taken

to be the same as in the previous case.

In Fig. 32, a comparison is made between the bending moments at the
centre of the deck for the restrained and the free floating model cases.
In the case of the restrained model, the support conditions were chosen in
the theoretical model such that the structural response values would be
maximum. (See equations (40-A - 40-C) and (115-A - 115-C).) Figure 32
shows that the bending moments are generally overpredicted in the restrained
model case. However, in the region where excitation frequencies approach
the natural frequencies for the rigid body oscillation modes, the bending
moment predictions for the free floating model are greater than the res-
trained model case. This may be due to the high output force distributions.
;he experimental results are generally in good agreement with the theoret-
ical predictions. Some differences between the theoretical predictions
and the experimental results may be due to the approximations involved in
the motion response equations (see also Chapter 4), and in the prediction
of dynamic structural response values. Some effects of the harnesses
which hold the model in position in the waves may also be expected in the

region where excitation frequencies approach the natural frequencies of

the rigid body oscillations.

Although the theoretical predictions compare reasonably well with
the experimental results in the case of a restrained mathematical model,
one might have expected the theoretical predictions of the bending moments
at the deck to be higher than the experiﬁental results. This combined

with the fact that the underestimation of the bending moment values for
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the free floating model casé suggest that wave inertia coefficients should
be higher than the values used in these prediétions. In general, to deter-
mine the structural response values using the restrained mathematical
structural model should give safer results. However, a designer who is
going to use a structural analysis computer routine for the restrained
model, must also choose Support conditions which will give maximum struct-

ural response values under the particular wave loading.

In Fig. 33, various components of the bending ﬁoment values in the
restrained model case under quasi-static loading were plotted against
excitation frequency. This shows that the bending moment values on- the
deck are highly dominated by the wave loading on the hulls over a large

range of excitation frequencies.

2. CALCULATION OF THE STRUCTURAL RESPONSE FOR
INDETERMINATE STRUCTURES UNDER WAVE LOADING

In this section a structural analysis procedure to obtain shear
force, bending moment and axial force values for an indeterminate
floating structure will be discussed. In the case of an indeterminate
structure the calculation procedure in terms of loading calculations
and the selection of boundary conditions will be similar to the case of

determinate structures.

In order to perform the structural response analysis of a floaﬁing
offshore rig, the use of a computer routine will be necessary. One
may either write a structural analysis program for a certain geometry,
boundary conditions and the type of loading, using classical engineering

methods [13]_[}4] or use dgeneral purpose frame analysis routines [15]

[16].
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In this study a general purpose two-dimensional frame analysis
program FRANZ2 was used. FRAN2 was originally written in BASIC language
by I. Smith of the Civil Engineering Department, Glasgow University and
converted to FORTRAN language and modified to include frame and load
definition files by the author and»C. Bradley, Computer Software

Assistant, of the Naval Architecture and Ocean Engineering Department.

In this study, structural analysis calculations were carried out
for symmetrical geometries, therefore a two-dimensional frame analysis
computer routine was sufficient, following the procedure explained in
section 2.2. In the case of asymmenric geometries, or when there are
no limitntions in terms of time, coét and the storage capability of the
computer, general purpose three-dimensional space frame computer

a

routines are more appropriate.

2.1 Analysis of Rigid Plane Frames

2.1.1 Loading is static or quasi-static. In this section the method

which was used in FRAN2 will be summarised. The method was first
devised by Livesley of Manchester University [}7,18] and is known as

the Stiffness Method in the literature.

When a single loaded member whose section area is A, second moment
of inertia I and Young's modulus E, is taken from a frame system, the

following relations between the forces and the deflections can be written.

For simplicity, the general form of a deflected member can be

replaced with the superposition of the six cases as shown in Fig. 34.
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For each case, the well-known relations between the forces and the

displacements for a cantilever beam can be written [13]. Superposition of

these cases gives the relations between the end forces and the end dis-

placements of a member. This can be expressed with the following equations.

(£,1 = [k, 1[4,] + [k,,1(d4,] (117)
[(£,] = [k,,1[4,] + [k,,]1[4d,] (117-3)
where ]
£ £
X X,
[(£.] =| £ , f =| £
1 yl [ 2] yz
L™ T2
%? 0 0
k1 =| o 12EI 6EL
VA 22
0 6ET 4EI
22 £
- %?' ; .
_ _ 12EI 6ET
k,,] =| O 7 ”
6EI 2EI
T ¢
T )
- %?- 0 0
12EI 6ET
(k,,] = 0 - =5 -7
0 6EI 2ET
22 =z

- 304 -



(4,1 = |8y,

14

0
0
12E1 _ 6EI
2 yd
_ oEI AEI
£2 Z
r -
dxz
[d2] = 6y2
- ez-‘h

The relations between the end forces and the displacements of a

member can also be expressed in a general form

- - p~

Force Matrix
of a member

The stiffness equations written in equations

related to the local axes of a member.

EA
0 _ EA
0 12
12EI 6EI 0
23 £2
6EI 4E1
== = 0
KZ K
EA
0 0 7
_ 12EI _ BEI 0
23 22
oEI 2EI
222 = 0
£2 £
¥

Stiffness Matrix
of a member

- - -
0 le
6EI éy
22 !
2EI
£ el
. (118)
0 ze
6EI Gy
22 2
4EI§
=z || %
- - -
¥
Displacement

Matrix of a member

(117) and (117-A) are

However, in the case of frame

systems some members may be inclined at different angles to any direction.

Therefore it is necessary to choose an overall reference system for a given

general system.

member are shown with respect to the local and overall axes.

In Fig. 35, the forces and displacement vectors on a
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Fig. 35

The relation between end forces and displacements of a member in

local axes and in overall axes can be shown as follows

£
X

£
X

m,

4B

"

and displacements

Ax1

AYl

cosy - fy

siny + £
v Y

"

b!

siny

cosy

8x, cosy - 6X, siny

68X, siny + 8X, cosy

or, in matrix form

pae

Fx
!

F
Yo,

-

g

cosy

siny

- siny

cosy

dW Pf ]
X1

0 £
Y,

1 {?1

(118-3)

(118-B)

(118-C)

(119-3)

(119-B)

(119-C)

(120-A)



and

AX1 cosy - siny 0 Péxlq

AY1 = | siny cosy 0 ze (120-B)
6, 0 0 1118,

¥ ¥ ¥

(8,1 = [T] © la,]

—

Similarly it can be shown that

[F,1 = [T] « [£,] . (121-a)

(8,1 = (7] - [q,] (121-B)

If we substitute equation (117) into equation (120-A)

(F,] = [71+ ([x,, (4] + [k 1la]) (122)

The following relations can also be written from equations (120-B)

and (121-B)

[¢,) = (117" 4] (123)

-1

[a,] = [T] ~ [4,] , (123-A)

2
When equations (123) and (123-A) are substituted into equation (122)

the following relation is obtained

1 1

[F,] = [Tk, ]0(T] °~ [A,] + [T1lkx,,][T] " [A,] (124)
or

[F,] = [s,,108,1 + [s,,]1[4,] (124-3)
Similarly

[F,] = [s,,108,] + [5,,104,] (124-B)

-1

(T1lk,,1007"1 ,  [s,,] = [Tllx ,l(T "]

where [811]

1

]

[s [T1lk,,1l7°'1 , [s,,] = [T)lk,,](T"

21]
Equations (135-A) and (135~B) are the stiffness equations for any

individual member of the frame system with respect to the overall axes.
After having obtained stiffness equations for a member of the frame

system, the procedure which was followed in the FRAN2 computer program to



obtain the ends' reactions as well as the joint forces of the frame

systems can be summarised as follows:

1.

2.1

2.2

2.3

2.4

2.5

2.6

An overall axes system for the frame is chosen and ends 1 and 2 for
all members are specified.

The frame system is replaced by two cases. In case 1, joints of
loaded members are fixed and end reactions are calculated. 1In case

2, the response of the system to fixed end moments and joint loads

is calculated using the stiffness method as follows:

Stiffness matrices are formed for each individual member.

At each joint the equilibrium equation is written taking into account
external and internal loads. This process is repeated for all joints.

Internal force values are replaced in the equilibrium equations, then

-all the external load values and known displacements are inserted.

In this way a set of equations can be obtained in which the joints'
displacements are unknown.

The appropriate equations are solved to obtain displacemeht values.
Displacement values are inserted into the stiffness equations to
obtain the forces and displacement values with respect to overall
axes for each member.

Using the transformation matrices the forces are also obtained at the
member reference system.

Each members' end forces are obtained from case 2, and superposition
of case 1 and case 2 gives the structural response values of loaded
members throughout their spans.

In the following, the application of the stiffness method will be

illustrated by calculating the member forces of the frame shown in Fig. 36.
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Case 1: Fixed end moments for ends 1 and 2 will be
WL 2
FEM1 = - FEM = —— (125)
'B 2,B 12
Similarly, vertical end reactions take the following form
- - W -
R, =R, = > (125-3a)
Case 2: There are two internal forces and one external force at both

points B and C. If we write the equilibrium equations at these points

Ll =10(F, 1 +I[F | (126)

IB IB

L.l = [F

c ] + [F1 ] (126-2)

2'c 'c

The following force equations can be written using equations (135-A)

and (135-B)
[, 1 =1[s,, 10,1 +1Is,, 1[a] (127)
‘B ‘AB ‘AB B
[FI'B] = [S“,B 1Al + [slz,BC][AC] F127-A)
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[s,, 1181 +s, 104

21 "BC

'BC

—
I

= s,, 118 +[s,,

J[A ]
CD 'cD D

Since ends A and B are fixed

[8,]

(4]

When

0

(128-B)

(128-C)

(129)

(129-a)

equations (128 - 128-A) are substituted into equation (127) and

equations (128-B - 128-C) are substituted into equation (127-A) and also

making use of equations

equations

(129) and (129-a), the following simultaneous

are obtained

= [s ] +[A_]1 + [s ] <081 + (s 1{AL] (130)
22’AB B ll'BC B IZ’BC C

=[s,, 1l +1[s, 1< +I[s 18] (130-3)

BC "BC

"CD C

In equations (130) and (130-A) the external loads [LB] and [LC] are

known, as are the [Sij] matrices. The only unknowns AB and AC can be

obtained from these two simultaneous equations as follows

- -

(8,

(A.]

(S

(s ]

12
'BC

(131)

The forces at the ends of the members with respect to the local axes

are as follows

Member AB

Member BC

. i

, End 1: [EFI] = [TAB] [slz’AB][AB] (132-3)

End 2: [EF,] = [TAB]'1 [S,, ag) [Bg] (132-B)

, End 1: [EF] = [T, )" {[SlerC][AB] + [SIZ'BC][AC]} (132-C)
_1 _

End 2: [EF,] = [T.] {[SZI'BC][AB] + [SZZ'BC][AC]} (132-D)



Member CD, End 1: [EFI]

]
=
L= |
Q
o
—_
|
—
iy
w
—
—
>
(@)
—
——t

(132-E)

End 2: [EFZ]

"
=)

[s,, 1Al - (132-F)

2.1.2 Example of the use of FRAN2. The two-dimensional frame analysis

program FRANZ2 is used with the two subsidiary programs DEFRAME and DELOAD.

DEFRAME was written to store the details of the frame geometry in a
file. Similarly, DELOAD stores a particular loading case in a file so
that the effect of changing the structure's geometry and boundary condit-

ions, while retaining the original loading case, can easily be studied.

The use of DEFRAME, DELOAD and FRANZ2 is illustrated with the follow-

ing example.

In the example, the member forces of the frame shown in Fig. 37 will

be determined by means of computer input and output.

2 KN/m.

.,_
[ o \\

c

/0.0

Fig. 37

Geometrical Properties of the frame shown in Fig. 37:

Member Area of Cross-Section Second Mome?t of Area
No. (mmz) : (mm ")
1 30 x 10° 150 x 107
2 30 x 10° 150 x 10’7
3 30 x 103 150 x 107

Young's Modulus = 210 KN/mm?.



JHUN URY I UEFRANE
ENTER NAME FOR FRAME DEFINITION FILE : REAM3.FRM

DO YOU WANT FULL DIAGNOSTICS 7 (Y/N) % Y
NUMBER OF MEMBERS IN FRAME (MAX=48) * 3
NUMBER OF SUPPORTS (MAX=TOT MEMBERS - 1) # 2
SUPPORT NUMBER 1 IS NODE NO * 1
SUPPORT NUMBER 2 15 NODE NO * 4
DATA ENTERED SO FAR :

FULL DIAGNOSTICS S |
TOTAL MEMBERS : 3
TOTAL SUFFORTS : 2
SUFPORT NODES : 1 4

[0 YOU WISH TO RETYPE ANY DATA 7 (Y/N) : N
NUMBER OF SECTION TYPES # 1

SECTION TYPE 1
AREA * 30009.9
I-VALUE *154.8E47
DATA ENTERED :

NUMBER OF SECTION TYPES : 1

I AREA I-VALUE

1 8.380000E+80 9.158008E+14
[0 YOU WISH TO RETYFE ANY SECTION DATA 7 * N

+*kx% HEMBER NUMBER 1 #kxks
START NODE NUMBER (MAX = TOT MEMBERS) =* 1
IS THE NODE A PIN ? : N
IS THE NODE FIXED IN X,Y,N 7 (3%A1) : YYY
END' NODE NUMBER (MAX = TOT MEMBERS) =
IS THE NODE A PIN 7 : N
X PROJECTION FOR CURRENT MEMBER * 9.9
Y PROJECTION FOR CURRENT MEMBER + 20.9
SECTION TYPE OF CURRENT MEMBER =* 1
DATA READ FOR CUKRENT MEMBER :

8]

_ START NODE NUMBER = |
FIXED IN X,Y,H 7 3 Y
END NODE NUNBER = 2
XPROJECTION = 8.906009E+88 Y PROJECTION =  9.280098E+02

SECTION TYPE = 1

Yy v

DG YOU WISH TO RETYFE ANY DATA ? (Y/N) # N

k*xk+ MEMBER NUMBER REE LR
START NODE NUMBER (MAX = TOT MEMEERS) =+ 2
IS THE NOLE A PIN ? : N
END NODE NUMBER (MAX = TOT MEMEERS) + 3
{5 THE NODE A FIN 7 : N
X PROJECTION FOR CURRENT MEMBER * 19.9
Y FROJECTION FOR CURRENT MEMBER * 9.9
SECTION TYPE OF CURRENT MEMBER * 1
DATA READL FOR CURRENT MEMBER :
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START NODE NUMBER = 2
END NODE NUMBER = 3
XPROJECTION =  0.100080E+82 Y PROJECTION = 0.009898E+48

SECTION TYFE = 1

0 YOU WISH TO RETYPE ANY DATA 7 (Y/N) * N

k*4k+ HEMBER NUMBER 3 ks
START NODE NUMBER (MAX = TOT MEMBERS) * 3
IS THE NODE A PIN 7 : N
END NODE NUMBER (MAX = TOT MEMBERS) #* 4
IS5 THE NOGDE A PIN 7 2 N
IS THE NODE FIXED IN X,Y,H4 7 (3:#A1) 5 YYY
X PROJECTION FOR CURRENT MEMBER * 4.9
Y PROJECTION FOR CURRENT MEMBER * -29.3
SECTION TYPE OF CURRENT MEMBER * 1
DATA READ FOR CURRENT HEMBER :

START NODE NUMBEK = 3
END NODE NUMBER = 4
FIXED IN X,Y,M 7 : Y Y ¥
XPROJECTION = 0.000900E+80 Y PROJECTION = -9.290009E+62
SECTION TYPE = 1

DO YOU WISH TO RETYFE ANY DATA ? (Y/N) # N

YOUNG”S MODULUS * 214.9
IS VALUE  8.210049E+83 O.K. ? (Y/N) * Y
TT6 -- STOP

>
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RUN DK@ :DELOAD
_ ENTER LOADING CASE FILENAME : BEAM3.L0A

LOADED MEMBER NO # 2

NUMBER OF POINTS ON SPAN WHERE YOU WANT MOMENT AND SHEAR # 3
POINT NUMBER 1 FRACTION OF SPAN # 4.9 |

POINT NUMBER 2 FRACTION OF SPAN * 4.5

'POINT NUMBER 3 FRACTION OF SPAN * 1.4

VALUE OF JOINT LOAD (ZERO ENDS LIST) * 4.4

VALUE OF JOINT MOMENT (ZERD ENDS LIST) # 4.9

VALUE OF POINT LOAD (ZERO ENDS LIST) * 9.4

VALUE OF RECTANGULAR LODAD (ZERO ENDS LIST) # -2.g

LOAD DIRECTION- Y,H,N- RET FOR DIRN COS°S # y

START OF LOAD - FRACTION OF SPAN * 9.9

END OF LOAD - FRACTION OF SPAN * 1.4

VALUE OF RECTANGULAR LOAD (ZERO ENDS LIST) * 9.4

VALUE OF TRIANGULAR LOAD (ZERO ENDS LIST) # 4.9

MOMENT ON SPAN (CLOCKWISE +VE, ZERO ENDS LOADS ) * 4.8

ARE THERE ANY MORE LOADED HEMBERS ? (Y/N) * N

16 -- STOP

s

“RUN DK@:FRAN2

LISTING DEVICE : BEAM3.RES

IS THERE A FRAME DEFINITION FILE 7 (Y/N) * Y
ENTER NAME OF FRAME DEFINITION FILE : BEAM3.FRM
IS THERE A LOADING CASE FILE 7 (Y/N) * ¥

LNTER LOADING CASE FILENAME : BEAM3.LOA

SAME FRAME WITH NEW LOAD CASE ? (Y/N) * N

116 -- STOP

“PIP BEAM3.RES/SP

2
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FRAME SMALTSIE PROGRSM FRAMS

MEMBER 1
MEMEE: 2

MEMEER 3

TOTAL NUMEBER DF FREEDOMS

NUMEIZR OF MEMEBERS
YOUNG” 5 MODULUS

AMEMEER  XFROJ

1 . 885
2 18, 866
3

FREEDQOMS

FREEDDHS

FREEDOMS

H o

YFROJ

20, 886
@. e

9.088  -I0.000

HAHRK K

HRKAAARK MEMEE R
INTEMEITY OF
W COMFOMENT IN

LOAD STAHRTS a&T
LO&D INTENSITY
END 1

IN LOCAHL COORDS

AXIAl. FORCE a.
. 88860606

REACTION
MOMENT

IN GLOESL COORES
FORCE IN X DIRECTION
FORCE IN Y DIRECTION
END 2
IN LOCAL COORDS

AXTol FORCE a,
16,
16.

REACTION
MOMENT

IN GLOEAL COORDS

FORCE IN X DIRECTION =

FORCE IN Y DIRECTION
TOTAL HOLDING FORCES
X

END 1
END =

FREEDOM

1 . ADH6S

%  BEEEEER
HEGELE
: , BEHEEEE
5 ~18), BADEHHE
: 666816

MUMEETR

CISTRIBUTED
X DIRM
W COMFONENT IN Y DIRN :

éa.
9.

START OF LOADING

PaBl6a

PP A
EOHOHO

888608
govaag

HEESHE

Glal
51505

] @

k3
£

n
G

-
-

Lo
-t

8. 2168E+83

FRE RS

S8R0, BB
Z86a0, aaa
388868, 983

E S

LOAD =

CaSE ks

Ao

9. 283630

= -2, BEBE0E
0. BE0RBE ENDS AT
2. EEE6E0

8. BE8BHE
18, 6eaesa

g, BRBBEH
16, aBoae

18, a0
18, 988

3151515 DA
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s
l

r2
AN

[reed 2
'} fas]

8. 15600E+18
@, 15608E+16
3, 15888E+10

18, 986088y

i

T A ] oS L
=1&8b66, &dHE

Lo66E , 566

FORCES CALC FORCES ( BEFORE CORRECTS)
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6. 6oEerBE+00

8. BOBBOBE+B6 &.

DEFLECTIONS X
HEMEER 1 - END 1 6. BECEBOE+0E
- END 2 B. 495964E-03
MEMEER: Z - END 1 B. 495564E-03
~ END 2 -D.495867E-03
MEMEER: 3 - END 1 -B.495867E-03
-~ END 2 5. DBBOBBE+H0
FREEDOM ACT FORCES CALC FORCES ( AFTER CORRECTS )
1 B, DROOBH 8. 0PBBED
z -1¢, 6BOBEO -10, BBEEE2
3 14666, 566818 16666, 6ETFET
4 0. BEEOEE 8. BEE06o
5 -10, BO0HHO ~10, G008 1
b ~14666, 6660LE  ~16666. 66AB6Z

MEMEER FORCES
EXIAL TENS +UE

HOM SHEAR +VE IF +VE W WRT MEMEBER DIRECTI
START END

MEMEER NUMBER 1

AXIAL -18. 868661 -18, 860001
MOMENT -4, 164989 8.,332161
SHEAR @. 624853 @. 624833
MEMEER NUMEER 2

AXIAL -8, 624854 -@, 624854
HOMENT 8.332148 8.332163
SHEAR ~-18, 60800Y 18. BBB008
AT SFAN LENGTH A, DBYREBEa MOMENT = 4&.

AT SFAN LENGTH
AT SFAN LENGTH

MEMEER NUMEER
AXTAL ‘
MOMENT

SHEAR

5. 2800668 MOMENT

16. 800808 MOMENT = @,

BEEBD1 ~18
332161 -3
624853 ~B

, BEHEB1
, 154589

I oy
, H2ABE3
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3332160E+1

-0, 16667 BAE+OZ

8332163E+31

ROTATION

-8.3174668E~-81 8.
-8, 317466E-81 8.
-8, 31746BE-81 -8
-8, 31746BE-81 -8,

SHEAR

SHEAR

SHEAR
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@. D6EbLOoE+0
132294E~-83

132254E~83
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2.2 Calculation of Structural Response Values for Twin Circular Hulled
Semi-Sukmersible Model with Bracings

The twin circular hulled semi-submersible model whose space frame
representation is shown in Fig. 38, will be analysed in order to obtain

the structural response values using FRAN2 with the procedure described

in the following.

Fig. 38
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When the platform is considered to be restrained in beam seas, the

structural loading

ing cases in order

of two-dimensional frame representations.

may be represented as the superposition of the follow-

to analyse a three-dimensional structure with a series

Case (a):
10 7 Lyl g 7
AV 5 g’ 3’ AV
Y i i T
W
6 5 4 3 I 2 u T
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W
T T ]
fu,s oLl | L] aEEN - fu,
ooz g
w, W, f,
W’C/y F:?gﬁi 39-a “m Ve g
Case (b):
01
N \ \ | ¥ \
A 5 y 3 2 /o
s A & B T
v
Fig. 39-b
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Case (c¢):

7 25 26 ¥ 47
*/ 2! //// \\\\ 12’ \V/
i T e N 2/ XVIj 22 : “
1 vii | :
b 2 12 M
Ky, g ) v Plzlv* PB,V : >
T g, +R
2zlw t 23,w 12, l3/w
Fig. 39-c
Case (a):

It is assumed that the hull (Member I) columns (Members II,III,
Iv,V) and longitudinal deck girder (Member XIII) can be isolated from the
structure and loaded in u-w plane with wave loading (Fig. 39-a).

is constrained from nodes 7,10 with simple supports.

The frame

Structural analysis
under this loading yields axial forces on the hull, on the columns and on

the longitudinal deck girder, as well as shear forces and bending moment
values for the longitudinal deck girder.

The analysis also yields shear
férces and bending moment values for the hull in u-w plane.

A similar

Case

(b) :

analysis is carried out for the right hand side of the structure, i.e.
‘Members VI,VII,VIII,IX and X.

The hull is constrained with simple supports

(which are
assumed to be provided by the extended column ends in the hull) and loaded
in the u-v plane with wave loading (Fig. 39-b).

This case yields the
shear force and bending moment values in u-v plane.

The total shear force
and bending moment values on the hull will be the vectorial summation of

the two groups of results obtained in Cases (a) and (b).

ure is repeated for the second hull (Member VI).

The same proced-
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Case (c¢): The loading case shown in Fig. 39-c was chosen to determine
the structural response values on the transverse deck girder as well as on

the horizontal and inclined bracings. R, and R, values are column
i, i,
W v

reactions obtained from Cases (a) and (b) respectively.

The structural response analysis of the frame shown in Fig. 39-c is
carried out by breaking the wave loading down as symmetrical and asymmet-
rical forces and choosing the constraints of the structure as illustrated

in Fig.- 39-c-1.

7 25 26 ¥ 17 7 25 2¢ X117 L7 25 2¢ 17
< .
7 . 2! / 12 g (=2’ / 12 ¢ g 12/ / 12"y
1 I A
. . % 1/ i 1 /5 N\ ey
., N f
21 XYii 22 21 XV 22 21 XV 22
¢ !
— . i
v 7'%; g »
2 ‘T /m 12 4 2 }2 <g P 2 AJZ 2 w
< e - —
e 2. P . T T
2, 173 2,*tR3 4% ~
/v / 4 /\/ E 2 - _‘_/' 5
2/W+ 3/W /A"W‘ \J:/
AR = (Rlz' + Rla’ ) -(Rz' + R3, )
v v v v
Af = (f + fV ) - (fV + fV )
'VII 'VIII 1T "1II
Fig. 39-c-1

Finally, structural response values for columns can be determined

from the following loading cases as illustrated in Fig. 39-d and 39-e.
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Fig, 40
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Case (d):
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4
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Fig. 39-e

Structural response values for Members III - V and VII - X can be

obtained with similar representations.

Maximum shear force and bending values on the columns will be the

vectorial summation of the two groups of results obtained in Cases (a),

(d) and (e).

The analysis procedure summarised above was applied to the twin
circular hull semi-submersible model shown in Fig. 40. (Structural
details of the model are given in Appendix ! and frame representation

of the model shown in Fig. 38.) The bending moment values at the



centre of the transverse deck beam were calculated and results are shown
in Fig. 41. The results of the experimental measurements for the same

model were also plotted in the same figure. The theoretical predictions
and the experimental measurements of axial forces on an inclined bracing

of the same structure are shown in Fig. 42.

Fig. 41 and Fig. 42 show that the theoretical predictions compare
reasonably well with the experimental predictions. However, as was
the case where the model had no bracings, the theoretical predictions
for the restrained mathematical model should have been found higher than
the measured values of the free floating model. This may also indicate
that the inertia coefficients used in the predictions should be higher
than the estimated values. The increase in the wave inertia
coefficients may be due to a hull-column interference effect which has
not been studied in this research. The study reported in reference [1@]
also shows that measured wave inertia coefficients in sway mode for a
semi-submersible model which was held fixed in waves are 20 - 50% higher

than the calculated wave inertia coefficients.

The nature of the increase may be studied more in detail by
measuring the wave forces on the elements of the structure individually

and on the complete assembly of the structure.

2.3 Calculation of Structural Response Values for
Full Scale Twin. Circular Hull Semi-Submersible

The structural response calculation procedure for a restrained
mathematical model summarised in this chapter was applied for a twin
circular hull semi-submersible design with bracing arrangements. The
geometrical and the structural details of the semi-submersible are given
in Fig. 43 and the space frame representation of the structure is shown

in Fig. 44.
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Structural Response Predictions For Twin-Circular Hull
Semi-Submersible Model With Bracing Arrangements
(Bending Moment On The Deck)

. Non-Linear, Quasi-Static Theory For Restrained Model

o . Experimental Results For Free Floating Model
4.0r

Bending Moment / Wave Amplitude (Ncms/cms)

2.0F
1.0 +
O | | L L | d - .
0 : 2 3 4 5 6 7 8
w(Rad/Sec)
Fig. 4!
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Structural Response Predictions For Twin-Circular Hull
Semi-Submersible Model With Bracing Arrangements
(Axial Force On The Inclined Bracing A.)
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The structural response calculations were carried out for the head
and beam sea conditions under the non-linear wave loading. Results
have been presented to indicate maximum response values on each

structural element versus excitation frequency.

Comparisons between Figs. [(45-a) - (45-c)] and [(46-a) - (46—c{1
indicate that since the maximum structural response values on the hull
and on the longitudinal deck girder occurred in beam seas, it may be B
suggested that the beam seas case should dictate the structural design
of longitudinal strength members. Comparisons of structural response

values on the columns [?igs. (45-a) - (45-c), (46-a) - (46-c) and (47—c)j

show that beam seas should also dictate the structural design of columns.

Figures (47-a) - (47-c), [(48-a) - (48-e)| and [(49-a) - (49-c)] show
the structural response values of the transverse strength members.
These figures show that the effect of bracing elements on the structural
response of the transverse deck girder is considerable. The addition

of the horizontal bracing also significantly reduces the structural

response values on the columns and on the inclined bracing elements.

If lower horizontal bracings had existed between legs D and C as
well as on C and B on the structure shown in Fig. 28, the Alexander
Kielland accident, due to failure of the lower horizontal bracing

between legs E and D would possibly have been avoided.

The result presented in Figs. (45) - (47) can be readily incorporated
into the spectral analysis to determine the statistical values for a

detailed structural analysis.
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Chapter 6: DESCRIPTION OF THE COMPUTER

PROGRAM FLUID4A
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INTRODUCTION

In this chapter the FLUID4A computer program will be de-
scribed. FLUID4A is a special purpose program which has been
written for a semi-submersible geometry of twin circular hulls
with four columns in order to compare theoretical calculations

with the experimental results.

FLUID4A consists of several subroutines which calculate the
wave loading distributions on the members of the above mentioned
geometry, as well as the motion and structural responses under the

calculated wave loading.

FLUID4A has been written in FORTRAN programming language and
runs on the Hydrodynamic Laboratory's PDP 11/40 computer at the
University of Glasgow. FLUID4A requires about 30K words of

storage space.

1. DESCRIPTION OF SUBROUTINES

1.1 Subroutine FLUID4A

This subroutine reads the input data from the terminal and
generates the nodal points on the hull where the force distrib-

utions due to wave and rigid body motion will be calculated.

Subroutine FLUID4A calculates the wave loading distribution
on the hull in head sea conditions. The calculation procedures

are based on the theoretical formulations given in chapters 2 and 3.

Subroutine FLUID4A calls the following subroutines:

- 347 -



1) MOT

2) MOT1

3) COLUMN
4) - FLUID3

Subroutine FLUID4A also writes the following data onto

output file:

a) The title

b) Summary of the geometrical data

c) Summary of the wave data

d) Summary of the vertical and horizontal forces

on the structure in head sea conditions
e) Distribution of the vertical and horizontal

forces on the hull in head sea condition

1.2  Subroutine FLUID3

This subroutine calculates wave loading distributions on
the hull in beam sea conditions. As with the subroutine FLUIDA4a,

calculation procedures are based on the theoretical formulations

given in chapters 2 and 3.

The geometrical and the wave data are transferred from the

subroutine FLUID4A to FLUID3A.

Subroutine FLUID3 calls the following subroutines:

1) FLUID
2) COLUMN
3) FRAN1
4j MOT2
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Subroutine FLUID3 writes the following data into the

output file:

a) Summary of the vertical and the horizontal
forces on the structure in beam seas
b) Distribution of the vertical and the horizontal

forces on the hull in beam sea conditions

1.3 Subroutine COLUMN

This subroutine generates the nodal points along the columns

of the structure (Fig. 1).

It provides the data to subroutine FLUID2 which calculates

the wave loading on the columns of the structure.

Subroutine COLUMN writes the following data into the

output file:

a) Distribution of drag and inertia coefficients
along the nodal points of the columns

b) Distribution of Reynolds and the Keulegan-
Carpenter numbers along the nodal points of

the columns

c) Distribution of the drag, acceleration and the
total forces along the nodal points of the

columns

d) Total horizontal column forces and moments

(about the free~surface)

Subroutine COLUMN calls the subroutine FLUID2 and returns

the calculated values to subroutine FLUID4A and FLUID3.
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1.4 Subroutine FLUID2

This subroutine calculates total wave forces on the vertical
circular cylindrical members which are working in any wave loading
regime, such as drag, drag + inertia, inertia or diffraction.
FLUID2 calls the subroutine LARGE for the wave loading calculations
in the diffraction regime. For the circular cylindrical members
which are working in drag or drag + inertia regimes FLUID2 divides
the vertical column into 20 equal spaces along the length starting
from the still water level and calculates wave particle velocity
and acceleration as well as Reynolds and Keuwlegan-Carpenter numbers
at each division. Drag coefficients and drag forces are calculated

and transferred to FLUID2 by subroutine FLUID.

FLUID2 calculates the inertia coefficients at each division
as a function of Keulegan-Carpenter number and the drag coefficients

using the semi-empirical relations given in Figs. 2 and 3.

Once the inertia coefficients are determined FLUID2 calculates
the inertia forces and the total inertia and drag forces at each

division.

FLUID2 also calculates the total wave force and the moment (about
the still water level) on the vertical column by carrying out the
integration over the 21 divisions, Simpson's integration rule was

used to perform the integrations.

FLUID2 returns the following data to subroutine COLUMN:

a) Drag and inertia coefficients on each division
(Total of 21 divisions along the column length

under the water)
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1}

b) Reynolds and Keulegan-Carpenter numbers on

each division

c) Drag, acceleration and total forces on each
division
d) Total force and moment on each vertical column

FLUID2 writes the following data into the output file:

a) Diameter over wave length ratio

b) Total drag force on the vertical column

c) Total inertia force on the vertical column

d) Total drag and inertia force on the vertical
column

e) Total moment on the vertical column

(Moment is taken about the still water surface)

f) Centre of total force (from the water surface).

1.5 Subroutine LARGE

When a vertical column is working in the diffraction regime,
force calculations are performed by LARGE. This subroutine uses
the calculation procedure described in chapter 2 for the large

diameter circular cylinders.

LARGE calls the subrdutine BESSEL for the determination of

the Bessel functions of the first and second kinds.

LARGE subdivides the vertical column into 20 equal spaces
and determines the wave coefficients (CM) and the total forces at

each division.
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LARGE also calculates the total force and the moment on the
vertical large column by integrating the force values calculated

Cos . . )
on each division. Simpson's integration rule was used to perform

the integrations.

LARGE writes the following data into the output file:

a) Diameter over wave length ratio
b) Total force on the large column
c) Total moment on the large column

(Moment is taken about the still water surface)

a) Centre of total force (from water surface)

1.6 Subroutine BESSEL

This subroutine calculates BESSEL functions of the first and
second kinds and returns the data to LARGE for the calculation of

the wave forces on large diameter circular cylinders.

1.7 Subroutine FLUID

FLUID calculates the drag coefficients and the water part-
icle velocity indﬁced forces on the circular cylindrical members.
At the time of the writing of this computer program, the only
experimental data on drag coefficients available over a large
Reynolds number range, and which took into account the changes in
the flow field due to the surface roughness as well as the inter-
ference effects between the closely spaced circular cylinders, were
steady flow results. This design data, published in Ref. 1, was

used to develop subroutine FLUID.
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In order to calculate the drag coefficients for a given
diameter of cylinder and a given water particle velocity using

the design data presented in Ref. 1 FLUID requires the following

input:
a) Kinematic viscosity of the fluid domain
b) Surface roughness ratio /D where ¢ is mean
surface roughness
c) Angle between the flow velocity vector and
the cylinder axis
d) The distance between the circular cylinder on

which wave forces are calculated and the

neighbouring cylinder which is in close proximity
e) The ratio of the mean square value of the longi-

tudinal component of fluctuating velocity in the

flow field over the water particle velocity, i.e.

‘fL-I;-/V

o0

£) The ratio of the diameter of a circular cylinder
over the lateral integral of free-stream turbulence

i.e. D/L .
i / <

Input requirements defined in (e) and (f) can be found in

Ref. 1 for various environmental conditions.

Subroutine FLUID calculates the drag coefficients with the

following steps:

1) Calculate the Reynold's number
4 .
2) If Reynold's number smaller than 10 obtain

Cc_ coefficients from Fig. 8 or 9, otherwise

continue with step 3
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Obtain turbulence factor from Figs. 4 and S
4) Obtain roughness factor from Fig. 6
5) Obtain CD coefficient from Fig, 7 using
Reynold's number as well as turbulence and

the roughness factor

FLUID also corrects the drag coefficients obtained from the
measurements taken from the single cylinder in order to take into
account the interference, using the information contained in Figs.

22 and 23 of chapter 2.

If this subroutine is to be modified for the calculation of
drag forces on full-scale structures, taking the interference into
account, the drag coefficients obtained from the experiments which
were carried out in the high Reynold's number range need to be used.
Extensive model testing carried out with circular cylinder arrange-
ments in a wind tunnel and reported in Ref. 3 could provide sub-
stantial data for the modification of this subroutine for the drag
force calculations in super-critical Reynold's number ranges.
However, the most reliable estimates of drag forces on a full-scale
floating structure with a complex geometry could only be obtained

from experiments in which the whole complex structure is tested in

the super-critical Reynold's number range.

A comparison of the measurements of the forces obtained from
a complex offshore structure model and the computer calculations
of the forces on the same structure using the available experimental
results of thé-simple member configurations would also provide a

reliability margin for the computer calculations.
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FLUID calls the following subroutines:

1) FACE

2) REAR1, REAR2, REAR3, REAR4, REARS

Subroutine FLUID returns the drag coefficient to the
subroutine FLUID2 and writes the following data into the output

file if required:

a) Reynold's number of a single cylinder, the
critical Reynold's number and the corrected
Reynold's number

b) A single cylinder's drag coefficient, and the
drag coefficient corrected for interference

c) Total drag force on the single cylinder, and

the drag force corrected for interference

1.8 Subroutine FACE

FACE calculates relative roughness (roughness height/cylinder
diameter) in order to call appropriate subroutines which contain
CD values of Fig. 7. When the relative roughness value in a
particular case is different for the value which is plotted in
Fig. 7, FACE carries out the ;inear interpolation between the two
C_ curves whose relative surface roughness parameters are close to

D

the relative roughness of the particular case in question.
Subroutine FACE calls the following subroutines:

INTER1, INTER2, INTER3, INTER4, INTERS, INTER6, INTER7,
INTER8, INTERY, INTR10, INTR11, INTR12Z.

Subroutine FACE returns the drag coefficients of a single cylinder

to subroutine FLUID.
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1.9  Subroutines INTER1, INTER2, INTER3, INTER4, INTERS,
INTERG6, INTER7, INTERS8, INTER9, INTRI1O, INTR11, INTR12

These subroutines contain the drag coefficients for the
twelve different relative‘gurface roughness parameters given in
Fig. 7. Iq each of these subroutines 28 drag coefficients,
corresponding to Reynold's numbers which are modified by the
surface roughness and the turbulence factors, were stores. These
subroutines call subroutine INTER and return the single cylinder's

drag coefficients to subroutine FACE.

1.10 Subroutine INTER

INTER carries out the linear interpolatioﬁ between stored
drag coefficients for a given modified Reyndld's number and returns

the interpolated value to a subroutine which calls INTER.

1.11 Subroutines REAR1, REAR2, REAR3, REAR4, REARS

The drag coefficients of a cylinder situated behind another
cylinder in a steady flow for five difference Reynold's numbers
(Fig. 22 of chapter 2) are stored, for varying spacings between the

cylinders, in subroutines REAR1, REAR2, REAR3, REAR4, REARS.

When the Reynold's number of a particular cylinder is differ-
ent from the value plotted in Fig. 22 of chapter 2, these subroutines
carry out a linear interpolation between the two CD curves whose
Reynold's number parameters are close to the Reynold's number of

the particular cylinder in question.

These subroutines return the drag coefficients of a rear

cylinder to subroutine FLUID.
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For the purpose of linear interpolation between the
Reynold's numbers REAR2 calls REAR1, REAR3 calls REAR2, REAR4

calls REAR3 and REARS calls REAR4,

1,12 Subroutine MOT

This subroutine basically re-arranges the geometrical data
to be used for subroutines HYDROS and NAT. The geometrical par-

ticulars of the semi-submersible are passed to MOT from FLUIDA4.

MOT calls subroutines HYDROS and NAT and returns the

calculated values to FLUID4A and to NAT.

1.13 Subroutine HYDROS

Subroutine HYDROS was written in order to generate data for
the construction of the hydrostatic curves of a twin-circular
hulled semi-submersible with 8 columns and bracings (see Table 1).
HYDROS divides the draft into 20 equal levels and it calculates the

following variables at each level:

a) Cubic displacement

b) Mass displacement

c) Vertical centre of buoyancy

d) Longitudinal centre of buoyancy
e) Transverse BM

£) Longitudinal BM

g) Water plane area

h) Total wetted surface area

HYDROS calls the subroutine HYDRO and returns the calculated

values to subroutine MOT.
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HEIGHT

2,25
4,50
6,75
?.00
11,23
13.58
15.79
18. 060
20,25
22.58
24.75
27.08
29.25
31.58
33.75
36,60
38,23
40,50
42,735

45. 00

DISFLACEMENT (

EM

2689.01

S44.72
339. 21
261.92
181.235
67 .85
23.97
23. 26
22.358
21.94
21.34
20.77
28,23
19.72
19.23
18.77
18. 32
17.90
17.358
17.11

CM%x3 )
4612.935
12337. 11
21221.49
26335. 93
31472, 25
39692, 08
45558, 22
46963 . 89
48367 .97
49772. 84
S1177.72
02582, 68
S3987. 47
99392, 35
96797 . 22
o82082.10
S9686, 97

61011.85.

62416.72
63821, 66

Bl

4484,
333.
331,
206.

177,

66,
23,

22,
21,
21,
20,
28,
19,
19.
18.
18.
17.
17.
17.
16,

%
81
=3
18
74
84
34

DISPLACEMENT

64 -

?8
36
78
22
78
26
72
27
84
43
84
66

TABLE 1
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(BRS)
4728, 27
12645, 54
21752, 82
26994, 34
32259.86
48869 . 38
46697 .17
48137.17
493577 . 17
21817.16
S2457.16
93897 .16
295337.16
96777 .16
98217, 15
99657. 15
61897. 14
62537. 14
63977.14
63417.14

WATER FLANE AREA

2971.93
3779.17
4043, 42
3877.34
3214, 92
1501, 69
624, 39
624, 39
624, 39
624,39
624, 39
624, 39
624, 39
624, 39
624, 39
624, 39
624, 39
624,39
624, 39
624, 39

- KE
1,33
2.64
3,89
4,36
4,62
5.48
7.19
7.48
7.82
8.20
8.62
?.08

9.38.

10. 11
18. 66
11.25
11.86
12.49
13.15
13.82

r
O
m

J
8
am

e

Jd

N N NN
3 M T

'

72.

N NN NN
RPRRRR t
KRR RRDEDRIRENRRE

e rJ
aaoaadaaaaadaaaaaaaaadaa

N
(8]

72.
72.
72,
72,
72.
72,
72.
72.

725 -

TOTAL SURFACE AREA

3334. 65

4874, 359

62807 .69
7524.36
8992.87
11169. 17
13137.45
136%94.17
14256, 89
148067, 61
15364, 33
13921.06
16477.78
17834, 3506
17591, 22
18147.95
18704. 67
19261, 3%
19818.11
28374.83



1.14 Subroutine HYDRO

Subroutine HYDRO calculates the hydrostatic variables
listed in section 1.13 for a given draft level. In addition
for the whole structure, if required, HYDRO writes the following

information into the data file for each member of a semi~-sukmersible:

a) Co-ordinates

b) Volume

c) Volume centre

d) Wetted surface area

HYDRO returns the calculated values to subroutine HYDROS.

1.15 Subroutine NAT

Subroutine NAT calculates the added-mass in the heave mode
and the mass moment of inertia, as well as the added mass moment of
inertia in the roll and pitch modes, using the formulations given in

chapter 4.

NAT also calculates the natural frequency of the structure
in the heave, roll and pitch modes using the hydrostatic data

calculated by HYDROS.

NAT calls the subroutine FIT and returns the calculated

values to MOT.

1.16 Subroutine FIT

Subroutine FIT contains the curve-fit form of the added-mass
and added-mass moment of inertia data for vertically oscillating
rectangular strips in unbounded fluid. FIT returns the added-mass

and added-mass moment of inertia coefficients to subrountine NAT,
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1.17 Subroutine MOT1

Subroutine MOT! calculates the heave and the pitch responses

of a twin circular hulled semi-submersible in head sea condition

In addition to the response values, it also calculates the heave and

pitch rigid-body accelerations and the phase angles between the

exciting force and the motion. MOT1 is based on the calculation

procedure to determine the motion response of single degree of

freedom system which was discussed in chapter 4.

Subroutine MOT1 writes the following data into the output

file:

a)

b)

c)

d)

Heave response and translational rigid-body .
acceleration of centge of rotation in head sea
condition

Pitch response and rotational rigid-body
acceleration in head sea condition

Motion response operators, i.e. Heave response/
wave height, Pitch response/wave height

Phase angle between the heave force and heave
response and phase angle between the pitching

moment and pitch response.

1.18 Subroutine MOT?2

Similarly to MOT!, subroutine MOT2 calculates the heave and

roll responses of a twin circular hulled semi-submersible in beam

sea condition.

MOT2 writes the following data into the output file:
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a) Heave response and translational rigid-body
acceleration of the centre of rotation in beam
sea condition

b) Roll response and rotational rigid-body
acceleration in beam sea condition

c) Motion response operators, i.e. Heave response/

wave height, Roll response/wave height

1.19 Subroutine FRAN1

Subroutine FRAN] calculates the maximum axial force, shear
force and bending moment values at the deck of a twin circular
hulled semi-submersible model. The model represents a determinate
structure and FRAN1 uses the formulation given in chapter 5 for a

determinate structure with restrained boundary conditions.

FRAN1 writes the following data into the output file:

a) Maximum axial force on the deck
b) Maximum shear force on the deck
c) Maximum bending moment on the deck
a) Maximum bending moment/wave height

Table 2 summarises overlay tree of program FLUID4.

As more data on wave coefficients become available from
either laboratory experiments or full-scale measurements, relevant
subroutine modules can easily be replaced with improved ones for
better simulation of the motion and structural response of twin

circular hulled semi-submersibles.
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Subroutine FLUID2 and the associated subroutine modules
can be easily adopted to any other program with which the calculation
of wave loading on a circular cylinder is sought. Similarly, sub-
routine FLUID and the associated subroutine modules can be adapted to

any other program with which the current-drag or wind-drag forces on

circular cylinders are to be predicted.

-

2. DESCRIPTION OF 'INPUT AND OUTPUT DATA

2.1  Input Data

The input data consists of the geometrical characteristics
of the platform, as well as the wave particulars. Additional data
in relation to the flow field and the control parameters for the
output files were included as fixed data in FLUID4A in order to
minimise the input information for frequency domain calculations.

The variables of fixed data are defined as follows:

U : Control number. If U = 1.0, subroutine FLUID writes
the data described in seciton 1.7 into the output file. If

U = 2.0, this data is not written into the output file.

TF : Turbulence factor which is defined as the mean square
value of the longitudinal component of the fluctuating velocity in
the flow field over the water particle velocity. Appropriate values

for TF can be found in Table I of Ref. 1.

TS : Turbulence scale which is defined as the ratio of the
diameter of the circular cylinder over the lateral integra;of free-

stream turbulence. Appropriate values for TS can also be found in

Table I of Ref, 1.
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)

A : The angle between the axis of a circular cylinder and

the flow direction.

AS : The distance between the circular cylinder on which wave

forces are calculated and the nearest neighbouring circular cylinder.

SR : Surface roughness ratio. This value can be calculated
using the typical effective roughness height of various materials

given in Table II of Ref. 1.

PC : Control number to identify the position of the cylinder
for drag force calculations by taking the interference into account.
If PC = 1.0, cylinders are situated one behind the other, and if

PC = 2.0, cylinders are situated side by side.

The units system used in the program is summarised in Table 3.

The input data should be compatible with these units.

UNIT FULL-SCALE MODEL-SCALE

LENGTH : Meters Centimeters

AREA : Meter-square Cms-square

DISPLACEMENT (CUBIC) : Meter-cub Cms-cub

DISPLACEMENT (MASS) : Tons Grams

ACCELERATION : m/sn? cm/sn?

DENSITY : Tons/m? Grs/cm®

VISCOSITY : m? /sn cm? /sn

DAMPING COEFFICIENTS : Non-dimensional |
| FREQUENCY : Rad./sec. Rad./sec. j
; FORCE : K-Newtons Dyns i
3 MOMENT : KN-Meters Dyn-cms

TABLE 3
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The input data required to run FLUID4A is prompted by the
main programme on the user's terminal as seen in Fig. 1. The user

has to enter the data after the asterisks.

2.2 Output Data

FLUID4A was run for the geometry of twin circular hulled
semi-submersible model whose details are given in Appendix 1. The
typical output of this run is shown in Table 4. The motion and
the structural response values calculated using FLUID4A were shown

in chapters 4 and 5.respectively.

The variable names used in the output can be interpreted as

follows:

Tl/T : The ratio of instantaneous time during a wave
cycle to the wave period

VHPF : Vertical wave pressure force on the hull

VHAF : Vertical wave acceleration force on the hull

THF : Total wave force on the hull

VCF : Total wave force on the column

TF : Total vertical wave force on the hull and
column (Head sea condition)

THFI : Integration of TF along the hull length

HHPF : Horizontal wave pressure force on the hull

HHAF : Horizontal wave acceleration force on the hull

HHVF : Horizontal wave velocity force on the hull

THHF : Total horizontal wave force on the hull

(Beam Sea condition)
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CD

cM

CKN

Total vertical wave force on the hull and

column (Beam sea condition)
Drag coefficient

Inertia coefficient
Reynold's number

Keulegan-Carpenter number
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MUELOADING, MOTION AND STRUCTURAL RESPONSE CALCULATIONS
FOR TWIN HULL TYPE SEMI-SUBMERSIBLES

LENGTH OF STRUCTURE=144.59

J[TH OF STRUCTURE=184.84
JRAFT= 38.88 PONTOON DIAMETER= 14,84
JIAMETER OF COLUMNS= 11.48,

DISPT=

59686.82 GH=
{ATURAL HEAVING FREQUENCY=

6.22

\ATURAL ROLLING FREQUENCY= 1

KTURAL PITCHING FRE

UAVE DATA:

UAVE HEIG

YAVE FREQUENCY=
ACCL.OF GRAVITY=981.069

JENSITY=
yISC0SITY=9.13E-91

1.69

HT= 16.84
3.09

8.39

GML=  4.44

2.36

13

QUENCY= 1.12

(RAD/SEC)

VAVE LOADING

- - - DGR e D D G @h R e WP TP S I R D T G G G G R S e G D S T e e e

T1/7=0.999

TOTAL HULL FORCE= -13%6991.37

TOTAL COLUMN FORCE= 1181472.75
TOTAL HULL+COLUMN FORCE= -215518.63
CENTRE OF TOTAL FORCE= -9.89
10TAL FORCES ON THE STRUCTURE= -431837.25
10TAL MOMENT ON THE STRUCTURE= 12.99
NODES VHPF VHAF THF
I -4186.62 -4186.62 -8213.24

2 -4418.87 -4418,87 -8837.74

21 -4557.88 -4557.98 -9114.16

I -4482.83 -4482.83 -9365.65

¥ -4795,77 -4795.77 -9591.54

d  -4984.15 -4984,15 -9968.386

9 -5114.61 -5114.41  -16233.23

v -5158.25 -5156.25 -14366.58

'8 -5174.42 -5174.42 -18352.84

§  -5194,91 -5194,91  -16389.82

7 -5209.83 -5269.83  -16419.45

8 -5194.91 -5194.91  -18389.82

W -5176.42 -5176.42 -19352.84

¥ -5158.25 -5154.25 -19308.58

B -5114.61 -5116.61  -18233.23
" -4984.15 -4984.15 -9968.39
6 -4795.77 -4795.77 -9591,54
" -4482.83  -4682.83  -9365.65
7 -4557.48 -4557.88 -9114.,15
7 -4418.87  -4418.87  -8837.74
B -4186.42  -4166.62  -8213.24

DEPTH OF STRUCTURE= 57.49

VCF

g.99
6.09
32833.75
32833.75
32833.73
9.00
26876.08
26876.98
26876.88
¢.89
g.99
g.99
26876.98
26976.98
26876.88
g.89
32833.73
32833.75
32833.75
9.09
8.99
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TF
-8213.24
-8837.74
23719.59
23468.89
23242.29
-9948.39
15842.86
13775.38
19723.24

-14389.82

-19419.63
-14389.82
15723.24
19775.38
15842.86
-9968.39
23242.21
23468.19
23719.49
-8837.74
-8213.24

TABLE 4

THFI

g.29
-97199.59
-148353.59
-291929.97
-255949.99
-368987.99
-4844678.91
-527278.44
-578134.13
-612636.36
-698493.69
-784334.81

-826857.2

-869712.94
-912329.44
-1928984.25
-1141942.37
-1195978.37
-1248637.87
-1299888.75
-1396991.37

THNI

4.99
6447744,99
9412948.49
12165414.089
14681285.89
18958394.99
22832316.49
22823454.69
23441422.99
23879248.4¢
24232826.99
23879248.94
23441422.99
22823454.99
220323148.99
18958386.089
14681288.99
12165417.49
9412952.99
6447749.49
6.99
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COLUMN NUMBER=1

NODES
22

ra K9

NOD

%6 I o 0 TN O NN SN |

| 56 I

O LN & NS W O~ LN o

ra 2

720

813

718.
1037.
1178,

COLUMN NUMBER=2

NODES
27
28
29
39
31
NODES
27
28
29
RY')
31

— - — o —

a94.

671

797,
855.
945.

Ch
.88
.89
.18
.12
.13
TDF
<45
.97
69
99
38

o
.81
.82
.83
.85
.84
ThF
93
.24
69
42
71

CH

1.87
1.86
1.84
1.83
1.82

TAF
-3026.18
-316%.72
-3325.82
-3486.18
-3653.39

CH

1.89
1.79
1.77
1.75
1.74
TAF
-931.42
-536.44
-982.33
-689.12
-636.84

REN

9147.84

7664.
18211,

b6
a7

18789.44
11408.08

TCF
-2299.73
-2356.15
-2406.41
-2449.09
-2483.90

7434

TCF
63.59
114.79
175.36
2446.30
329.87

RERN
646359.
7836.

69

59

.74
78355.
8349.

47
00

CKN

»
[ 2%
—

[N G T 06 I (]
. . s

o~ B

—_— N 2

75

S

CKN
J.04
3. N
3.39
3.58
3.78

TABLE 4

(Cont'd)

DIAMETER/WAVE LENGTH= ¢.92
SINCE D/L<8.2 MORISON EQ. 1S5 USED

_ DRAG FORCE ON THE CIKCULAR CYLINDER= 22269.982

ACCL. FOKCE ON THE CIRCULAR CYLINDER= -79894.438
TOTAL FORCE ON THE«CIRCULAR CYLINDER= ~-57433.453
TOTAL MOMENT ON THE CIRCULAR CYLINLER= -682734.312

CENTRE OF TOTAL FORCE= 11.846 (FROHW WATER SURFACE)

DIAMETER/WAVE LENGTH= 4.41

SINCE D/L<#.2 MORISON EQ. IS USED

DRAG FORCE ON THE CIRCULAR CYLINDER=  1B34%.928
ACCL. FORCE ON THE CIRCULAR CYLINDER= -13998.322 .

TOTAL FOKCE ON THE CIRCULAR CYLINDER= 4375.683
TOTAL MOMENT ON THE CIRCULAR CYLINDERK=  39829.582
CENTRE OF TOTAL FORCE= 7.163 (FROM WATER SURFACE)
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COLUMN NUMHBER=3

NODES
32
33
34
39
3é
NOLES
32
33
34
39

36

Cch
1.81
1.62
1.03
1.85
1.86

TIF
294.93
671.24
757.69
855.42
965.91

COLUMN NUMBER=4

NOLES
37
38
39
49
41
NODES
37
38
39
49
41

Cbh
.88
.89
.10
.12
13
TOF

728.45

813.57

718.69
1937.89
1176.39

— o wm — o

CH
.88
.79
77
W73
.74
TAF
931.42
256.44
382.33
689.12
636.84

CH

1.87
1.86
1.84
1.83
1.82
TAF
Jo20.18
3169.72
3325.62
3486.18
3653.39

1126
1227
1349
14464
1682

3744.
3983.
4243.
4523.
4823.

REN
6639.69
7836.55
7434.74
7835.47
8300.09

TCF
-39
.68
.92
.24

73

REN
9147.94
Y664.66

19211.57
18789.44
11409.69
TCF

CKN
3.04
J.21
3.39
3.58
J.78

CKN

Il

ISSTN G (G B G I
L L] - L]
[o S T PR & ]
e ™ -

73

TOTAL COLUMN FOKCE ON THE STRUCTURES=
TOTAL COLUMN MOMENT ON THE STRUCTURES=
CENTRE OF TOTAL FORCE=

I ON

KESFONSE

e e e e e e e e e v . —  m - ———

KESFONSE=
ACLELERATION=
KESFONSE/H=
ANGLE B.F.H=

162387.66
1793865.00
11.93

RESFONSE=
ACCELERATION=
"KESFONSE/H=
ANGLE E.F.F=

. v - A - - — et - - = - - . - = ———a =

DIAMETER/WAVE LENGTH= 4.91
SINCE D/L<6.2 MORISON EQ. IS USED

DRAG FORCE ON THE CIRCULAR CYLINDER=  18365.928

ACCL. FORCE ON THE CIRCULAR CYLINDER= 13999.322
TOTAL FORCE ON THE CIRCULAR CYLINDER=  32354.248
TOTAL HOMENT ON THE CIRCULAR CYLINDER= 365479.425

CENTRE OF TOTAL FORCE= 11.295 (FROM WATER SURFACE)

DIAMETER/WAVE LENGTH= @.42

SINCE D/L<#.2 MORISON EQ. IS USED
FRAG FORCE ON THE CIRCULAR CYLINDER=
ACCL. FORCE ON THE CIRCULAR CYLINDER=  79894.438
TOTAL FORCE ON THE CIRCULAR CYLINDER= 162155.430
TOTAL HOMENT ON THE CIRCULAR CYLINDER= 1173957.425

22260.984

CENTRE OF TOTAL FORCE= 11.492 (FROM WATER SURFACE)
TOTAL HORIZONTAL COLUMN FORCES= 81253.83
TOTAL HORIZONTAL COLUMN MOMENTS=  894532.58

TABLE 4

- ——— et

(Cont'qd)



T1/7=8.804
TOTAL VERTICAL HULL FORCE= -2753283.¢4
TOTAL VERTICAL COLUMN FORCE= 2327931.5§
TOTAL HULL+COLUMN FORCES= -438351.54

- n e - Gm D - W o . D - e - - - -
- - —- - — - - RS R R G e 4h wm e wn e e e D =

TOTAL HORIZONTAL HULL FORCE=  244434.44
TOTAL HORIZONTAL HULL MOMENT= 7453447.59
CENTRE OF TOTAL HORIZONTAL FORCE= 31.88 (FROM WATER SURFACE)

NODES VHFF VHAF TVHF VCF TUF
i -4772.12  -4772.12  -9544,23 6.8  -9544.23
2 -4772.12 -4772.12  -9544,23 6.69  -9544,23

21 -4772,12  -4772.12  -9544.23  33459.88  23915.57
3 -4772.12 -4772,12  -9544,23  33459.88  2391%5.5
20 -4772.12 -4772.12  -9544,23  33459.86  23915.57
4 ~4772.12 -4772.12  -9544.23 5.9  -9544.23
19 -4772.12 -4772.12  -9544.23  24161.56 14617.33
5 -4772.12 -4772.12  -9544.23  24141.54 14617.33
18 =4772.12  -4772.12  -9544.23  24141.5¢6 14617.33
b6 -4772.12 -4772.12  -9544.23 3.0  -9544.23
7 -4772.12 -4772.12  -9544.23 3.6  -9544.23
8  -4772.12 -4772.12  -9544,23 3.6  -9544.23
14 -4772.12 -4772.12  -9544.23  24141.56 14617.33
9 -4772.12  -4772.12  -9544.23  24141.56 14617.33
15 -4772.12 -4772.12  -9544,23  24161.56 14617.33
1§ -4772.12 ~4772.12  -9544,23 4.8  -9544.2
16 -4772.12 ~4772.12  -9544.23  33459.8¢  23915.57
11 -4772.12  -4772.12  -9544.23  33459.8¢  23915.57
17 -4772.12  -4772.12  -9544,23  33459.88  23915.57
12 -4772.12 -4772.12  -9544.23 8.9  -9544.23
13 -4772.12 -4772.12  -9544.23 8.66  -9544.23

NODES HHFF HHAF HHYF THHF
1 2898.27 28998.27 831.95 5812, 49
2 2898.27 2098.27 831.95 5612,49
21 2899.,27 2096.27 831.95 5612.49
3 2094.27. 2999.27 831.95 5312.49
29 2896.27 2099.27 831.95 5312, 49
4 2696.27 2698,27 831.95 SG12.49
19 2099.27 2898.27 831.95 5512.49
5 2¢98.27 2098.27 831.95 5812, 49
19 2099.27 2998.27 831.95 5912, 49
6 2699.27 2996.27 831.95 5812,49
y 2694 .27 2998.27 831,95 5912.,49
8 2698.27 2098.27 831.95 5912.49
14 2096.27 2898.27 831.95 5912.49
9 2896.27 2098.27 831.95 S312.49
15 2098.27 2899,27 831.95 5312.49
19 694,27 2998.27 831.95 5317.49
14 7998.27 2998.27 831.95 5g12.49
1 2694.27 2999.27 831.95 ©g12.49
17 2999.27 2898.27 831.95 5512.49
12 2899.27 1999.27 831.95 5912.47

T3 2898.27 2099.27 831.95 5812, 49
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HULL NUMBEK=1

COLUMN NUMBEK=1

COLUMN NUMBER=1

- 6LE -

NODES CI cH REN CKN
2.2
§§ 1123 ::gz ;;21:22 5:;: DIAMETER/VAVE LENGTH= .62 _
24 1.19 1.84 16211.57 2 47 SINCE D/L<#.2 MORISON EQ. IS USED o
25 1.12 1.83 16789 .44 5. 81 DRAG FORCE ON THE CIRCULAR CYLINDER=  23117.990 _
24 1.13 1.82 1148009 2. 75 ACCL. FORCE ON THE CIRCULAR CYLINDER=  73144.188
NODES TUF TAF TCF TOTAL FORCE ON THE CIRCULAR CYLINDER=  96258.180
22 748.19 2764.86 351304 TOTAL HOMENT ON THE CIRCULAR CYLINDER= 1194931.480
23 844.89 2981.75 3746, 64 CENTRE OF TOTAL FORCE= 11.479 (FROM WATER SURFACE)
24 953.97 3943.92 3997.89
25 1677.81 3191.44 4248.47
26 1215.44 3344.53 . 4559.97

NODES
27
28
29
38
3

NODES
27
2
29
kY
31

COLUMN NUMBER=2

CD
.81
.92
.93
-85
.86
TDF
2198.77
276.29
658.51
734.42
829.28

— i o

CM

1.89
1.79
1.77
1.75
1.74
TAF
1413.99
1486.47
1549.35
1620.63
1694.38

REN
6659.69
7836.55
7434.74
7855.47
8340.09

TCF
1924.67
2856.764
2199.84
2355.95
2523.66

CKN
J.04
3.21
3.39
3.58
3.78

TABLE 4

COLUNN NUMBER=2

DIANETER/WAVE LENGTH= 4.91
SINCE D/L<#.2 MORISON EQ. IS USED

DRAG FORCE ON THE CIRCULAR CYLINDER= 15748.854
ACCL. FORCE ON THE CIRCULAR CYLINDER=  37222.756
TOTAL FORCE ON THE CIKRCULAR CYLINDER=  52993.861

TOTAL MOMENT ON THE CIRCULAR CYLINDER= 4072082.437

CENTRE OF TOTAL FORCE= 11.439 (FROM WATER SURFACE)

(Cont'd)
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COLUMN NUMBEK=3

NODES
32
33
34
39
36
NODES
32
33
34
35
36

Ch
1.61
1.62
1.83
1.65
1.84

TDF
918.77
976.29
659 .51
734.42
829.28

COLUMN NUMBER=4

CH

1.80
1.79
1.77
1.75
1.74
TAF
1413.9¢
1489.47
1549.35
1620.63
1694.38

CH

1.87
1.86
1.84
1.83
1.82
TAF
2764.86

2961.75

3843.92
J3191.44
3344.53

REN
6659.69
7836.55
7434.74
7855.47
8300.00

TCF

1924.47

2056.76
2199.86
2355.85
2523.46

REN
7147.04
9664.66

16211.57
16789.44
11400.069

TCF
3513.94
3746.64
3997.89
4268.47
4559.97

CKN
3.84
3.21
3.39
3.58
3.78

CKN
21
.34
<47
.61

.73

SN RN
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COLUMN NUMBER=3

DIAMETER/MAVE LENGTH= 0.81

SINCE D/L<#.2 MORISON EQ. IS USED

DRAG FORCE ON THE CIRCULAR CYLINDER=  195748.054

ACCL. FORCE ON THE CIRCULAK CYLINDER=  37222.7%59

TOTAL FORCE ON THE CIRCULAR CYLINDER=  52998.841

TOTAL HMOMENT ON THE CIRCULAR CYLINDER= 487292.437
CENTRE OF TOTAL FORCE= 11.459 (FROM WATER SURFACE.

COLUMN NUMBER=4

DIANETER/VAVE LENGTH= 6.02

SINCE D/L<#.2 MORISON EQ. IS USED

DRAG FORCE ON THE CIRCULAR CYLINDER= 23117.999

ACCL. FORCE ON THE CIRCULAR CYLINDER= 73144.188

TOTAL FORCE ON THE CIKCULAR CYLINDEK=  94258.184

TOTAL MOMENT ON THE CIRCULAR CYLINDER= 1184931.096
CENTRE OF TOTAL FORCE= 11.479 (FRON WATER SURFACE)

TOTAL HORIZONTAL COLUMN FOKCES= 298497.97
TOTAL HORIZONTAL COLUMN MOMENTS= 3424247.48

TABLE 4 (Cont'd)



HULL NUMBEK=2

12
13
NODES

UHPF
-4772.12
-4772.12
-4772.12
-4772.12
-4772.12
-4772.12
-4772.12
-4772.12
-4772.12
-4772.12
-4772.12
-4772.,12
-4772.12
-4772.12
-4772.12
-4772.12
-4772.12
-4772.12
-4772.12
-4772.12
-4772.12

HHPF

2099.27
2099.27
2096.27
2096,27
2096.27
20996.27
2698.27
2096.27
2096.27
2098.27
2899.27
2094.27
2099.27
2098.27
2098.27
2698.27
20996.27
2096.27
2096.27
20946.27
2096.,27

VHAF
-4772.12
-4772.12
~4772.12
-4772.12
-4772.12
-4772.12
-4772.12
-4772.12
-4772.12
-4772.12
-4772.12
-4772.12
~4772.12
-4772.12
-4772.12
~4772.12
-4772.12
~4772.12
-4772.12
-4772.12
-4772.12

HHAF

20908.27
2899.27
2899.27
2098.27
2090.27
2898.27
2898.27
2896.27
2899.27
2099.27
29998.27
2898.27
2899.27
2896.27
2899.27
28998.27
20990.27
2896.27
2094.27
28998.27
2099.27

TVHF
-9544,23
-9544.23
-9544.23
-9944.23
-9544.23
-9544.23
-9544.23
~9544.23
~9544,23
-9544.23
-9544.23
-9544.23
-9544.23
-9544.23
-9544.23
-9544.,23
~93544.23
-9544.23
-9544.23
-9544.23
-9544.23

HHVF

831.95
831.95
831.95
831.95
831.95
831.95
831.99
831.95
831.95
831.93
831.95
B31.95
831.93
831.95
831.93
831.9%
831.99
831.995
831.93
831.93
831.95

VCF

g.00
g.99
33459.84
33459.84
33459.84
9.00
24161.56
24161.56
24161.56
9.99
6.69
2.99
24161.56
24161.36
24161.596
9.09
33459.89
33439.84
33459.84
g.09
g.89
THHF
3012.49
9912.49
9912.49
9912.49
9012.49
9812.49
9912.49
3012.49
3012.49
3912.49
3012.49
3812.49
9812.47
5812.49
5812.49
5012.49
9812.49
9012.49
5012.49
5012.49
3812.49

TABLE 4 (Cont'd)

- 381 -

TVF
-9544.23
-9344.23
23913.57
23915.57
23915.57
-9344.23
14617.33
14617,33
14617.33
-9544.23
-9544.,23
-9544.23
14617.33
14617.33
14617 .33
-9544.23
23915.57
23915.57
239153.57
-9544,23
-9544.,23



HULL NUMBEK=2

COLUMN NUMBER=1

NODES
22
23
24
25
26
NODES
22
23
24
29
26

Ch

1.88
1.89
1.19
1.12
1.13
TDF
748.19
844.89
923.97
1877.81
1215.44

COLUMN NUMBER=2

- 8¢ -

NODES
27
28
29
38
3
NOLES
27
28
29
30
3

CD
1.61
1.02
1.43
1.89
1.86

TDF
218.77
976.29
658.51
734.42
829.28

CH

1.87
1.86
1.84
1.83
1.82

TAF
-2764.86
-2901.75
-3043.92
-3191.46
-3344.53

Wy

1.89
1.79
1.77
1.73
1.74

TAF
-1413.99
-1480.47
-1549.35
-1628.63
-14694.38

REN

9147.484

9664.66

18211.57

16789.44

11499.69
TCF
~2016.47
-2056.86
-2089.95
-2114.45
-2129.989

REN

6659.49

7836.55

7434.74

7835.47

8300.09
1CF
-983.13
-984.18
-898.84
-8846.21
-843.19

IO R G o i B 2

CKN
.04
3.21
3.39
3.98
3.78

TABLE 4

COLUMN NUMBEK=1

- . o o - -

DIAMETER/WAVE LENGTH= 9.42

SINCE D/L<#.2 MORISON EQ. IS USED

DkAG FORCE ON THE CIRCULAR CYLINDER=  23117.999
ACCL. FORCE ON THE CIKRCULAR CYLINDER= -73144.188
TOTAL FORCE ON THE CIRCULAR CYLINDER= -56822.191
TOTAL MOMENT ON THE CIRCULAR CYLINDER= -594796.548
CENTRE OF TOTAL FORCE= 11.891 (FROM WATER SURFAI

COLUNN NUMBER=2

- — o —— - - -

DIAMETER/WAVE LENGTH= 4.91

SINCE D/L<#.2 MORISON EQ. IS USED

DRAG FORCE ON THE CIRCULAR CYLINDER= 15748.454

ACCL. FORCE ON THE CIRCULAR CYLINDER= -37222.758

TOTAL FORCE ON THE CIRCULAR CYLINDER= -21454.49%5

TOTAL HOMENT ON THE CIRCULAK CYLINDER= -259224.422
CENTRE OF TOTAL FORCE= 12.982 (FROM WATER SURFACE)

(Cont'd)
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COLUMN NUMBER=3

NODES CD
32 1.91
33 1.02
34 1.93
39 1.85
36 1.86
NODES ThF
32 919.77
33 576.29
34 656.351
33 734.42
36 829.28
COLUMN NUMBER=4
NODES Ch
37 1.648
38 1.89
39 1.10
49 1.12
41 1.138
NODES TUF
37 748.19
38 844.89
3y 953.97
49 1677 .81
41 1215.44

CH

1.80
1.79
1.77
1.75
1.74

TAF
-1413.9¢8
-1484.47
-1549.35
-1628.63
-1694.38

CH
.87
.86
.84
.83
.82
TAF
-2764.86
-2981.75
-3043.92
-3191.46
-3344.53

— mmd b —

6659.

7836

7434,
7835.
8348.

TCF
-943.13
-904.18
-898.84
-886.21
-865.14

9147.
9464.

16211

186789.
11400.

TCF
-2016.67

-2056.86
-2689.95
-2114.45
-2129.909

REN
69

cc
XY 2N

74

2
7

a9

REN
94
b6
.57
44
90

CKN
.94
.21
.39
a8
.78

[SSR FURE PRI SN 2V]

CKN
.21
.34
.47
.41

)

[RSNGB

TABLE

4

(Cont'd)

COLUMN NUMBER=3

- — - - - —

DIAMETEK/WAVE LENGTH= 4.81

SINCE D/L<#.2 MORISON EQ@. IS USED

DRAG FORCE ON THE CIRCULAK CYLINDER=
ACCL. FORCE ON THE CIRCULAR CYLINDER=
TOTAL FORCE ON THE CIRCULAR CYLINDER=
TOTAL NOMENT ON THE CIRCULAR CYLINDER=

CENTRE OF TOTAL FORCE= 12.882
\

COLUMN NUMBER=4

DIAMETER/WAVE LENGTH= .42

SINCE D/L<#.2 HORISON EQ. IS USED

DRAG FORCE ON THE CIRCULAR CYLINDER=
ACCL. FORCE ON THE CIRCULAR CYLINDER=
TOTAL FOKCE ON THE CIRCULAR CYLINDEK=
TOTAL MOMENT ON THE CIRCULAR CYLINDER=
CENTRE OF TOTAL FORCE= 11.891

TOTAL HORIZONTAL COLUMN FORCES=

15768.954
-37222.7539
-21434.6%95
-259224.422

(FROM WATER SURFACI

23117.9948
-73144.184
-98022.191
~-394796.509

(FROM WATER SURFACE)

-142953.78

TOTAL HORIZONTAL COLUMN MOMENTS= -1788841.87



107AL COLUMN FORCES ON THE STRUCTURE= 155344.19

70TAL COLUMN MOMENTS ON THE STRUCTURE= 1714225.12
CENTRE OF TOTAL FORCE= 11.63 (FROM WATER SURFACE)
70TAL HORIZONTAL FORCE ON THE STRUCTURE= 395978.43

MAXINUM AXIAL FORCE AT THE DECK (STRUCTURE HAS NO BRACINGS)

AF = 1449625.75
MAXIMUM SHEAR FORCE AT THE DECK (STRUCTURE HAS NO BRACINGS)
5F= 1288174.69

MAXIMUM AXIAL FORCE AT THE DECK (STRUCTURE HAS NO BRACINGS) .
HAXIMUM BENDING MOMENT AT THE DECK (STRUCTURE HAS NO BRACINGS)
Bd=  36964296.090
HR= 3676429.59 (BENDING MOMENT/WAVE HEIGHT)

HEAVE RESPONSE= -1.23 ROLL RESPONSE= -9.34
HEAVE ACCELERATION= 11.83 ROLL ACCELERATION= g.85
HEAVE RESPONSE/H= -9.12 ROLL RESPONSE/H= -9.43
PHASE ANGLE B.F.H= -11.71 PHASE ANGLE B.F.R= =-3.11

e . D S R SR G D EE R N EE S R ER R SR A G T G WS e G S R G AP R SR D R W SED WD G MM tmb W U W s W Y = e A ——

TABLE 4 (Cont'd)

- 384 -



Chapter 7: CONCLUSIONS
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1. CONCLUSIONS OF CHAPTER 2

In this chapter, a review of the basic hydrodynamic principles
for calculating the wave forces on circular cylinders in the drag
14

drag + inertia and diffraction regimes have been presented.

An approximate method has been given in order to take into
account the interference between circular cylinders which are dom-

inantly subject to wave inertia forces.

Under the light of existing theoretical and experimental know-
ledge‘it is believed that further experimental studies with large
size of models are essential in order to determine correct wave
coefficients taking the interference effects into account properly
for the structures which are dominantly subject to drag or drag +

inertia forces, i.e. jacket structures, guyed towers, etc.

Analytical procedures have been presented for calculating the
second-order forces on circular cylinders. Since these forces may
occur at the frequencies near to the natural frequency of surge or
sway mode of rigid-body motion of the floating structure they must
be taken into account during the design of riser or mooring systems.
Second-order vertical time independent forces would also cause
 undesirable steady-tilt angles as was experienced during the model

tests with semi-submersible designs in regular waves.

The effect of non-linear free-surface and the second-order time
dependent forces was found to cause an increase in wave loading on

circular cylinders by an amount of 20%.
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A formulation of the wave loading on a circular cylinder which
is working in the inertia or in the diffraction regime has been pre-
sented using the Stokes' fifth-order wave theory for the shallow water

applications.

2. CONCLUSIONS OF CHAPTER 3

A general method and a computer program have been devised to
calculate the wave force and moments on the circular cylindrical
members of fixed -and of floating offshore structures. In the com-
puter calculations the following points were not taken into account
due to the limitations in capacity of the computer (PDP 11/40) on

which WAVLOA was developed.

(a) The effects of non-linear boundary conditions and second-order
forces. However, one may determine these effects manually using the
appropriate graphs‘presented in Chapter 2, or integrate WAVLOA with
additional subroutines which could be written using the calculation

procedures presented in Chapter 2 on a larger capacity computer.

(b) The variation of drag and inertia coefficients along the length
of a member. This can easily be taken into account by compiling
WAVLOA with subroutine FLUID2 on a larger capacity computer. FLUID2,
which is described in Chapter 6, calculates the variation of

drag and inertia coefficients along the length of a member.

It is hoped that the developed computer program WAVLOA will
provide a basic tool to the designer, who can select and vary the

configuration of the floating or fixed offshore structure on which

he calculates the wave loading without any restriction.
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As desc;ibed in Chapter 4, WAVLOA forms a basic part in
the calculation method developed for the non-linear, coupled motion

response of a floating offshore platform.

Finally, it is hoped_that the method and the computer program
developed here will be used in further investigations of the force
and moment measurements on randomly oriented yawed cylinders for the

better understanding of the inertia and the drag forces.

3. CONCLUSIONS OF CHAPTER 4

In this chapter a general method to obtain the rigid-body motion
induced loading on the circular cylindrical members 6f floating off-
shore structures has been derived. Rigid-body motion induced loading
and wave forces are combined to obtain motion equations. Linear, un-
coupled single degree of freedom system equations are applied to the
model and a full scale semi-submersible type floating offshore plat-
form to predict the motion responses. Comparisons between the pre-
dictions and the model teést results show reasonably good agreement
for small amplitude motions. The general method has been extended to
include large amplitude motions by deriving non-linear, coupled
motion equations in a six degrees of freedom system. A solution pro-

cedure for these equations has been discussed.

The formulations derived in this chapter also provide an effic-
ient tool to study the non-linear dynamic stability of floating

structures in waves.
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4, CONCLUSIONS OF CHAPTER 5

1. Calculatiqn procedures were developed in order to predict the
structural response values for determinate and indeterminate floating
platforms. These procedures were applied to model and full-scale
semi-submersible design. The comparisons between the theoretical
predictions and the test measurements indicate an acceptable level

of agreement. However, the comparison of the theoretical predictions
which were made using the restrained mathematical model and the experi-
mental results obtained from the free-floating model suggests that

wave coefficients should be higher than the values used in these
predictions. It is believed that better agreement should be obtained
between the theoretical predictions which employ the free-floating
mathematical model and the experimental results if the solutions of the
linear uncoupled motion response equations are replaced with the

solutions of non-linear coupled motion response solutions.

2. At the initial stage of the floating platform design, structural
response calculations need to be performed for each member several
times by varying the wave frequencies, wave heading angles and the
structural properties of the members before the final decision on

the scantlings of members is.reached.

3. The analysis carried out with the restrained and the free-float-
ing mathematical models showed that the difference in magnitude of
response between these two cases had a maximum of * 20% in the oper-
ational region. The free-floating mathematical model uses the solut-
ions of the linear uncoupled motion response equations. Since the

rigid body motion-induced loading tends to decrease the structural
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response values over a large frequency region, the use of a res-
trained structural model was found to lead to more accurate calcul-

ations and affords a factor of safety in design.

4. In the case of floating platforms, unlike in the ship case, it
is not possible to define a critical wave length/structural length
ratio at which maximum structural lodd occurs in waves. Thus in
order to define maximum design loadslgtructural response calculat-
ions should be carried out in the frequency domain for various wave
heading angles. The probabilistic values of design loads can also
be obtained readily from these frequency domain calculatidns by

employing the methods of spectral analysis.

5. Since the bracing members reduce the structural response values
considerably, extreme design load calculations for the individual
strength members should include consideration of a failure or an

accident involving the bracing members.

6. Maximum structural response values on fhe longitudinal and on
the transverse strength elements of twin circular hulled design

semi-submersibles occurred in beam seas. Again, for the same type
of design, the maximum structural response in the strength members

of the deck was dominated by the wave loading on the hulls.

7. The effect of the non-linear free surface and the second-order
forces induces a maximum increase of 10% in the bending moment values
on the transverse deck beam of a model structure. An increase of the

same order was found for the restrained and the free-floating model

cases.
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8. It maQ generally be said that floating platforms can be accepted
as rigid structures; therefore, structural response calculations can
be carried out under quasi-static loading for overall structural res-
ponse. However, structural response under dynamic loading may

become important for flexible support members, such as bracings or
columns in the case of a failure or an accident involving those
flexible members. Similarly, impact loads due to wave breaking can
be important for the dynamic loading analysis. These cases suggest
that a redundancy analysis should be incorporated into the dynamic

analysis.

9. A simplified method has been suggested to determine the struct-
ural response values under dynamic loading. The bending moment values
on the flexible deck connections of the semi-submersible model given
by this method agree better with the experimental measurements than

the quasi-static case where response values reach a peak.

5. CONCLUSIONS OF CHAPTER 6

Various computer routines for the prediction of structural load-
ing and response of a twin circular hulled semi-submersible geometxry
were described. Although the entire FLUID4A program-is restricted
to a twin circular hulled semi-submersible geometry, various routines
can be separately integrated with other programs in order to calcul-
ate wave, current and wind drag forces on circular cylinders as well

as hydrostatic characteristics.

Since, at the time of the writing of these routines, the only

experimental data on drag coefficients available over a large
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Reynold's number range was steady flow results, these were used in
the appropriate subroutines. However, as more experimental data on
drag, inertia and lift coefficients obtained frd; oscillating water
column tests, wave tank tests, or from full scale measurements (see

also Chapter 2) become available, the relevant subroutines which

could make use of this new information should be updated.

One may also study the sensitivity of these coefficients
obtained from steady, oscillating or wavy flow, to the structural
loading and response by adding appropriate subroutines which contain

new data to the FLUID4A main program.

Finally, when FLUID4A is run for a twin circular hulled semi-
submersible which is floating near to the free-surface, routines
which calculate added-mass and added-moment of inertia values for
the columns and the hulls should be modified to include frequency

dependent effects.

6. CONCLUSIONS OF APPENDIX 1

The set up for the measurements of the motion and the struct-
ural response of the twin circular-hulled semi-submersible model in
regular waves has been described. Considering the regularity
obtained in the time domain records and the consistency of the ampli-
tude measurements plotted in the frequency domain, it may be con-

cluded that the set up was reliable enough for the measurements dis-

cussed in the Appendix.
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The initial aim of these experiments was to compare the calcul-

ated motion and the structural response predictions with the measure-

ments. Although reasonable agreement was found between the theoret-

ical predictions and the experimental measurements, in the light of

the conclusions drawn in Chapters 4 and 5 it is still believed that

further testing is essential for a thorough understanding of the

following points:

(1)

(2)

(3)

The effect of the harnesses which stop the model drifting along
the tank. The motion and the structural response values should
be measured as the location of the harnesses on the model is
varied. Measurement of the forces exerted by the harnesses

would also be very helpful.

The effect of the interference between the following elements
of the model:

(a) two hulls

(b) two vertical columns

(c) one hull and one vertical column.

The effect of structural dynamics. It is necessary to carry
out further tests with the complete semi-submersible model
restrained against rigid-body movements and designed and in-
strumented in such a way that the dynamic effects in waves,
especially in the condition whereby a bracing has failed, are
easily measured. A comparison of such measurements with the
summed measurements obtained from the individual components

under (2) above will clarify the difference between the quasi-
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Items

water

(4)

static and dynamic loading (provided that the force measure-
ments under (2) are carried out with a rigid mounting system) .
These tests would also provide a comparison between the
structural response calculations which were carried out for

the restrained model and the measurements.

(2) and (3) should be repeated by oscillating the model in calm

in order to determine the motion induced loading.

The effects of the orientation of the model in waves as it is
displaced during roll and pitch motion. The model can be

fixed at typical configurations, i.e. the model may be fixed

as it is heeled at a certain angle of roll, and force and moment

measurements can be carried out.
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Appendix 1: DESCRIPTION OF MOTION AND STRUCTURAL

RESPONSE EXPERIMENTS
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INTRODUCTION

In order to compare the calculation procedures developéd for
the prediction of motion and structural response with the experimental
measurements, model tests were carried out. A twin circular hulled
semi-submersible model, as shown in Fig. 1-A, was tested in regular
waves by varying the range of frequencies from 1 rad/sec to 8 rad/sec
and wave heights from 5 cms to 15 cms in the 77 x 4.6 x 2.4 (metres)

testing tank at Glasgow University.

The tests were performed in order to measure the heave and roll
response of the model, as well as the bending moments at the centre of
the transverse beams and the axial forces on the inclined bracings in

beam sea conditions.

1. DESCRIPTION OF MODEL

A twin circular hulled semi-submersible model was constructed
in two halves and, at thé first stage, connected with two transverse
beams to represent a determinate structure (Figs. 1-A and 1-B). At
the second stage, inclined and horizontal bracings were added to the

model to represent an indeterminate structure (Fig. 1-D).

The following materials were used during the construction of

the elements of the model:

Elements Material

Hulls P.V.C. Tubes

Columns P.V.C. Tubes

Decks P.V.C., and Aluminium Sheets
(Fig. 1=-c)

Transverse Beams Squared section aluminium
beams

Horizontal and Inclined Bracings Brass Tubes (Fig. !-D)
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All elements of the model were constructed using the work-
shop machinery at Glasgow University's test tank. Care was taken

to ensure the even and symmetrical distribution of element masses

throughout the model.

The P.V.C. parts were connected to each other with P.V.C.
welding. Aluminium and P.V.C. elements, as well as all aluminium

elements, were bolted to each other (Fig. 1-C).

At the second stage of the experiments, inclined and horiz-

ontal bracings were bolted to the model.

The bracing elements can easily be mounted on and dismounted

from the model.

The model was ballasted to the desired draft level using
special ballast containers placed in each corner column. These
containers restricted the movement of the ballast during the motions

of the model.

Harnesses were attached between the model and the tank walls
so that the model could be stopped from drifting along the tank.

The location of the harnesses on the model was at about the centre

of gravity of the model.

The mass distribution of the model is summarised in Table 1.
The structural properties of the elements used in the construction

of the model are also given in Table 2.

Picture 1 shows the model during the test in regular waves,
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TABLE 1

MASS DISTRIBUTION OF THE TWIN CIRCULAR HULLED SEMI-SUBMERSIBLE

Element Number Mass (Kgs) Distance from Base
Line (cms)

Hull 2 6.55 7.00
Vertical Column 8 1.0 35.50
Deck 2 4,7 57.00
Transverse Beam 2 0.82 58.25
Empty Ballast 4 0.635 17.13
Container
Ballast 4 6.25 9;88
Inclined Bracing 4 0.451 41.00
Horizontal Bracing 2 0.601 14.70
TABLE 2

STRUCTURAL PROPERTIES OF THE TWIN-CIRCULAR-HULLED SEMI-SUBMERSIBLE

Element Cross Sectional Second Moment Elasticity
Area (cm?) of Area (cm%) Modulus (N/mm? )
3
Hull 17.10 1582. 34.76 x 10
Vertical Column 12.15 742.5 34.76 x 103
(large diameter)
3
Vertical Column 12.25 374.2 34,76 x 10
(small diameter)
_ 4
Deck 3.22 0.03 7.2 x 10
4
Transverse Beam 2.84 2.16 7.2 x 10
3
Empty Ballast 12.25 374.2 34,76 x 10
Container
4
Inclined Bracing 1.64 3.10 10.03 x 10
1
Horizontal Bracing 1.93 8.16 10.03 x 10
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2. INSTRUMENTATION

2.1 Instrumentation for Motion Response Experiments

During the motion response tests, the instrumentation was
set to record the amplitudes of the regular wave trains as well as

the amplitude of the heave and roll motions of the model,

Regular waves were created by a plunger type wave-maker

driven by an electronically controlled hydraulic pump (Fig. 2).

Across the tank width 5 resistance~type wave probes were
installed. These probes induce an electrical signal whose strength
changes as the waves pass the probes. These signals were amplified

and recorded on the pen recorder. The pen recorder draws the vari-

ation of wave elevation versus the real time.

The ﬁeave ahd roll motions of the model were recorded with
a pair of gravity-type linear vertical transducers. They were
attached to the sub-carriage and connected to the deck of the model
with piano wires suspended over a pair of pulleys. The weights of
the vertical displacement transducers were balanced in order to avoid
any acceleration being induced on the transducers during the motion
of the model. The signals induced as a result of the model's
motion in regular waves were sent to the pen recorder via an amplifie:
to record heave and roll displacements versus real time. Since the
motion signals received from the model were the total displacements
due to heave and roll (pitch) motion a special amplifier was used to

add the signals received from the transducers to obtain a heave signal

and to subtract to obtain a roll (pitch) signal.

- 405 -



2.2 Instrumentation for Structural Response Test

During the structural response experiment, the instrument-
ation was set to record the amplitudes of the regular wave trains
as well as bending moment variations at the centre of the trans-
verse beams and the variation in axial force on the inclined

bracings.

In order to measure the bending moments, two pairs of
strain-gauges were mounted on the top and bottom surfaces of the

framework beams, as seen in Fig. 3.
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Fig. 3: Strain Gauges on Transverse Beam

The strain gauges were connected such that when the beam was,

simul taneously, subject to bending moments and axial forces, they

could induce signals only due to the bending moments. Details
of this type of strain-gauge instrumentation can be found in

Reference 1.
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Similarly, in order to measure the axial forces on the
inclined bracings, two pairs of strain-gauges were mounted on

the brass tubes, as shown in Figs. 1-D and 4

(o~ T ——

Le— —

FACE: 1 FACE: 2

Fig. 4: Strain Gauges on Brass Tube

These strain gauges were also connected such that they
could induce signals only due to the axial forces when the bracing
were subject to both axial forces and bending moments. Details

of this type of strain-gauge instrumentation can also be found in

Reference 1.

The signals received from the strain-gauges were sent to
the pen recorder via strain-gauge amplifiers to record bending

moment or axial force values versus time.

Picture 2 shows the recording instruments.

3. DESCRIPTION OF CALIBRATION PROCEDURES

3.1 Calibration of Wave Probes

All wave probes were submerged up to 3/4 of their lengths

into the tank when the water was calm and zero readings on the wave

probe amplifiers were taken. At the same time, the pens' positions

corresponding to the zero wave elevation was marked on the recorder.
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The calibration process was continued, by lifting the wave probes
gradually at 5 cms intervals up to 15 cms, and at each step the
pens' new positions were marked on the recorder. From the calib-
ration records a linear relationship was found between the displace-

ments of the wave probes and the pens' displacements on the recorder

Finally, the slope of the calibration curve was calculated

as:

CFW = Probe displacement (=wave elevation) [cms] _ 2.5
Pen displacement [cms] 1.0
3.2 Calibration of Linear Displacement Transducers

The model was floated at the required draft level in the
calm water and the displacement transducers were attached to the

deck at both sides of the model (Fig. 2).

First, zero readings were taken from both transducers and

corresponding zero lines were marked on the pen recorder.

Secondly, the transducers were displaced il()cms using a
vertical vernier attached to the piano wire which connects the
model to the transducer. At the same time, the pen's position
corresponding to the displacement of the transducer was marked.

The same procedure was carried out with the second transducer,

From the calibration records it was found that the responses

of both transducers were identical and linear within the range of

calibration.
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The slope of the calibration curve was calculated as:

CDF = Transducer displacement (=model's displacement) [cms] = 2,0
Pen displacement [cms] 1.0
3.3 Calibration of Strain-Gauges on the Transverse Beams

In order to read direct bending moment values from the re-
cords, the strain-gauges were calibrated on the actual model. The

model was set for calibration in calm water, as seen in Fig. 5.

. ' \

Fig. 5: 'Calibration of Strain-Gauges on the trans-
verse deck

After taking the zero readings from the strain-gauges
mounted on both transverse beams, the bending moment values on
the beams were step by step increased by increasing the applied
force on the hulls from 1 kgf to 8 kgf. During this process,
displacements of the pens corresponding to the applied moment values

were marked on the pen recorder at each 1 kgf increase of the applied
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force. The responses of the strain-gauges were found to be
linear. It was also found that there was a small difference in
the slopes of the calibration curves belonging to the first and the
second beams. The difference may be due to a slight difference
in alignment and/or to a difference in the adhesion of the strain-

gauges during mounting.

The slope of the calibration curve for bending moment
measurements recorded from both transverse beams was calculated

by taking the average value as follows:

l{{Bending Moment [N cms]

CFS = - )
P a t
2" Pen dispmacement [cms] BEAM 1
+ (Bending Moment [N cms]) ]
Pen displacement [cms] BEAM 2
3.4 Calibration of Strain-Gauges on the Inclined Bracings

In order to calibrate the strain-gauges mounted on the

bracings, the simple set-up shown in Fig. 6 was prepared:

LLLLLLL L L LS

STRAIN GAUELS

— BRASS TUBE

Fig. 6
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The calibration process to record axial force versus pen
displacements on the recorder was the same as that described in

the previous section.

The responses of the strain-gauges were found to be linear
and as with the case mentioned in the previous section, there was
a small difference in the responses of the strain-gauges mounted

on the first and the second bracings.

The slope of the calibration curve used for the axial force
measurements recorded from both bracings was calculated taking the

average value as follows:

i{(Axial Force [N]
2 Pen displacement

Axial Force [N]
Pen displacement

CFSB = ]

BRACING 2

(
BRACING 1

4, DESCRIPTION OF THE RECORDS

Three groups of tests were carried out with the twin circular

hulled semi-submersible model in regular beam seas.

N

During the first group of experiments, wave, heave and roll
displacements versus real time were ?ecorded.(Figs. 6, 6-A and 6-B).
Each run was continued until the first wave train reached the slotted
beach (Fig. 2) in order to avoid any possible wave reflection be-

tween the transverse tank walls and any wave resonance,

In order to find the motion and wave amplitudes at each test
frequency, each record was analysed manually by taking the average

of 5 amplitude readings.
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These values were plotted as wave frequencies versus

response amplitudes in Chapter 4.

Before the model was tested in waves for the measurements
of motion amplitudes, free motion experiments were carried out
using the same set up as for the motion response experiments,
During these experimeg;s the natural heave and roll period, as

well as the heave and roll damping coefficients, were measured

These values are shown in the following table:

TABLE 3
Mode of Natural Period (Sec) Damping
Motion Calct. Measured Coefficients
Heave 2.66 2.4 0.075
Roll 5.46 3.9 0.071

A second group of experiments was carried out to measure
the amplitudes of the waves and the bending moments at the centre
of the transverse beams. During this group of experiments bracings

were not mounted on the model. . Some records from this group's runs

are shown in Figs. 7-(8-34).

The analysis of the measurements recorded during the second
group of runs was performed in the same way as that described for
the first group. The results of the analysis were plotted as wave

frequency versus bending moment/wave amplitude in Chapter 5.
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In the final group of experiments, the semi-submersible
model with inclined and horizontal bracings was tested in order
to measure the amplitudes of bending moment at the centre of the
transverse beams, of axial forces on the inclined braciggs and
of wave amplitudes at each wave frequency. Some records from

this group's runs are shown in Figs, 9 and 9-A.

The records of this group of runs were analysed in the same
way as described earlier for the first and second group of runs.
This group's measurements were plotted as wave frequency versus
bending moment/wave amplitude and wave frequency versus axial force/

wave amplitude in Chapter 5.
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NOQVENCLATURE QF CHAPTER 2

X,¥:2 : Co-ordinates in the'wave reference system
X,Y,2 : Co-ordinates in the structure reference system
? : Space co-ordinate vector, (= xz + y§ + zK)
G Velocity vector of the fluid particles
o : Acceleration vector of the fluid particles
Xi : Rigid-body motion of the structure
Ui : Components of velocity vector of the structure
Gi Components of the acceleration vector of the structure
S(x,y,z): Mathematical description of a member surface
ds : Surface area~elément
w o Complex velocity potent}al of fluid
@,@,@F’L: Velocity potential of fluid
¢o : Velocity poﬁential of oncoming waves
¢S Velocity potential of scattered waves
¢j : Velocity potential due to rigid bedy motion in j mode
¢A ¢o * ¢s
Y : Stream function
I,?,E : Orthogonal unit vectors of the structure reference system
v . The vector differential operator
= %;-z + %;-; + %;—; or
> 9
=g—r-_e)r+-]-1:-%-§ee+-a';3
Zr,Ze,§ : Orthogonal unit vectors of the cylindrical co-ordinate
system
Fx'Fy'Fz: Wave loading on a member along X, y, 2 axes respectively
AS . Cross-sectional area of a member
Re : Real part of a complex equation
W : Wave or motion frequency_(Rad/SeC)
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t : Time

T : Wave period

g : Gravitational acceleration

o) : Density of fluid

Hw : Wave height

A : Wave length

k : Wave number (= 2m/A)

>

n Normal vector of the surface of a member

C : Wave celevity (= A/T)

E/M,T : Co-ordinates of a point on the surface of a member
G : Green function given

Am : Numerical constant to define the scattering potential
Jm : Bessel function of the first kind

Ym : Bessel function of the second kind

Hm( ) Hankel function of the first kind (= Jm + i Ym)
Im : Modified Bessel function

o) : Hydrodynamic pressure

Py : Atmospheric pressure

D : Diameter of a circular cylinder

R : Radius of a circular cylinder

SM : Surface of a member

Sc : Surface of a control volume

mij : Added-mass tensor

\Y : Volume of a member

T : Kinetic energy of fluid

Aij : Dipole moments defined in equation (43)

T : Circulation

kij . Added-mass coefficient tensor

CM : Inertia coefficient (= 1+ Kii)

Fr : Inertia Force
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2
w

Drag ccefficient

Drag force

Projected area

Kinematic viscosity

Total inertia and drag force

Roughness

Fourier coefficients

Lift coefficients

Vortex shedding fregquency (Hz)

Length of a member

Depth of a member; it is also used as the distance between
two cylinders

Water depth, or distance between water surface and a
cylinder axis

Wave elevation

Extensional motion of fluid particles defined in equation
(108)

Coefficients used in equation (138-A)

Variables defined in equations (149) and (149-A) respectively

A function used in equation (151)

: Velocity potential of oncoming waves in shallow water

Velocity potential of scattered waves in shallow water
Wave elevation in shallow water

Wwave celevity in shallow water

Wave number in shallow water

Hydrodynamic pressure in shallow water

Coefficients defined in equation (160)

. Coefficients used in equations (77 - 79) and (83 - 85)

Subscripts (s) are used in the second-order force equations
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NOMENCIATURE: OF CEAPTER 3

X, Y2

i]

ij

i]

X ,Y ,Z2
o' 0’ 0

Co—ordinates in the wave reference system
Co-ordinates in the structure reference system
Co-ordinates in a member reference system
Hydrodynamic force on a circular disk due to rigic-
body acceleration of the disk oscillating along

y axis

Components of the velocity vectér of the fluid
particles in x,y,z directions respectively
Components of the accelaration vector of the fluid
particles in x,y,2z directions respectively
Hydrodynamic pressure

Radius of a circular cylinder

Diameter

Density of fluid

Gravitational acceleration

A coefficient defined in equation (2) in order to
take the effect of three dimensionality into account
Added~-mass coefficient tensor

Drag coefficient

Coefficients of a tensor defined in equation (6) in
order to transfer the co-ordinates defined in the
wave reference system to the structure reference
system

Coefficients of a tensor defined in equation (9)

in order to transfer the co-ordinates definec in
the structure reference system to a member reference

system

Co-ordinates of the origin of the structure refer-

ence system
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Xl ’Yl ,Zl ’XZ'YZIZZ

=Y ::JI*E

3¢

‘ee

Ly

Orthogonal unit vectors of the structure
reference system
Orthogonal unit vectors of the member reference
s&stem
Ends co-ordinates of a member defined in the
structure reference system
Member length
Wave height
Wave frequency (Rad./Sec.)
Wave number (= 27m/))
Wave length
Centre of gravity of the structure
Normal unit vector of the surface of a member
Space vectors defined in equation (10)
Equation of a plane defined in equations (12) and
(13)
Polar co-ordinates in a member reference system
The vector differential operator

J > 3 > o >

o + — e, + — e
du °1 dv 2 dw 3

Variables defined in equation (17)

Variables defined in equation (21-1)

Wave pressure force

Wave acceleration force

Wave velocity force

Total wave force vector

Total moment vector due to the wave forces on

the structure

Moment vector calculated about the origin of the

member reference system
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Ry

(2], 18], [c]. [r]

Moment vector calculated about the origin of
the structure reference system

Position vector shown in figure 2
Coefficients of the moment vector defined in
equation (46)

Matrices defined in equation (47)

Subscripts u,v,w denote the forces calculated

along u,v,w axes respectively.

Subscript (m) denotes the forces and moments

expressed in a member reference system.

Subscript (s) denotes the forces and moments

expressed in the structure reference system.

(1) denotes the calculations carried out on an

individual member.

NOMENCIATURE OF CEAPTER 4

X,Y,2 :

=

£

O
—
~

0]
N
-

()
w

E (@)

©

Co-ordinates in the structure reference system
Co-ordinates in a member reference system
Orthogonal unit vectors of the structure
reference system

Orthogonal unit vectors of the member reference
system

Components of the rigid-body motion vector
Components of the rigid-body velocity vector
Components of the rigid-body acceleration vector
Motion frequency (Rad./Sec.)

Velocity potential of fluid due to rigid-rody moticn
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gy By

Lol

|

ij

ij

i]

A(u),B(u),C(u)
Al (u),Bl (u),Cl(u)

A(u) ,B(u),C(u) :
Al (u),Bl(u),Cl (u)

arb,C,Fl,FZ,FB

d,e,f,a',b',c',
M3 M3

Velocity potential of fluid due to unit rigig-
body motion

Normal unit vector of the surface of a member
Rigid-body translational velocity vector
Rigid-body rotational velocity vector

Space co-ordinate vectors shown in figure 1

Real part of a complex equation

Density of fluid

Hydrodynamic force vector due to rigid-body motion
Hydrodynamic moment vector due to rigid-body motion
Hydrodynamic force and moment vector components
Coefficients defined in equations (9), (10) and (13)
Added-mass tensor of a body oscillating in an
unbounded fluid

Added-mass tensor of a body oscillating near or

on the free-surface

Damping coefficients tensor of a body oscillating
near or on the free-surface

Space co-ordinate vectors defined in figure 3
Coefficients of a tensor used in equations (18-a),
(19) and (20) in orderxr to transfer the co-ordinates
defined in the structure reference system to a
member reference system

Variables defined in equation (23)
Variables defined in equation (24)

Coefficients of the force vector defined in

equation (28)

Coefficients of the moment vector defined in

equation (28-A)
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FP] , [2n],

AlF], [DM
Q1:Q2

™], [M1], [G],
EBT%,EAlM]

g

R

kij

L

X1 1Y ,2,

[r]
[
S(x,v,z)
ds

G

f

o

a,b

T’GML

BM

Matrices defined in equation (29)

Operators defined in equation (29)

Matrices defined in equation (30)

Graviational acceleration

Radius of cylinder

Coefficients of added-mass tensor of a body
oscillating in an unbounded fluid

Length of member

End co-ordinates of a member defined in the
structure reference system

Total hydrodynamic force matrix

Total hydrodynamic moment matrix
Mathematical description of a member surface
Surface area element

Green's function defined in equation (13)
Source strength defined in equation (13)

A variable defined in equation (45)
Variables defined in equation (48)

Wave number (=2T/))

Wave length

Wave height

Angle of oncoming wave propagation

Damping coefficient

Total water plane area of surface piercing members
Displacement of the floating structure

Transverse and longitudinal metacentric heignts

respectively

Centre of immersed volume

1/V
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> > >
r

I I,.,I

XX'"Yy'"zz

I
XY’IYX'IXZ’IZX

IYZ'IZY
Txxtxy'tzz i txy

i i
Txz'tyz

M], [c], [BM], [MH1]:

(ME2], [CH1], [CH2]
LS

] = |0

x]

a,b,c

[rc]
(], [ec] [x]*
D%J :

(a£, 7, [a£,], [8£3] -

., L., T :
i’'"A'"G

Total moment of inertia of the water rlane area
of surface piercing members about X axis
Total moment of inertia of the water plane area
of surface piercing members about Z axis

Centre of gravity of the floating structure

Mass density

Total mass of the structure

Position vectors shown in figure 8

Mass moment of inertia about X,Y,Z axes respectively
Mass moment of inertia values defined in

eqautions (61-D}, (61l-E), (61-F)

Mass moment of inertia values defined in

equations (65-A) - (65-F)

Matrices defined in equation (68)

The restoring force matrix defined in equation (22)
Column matrix of acceleration of the structure
Column matrix of translational and rotational
displacements of the structure

Natural frequency (Rad./Sec.)

Phase angle between the force (or moment) and the
rigid-body motion

A constant defined in equation (71-D)
Magnification factor defined in equation (72)
Co-ordinates of a point A on the structure given
in the structure reference system

Matrix defined in equation (83)

Matrices defined in equation (83-2)

Wave force matrix

Incremental form of equation of mnoticn Zefinea

in equation (86)

- 444 -



At : Time increment

AX : Displacement increment

T : Time

[APW] : Wave load increment matrix
[E] : Stiffness increment matrix

Subscripts (M) denotes the velocities, acceler-
ations, forces and moments expressed in a member

reference system.

Subscripts (S) denotes the velocities, acceler
ations, forces and moments expressed in the

structure reference system.

Subscripts (T) denotes translational accelerat-

ion and velocity vector components.

Subscripts (R) denotes rotational acceleration

and velocity vector components.

NOMENCLATURE OF CHAPTER 5

M(X) : Mass distribution of the ship along X axis

p(X,t) : Structural load distribution along the ship
length

SF(X,t) : Shear force distribution along the ship length

BM(X,t) : Bending moment distribution along the ship
length

£ : Ship length

E : Elasticity modulus

A : Sectional areas

Moment of inertia of ship cross-sections
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£ (X,t)
W

c,, (X)

22

yd (X,t)

¢ (X)

T(t)

Al’Az’As’Au

SF (u,t)

BM (u,t)

AF (u,t)

X,Y,2

Distribution of wave loading along the ship
length

Distribution of added-mass of the ship in heave

mode of motion

Distribution of damping coefficients of ship

sections in heave mode of motion

Distribution of restoring coefficients of ship

sections in heave mode of motion

Vertical displacements due to dynamic loading

on the ship
Shape function

Variation of amplitude of the vertical displace-

ments of the ship

Natural frequency of rigid body oscillations of

the ship (Rad./Sec.)
The coefficients defined in equation (14)

Shear force distribution along the members of

the floating structure shown in Fig. 2

Bending moment distribution along the members

of the floating structure shown in Fig. 2

Axial force distribution along the members of

the floating structure shown in Fig. 2
Local co-ordinates shown in Fig. 3

Height, beam and draft of the floating structure

shown in Fig. 2 respectively
Increments along the u axis
Wwave forces along u,v and w axes respectively

Average shear force, bending moment and axial

force respectively

Co-ordinates in the structure reference system

- 446 -



Fl,FZ,Fé,Fq,F

5

e

Orthogonal unit vectors of the structure refer-

ence system

Translational and rotatiocnal rigid-body dis-

placements
Mass of the floating structure shown in Fig. 2

Added-mass of the floating structure shown in

Fig. 2 in heave mode of motion

Damping coefficient of the structure shown in

Fig. 2 in heave mode of motion

Restoring coefficient of the structure shown in

Fig. 2 in heave mode of motion

Mass-inertia, hydrodynamic and restoring forces

on the structure shown in Fig. 2 respectively

Mass moment of inertia of the structure shown

in Fig. 2 in roll mode of motion

Added-mass moment of inertia of the structure

shown in Fig. 2 in roll mode of motion

Damping coefficient of the structure shown in

Fig. 2 in roll mode of motion

Restoring coefficient of the structure shown in

Fig. 2 in roll mode of motion

Moment vectors due to rigid-body inertia force

and hydrodynamic forces respectively

Damping coefficients tensor of a body oscillat-

ing near or on the free-surface

Components of rigid-body velocity and acceler-

ation vector respectively

The distance between the centre of gravity of

the structure shown in Fig. 2 and the base line.

(See also Fig. 15.)

Gravitational acceleration
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Density of fluid

Radius of the columns of the structure shown in

Fig. 2

Transverse metacentric height

Displacement of the structure shown in Fig. 2
Constant defined in equations (56), (58), (62), (64)

Added-mass tensor of a body oscillating near or

on the free-surface

Rigid-body motion induced forces on mass (A)
shown in Fig. 28 in u and v directions respect-

ively

Phase angles defined in equation (66)
Mass of object A

Added-mass tensor of object A
Stiffness of the beam shown in Fig. 18

Natural frequencies of the beam-mass system

shown in Figs 18 and 19
Magnification factors defined in equation (72)

Masses and added-masses of the system shown in

Fig. 21 respectively

Stiffness coefficients of the system shown in
Fig. 21

Flexibility influence coefficients of the system
shown in Fig. 21

Natural frequencies of the system shown in

Fig. 21

m. +m .
1 1,737
Masses and added-masses of the structure shown

in Fig. 22

Water plane area of the structure shown in Fig. 22
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[£]

(k]
[a]

[F]

[A]

(T]

[s]\

Member force matrix of the member shown in Fig.

35. (Defined in the member reference system.)
Stiffness matrix of the member shown in Fig. 35

Displacement matrix of the member shown in Fig.

35. (Defined in the member reference system.)

Member force matrix of the member shown in Fig.
35. (Defined in the structural reference

system.)

Displacement matrix of the member shown in Fig.
35. (Defined in the structural reference

system.)

Transformation matrix which converts forces and
displacements defined in the member reference

system to the structural reference system
Matrix defined in equation (124)

Reaction forces on the structure shown in Fig.

39
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