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Compound-Nucleus Formation Following Direct Interactions
to Highly-Excited Final States

F.S. Dietrich

Lawrence Livermore National Laboratory, P.O. Box 808, L-414, Livermore, CA 94551, USA

Abstract. When direct reactions populate highly excited, unbound configurations in the residual nucleus, the nucleus may
further evolve into a compound nucleus. Alternatively, the residual system may decay by emitting particles into the continuum.
Understanding the relative weights of these two processes as a function of the angular momentum and parity deposited in the
nucleus is important for the surrogate-reaction technique. A particularly interesting case is compound-nucleus formation via
the (d, p) reaction, which may be a useful tool for forming compound nuclei off the valley of stability in inverse-kinematics
experiments. We present here a study of the compound formation probability for a closely-related direct reaction, direct-
semidirect radiative neutron capture.
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FIGURE 1. Schematic picture of the formation of a residual
nucleus B via a direct reaction D(d,b)B, followed by the decay
B →C +c.

The surrogate nuclear reaction technique for indirect

determination of compound-nucleus cross sections, dis-

cussed in several presentations at this conference, in-

volves the production of a highly-excited residual nu-

cleus in a direct reaction, followed by the the detection of

the decay products of this residual system. This process

is indicated schematically in Fig. 1, in which the resid-

ual nucleus B is formed in the direct reaction D(d,b)B,

followed by the decay B →C +c. In this presentation we

examine an important assumption of the surrogate reac-

tion mechanism, namely that the residual nucleus B is an

equilibrated compound nucleus.

The potential difficulty with this assumption is that B

may decay promptly by emitting particles into the con-

tinuum before a compound nucleus is formed. Estimat-

ing the probability that such decays actually occur must

be carried out for all relevant spins and parities of the

residual system. This problem is closely related to those

of preequilibrium emission and incomplete fusion in di-

rect reactions. Possible prompt decay mechanisms need

to be studied for each type of direct reaction used in sur-

rogate experiments. Here we give examples of prompt

decay processes that may play a role in several direct re-

actions that have been used in surrogate-reaction mea-

surements:

• (3He,α): Pickup process, which creates a hole in

the residual nucleus. This may interact with the

remaining nucleons and eject a nucleon (nuclear

Auger effect, or rearrangement escape).

• (d, p): Stripping process that deposits a particle

(neutron) in the residual nucleus, which is unbound

in the case of surrogate reactions. The nucleon may

then leak into the continuum (direct escape).

• (α,α ′): Inelastic scattering, which creates coherent

superpositions of particle-hole pairs in the residual

system. Both rearrangement and direct escape need

to be considered.

In principle, theories need to be implemented for each

relevant type of direct interaction, suitable for calculating

the compound-nucleus formation probabilities for each

spin-parity combination of the residual nucleus.

A particularly important case is (d, p), since this is a

potentially useful reaction for studying unstable nuclei in

reverse-kinematics experiments at radioactive beam fa-

cilities. Here we carry out calculations of the compound

formation probabilities in a closely-related reaction, ra-

diative neutron capture (n, γ). For kinematics relevant to

the surrogate mechanism, both reactions insert a neutron



in an unbound state around the target nucleus X :

d +X → (X +n)+ p, (1)

n +X → (X +n)+ γ. (2)

We study the radiative capture reaction because a suitable

reaction theory has been implemented for nucleon cap-

ture to unbound states, including the evolution of the final

state into its compound-nucleus and escape parts [1]. The

only difference in the reactions is the manner in which

the neutron is captured onto the target; the theory for the

decay of the configuration (X + n) is the same in both

cases. Thus we can use calculations of compound for-

mation probabilities in the radiative capture reaction as

a prototype for what should be expected in the stripping

reaction.

RADIATIVE CAPTURE

The theory of direct-semidirect fast-nucleon radiative

capture to bound final states is well known, and its ex-

tension to unbound states has been treated in detail by

Parker et al. [1]. In that work the theory was developed

and shown to reproduce a wide variety of experimen-

tal data on 89Y(p, γ) at 19.6 MeV incident energy; here

we carry out the same calculations for 89Y(n, γ), also at

19.6 MeV.

We assume that the outgoing gamma ray is observed at

a given energy and angle, and sum over all (unobserved)

final nuclear states. The resulting double-differential

cross section for this inclusive reaction can, as shown in

Ref. [1], be divided into two components: σ1, in which

the nucleus evolves into a compound nucleus; and σ2, in

which the captured projectile escapes into the continuum.

dσ

dEγ dΩγ
= σ1 +σ2, (3)

where

σ1 = −
1

φinc

2

h̄

(

1

h̄c

)3

E2
γ (4)

×

∫

d3r W(r)
∣

∣

∣

〈

r

∣

∣

∣
G(+) Hγ

∣

∣

∣
Ψ̄

(+)
i

〉
∣

∣

∣

2

,

and

σ2 =
1

φinc

2π

h̄

(

1

h̄c

)3

E2
γ (5)

× ∑
p

∣

∣

∣

〈

χ̃
(−)
p

∣

∣

∣
Hγ

∣

∣

∣
Ψ̄

(+)
i

〉
∣

∣

∣

2

δ (E−Ep).

We can interpret the compound contribution σ1 as fol-

lows: the electromagnetic operator Hγ causes a transi-

tion of the incident nucleon from its initial continuum

state Ψ̄
(+)
i at energy Ei, approximated by an optical-

model wave function, to an intermediate configuration

in which the nucleon is at a spatial position r′, at energy

E f = Ei −Eγ , where Eγ is the energy carried off by the

emitted gamma. The nucleon is then propagated in the

field of the target nucleus from r′ to r by the optical-

model Green’s function G(+)(r,r′), where it is absorbed

by the imaginary part of the optical potential W (r). φinc

is the flux in the incident channel.

The escape contribution, σ2, is close to the standard

expression for direct-semidirect capture to bound final

states. Here, the bound final state wave function is re-

placed by the optical-model wave function χ̃
(−)
p for the

final-state nucleon, with appropriate boundary condi-

tions. The summation represents an integration over all

final-state 3-momenta of the unobserved outgoing nu-

cleon, and the delta function guarantees energy conser-

vation.

The electromagnetic operator for E1 radiation, includ-

ing both direct and semidirect (giant dipole formation)

terms, is approximately

Hγ ∼ q1 r+

(

1

Eγ −Eres + iΓ/2
−

1

Eγ +Eres

)

h′1(r), (6)

where q1 is an effective charge factor, Eres and Γ are the

energy and width of the giant dipole resonance, and h′1(r)
is a form factor for exciting the giant resonance; notation

and details are as in Ref. [1].

FIGURE 2. Angle-integrated cross section for 89Y(n,γ) as a
function of final-state neutron energy E f .

RESULTS FOR 89Y(n, γ)

Fig. 2 shows the cross section for 89Y(n, γ) integrated

over all outgoing gamma-ray angles at an incident neu-

tron energy Ei = 19.6 MeV, plotted as a function of the



final-state neutron escape energy E f = Ei −Eγ . Both the

compound and escape contributions are shown, together

with their sum. The peak just above E f = 2 MeV is due

to the semidirect contribution, corresponding to a giant-

dipole resonance energy of 16.7 MeV. The details of

the calculation are exactly as described for 89Y(p, γ) in

Ref. [1], except that the initial- and final-state neutron

wave functions were generated from the global optical

potential of Koning and Delaroche [2], and only E1 radi-

ation was considered.

FIGURE 3. Compound formation probability as a function
of neutron escape energy, calculated from results shown in
Fig. 2.

It is evident from Fig. 2 that a significant part of the

capture cross section corresponds to leakage of the final-

state neutron rather than compound nucleus formation.

This is very different from the 89Y(p, γ) case [1], since

at corresponding escape energies the final-state proton

is held in by a large Coulomb barrier. The compound

formation probability for neutrons is shown in Fig. 3.

This probability is calculated from the results in Fig. 2

by the expression σ1/(σ1 + σ2), again using quantities

integrated over outgoing gamma angles. Clearly 10–15%

of the capture reactions fail to form a compound nucleus,

and this would have to be taken into account if the cap-

ture reaction were used to prepare a compound system in

a surrogate-reaction experiment.

We next investigate the spin-parity distributions of the

compound nuclei that survive the escape process. Al-

though these values are available as by-products of the

calculations described above, it is more instructive for

present purposes to look at the cross sections (angle-

integrated σ1 +σ2) and the compound formation proba-

bilities as a function of L, the orbital angular momentum

of the outgoing neutron in the final state. These quantities

are shown in Fig. 4 for three values of the final-state neu-

tron escape energy, E f =1, 2, and 5 MeV (E f is referred

to as En(esc) in the figure).

There are two particularly striking features in the re-

sults shown in Fig. 4. The first is the alternation of high

and low values of the cross section with L; the second

is the behavior of the compound formation probability,

which is lowest for small values of L and tends toward

unity for high values. Both of these features have simple

physical interpretations.

The even-odd behavior of the cross sections is a con-

sequence of the single-particle structure in the real part

of the optical potential describing the final-state neutron.

For bound states, there is an alternation between predom-

inantly even and predominantly odd states as the energy

increases by a harmonic-oscillator spacing (about 9 MeV

here), and this behavior continues as the energy extends

into the continuum. It is most pronounced for low en-

ergies; at E f =1 MeV the cross sections for odd L are

much larger than for the neighboring even values. This

effect is related to the fact that in the A=90–100 region

the s-wave neutron strength function is near a minimum

and the p-wave is near a maximum. Note that the effect

is less pronounced at E f =5 MeV, and at 11 Mev there

is some evidence that the effect has reversed, so that the

even partial waves are stronger.

The behavior of the compound-nucleus formation

probability is simply accounted for by the angular mo-

mentum barrier, which restricts neutron emission above a

characteristic L value that should increase approximately

as the square root of the neutron energy. For the lowest

L values only about half the cross section is associated

with compound formation at 1 MeV, and this value rises

to about 0.75 at 11 MeV. The transition to full compound

formation varies with energy roughly as expected. It is

important to note that while only about 15% of the cross

section leads to escape on average (Fig. 3), the low partial

waves show a much larger effect, and thus the spin-parity

population of a compound nucleus formed in a surrogate

reaction can be significantly distorted by the partial-wave

effect shown here.

SUMMARY AND IMPLICATIONS FOR

SURROGATE REACTIONS

We have studied the process of forming a compound nu-

cleus as a final state in a direct reaction, using radiative

capture as a test case since the necessary computational

tools were available. The results for the dependence of

the cross section and the compound-nucleus formation

probability on orbital angular momentum are readily un-

derstandable as effects of single-particle structure and the

angular-momentum barrier. These results show that the

angular-momentum and parity distribution of the com-

pound system cannot be approximated by simple mod-

els, but must be calculated carefully using an appropriate



FIGURE 4. Cross section and compound-nucleus formation probability for radiative capture to unbound final states in the
89Y(n,γ) reaction at 19.6 MeV incident energy, as a function of the orbital angular momentum of the neutron following capture.
Results are shown for final-state neutron escape energies of 1, 5, and 11 MeV. The upper graphs show the cross sections, which are
the angle-integrated values calculated from Eqs. 3–5.

theory for each type of direct interaction used in a surro-

gate reaction.

The calculations shown here provide guidance for un-

derstanding compound nucleus formation via the (d, p)
reaction, since as noted earlier this reaction produces the

same neutron-plus-core final state as the (n, γ) reaction.

We therefore expect the results to be qualitatively similar

for the two reactions. To modify the theory of Parker et

al. [1] for (d, p), it suffices to replace the electromagnetic

operator Hγ in Eqs. 3–5 by Vpn , the appropriate interac-

tion for DWBA calculation of the stripping process, and

also replace the incident neutron distorted wave by one

for the deuteron.

Kerman and McVoy [3] developed a very detailed

theory of the statistical properties of nuclei following

direct reactions. In Ref. [1] a closure relation was used

to sum over final nuclear states, which avoided the need

to deal explicitly with the statistical properties of the

final states. However, if it becomes necessary to calculate

correlation effects in the formation and decay of the final

states, a more detailed treatment such as that of Ref. [3]

will be required.

Finally, we note that the cases discussed here are prob-

ably the most likely to exhibit decay before a compound

nucleus is formed, because the single neutron left by the

direct process may escape into the continuum directly,

with no inhibition by a Coulomb barrier. Other reactions

requiring rearrangement in the escape mechanism, such

as a (3He,α) reaction, may have a significantly greater

chance of avoiding premature decay. However, detailed

calculations will be necessary to verify this conjecture.
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