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Summary - Mixed linear models for maternal effects include fixed and random elements,
and dispersion parameters (variances and covariances). In this paper a Bayesian model
for inferences about such parameters is presented. The model includes a normal likelihood
for the data, a "flat" prior for the fixed effects and a multivariate normal prior for the
direct and maternal breeding values. The prior distribution for the genetic variance-
covariance components is in the inverted Wishart form and the environmental components
follow inverted X2 prior distributions. The kernel of the joint posterior density of the
dispersion parameters is derived in closed form. Additional numerical and analytical
methods of interest that are suggested to complete a Bayesian analysis include Monte-
Carlo Integration, maximum entropy fit, asymptotic approximations, and the Tierney-
Kadane approach to marginalization.
maternal effect / Bayesian method / dispersion parameter

Résumé - Inférence bayésienne des paramètres de dispersion de modèles mixtes uni-
variates avec effets maternels : considérations théoriques. Les modèles linéaires mixtes
avec effets maternels comprennent des éléments fixés et aléatoires, et des paramètres de dis-
persion (variances et covariances). Dans cet article est présenté un modèle 6ayésien pour
l’estimation de ces paramètres. Le modèle comprend une vraisemblance normale pour les
données, un a priori uniforme pour les effets fixés et un a priori multivariate normal pour
les valeurs génétiques directes et maternelles. Là distribution a priori des composantes de
variance-covariance est une distribution de Wishart inverse et les composantes de milieu
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suivent des distributions a priori de x2 inverse. Le noyau de la densité conjointe a posteri-
ori des paramètres de dispersion est explicité. En outre, des méthodes numériques et ana-
lytiques sont proposées pour compléter l’analyse bayésienne: intégration par des méthodes
de Monte-Carlo, ajustement par le maximum d’entropie, approximations asymptotiques et
la méthode de marginalisation de Tiemey-Kadane.
effet maternel / méthode bayésienne / paramètre de dispersion

INTRODUCTION

Mixed linear models for the study of quantitative traits include, in addition to fixed
and random effects, the necessary dispersion parameters. Suppose one is interested
in making inferences about variance and covariance components. Except in trivial
cases, it is impossible to derive the exact sampling distribution of estimators of
these parameters (Searle, 1979) so, at best, one has to resort to asymptotic results.
Theory (Cramer, 1986) indicates that the joint distribution of maximum likelihood
estimators of several parameters is asymptotically normal, and therefore so are their
marginal distributions. However, this may not provide an adequate description of
the distribution of estimators with finite sample sizes. On the other hand, the
Bayesian approach is capable of producing exact joint and marginal posterior
distributions for any sample size (Zellner, 1971; Box and Tiao, 1973), which give a
full description of the state of uncertainty posterior to data.

In recent years, Bayesian methods have been developed for variance component
estimation in animal breeding (Gianola and Fernando, 1986; Foulley et al, 1987;
Macedo and Gianola, 1987; Carriquiry, 1989; Gianola et al 1990a, b). All these
studies found analytically intractable joint posterior distributions of (co)variance
components, as Broemeling (1985) has also observed. Further marginalization with
respect to dispersion parameters seems difficult or impossible by analytical means.
However, there are at least 3 other options for the study of marginal posterior
distributions: 1), approximations; 2), integration by numerical means; and 3),
numerical integration for computing moments followed by a fit of the density
using these numerically obtained expectations. Recent advances in computing have
encouraged the use of numerical methods in Bayesian inference. For example,
after the pioneering work of Kloek and Van Dijk (1978), Monte Carlo integration
(Hammersley and Handscomb, 1964; Rubinstein, 1981) has been employed in
econometric models (Bauwens, 1984; Zellner et al, 1988), seemingly unrelated
regressions (Richard and Steel, 1988) and binary responses (Zellner and Rossi,
1984).

Maternal effects are an important source of genetic and environmental variation
in mammalian species (Falconer, 1981). Biometrical aspects of the associated
theory were first developed by Dickerson (1947), and quantitative genetic models
were proposed by Kempthorne (1955), Willham (1963, 1972) and Falconer (1965).
Evolutionary biologists have also become interested in maternal effects (Cheverud,
1984; Riska et al, 1985; Kirkpatrick and Lande, 1989; Lande and Price, 1989).
There is extensive animal breeding literature dealing with biological aspects and
with estimation of maternal effects (eg, Foulley and Lefort, 1978; Willham, 1980;



Henderson, 1984, 1988). Although there are maternal sources of variation within
and among breeds, we are concerned here only with the former sources.

The purpose of this expository paper is to present a Bayesian model for inference
about variance and covariance components in a mixed linear model describing
a trait affected by maternal effects. The formulation is general in the sense
that it can be applied to the case where maternal effects are absent. The joint
posterior distribution of the dispersion parameters is derived. Numerical methods
for integration of dispersion parameters regarded as &dquo;nuisances&dquo; in specific settings
are reviewed. Among these, Monte Carlo integration by &dquo;importance sampling&dquo;
(Hammersley and Handscomb, 1964; Rubinstein, 1981) is discussed. Also, fitting
a &dquo;maximum entropy&dquo; posterior distribution (Jaynes, 1957, 1979) using moments
obtained by numerical means (Mead and Papanicolaou, 1984; Zellner and Highfield,
1988) is considered. Suggestions on some approximations to marginal posterior
distributions of the (co)variance components are given. Asymptotic approximations
using the Laplace method for integrals (Tierney and Kadane, 1986) are also
described as a means for obtaining approximate posterior moments and marginal
densities. Extension of the methods studied here to deal with multiple traits is

possible but the algebra is more involved.

THE BAYESIAN MODEL

Model and prior assumptions about location parameters

The maternal animal model (Henderson, 1988) considered is:

where y is an n x 1 vector of records and X, Zo, Zm and Em are known, fixed,
n x p, n x a, n x a and n x d matrices, respectively; without loss of generality,
the matrix X is assumed to have full-column rank. The vectors !, ao, am and
Cm are unknown fixed effects, additive direct breeding values, additive maternal
breeding values and maternal environmental deviations, respectively. The n x 1
vector eo contains environmental deviations as well as any discrepancy between
the &dquo;structure&dquo; of the model (XR+ Zoao + Zmam + Emem) and the data y. As in
Gianola et al (1990b), the vectors p,ao, am and em are formally viewed as location
parameters of the conditional distribution yl P, ao, am, em, but a distinction is made
between 13 and the other 3 vectors depending on the state of uncertainty prior to
observing data. It is assumed a piiori that P follows,a uniform distribution, so as to
reflect vague prior knowledge on this vector. Polygenic inheritance is often assumed
for a = [a!, a!]’ (Falconer, 1981; Bulmer, 1985) so it is reasonable to postulate a
prio7i that a follows the multivariate normal distribution:

where G is a 2 x 2 matrix with diagonal elements o, Ao 2 and aA 2&dquo;&dquo; the variance
components for additive direct and maternal genetic effects, respectively, and off
diagonal elements QAoA.&dquo;,,, the covariance between additive direct and maternal



effects. The a x a positive-definite matrix A has elements equal to Wright’s
coefficients of additive relationship or twice Melecot’s coefficients of co-ancestry
(Willham, 1963). Maternal environmental deviations, presumably caused by the
joint action of many factors having relatively small effects are also assumed to be
normally, independently distributed (Quaas and Pollak, 1980; Henderson, 1988) as:

where u5! is the maternal environmental variance. It is assumed that a priori p,
a and Cm are mutually independent. For the vector y, it will be assumed that:

where (1’!o is the variance of the direct environmental effects. It should be noted
that [1-4J complete the specification of the classical mixed linear model (Henderson,
1984), but in the latter, distributions [2] and [3] have a frequentist interpretation.
A simplifying assumption made in this model, for analytical reasons, is that the
direct and maternal environmental effects are uncorrelated.

Prior assumptions about variance parameters

Variance and covariance components, the main focus of this study, appear in the
distributions of a, em and eo. Often these components are unknown. In the Bayesian
approach, a joint prior distribution must be specified for these, so as to reflect
uncertainty prior to observing y. &dquo;Flat&dquo; prior distributions, although leading to
inferences that are equivalent to those obtained from likelihood in certain settings
(Harville, 1974, 1977) can cause problems in others (Lindley and Smith, 1972;
Thompson, 1980; Gianola et al, 1990b). In this study, informative priors of the
type of proper conjugate distributions (Raiffa and Schlaiffer, 1961) are used. A prior
distribution is said to be conjugate if the posterior distribution is also in the same
family For example, a normal prior combined with a normal likelihood produces a
normal posterior (Zellner, 1971; Box and Tiao, 1973). However, as shown later for
the variance-covariance structure under consideration, the posterior distribution of
the dispersion parameters is not of the same type as their joint prior distribution.
This was also found by Macedo and Gianola (1987) and by Gianola et al (1990b)
who studied a mixed linear model with several variance components employing
normal-gamma conjugate prior distributions.
An inverted-Wishart distribution (Zellner, 1971; Anderson, 1984; Foulley et al,

1987) will be used for G, with density:

where G* = !c9Gh. The 2 x 2 matrix Gh of &dquo;hyperparameters&dquo;, interpretable as
prior values of the dispersion parameters, has diagonal elements s20 and s2 M, and
off-diagonal elements 5!!,.. The integer !a9 is analogous to degrees of freedom
and reflects the &dquo;degree of belief&dquo; on Gh (Chen, 1979). Choosing hyperparameter



values may be difficult in many applications. Gianola et al (1990b) suggested fitting
the distribution to past estimates of the (co)variance components by eg a method
of moments fit. For traits such as birth and weaning weight in cattle there is
a considerable number of estimates of the necessary (co)variance components in
the literature (Cantet et al, 1988). Clearly, the value of Gh influences posterior
inferences unless the prior distribution is overwhelmed by the likelihood function
(Box and Tiao, 1973).

Similarly, as in Hoeschele et al (1987) the inverted x2 distribution (a particular
case of the inverted Wishart distribution) is suggested for the environmental
variance components, and the densities are:

The prior variances s2 m and s 20 are the scalar counterparts of Gn, and no
and nm are the corresponding degrees of belief. The marginal distribution of any
diagonal element of a Wishart random matrix is X2 (Anderson, 1984). Likewise,
the marginal distribution of the diagonal of an inverted-Wishart random matrix
is inverted XZ (Zellner, 1971). Note that the 2 variances in [6] and [7] cannot be
arranged in matrix form similar to the additive (co)variance components in G to
obtain an inverted Wishart density, unless no = n,n. Setting ng I no and nm to zero
makes the prior distributions for all (co)variance components &dquo;uniformative&dquo;, in
the sense of Zellner (1971).

POSTERIOR DENSITIES

Joint posterior density of all parameters

The posterior density of all parameters (Zellner, 1971; Box and Tiao, 1973) is

porportional to the product of the densities corresponding to the distributions in
[2], [3] and [4] times [5], [6] and [7]. One obtains:



To facilitate marginalization of [8], and as in Gianola et al (1990a), let

W = [XIZoIZmIEm], 0’ = [jf[a’[e£] and define i such that

where the p + 2a + d square matrix E is given by:

Using this, one can write:

Gianola et al (1990a) noted that

in (9J can be interpreted as a &dquo;mixed model residual sum of squares&dquo;. Using [9] in
[8] the joint posterior density becomes:



Posterior density of the (co)variance components

To obtain the marginal posterior distribution of G, u5! and O’!o, 0 must be
integrated out of (10). This can be accomplished noting that the second exponential
term in [10] is the kernel of the (p + 2a + d)-variate normal distribution

and the variance-covariance matrix is non-singular because X has full-column rank.
The remaining terms in [10] do not depend on 0. Therefore, with Ro being the range
of 0, using properties of the normal distribution we have:

The marginal posterior distribution of all (co)variance components then is:

The structure of [11] makes it difficult or impossible to obtain by analytical
means the marginal posterior distribution of G, o,2 . E or or2 E,,,. Therefore, in order to
make marginal posterior inferences about the elements of G or the environmental
variances, approximations or numerical integration must be used. The latter may
give accurate estimates of posterior moments, but in multiparameter situations
computations can be prohibitive.

There are 2 basic approaches to numerical integration in Bayesian analysis. The
first one is based on classical methods such as quadrature (Naylor and Smith,
1982, 1988; Wright, 1986). Increased power of computers has made Monte Carlo
numerical integration (MCI), the second approach, feasible in posterior inferences
in econometric models (Kloek and Van Dijk, 1978; Bauwens, 1984; Bauwens
and Richard, 1985; Zellner et al, 1988) and in other models (Zellner and Rossi,
1984; Geweke, 1988; Richard and Steel, 1988). In MCI the error is inversely
proportional to Nl/2, where N is the number of points where the integrand is
evaluated (Hammersley and Handscomb, 1964; Rubinstein, 1981). Even though
this &dquo;convergence&dquo; of the error to zero is not rapid, neither the dimensionality of
the integration region nor the degree of smoothness of the function evaluated enter
into the determination of the error (Haber, 1970). This suggests that as the number
of dimensions of integration increases the advantage of MCI over classical methods
should also increase. A brief description of MCI in the context of maternal effects
models is discussed next.



POSTERIOR MOMENTS VIA MONTE CARLO INTEGRATION

Consider finding moments of parameters having the joint posterior distribution
with density [11]. Let r’ = [or2 A ,, or2 A M 0’ AoAm, 0’ E 2 m, or E 2 .], and let g(r) be either
a scalar, vector or matrix function of r of which we would like to compute its
posterior expectation. Also, let (11! be represented as p(T ! y, H), where H stands
for hyperparameters. Then:

assuming the integrals in [12] exist.
Different techniques can be used with MCI to achieve reasonable accuracy. An ap-

pealing one for computing posterior moments (Kloek and Van Dijk, 1978; Bauwens,
1984, Zellner and Rossi, 1984; Richard and Steel, 1988) is called &dquo;importance sam-
pling&dquo; (Hammersley and Handscomb, 1964; Rubinstein, 1981). Let I(r) be a known
probability density function defined on the space of T; I(r) is called the importance
sampling function. Following Kloek and Van Dijk (1978) let M(r) be:

with [13] defined in the region where 7(F) > 0. Then [12] is expressible as:

where the expectation is taken with respect to the importance density I(r).
Using a standard Monte Carlo procedure (Hammersley and Handscomb, 1964;

Rubinstein, 1981), values of r are drawn at random from the distribution with
density I(r). Then the function M(r) is evaluated for each drawn value of r,
rj (i = 1, ... , m) say. For sufficiently large m:

The critical point is the choice of the density function 7(F). The closer I(r) is to
p(r ! y, H), the smaller is the variance of M(r), and the number of drawings needed
to obtain a certain accuracy (Hammerley and Handscomb, 1964; Rubinstein, 1981).

Another important requirement is that random drawings of r should be relatively
simple to obtain from 7(F) (Kloek and Van Dijk, 1978; Bauwens, 1984). For location
parameters, the multivariate normal, multivariate and matric-variate t and poly-t
distributions have been used as importance functions (Kloek and Van Dijk, 1978;
Bauwens, 1984; Bauwens and Richard, 1985; Richard and Steel, 1988; Zellner et
al, 1988). Bauwens (1984) developed an algorithm for obtaining random samples



from the inverted Wishart distribution. There are several problems yet to be solved
and the procedure is still experimental (Richard and Steel, 1988). However, results
obtained so far make MCI by importance sampling promising (Bauwens, 1984;
Zellner and Rossi, 1984; Richard and Steel, 1988; Zellner et al, 1988).

Consider calculating the mean of G, o, 20 and a 2 m with joint posterior density
as given in [11]. From [13] and [14]:

Let now:

where:

7i(r) = prior density of G ((5! times kl, the integration constant),
I2(r) = prior density of U2 E ((6! times k2, the integration constant),
13(r) = prior density of u5! [7] times k3, the integration constant).

Then:

where ko is the constant of integration of (11!. Evaluating E(r ! y, H) then entails
the following steps:

a) draw at random the elements of r from distributions with densities h (r)
(inverted Wishart), 12(r) (inverted x2) and I3(r) (inverted XZ). This can be done
using, for example, the algorithm of Bauwens (1984).

b) Evaluate ko = (J [11] dT!-1. Now,

Note that Mo is [18] without r. Then ko can be evaluated by MCI by computing
the average of Mo, and taking its reciprocal.

c) Once Mo is evaluated, then compute M(r) = r Mo. In order to perform steps
(b) and (c), the mixed model equations and the determinant of W’W + E need to
be solved and evaluated, repeatedly, for each drawing. The mixed model equations
can be solved iteratively and diagonalization or sparse matrix factorization (Misztal,
1990) can be employed to advantage in the calculation of the determinant.

This procedure can be used to calculate any function of r. For example, the
posterior variance-covariance matrix is:

so the additional calculation required would be evaluating M’(T) = rr’Mo.



MAXIMUM ENTROPY FIT OF MARGINAL POSTERIOR
DENSITIES

A full Bayesian analysis requires finding the marginal posterior distribution of
each of the (co)variance components. Probability statements and highest posterior
density intervals are obtained from these distributions (Zellner, 1971; Box and Tiao,
1973). Marginal posterior densities can be obtained using the Monte Carlo method
(Kloek and Van Dijk, 1978) but it is computationally expensive. An alternative is
to compute by MCI some moments (for instance, the first 4) of each parameter,
and then fit a function that approximates the necessary marginal distribution. A
method that gives a reasonable fit, &dquo;Maximum entropy&dquo; (ME), has been used by
Mead and Papanicolaou (1984) and Zellner and Highfield (1988). Choosing the
ME distribution means assuming the &dquo;least&dquo; possible (Jaynes, 1979), ie, using
information one has but not using what one does not have. An ME fit based on the
first 4 moments implies constructing a distribution that does not use information
beyond that conveyed by these moments. Jaynes (1957) set the basis for what is
known as the &dquo;ME formalism&dquo; and found a role for this to play in Bayesian statistics.

The entropy (W) of a continuous distribution with density p(x) is defined

(Shannon, 1948; Jaynes, 1957, 1979) to be:

The ME distribution is obtained from the density that maximizes [20] subject
to t’he conditions:

r

where po = 1 (by definition of a proper density function) and JLi(i = 1, ... , 4) are
the first 4 moments of the distribution of x. Zellner and Highfield (1988) expressed
the function to be maximized as the Lagrangian:

where the li(i = 0,...,4) are Lagrange multipliers and I = !lo, ll, d2, d3, l4!’. Note
that [22] involves integrals whose integrands depend on the unknown function p(x),
’and on functions of it (log p(x)). Rewrite [22] as:



formula [23] is expressible as:

Using Euler’s equation (Hildebrand, 1972) the condition for a stationary point
is:

Because H does not depend on p’(x), [25] holds only if aH/ap(x) = 0, ie, if:

Hence, the condition for a stationary point is:

plus the 5 constraints given in (21!. From (26!, the density of the ME distribution
of x has the form:

To specify the ME distribution completely 1 must be found. Zellner and Highfield
(1988) suggested a numerical solution based on Newton’s method. Using [27] the
side conditions [21] can be written as:

Expanding Gi(l) with a Taylor series about 10, a trial value for 1, and retaining
the linear terms leads to:



These derivatives are simply moments (with negative sign) of the maximum
entropy distribution.

Putting

in [29] and setting this equal to [28] one obtains the linear system in 1:

This system can be solved for h ( j = 0,1, ... , 4) to obtain a new set of trial values
and, thus, an iteration is established. Defining

and observing that 0 <_ i + j <_ 8, the above system can be written in matrix
notation as:

This system is solved for 81’l to obtain IN = Ilt-11 + 1ft], the vector of new
trial values. Iteration continues until 5 becomes appropriately small. Zellner and
Highfield (1988) showed that coefficient matrix in [30] is positive definite, so

solutions are unique. In summary, the method includes 3 types of computations.
First, the moments pi - p4 must be computed by some method such as MCI; this is
done only once. Second, the Gi values (i = 0,1, ... , 8) are computed at every round
of iteration carrying out unidimensional integrations, as indicated in [28]. Third,
the 5 x 5 system [30] is solved. At convergence, the ME density [27] is employed to
approximate marginal inferences about the appropriate element of r.



SOME ANALYTICAL APPROXIMATIONS TO MARGINAL
POSTERIOR DENSITIES

Because numerical integration can be computationally expensive and the accuracy
of MCI in this type of problem is still unknown, we consider several approximations
to marginal posterior distributions.

The mode of the posterior density [11] can be found by maximizing this jointly
with respect to G, o- E 2m and u5!. Foulley et al (1987), Gianola et al (1990b) and
Macedo and Gianola (1987) showed how this could be done with a’simpte algorithm
based on first derivatives. Additional algorithms can be constructed using second
derivatives, and the necessary expression are given in the Appen.dix. The solutions
can be viewed as weighted averages of REML &dquo;estimators&dquo; of dispersion parameters
and of the hyperparameters Gh, sEo and sim’ Let the modal values so obtained be

1i, !2 and !2 or i’, in compact. 
’ 

.°&2 E. and &2 E ’n, or r, in compact. -

Consider approximations to the marginal density of G because this matrix
contains the parameters of primary interests. One can write: ,

where p(u5!, u5! y, H) is the posterior density of u5! , u5! obtained after inte-
grating G out of [11]. It seems impossible to carry out this integration analytically.
Following ideas in Gianola and Fernando (1986), we propose as first approximation:

It would be better to use the modal values of p(u5! , u 5! y, H) rather than (TJ.:m
and 3!, but finding this distribution does not seem feasible. Using [32] in [11] one
obtains:

It should be noted that now 6 = f (G, &’ E &dquo;&dquo; a2 E !) and t = h(G, a2 E &dquo;&dquo; 1?2 E ).
Then, the MCI method can be used to compute moments of (33J. The additional
degree of marginalization with respect to [11] achieved in this approximation may
be small, but savings in computing accrue because drawing values of ukm and o-Eo
from I2(r) and I3(r), respectively, is no longer necessary.

In the second approximation, we write the expression in the exponent of [33] as:



In the preceding, replace

and using the preceding developments in [33] we write, after neglecting
IWIW+EI-1/2

This density is in the inverted Wishart form, with parameters n. = ng + a and
G*, provided G* is positive definite. If not, one can &dquo;bend&dquo; this matrix following
the ideas of Hayes and Hill (1981). The computational advantage of [34] over [33]
is that y’y - 9 W’y would be evaluated only once at G,Ô’km,Ô’ko. Further, the
inverted Wishart form of [34] yields an analytical solution for the (approximate)
marginal posterior densities of QAo and o,2 A M, so approximate probability statements
about elements of G can be made with relative ease.
A third approximation would be writing [34] as

so we would have an inverted Wishart distribution with hyperparameters n9 =
n9 + a and G. If G is obtained with an algorithm that guarantees positive semi-
definiteness such as EM (Dempster et al, 1977), this would circumvent the potential
problem posed by G* in (34!.

The fourth approximation involves the matrix of second derivatives (C, say)
of the logarithm of [11] with respect to the unique elements of G, u5! and o,2 Eo
and then evaluating C at 1i, %5! and %5!. The second derivatives are in the
Appendi!. Invoking the asymptotic normality property of posterior distributions
(Zellner, 1971), one would approximately have :

where it is assumed that the matrix -C = f(l#, %5! , %5!) has full rank. The ap-
proximate marginal distributions of (1!o’ (1!m’ (1 AoAm, (1!m and (1!o follow directly
from [36]: all are univariate normal.



THE TIERNEY-KADANE APPROXIMATIONS

The approximation in [36] produces reasonable results when the posterior distri-
bution is unimodal, which holds for large enough samples. Tierney and Kadane
(1986) described another approximation (based on Laplace’s method for integrals),
and this is reviewed in the following section.

Single parameter situation

Let g(r) = g be a positive function of the scalar parameter r. Then

where l is the likelihood function, 7r is the prior density and c is the integration
constant 

-

With n being sample size, let

Employing this in [39] and [38]:



Using [44] in [37]:

The method of Tierney and Kadane (1986) continues as follows. Let r&dquo;! be the
posterior mode (which is also the maximum of L), L’(r) and L&dquo;(r) be the first and
second derivatives of L with respect toT and let (1&dquo;2 = -1/ LI/ (r m)’ Using a Taylor
series expansion for nL(r) about r&dquo;L we have:

Noting that

and retaining terms up to second-order, the expansion becomes:

Using this, the denominator in [45] can be approximated as:

In the same way, if r* is the maximum of L* and Q*2 = -1/ L *&dquo; (r:n)



Taking the ratio between [47] and [46] as required in [45] then, approximately, we
have:

An interesting aspect of this approximation is that only first and second order
derivatives are needed, and this is less tedious than other approximations suggested
by eg, Mosteller and Wallace (1964) and Lindley (1980), requiring evaluation of
third derivatives. The posterior variance can also be approximated by finding the
posterior mean of g2. The only modification needed is to define L* as

The multiparameter case

When r is a vector, as in this paper, [48] generalizes to:

where r! and I’m maximize L* and L, respectively, and H* and H are minus the
inverse matrices of second derivatives of L* and L with respect to r, evaluated at
r! and I’m, respectively.

Marginal posterior densities

The method can also be used to approximate marginal posterior densities of
individual parameters of T. Partition r’ as !T1, r,2j. If the order of r is p, say,
then T2 is of order p - 1 (4 in our case). The marginal posterior density of Tl is:

where 1r(r l, r 2) is the joint posterior density of r. From preceding developments,
the denominator in [51] is expressible as:



where I’m is the mode of the posterior distribution of T, and L&dquo;(r .. ) is the matrix
of second derivatives of L with respect to 7r. Then:

where l(r m) is the log-likelihood evaluated at r m. Hence, [53] becomes:

Consider now the numerator of (51!, and write it as:

is a function where T1 is fixed. Define r2m(rl) to be the (p - 1) x 1 vector that
maximizes this function. This maximizer can be found employing the derivatives in
the appendix. Then, similar to (53!, we can write.

where B&dquo;(rl, r2m(r¡)) is the (p &mdash; 1) x (p - 1) matrix of second derivatives of B
with respect to r2.

Taking the ratio between [56] and [54] the posterior density of T1 in [51] is

approximately:

The moments of the posterior distribution of I’i, must be found numerically
. employing the methods discussed in earlier sections.



Remarks

It has been shown that the method of Tierney and Kadane (1986) has less error
than the usual normal approximation centered at the posterior mode with the order
of approximation being O(n-2). However, it also requires that the functions to be
expanded be either unimodal or dominated by a single mode, so sample size must
be sufficiently large for this to hold.

The requirement that g(T) be a positive function is restrictive. Tierney and
Kadane (1986) pointed out that for the approximation to be accurate for a function
g taking both positive and negative values, the posterior distribution of g must
be concentrated almost entirely on one side of the origin. However, Tierney et al
(1988) extended the method to apply to expectations and variances of non-positive
functions. To obtain a second-order approximation to E[g(r)], they used the method
of Tierney and Kadane (1986) to approximate the moment generating function
E{exp [!(F)]}, whose integrand is positive, and then the result was differentiated.

Another difficulty arises in the approximation [49] to the posterior variance
of g(r). Unless computations are made with sufficient precision, [49] can have a
large error or turn up negative. Similar problems can arise in the computations of
posterior covariance, ie

as a covariance matrix computed from [58] may not be positive semi-definite.

CONCLUSION

This paper presents theory and techniques for carrying out a Bayesian analysis of
dispersion parameters in a univariate model for maternal effects. Hower, implemen-
tation of the methods suggested here poses difficulties to quantitative geneticists
interested in analysis of large data sets. The development of feasible computing
techniques is a challenge to researchers in the area of application of numerical
methods to animal breeding.

Research is underway to identify more promising algorithms to approximate
marginal moments of posterior distributions, a non-trivial problem as new tech-
niques are developed and there is little indication on the choice to make for es-
timating (co)variance components under &dquo;non-exchangeability&dquo; of model [1]. Re-
cently Gelfand and Smith (1990) and Gelfand et al (1990) described the Gibbs
sampler, a potential competitor of the methods presented here.
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APPENDIX

First and second derivatives of the log-posterior of all (co)variance
components

The log of (11! is:

Let M’ = (0 ( I2a 0] be a 2a x (p + 2a + d) matrix such that M’i = a. In the same
way, N’ = [0 [ 0 [ Id] be a d x (p + 2a + d) matrix such that N’i = The 0
represents a matrix of appropriate order with all elements equal to zero.
To simplify the derivation, we will decompose (A.1! into components, take deriva-
tives with respect to an element of G(gij say), (Tkm or !Eo, and collect results to
obtain the desired expressions.

!,

Derivatives of (y’y - 0 W’y)
The term y’y does not depend on r. The other term is

8’W’t/ = y’WCW’y, so that:

where Eij is a 2 x 2 matrix with all elements equal to zero, with the exception
of a one in position i,j. Note that if ei (ej) is a 2 x 1 vector with a 1 in the i-th
(j-th) position E2! = eie!. The notation D(Ml, ... , M,l stands for a block diagonal
matrix with the s blocks being equal to Mi, (i = 1,..., s). Since i = CW’y and
9 = ji a [6m] , we can write the above expression as:



In a similar way

Second derivatives are obtained from [A.3] to [A.5].

For the error component we have



Additional second derivatives are:

Derivatives of log W’W + £ I

We use the result in Searle (1979):

Using [A.12], the derivative of log W’W + E ! with respect to gij is

In a similar fashion



Taking derivatives of !A.13)-!A.15J again we obtain:



Other derivatives

We now consider the remaining derivatives and these are:

with [A.12] used to obtain the second term on the right of [A.22].
Likewise

Second derivatives obtained from [A.22!-[A24] are:

First derivatives of the log-posterior

Using [A.3], [A.13] and [A.22] we have:



Using [A.4], [A.14] and [A.23]:

Using [A.5], [A.15] and [A.24]:

Second derivatives of the log-posterior

Using [A.6], [A.16] and [A.25]:

Using [A.17], [A.17] and [A.26]:

Using [A.8], [A.18] and [A.27]:



Using [A.9] and [A.19]:

Using [A.10] and [A.20]:

Finally, using !A.ll! and [A.21]:
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