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Abstract 

 

The oxidative stress response to exercise is a well-established phenomenon; however, the 

time course of this response has not been well characterised. There is little information in 

the literature regarding the oxidative stress response during exercise; most authors have 

measured oxidative stress solely during the recovery period from exercise. There are 

several different invasive methods available for assessment of oxidative stress, although 

there is no “gold standard” technique. A novel non-invasive technique utilising laser 

spectroscopy to quantify expired ethane concentration has become available, but has not 

yet been tested in relation to exercise. 

 

The first study described here aimed to use the laser spectroscopy technique for the first 

time to assess exercise-induced oxidative stress in three species: humans, horses and dogs; 

and to determine the utility of carbon monoxide monitoring as a means of assessment of 

oxidative stress. A further objective was to better characterise the oxidative stress response 

by the collection of data at frequent intervals during exercise and during recovery. Eight 

endurance-trained males performed incremental treadmill exercise to volitional exhaustion. 

Twelve racehorses and twelve racing greyhounds performed maximal exercise on a race 

track. Expired ethane concentration was measured throughout exercise in humans, and pre- 

and post-exercise in horses and dogs. Carbon monoxide concentration was assessed pre- 

and post-exercise in all species. Results indicated that the technique of laser spectroscopy 

was viable for use in relation to exercise in all three species. Oxidative stress was shown to 

increase significantly following exercise in all three species, thus supporting previous 

literature, and extending this finding to a trained human population for the first time. The 

pattern of response during incremental treadmill exercise was characterised for the first 

time and indicated a non-significant increase in oxidative stress in humans within 2 

minutes of the onset of exercise, with the response progressively increasing alongside 
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increases in work rate until exercise was terminated at exhaustion. The response returned 

close to the resting value by 20 minutes into the recovery period. Low subject number may 

have contributed to the lack of significant findings during exercise. Carbon monoxide was 

not a useful indicator of oxidative stress in any species. 

 

Increased functionality of the laser spectroscopy technique was investigated by pilot work 

in which real-time monitoring of expired ethane was attempted for the first time in relation 

to exercise. This allowed the observation of the oxidative stress response on a breath by 

breath basis. Initial tests, in which two healthy males performed incremental cycle 

ergometer exercise to exhaustion whilst breathing through a valve connected directly to the 

spectrometer, indicated that a useful output could be recorded during a prolonged period of 

exercise. However, the measurement of ambient ethane concentration, essential for 

accuracy, was not undertaken in the initial tests. Thus, further pilot work was successfully 

carried out in three healthy males to replicate the initial tests with concurrent ambient 

ethane monitoring. This pilot testing allowed development of data editing techniques. The 

oxidative stress response profile for incremental exercise in real-time was similar to that 

reported in the previous chapter. Additional tests were undertaken which illustrated that the 

rise in ethane output observed during incremental exercise was not simply a manifestation 

of the ventilatory response to exercise, rather than an indication of exercise-induced 

oxidative stress. This was accomplished by forcing an increase in ventilation, by 

imposition of an additional dead space volume during normal breathing in two individuals. 

This technique shows promise for more detailed characterisation of the time course of the 

oxidative stress response in future exercise studies via the capability for extremely high 

density data collection. 

 

The main aims of the second study were to investigate the oxidative stress response 

throughout the entire work rate range from rest to volitional exhaustion, rather than just the 
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higher end of the work rate range as observed in study one; and to examine the magnitude 

and time course of the oxidative stress response to constant load exercise performed below 

and above the lactate threshold. Six healthy males performed incremental cycle ergometer 

exercise to exhaustion during which blood samples were collected regularly for later 

analysis for the presence of F2-isoprostanes. Results of the analysis were disappointing, 

with a high proportion of samples displaying a concentration outwith the range of the 

assay. However, preliminary malondialdehyde analysis suggested that the oxidative stress 

response may increase progressively alongside work rate throughout the entire work rate 

range. However, this observation is far from conclusive as it is based on data from a single 

subject only. 

 

The final study was intended to investigate the effect of contraction intensity on the 

oxidative stress response to isometric handgrip exercise sustained to exhaustion, and to 

clarify the time course of the oxidative stress response during the recovery period. Due to 

logistical limitations, it was possible to study one contraction intensity only. Initially, pilot 

work was undertaken to determine the suitability of the novel non-invasive technique for 

ethane assessment in relation to isometric exercise, since this assessment method had not 

been used previously with this exercise mode. Then, six healthy males performed sustained 

isometric exercise at 60 % of maximal voluntary contraction until fatigue. Oxidative stress 

was assessed during a 30 minute recovery period via expired ethane and also via 

F2-isoprostanes concentration in blood collected from both the exercised arm and the non-

exercised arm. This was intended to allow comparison of blood sampling site, and of the 

systemic oxidative stress response measured both invasively and non-invasively; however 

this was not possible due to poor assay results. The previous finding of a peak oxidative 

stress response following isometric exercise within the first 5 minutes of the recovery 

period was supported. Oxidative stress was assessed by ethane output for the first time in 

relation to isometric exercise and was found to be a viable technique; however, its use 
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remains to be validated against more traditional plasma markers. The potential value of 

non-invasive assessment was underlined by F2-isoprostanes analysis issues. 

 

In conclusion, the use of laser spectroscopy, including the use of real-time monitoring, 

appears to be a viable technique for the non-invasive assessment of exercise-induced 

oxidative stress, and may enhance our ability to characterise this response in future studies. 
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voluntary contraction. 
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Figure 7.13 Relationship between mean ethane output and F2-isoprostane 

concentration in the non-exercised arm in six male subjects 

prior to and following sustained isometric handgrip exercise to 

exhaustion at 60 % maximal voluntary contraction. 
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Introduction 
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1.1  An introduction to oxidative stress 

Oxidative stress has emerged as a concept having significant physiological implications. 

The term was first introduced in 1985 (Sies, 1985), although it was not until later that it 

was formally defined as an imbalance between the production of reactive species, such as 

free radicals, and the availability of antioxidant defences (Sies, 1991). However, the 

oxidative stress paradigm has been present in the literature for longer than the term itself, 

as the presence of free radicals in biological materials was first reported much earlier, in 

1954 (Commoner et al., 1954). 

 

A link between oxidative stress and several chronic diseases has been indicated (e.g. Jain, 

2006) and, indeed, the topic has now entered the public domain as the focus of numerous 

health-related reports linking diet and exercise to lowered oxidative stress, with putative 

consequent health benefits. In general, individuals are assuming greater responsibility for 

their own health with the realisation that a healthy lifestyle can offer some protection 

against the major diseases of our time. The potential for improved health of the population, 

along with widespread interest in the topic, underlines this as a valuable area for further 

investigation. 

 

1.1.1 The oxygen paradox 

A comprehensive account of oxidative stress begins with a description of oxygen; the key 

molecule involved in the process. Oxygen (O) exists in ambient air as a diatomic molecule 

(O2). The correct term for O2 is dioxygen; however, it is most commonly referred to simply 

as oxygen in the majority of literature. It has been suggested that oxygen became available 

in ambient air in significant quantities over 2.510
9
 years ago due to the evolution of 

photosynthesis by blue-green algae (Graham et al., 1995). These organisms and, later, 

modern day plants, became capable of releasing oxygen through the process of splitting 
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water. This release of oxygen over the centuries has created a present day composition of 

ambient air which includes approximately 21 % O2. Aerobic organisms, including humans, 

developed the capacity to produce energy efficiently via the process of oxidation, thus 

taking advantage of the plentiful supply of oxygen available in the atmosphere. 

 

The life sustaining quality of oxygen was originally discovered in the 18
th

 century by 

Joseph Priestley (1775). He reported experiments in which he heated mercuric oxide and 

described the effects of the gas released: 

 

“But to complete the proof of the superior quality of this air, I introduced a mouse 

into it; and in a quantity in which, had it been in common air, it would have died in 

about a quarter of an hour, it lived, at two different times, a whole hour, and was 

taken out quite vigorous;”  

 

Humans and animals are reliant on oxygen for survival, however, paradoxically, oxygen 

also has well recognised toxic effects on the body (Halliwell & Gutteridge, 1984). The 

potential for damage from ambient oxygen arises from its propensity to convert from a 

relatively stable form (O2) to an unstable form such as the superoxide radical (O2
-

). 

 

Chemical elements each contain a specific number of electrons (e
-
), dictated by the atomic 

number in a neutral atom. These are arranged in electron shells surrounding the nucleus of 

the atom. Within the electron shells, electrons are contained within orbitals. Atomic 

oxygen contains eight electrons. The inner shell, situated closest to the nucleus of the atom, 

has one orbital which contains two electrons. The remaining six electrons are situated in 

the outer shell which has four orbitals containing a maximum of two electrons each. Atoms 

are most stable when all orbitals in the outer shell hold the maximum number of electrons. 

If there are incomplete orbitals, the atom will tend to bond with other atoms or molecules 
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in order to accept or share electrons. Thus, ambient oxygen tends to exist as a diatomic 

molecule as it shares electrons covalently with another oxygen atom.  

 

Molecular bonding is governed by rules determining the order in which orbitals are filled. 

This occurs according to energy level; the orbital with the lowest energy level will be filled 

first. Orbitals having equivalent energy levels are filled according to Hund‟s rule (Hund, 

1925) such that each orbital must contain at least one electron before any orbital can 

contain a pair of electrons. As a result, the sixteen electrons in diatomic oxygen are 

arranged such that there are two unpaired electrons in separate orbitals. 

 

Generally, atoms and molecules are most stable when there are no unpaired electrons, and 

the existence of two unpaired electrons in the structure of molecular oxygen makes it a 

keen electron acceptor. A gain of electrons, or of hydrogen, is known as the process of 

reduction. Whenever a reduction reaction takes place, there must also be a corresponding 

oxidation reaction since electrons accepted during reduction must be donated by another 

substance. Oxidation is defined as a loss of electrons or as a gain of oxygen. Thus, oxygen 

is a potent oxidising agent; it easily oxidises other substances and in the process becomes 

reduced. 

 

Oxygen can accept a maximum of four electrons, in which case the final product is water 

(H2O). However, according to Pauli‟s exclusion principle (Pauli, 1925), electrons 

occupying the same orbital must have opposite spin to each other. The two unpaired 

electrons in diatomic oxygen have the same spin, often termed parallel spin. In order for 

oxygen to accept two electrons at once, the two donated electrons must both be of anti-

parallel spin. A pair of electrons from another atom or molecule would not meet this 

criterion and, therefore, the complete reduction of oxygen tends to take place in stages with 
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the addition of one electron at a time. The univalent reduction of oxygen, i.e. the addition 

of one electron, results in the formation of the superoxide radical (O2
-

): 

 

 O2  +  e
-
    O2

-
                 [1.1] 

 

The addition of two electrons plus two hydrogen ions (H
+
) results in hydrogen peroxide 

(H2O2) formation: 

 

 O2
-

  +  2H
+
  +  e

-
    H2O2               [1.2] 

 

The addition of three electrons results in the formation of the hydroxyl radical (OH

): 

 

 H2O2  +  H
+
  +  e

-
    OH


  +  H2O              [1.3] 

 

These derivatives of oxygen are highly reactive and can cause damage to body tissues. 

 

A further one-electron reduction results in the formation of water: 

 

 OH

  +  H

+
  +  e

-
    H2O               [1.4] 

 

The four-electron reduction of oxygen occurs in the electron transport chain of the 

mitochondria during oxidative phosphorylation. Cytochrome oxidase is the final enzyme in 

the chain and its structure is such that it can store four electrons and transfer these to 

molecular oxygen in a single step; thus, this process does not normally result in the 

formation of a large quantity of damaging species. However, it has been established 

(McCord & Turrens, 1994) that electrons can leak out of the chain and react with the 
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molecular oxygen available within the mitochondrion, thus causing the formation of 

potentially damaging oxygen derivatives via equations 1.1 to 1.3. This process, along with 

other potential mechanisms for the formation of these reactive species, will be described in 

more detail in a later section (section 1.3.3, page 83). 

 

1.1.2 Oxidants 

„Oxidants‟ is a collective term used to describe substances that may cause oxidative 

damage by oxidation reactions. Oxidants include free radicals as well as other highly 

reactive species which are non-radicals; all of which are typically oxygen or nitrogen 

based. „Reactive oxygen species‟ (ROS) is a term that encompasses oxygen-based radicals 

and non-radicals, whereas reactive nitrogen species (RNS) are nitrogen-based radicals and 

non-radicals. 

 

1.1.2.1 Free radicals 

A free radical has been defined as any chemical species which is capable of independent 

existence and contains one or more unpaired electrons (Halliwell & Gutteridge, 1999). The 

presence of an unpaired electron causes a substance to be highly reactive and capable of 

oxidising a wide range of biological tissues. A free radical can be formed by the loss or 

gain of a single electron from a non-radical, or through the process of homolytic fission. 

This is a process in which breakage of a covalent bond results in the retention of one of the 

previously shared electrons by each atom. An example of this process is the homolytic 

fission of water which results in the formation of a hydrogen radical (H

) and a hydroxyl 

radical (OH

). This process can be distinguished from the ionisation, or heterolytic fission, 

of water in which both electrons from the shared pair are retained by the oxygen atom and 

the products of the reaction are a hydrogen ion (H
+
) and a hydroxyl ion (OH

-
). It should be 
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noted that the superscripted dot (

) following the chemical formula denotes the presence of 

an unpaired electron in an atom or molecule. 

 

Molecular oxygen (O2) is actually a free radical since it contains two unpaired electrons. 

Other examples of common free radicals are superoxide (O2
-

), hydroxyl (OH

), alkoxyl 

(RO

), peroxyl (ROO


) and hydroperoxyl (ROOH


) radicals, all of which are oxygen 

based. Nitric oxide (NO

) and nitrogen dioxide (NO2


) are examples of nitrogen based free 

radicals. 

 

1.1.2.2 Other reactive species 

There are other chemical species in the body which function as oxidants yet are non-

radicals; they do not contain unpaired electrons, however are, nevertheless, highly reactive. 

Examples of non-radical ROS are hydrogen peroxide (H2O2), hypochlorous acid (HOCl), 

singlet oxygen (
1
O2) and lipid peroxides. Peroxynitrite (ONOO

-
) is a non-radical ROS 

which could also be categorised as a non-radical RNS.  

 

1.1.2.3 Formation of free radicals and reactive species 

Free radicals and reactive species are formed by the donation or acceptance of electrons, 

that is, oxidation or reduction reactions. The formation of one radical tends to bring about 

the formation of more since any electron accepted in the formation of the initial radical 

must have been donated by another substance. If this substance was a non-radical initially, 

the loss of an electron would transform it into a radical. In addition, reactive species are, by 

nature, highly reactive and tend to react very quickly with other substances involving a 

transfer of electrons and the formation of further radicals. Specific examples of the 

formation of common reactive species are shown below. 
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Equations showing the reduction of molecular oxygen in the formation of superoxide 

radicals, hydrogen peroxide and hydroxyl radicals are shown above in equations 1.1, 1.2 

and 1.3 respectively. However, reduction and oxidation must occur simultaneously and, 

therefore, in practical terms, the formation of superoxide radicals due to leakage of 

electrons in the mitochondria could occur as follows: 

 

 2O2  +  NADPH  →  2O2
-

  +  NADP
+
  +  H

+
            [1.5] 

 

Hydrogen peroxide is formed via a superoxide dismutation reaction. Superoxide radicals 

react with each other; one superoxide radical is oxidised and the other is reduced: 

 

 2O2
-

  +  2H
+
  →  H2O2  +  O2              [1.6] 

 

Hydroxyl radicals can be formed from hydrogen peroxide with the donation of an electron 

from a transition metal ion, generally ferrous iron or cuprous copper: 

 

 H2O2  +  Fe
2+

  →  OH

  +  OH

-
  +  Fe

3+
             [1.7] 

 

Hydrogen peroxide can be utilised in the oxidation of chloride ions, to produce 

hypochlorous acid. This reaction is catalysed by the enzyme myeloperoxidase (MPO). In 

aqueous solution, hypochlorous acid partially dissociates into hypochlorite (OCl
-
) and H

+
. 

 

 H2O2  +  Cl
-
  →  OCl

-
  +  H2O              [1.8] 
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Nitric oxide is produced through the action of nitric oxide synthase (NOS) as shown in 

equation 1.9: 

 

 arginine  +  O2  +  NADPH  →  NO

  +  citrulline  +  NADP

+
         [1.9] 

 

Nitric oxide can be converted to nitrogen dioxide: 

 

 2NO

  +  O2  →  2NO2


             [1.10] 

 

Peroxynitrite is generated from the reaction of nitric oxide with the superoxide radical as 

shown in equation 1.11: 

 

 NO

  +  O2

-
  →  ONOO

-
             [1.11] 

 

Alkoxyl, peroxyl and hydroperoxyl radicals along with lipid peroxides are organic 

molecules generally formed through the process of lipid peroxidation, to be described later 

(see section 1.1.4.1, page 51). 

 

1.1.2.4 Reactivity 

Different reactive species have varying levels of reactivity and toxicity. The most reactive 

cannot travel far before reacting with another molecule, causing the production of another 

species. For example, the hydroxyl radical is generally considered to be one of the most 

powerful species. It is highly reactive and reacts indiscriminately with, and causes damage 

to, any biological molecule. The superoxide radical is less reactive but still highly 

damaging since it reacts with specific targets. It is known to inactivate enzymes such as 

adenylate cyclase and creatine phosphokinase; thus it can detrimentally affect major 

metabolic pathways (McCord, 2000). The superoxide radical is also known to react with 
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lactate dehydrogenase (LDH), the enzyme which catalyses the conversion of pyruvate to 

lactate. This reaction is linked to the oxidation of the reduced form of nicotinamide 

adenine dinucleotide (NADH). The superoxide radical can react with NADH when it is 

bound to LDH to cause the formation of the NAD

 radical, thus interfering with the 

efficiency of the pyruvate to lactate conversion (Fridovich, 1986a). Superoxide can also 

inactivate the antioxidant enzymes catalase (CAT) and glutathione peroxidise (GPx) 

(Fridovich, 1986b), the functions of which will be described below (section 1.1.3.1, page 

46). Hydrogen peroxide is a more stable molecule and is able to pass through cell 

membranes freely and diffuse some distance before further reaction; therefore, it can 

initiate further radical reactions and cause damage distant from its site of generation. 

 

1.1.3 Antioxidants 

Oxidants are produced persistently within the body, compelling the evolution of a wide 

range of antioxidant systems in an attempt to limit the damage. Antioxidants have been 

described as substances that can inhibit or delay substrate oxidation (Halliwell & 

Gutteridge, 1999). The knowledge of antioxidant function can be traced as far back as the 

ancient Egyptians who developed embalming methods for the preservation of cadavers 

using oil and plant extracts which functioned as antioxidants (Cross et al., 1987). 

 

Antioxidants function in a number of ways to counteract the damaging effects of reactive 

species and each antioxidant generally acts specifically against one or more oxidants. 

These include removing or neutralising oxidants; converting reactive species into less 

damaging species; minimising the availability of substances required for the formation of 

reactive species, for example, transition metal ions; and protecting molecules from damage 

(Halliwell & Gutteridge, 1999). 
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1.1.3.1 Enzymatic antioxidants 

Endogenous antioxidant systems can be enzymatic or non-enzymatic. Primary antioxidant 

enzymes are superoxide dismutase, catalase and glutathione peroxidase. The activity of all 

three enzymes can increase in response to increased oxidant production, for example, 

during exercise (Ji, 1999). 

 

Superoxide dismutase (SOD) acts to remove superoxide radicals (O2
-

) through the 

formation of hydrogen peroxide (H2O2) as shown previously in equation 1.6: 

 

2O2
-

  +  2H
+
    H2O2  +  O2              [1.6] 

 

This reaction will occur spontaneously and rapidly in the absence of SOD, however, the 

rate of reaction is substantially increased in the presence of the enzyme such that O2
-

 

concentration can be maintained at a low level. Spontaneous dismutation requires two 

molecules of O2
-

, whereas enzyme-catalysed dismutation requires only one; thus the rate 

of spontaneous dismutation would be greatly reduced at low O2
-

 concentration. The 

dismutation of the superoxide radical prevents its reaction with nitric oxide to produce 

peroxynitrite, which is more toxic than the hydroxyl radical. 

 

In human cells, there are two SOD isoenzymes characterised by their location within the 

cell and by the metal ion bound to the active site: in general, copper-zinc SOD (CuZnSOD) 

is located in the cytoplasm and to a small extent in extracellular fluid, whereas manganese 

SOD (MnSOD) is found in the mitochondria (Ji, 1995). In skeletal muscle, most of the 

SOD activity takes place in the cytosol and is greatest in oxidative muscle fibres (Powers 

& Lennon, 1999). 
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Catalase is involved in the elimination of hydrogen peroxide: 

 

2H2O2    2H2O  +  O2             [1.12] 

 

The binding of Fe
3+

 to the active site on catalase is required for catalysis of the above 

reaction. Catalase is widely distributed within the cell, with a high concentration found in 

mitochondria and in peroxisomes (Chance et al., 1979). The activity of this enzyme is 

again greater in more oxidative muscle fibres (Powers & Lennon, 1999). 

 

Glutathione peroxidase  also catalyses the reduction of hydrogen peroxide to water, in this 

case coupled with the oxidation of glutathione (GSH) to glutathione disulphide (GSSG): 

 

2H2O2  +  2GSH    GSSG  +  2H2O           [1.13] 

 

However, NADPH may also be utilised as the reducing species: 

 

H2O2  +  NADPH  +  H
+
    2H2O  +  NADP

+
          [1.14] 

 

For GPx to continue to function, GSH must be regenerated from GSSG; this reaction is 

catalysed by the enzyme glutathione reductase (GR): 

 

 GSSG  +  NADPH  +  H
+
    2GSH  +  NADP

+
         [1.15] 

 

Catalase and GPx can reduce lipid hydroperoxides (LH) as well as hydrogen peroxide, thus 

inhibiting lipid peroxidation and protecting membrane structure and function. Lipid 

peroxidation will be described in detail in section 1.1.4.1 (page 51). 
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GPx is found in both cytosol and mitochondria, with greatest activity in type I muscle 

fibres (Powers & Lennon, 1999). Selenium is a required part of the structure of GPx and 

selenium deficiency dramatically decreases GPx activity in all tissues (Ji, 1995). 

 

Human skeletal and cardiac muscle have fairly low antioxidant activities in comparison to 

other organs of the body and are, therefore, at higher risk of oxidative damage (Goldfarb, 

1993). 

 

1.1.3.2 Non-enzymatic antioxidants 

Non-enzymatic antioxidants include endogenous low-molecular-mass substances, for 

example glutathione and ubiquinol, or may come from dietary sources and include vitamin 

E, vitamin C, β-carotene and various phytochemicals. 

 

Glutathione (GSH) is located intracellularly and functions as a cofactor for the antioxidant 

enzyme glutathione peroxidase. It also directly scavenges hydroxyl radicals and singlet 

oxygen (Yu, 1994). GSH is synthesised by the liver from endogenous or dietary amino 

acids (Ji, 1999) and it has been shown that hepatic production may increase during 

prolonged exercise (Lu et al., 1990). During exercise, GSH is oxidised to GSSG in skeletal 

and cardiac muscle during the breakdown of hydrogen peroxide as shown in equation 1.13 

and GSSG can be reduced back to GSH by glutathione reductase as shown in equation 

1.15. 

 

Ubiquinone, also named coenzyme Q10 (CoQ10) is a component of the electron transport 

chain. The reduced form, ubiquinol (CoQ10H2), is also present in the mitochondria and in 

lipid membranes and functions as an antioxidant (Frei et al., 1990). Other endogenous 

substances known to possess antioxidant activity are uric acid, a product of nucleic acid 
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metabolism; and α-lipoic acid, a cofactor for pyruvate dehydrogenase, which can also be 

taken as a dietary supplement (Ji, 1999). 

 

The main dietary antioxidants that have been reported to act in vivo are vitamin E, vitamin 

C and β-carotene. 

 

Vitamin E describes a group of isomers of which α-tocopherol has the most potent 

antioxidant activity (Goldfarb, 1993). Alpha-tocopherol is lipid soluble and is located 

within the lipid bilayer of cell membranes and in the inner mitochondrial membrane. It acts 

to scavenge superoxide, hydroxyl and lipid peroxyl radicals and may break the cycle of the 

peroxidation process. Although it is present at low concentration, it is difficult to deplete: 

when vitamin E takes an electron from a free radical, thus neutralising the radical and 

becoming a vitamin E radical, it can be reduced back to vitamin E by vitamin C, GSH or 

ubiquinol (Thérond et al., 2000). Acute exercise does not significantly alter vitamin E 

concentration (Ji , 1999). Sources of vitamin E in the diet include oils such as sunflower oil 

and olive oil, and foods such as whole grains and green leafy vegetables. 

 

Vitamin C (ascorbic acid) is water soluble and present in the cytosol and extracellular fluid 

(Ji, 1995). It can react directly with superoxide and hydroxyl radicals in the plasma to 

reduce damage to erythrocyte membranes (Beyer, 1994), and acts to scavenge peroxyl 

radicals, hypochlorous acid and singlet O2 (Sies & Stahl, 1995). On reaction with one of 

these compounds, vitamin C is converted to dehydroascorbic acid, and can be recycled 

back to ascorbic acid by GSH (Packer, 1997). Vitamin C is present in many fruits and 

vegetables including red peppers and citrus fruits. 

 

Beta-carotene is a precursor of vitamin A in humans and is thus sometimes termed 

provitamin A. It is present in lipid membranes and acts to scavenge superoxide and peroxyl 
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radicals (Powers & Lennon, 1999) and singlet oxygen (Ji, 1995). Beta-carotene is found in 

carrots and sweet potatoes. 

 

Finally, various phytochemicals have been reported to display antioxidant activity. 

Phytochemicals are substances derived from plants; they are not required for normal 

physiological function but may be beneficial. Included are several groups of compounds 

including flavonoids and carotenoids. Flavonoids include quercitin found in green tea, 

garlic and red wine; and catechins found in green tea and in cocoa, the major constituent of 

dark chocolate. Carotenoids include β-carotene, and lycopene found in tomatoes. It has 

been suggested that the antioxidant effect of flavonoids may not be due to direct action of 

the substance itself since it is thought that they are poorly absorbed, and quickly 

metabolised and expelled from the body. Rather, it may be that the uric acid produced 

during the metabolism of flavonoids may be responsible for the antioxidant action (Lotito 

& Frei, 2006). 

 

The antioxidant systems described, along with others which act alongside them, are 

normally adequate to prevent substantial tissue damage. However, an increased production 

of oxidants or a reduction in antioxidant defences can disturb the balance. Oxidative stress 

is typically described as a condition in which there is an imbalance between oxidant 

production and antioxidant capacity in favour of the former, with concomitant damage to 

body tissues. 

 

1.1.4 Oxidative damage 

Reactive species can cause damage to a wide range of organic molecules including lipids, 

nucleic acids and proteins. The damage can consist of structural change in the damaged 

molecule which may lead to disruption in the function of the molecule. 
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1.1.4.1 Lipid peroxidation 

Lipid peroxidation has been defined as the oxidative deterioration of polyunsaturated lipids 

(Tappel, 1973). Polyunsaturated fatty acids (PUFAs), found mainly in cellular and 

subcellular membranes, but also in lipoproteins, are those which contain at least two 

carbon-carbon double bonds and it is these double bonds which confer susceptibility to 

peroxidation. A double bond weakens the adjacent carbon-hydrogen bond making 

hydrogen ions vulnerable to abstraction, and consequently oxidation. Free fatty acids, and 

cholesterol in membranes and lipoproteins are also susceptible to oxidative damage 

through lipid peroxidation. 

 

Lipid peroxidation is a self-perpetuating process since it can be initiated by free radicals 

and the process itself causes the generation of further radicals. Free radical reactions in 

general tend to be chain reactions, since when a free radical reacts with a non-radical, the 

product will be a new radical molecule which can then interact with another non-radical 

and so on. Free radicals tend to be short-lived species due to their high reactivity and are 

likely to react with the first molecule which they contact. However, due to the formation of 

new radicals, the distance over which oxidative damage can occur is not limited to the 

immediate area of initial free radical generation. Thus, lipid peroxidation is a chain 

reaction. It occurs in three distinct stages: initiation, propagation and termination. A 

simplified schematic diagram of the peroxidation process is shown in figure 1.1. Equations 

are included for the initial stages of the process to emphasise the formation of new radicals.
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Figure 1.1. Schematic diagram illustrating the lipid peroxidation process. 

PUFA polyunsaturated fatty acid; R denotes rest of molecule; dashed arrows denote propagation of 

the peroxidation process; shaded areas represent reaction products commonly used as markers of 

lipid peroxidation. (Adapted from Dotan et al., 2004; Kneepkens et al., 1994). 
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The initiation stage involves the initial generation of a lipid free radical (-C

H-) by the 

abstraction of a hydrogen atom from a methylene group (-CH2-) of a PUFA. This can be 

caused via attack by any species of sufficient reactivity, for example, the hydroxyl radical: 

 

-CH2-  + OH

    -C


H-  +  H2O            [1.16] 

 

The above equation could also be expressed as follows, where R denotes rest of molecule: 

 

RH  + OH

    R


  +  H2O             [1.17] 

 

The propagation stage involves the production of new radicals from existing ones, by the 

donation of an electron to a non-radical, by the extraction of an electron from a non-radical 

or by a radical binding to a non-radical. The lipid radical generated in the initiation stage 

may react with molecular oxygen to form a peroxyl radical (ROO

), although at low O2 

concentration two lipid radicals may react with one another to cause cross linking of fatty 

acid chains. These carbon-based radicals may be stabilised by molecular rearrangement 

resulting in the formation of conjugated dienes which can be used as a marker of lipid 

peroxidation. The peroxyl radicals formed at this step react with other lipid molecules to 

form lipid hydroperoxide (ROOH) and a further lipid radical. The process thus propagates 

as the newly formed lipid radical can react with oxygen or with an adjacent PUFA. 

 

Lipid hydroperoxides may generate a variety of reaction products as shown in figure 1.1. 

The lipid hydroperoxide may interact with a transition metal to produce an alkoxyl radical 

(RO

) which may react with a PUFA to propagate the peroxidation process, or may 

undergo reaction to produce pentyl or ethyl radicals; these radicals can generate pentane or 

ethane respectively, which are end products of the peroxidation process. Other reaction 



54 

products include aldehydes and isoprostanes which will be described in more detail in later 

sections (section 1.2.2.3.1, page 64; section 1.2.2.3.2, page 66). The reaction products of 

the peroxidation process depend on the specific PUFA which is initially oxidised. 

Malondialdehyde, the most abundant aldehyde formed via lipid peroxidation, originates 

mainly from arachidonic acid as do the isoprostanes; pentane originates from linoleic acid 

and ethane from linolenic acid. 

 

The majority of tissue damage occurs during the propagation stage. The peroxidation 

process is terminated by reactions between radicals to form stable molecules, or radicals 

are scavenged by antioxidants. An example of the termination of the peroxidation process 

by tocopherol (vitamin E) is shown below in equation 1.18. Tocopherol (TH2) collides 

with a lipid radical (L

) and the tocopherol takes on the unpaired electron to become a 

tocopherol radical (TH

). The tocopherol radical can then be recycled back to tocopherol in 

order to scavenge further lipid radicals. 

 

 L

  +  TH2    LH  +  TH


             [1.18] 

 

Damage to lipid molecules by the peroxidation process can cause a reduction in membrane 

fluidity, changes in permeability and excitability, and altered function of membrane-bound 

enzymes (Vladimirov, 1986). In addition, the process of peroxidation results in the 

formation of toxic products; these may diffuse away from the site of peroxidation and 

cause further damage. Examples are malondialdehyde (MDA) which has been reported as 

a potential carcinogen (Schamberger et al., 1974) and mutagen (Bird & Draper, 1980) and 

isoprostanes, which can cause renal and pulmonary vasoconstriction (Praticó et al., 1995). 
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1.1.4.2 Nucleic acid damage 

Reactive species can cause damage to DNA in the form of strand breaks in the 

deoxyribose-phosphate backbone of the molecule, DNA-protein cross-linking and base 

pair modification (Thérond et al., 2000). Oxidative damage to DNA has been linked to the 

development of cancer (Cross et al., 1987) since oxidative lesions not repaired prior to 

replication can cause mutagenesis (Bjelland & Seeberg, 2003). It has been reported that 

mitochondrial DNA mutates at a faster rate than nuclear DNA and is less efficient at self-

repair (Luft, 1995). It is at high risk of oxidative damage due to its location beside a major 

source of oxygen consumption and ROS production. 

 

1.1.4.3 Protein damage 

Oxidative damage to proteins can cause changes in their structure and function making 

them more prone to proteolysis. Proteins may be damaged indirectly via amino acid 

alteration or directly via denaturation, aggregation or glycation (Jenkins, 2000). Protein 

damage may lead to enzyme inactivation; for example, it is known that catalase and GPx 

are inactivated by superoxide (Fridovich, 1986a), and SOD is inhibited by H2O2 (Hodgson 

& Fridovich, 1975). Enzyme activity may also be altered by changes in membrane 

structure due to lipid peroxidation (Jenkins, 1988). 

 

1.1.5 Implications of oxidative damage 

Oxygen based radicals have been implicated in the pathogenesis of many major diseases 

including atherosclerosis, cancer, diabetes mellitus, ischaemia-reperfusion injury, 

rheumatoid arthritis and neurodegenerative disease (Dröge, 2002). A brief summary of the 

links between oxidative stress and atherosclerosis is included due to its relevance to 

exercise: physical inactivity is now a well established risk factor for coronary heart disease 

(Powell et al., 1987). 



56 

1.1.5.1 Atherosclerosis 

Coronary heart disease (CHD) is the most common cause of death in the United Kingdom, 

affecting 21 % of males and 15 % of females in all age groups (Allender et al., 2006). The 

mortality rate from CHD is high compared to other European countries, and is highest 

within the UK in Scotland and Northern England (Allender et al., 2006). Most cases of 

CHD are caused by the development of atherosclerosis in one or more coronary arteries. 

Atherosclerosis is characterised by hardening and thickening of the arterial wall, due to the 

development of an atheroma, which eventually may progress sufficiently to cause blockage 

of the circulation with subsequent myocardial infarction. The development of 

atherosclerosis has been linked to oxidative stress (Hamilton et al., 2004) and specifically 

to the oxidative modification of low-density lipoprotein (LDL) cholesterol (Singh & Jialal, 

2006). Under normal conditions, a regulated quantity of LDL is taken up by macrophages 

via the LDL receptor. However, when LDL has become highly oxidised (Ox-LDL), the 

structure of the molecule is modified to the extent that it is no longer recognised by the 

LDL receptor, and LDL is then taken up by macrophages via another set of receptors in a 

non-regulated manner. This leads to the presence of large quantities of Ox-LDL within 

macrophages, initiating the development of foam cells; an initial stage in the process of 

atherogenesis (Steinberg, 1997). 

 

It has been reported that LDL becomes more susceptible to oxidation following strenuous 

exercise. This was shown by Liu and colleagues (1999) after a marathon race and it was 

noted that the effect persisted for four days following the race. Thus the effect of acute 

exercise on LDL oxidisability is a negative one. However, a previous study (Sanchez-

Quesada et al., 1997) showed that LDL oxidisability was lower at rest in trained 

individuals in comparison to sedentary controls, suggesting that regular exercise may 

impart a protective effect. 
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1.1.5.2 Ageing 

There is also a well acknowledged association between free radical damage and the ageing 

process (Cutler, 1986). The process of ageing involves changes in the body which, over 

time, accumulate to cause progressive functional degeneration, increased susceptibility to 

disease and increased probability of mortality (Dröge, 2002). The free radical theory of 

ageing, first proposed by Denham Harman in 1956, suggests that the accumulation of 

oxidative damage may be involved in the process of ageing (Harman, 1956). If the free 

radical theory of ageing is correct, and the ageing process is due to the effects of ROS, then 

a reduction in the formation of ROS or an increase in antioxidant capacity should retard the 

ageing process and lead to delayed mortality. Support for this hypothesis has been sought 

from numerous strands of research. 

 

Initially, it was acknowledged from inter-species comparisons of longevity that an inverse 

correlation exists between metabolic rate and lifespan (Beckman & Ames, 1998). It was 

proposed that since the mitochondrial electron transport chain was a major source of 

reactive species, a higher metabolic rate may be consistent with a higher rate of oxidant 

production. It was found that some species lived longer than predicted by metabolic rate 

and these species generated reactive species at a lower rate per unit of mitochondrial 

oxygen consumption (Beckman & Ames, 1998), thus suggesting that lifespan was related 

more specifically to oxidant production than to metabolic rate. 

 

Harman extended his free radical theory of ageing to suggest that the lifespan may be 

influenced mainly by the rate of oxidative damage to mitochondria, especially to 

mitochondrial DNA (mtDNA) (Harman, 1972). Due to the proximity of mtDNA to a major 

source of reactive species, it may be especially vulnerable to damage with potential 

subsequent damage to electron transport chain enzymes (Finkel & Holbrook, 2000). 

Evidence from skeletal muscle biopsies in young and older males has supported this view 
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(Gianni et al., 2004). These authors reported greater oxidative damage to DNA and 

protein, compensatory upregulation of mitochondrial antioxidant enzymes and a greater 

frequency of mtDNA deletions in ageing muscle. However, they found no functional 

deficiency in the aged muscle, suggesting some redundancy in function or a capability to 

adapt to protect against mitochondrial damage.  

 

It has been suggested that certain antioxidants may help to determine longevity; for 

example, Cutler (1991) reported a correlation between tissue concentrations of SOD, 

carotenoids, α-tocopherol, uric acid and lifespan in several mammalian species, including 

humans. This hypothesis has been corroborated by data which have shown that several 

species have a greater average life expectancy when antioxidants are added to the diet 

(Harman, 1981). For example, the worm, Caenorhabditis elegans was supplemented with 

synthetically produced SOD and catalase mimetics, that is, substances which function in a 

similar manner to these antioxidant enzymes. The mimetics were originally tested on a 

strain of worm which suffered from a mutation which caused accelerated ageing due to 

accumulation of oxidative damage. Treatment with the mimetics restored a normal lifespan 

to these worms. Non-mutated worms treated with the mimetics were found to have a 44 % 

greater lifespan than untreated worms suggesting that oxidative damage may be a key 

factor in the determination of lifespan (Melov et al., 2000). 

 

Another line of research has involved caloric restriction which increases lifespan in several 

species. For example, rats fed a calorie restricted diet lived 43 % longer than control rats 

fed ad libitum (Sohal et al., 1994). It was proposed that this effect was due to reduction in 

oxidative stress in the restricted rats since it was found that there was less accumulation of 

oxidative damage products in major organs. 
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Despite the substantial amount of supporting evidence, the free radical theory of ageing has 

been criticised by Howes (2006) who reviewed the lack of consistent evidence of an effect 

of antioxidant supplementation on disease outcome in numerous large controlled trials. 

 

1.1.6 The physiological roles of reactive species 

Thus far, only the damaging effects of reactive species have been considered.  However, 

although excessive concentrations of oxidants may be harmful, it has been suggested that 

more moderate concentrations may have useful physiological roles (Dröge, 2002). A well 

known example is the oxidative burst which occurs within phagocytic cells. Phagocytes 

generate many different reactive species to destroy invading pathogens as part of the 

immune response. This will be described further in a later section (section 1.3.3.3, 

page 86). 

 

Reactive species may also function in communication; for example, the superoxide radical 

is useful as a signalling molecule in normal physiological processes such as cell division 

and proliferation (McCord, 2000); the hydroxyl radical activates guanylate cyclase, the 

enzyme which catalyses the production of the second messenger cyclic guanosine 

monophosphate (cGMP) (Mittal & Murad, 1977), which mediates, for example, relaxation 

of vascular smooth muscle. Nitric oxide also stimulates vascular smooth muscle relaxation 

and inhibits platelet adhesion (Radomski et al., 1987).  

 

Finally, gene expression may be regulated to some extent by the redox status of the internal 

environment (McCord, 2000). Redox homeostasis is the situation where the production of 

reactive species and antioxidant capability is matched such that there is no damaging 

increase in oxidative species. When oxidant production does increase, for example in 

exercise or trauma, redox homeostasis can be restored after a brief increase in oxidant 

concentration. However, during this time, the increase in specific reactive species may 
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signal increased gene expression. For example, it has been reported that hydrogen peroxide 

induces the expression of the heme oxygenase-1 (HO-1) gene (Keyse & Tyrell, 1989). 

Finally, there is evidence that reactive species may signal adaptive changes which protect 

against further oxidative stress (Jackson, 1999). Nuclear factor kappa beta (NF-κΒ) is 

activated during exercise and functions to upregulate the expression of antioxidant 

enzymes such as SOD and catalase. It has been suggested that the activation of NF-κΒ may 

be associated with oxidative stress during exercise (Vider et al., 2001a). 

 

1.2  Assessment of oxidative stress 

A wide variety of different techniques have been employed to assess oxidative stress in 

vivo in previous research. Only one of these methodologies actually directly measures free 

radical activity; most assess oxidative stress indirectly by measuring by-products of free 

radical damage or by measurement of a reduction in antioxidant capacity.  

 

1.2.1 Direct measurement of free radicals 

Free radical species are difficult to measure directly in vivo due to their highly reactive and 

transient nature, and low steady-state concentrations. There is one technique currently 

available, that of electron spin resonance (ESR), which does attempt to measure these 

species directly. The basic premise of the technique is the detection of unpaired electrons. 

It is limited in that it lacks the sensitivity to detect the more highly reactive species such as 

O2
-

 and OH

; however, this limitation can be overcome to some extent with the use of spin 

trapping techniques. These involve the addition of a molecular species to the system under 

study which can react with the free radical to form a more stable and longer-lived 

compound which can then accumulate to a concentration which can be detected by ESR. A 

limitation of the trapping technique is that the addition of a trapping molecule can perturb 
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the system under investigation, for example, by functionally neutralising the free radical so 

that the level of oxidant activity in the system may be reduced artificially. 

 

ESR has not been widely used in humans in vivo to date; there are two reports in the 

literature of the use of ESR in relation to the assessment of exercise-induced oxidative 

stress (Ashton et al., 1998; Ashton et al., 1999). Ashton and colleagues (1998) reported the 

first use of ESR in combination with the spin trapping technique in relation to exhaustive 

aerobic exercise in humans. Free radical production by ESR was measured from samples 

of venous blood drawn prior to and following a maximal incremental test on a cycle 

ergometer. A post-exercise increase in free radical production was demonstrated, supported 

by an increased lipid peroxidation measured by malondialdehyde assay and lipid 

hydroperoxides. The same authors (Ashton et al., 1999) observed a similar outcome 

utilising an identical experimental protocol in a later study. 

 

1.2.2 Indirect assessment of oxidative stress 

Most researchers have not utilised direct measurement of free radicals, but rather have 

assessed oxidative stress indirectly by measuring by-products of oxidative damage. For this 

type of technique to be valid, it is necessary that substances measured are markers only of 

oxidative damage and are not produced by normal physiological processes. Most indirect 

techniques are invasive and rely on markers found in blood or serum samples, or in a 

minority of cases in muscle tissue samples (Child et al., 1999; Hellsten et al., 1996). 

However, there are also non-invasive techniques available which utilise samples of expired 

air or urine. 

 

Although free radicals can cause damage to nucleic acids, proteins, lipids, carbohydrates 

and some low molecular mass antioxidants, for example ascorbic acid or uric acid, most 

studies investigating oxidative stress in relation to exercise have focussed on damage to 
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lipids via the process of lipid peroxidation. This is likely due to the relative ease of 

assessment. However, there are exceptions, and a small number of studies have assessed 

exercise-induced oxidative damage to proteins or nucleic acids. 

 

1.2.2.1 Assessment of nucleic acid damage 

Urinary 8-hydroxy-2΄-deoxyguanosine (8-OHdG) is the most commonly used marker of 

DNA oxidation. Guanine is the most easily oxidised of the four DNA bases and repair of 

damage to this base results in the formation of 8-OHdG which is water-soluble and is 

excreted in the urine without further metabolism (Wu et al., 2004). However, this 

technique has been criticised since increased urinary 8-OHdG may reflect both enhanced 

repair as well as increased whole body DNA oxidation attributable to other sources, such 

as a diet high in nucleic acids and DNA released following cell death (Cooke et al., 2002). 

Oxidative damage to DNA may also be measured using single-cell gel electrophoresis, also 

known as the comet assay (Singh et al., 1988). This technique allows the measurement of 

single strand breakage in nuclear DNA. Damaged cells display increased migration of 

chromosomal DNA out of the nucleus in a shape resembling a comet; however, assessment 

of damage level is somewhat subjective. An additional limitation is that, again, damage is 

not specific to oxidation. 

 

Few studies have investigated urinary 8-OHdG output following exercise. Elevated levels, 

approximately 1.3-fold above baseline, were reported 10 hours following a marathon race 

(Alessio & Cutler, 1990), whilst Tsai and colleagues (2001) reported an immediate 

increase of approximately two-fold above baseline following a 42 km run with levels 

remaining elevated significantly for seven days. However, some studies have reported no 

change, for example, following distance running (Inoue et al., 1993) or three consecutive 

days of moderate intensity cycling (Viguie et al., 1993). It has been suggested that DNA 

damage is associated with prolonged, higher intensity exercise such as marathon running 
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rather than more moderate endurance exercise (Alessio, 1993). Some exercise studies have 

assessed DNA damage using the comet assay, again with conflicting findings (Mastaloudis 

et al., 2004a; Hartmann et al., 1994). Interestingly, some studies utilised both methods and 

reported no significant correlation between the two, perhaps reflecting differences in what 

each technique is measuring; in the case of 8-OHdG, possible damage to muscle and 

increased cell turnover, whereas the comet assay is limited to individual cells (Hartmann et 

al., 1998; Tsai et al., 2001). 

 

1.2.2.2 Assessment of protein damage 

Oxidation of amino acid side chains by reactive species results in the formation of protein 

carbonyls (Griffiths, 2000). The assessment of protein carbonyls as an indicator of protein 

oxidation has been criticised as non-specific and unreliable in vivo (Urso & Clarkson, 

2003). For example, carbonyl groups may also be introduced into proteins by reaction with 

aldehydes during the process of lipid peroxidation (Davies et al., 1999). However, they are 

still considered to be a more stable marker than malondialdehyde, which has been one of 

the most commonly utilised markers of oxidative stress (Davies et al., 1999). Protein 

carbonyls have been reported to increase following cycle ergometer exercise at 70 % 

maximum oxygen uptake ( V O2 max), and protein oxidation increased with exercise 

duration (Bloomer et al., 2007). The same author reported increased protein carbonyls 

following anaerobic exercise, both sprinting and barbell squats (Bloomer et al., 2006). 

However, not all studies have reported a significant change. For example, Alessio and 

colleagues (2000) found no change in protein carbonyls following intermittent isometric 

exercise. It is likely that inconsistencies in findings are due to differences in exercise 

protocols. 
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1.2.2.3 Invasive assessment of lipid peroxidation 

Lipid peroxides are unstable compounds which tend to break down rapidly. Resultant 

products can be more stable and, therefore, can be measured in blood, urine or expired air 

for assessment of the extent of lipid peroxidation. There are a variety of markers available 

for the invasive assessment of lipid peroxidation associated with exercise; these include 

malondialdehyde (MDA), isoprostanes, conjugated dienes and lipid hydroperoxides. 

However, none of the above markers are ideal, as described in the following sections, and 

for this reason it has been suggested that two or more different techniques should be 

utilised within any study (Halliwell & Gutteridge, 1999). 

 

1.2.2.3.1 Malondialdehyde 

MDA is formed during lipid peroxidation of PUFAs, mainly arachidonic acid and 

docosahexaenoic acid (Esterbauer et al., 1991). It has been the most commonly used 

marker of lipid peroxidation (Urso & Clarkson, 2003), however, its use has been widely 

criticised. 

 

MDA has been assessed historically by the thiobarbituric acid reactive substances 

(TBARS) assay. Plasma or tissue samples are heated with thiobarbituric acid (TBA) at low 

pH and any MDA present reacts to form a coloured product (TBARS) which absorbs light 

at 532 nm. Following this reaction, a fluorometric or spectrophotometric assay can be 

carried out in order to determine the quantity of TBARS. The test is easy to use which 

likely explains its popularity in the literature; however, there are several limitations. Most 

TBARS detected may be formed by the decomposition of lipid peroxides during the acid 

heating stage of the assay; peroxide decomposition can be accelerated by iron salts in 

reagents used in the TBA test and generates RO2

 radicals which can oxidise more lipid 

(Gutteridge, 1986), thus over-reporting the true extent of lipid peroxidation. TBA will also 

react with molecules other than MDA, for example, sugars, amino acids and bilirubin and 
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it is not possible to distinguish between different initial reactants, therefore, TBARS may 

over-state the extent of MDA production. Consequently, it may be more accurate to assay 

MDA directly by high performance liquid chromatography (HPLC) or gas 

chromatography-mass spectrometry (GC-MS). It has been suggested that TBARS may 

overestimate the true extent of MDA production by at least ten-fold in comparison to 

measurement by GC-MS (Yeo et al., 1994). 

 

Even so, other limitations remain: MDA is not solely a product of lipid peroxidation. It is 

also produced as a result of cyclooxygenase activity in platelets (Hamberg et al., 1975). 

Platelet activation is reportedly increased during exercise (Kratz et al., 2006), and many 

disease states associated with enhanced lipid peroxidation tend to feature persistent platelet 

activation (Meagher & Fitzgerald, 2000). Therefore, in such cases, it would be unclear how 

much of the resultant MDA was due to lipid peroxidation. 

 

It has been suggested that the TBARS assay may be considered as a screening test to 

suggest the presence of lipid peroxidation, but should not be used as a convincing 

quantitative measure without confirmation by other markers of lipid peroxidation 

(Kneepkens et al., 1994). Direct assessment of MDA by HPLC is preferable. 

 

The vast majority of exercise studies have utilised MDA as a marker of lipid peroxidation, 

using either technique, and results have been variable (Vollaard et al., 2005). The two 

studies by Ashton and colleagues (1998, 1999) utilised ESR as a direct measure of free 

radical production following exercise and also measured MDA by HPLC. Both methods 

showed a significant increase in lipid peroxidation, giving support to the use of MDA as an 

indirect marker. 
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1.2.2.3.2 F2-Isoprostanes 

F2-isoprostanes are structurally similar to prostaglandin-F2 and are considered to be 

specific and stable markers of lipid peroxidation in vivo (Banfi et al., 2006). They are 

reaction products of free radical-induced peroxidation of phospholipids containing 

arachidonic acid. A commonly studied isoprostane is 15-Isoprostane-F2t. Only very small 

amounts of 15-Isoprostane-F2t are generated by cyclooxygenase activity, the common route 

for production of prostaglandins from arachidonic acid; the overwhelming majority of its 

production is mediated by free radical activity, thus it is well suited to investigation of 

oxidative stress (Morrow & Roberts, 1997). F2-isoprostanes can be measured in detectable 

concentrations in plasma or tissue by GC-MS or enzyme-linked immunosorbent assay 

(ELISA). The former may be the preferred technique since it is considered to be highly 

accurate, specific and sensitive (Roberts & Morrow, 2000); however, problems with 

ELISA regarding the presence of substances, such as proteins, in the sampled fluid which 

may interfere with the assay can be overcome to some extent by purification of the sample 

prior to assay. Isoprostanes have become more frequently used as a marker of lipid 

peroxidation in exercise studies in recent years (Vollaard et al., 2005). 

 

1.2.2.3.3 Conjugated dienes 

The oxidation of PUFAs is accompanied by the formation of conjugated dienes; these are 

lipid radicals which have undergone molecular rearrangement to a more stable structure 

which includes a double-single-double bond configuration. The most abundant conjugated 

diene in human plasma is 9, 11-linoleic acid (Kneepkens et al., 1994). These are formed 

early in the process of lipid peroxidation and their presence is generally accepted as 

evidence that lipid peroxidation has taken place (Recknagel & Glende, 1984). They absorb 

ultraviolet (UV) light in the 230-235 nm wavelength range and a measure of this UV 

absorbance can be used as a measure of lipid peroxidation in ex vivo samples of pure lipids 

and isolated lipoproteins. A limitation with this technique is that it is not specific for the 
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products of lipid peroxidation when applied to tissues or body fluids since there are other 

substances present which also absorb the same wavelength of UV light, for example, haem 

proteins. Another limitation is that formation of conjugated dienes continues ex vivo 

following sampling and therefore may not reflect the extent of lipid peroxidation in vivo 

(Dormandy & Wickens, 1987). Therefore, conjugated dienes may not be an adequate 

marker of lipid peroxidation in vivo (Jenkins, 2000). Indeed, they have been used rarely in 

exercise studies, and then, often in combination with another marker of lipid peroxidation 

(Duthie et al., 1990; Kanter & Eddy, 1992; Marzatico et al., 1997; Vider et al., 2001b). 

 

1.2.2.3.4 Lipid hydroperoxides 

Conjugated dienes form lipid hydroperoxides and peroxyl radicals in the presence of O2. 

These are unstable in the presence of transition metal ions and decompose to a variety of 

reaction products (Jenkins, 2000), thus are not end products of the process of lipid 

peroxidation. Measurement requires formation of a fluorescent or coloured reaction 

product or they can be assessed indirectly via MDA which is a secondary reaction product. 

Again this is a rarely used marker of lipid peroxidation (Vollaard et al., 2005). 

 

1.2.2.4 Non-invasive assessment of lipid peroxidation 

Non-invasive assessment of by-products of the peroxidation process is also possible. Lipid 

peroxidation in vivo can be assessed by the measurement of volatile hydrocarbon gases 

such as ethane and pentane in the expired air (Kneepkens et al., 1994). Both gases are 

terminal reaction products of the peroxidation process; ethane and pentane are derived 

from the peroxidation of ω-3 and ω-6 polyunsaturated fatty acids respectively (Kivits et al., 

1981). Justification for the use of expired hydrocarbons to assess lipid peroxidation is 

based on in vitro and in vivo animal studies which have shown that evolution of ethane and 

pentane correlate very well with other markers of lipid peroxidation, however, a direct 
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comparison of exhaled hydrocarbons and other markers of lipid peroxidation has not yet 

been undertaken in humans in vivo (Kneepkens et al., 1994). 

 

Both ethane and pentane can be measured by gas chromatography, however, this can be 

time-consuming and requires a flawless technique; for example, due to the extremely low 

concentrations of ethane and pentane in expired air, which are often not significantly 

greater than those in ambient air, it is important to avoid contamination of expired air 

samples with ambient air (Kneepkens et al., 1994). Potential limitations of the hydrocarbon 

breath test include formation of hydrocarbons from sources other than lipid peroxidation 

and the dependence of hydrocarbon formation on the availability of transition metal ions. 

These issues will be reviewed in detail in chapter 3. More recently, ethane has been 

measured by laser spectroscopy (Gibson et al., 2002), a technique which has several 

advantages including ease of use and rapid analysis times. Therefore, this technique would 

be well-suited to the non-invasive assessment of exercise-induced oxidative stress, 

however, has not been utilised previously in exercise studies. 

 

The first usage of ethane as a marker of lipid peroxidation in vivo was reported by Riely 

and colleagues in 1974. They firstly demonstrated that lipid peroxidation in vitro, as 

measured by MDA formation, was linked to the formation of ethane. Carbon tetrachloride 

(CCl4), a known oxidant, was then administered to intact mice and ethane production, not 

present in control animals, was observed. An early exercise study by Dillard and 

colleagues (1978) used pentane as a marker of lipid peroxidation to investigate the effect of 

exercise intensity on oxidative stress in cycle ergometer exercise. However, very few 

studies since have utilised either ethane (Leaf et al., 1997, 1999, 2004) or pentane (Kanter 

et al., 1993; Leaf et al., 1997; Pincemail et al., 1990). 
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Finally, the assessment of aldehydes or F2-isoprostanes in the urine are other non-invasive 

approaches to the assessment of lipid peroxidation in vivo, however, these would be 

impractical for time-dependent assessment such as the investigation of oxidative stress in 

exercise. 

 

1.2.2.5 Assessment of antioxidant capacity 

Individual antioxidants and antioxidant enzymes have been measured following exercise. 

The most commonly used index is the ratio of reduced to oxidised glutathione 

(GSH/GSSG). As described previously, reduced glutathione acts as an antioxidant and in 

doing so is itself oxidised. Thus the ratio of the two substances gives some indication of 

the oxidative insult which the reduced glutathione is helping to overcome, along with the 

other antioxidants present in the sample. Other antioxidants which have been studied 

individually include α-tocopherol and ascorbic acid (Vollaard et al., 2005), and the 

antioxidant enzymes superoxide dismutase, glutathione peroxidase and glutathione 

reductase (Urso & Clarkson, 2003). 

 

Total antioxidant capacity (TAC) has also been used in the assessment of oxidative stress 

(Cao et al., 1993). This is a measure of the overall protection against oxidative stress 

provided by all antioxidants in the sample acting together. There are several assays 

available; all are based on the addition of a free radical generator to the sample of interest, 

followed by a measure of the sample‟s ability to protect against oxidation of the 

antioxidants present in the sample. Oxygen radical absorbance capacity (ORAC) has been 

suggested as one of the better assays since the oxidation reactions are allowed to run until 

all the antioxidant present has been oxidised and this allows the assessment to take into 

account the fact that some antioxidants are faster acting than others (Prior & Cao, 1999). 

However, results from TAC assays do not always match those of other measures of 

oxidative stress (Han et al., 2000). 
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1.3  Exercise-induced oxidative stress 

Exercise-induced oxidative stress (EIOS) refers to a condition in which the balance 

between oxidant production and antioxidant defences is disturbed in favour of oxidants 

during exercise. Numerous studies have investigated the effect of exercise on oxidative 

stress, however, a wide variety of exercise protocols and markers of oxidative stress have 

been utilised, which, to some extent, has hindered understanding in this area. Studies have 

included both aerobic and anaerobic exercise modalities and these will be reviewed 

separately. 

 

1.3.1 Aerobic exercise 

Studies which have utilised aerobic exercise can be subdivided according to the type of 

exercise protocol used. Some have employed an incremental exercise test to exhaustion on 

treadmill or cycle ergometer, some have utilised a sub-maximal constant load exercise 

protocol, again on treadmill or cycle ergometer, and the remainder have utilised a range of 

other aerobic activities including competitive endurance events. Most studies have 

assessed oxidative stress via markers of lipid peroxidation with only a few measuring 

nucleic acid or protein oxidation. 

 

1.3.1.1 Maximal exercise 

Several studies have assessed lipid peroxidation in response to maximal incremental 

exercise using plasma markers, and have produced varying results. Some have reported a 

significant increase in lipid peroxidation following exercise (Ashton et al., 1998, 1999; 

Bailey et al., 2001; Jammes et al., 2005; Leaf et al., 1997; Lovlin et al., 1987; Szcześniak 

et al., 1998; Steinberg et al., 2006, 2007; Vider et al., 2001b), whereas others have 

reported no significant change (Alessio et al., 2000; Hartmann et al., 1995; Jammes et al., 

2004; Kretzschmar et al., 1991; Leaf et al., 1999; Niess et al., 1996; Quindry et al., 2003; 
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Sen et al., 1994; Sürmen-Gür et al., 1999; Viinikka et al., 1984). It should be noted that the 

two studies by Ashton and colleagues (1998, 1999) directly measured free radical 

production in addition to indirect markers of lipid peroxidation, strengthening the evidence 

for the reported exercise-induced oxidative stress. 

 

Of the studies which showed no increase in lipid peroxidation following exercise, two 

studies did report other evidence of oxidative stress in the form of DNA damage measured 

24 hours following cessation of exercise (Hartmann et al., 1995; Niess et al., 1996). 

Alessio and colleagues (2000) showed a non-significant increase in MDA and LH and 

suggested that their study lacked statistical power due to a small sample size. Sen and 

colleagues (1994) also reported a non-significant increase following maximal incremental 

exercise, but also a significant increase following 30 minutes of constant load exercise at 

two submaximal work rates. The constant load tests were of a longer duration than the 

incremental test, suggesting that exercise duration may be an important factor. This will be 

discussed further later (see Chapter 5). Thus, oxidative stress induced by maximal exercise 

has not been reported in every circumstance, but appears to be a commonly observed 

feature. 

 

1.3.1.2 Submaximal exercise 

Several studies have utilised a submaximal exercise protocol in the investigation of 

exercise-induced oxidative stress. Constant load exercise has been reported to increase 

oxidative stress assessed by lipid peroxidation (Alessio et al., 1997; Børsheim et al., 1999; 

Kanter et al., 1993; Laaksonen et al., 1999; Pincemail et al., 1990; Sen et al., 1994; 

Waring et al., 2003). In these studies, duration and intensity of exercise ranged from 20 

minutes of cycle ergometry at 50 % V O2 max (Balke et al., 1984) to 90 minutes at 58 % 

V O2 max (Børsheim et al., 1999), and 30 minutes of treadmill running at 60 % V O2 max 

(Kanter et al., 1993) to 30 minutes at 80 % V O2 max (Alessio et al., 1997). 
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Some studies showed no significant increase in oxidative stress following constant load 

exercise (Chung et al., 1999; Kanaley & Ji, 1991; Lovlin et al., 1987; Morillas-Ruiz et al., 

2005; Quindry et al., 2003; Watson et al., 2005). Two studies reported no change in 

oxidative stress following treadmill exercise for 30 min at 75-80 V O2 max (Chung et al., 

1999), and for 90 minutes at 60 % V O2 max (Kanaley & Ji, 1991), both comparable 

protocols to the studies described above which did report post-exercise oxidative stress. 

These were the only two constant load studies which utilised female subjects and it was 

suggested by Chung and colleagues (1999) that this disparity in results may be due to 

gender. However, several other studies with male subjects have also reported no increase 

in oxidative stress following similar exercise protocols. 

 

In a number of these studies, the data were inconclusive. For example, Lovlin and 

colleagues (1987) investigated 5 minutes of constant load exercise at both 40 % and 70 % 

of V O2 max. The data indicated an unexpected significant reduction in lipid peroxidation 

from baseline following exercise at the lower intensity and a non-significant reduction after 

the higher intensity. Therefore, although post-exercise oxidative stress was reduced, the 

pattern was for greater oxidative stress at higher intensity. However, again it may be that 

exercise duration is important and the duration here may have been too short to elicit a 

significant oxidative stress. Another study (Watson et al., 2005) also indicated a tendency 

towards reduced oxidative stress after 30 minutes of treadmill running at 60 % V O2 max. 

The resting measurement may have been spuriously elevated in both studies and the 

reduction in oxidative stress with exercise may simply have reflected a return towards 

baseline, however, this was not possible to ascertain from the available information. Both 

groups of authors suggested that peroxidation may have been inhibited due to increased 

antioxidant activity. This is substantiated to some extent by the findings of the latter study 

(Watson et al., 2005) in which subjects were divided into two groups; one group ate their 

habitual diet whilst the second group ate a diet restricted in antioxidants. The restricted 
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group showed significantly higher lipid peroxidation following submaximal exercise than 

the habitual diet group suggesting that the availability of antioxidants had a significant 

effect on the extent of lipid peroxidation. 

 

Finally, two studies reported no exercise-induced increase in lipid peroxidation, however 

did show some evidence of other oxidative activity. Morillas-Ruiz and colleagues (2005) 

reported no change in lipid peroxidation and a non-significant increase in protein oxidation 

following 90 minutes of cycle ergometry at 70 % V O2 max. The authors suggested that the 

exercise intensity may not have been sufficiently high to elicit a significant oxidative stress 

in their trained subjects; however, a significant increase in DNA oxidation was indicated. 

Therefore, results were inconclusive. 

 

The findings of Quindry and colleagues (2003) were similarly unclear. They reported no 

change in lipid peroxidation following 45 minutes of exercise below or above the lactate 

threshold. However, the authors did suggest an oxidative stress effect on the basis of 

neutrophilia and increased superoxide formation following supra-lactate threshold 

exercise. However, it is not clear that these markers are actually indicative of oxidative 

damage. It may be that antioxidant defences were adequate to combat the increase in 

superoxide generated from neutrophils such that no lipid peroxidation occurred. 

 

Thus, overall, there is considerable  ambiguity in relation to the oxidative stress response to 

submaximal constant load exercise. 

 

1.3.1.3 Other aerobic activities 

The third group of aerobic studies are heterogeneous in terms of exercise protocol. The 

findings, again, were inconsistent. Twelve previous studies have investigated oxidative 

stress following distance running. Most studies indicated an increase in oxidative stress at 
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distances of 10 km (Vasankari et al., 1995), half marathon (21 km) (Child et al., 1998, 

2000; Marzatico et al., 1997), 27 km (Vasankari et al., 1995), 31 km (Vasankari et al., 

1997), marathon (Hessel et al., 2000; Liu et al., 1999), 50 km (Mastaloudis et al., 2001, 

2004b) and 80 km (Kanter et al., 1988; Nieman et al., 2002). Only two authors noted no 

change in lipid peroxidation following 21 km (Duthie et al., 1990) and marathon distance 

(Vasankari et al., 1997). Three studies investigated the effect of prolonged running for 2.5 

hours (Dufaux et al., 1997; Steensberg et al., 2002) or 3 hours (McAnulty et al., 2003) on 

lipid peroxidation. Two of these studies indicated a post-exercise rise in lipid peroxidation 

(McAnulty et al.2003; Steensberg et al., 2002) with no change in the other study (Dufaux 

et al., 1997). Exercise intensity and duration was not comparable between all three studies 

and this may be responsible for the discrepancy in results. For example, a significant 

increase in lipid peroxidation was found at an intensity of 75 % V O2 max for 2.5 hours 

(Steensberg et al., 2002), whereas no change was found at a running speed of 53-82 % of 

the previously estimated speed at a lactate concentration of 4 mmol·l
-1

 which was 

maintained for 2.5 hours (Dufaux et al., 1997). However, the finding of increased oxidative 

stress following distance running is fairly consistent. 

 

Three studies used a downhill running protocol; this type of exercise involves eccentric 

muscle contractions which can cause muscle damage (Friden et al., 1983) which has been 

associated with increased free radical production (Aoi et al., 2004). A study by Maughan 

and colleagues (1989) found some increase in oxidative stress following 45 minutes of 

downhill running. Subjects with the greatest increases in creatine kinase and lactate 

dehydrogenase, both markers of muscle damage, also showed the greatest increase in lipid 

peroxidation, suggesting a potential relationship between muscle damage and oxidative 

stress. However, this hypothesis is not consistent with the findings of Margaritis and 

colleagues (1997) who reported no change in oxidative stress following triathlon 

competition, although muscle damage was evident as shown by an increased inflammatory 
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response. Duthie and colleagues (1990) also indicated muscle damage with no concomitant 

lipid peroxidation following a half marathon run. Sacheck and colleagues (2000) found no 

change in oxidative stress in trained individuals following 45 minutes of downhill treadmill 

running at 75 % V O2 max. They also found no difference between subjects consuming a 

low fat or high fat diet. Vitamin E bioavailability is thought to be affected by fat intake 

(Takanami, 2000), however, both groups of subjects appeared to have adequate antioxidant 

capacity to prevent exercise-induced oxidative stress. A later study by the same authors 

(Sacheck et al., 2003) found some increase in markers of lipid peroxidation in both young 

and older untrained subjects following a similar protocol as the previous study: 45 minutes 

of downhill running at 75 % predicted maximum heart rate (HR max). It may be that the 

different training status may have been responsible for the difference in findings between 

these two studies. 

 

Some studies have utilised triathlon competition as a potential instigator of exercise-

induced oxidative stress. The first of these indicated no significant increase in lipid 

peroxidation following triathlon competition in highly trained individuals (Margaritis et 

al., 1997) and the authors suggested that the lack of oxidative damage in these subjects 

may have been due to a protective effect provided by their training status. However, 

another study (Knez et al., 2007) reported significantly increased lipid peroxidation 

following both a half triathlon and a full triathlon, both in highly trained subjects. 

 

Two studies have investigated the effect of intermittent exercise (Kingsley et al., 2005; 

Thompson et al., 2001). Both studies found a significant increase in lipid peroxidation 

following a 90 minute exercise protocol designed to mimic multiple sprint sports in the 

form of an intermittent shuttle run test (Thompson et al., 2001), or to mimic the demands 

of soccer match play followed by a multi-stage shuttle test to exhaustion (Kingsley et al., 
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2005). Finally, one study (Maxwell et al., 1993) found no change in oxidative stress 

following a 60 minute period of box-stepping. 

 

1.3.1.4 Summary of aerobic exercise-induced oxidative stress 

In summary, it appears that there is an exercise-induced oxidative stress associated with 

aerobic exercise, however, this is not a consistent finding and it remains unclear exactly the 

nature of the exercise required to induce this response. Some studies have utilised very 

strenuous exercise and have reported no significant lipid peroxidation (e.g. Margaritis et 

al., 1997), whilst others have used a much lower exercise stress in terms of intensity and 

duration and have reported significant oxidative stress (e.g. Balke et al., 1984). 

Discrepancies in results are likely related to the wide variety of modes, intensities and 

durations of exercise, the training status of the subjects, and potentially also the time points 

at which samples were drawn in relation to the end of exercise. 

 

Few studies have attempted to characterise the response in terms of exercise duration or 

intensity by investigating more than one intensity or duration within a single study to make 

comparison meaningful. Exceptions are studies by Sen and colleagues (1994) and Quindry 

and colleagues (2003), both of whom compared sub-lactate threshold and supra-lactate 

threshold constant load exercise. The former study (Sen et al., 1994) compared 30 minutes 

of exercise at 50 % and 77 % V O2 max and found a significant increase in lipid 

peroxidation from baseline at the lower intensity with a further rise at the higher intensity. 

The latter study (Quindry et al., 2003) found no change in lipid peroxidation at intensities 

of 10 % below and above the lactate threshold (55 and 72 % V O2 max respectively). This 

study also investigated the effect of energy expenditure on lipid peroxidation and in doing 

so utilised a protocol which included exercise at an intensity of 10 % below lactate 

threshold for two separate durations. These were 30 minutes as the standard duration for 

comparison with the higher exercise intensity, and also 60 minutes which was the duration 
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required to match the energy expenditure of 45 minutes of exercise at the higher intensity; 

however, no change in lipid peroxidation was seen in either trial. Thus, there is a paucity of 

information in this area and it would be useful to more clearly determine any effect of 

intensity and duration. 

 

In some studies subjects were sedentary or untrained, whilst in others subjects were 

endurance trained; however, there did not appear to be any pattern in findings according to 

training status of the subjects. Niess and colleagues (1996) studied both trained and 

untrained volunteers and found that, even though there was no significant increase in lipid 

peroxidation following maximal exercise, lipid peroxidation was significantly lower in 

trained subjects in comparison to untrained subjects both at rest and post-exercise. The 

authors reported a significant increase in DNA damage 24 hours following the exercise 

session and this too was lower in trained subjects, suggesting that trained individuals may 

possess greater capacity to prevent oxidative stress. It has been suggested that endurance 

training can increase antioxidant capacity (Miyazaki et al., 2001) and it may be that trained 

individuals can maintain a higher relative exercise intensity without oxidative damage than 

untrained individuals. 

 

The timing of post-exercise blood sampling may have an impact on the finding of 

significant lipid peroxidation. Some studies of incremental exercise to exhaustion which 

have shown a significant oxidative stress have recorded oxidative stress only at peak 

exercise with no further samples collected (Ashton et al., 1998, 1999; Bailey et al., 2001; 

Lovlin et al., 1987; Szcześniak et al., 1998). However, some studies measured oxidative 

stress at multiple time points during recovery. These studies have recorded the greatest 

effect at different time points following exercise. These have included peak exercise (Vider 

et al., 2001b), 5 minutes into recovery (Jammes et al., 2004; Steinberg et al., 2006, 2007) 

and 10 minutes into recovery (Jammes et al., 2005). Oxidative stress generally returned to 
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baseline within 20 to 30 minutes into the recovery period (Jammes et al., 2005; Steinberg 

et al., 2007; Vider et al., 2001b). Therefore, peak oxidative stress may not always occur at 

peak exercise, in which case, some studies which have measured oxidative stress only at 

peak exercise may have missed a further increase during the recovery period. For example, 

Alessio and colleagues (2000) may have missed a significant effect since lipid peroxidation 

was measured at peak exercise and not again until 1 hour into the recovery period. Other 

studies may have been similarly affected (Hartmann et al., 1995; Kretzschmar et al., 1991; 

Leaf et al., 1999; Quindry et al., 2003; Sen et al., 1994; Sürmen-Gür et al., 1999; Viinikka 

et al., 1984). 

 

Another major limitation in the previous literature is the almost complete lack of oxidative 

stress assessment during exercise. The vast majority of studies have measured oxidative 

stress at baseline and then at various time points following the cessation of exercise. The 

few exceptions include studies which have assessed oxidative stress at lactate threshold in 

addition to peak exercise during maximal incremental exercise (Jammes et al., 2004, 2005; 

Leaf et al., 1997, 1999; Steinberg et al., 2006, 2007). Only one of these studies found a 

significant increase in lipid peroxidation at lactate threshold (Leaf et al., 1997). No 

previous studies have assessed oxidative stress at multiple time points during exercise, 

however, it would be of interest to determine at what point during exercise oxidative stress 

begins to increase. 

 

1.3.2 Anaerobic exercise 

Fewer studies have investigated exercise-induced oxidative stress associated with 

anaerobic exercise, although, again, studies may be subdivided according to mode and 

have included isometric, sprint and resistance exercise. 
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1.3.2.1 Isometric exercise 

Isometric exercise protocols have varied: some have utilised static isometric contractions 

and some have utilised intermittent isometric contractions, held for a specific period or to 

exhaustion. The oxidative stress response to static isometric exercise has been studied by 

one group of authors in three separate investigations (Dousset et al., 2002; Steinberg et al., 

2004; Steinberg et al., 2006). A static isometric handgrip contraction was sustained at a 

specified intensity, either at 50 % of maximal voluntary contraction (MVC) (Steinberg et 

al., 2004; Steinberg et al., 2006) or at 60 % MVC (Dousset et al., 2002) until fatigue. All 

three studies reported a significant rise in oxidative stress immediately following cessation 

of exercise. This was measured by a rise in plasma TBARS in all three studies and by a 

decrease in plasma reduced ascorbic acid (RAA) (Dousset et al., 2002; Steinberg et al., 

2006) or erythrocyte GSH (Steinberg et al., 2004; Steinberg et al., 2006). The pattern of 

recovery was slightly different. In two studies (Steinberg et al., 2004; Steinberg et al., 

2006), oxidative stress was reported to reach a peak, as reflected by all assessment 

methods, at 5 minutes of recovery with a return to baseline at 20 minutes of recovery in 

one study (Steinberg et al., 2006). The other study did not report recovery values at the 20 

minute time point. The other study (Dousset et al., 2002) measured oxidative stress only at 

20 minutes of recovery and produced some conflicting data. Plasma RAA had returned to 

baseline by 20 minutes of recovery similar to the later studies, however plasma TBARS 

indicated that peak oxidative stress occurred at 20 minutes of recovery. In summary, it 

appears clear that static isometric exercise at the intensities studied leads to increased 

oxidative stress during recovery; however, the time course of the increase is less 

established. 

 

The oxidative stress response to isometric exercise has also been studied using intermittent 

protocols. For example, Sahlin et al. (1992) investigated isometric knee extension exercise 

performed at an intensity of 30 % MVC. Each contraction was sustained for 10 s followed 
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by 10 s relaxation for a total period of 80 minutes, or until exhaustion. Results indicated no 

significant increase in oxidative stress as measured by plasma MDA. It was suggested that 

the intensity of contraction may have been too low to elicit change in the measured 

variables. A threshold for oxidative stress has been indicated for aerobic exercise (Leaf et 

al., 1997; Lovlin et al., 1987), however, this has not been explored for isometric exercise. 

Three previous studies have involved intermittent handgrip exercise. Alessio et al. (2000) 

investigated the oxidative stress response to isometric handgrip exercise at 50 % MVC 

using a 45 s contraction / 45 s relaxation cycle to fatigue. There was a significant increase 

in lipid hydroperoxides on cessation of exercise, the level remaining high for up to one 

hour after exercise. Steinberg et al. (2002) reported a significant rise in lipid peroxidation 

immediately after intermittent isometric handgrip exercise to exhaustion. Finally, 

Rodriguez and colleagues (2003) found significant lipid peroxidation immediately 

following 60 seconds of maximal intermittent handgrip exercise in which the working 

muscles were made ischaemic. Thus again, the findings for intermittent isometric exercise 

are fairly consistent. 

 

1.3.2.2 Sprint exercise 

Oxidative stress following sprint exercise has been investigated in a small number of 

studies (Cuevas et al., 2005; Groussard et al., 2003; Inal et al., 2001; Marzatico et al., 

1997). Two studies utilised a 30 second Wingate test as a supramaximal exercise stimulus 

(Cuevas et al., 2005; Groussard et al., 2003). In the former study (Cuevas et al., 2005) 

oxidative stress was assessed at several time points during recovery from a single Wingate 

sprint in trained cyclists. There was no significant change in TBARS at any time point 

post-exercise. GSH was reduced and GSSG/GSH ratio was increased, indicating oxidative 

stress, for up to 2 hours into recovery and these changes were accompanied by an increase 

in nuclear factor-κB (NF-κB) activation. In the latter study (Groussard et al., 2003) an 

increase in free radical production, measured by electron spin resonance spectroscopy, was 
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reported at all sampling points during recovery, however was only significantly increased 

at 20 minutes post-exercise. Lipid peroxidation, as measured by TBARS, was reduced 

following exercise, significantly so at 20 minutes and 40 minutes into recovery. The 

authors suggested that TBARS may not be a suitable marker of oxidative stress for high 

intensity exercise since the reduction could possibly reflect a clearance of MDA from the 

plasma, and cited other studies which had reported a similar reduction in MDA or TBARS 

following maximal exercise (Leaf et al., 1997; Margaritis et al., 1997; Rokitzki et al., 

1994). However, one study did show an increase in MDA between 6 and 48 hours 

following six 150 m sprints in trained individuals (Marzatico et al., 1997). Finally, Inal and 

colleagues (2001) reported a decrease in GSH following a 100 m swim sprint. 

 

1.3.2.3 Resistance exercise 

The effect of resistance exercise on oxidative stress has been investigated by several 

authors. Increased lipid peroxidation was found 6 hours and 24 hours following three sets 

of strenuous whole body resistance exercise (McBride et al., 1998). Submaximal resistance 

exercise consisting of one circuit of ten exercises was associated with a significant increase 

in conjugated dienes in untrained subjects only; there was no significant change for trained 

subjects, again suggesting a protective effect of training (Ramel et al., 2004). MDA was 

not increased in either group of subjects, adding to the doubt as to the suitability of this 

marker. Other studies reported no change in lipid peroxidation following incremental 

exercise to exhaustion on a cycle ergometer followed by twenty maximal knee extensions 

(Sürmen-Gür et al., 1999); two hours of whole body resistance exercise (McAnulty et al., 

2005b); and intermittent dumbbell squatting (Bloomer et al., 2005), although in this study 

protein oxidation was significantly increased post-exercise. The variety of exercise 

protocols has likely contributed to the inconsistency of results for this mode of exercise. 
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1.3.2.4 Comparative studies 

Several authors have evaluated aerobic and anaerobic exercise in the same subjects 

(Alessio et al., 2000; Bloomer et al., 2005; Magalhães et al., 2007). Bloomer and 

colleagues (2005) compared 30 minutes of cycle ergometry with 30 minutes of intermittent 

dumbbell squatting, both performed at 70 % of maximum capacity. Protein oxidation was 

increased in both modes, however was found to be greater for squatting. One study 

compared indoor climbing, which consists of static and intermittent isometric work, with 

treadmill running over the same duration and at the same percentage of maximal oxygen 

uptake for each activity (Magalhães et al., 2007). Oxidative stress was again found to be 

higher for the anaerobic activity. Alessio and colleagues (2000) compared treadmill 

running with intermittent isometric exercise both of which were performed to fatigue. 

Again, oxidative stress was found to be higher following isometric exercise. However, no 

firm conclusion can be reached since the two modes of exercise may not be directly 

comparable. For example, Magalhães and colleagues (2007) found that other physiological 

indices of exercise stress such as heart rate, blood lactate concentration and ventilation 

were significantly higher during climbing in comparison to running even though the mean 

oxygen uptake was the same. 

 

In summary, the majority of studies have reported an increase in oxidative stress following 

a period of acute exercise, both aerobic and anaerobic, and this abundance of evidence 

seems to support the concept of exercise-induced oxidative stress regardless of the mode 

and volume of exercise. However, limitations in understanding still remain regarding the 

intensity and duration of exercise required to elicit oxidative stress. Several authors have 

stated that oxidative stress results particularly from high intensity exercise (Ashton et al., 

1998; Cooper et al., 2002; Vincent et al., 2004), however, some studies have shown 

significant oxidative stress following moderate intensity exercise (Børsheim et al., 1999; 
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Kanter et al., 1993; Laaksonen et al., 1999). The time course of the oxidative stress 

response also remains to be better characterised. 

 

1.3.3 Mechanisms of exercise-induced oxidative stress 

There have been several mechanisms put forward in an attempt to explain the exercise-

induced oxidative stress. The main hypotheses will be described briefly. 

 

1.3.3.1 Mitochondrial production of reactive species 

It has been widely accepted that superoxide radicals can be formed in the mitochondria due 

to the leakage of electrons from the electron transport chain (Ji, 1999). Oxygen is readily 

available within the mitochondria for use in oxidative phosphorylation and can be reduced 

by the leaked electrons to form superoxide radicals as follows: 

 

 O2  +  e
-
    O2

-
                 [1.1] 

 

It has been estimated that 1-2 % of oxygen uptake by the mitochondria results in the 

formation of superoxide radicals at rest (Boveris & Chance, 1973), and complex I and III 

have been identified as sites of leakage (Chance et al., 1979). 

 

During exercise, oxygen uptake in active muscle can be increased by up to a factor of one 

hundred in maximal exercise (Meydani & Evans, 1993), and a greater flux through the 

electron transport chain may be expected to give rise to an increase in superoxide 

production. Superoxide radicals are normally scavenged by MnSOD within the 

mitochondria; however, an exercise-induced increase in production may overwhelm 

antioxidant defences and lead to oxidative stress. It has been assumed that superoxide 

production will increase in proportion to oxygen consumption due to a greater flux of 

electrons through the electron transport chain (Davies et al., 1982; Kanter, 1994; Urso & 
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Clarkson, 2003), however, in vitro evidence exists to contradict this assertion. For 

example, it has been reported that free radical production is actually lower at high oxygen 

uptakes as found in exercise compared to the lower oxygen uptakes at rest (Chance et al., 

1979). 

 

It has been suggested that increased oxygen uptake ( V O2) during exercise may not be 

exclusively responsible for exercise-induced oxidative stress. Alessio and colleagues 

(2000) compared isometric and aerobic exercise and found that oxidative stress was higher 

following isometric exercise despite a lower V O2. They concluded that the source of this 

oxidative stress could not simply be increased mitochondrial production due to enhanced 

electron flux. This conclusion was supported by a study which found greater oxidative 

stress, as measured by electron paramagnetic resonance spectroscopy, in hypoxic exercise 

compared to normoxic exercise despite a lower overall V O2. The authors put forward the 

suggestion that decreased mitochondrial oxygen tension (PO2) may trigger increased 

radical production during exercise since the increase in lipid peroxidation was associated 

with reduced arterial oxygen saturation and not increased V O2 (Bailey et al., 2000; Bailey, 

2001). It has been suggested that the relationship between radical formation and 

mitochondrial PO2 is U-shaped such that radical formation is highest at very low and very 

high PO2 (Vollaard et al., 2005). Intracellular PO2 has been shown to fall at higher work 

rates (above 60 % of maximum work capacity) but then remain steady right up to maximal 

exercise (Richardson et al., 2001). It remains likely that superoxide production via the 

electron transport chain contributes towards the exercise-induced oxidative stress but may 

play a more minor role than originally suggested. In addition, in very high intensity 

exercise mitochondrial damage may cause uncoupling of electron transfer and increased 

leakage (Ji, 1999) contributing to the greater oxidative stress seen at higher intensity 

exercise (Lovlin et al., 1987). 
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A secondary source of exercise-induced free radical production may be linked to the 

increased release of catecholamines during exercise. One function of these substances is to 

increase oxidative metabolism in skeletal muscle via β-adrenergic activation, thus 

potentially increasing superoxide production in the mitochondrial electron transport chain. 

Support for this idea comes from a study in which lipid peroxidation was shown to be 

lower in subjects who had received the β-blocker propranolol in comparison to those who 

had received a placebo prior to acute cycle ergometer exercise (Pincemail et al., 1990). 

Catecholamines may also undergo auto-oxidation with concomitant free radical production 

(Ji, 1999). 

 

1.3.3.2 Haem proteins 

The haem proteins oxyhaemoglobin and oxymyoglobin may also undergo autoxidation 

with subsequent superoxide radical generation (Cooper et al., 2002). The iron in 

haemoglobin and myoglobin is in the ferrous form (Fe
2+

). This can be easily oxidised to 

the ferric form (Fe
3+

) with generation of the superoxide radical as follows: 

 

 Fe
2+

  + O2  →  Fe
3+

  +  O2
-

             [1.19] 

 

This results in the formation of methaemoglobin or metmyoglobin, that is, the ferric form 

of each protein. These can react with peroxides to form further reactive species which may 

then initiate lipid peroxidation (Reeder & Wilson, 2001). The rate of haemoglobin 

autoxidation has a bell-shape relationship with PO2 such that autoxidation is highest in the 

mid-range of approximately 40-80 % haemoglobin saturation (Balagopalakrishna et al., 

1996). This is the opposite effect to that already described for mitochondrial PO2. Arterial 

haemoglobin saturation is approximately 100 % during both rest and exercise, suggesting 

that the rate of haem autoxidation would be low. However, a lower PO2 in venous and 

capillary blood, and a reduction in PO2 during exercise may increase lipid peroxidation via 
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this mechanism. It has been suggested that at high exercise intensity, haemoglobin 

saturation can reduce further with a subsequent reduction in haem autoxidation (Vollaard 

et al., 2005). 

 

1.3.3.3 Activated phagocytes 

Several reactive species are produced and released by phagocytes such as neutrophils and 

macrophages during the respiratory burst; a component of the immune response. 

Superoxide radicals are produced via the action of phagocytic NADPH oxidase. This 

enzyme is activated when the cell is stimulated, for example by a pathogen, and O2
-

 is 

released into the extracellular fluid as well as into the intracellular vesicle containing the 

phagocytosed material. A number of reactions can then occur. Superoxide can be 

dismutated to produce hydrogen peroxide, which can be utilised in the oxidation of 

chloride ions to produce hypochlorous acid. Other highly damaging reactive species which 

are produced during the respiratory burst include nitric oxide, produced through the action 

of inducible nitric oxide synthase; hydroxyl radicals formed from the reduction of 

hydrogen peroxide by ferrous or cuprous ions; peroxynitrite formed by the reaction of 

nitric oxide with the superoxide radical; and singlet oxygen generated from hydrogen 

peroxide and hypochlorite. 

 

An increase in circulating neutrophils has been reported following exercise and is thought 

to be associated with an increase in catecholamine and cortisol concentrations in the 

circulation (Pyne, 1994). There is an immediate and transient rise in circulating neutrophil 

count which is likely to be due to increased catecholamine concentration which can 

increase demargination of neutrophils from the vascular endothelium. A delayed increase 

in neutrophils, several hours after the cessation of exercise is likely due to increased 

cortisol concentration which induces the release of mature neutrophils from bone marrow. 
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These neutrophils may then be activated to produce reactive species by exercise-induced 

muscle damage or by the presence of other reactive species (Meydani & Evans, 1993). 

They migrate to the site of damage, for example, the working muscles, and release reactive 

species. This is akin to the acute phase inflammatory response designed to remove any 

debris associated with muscle damage or invading pathogens, however, the release of 

reactive species by the activated neutrophils may cause secondary oxidative damage (Ji, 

1999). 

 

Several studies have investigated production of reactive species by neutrophils following 

exercise, however results have been inconsistent with some reporting an increase, some a 

decrease and some no change (Suzuki et al., 1996). It was suggested that this variability 

may have been due to differences in the intensity and duration of exercise studied, and to 

the sampling points chosen. A regular finding was that of a delayed response following the 

end of short-term exercise, for example, Hack and colleagues (1992) reported increased 

neutrophil activation 24 hours following the cessation of a 20 minute bout of exhaustive 

exercise. However, production of reactive species by neutrophils tended to be evident 

quickly following prolonged exercise, for example, Hessel and colleagues (2000) measured 

an increase in free radicals generated by neutrophils 10 minutes into recovery following a 

marathon race. Thus it takes time for neutrophils to migrate and become activated 

suggesting that this may not be a major source of oxidative stress in short-term exercise, 

however, may contribute during the recovery period and during more prolonged exercise 

(Ji, 1999). 

 

1.3.3.4 Xanthine oxidase 

Another potential source of free radical production is the xanthine oxidase pathway. 

Xanthine oxidase (XO) is an enzyme which catalyses the oxidation of hypoxanthine to 

xanthine and xanthine to uric acid as part of the process of adenosine catabolism. During 
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the course of these reactions, O2 is utilised as an electron acceptor and becomes reduced 

with concomitant formation of superoxide radicals and hydrogen peroxide. Most oxidation 

of hypoxanthine and xanthine in vivo is actually catalysed by xanthine dehydrogenase 

(XDH) which transfers electrons to NAD
+
 rather than O2 with no free radical production, 

however, xanthine dehydrogenase can be converted to the more active oxidase form, XO, 

under circumstances of ischaemia or inflammation. 

 

The xanthine oxidase pathway has been recognised as a major source of free radical 

production in ischaemia-reperfusion injury (Downey, 1990). This can occur following a 

period of tissue ischaemia, for example following organ transplantation or myocardial 

infarction. On restoration of the circulation to the hypoxic tissue, oxidative damage can 

occur and this may be due partly to free radical production by neutrophils activated by 

cytokines released by the damaged tissues (Babior, 2000). However, XO is generated in 

the damaged tissue and may contribute to further oxidative damage. During ischaemia, the 

cell must rely on anaerobic sources of adenosine triphosphate (ATP) resynthesis. At rest, 

ATP stores will decline very slowly due to the availability of creatine phosphate, however, 

once this is depleted, the cell must rely on anaerobic glycolysis alone which cannot 

maintain an adequate rate of ATP resynthesis. Therefore, adenosine will accumulate and 

will be broken down to hypoxanthine, which will be available for use as a substrate by XO 

on reperfusion (Walker, 1991). 

 

At high exercise intensity, at or above V O2 max, skeletal muscle may be subject to hypoxia 

due to inadequate blood supply (Packer, 1997), for example, this may be the case in 

isometric exercise during which blood flow to the exercising muscle may be reduced or 

eliminated by the effect of increased intramuscular pressure on the blood vessel walls. It 

has been suggested that exercise under these conditions may activate XO (Hellsten, 1994). 

Xanthine oxidase has been shown to increase after strenuous exercise (Hellsten et al., 
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1996; Viña et al., 1995) and eccentric exercise (Hellsten et al., 1997). In addition, studies 

utilising allopurinol, a XO inhibitor, have indicated that markers of oxidative stress were 

decreased in subjects taking allopurinol, suggesting that XO may contribute to free radical 

production following exercise (Heunks et al., 1999; Viña et al., 2000). However, 

production of reactive species by XO occurs several hours after the cessation of exercise 

(Koyama et al., 1999). Xanthine oxidase requires O2 as an electron acceptor and therefore, 

could only function following reoxygenation of the hypoxic tissue. Thus, this mechanism 

is likely to be insignificant during exercise, and may contribute more to oxidative stress 

during recovery from exercise (Vollaard et al., 2005). Under aerobic conditions, XDH will 

catalyse the breakdown of adenosine metabolites and therefore, the xanthine oxidase 

pathway may only apply to anaerobic exercise such as isometric, eccentric or sprint 

exercise (Ji, 1999). 

 

In summary, the exact sources of exercise-induced oxidative stress remain to be more 

firmly elucidated. It is likely that a number of mechanisms act together to produce the 

overall effects measured following exercise and that different mechanisms will contribute 

in different proportions to different modes of exercise.  

 

1.4  Objectives of current studies 

The overall aims of the current studies were to investigate the use of a novel non-invasive 

technique for the assessment of oxidative stress, and to better characterise the oxidative 

stress response to both maximal incremental and submaximal aerobic exercise and to 

isometric exercise. 
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1.4.1 Study one 

While non-invasive assessment of oxidative stress in exercise studies is desirable from the 

point of view of subject comfort, there is scant information in the literature concerning its 

use in this context. This may be partly due to the time-consuming nature of traditional 

hydrocarbon measurement. However, a novel technique for the detection of ethane gas has 

become available (Gibson et al., 2002); this has not been used previously for exercise 

studies and is well-suited for this purpose due to ease of use and rapid analysis time. 

Oxidative stress has been measured previously in horses and dogs in relation to 

performance (Chiaradia et al., 1998; Marshall et al., 2002), however, previously this has 

not been measured non-invasively. Therefore, the current study was a means of testing the 

utility of this novel technique in three species.  

 

A major limitation of previous exercise studies has been the lack of sampling during 

exercise, since the methodological design of most studies have included only pre-exercise 

and post-exercise samples. Some studies did include sampling at a single time point during 

exercise, at the lactate threshold (Jammes et al., 2004, 2005; Leaf et al., 1997, 1999; 

Steinberg et al., 2006, 2007), and of those which showed a significant rise in oxidative 

stress either immediately following or later in recovery from exercise, only one study 

reported a significant increase in oxidative stress at the lactate threshold (Leaf et al., 1997). 

In three studies which assessed lipid peroxidation at the lactate threshold, peak exercise 

and at several time points during recovery (Jammes et al., 2004, 2005; Steinberg et al., 

2006), all showed the peak response to occur early in recovery, rather than at peak 

exercise, and, in fact, in two studies the increase in oxidative stress at peak exercise was 

not significant (Jammes et al., 2004, 2005). Therefore, it remains unclear if oxidative stress 

rises during incremental exercise to exhaustion, or only in the post-exercise period. The 

previous study which did indicate a rise in oxidative stress at one time point during 

exercise (Leaf et al., 1997) utilised ethane as a marker of lipid peroxidation, and it was the 
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intention of the current study to extend this finding by the assessment of ethane at regular 

time points throughout incremental exercise to exhaustion. 

 

Thus, the main aims of this study were to utilise a novel non-invasive technique for the 

assessment of lipid peroxidation in three species: human, canine and equine; and to better 

characterise the oxidative stress response to exhaustive incremental exercise by the high 

density collection of data throughout the exercise period. 

 

1.4.2 Study two 

The first objective of this study was to extend the findings of the previous study by again 

measuring oxidative stress throughout an incremental exercise test to exhaustion, but this 

time utilising a cycle ergometer protocol in order to assess the entire range of exercise 

intensities between rest and maximal exercise. In the first study a treadmill protocol was 

utilised which prevented the examination of the lower end of the work rate range. 

 

In addition, the intention was to examine the oxidative response throughout constant load 

exercise to gain some appreciation of the time course of the response in terms of its onset 

and any effect of accumulated duration. Several studies have investigated the response to 

constant load exercise; however, none have measured oxidative stress during the exercise 

period, only during the recovery period. It was also of interest to investigate the effect of 

exercise intensity on the oxidative stress response throughout exercise. Few studies have 

examined oxidative stress at more than one intensity in the same group of subjects in order 

to meaningfully compare any difference in response (Dillard et al., 1978; Quindry et al., 

2003; Sen et al., 1994). Findings have been inconsistent and again have been limited to 

baseline and post-exercise time points. Therefore, it was proposed to study the response to 

exercise below and above the lactate threshold since marked physiological differences 

would be expected in the body‟s response to each intensity. 
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Finally, it was intended to assess oxidative stress by the novel ethane technique, but also 

by a more traditional plasma marker of oxidative stress in order to compare the novel 

technique to one of the more reliable markers of lipid peroxidation. 

 

Therefore, the main aims of this study were to investigate the time course of the oxidative 

stress response throughout incremental exercise to volitional exhaustion, and during 

constant load exercise at two intensities, below and above the lactate threshold; and to 

compare the findings of the novel ethane technique to a more traditional method of lipid 

peroxidation assessment. 

 

1.4.3 Study three 

The first aim of this study was to investigate the oxidative stress response to static 

isometric exercise at several exercise intensities. Very few studies have examined this 

mode of exercise, although findings have been fairly consistent (Dousset et al., 2002; 

Steinberg et al., 2004; Steinberg et al., 2006). A rise in oxidative stress has been found 

following static isometric exercise to exhaustion; however, previous studies have examined 

a limited range of intensities, 50 % or 60 % of maximum voluntary contraction. Therefore, 

an objective of the current study was to investigate a wider range of exercise intensities 

and to determine if an intensity threshold for oxidative stress exists. 

 

The time course of the recovery period was also of interest since previous reports have 

been inconsistent; therefore, it was intended to collect data at a greater number of time 

points than in previous studies. The mechanisms of oxidative stress in isometric exercise 

remain unclear (Bloomer & Goldfarb, 2004). Isometric exercise has been associated with 

tissue de-oxygenation and it is likely that hyperaemia associated with the cessation of 

exercise may contribute to exercise-induced oxidative stress. However, it remains to be 

determined whether increased oxidant production is restricted to early reperfusion of the 
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mitochondrion, as a result of increased O2 flux, or has a late component associated with 

neutrophil infiltration and activation. 

 

The final aim was to compare systemic and local responses to isometric handgrip exercise 

by obtaining samples for analysis both from the venous outflow of the working muscle and 

from the opposite arm to give an estimate of systemic oxidative stress. Oxidative stress has 

been assessed typically using plasma markers. It was intended to investigate the use of 

non-invasive assessment of oxidative stress during isometric exercise by utilising the 

ethane breath test. The successful correlation of ethane output with a traditional plasma 

marker of lipid peroxidation, assessed systemically, may indicate the potential for non-

invasive assessment in this mode of exercise. 

 

Therefore, the main aims of this study were to study the effect of exercise intensity on the 

oxidative stress response to static isometric exercise; to examine the time course of 

recovery; to compare local and systemic oxidative stress responses; and to compare the 

systemic response assessed by both invasive and non-invasive markers. 



94 

Chapter 2 

 

Materials and methods 
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2.1 Subjects 

 

2.1.1 Exclusion criteria 

Subjects in all studies were required to be in good health at the time of testing and were 

asked to complete an approved medical questionnaire (see Appendix A.4) to assess their 

suitability. Individuals were excluded if they had any pre-existing medical condition which 

could increase the risk associated with strenuous exercise. 

 

Potential subjects were excluded from taking part in any study if they were currently taking 

any antioxidant supplement, and were asked to consume their normal diet for the duration 

of their involvement in the study. Breath hydrocarbons are not affected by prior food 

consumption: ethane and pentane output were not influenced for up to six hours following 

consumption of a standard meal when compared to the fasting state (Zarling et al., 1992), 

however, it has been reported that hydrocarbon excretion, specifically pentane, may be 

reduced by both vitamin E (Van Gossum et al., 1988) and β-carotene supplementation 

(Gottlieb et al., 1993). Potential subjects were also excluded if they used recreational or 

performance-enhancing drugs, tobacco or prescription medication. 

 

Other inclusion or exclusion criteria pertinent to each individual study are described in the 

relevant chapters. 

 

Several other criteria for participation in individual tests in any study were specified as 

follows: no alcohol consumption within the 48 hour period prior to any test; no strenuous 

exercise in the 24 hour period prior to any test; no caffeine intake for 4 hours prior to a 

test; and no food consumption for 2 hours prior to a test. 
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2.1.2 Informed consent 

All studies involving human volunteers were approved by the appropriate ethics committee 

of the Faculty of Biomedical and Life Sciences at the University of Glasgow. Subjects in 

all studies were asked to read an information sheet relating to the specific study and to 

provide written, informed consent prior to participation. The relevant information sheets 

and consent forms can be seen in Appendix A.1. 

 

2.2 Testing procedures 

 

2.2.1 Laboratory environment 

The laboratory was arranged to provide a non-intimidating and comfortable environment 

for the subject. Monitoring equipment was placed out of view of the subject wherever 

possible and all audible alarms were switched off to minimise distraction. Background 

music was used to take the subject‟s attention away from other extraneous noise, but was at 

low enough volume not to interfere with communication between subject and investigator. 

Ambient temperature was regulated at 22 °C for all experiments in study two which were 

carried out in an air-conditioned laboratory (Pina et al., 1995). The other studies took place 

in an alternative location due to the necessity for a low ambient ethane concentration. The 

alternative laboratory did not have an air-conditioning facility and therefore, ambient 

temperature was recorded at the start and end of each experiment and did not vary outwith 

20-24 °C. Ambient temperature, as a mean of all values measured at the start and end of 

each test, was 20.9 °C in study 1 and 20.1 °C in study 3. 
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2.2.2 Familiarisation 

Subjects in all studies underwent an initial familiarisation visit to the laboratory in order to 

minimise any anxiety associated with testing. If the subject is anxious, this may give rise to 

physiological responses, such as hyperventilation, which may obscure the responses under 

investigation. 

 

During this visit, the subject was shown round the laboratory environment and introduced 

to all personnel who would be present at testing sessions. The purpose of each piece of 

equipment was explained and specific measurement procedures were demonstrated. The 

subject was familiarised with the gas exchange equipment; this involved checking that the 

mouthpiece and nose-clip could be worn comfortably whilst remaining airtight. Subjects 

were encouraged to breathe through the equipment for several minutes in order to become 

accustomed to it. Due to the interference of this equipment with communication, the 

subject was instructed to communicate with the investigator during testing sessions with 

the use of hand signals. The “thumbs up” signal was used to indicate that all was well; the 

“thumbs down” signal was used to indicate that there was a problem and the subject was 

encouraged to point to the site of the problem so that the investigator could take remedial 

action. 

 

Test protocols were described in detail and, where possible, the subject was given the 

opportunity to perform a trial run. Finally, the subject was encouraged to ask any questions 

before providing written informed consent. Other familiarisation procedures specific to 

each study are described in the relevant chapters. 

 

The weight and height of subjects in all studies were measured during the subject‟s first 

visit to the laboratory (Avery Weigh-Tronix, Birmingham, UK; Leicester Height Measure, 

Invicta Plastics Ltd., Leicester, UK). 
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2.2.3 Exercise mode 

Three different modes of exercise were utilised across the three studies reported. The 

oxidative stress response associated with aerobic exercise was investigated in the first two 

studies, although in the first study treadmill exercise was used, whereas the second study 

utilised a cycle ergometer with work rate control. In the third study, isometric exercise was 

provoked with the use of a handgrip dynamometer. All pieces of equipment are described 

in the relevant chapters. 

 

Treadmill exercise was chosen as the testing mode for human subjects in the first study in 

order to allow comparison of maximal exercise responses amongst equine, canine and 

human athletes. 

 

A major advantage of treadmill use for maximal exercise testing is that most individuals 

are familiar with walking and running; however, it is more difficult to accurately quantify 

work rate on the treadmill in comparison to the cycle ergometer since it is dependent on 

body mass during walking and running. A number of protocols are available for maximal 

exercise testing on the treadmill; one of the most commonly used is the Balke protocol 

(Balke, 1954) which utilises a constant speed of walking or running with an increase in the 

slope of the treadmill at regular intervals throughout the test. This is a useful design since it 

eliminates the problem of increasing speed through the walk-run transition with 

concomitant individual variation in metabolic cost, and allows an approximately linear 

increase in work rate over time. The protocol utilised in study one was a modified Balke 

protocol incorporating a faster test speed to ensure that test duration was 8-17 minutes 

which is considered to be optimal (Buchfuhrer et al., 1983). 

 

The cycle ergometer was chosen as the mode of exercise in the second study since the 

primary aim was to investigate the oxidative stress response to exercise over the entire 
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tolerable work rate range. A limitation of the first study was that the treadmill protocol 

utilised a fairly high initial work rate, and therefore, oxidative stress was not assessed at 

the lower end of the work rate range. The use of an electromagnetically-braked cycle 

ergometer allowed very small (1 W) increments in work rate from an initial resting level, 

and also permitted changes in work rate to be made independently of pedalling cadence. 

Thus, this was more practical than using a friction-braked model which relies on the 

subject pedalling at a constant cadence throughout the test in order to maintain a given 

work rate. 

 

The aim of the third study was to investigate the oxidative stress response to isometric 

exercise, and this was done using a handgrip dynamometer. The choice of isometric mode 

was influenced by previous literature in the area; although few studies have explored 

oxidative stress in relation to isometric exercise, the majority have utilised handgrip 

dynamometry as a testing mode, thus supplying some data for comparison. In addition, the 

study design required sampling the venous outflow of the working muscle; this was more 

straightforward for handgrip exercise which utilises muscles in the forearm than for, for 

example, isometric knee extension exercise which would have required access to the 

venous outflow of the quadriceps muscle group. 

 

2.3 Measurements 

 

2.3.1 Respired air measurements 

Ventilatory and pulmonary gas exchange variables were measured either by open-circuit 

spirometry utilising the Douglas bag method (Consolazio et al., 1963), or by mass 

spectrometry and turbinometry. Studies one and three involved assessment of oxidative 

stress via expired ethane; this required a test location with a low ambient ethane 
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concentration. Since the mass spectrometer was located in a laboratory with a 

comparatively high ambient ethane concentration (2.5 nmol·l
-1

), with respect to a 

previously reported range of 68 to 726 pmol·l
-1

 (Dumelin et al., 1978; Sexton & Westberg, 

1984; Knutson et al., 1999), the Douglas bag method was used in these studies. 

 

2.3.1.1 Open-circuit spirometry 

Mixed expired air was collected in Douglas bags for determination of ventilation, oxygen 

uptake and carbon dioxide output. The subject wore a nose-clip and breathed through a 

mouthpiece attached to a low resistance two-way non-rebreathing valve (Hans Rudolph 

2700, Kansas City, USA). The breathing valve was connected to a Douglas bag (Cranlea, 

Birmingham, UK) via a length of wide-bore flexible plastic tubing. In study one, the 

subject wore a head-support (Hans Rudolph 2726, Kansas City, USA) to bear the weight of 

the breathing valve throughout a continuous exercise protocol. In study three, the breathing 

valve was supported by an adjustable clamp attached to a floor stand. In this latter series of 

experiments, the subject was allowed to take the mouthpiece out between samples and this 

was found to be the most practical arrangement. 

 

A Servomex 1440C gas analyser (Servomex Group Limited, East Sussex, UK) was used 

for the measurement of fractional expired oxygen (O2) and carbon dioxide (CO2) 

concentrations. This analyser consists of two discrete units, one for the measurement of 

oxygen concentration which utilises a paramagnetic oxygen transducer and one for the 

measurement of carbon dioxide, based on a single beam single wavelength (SBSW) 

infrared transducer. 

 

The measurement of oxygen concentration with this analyser is based upon the 

paramagnetic property of oxygen; that is, oxygen is attracted to a magnetic field. Most 

other gases do not display this property and this allows for a high specificity of analysis. 
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The measuring cell within the unit contains two nitrogen-filled glass spheres set out in a 

dumb-bell arrangement and suspended within a magnetic field. The sample gas is 

introduced into the cell and any oxygen present will be attracted to the magnetic field and 

will cause rotation of the dumb-bell arrangement. A mirror is situated on the dumb-bell 

arrangement, equidistant from the two spheres, and rotation of the dumb-bell is sensed by a 

light beam projected on to the mirror and reflected onto a pair of photocells. Differences in 

the reflected light reaching each photocell gives a measure of rotation and a current is 

produced to move the dumb-bell arrangement back to its original position. This current is 

directly proportional to the oxygen concentration of the sample gas. 

 

The Servomex analyser utilises photometric determination of carbon dioxide 

concentration; this relies on the principle that different gases absorb specific wavelengths 

of light and this property can be used to measure the concentration of a specific gas in a 

gas mixture. An infrared light source is focussed onto a photometric detector situated at the 

far side of the sample cell through which the sample gas flows continuously. The SBSW 

transducer arrangement allows a single light source to be used along with a single optical 

filter. The filter allows the passage of light of the correct wavelength for absorption by the 

gas of interest. The amount of light reaching the detector, i.e. the absorbance, gives a 

measure of the concentration of the gas of interest in the sample. 

 

The analyser was calibrated according to the manufacturer‟s instructions prior to every 

test. For calibration, 100 % N2 was used to zero the analyser; ambient air was used as a 

span gas; and a mixture consisting of 17.9 % O2, 5.04 % CO2 with a balance of N2 was 

used as a test gas. The oxygen unit is accurate to ± 0.1 % and functions within an operating 

range of 0-25 % O2, whilst the carbon dioxide unit is accurate to ± 1 % of full scale and 

was set to operate from 0-8 % CO2. 
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Expired air volume was measured using a Harvard dry gas meter (Harvard Apparatus, 

Massachusetts, USA) which was calibrated prior to each test using a 3 litre syringe (Hans 

Rudolph MA5530, Kansas City, USA). Expired air temperature was measured using a 

digital thermometer (Kane-May KM330, Comark Ltd., Hertfordshire, UK) with the probe 

positioned inside the inlet tube of the volume meter. 

 

2.3.1.2 Mass spectrometry and turbinometry 

In study two, respiratory gases were analysed by mass spectrometry in which the 

concentration of a gas of interest within a gas mixture can be determined based on its mass 

to charge ratio. The gas sample is ionised by electron bombardment and then accelerated 

through a magnetic field. Ions are deflected according to both the mass and charge of the 

ion; lighter ions undergo greater deflection as do ions with more charge. Distinct gas 

species can be distinguished from one another by extent of deflection. The concentration of 

a specific species of interest can be determined as electrical current proportional to the 

number of ions detected. The quadrupole spectrometer used in this study can separate ions 

by mass to charge ratio so that only one species may pass to the detector at a time. 

 

2.3.1.2.1 Gas sampling procedures 

The subject wore a nose-clip and breathed through a mouthpiece connected to a low dead 

space breathing assembly which included a low resistance (< 1.5 cmH2O·l
-1

·s
-1

 at 3 l·s
-1

) 

turbine flow transducer (Interface Associates Inc., Laguna Niguel, CA, USA). The turbine 

assembly consisted of an impeller housed within a plastic casing. The impeller rotates in 

opposite directions in response to inspiratory and expiratory air flow. Light emitting diodes 

are housed within the outer casing of the turbine assembly; these transmit infra-red light 

across the path of the impeller. As the impeller rotates, the light beams are broken and this 

is detected by internal phototransistors which produce electrical current proportional to 

flow rate. Thus, inspiratory and expiratory flow could be determined. A saliva trap was 
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placed between the mouthpiece and the turbine assembly in order to prevent contamination 

and any potential subsequent decrement in performance of the transducer. 

A gas sample line was connected from the breathing assembly to a quadrupole mass 

spectrometer (QP9000, Morgan Medical, Kent, UK) for determination of O2, CO2 and N2 

concentrations. Expired air was continuously sampled at a flow rate of 1 ml·s
-1

 and gas 

concentrations were determined at 20 ms intervals. 

 

The breathing assembly was suspended by an adjustable chain at a comfortable height for 

the subject. A schematic representation of the breathing assembly is shown in figure 2.1. 
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Figure 2.1. Schematic representation of breathing assembly. 

Components are not drawn to scale. 
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2.3.1.2.2 Calibration 

The turbine transducer and mass spectrometer were calibrated prior to every test according 

to the manufacturer‟s instructions. 

 

A volume calibration was carried out using a 3-litre calibration syringe (Hans Rudolph, 

Kansas City, MO, USA). Air was drawn in fully and expelled fully from the syringe 

through the turbine assembly ten times in each direction. The calibration was accepted 

within a mean volume range of 2.995-3.005 l. The procedure was then repeated to check 

the calibration. 

 

A single point gas calibration was carried out with a known gas mixture of 10.38 % O2, 

7.06 % CO2 and 81.62 % N2. A test gas mixture of 20.42 % O2, 2.01 % CO2 and  

76.64 % N2 was then introduced into the system. The calibration was accepted if 

agreement between the actual test gas concentrations and the readout from the mass 

spectrometer agreed within one decimal place. The gas calibration was repeated 

immediately after each experiment to check for drift. The data were considered to be 

accurate if the calibration values agreed within 1 %; otherwise the test data would have 

been discarded. No data were required to be discarded for this reason. 

 

The delay time between the onset of flow through the breathing assembly and the 

production of output by the spectrometer was measured prior to each experiment. The 

calibration syringe was filled with a high CO2 concentration gas mixture which was then 

rapidly expelled through the breathing assembly using a low dead space solenoid valve to 

ensure a square wave input (Beaver et al., 1973). The delay time was noted and this 

procedure was repeated. A difference of up to 20 ms between the two measurements was 

accepted; otherwise the procedure was repeated until a reproducible value was obtained. 
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2.3.1.2.3 Analysis 

As the subject exhales into the breathing assembly, a small volume of the expired air is 

drawn into the gas sample line connected to the mass spectrometer. There is a physical 

delay before this gas is analysed due to the transit time required from mouth to the analyser 

and also due to the response time of the analyser. This delay was measured during 

calibration procedures as described above (section 2.3.1.2.2, page 105). The remainder of 

the expirate passes through the turbine transducer and produces instantaneous signals of 

flow rate and volume. The signals from both volume transducer and mass spectrometer are 

amplified, passed through a digital to analogue converter and passed to the computer where 

they are time aligned. 

 

Ventilation and pulmonary gas exchange variables were determined on a breath by breath 

basis using the gas exchange algorithms of Beaver et al. (1973). 

 

2.3.2 Ethane sampling procedures 

Expired air was analysed for the presence of ethane gas in studies one and three. General 

sampling and analysis procedures are described below. 

 

2.3.2.1 Materials for collection and storage of samples 

Sample bags used for the collection and storage of expired air to be analysed for 

hydrocarbon gases should be constructed from materials which do not release hydrocarbon 

gases, as this could present a source of contamination. In addition, the sample bag should 

be impermeable to hydrocarbon gases to prevent leakage, and all seals and connections 

must be airtight to avoid contamination by ambient air. Ambient air ethane concentration 

has been reported in the range of 68-726 pmol·l
-1

 by various authors (Dumelin et al., 1978; 

Sexton & Westberg, 1984; Knutson et al., 1999), while expired air ethane concentration at 

rest in healthy subjects has been recorded as 25 pmol·l
-1

 (Knutson et al., 2000). Therefore, 
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a concentration gradient for ethane would tend to exist in the direction of the collected 

expired air sample. 

 

Tedlar bags (SKC Limited, Dorset, UK) are made of polyvinyl fluoride which is known to 

have low permeability to gases. Kneepkens et al. (1994) have suggested that Tedlar bags 

will not contaminate breath samples with hydrocarbons and can be stored for over 48 hours 

with no significant loss of hydrocarbons. Drury et al. (1997) observed no significant 

change in pentane concentration within a 1 litre Tedlar bag following 24 or 48 hours of 

storage. However, pentane concentration did increase by 30% following 72 hours of 

storage. Knutson et al. (2000) found a significant increase in pentane concentration within 

a 3 litre Tedlar bag only after 24 hours of storage. The increased hydrocarbon 

concentration within the bag was suggested to be due to gradual inward diffusion of 

ambient hydrocarbons. Gas mixtures containing a known concentration of ethane with a 

balance of nitrogen were stored in Tedlar bags prior to analysis and showed approximately 

10 % alteration in concentration over a period of one week (Skeldon et al., 2005). Tedlar 

bags were used in the current studies for the transfer and transient storage of expired air 

samples, and all samples were analysed within 24 hours of collection. 

 

All other equipment which was used for collection or storage of expired air samples, 

including mouthpiece, nose-clip, tubing and Douglas bags, was checked prior to each 

experiment to ensure that ethane concentration was not abnormally high with the potential 

to mask any change in ethane concentration due to the exercise. 

 

2.3.2.2 Ethane collection procedures 

Expired air, collected in Douglas bags as previously described (section 2.3.1.1, page 100) 

was sampled to determine ethane concentration. A 5 litre sample of expired air was 



108 

transferred from each Douglas bag into a Tedlar bag immediately following the end of 

each test. 

 

In order to correct for the presence of ambient ethane in expired air samples, a sample of 

ambient air was drawn into a 5 litre capacity Tedlar bag, using a hand operated pump, in 

the middle of each period of expired air collection. 

 

All samples were analysed, following calibration of the spectrometer, within 24 hours of 

collection (Kneepkens et al. 1994). 

 

2.3.2.3 Correction for ambient ethane 

Many studies have utilised a period of breathing hydrocarbon-free air prior to sample 

collection in order to eliminate the effect of ambient hydrocarbons and thus ensure 

reproducibility of results. As previously stated, ambient air can contain a relatively high 

concentration of ethane; this can vary markedly depending on the location of the air supply 

to the laboratory in relation to parking areas or other sources of ethane pollution (Habib et 

al., 1999). This technique is generally used in protocols involving single or few samples 

and would be impractical in exercise studies due to the lengthy duration of testing. In the 

current studies, the concentration of ethane in the expired air has been calculated as the 

difference between the measured concentration in the expired air sample and the 

background concentration in the ambient air. It has been verified that this method also 

produces consistent results (Cheng & Lee, 1999). In the current studies, ambient ethane 

concentration was monitored throughout each experiment and was found to be in the range 

58-326 pmol·l
-1

. This is lower than, or comparable to, values reported in previous studies 

(Dumelin et al., 1978; Sexton & Westberg, 1984; Knutson et al., 1999). 
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2.3.2.4 Test location 

The location of testing was chosen from several potential locations with reference to 

environmental ethane concentration. Ambient air was sampled from several locations prior 

to the start of the study and was found to vary from 2 ppb (89 pmol·l
-1

) to approximately 

400 ppb (18 nmol·l
-1

) in different locations. A location with a low ambient ethane 

concentration was chosen and background ethane was monitored throughout each test to 

take account of fluctuations, as described above. 

 

Subjects were required to be present in the laboratory for at least 30 minutes prior to 

collection of the first baseline expired air sample in order to allow time for equilibration 

with environmental ethane. Subjects arrived at the laboratory having come from a known 

high ethane environment, such as rooms and laboratories which had been tested previously 

for ambient ethane, or from an unknown environment. Therefore, it was considered 

prudent to allow a period of time during which the subject could wash out any excess 

residual ethane from the body. A 30 minute period for equilibration prior to baseline 

sampling has previously been utilised (Phillips et al., 2000), however, no empirical 

evidence was provided to support the use of this time period. Therefore, a pilot test was 

conducted to determine if 30 minutes was suitable. 

 

2.3.2.4.1 Pilot test 

A pilot test was conducted on one subject to determine the time taken for expired ethane to 

stabilise following arrival at the laboratory from a known high ethane environment. The 

subject spent the two hours immediately prior to the test in an environment with an 

ambient ethane concentration of 1.8 nmol·l
-1,

 sampled two minutes prior to the subject 

leaving this environment to attend the testing session. This ambient concentration is 2.5-27 

times higher than values previously reported in the literature (Dumelin et al., 1978; Sexton 

& Westberg, 1984; Knutson et al., 1999) as described above. 
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The subject spent two minutes travelling in the open air to reach the laboratory. Upon 

arrival, the subject was seated and remained so throughout the test. Without delay, a 

mouthpiece was inserted, a nose-clip was attached, and a two minute sample of expired air 

was collected into a Douglas bag after a one minute period of familiarisation with the gas 

collection equipment. Therefore, the collection of the first expired air sample began just 4 

minutes after the subject had left the high ethane environment. Subsequent samples were 

collected as shown in figure 2.2. A sample of ambient air was collected at each time point 

to correct for ambient ethane concentration. 
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Figure 2.2. Schematic representation of the pilot test protocol for the investigation of the 

expired ethane response to laboratory conditions following prior exposure to high 

atmospheric concentration (1.8 nmol·l-1). 
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Samples were analysed for ethane concentration and corrected for ambient ethane as 

described in section 3.2.1.4.3 (page 139). A plot of expired ethane concentration against 

time is shown in figure 2.3. Several data points are missing for the following reasons: the 

samples at minutes 5 and 15 were analysed, however, the concentrations measured were 

not credible and were omitted; for the minute 20 sample the Douglas bag was inadvertently 

opened prior to analysis and thus the sample was discarded; for the minute 50 sample 

ambient ethane concentration was greater than expired ethane concentration. 

 

0 10 20 30 40 50 60 70
0

10

20

30

40

50

[C
2
H

6
] 

(p
m

o
l·

l-1
)

Time (min)

 

Figure 2.3. Expired ethane response to laboratory conditions following prior exposure to 

high atmospheric concentration (1.8 nmol·l-1). 
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The pattern of response indicated that initial expired ethane concentration was higher than 

expected, approximately 38 pmol·l
-1

, in comparison to the previously reported 25 pmol·l
-1

 

(Knutson et al., 2000), up to 10 minutes after arrival at the laboratory. After 25 minutes in 

the laboratory, expired ethane concentration had fallen to approximately 13 pmol·l
-1

 and 

remained fairly stable until the end of sampling at 60 minutes after arrival. 

 

Since the ambient ethane concentration of the previous environment was higher than 

previously reported values, it was considered to be unlikely that a subject would present 

himself for testing having come from an environment with higher ambient ethane than was 

tested in this pilot study. Therefore, it was made a requirement of each test that the subject 

should remain at rest in the laboratory for 30 minutes prior to the onset of sampling to 

ensure that any excessive ethane from the subject‟s previous environment was washed out 

of the body, in order to assist in the measurement of a stable baseline value. 

 

2.3.3 Ethane analysis 

Expired ethane has been measured traditionally by gas chromatography (GC), alone or 

alongside mass spectrometry (GC-MS). Ethane is present in expired air in quantities at the 

parts per billion (ppb) level. In order to measure a single sample at this level using gas 

chromatography, the sample would require to be pre-concentrated which is a time-

consuming procedure, typically requiring at least 30 minutes per sample. 

 

Expired ethane concentration was measured in two of the current studies using a novel 

technique, that of ultra-sensitive laser absorption spectroscopy, developed by the Optics 

Department at the University of Glasgow (Gibson et al., 2002). The spectrometer is 

sensitive to 0.1 ppb of ethane and can measure a sample in approximately 2 seconds 

(Skeldon et al., 2005). 
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The spectrometer utilises a mid-infrared laser which operates at a wavelength of 3.4 µm at 

which ethane is absorbed without interference from other gases abundant in expired air, 

such as water vapour and carbon dioxide. The laser light passes through a beam splitter 

which directs it into two channels: the sample cell used for determination of ethane 

concentration from the gas sample of interest; and the reference cell which contains a 

known concentration of ethane (500 ppm) and is used for calibration. Sample bags are 

attached to the inlet port of the spectrometer and the sample gas is drawn through the 

sample cell at a standard flow rate of 5 l·min
-1

. Ethane absorption is measured by a 

photodetector from which the ethane concentration of the sample gas is derived. Sampling 

is continuous and ethane concentration is updated once per second. 

 

The spectrometer is calibrated continually against a known ethane standard of 500 ppm 

contained within its reference cell. In addition, the zero reference is checked, typically at 

intervals of 60 seconds, by introducing hydrocarbon-free nitrogen gas, which has an ethane 

concentration of less than 0.1 ppb, into the sample cell. The duration of this procedure is 

typically 12 seconds. 

 

The accuracy of the spectrometer has been verified within 10 % against empirical ethane 

concentrations in the range of 0 to 250 ppb (Skeldon et al., 2006). The same authors are 

currently undertaking a comparison of the spectrometer‟s performance in relation to  

GC-MS. 

 

The spectrometer is currently in use as a measurement tool in a number of life science and 

clinical settings, including the measurement of expired ethane in lung cancer patients 

(Skeldon et al., 2006), in ischaemia-reperfusion injury during organ transplantation 

(Skeldon et al., 2005) and pre and post radiation treatment (Skeldon et al., 2005). 
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Ethane data from the current studies are expressed as concentrations, i.e. ppb or pmol·l
-1

, in 

order to assist comparison with previously published data. However, this does not facilitate 

inter-individual comparisons, and therefore, the expression of ethane output as a rate, 

corrected for body weight, i.e. pmol·kg
-1

·min
-1

, is also used (Risby & Sehnert, 1999). 

 

2.3.4 Blood sampling procedures 

Blood was sampled from an indwelling cannula placed in an antecubital vein. A tourniquet 

was placed around the upper arm in order to increase pressure inside the vessel of interest 

to facilitate the process of cannulation. Skin was cleaned with an alcohol swab prior to 

insertion of a sterile 20G intravenous cannula with injection port (Biovalve 106.10, Vygon, 

Cirencester, UK). Once in place, the cannula was attached to a three way tap connected to 

a 10 cm length of narrow flexible plastic tubing (BD Connecta Plus 3 394995, Oxford, 

UK). This sample line was filled with 0.9 % sodium chloride (NaCl) (FPE 1307, Baxter 

Healthcare Ltd., Norfolk, England). The cannula was secured in place using a sterile, self-

adhesive polyurethane dressing (Dermafilm, Vygon UK Ltd., Cirencester, UK). 

 

The sampling procedure involved an initial withdrawal of 2-3 ml of fluid in order to clear 

the NaCl solution from the sample line. Following this, a blood sample of approximately 

6 ml was withdrawn and was immediately transferred into a plastic tube coated with 

lithium heparin (BD Vacutainer 367885, Oxford, UK). The tube was inverted gently eight 

times, according to manufacturer‟s instructions, to prevent clotting, and was then placed 

immediately on ice. Finally, the sample line was flushed with 2-3 ml of NaCl in order to 

prevent clotting and maintain patency of the line. All fluid withdrawal and insertion was 

achieved using a 10 ml sterile hypodermic syringe (BD Plastipak 302188, BD, Oxford, 

UK). On withdrawal of the cannula at the end of the test, pressure was applied to the 

puncture site in order to minimise the risk of haematoma development. Descriptions of 

sampling times for each study are included in the relevant chapters. 
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2.3.5 Blood analysis 

Following each test, blood samples were centrifuged at 3000 g at 4 °C for 15 minutes. 

Immediately thereafter, samples were stored on dry ice while the plasma was divided into 

aliquots of approximately 500 μl. Subsequently, samples were stored at -80 °C until further 

analysis which took place within 17-20 months of testing. Specific assay procedures for the 

measurement of markers of lipid peroxidation are described below. 

 

2.3.5.1 Measurement of malondialdehyde 

In study two, described in chapter 5, plasma samples from tests with the first subject were 

analysed initially for the presence of malondialdehyde (MDA) in order to determine if a 

response was present prior to continuing with the remainder of the experimental trials. This 

was done using a spectrophotometric assay (Bioxytech MDA-586, Oxis Research, 

Portland, OR, USA). The basis of the assay is that MDA in the plasma sample reacts with a 

chromogenic agent, Nmethyl-2-phenylindole, to produce a coloured product which can be 

detected at a wavelength of 586 nm. The assay is specific for MDA, since under the 

hydrochloric acid conditions of the assay there is little absorbance at this wavelength from 

the most common alternative aldeyhydic product of lipid peroxidation (Erdelmeier et al., 

1998). 

 

Standard solutions of MDA at concentrations of 0 μM, 0.5 μM, 1.0 μM,
 
2.0 μM, 3.0 μM 

and
 
4.0 μM were prepared and analysed to produce a standard curve from which the 

unknown concentrations of MDA in the plasma samples could be determined. Analysis of 

standards and samples was carried out in triplicate. 

 

2.3.5.2 Measurement of F2-isoprostanes 

In studies two and three, described in chapters 5 and 7, plasma samples were analysed 

using a commercial enzyme-linked immunosorbent assay (Assay Designs 900-091, Ann 
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Arbor, MI, USA) for detection of 8-iso-Prostaglandin F2α (8-iso-PGF2α). This is a 

competitive immunoassay which utilises a polyclonal antibody specific for 8-iso-PGF2α. 

The competitive nature of the assay means that the antibody will bind 8-iso-PGF2α present 

in the plasma sample, and also 8-iso-PGF2α conjugated with alkaline phosphatase which is 

available as part of the assay kit. 

 

An initial hydrolysis step was carried out prior to conduction of the assay. Sodium 

hydroxide (NaOH) was added to the plasma samples in order to hydrolyse ester bonds 

binding 8-iso-PGF2α to lipoprotein or phospholipid molecules. This ensured that both free 

and bound 8-iso-PGF2α could be measured by the assay. 

 

The wells of the assay plates are coated with rabbit immunoglobulinG (IgG). The plasma 

sample and the alkaline phosphatase conjugate, both containing 8-iso-PGF2α, were added 

to the wells along with anti-rabbit IgG. This anti-rabbit antibody is specific for, and binds 

to, the rabbit antibody coating the wells and has binding sites for 8-iso-PGF2α. Thus, during 

a 24 hour incubation period at 4 °C, the anti-rabbit antibody binds 8-iso-PGF2α and also 

binds to the antibody on the plate, thus capturing the antigen of interest. After the 

incubation period, the wells were washed to remove any excess reagent leaving the bound 

8-iso-PGF2α attached to the wells. The greater the concentration of 8-iso-PGF2α in the 

plasma sample, the less of the conjugated 8-iso-PGF2α binds to the antibody, and therefore 

less alkaline phosphatase is retained in the well. 

 

Following the removal of excess reagent, p-nitrophenyl phosphate (pNpp), a colourless 

substrate for the enzyme alkaline phosphatase, is added. This reaction generates a yellow 

colour due to formation of the yellow product p-nitrophenol. The intensity of colour is 

proportional to the amount of enzyme present. Thus, the intensity of colour is proportional 
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to the concentration of alkaline phosphatase in the well and inversely proportional to 8-iso-

PGF2α in the well. 

 

The enzyme reaction is stopped after a brief incubation. In these studies, the optical density 

of each well was read immediately on a microplate reader (Spectra MR, Dynex 

Technologies, Worthing, UK) at a wavelength of 405 nm. 

 

Standard solutions of 8-iso-PGF2α at concentrations of 160 pg·ml
-1

, 800 pg·ml
-1

, 4000 

pg·ml
-1

,
 
20000 pg·ml

-1
 and

 
100000 pg·ml

-1
 were prepared and analysed to produce a 

standard curve from which the unknown concentrations of 8-iso-PGF2α in the plasma 

samples could be determined. These calculations were done using 4 parameter curve fitting 

software ((Dynex Technologies Revelation 4.25, Worthing, UK) as recommended by the 

assay manufacturer. Concentrations were then corrected for dilution during the hydrolysis 

step. 

 

All standards and samples were analysed in duplicate and the coefficient of variation was 

calculated as the ratio of standard deviation to mean of each pair. In cases where the 

coefficient of variation was high (> 10 %), the sample concentrations were examined to 

determine if there was justification for reporting the concentration of a single sample rather 

than the mean of the two samples. 

 

2.3.6 Statistical analysis 

All statistical analysis was carried out using SPSS version 17.0 statistical software. Details 

of specific statistical tests utilised are included in the relevant chapters. The mean and 

standard deviation have been used as the measures of central tendency and variability. 
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Chapter 3 

 

Ethane and carbon monoxide responses to maximal dynamic 

exercise in human, equine and canine athletes 
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3.1  Introduction 

 

3.1.1 Non-invasive assessment of oxidative stress 

Non-invasive assessment of any physiological variable is generally preferable to invasive 

assessment from the perspectives of subject comfort and safety, especially if numerous 

repeated measurements are required. Oxidative stress can be assessed non-invasively via 

measurement of volatile hydrocarbon gases, specifically ethane and pentane, in the expired 

air. 

 

Ethane (C2H6) and pentane (C5H12) are produced in the body as terminal reaction products 

of lipid peroxidation, that is, the oxidative degradation of polyunsaturated fatty acids 

(PUFAs). A description of this process can be found in section 1.1.4.1 (page 51). PUFAs 

are a major constituent of cell membranes and are those fatty acids which contain more 

than one double bond. Thus, PUFAs are liable to react with other molecules and, in the 

process, undergo structural change. They can be categorised according to the position of 

the first double bond; for example, in n-3 PUFAs, this is located at the third carbon atom 

from the methyl carbon end of the molecule. Ethane is derived from n-3 PUFAs such as 

alpha-linolenic acid. Pentane is produced from the peroxidation of n-6 PUFAs which 

include linoleic acid and arachidonic acid. N-3 and n-6 PUFAs are present in the body in 

an approximate 1:4 ratio (Lepage & Roy, 1986) and therefore, lipid peroxidation is likely 

to favour the production of pentane. 

 

Both ethane (Leaf et al., 1997) and pentane (Dillard et al., 1978; Kanter et al., 1993; Leaf 

et al., 1997; Pincemail et al., 1990) have been utilised as markers of lipid peroxidation in 

healthy human subjects during and following exercise. The output of any substance in the 

expired air must reflect the actual production of the substance, its metabolism and 
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elimination by organs other than the lungs, and any washout of the substance from body 

stores. Ethane is generally considered to be the preferable marker, exhibiting lower intra-

day variation than pentane (Knutson et al., 1999). This may be the case due to different 

rates of hepatic metabolism. Hydrocarbons are metabolised in the liver by mono-

oxygenases and eliminated from the body via the kidneys as well as from the lungs 

(Kneepkens et al., 1994). The rate of hepatic metabolism has been shown to be lower in 

ethane (Wade & van Rij, 1985); therefore, any underestimation of true hydrocarbon 

production would be relatively more exaggerated in the case of pentane. In addition, both 

ethane and pentane are non-polar molecules and therefore have a low solubility in water. 

The solubility co-efficient of ethane in body fluids is 0.14 in comparison to that of pentane 

which is 0.42 (Dale et al., 2003). It has also been suggested that ethane has lower solubility 

in fat; lower molecular weight hydrocarbons are less lipophilic and, therefore, are less 

likely to be distributed within the adipose tissue (Kneepkens et al., 1994). Thus, washout 

of stored ethane from body tissues is likely to contribute less markedly to measured output 

values. 

 

Ethane is rapidly washed out of the lungs. In one study (Dale et al., 2003), subjects inhaled 

gas containing a high ambient ethane concentration (19-29 ppm) for approximately 20 

minutes. Subjects then breathed room air, and expired ethane was measured at numerous 

time points over a 210 minute period. The expired ethane concentration was found to drop 

to 5 % of the initial inspired value within 1.5 minutes. 

 

The washout of body tissues may take longer. A study by Morita and colleagues (1986) 

investigated pentane washout following a two hour period of breathing hydrocarbon-free 

air. A rapid decrease in expired pentane from 10.2 pmol·kg
-1

·min
-1

 to 1.6 pmol·kg
-1

·min
-1

 

was reported in the first 30 minutes, followed by a further, much smaller decrease to 

1.2 pmol·kg
-1

·min
-1

 after 60 minutes, with no further reduction in pentane output 
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thereafter. As ethane is reportedly less soluble in body tissues than pentane, washout would 

be predicted to occur more quickly.  

 

A recent study (von Basum et al., 2003) has considered the washout of ethane from body 

tissues following 5 minutes of breathing 1 ppm ethane. The results suggested that washout 

from the lungs was complete within approximately 20 seconds. This was followed by 

washout from two further body compartments, likely the blood and well-perfused tissue; 

washout from the blood was complete within approximately 1 minute, and from well-

perfused tissue within approximately 12 minutes. This study was limited to some extent 

since only three subjects were included; however, it does suggest a rapid excretion of 

ethane from body tissues. The authors suggested that 5 minutes may not have been 

adequate for full equilibration with ethane, although results from Dale and colleagues 

(2003) suggest that equilibration with a high ethane concentration (16-29 ppm) is more 

rapid and takes place within 2 minutes. Thus, for ethane to be used as a marker of 

oxidative stress, only a brief period would seem to be required prior to initial sampling in 

order for a subject to equilibrate with the environmental ethane concentration. 

 

3.1.1.1 Expired and ambient ethane concentrations 

Ethane concentration tends to be higher in ambient air than in the expired air. Expired 

ethane concentration in healthy individuals at rest has been reported between 10.4 pmol·l
-1

 

(Knutson et al., 1999) and 50 pmol·l
-1

 (Zarling & Clapper, 1987) when corrected for 

ambient ethane. Ethane is present in the atmosphere, from sources such as vehicle exhaust 

fumes and tobacco smoke, and the ambient concentration has been variously reported 

within the following ranges: 73-726 pmol·l
-1

 (Dumelin et al., 1978); 68-224 pmol·l
-1

 

(Knutson et al., 1999); 70-220 pmol·l
-1

 (Sexton & Westberg, 1984); and at a mean 

concentration (± standard deviation) of 800 ± 390 pmol·l
-1

 (Zarling & Clapper, 1987). 

However, this will be variable depending on proximity to sources of ethane (Sexton & 
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Westberg, 1984) and some variability may be attributable to different measurement 

techniques. 

 

Due to the similarity between ambient and expired ethane concentrations, it is necessary to 

correct for the presence of ethane in the inspired air in order to be able to assess accurately 

ethane production due to lipid peroxidation. A widespread method used to achieve this is 

to ask the subject to breathe hydrocarbon-free air (HCFA) for a period of time immediately 

preceding the collection of the expired air sample in order to flush ambient hydrocarbons 

from the lungs and airways. It has been suggested that a period of 4 minutes of breathing 

HCFA is sufficient to clear ambient ethane and pentane from the lungs and that a longer 

washout of up to 30 minutes does not result in a further reduction of expired ethane 

concentration (Knutson et al., 1999). However, while this technique may be suitable for 

single breath measurement of expired ethane, it is both impractical and costly for use in 

exercise studies in which repeated expired air measurements are frequently required. In 

these cases, ambient ethane concentration can be measured simultaneously alongside the 

measurement of expired ethane, with the ambient concentration simply being subtracted 

from the expired concentration to remove the imprecision associated with the inspiration of 

ethane. This technique has been reported to be reproducible (Cheng & Lee, 1999; Risby & 

Sehnert, 1999). 

 

3.1.1.2 Limitations of hydrocarbon measurement 

There are other potential limitations to the use of hydrocarbon measurement. Firstly, there 

are other possible sources of hydrocarbons in the body other than lipid peroxidation; these 

include protein oxidation and colonic bacterial metabolism. However, these are generally 

considered to be of limited importance and should not interfere with the interpretation of 

results (Kneepkens et al., 1994). The relative contribution of protein oxidation to the 

output of hydrocarbons has been shown to be small in vitro (Clemens et al., 1983). Some 
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researchers have considered that intestinal bacterial flora may produce hydrocarbons in 

significant quantity using polyunsaturated fatty acids in the diet as a substrate (Kneepkens 

et al., 1994). However, it was observed in premature human babies that ethane and pentane 

excretion increased during the first four to five days following delivery, with a sharp 

decrease in excretion of both gases thereafter (Kuivalainen et al., 1991; Pitkänen et al., 

1990). It is known that it takes several days for intestinal flora to become established after 

birth (Stevenson et al., 1982), therefore, it is unlikely that bacterial flora are major 

producers of breath hydrocarbons. 

 

Secondly, the formation of hydrocarbons in the body is dependent on the presence of 

transition metal ions such as Fe
2+

 which are required for the decomposition of lipid 

peroxides. Therefore, it is important to control for the availability of these ions, otherwise, 

a measured increase in hydrocarbon production may reflect increased ion availability 

rather than an increased lipid peroxidation. 

 

Finally, the use of hydrocarbon measurement may be unreliable in smokers as smoking 

significantly increases both ethane and pentane output. Expired ethane concentration at rest 

has been found to be significantly higher in smokers compared to non-smokers: 2.9 

pmol·kg
-1

·min
-1

 in smokers compared to 1.1 pmol·kg
-1

·min
-1

 in non-smokers (Habib et al., 

1995). 

 

3.1.1.3 Novel technique for the assessment of ethane 

The concentration of ethane in expired air can normally be measured in the parts per 

billion range (Skeldon et al., 2005), which is generally too low for detection by most 

measurement systems. Traditionally, expired ethane has been measured using gas 

chromatography (Knutson et al., 2000) which requires expired air samples to be pre-

concentrated prior to measurement in order to accumulate a sufficiently high concentration 
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for detection. This technique is sometimes used in combination with mass spectrometry for 

definitive identification of ethane since interference by other species is possible. This can 

be a time-consuming procedure, taking from 9 minutes (Dale et al., 2003) to 15 minutes 

per sample (Knutson et al., 2000). Due to time constraints, these methods may be less 

practical than necessary for the assessment of numerous expired air samples collected 

during or following exercise. 

 

A recently developed technique for quantifying expired ethane concentration utilising laser 

spectroscopy has been described (Gibson et al., 2002). A brief summary of this technique 

can be found in section 2.3.3 (page 112). Advantages of this novel technique include ease 

of use; the instrument can be controlled by a laptop computer interface without specialist 

knowledge. Sampling time is very rapid in comparison to traditional methods for ethane 

analysis in expired air; pre-concentration of the sample is not required and a single breath 

sample can be analysed in approximately 2 seconds (Skeldon et al., 2005). In addition, the 

technique has very high specificity for ethane without interference from other species 

(Skeldon et al., 2005). 

 

To date, this technique has been utilised for the assessment of oxidative stress during 

transplantation surgery in animals, during radiation therapy in human patients and in cases 

of respiratory inflammation in horses (Skeldon et al., 2005). A similar technique has been 

used previously for investigating the profile of ethane washout after the inhalation of 

tobacco smoke (Dahnke et al., 2001), and for recording single exhalations of ethane in 

non-smokers (von Basum et al., 2003). 

 

Thus, due to easy, rapid analysis, the laser spectroscopy technique is well suited to the non-

invasive assessment of exercise-induced oxidative stress, however, has not been used 

previously for this purpose. 
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3.1.2 Previous exercise studies utilising ethane measurement 

 

3.1.2.1 Previous studies in humans 

Although exercise-induced oxidative stress has been measured in humans on numerous 

occasions, the majority of studies have utilised plasma markers of lipid peroxidation. 

Expired ethane has been assessed in association with exercise in only a small number of 

studies, all by the same group of authors (Leaf et al., 1997, 1999, 2004). 

 

All three studies assessed lipid peroxidation via ethane output at three time points: at rest; 

at lactate threshold during incremental exercise to voluntary exhaustion; and five minutes 

into a period of post-exercise passive recovery. Ethane output was also measured at peak 

exercise in the 1997 study. A modified Bruce protocol was performed on a treadmill in the 

initial two studies (Leaf et al., 1997, 1999), whilst cycle ergometer exercise was utilised in 

the later study (Leaf et al., 2004). The subject group of interest was different in each study: 

healthy individuals (Leaf et al., 1997); patients with coronary artery disease (Leaf et al., 

1999); and patients receiving chronic renal dialysis (Leaf et al., 2004). 

 

Only the study utilising healthy subjects (Leaf et al., 1997) is suitable for comparison with 

resting ethane concentrations previously reported in healthy subjects. Ethane concentration 

at rest in this study was not reported, however it can be estimated. Ethane output at rest 

was approximately 85 pmol·min
-1

; this was not reported numerically but presented only 

graphically. Mean ventilation at rest was 13.5 l·min
-1

; thus, a resting ethane concentration 

of approximately 6.3 pmol·l
-1

 can be estimated. This is similar to the lower end of the 

range previously observed (Knutson et al., 1999). 

 

Incidentally, resting ethane output in coronary artery disease patients in the 1999 study was 

similar to that of the healthy individuals in the 1997 study. Ethane output was 



126 

approximately 75 pmol·min
-1

 in the training intervention group and approximately 45 

pmol·min
-1

 in the control group. Again, data were presented graphically only. 

 

In contrast, the data presented in the 2004 study were inconsistent. At rest ethane output 

for the control group subjects was reported as 250158 pmol·min
-1

; approximately 3000 

times the value reported previously in healthy individuals (Leaf et al., 1997). These 

individuals were matched by age, gender, medication, smoking status and medical 

condition to the renal dialysis patients in the group of interest; thus, five of the seven 

control group subjects were hypertensive and two suffered from diabetes mellitus. Even 

considering that greater lipid peroxidation may be expected at rest in individuals with 

disease in comparison to healthy individuals (Cross et al., 1987), the authors made no 

mention of this striking difference in resting ethane output, especially since the resting 

values of the coronary artery disease patients in the earlier study (Leaf et al., 1999) were 

similar to those of healthy subjects (Leaf et al., 1997). Ethane was measured using the 

same technique in all three studies and ethane output was calculated in the same manner. 

Thus, confidence in these data is diminished. 

 

The pattern of response of ethane output to incremental treadmill exercise to voluntary 

exhaustion in healthy subjects (Leaf et al., 1997) was as follows. Ethane output rose from a 

resting value of 85 pmol·min
-1

 to 660 pmol·min
-1

 at lactate threshold. A further rise in 

ethane output to 2400 pmol·min
-1

 was observed at peak exercise and was followed by a 

decline to 840 pmol·min
-1

 after five minutes of passive recovery. Data were presented 

graphically so all values are approximate. 

 

A similar pattern was seen in coronary artery disease patients (Leaf et al., 1999). A three- 

to four-fold increase in ethane output was seen from rest to lactate threshold in both the 

training and control group. This was followed by a decline in ethane output measured in 
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recovery in the training group, although ethane output increased in recovery in the control 

group. 

 

Only one study utilising pentane measurement has employed an incremental exercise 

protocol (Leaf et al., 1997). Pentane was measured alongside ethane as already described. 

The pattern of response to incremental exercise was the same as that for ethane, that is, an 

increase from rest to lactate threshold, a further increase to peak exercise followed by a 

decline measured five minutes into passive recovery. 

 

Most studies examining incremental exercise to exhaustion have utilised plasma markers 

of lipid peroxidation. Some have reported a post-exercise increase whilst others have 

reported no significant change following exercise, as described previously (section 1.3.1.1, 

page 70). Most of these studies assessed lipid peroxidation only at rest and immediately 

following, or within 15 minutes of, the end of exercise (Ashton et al., 1998, 1999; Bailey 

et al., 2001; Kretzschmar et al., 1991; Leaf et al., 1997, 1999; Lovlin et al., 1987; 

Szcześniak et al., 1998). A minority of studies have reported data from two or three time 

points in recovery up to 24 hours following the end of exercise; however none reported a 

significant increase in lipid peroxidation from baseline at any time point (Hartmann et al., 

1995; Niess et al., 1996; Quindry et al., 2003; Sen et al., 1994).  

 

Three studies assessed lipid peroxidation at lactate threshold, at peak exercise and at 

multiple time points within the first 30 minutes of recovery (Jammes et al., 2004, 2005; 

Steinberg et al., 2006). The general pattern of response was a gradual increase in lipid 

peroxidation to a peak at 5 minutes (Jammes et al., 2004; Steinberg et al., 2006) or 10 

minutes (Jammes et al., 2005) into recovery with a gradual reduction in response 

thereafter. Thus, as discussed previously (section 1.4.1, page 90), the pattern of response to 

incremental exercise to exhaustion remains unclear. 
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There is a paucity of consistent information in the literature regarding lipid peroxidation 

during and following incremental exercise in humans. The evidence available from the 

ethane studies is particularly limited since so few studies have been undertaken to date. In 

addition, data were collected at only a few time points and, furthermore, some of the 

results reported are unconvincing. The authors make no mention of what technique, if any, 

was used for the correction of expired ethane for ambient ethane concentration, which casts 

some doubt on the reliability of the results. Thus, there is justification for further 

investigation. In order to better characterise the ethane response to incremental exercise, it 

would be valuable to measure ethane output at a greater number of time points throughout 

exercise. Non-invasive assessment would increase the practicality of repeated sampling. 

 

3.1.2.2 Previous studies in horses and dogs 

The focus of exercise-induced oxidative stress studies in horses and dogs has tended 

towards the investigation of the potential effects of oxidative stress on performance. 

Exercise-induced oxidative stress has been reported previously in racehorses (Chiaradia et 

al., 1998; White et al., 2001), greyhounds (Marshall et al., 2002) and sled dogs (Baskin et 

al., 2000; Hinchcliff et al., 2000) following strenuous exercise. However, these studies 

employed plasma markers of lipid peroxidation. To date, ethane measurement has not been 

utilised in horses or dogs. 

 

A non-invasive method of oxidative stress assessment may be preferable in veterinary 

research as blood collection has been shown to be related to physiological stress in animals 

(Balcombe et al., 2004). It has been suggested that breath samples may be suitable for 

diagnostic use in animals and can be collected with little distress to the animal (Wyse et 

al., 2004a). Expired air samples have been collected successfully from both horses 

(Murphy et al., 1998; Sutton et al., 2003) and dogs (Papasouliotis et al., 1995; Wyse et al., 

2001), although not for the purpose of ethane analysis. Pentane output has been measured 
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previously in both horses (Wyse et al., 2004b) and dogs (Kim et al., 1996), although not in 

relation to exercise. However, pentane may not be the most reliable indicator of lipid 

peroxidation due to high hepatic pentane metabolism (Filser et al., 1983). Therefore, it 

would be of value to determine if non-invasive assessment of lipid peroxidation via ethane 

measurement is viable following exercise in these species. 

 

3.1.3 Carbon monoxide 

Carbon monoxide (CO) is produced in the body via the breakdown of haemoglobin. The 

haem portion of the haemoglobin molecule is catabolised to CO and biliverdin by the 

action of the enzyme haemoxygenase-1 (HO-1) (Tenhunen et al., 1968). Biliverdin is 

subsequently enzymatically converted to bilirubin. 

 

HO-1 is a heat shock protein, that is, a protein whose expression is increased by elevated 

temperature. However, expression can also be increased by other stressors such as release 

of cytokines, ROS and nitric oxide during the inflammatory response. Therefore, it may 

also be referred to as a stress protein. The up-regulation of HO-1 may have a protective 

function in oxidative stress and inflammation (Horváth et al., 2001) since haem, which is 

catabolised by the enzyme, is known to have oxidant properties (Jeney et al., 2002) and the 

reaction product bilirubin is known to have antioxidant function (Stocker et al., 1987). 

 

CO has been suggested as a non-invasive marker of HO-1 activity (Tenhunen et al., 1968) 

and oxidative stress in the lung (Horváth et al., 2001). Exhaled CO has been used as a 

marker of oxidative stress in chronic inflammatory diseases of the respiratory system such 

as asthma (Zayasu et al., 1997), chronic obstructive pulmonary disease (Montuschi et al., 

2001) and cystic fibrosis (Paredi et al., 1999). CO is easy to measure in both healthy and 

patient populations and has been found to be reproducible within 5 % (Horváth et al., 

1998). 
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Since HO-1 activation may be induced by oxidative stress, and oxidative stress can be a 

consequence of strenuous exercise, it is possible that HO-1 activation and, therefore, CO 

production may be increased as a result of strenuous exercise. However, few studies to date 

have investigated the effect of exercise on CO production or HO-1 induction. CO output 

increased following symptom-limited exercise in children with cystic fibrosis (Horváth et 

al., 1999). In healthy adults, HO-1 expression in lymphocytes has been shown to increase 

following a half-marathon run (Fehrenbach et al., 2003) and a treadmill run at 70 % V O2 

max for 75 minutes (Thompson et al., 2005) but not following short duration exhaustive 

exercise or an acute bout of eccentric exercise (Fehrenbach et al., 2003). CO was not 

measured in the latter studies. Thus, it may be worthwhile to investigate the potential of 

CO as a marker of exercise-induced oxidative stress. 

 

No studies, to date, have investigated the CO response to exercise in either horses or dogs. 

The measurement of CO may be of particular interest in the horse; exercise-induced 

pulmonary haemorrhage (EIPH) is a common condition in racehorses, characterised by 

bleeding in the lower respiratory tract due to stress failure of pulmonary capillaries during 

strenuous exercise (West et al., 1993). It has been suggested that 73-100 % of racehorses 

experience EIPH during high intensity exercise (McKane et al., 1993; Meyer et al., 1998). 

In contrast, this condition is rarely reported in human or canine subjects (King et al., 1990; 

Weiler-Ravel et al., 1995). The breakdown of haemoglobin subsequent to EIPH may lead 

to the formation of CO (Horváth et al., 1999). However, increased oxidative stress at 

maximal exercise may also lead to the increased formation of CO. The comparison of CO 

output in the horse with other species which do not generally suffer EIPH may indicate the 

efficacy of CO in the detection of EIPH in the horse. 
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3.1.4 Aims 

The aims of this study were as follows. Firstly, to utilise a novel non-invasive technique 

for the assessment of post-exercise lipid peroxidation in three species: human, equine and 

canine. The use of non-invasive measurement is desirable from the perspective of subject 

compliance and comfort in all three species. Non-invasive assessment of EIOS has not 

been evaluated in horses or dogs previously. Traditional non-invasive measurement of 

hydrocarbon gases is time-consuming; however, a fast, efficient, accurate technique of 

ethane measurement has become available and has not been tested previously in any 

species during exercise. 

 

The second objective of the study was to better characterise the oxidative stress response 

during and following incremental exercise to exhaustion by the collection of data at 

frequent intervals during exercise and during recovery. Previous studies have suggested the 

existence of a post-exercise oxidative stress response; however, there is very little 

information available regarding any response during exercise, and the response during 

recovery has not been clearly described. 

 

Thirdly, it was intended to determine the utility of carbon monoxide as a marker of 

exercise-induced oxidative stress in all three species. 
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3.2  Methods 

 

3.2.1 Human experiments 

 

3.2.1.1 Subjects 

Eight healthy, regularly active males volunteered to participate in this study. All subjects 

adhered to the exclusion criteria presented in section 2.1.1 (page 95). In addition, subjects 

in this study were required to be endurance trained, having exercised aerobically for at 

least 20 minutes, at least three times per week for at least eight weeks prior to participation. 

This was assessed by completion of a physical activity questionnaire (see Appendix A.5). 

At the time of the study, all subjects were currently in training for amateur competitive 

sport (athletics, cycling or football). Subjects were medically screened for abnormalities in 

resting electrocardiogram (ECG) and blood pressure prior to participation in order to 

ensure suitability for maximal aerobic exercise. 

 

Ethical approval for the human element of this study was granted on 19
th

 May 2004 by the 

ethics committee of the Institute of Biomedical and Life Sciences at the University of 

Glasgow, and all subjects provided written, informed consent as outlined previously 

(section 2.1.2, page 96). The relevant information sheet and consent form can be seen in 

Appendix A.1. 

 

3.2.1.2 Test protocols 

 

3.2.1.2.1 Familiarisation 

General familiarisation procedures, as described in section 2.2.2 (page 97) were carried out 

at the start of the subject‟s visit to the laboratory. Formal treadmill familiarisation, as 
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described below, took place immediately prior to testing and was utilised as a warm up 

period for the incremental test. The subject was also given the opportunity to practise 

mounting and dismounting the treadmill belt whilst it was in motion. 

 

3.2.1.2.2 Incremental exercise test 

Each subject underwent an incremental run to voluntary exhaustion on a motor driven 

treadmill (LE200CE, Erich Jaeger GmbH, Hoechberg, Germany). The protocol utilised 

required the subject to run at a constant speed throughout the test (MacDougal et al., 

1990). This speed was determined during treadmill familiarisation prior to the start of the 

test, and was selected to elicit a steady state heart rate of 140-160 beats·min
-1

. Experience 

has shown that this typically produces a test duration of 8-17 minutes, which is considered 

to be optimal (Buchfuhrer et al., 1983). Test duration for subjects in the current study was 

10-14 minutes. 

 

The period of familiarisation consisted of walking on the treadmill until the subject felt 

steady and comfortable, followed by a gradual increase in speed to a running pace. The 

speed of the treadmill was then adjusted until a pace which elicited a steady state heart rate 

of 140-160 beats·min
-1

 was established. Treadmill speed was then reduced to a walking 

pace and the gradient was increased briefly to each possible test gradient (2-14 %). 

Following familiarisation, a rest period of 5-10 minutes preceded the start of the test during 

which time the subject was connected to the gas exchange equipment. 

 

Treadmill speed during the test was kept constant at the pace which was shown to elicit a 

steady state heart rate of 140-160 beats·min
-1

 during the familiarisation period. This pace 

varied between subjects, and is reported in table 3.1. The treadmill gradient was 0 % 

during the first two minutes of the test and was increased by 2 % every two minutes 

thereafter until the subject signalled that he was no longer able to continue. At this point 
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the treadmill gradient was immediately reduced to 0 % and the speed was reduced to a 

walking pace of 4.5 km·h
-1

. The subject completed a six minute period of active recovery 

at this pace, followed by a period of passive recovery, during which the subject rested in a 

chair, until 30 minutes had elapsed since the end of exercise. Figure 3.1 shows a schematic 

representation of the exercise test protocol. 

 

3.2.1.3 Measurements 

 

3.2.1.3.1 Respired air measurements 

Samples of expired air, each of one-minute duration, were collected for the purposes of 

expired ethane analysis and for determination of peak V O2. Collection equipment and 

procedures have been described in sections 2.3.1.1 and 2.3.2.2 (pages 100 and 107). 

 

Two samples of expired air were collected at rest, prior to the start of exercise, in order to 

establish a baseline ethane concentration. The subject remained seated for a period of 10 

minutes between the two resting samples at approximately 20 and 10 minutes prior to the 

start of exercise. During incremental exercise, the first sample was collected in the second 

minute of exercise (i.e. starting one minute after the onset of exercise), and then at two 

minute intervals until exhaustion. The timing of the exercise samples was designed to 

coincide with the second minute of each work rate as shown in figure 3.1. In cases where 

volitional exhaustion occurred during, or at the end of, a minute in which a sample was 

being collected for ethane analysis, this sample was also used for determination of peak 

V O2. Samples were also collected in alternate minutes once the subject‟s heart rate reached 

170 beats·min
-1

 so that if the subject discontinued exercise during a minute in which no 

sample was being collected for ethane analysis, a sample would still be available for the 

determination of peak V O2. 
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Figure 3.1. Schematic representation of the incremental exercise test protocol and 

sampling points for ethane and carbon monoxide (CO). 

Exercise was continued until voluntary exhaustion; therefore, the duration of the exercise period 

was subject dependent with a range of 10-14 minutes. Expired air samples were of one minute 

duration. 
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Samples were collected in the second, fourth and sixth minutes of active recovery and at 20 

and 30 minutes following the end of exercise, during which the subject was at rest. The 

timings of expired air samples for ethane analysis are illustrated in figure 3.1. 

 

3.2.1.3.2 Ethane sampling procedures 

Immediately following the test, a 5 litre sample of expired air was extracted from each 

Douglas bag into a Tedlar bag for later ethane analysis. All samples were analysed, 

following calibration of the spectrometer, within 24 hours of collection (Kneepkens et al. 

1994). 

 

A sample of ambient air was collected into a 5 litre capacity Tedlar bag, using a hand 

operated pump, in the middle of each of the above expired air sampling periods in order to 

correct expired air samples for the presence of atmospheric ethane. 

 

3.2.1.3.3 Carbon monoxide sampling procedures 

Carbon monoxide was measured using a portable electrochemical monitor (MicroLyser, 

Bedfont Scientific Ltd., Rochester, UK), sensitive to 1 ppm, which was calibrated prior to 

each test with a mixture of 50 ppm CO in air, according to the manufacturer‟s instructions. 

The subject was asked to exhale fully and then to inspire to total lung volume, followed by 

a breath-hold for 15 s prior to blowing directly into the monitor via a T-piece and 

disposable mouthpiece (Jarvis et al., 1980). Ambient CO was measured immediately prior 

to each sample to correct for background concentration of the gas. Two samples were 

taken at baseline: 20 minutes and 10 minutes prior to the start of exercise; and further 

samples were taken 20 minutes and 30 minutes into recovery from exercise. A mean CO 

concentration was recorded for baseline and for recovery. CO measurements were made 

immediately following the collection of expired air for ethane analysis. The time points for 

CO sampling are indicated in figure 3.1. 
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3.2.1.3.4 Heart rate measurement 

Heart rate was monitored throughout each test using a portable heart rate monitor (Polar 

Favor, Polar Electro Oy, Kempele, Finland). Peak heart rate was recorded as the highest 

heart rate measured during the test. 

 

3.2.1.4 Analysis 

 

3.2.1.4.1 Determination of peak oxygen uptake 

Expired air was analysed for oxygen and carbon dioxide content and volume as described 

in section 2.3.1.1 (page 100). 

 

Peak V O2 (l·min
-1

) was calculated using the following equation (Wasserman et al., 2004): 

 

 V O2 (STPD)  =  [ V I (STPD) × FIO2] - [V E (STPD) × FEO2]          [3.1] 

 

In equation 3.1, V I (STPD) and V E (STPD) are inspired and expired ventilation 

respectively, both measured in l·min
-1

 and corrected to standard temperature and pressure, 

dry (STPD); FIO2 is fractional inspired oxygen concentration; FEO2 is fractional expired 

oxygen concentration; FIO2 was assumed to be 0.2093 (Wasserman et al., 2004) and FEO2 

was measured. 

 

Expired air was collected under ambient conditions, that is, at ambient temperature and 

pressure, and saturated with water vapour (ATPS). Expired minute ventilation under 

ambient conditions ( V E [ATPS]) was calculated from the volume in litres of expired air 

collected divided by the duration of the collection in minutes. V E (ATPS) was then 

corrected to STPD as follows (Wasserman et al., 2004): 



138 

V E (BTPS)  =  V E (ATPS)  
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          [3.2] 

 

and: 

 

V E (STPD)  =  V E (BTPS)  








 37  273
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
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47 - PB
          [3.3] 

 

In equations 3.2 and 3.3, V E (BTPS) is expired minute ventilation (l·min
-1

) at body 

temperature (37°C), ambient pressure and saturated with water vapour; T is the 

temperature of the expired gas in °C; PB is barometric pressure in mmHg; PH2O is water 

vapour pressure at temperature T. 

 

If volumes of inspired and expired nitrogen and other inert gases are assumed to be equal, 

V I (l·min
-1

) can be calculated using the following equation: 

 

 V I  =  V E (STPD)  








22

22

ICOIO

ECOEO

F - F - 1

F -F - 1
             [3.4] 

 

In equation 3.4, FICO2 is fractional inspired carbon dioxide concentration; FECO2 is 

fractional expired carbon dioxide concentration; FICO2 was assumed to be 0.0004 

(Wasserman et al., 2004) and FECO2 was measured. 

 

Thus, substituting equation [3.4] into equation [3.1]: 

 

V O2 (STPD)  =  V E (STPD)  






 
2

22

222
EO
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)F - F - (1

)F -  - (1  F
         [3.5] 
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This method of calculating V O2 has been found to be adequate both at rest and during 

exercise (Wagner et al., 1973; Wilmore & Costill, 1973). 

 

3.2.1.4.2 Determination of peak respiratory exchange ratio 

Carbon dioxide output (V CO2) was calculated as follows: 

 

 V CO2 (STPD)  =  [ V E (STPD) × FECO2] - [V I (STPD) × FICO2]         [3.6] 

 

In equation 3.6, V E (STPD) and V I (STPD) and are expired and inspired ventilation 

respectively, both measured in l·min
-1

 and corrected to standard temperature and pressure, 

dry (STPD); FECO2 is fractional expired carbon dioxide concentration; FICO2 is fractional 

inspired carbon dioxide concentration; FECO2 was measured and FICO2 was assumed to be 

0.0004 (Wasserman et al., 2004). 

 

The respiratory exchange ratio (R) at peak exercise was calculated using the following 

equation: 

 

 R  =  








(STPD) V

(STPD) V

2

2

O

CO




                [3.7] 

 

3.2.1.4.3 Ethane analysis 

Samples were analysed for ethane by ultra-sensitive laser spectroscopy as described 

previously (section 2.3.3, page 112). The spectrometer measured ethane concentration 

([C2H6]) in parts per billion (ppb). This was converted into mol·l
-1

 as follows, since 1 ppb 

= 1  10
-9

 l·l
-1

 and, according to the ideal gas law, one mole of a gas occupies 22.4 l at 

standard temperature and pressure. 
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[C2H6] (mol·l
-1

)  =  
22.4

10  (ppb) ]H[C 9-
62 

             [3.8] 

 

Ethane concentration in expired air samples was corrected for any atmospheric ethane 

present in the inspired air as follows: 

 

 Corrected [C2H6]E  =  [C2H6]E - [C2H6]I            [3.9] 

 

In equation 3.9, [C2H6]E is expired ethane concentration (mol·l
-1

); [C2H6]I is inspired 

ethane concentration (mol·l
-1

). 

 

It is considered to be more accurate to express ethane as a rate standardised for body mass 

rather than as a concentration (Knutson et al., 1999), therefore, ethane output was 

calculated as follows: 

 

 V C2H6 (pmol·min
-1

·kg
-1

)  =  











12-

62

10  (kg) massbody 

(STPD) V  ]H[C Corrected EE 
       [3.10] 

 

In equation 3.10, V C2H6 is ethane output (pmol·min
-1

·kg
-1

); V E (STPD) was calculated as 

shown above in equations 3.2 and 3.3. 

 

3.2.2 Animal testing 

The animal testing in this study was carried out by Dr Cathy Wyse of the Division of 

Companion Animal Science at the University of Glasgow Veterinary School in order to 

satisfy ethical considerations. All experimental procedures involving animals were 

approved by University of Glasgow Animal Ethics and Welfare Committee. 
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3.2.2.1 Subjects 

Twelve racing greyhounds were recruited from dogs competing at a local stadium. The 

dogs were aged 1.5-3 years and had a body mass of 30-32 kg. Twelve racehorses, aged 2-

10 years, were recruited from those training at a local yard. It was not possible to directly 

measure the body mass of the horses due to a lack of suitable equipment, therefore, body 

mass was estimated at 470 kg for analysis purposes. This value was previously reported for 

thoroughbred horses of a similar age, size and fitness (Leukeux & Art, 1994). All animals 

were in good health and free from medication at the time of testing. 

 

3.2.2.2 Test protocols 

The dogs performed maximal exercise during a competitive race on a sand racetrack over a 

distance of 480 m. The exercise test protocol for horses involved two bursts of gallop on a 

sand track over a distance of 603 m (3 furlongs). This was preceded by a warm-up at walk, 

trot then canter. 

 

3.2.2.3 Measurements 

Expired air samples of one-minute duration were collected prior to and following exercise. 

In dogs, the samples were collected immediately before and after the race; however, in 

horses the collection took place approximately 10 minutes before and after exercise due to 

the location of the stables, where the samples were collected, in relation to the track. 

Expired air was sampled using a plastic facemask which covered both mouth and nose of 

the animal. This was attached to a non-rebreathing valve (Hans Rudolph, Kansas City, 

USA) and samples were collected in a 5-litre Douglas bag (Cranlea, Birmingham, UK). 

This equipment can be seen in use in figure 3.2. 
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Figure 3.2. Illustration of equipment used for the collection of expired air in equine and 

canine athletes. 

 

 

A sample of ambient air was drawn into a 5 litre capacity Tedlar bag in the middle of each 

expired air sampling period in order to correct for the presence of atmospheric ethane in 

expired air samples. 

 

Each expired air sample was transferred from the Douglas bag into a Tedlar bag 

immediately following the end of each test for later ethane analysis. All samples were 

analysed, following calibration of the spectrometer, within 24 hours of collection 

(Kneepkens et al. 1994). 

 

No equipment was available to measure volume of gas expired and therefore, the breathing 

frequency of each animal was measured by monitoring inspiratory movements of the chest 

wall during the one-minute collection period in order to estimate minute ventilation. Tidal 
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volumes for each animal were not measured and were assumed from previous literature as 

5.6 l at rest and 6.5 l following exercise at gallop in thoroughbred horses of a similar age 

and fitness as the horses in the current study (Leukeux & Art, 1994). Similarly, in dogs 

tidal volume was estimated from previous mean data from trained greyhounds as 

15 ml·kg
-1

 body mass at rest and 54 ml·kg
-1

 body mass one minute following 30 s of sprint 

treadmill exercise (Staaden, 1998). 

 

Expired carbon monoxide was measured using the equipment described above for the 

human experiments, although the collection procedure was different. The monitor was 

attached to the outlet port of the non-rebreathing valve and CO concentration was recorded 

following a one-minute period during which the animal breathed through the system. A 

background reading was recorded prior to each sample in order to account for variations in 

ambient CO concentration. CO measurements were made immediately following the 

collection of expired air for ethane analysis, at rest and following exercise. 

 

3.2.2.4 Ethane analysis 

Samples were analysed for ethane as described previously (section 2.3.3, page 112). 

Expired ethane concentration was corrected for ambient ethane as described for humans 

using equations 3.8 and 3.9 (page 140). 

 

Ethane output was then calculated as follows: 

 

 V C2H6 (pmol·kg
-1

·min
-1

)  =  











12-

62

10  (kg) massbody  estimated

]H[C Corrected  B  V EfT
      [3.11] 

 

In equation 3.11, V C2H6 is ethane output (pmol·kg
-1

·min
-1

); VT is estimated tidal volume (l) 

as described in the text; Bf is breathing frequency (breaths·min
-1

). 
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3.2.3. Statistical analysis 

Repeated measures analysis of variance was used to determine if there were any 

differences of statistical significance in ethane output between time points at which 

measurements were made. The assumption of sphericity was examined using Mauchly‟s W 

test. In cases where this assumption was contravened, the Greenhouse-Geisser adjustment 

was applied. Where the analysis of variance indicated at least one significant difference, 

pairwise comparisons, with the application of a Bonferroni adjustment for multiple 

comparisons, revealed the location. 

 

Paired t-tests were used to determine if there was any significant difference between the 

two resting measurements with respect to both ethane concentration and ethane output. In 

addition, Paired t-tests were used to discover any statistically significant differences in 

ethane output and carbon monoxide concentration between rest and peak exercise, in all 

species. Where data did not conform to a normal distribution, a Wilcoxon Signed Ranks 

test was utilised. Normality was tested using the Shapiro-Wilk test. 

 

One-Way analysis of variance was carried out in order to determine if there were any 

statistically significant differences amongst all three species in ethane output at baseline 

and at post-exercise. Initially, a Levene test was used to determine the equality of variance 

between species. Where a significant difference was indicated, and variances were unequal 

between species, a Dunnett‟s C post-hoc test was used to compare mean ethane output at 

the relevant time point for each species. 
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3.3  Results 

 

3.3.1 Human data 

 

3.3.1.1 Subject Characteristics 

Subject characteristics are reported in table 3.1. A mean V O2 peak of 54.6 ml·kg
-1

·min
-1

 

suggested that subjects had a high level of aerobic fitness. All subjects in the group fell 

above the 80
th

 percentile of age-matched counterparts, with a classification of excellent or 

superior maximal aerobic power (American College of Sports Medicine, 2009). 

 

Only one subject attained a true maximal effort in the incremental exercise test according 

to established criteria (Duncan et al., 1997) which are: a change in V O2 not exceeding 

2.1 ml·kg
-1

·min
-1

 with an increase in work rate (i.e. a plateau in V O2); a blood lactate 

concentration of greater than 8 mmol·l
-1

 post-exercise; a respiratory exchange ratio of 

greater than or equal to 1.15; and a peak heart rate of within 10 beats·min
-1

 of age-

predicted maximum heart rate, which is typically estimated as 220 minus age in years (Fox 

& Haskell, 1970; Fox et al., 1980). It was not possible to determine if a plateau in oxygen 

uptake had been attained since only one sample of expired air was collected, and blood 

samples were not obtained post-exercise for the determination of lactate concentration. 

Therefore, only the peak respiratory exchange ratio and peak heart rate were available as 

indicators of true effort. Only one subject achieved both criteria, however, the R value of 

five of the remaining subjects ranged from 1.02 to 1.13 suggesting at least a near maximal 

effort, with three of these subjects also exceeding predicted maximum heart rate. It has 

been noted that variability in R tends to be high (Howley et al., 1995). In any case, a true 

maximal effort was not crucial to the outcome of the study since peak V O2 was measured 



 

Table 3.1. Subject characteristics for study one. 

         Subject Age 

(yr) 

Weight 

(kg) 

Height 

(cm) 

2OV  peak 

(l·min
-1

) 

2OV peak 

(ml·kg
-1

·min
-1

) 

HR peak 

(beats·min
-1

) 

R peak Treadmill speed 

(km·h
-1

) 

         1 27 75.0 177.2 3.8 51.3 197 1.16 12 

2 24 73.0 167.0 3.9 53.3 180 1.13 12 

3 26 82.5 187.0 4.5 55.1 187 1.08 10.5 

4 27 74.2 175.5 4.0 53.9 206 1.06 10.5 

5 22 79.4 177.8 4.4 55.8 178 1.11 12.5 

6 22 64.4 171.5 3.3 51.7 208 1.02 9.5 

7 34 68.6 183.5 4.0 57.6 187 0.96 11 

8 22 90.7 185.4 5.2 58.2 183 0.94 10.5 

Mean  SD 26  4 76.0  8.2 178.1  6.9 4.2  0.6 54.6  2.5 191  12 1.06  0.08 11.1  1.0 

 

HR heart rate; R respiratory exchange ratio; SD standard deviation; V O2 oxygen uptake 
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simply as a descriptor of training status to ensure that subjects could be classed as 

endurance trained for a more meaningful comparison with the equine and canine athletes 

participating in the study. 

 

3.3.1.2 Ambient ethane concentration 

Ambient air was sampled for ethane analysis at the same time points as each expired air 

sample. Mean ambient ethane concentration for each test is shown in table 3.2. Mean 

ambient [C2H6] across all background samples was 185.3 ± 64.9 pmol·l
-1

 (4.2 ± 1.5 ppb) 

with a range of 67.0 pmol·l
-1

 to 325.9 pmol·l
-1

 (1.5 ppb to 7.3 ppb). Ethane concentration is 

expressed as both ppb and pmol.l
-1

 to assist comparison with previous data. 

 

3.3.1.3 Ethane concentration and output at rest 

The two resting expired air samples were corrected for ambient ethane and averaged to 

give a mean resting ethane concentration for each subject. These values were converted to 

ethane output and both sets of data are shown in table 3.3. Ethane output is expressed as 

both pmol·min
-1

 and pmol·kg
-1

·min
-1

 to facilitate comparison with previous literature. 

Paired t-tests showed no significant difference between the two resting samples for ethane 

concentration (t(4) = 0.334; p = 0.755) or for ethane output (t(4) = -0.131; p = 0.902). 

Resting ethane concentration as a mean and standard deviation of all eight subjects was 

72.7 ± 35.8 pmol·l
-1

, and mean resting ethane output was 11.5 ± 9.1 pmol·kg
-1

·min
-1

 (872.1 

± 722.0 pmol·min
-1

). 
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Table 3.2. Mean ambient ethane concentration during each incremental exercise test. 

   Subject [C2H6] 

(ppb) 

[C2H6] 

(pmol·l
-1

) 

   1 5.2 ± 1.0 229.9 ± 45.3 

2 3.5 ± 0.3 154.0 ± 12.4 

3 3.2 ± 0.3 143.2 ± 14.6 

4 2.7 ± 0.3 122.2 ± 13.1 

5 3.6 ± 0.3 159.8 ± 11.5 

6 6.2 ± 0.6 276.8 ± 26.1 

7 2.8 ± 0.6 127.1 ± 26.6 

8 6.0 ± 0.5 269.6 ± 22.2 

 

All values are mean ± standard deviation. 
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Table 3.3. Mean resting ethane concentration and ethane output in each subject prior to 

an incremental exercise test. 

    Subject [C2H6] 

(pmol·l
-1

) 

V C2H6 

(pmol·min
-1

) 
V C2H6 

(pmol·kg
-1

·min
-1

) 

    1 71.9 1002.3 13.4 

2 34.8 237.7 3.3 

3 57.6 613.3 7.4 

4 53.3 496.8 6.7 

5 148.0 2524.3 31.8 

6 83.5 535.1 8.3 

7 89.5 1068.5 15.6 

8 42.9 498.6 5.5 

Mean ± SD 72.7 ± 35.8 872.1 ± 722.0 11.5 ± 9.1 

 

SD standard deviation. 

 

 

3.3.1.4 Ethane output during exercise and recovery 

Figure 3.3 illustrates the pattern of response of ethane output to incremental treadmill 

exercise to volitional exhaustion in all eight subjects. All subjects showed a similar pattern 

during exercise: in general, ethane output rose markedly at the onset of exercise and 

continued to rise as work rate increased, reaching a peak at peak work rate. During 

recovery, ethane output tended to fall sharply at the end of exercise and then return to 

baseline gradually over a 30 minute period. It should be noted that the magnitude of rise in 

ethane output differed between subjects. 
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Figure 3.3. Ethane output prior to, during and following an incremental treadmill test to 

volitional exhaustion in eight subjects. 

Exercise duration was subject dependent and varied from 10 to 14 minutes. The exercise period 

was followed by 6 minutes of active recovery and 24 minutes of passive recovery. The dashed 

vertical lines indicate the onset of incremental exercise, passive recovery and active recovery 

respectively. The number in the top right hand corner of each panel refers to the subject number. 
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Figure 3.4 shows mean ethane output for five subjects at rest, during 14 minutes of 

incremental exercise to exhaustion, during 6 minutes of active recovery and a further 24 

minutes of passive recovery. The data are presented in this way since only five of the eight 

subjects completed 14 minutes of incremental exercise prior to voluntary exhaustion. The 

three remaining subjects completed 8, 10 and 12 minutes of incremental exercise 

respectively. It can be seen from the standard deviations in figure 3.4 that the variability 

was high between individuals; thus, mean ethane output was comparable only between 

time points at which data were available for all subjects. Ethane output rose clearly at the 

first sampling point in exercise, and continued to rise steadily throughout the exercise 

period. A reduction in ethane output occurred immediately following the end of exercise, 

continuing to fall throughout the period of active recovery and returning close to a resting 

value in the passive recovery period. 

 

Repeated measures analysis of variance was carried out to determine if there were any 

significant differences in ethane output between time points. The assumption of sphericity 

was contravened (p = 0.00), thus the Greenhouse-Geisser adjustment was applied (ε = 

0.101). At least one significant difference was indicated between time points (F(1.211, 

2.423) = 24.224; p = 0.026). Post-hoc pairwise comparisons, using the Bonferroni 

adjustment for multiple comparisons, showed that ethane output was significantly different 

between 6 minutes and 12 minutes of exercise (p = 0.032). Thus, although ethane output 

was observed to increase incrementally as work rate increased, and to decrease in a similar 

fashion during recovery, the differences between time points were not significant. The lack 

of significance may have been attributable to the small sample size and the large number of 

multiple comparisons; thus, a Paired t-test was undertaken to determine if there was any 

significant difference between ethane output at rest compared to the initial exercise sample, 

when analysed in isolation. The result of this analysis indicated that ethane output was 

significantly greater at 2 minutes into exercise than at rest (t(4)  = -5.819; p = 0.004). It 



152 

was also of interest to determine at which point ethane output returned to resting levels 

following the onset of recovery. An isolated Paired t-test indicated that ethane output was 

clearly not significantly different from the resting response by 20 minutes into the recovery 

period (t(3)  = -0.326; p = 0.766). 
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Figure 3.4. Mean ethane output during rest, incremental treadmill exercise to volitional 

exhaustion, and active and passive recovery in five subjects. 

Values are mean ± standard deviation of five subjects who completed 14 minutes of incremental 

exercise. The dashed vertical lines indicate the onset of incremental exercise, passive recovery 

and active recovery respectively. * indicates significant difference from value at 6 minutes into 

exercise (p < 0.05). 
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3.3.1.5 Carbon monoxide concentration 

Figure 3.5 shows carbon monoxide concentration prior to and following the exercise test 

for each subject. Each data point is the mean of two measurements. There was a tendency 

for [CO] to decline or to remain stable over the course of the exercise. Figure 3.6 shows 

mean and standard deviation of [CO] at baseline (2.0 ± 0.5 ppm) and at post-exercise (1.6 

± 0.4 ppm). A Wilcoxon Signed Ranks test indicated that the small decrease in [CO] was 

not significant (Z = -1.857; p = 0.063). 

 

Baseline Post-exercise
0.5

1.0

1.5

2.0

2.5

3.0

3.5

[C
O

] 
(p

p
m

)

Figure 3.5. Carbon monoxide concentration at baseline and following an incremental 

treadmill run to exhaustion in eight subjects. 
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Figure 3.6. Mean carbon monoxide concentration at baseline and following an incremental 

treadmill run to exhaustion in eight subjects. 

 

 

3.3.2 Comparative data 

 

3.3.2.1 Ethane output 

Figure 3.7 shows responses at baseline and following maximal exercise for each individual 

subject in all three species. Data are reported from eight of the twelve racehorses. Two data 

sets were discarded due to possible erroneous estimation of the breathing frequency in two 

animals post-exercise, which resulted in unexpectedly low estimated minute ventilation. 

Breathing frequency post-exercise in these animals was 24 and 28 breaths.min
-1

, whereas 

the mean frequency for the other horses was 45 breaths.min
-1

. Breathing frequency at rest 

was similar in all horses. Since ethane output is a function of minute ventilation (see 
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section 3.2.1.4.3, page 139), the data were discarded as unreliable. The remaining two data 

sets were discarded due to the measurement of ambient ethane concentration as greater 

than expired air concentration in the resting samples. Similarly, two data sets from the 

canine athletes were discarded due to higher ambient than expired ethane at the post-

exercise time point. Thus, data from ten greyhounds are reported. 

 

Examination of figure 3.7 indicates that the variability in equine data was lower than in 

greyhounds or in humans; the horses responded in a similar fashion to the exercise stress, 

with the exception of a substantially greater post-exercise response in one horse. Indeed, 

when this animal‟s exercise response was omitted from the data set, the mean and standard 

deviation of the equine data were markedly reduced from 23.4 ± 19.5 pmol·kg
-1

·min
-1

 to 

16.6 ± 2.9 pmol·kg
-1

·min
-1

. 
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Figure 3.7. Ethane output at baseline and post-exercise for all individual equine, canine 

and human subjects. 
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An inter-species comparison of mean ethane output at baseline and following maximal 

exercise is shown in figure 3.8. Mean ethane output at baseline, standardised for body 

weight, was low in all three species. Values for mean and standard deviation were as 

follows: 5.1 ± 2.7 pmol·kg
-1

·min
-1

 in equine subjects; 18.1 ± 13.2 pmol·kg
-1

·min
-1

 in 

canine subjects; and 11.5 ± 9.1 pmol·kg
-1

·min
-1

 in human subjects. One-way analysis of 

variance indicated at least one significant difference was present in mean baseline ethane 

output amongst the three species (F(2, 23) = 3.927; p = 0.034). A Dunnett‟s C post-hoc test 

confirmed that mean baseline ethane output was higher in canine subjects than in equine 

subjects (p < 0.05). 

 

Mean ethane output increased significantly in all three species following maximal exercise, 

as indicated in figure 3.8 A Paired t-test showed that the increase in ethane output was 

significant in canine subjects (t(9) = -4.433; p = 0.002). Both equine and human data did 

not conform to a normal distribution and a Wilcoxon Signed Ranks test was undertaken in 

both cases. The increase in ethane output from baseline to post-exercise in horses was 

shown to be significant (Z = -2.521; p = 0.012). The data were analysed again with the 

outlying value described in section 3.3.2.1 (page 154) omitted. In this case the data 

conformed to a normal distribution and a Paired t-test was carried out; however, the 

increase in ethane output from baseline to post-exercise was still shown to be significant 

(t(6) = -14.986; p = 0.000). The increase in ethane output from baseline to maximal 

exercise was significant in the human subjects (Z = -2.521; p = 0.012). 

 

The mean percentage increase in ethane output was greatest in canine athletes by a 

substantial margin (equine: 491 % increase; canine: 2317 % increase; human: 1902 % 

increase). Post-exercise values for mean and standard deviation were as follows: 23.4 ± 

19.5 pmol·kg
-1

·min
-1

 in equine subjects (16.6 ± 2.9 pmol·kg
-1

·min
-1

 omitting outlying 

value); 346.8 ± 245.7 pmol·kg
-1

·min
-1

 in canine subjects; and 178.8 ± 72.9 pmol·kg
-1

·min
-1
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in human subjects. One-way analysis of variance indicated at least one significant 

difference was present in mean post-exercise ethane output amongst the three species 

(F(2, 23) = 9.233; p = 0.001). A Dunnett‟s C post-hoc test confirmed that mean post-

exercise ethane output in equine subjects was significantly different from both canine and 

human subjects (p < 0.05); however, there was no difference between canine and human 

subjects. 
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Figure 3.8. Inter-species comparison of ethane output at baseline and following maximal 

exercise. 

Values are mean  standard deviation. Post-exercise samples were taken immediately following 

the cessation of exercise in human and canine subjects, and approximately 10 minutes following 

exercise in equine subjects. * denotes significant difference from baseline to post-exercise within 

each species; # denotes significant difference in baseline ethane output from all other species; 

† denotes significant difference in post-exercise ethane output from all other species. 
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3.3.2.2 Carbon monoxide concentration 

Resting [CO] was measured at 1 ppm in three horses and three dogs; however CO 

concentration was below detectable limits in all animals post-exercise. 
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3.4  Discussion 

 

3.4.1 Human data 

 

3.4.1.1 Ambient ethane concentration 

Ethane concentration in ambient and expired air samples was measured using a novel laser 

spectroscopy technique, as described previously (section 2.3.3, page 112; section 3.1.1.3, 

page 123). The range of ambient ethane concentrations recorded in the current study was 

67.0 to 325.9 pmol·l
-1 

(1.5 ppb to 7.3 ppb), with a mean and standard deviation of 185.3 ± 

64.9 pmol·l
-1

 (4.2 ± 1.5 ppb). These values compare favourably with previously reported 

ambient ethane concentrations of approximately 1.5 ppb, 5 ppb (Wyse et al., 2005a), and 

2.3 ppb (Skeldon et al., 2005), using the laser spectroscopy technique. 

 

Ambient ethane concentration in the current study also fell within the range of values of 68 

to 726 pmol·l
-1

 reported previously by authors using gas chromatography as a 

measurement technique (Dumelin et al., 1978; Knutson et al., 1999; Sexton & Westberg, 

1984). The similarity in ambient ethane concentration with previous studies gives some 

confidence in the comparability of techniques.  

 

Ethane is present in the atmosphere from sources such as car exhaust emissions and 

cigarette smoke, and ethane concentration can often be higher in the ambient air than in the 

expired air (Knutson et al., 1999). For this reason, it is important to consider the ambient 

concentration in the testing environment in order to minimise the possibility of 

contaminating expired air samples with exogenous ethane. Subjects rested in the laboratory 

for at least 30 minutes prior to collection of the first expired air sample in order to allow 

sufficient time for equilibration with ambient ethane (see section 2.3.2.4.1, page 109). 
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Ambient ethane concentration was greater than expired ethane concentration in only one of 

the ninety samples collected from human subjects in the current study; ambient 

concentration was not notably greater than the previous or subsequent samples, rather, the 

expired air ethane concentration was spuriously low. It has been suggested that the 

technique of subtracting ambient from expired ethane concentration in order to correct for 

the ethane content of ambient air may be prone to error due to potentially rapid variation in 

ambient concentration (Knutson et al., 2000). However, in the current study, ambient 

ethane concentration remained fairly steady throughout each test, as can be seen from the 

magnitude of the standard deviations in table 3.2. Thus, the potential for contamination 

appeared to be minimal in this testing environment. 

 

3.4.1.2 Ethane concentration and output at rest 

Two expired air samples were collected at rest, and the resting value for ethane 

concentration and for ethane output was expressed as an average of the two measurements. 

There was no significant difference between the two resting samples for either variable, 

suggesting some reproducibility of measurement. 

 

Mean expired ethane concentration at rest was 72.7 ± 35.8 pmol·l
-1

. This was somewhat 

higher than values of 10.4 to 50 pmol·l
-1

 reported in previous studies (Knutson et al., 1999; 

Zarling & Clapper, 1987). There was one spuriously high value in subject 5; however, 

even with this value omitted, the mean ethane concentration at rest of 61.9 ± 20.5 pmol·l
-1

 

was still higher than the previously reported range. 

 

Mean resting ethane output of 872.1 ± 722.0 pmol·min
-1

 was substantially higher than 

previously reported values of approximately 85 pmol·min
-1

 in healthy individuals (Leaf et 

al., 1997), and approximately 45 pmol·min
-1

 and approximately 75 pmol·min
-1

 in two 

groups of patients with coronary artery disease (Leaf et al., 1999). One other study by the 
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same group of authors (Leaf et al., 2004) reported resting ethane output in a control group 

of individuals, all of whom had hypertension or diabetes mellitus, as 250158 pmol·min
-1

. 

Examination of the raw data showed that this was the mean of only four individuals, one of 

whom had an extremely high resting ethane output of 1634000 pmol·min
-1

. Omitting this 

outlying value and recalculating the mean still gave a very high mean resting ethane output 

of 39035 pmol·min
-1

. As noted earlier (section 3.1.2.1, page 125) confidence in these data 

are low, since the authors did not comment on the striking difference in these values to 

those they had measured previously utilising the same techniques (Leaf et al., 1997, 1999). 

In addition, there was no mention in any of the three studies from Leaf and colleagues of 

correction for ambient ethane concentration, and the nomenclature within each paper 

lacked clarity leading to some confusion as to whether values reported were of ethane 

concentration or ethane output. 

 

Expired ethane output at rest, from non-exercise studies which have utilised well-

documented methodology, has varied from a mean of 0.3 to 3.0 pmol·kg
-1

·min
-1

 (Knutson 

et al., 1999). Again, the mean and standard deviation of 11.5 ± 9.1 pmol·kg
-1

·min
-1

, as 

recorded in the current study, was substantially higher. 

 

Ethane output is a function of ethane concentration and minute ventilation. Examination of 

the raw data showed that minute ventilation at rest was higher than expected in subject 5, 

with a mean of 24.2 l·min
-1

. Mean (and standard deviation) minute ventilation for all other 

subjects was 10.8 ± 2.8 l·min
-1

. Subject 5 had no previous experience with breathing using 

a mouthpiece and nose clip, and despite extensive familiarisation prior to collection of the 

first resting sample, it appears that hyperventilation was present. Omitting the resting 

ethane output value for this subject gave a mean resting ethane output from the current 

study of 8.6 ± 4.4 pmol·kg
-1

·min
-1

. This value was still higher than expected in relation to 

previous literature. 
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It is unlikely that this discrepancy was due to the measurement technique, since ambient 

ethane concentration measured by laser spectroscopy was within the expected range. In 

addition, it has been reported that ethane concentration measured by the laser spectroscopy 

technique is accurate to within 10 % of certified ethane standards (Skeldon et al., 2006). It 

may be that the differences noted are simply due to high inter-individual variability, which 

is a common feature of ethane measurement (Thekedar et al., 2009). The variation in 

resting ethane concentration and ethane output between individuals in the current study 

was notable, as can be seen from the large standard deviations in table 3.3, and high 

variability has been reported in previous studies (Kneepkens et al., 1999). This variability 

has been proposed to be influenced by factors such as antioxidant status and training status 

(Leaf et al., 1999). The current study is the first to measure ethane concentration and 

output at rest in endurance trained individuals. There is some evidence to suggest that the 

antioxidant enzyme status of skeletal muscle may be upregulated by endurance training 

(Gomez-Cabrera et al., 2008b; Powers & Lennon, 1999). However, if this was the case, 

trained individuals might be expected to show lower ethane concentration and output than 

untrained individuals, although studies have not equivocally shown reduced oxidative 

stress, measured by alternative markers, following a period of training (Vollaard et al., 

2005). With the exception of ensuring that subjects were not currently taking any 

antioxidant supplementation, nutritional status was not controlled in the current study, 

since only one visit to the laboratory was required,. Further investigation of the variability 

in resting ethane would be warranted. 
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3.4.1.3 Ethane output during exercise 

Several studies have measured oxidative stress immediately following incremental exercise 

to exhaustion, and for up to 24 hours during recovery (Vollaard et al., 2005). However, it 

has been indicated that free radical production may decrease rapidly within 1-2 minutes 

following the cessation of muscle contraction (O‟Neill et al., 1996) suggesting that it may 

be of value to measure oxidative stress during exercise as well. 

 

Very few studies have investigated ethane output during dynamic exercise (Leaf et al.., 

1997, 1999, 2004), and those which have, have reported values only at peak exercise 

following incremental treadmill exercise to exhaustion, and at lactate threshold. The results 

of the current study confirmed previous findings that oxidative stress, as measured by 

ethane output, is significantly increased at peak exercise from the resting value. Mean 

ethane output at peak exercise in the current study was 13603.1 ± 5783.9 pmol·min
-1

. This 

mean value was substantially higher than the 2400 pmol·min
-1

 reported at peak treadmill 

exercise in healthy, untrained individuals by Leaf and colleagues (1997). This is 

unsurprising since resting ethane output was substantially higher in the current study. In 

addition, the subjects in the current study were trained individuals, and therefore, are likely 

to have exercised to a greater absolute work rate than untrained individuals. Thus, this 

study extends the finding of a significant rise in ethane output at peak exercise to a sample 

of trained individuals. A significant rise in lipid peroxidation at peak exercise has been 

reported previously in trained individuals using alternative markers (Vollaard et al., 2005). 

 

No previous study has measured oxidative stress throughout a period of incremental 

exercise. In the current study, ethane output was measured at two minute intervals 

throughout the entire exercise period. The rise in ethane output above the resting value was 

shown to be not significant at any time point using Repeated measures analysis of 
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variance; however, an isolated Paired t-test suggested that ethane output was significantly 

increased as early as 2 minutes into the period of incremental exercise. 

 

The pattern of response of ethane output during exercise has not been reported before. A 

trend for ethane output to increase as work rate increased was seen, although the increase 

in ethane output was not significant at each subsequent time point. This may have been due 

to the relatively small sample size, but it may have been that the increase in work rate at 

each time point was insufficient to trigger more than a small, insignificant increase in lipid 

peroxidation. 

 

3.4.1.4 Ethane output during recovery 

Ethane output was measured at 2 minutes, 4 minutes and 6 minutes of active recovery 

during which the subject walked comfortably on the treadmill. Further measurements were 

made at 20 minutes and 30 minutes into the recovery period during which the subject was 

seated comfortably in a chair. The ethane output response fell on termination of exercise 

and returned to a resting value by 20 minutes into the recovery period. Statistically it was 

unclear if the response could have reached a resting value earlier in the recovery period. A 

larger sample size could perhaps have delineated this more clearly. 

 

Only one previous study has used ethane output as a means of assessment of lipid 

peroxidation following an incremental exercise test to exhaustion in healthy individuals 

(Leaf et al., 1997). Ethane output was highest at peak exercise and was still significantly 

elevated above the resting response at 5 minutes into the recovery period. It was stated that 

this was a “resting-recovery” period which would suggest that subjects did not undertake 

an active cool down from maximal exercise. This is a rather unconventional design, since a 

cool down period is advised to minimise risk of venous pooling following strenuous 

exercise (American College of Sports Medicine, 2009). However, this pattern of a 
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reduction in ethane output following peak exercise was similar to the current study. Other 

studies have utilised invasive markers of lipid peroxidation during the first 30 minutes of 

recovery from an incremental exercise test to exhaustion (Jammes et al., 2004, 2005; 

Steinberg et al., 2006; Vider et al., 2001b). One study made only one measurement during 

the recovery period, at 30 minutes following the end of exhaustive exercise, and the 

response had returned to resting level by this time (Vider et al., 2001b). Three studies by 

the same group (Jammes et al., 2004, 2005; Steinberg et al., 2006) reported that the peak 

lipid peroxidation response occurred 5 minutes (Jammes et al., 2004; Steinberg et al., 

2006) or 10 minutes (Jammes et al., 2005) into the recovery period, rather than at peak 

exercise. It is possible that this could have been influenced by a delay in lipid peroxidation 

products entering the circulation from the working muscles, along with transit time to the 

site of blood collection. In all three studies, the response was still elevated above the 

resting response at 20 minutes (Steinberg et al., 2006) and 30 minutes (Jammes et al., 

2004, 2005) into the recovery period. Thus, the current study provides support for some 

aspects of previous findings; however, overall, there is no agreement between studies with 

regard to the timing of the oxidative stress response. 

 

3.4.2 Comparative data 

 

3.4.2.1 Ethane output 

The results demonstrated an increased oxidative stress following maximal exercise in all 

three species, as measured by expired ethane. This is the first time that oxidative stress has 

been measured in relation to exercise using this technique in any species, and the first time 

that oxidative stress has been measured non-invasively in horses and dogs. These data 

support the previous literature which has reported exercise-induced oxidative stress in all 

three species measured using plasma markers of lipid peroxidation (Chiaradia et al., 1998; 

Jammes et al., 2004, 2005; Marshall et al., 2002; Steinberg et al., 2006; White et al., 
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2001). A straightforward comparison between species cannot be made since exercise by 

the horses and dogs was undertaken in the field, and thus was not well quantified. In 

addition, the expired air measurements in the horses were collected 10 minutes following 

the end of exercise. Results from the current study, related to the recovery period in 

humans, have suggested that ethane output falls rapidly on cessation of exercise, and 

therefore, it is unsurprising that the post-exercise increase in ethane output was lowest in 

the equine athlete. This may also help to explain the lower variability seen between 

individual horses in comparison to that seen in the other species. Furthermore, since 

minute ventilation had to be estimated in both horses and dogs, errors in true ethane output 

in both species were expected. 

 

3.4.2.2 Carbon monoxide concentration 

Carbon monoxide concentration in the breath was measured at pre- and post-exercise in all 

three species. Carbon monoxide concentration at rest in human subjects was similar to that 

measured previously in healthy human subjects (Horváth et al., 1998, 1999; Paredi et al., 

1999; Zayasu et al., 1997). A recent study measured resting [CO] in horses with 

respiratory inflammation and found similar values to those reported in the healthy equine 

subjects in the current study (Wyse et al., 2005a). Since both studies utilised the same 

measurement procedure, this suggests that carbon monoxide measurement may not be 

useful for the detection of respiratory inflammation in the horse. 

 

The somewhat higher resting carbon monoxide concentration in the breath of the human 

subjects in the current study was likely due to the difference in measurement procedures. 

Human subjects were asked to perform a 15 second breath-holding manoeuvre prior to 

exhaling into the carbon monoxide monitor. This procedure is common in carbon 

monoxide measurement in humans (Horváth et al., 1999; Irving et al., 1988); however, is 

not possible in animals. 
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Carbon monoxide concentration tended to remain stable or decrease marginally from rest 

to post-exercise in human subjects; however, no significant difference was shown. There 

was also a suggestion of a reduction in [CO] in horses and dogs, as mean resting 

concentration was 1 ppm, and post-exercise concentration was below detectable limits in 

all animals. Carbon monoxide measurement in human and equine subjects did not take 

place immediately following exercise, but rather 20 minutes and 30 minutes after the end 

of maximal exercise in human subjects, and 10 minutes after the end of exercise in equine 

subjects; thus, it is possible that any increase in [CO] is transient and may have returned to 

resting values in these species by the time measurements were made. One previous study 

measured [CO] following exercise in children with cystic fibrosis and in healthy control 

subjects (Horváth et al., 1999). The authors reported a decrease in [CO] in both groups 

immediately following incremental cycle ergometer exercise to a symptom limited 

maximum, thus supporting the current findings. The expected rise in [CO] following 

maximal exercise did not occur. It may be that the exercise stimulus was not sufficient to 

promote upregulation of HO-1 and a consequent increase in CO production. An increase in 

HO-1 has been reported following a half-marathon performance (Fehrenbach et al., 2003) 

and a prolonged treadmill run (Thompson et al., 2005) in human subjects; however, short 

duration incremental treadmill exercise had no effect on HO-1 (Fehrenbach et al., 2003). It 

is possible that any increase in CO may have been localised to the working skeletal muscle 

and may not have been detectable at the lung at sufficient concentration at the time of 

measurement. 

 

Carbon monoxide concentration may not be a suitable indicator of lipid peroxidation in 

any of the three species under investigation. However, it would be of interest to investigate 

carbon monoxide concentration in human subjects immediately following exercise to 

determine if there is any influence of time on the measurement. 
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3.4.3 Limitations and further work 

The small sample size has already been alluded to as a limitation in this study, making it 

difficult to achieve statistical power, and obscuring clarity in cases where a statistical 

difference was not found. This was due, in part, to the varying duration of incremental 

exercise amongst individuals. This was unavoidable since exhaustive exercise tests 

naturally vary in duration amongst individuals of varying aerobic capacity. 

 

The design of the exercise protocol in the current study was limited to some extent. It 

fulfilled the requirements of the study, in that a treadmill protocol was necessary in order 

to standardise the mode of exercise to running to make comparisons amongst species 

possible. However, it did not allow measurement of oxidative stress throughout the entire 

work rate range from rest to maximal exercise since the initial work rate on the treadmill 

corresponded to a heart rate of approximately 150 beats·min
-1

. It is more difficult to 

standardise increments in work rate on the treadmill, in comparison to the cycle ergometer, 

due to individual differences in running style, and since the transition from walking to 

running must be taken into account (Wasserman et al., 2004). In order to eliminate this 

constraint, a further study was undertaken utilising a cycle ergometer protocol during 

which oxidative stress was measured throughout the entire work rate range from rest to 

exhaustion (see Chapter 5). 

 

The results of the current study suggest that lipid peroxidation, as measured by ethane 

output, increases as work rate increases. However, it is not known to what extent the 

duration of exercise may also have an influence. Each successive work rate was performed 

for 2 minutes, immediately following the previous work rate; however it is unknown how 

much of the response to subsequent work rates may have been due to a cumulative effect 

of the exercise at preceding work rates. It was not possible to investigate this potential 

effect of exercise duration within the design of the current study, and it is planned to 
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address this issue in a later study by investigation of the time course of the oxidative stress 

response (see Chapter 5). 

 

Further work could focus on the validation of oxidative stress as assessed by expired 

ethane measured by laser spectroscopy against more traditional plasma markers of 

oxidative stress. It has been suggested that, since there is no “gold standard” technique 

available for the assessment of oxidative stress, more than one plasma marker should be 

used in any investigation (Halliwell & Gutteridge, 1999). However, the use of ethane as a 

marker of oxidative stress has not yet been validated against any plasma marker in vivo 

(Kneepkens et al., 1994). 

 

3.5  Conclusions 

The results of this study demonstrate that oxidative stress can be assessed by expired 

ethane in exercising humans, horses and dogs using the novel technique of ultra-sensitive 

laser spectroscopy. The previous finding of an increased oxidative stress at peak exercise 

was confirmed in a trained population. The pattern of response during incremental 

treadmill exercise to volitional exhaustion was characterised for the first time. Oxidative 

stress was shown to increase as early as 2 minutes following the onset of exercise, and 

continued to increase as work rate increased during this mode of exercise until exhaustion. 

The response peaked at maximal exercise and fell rapidly on recovery, reaching resting 

values by 20 minutes into the recovery period. Carbon monoxide does not appear to be a 

viable marker of exercise-induced oxidative stress in any of the species under 

investigation. 
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Chapter 4 

 

Pilot tests investigating real-time ethane measurement 
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4.1 Introduction 

It has been suggested that the laser spectroscopy technique described by Gibson and 

colleagues (2002) may be utilised for the real-time measurement of ethane concentration in 

the expired air. These authors reported results from a test in which four subjects, two 

smokers and two non-smokers breathed directly into the laser spectrometer over a period 

of approximately 15 s and recorded the ethane concentration over that period of time. The 

recording from the smokers showed a sharp increase in ethane after an initial delay, 

presumably due to the time taken for the expired air to reach the measurement cell within 

the instrument. Dahnke and colleagues (2001) utilised a similar design to demonstrate the 

gradual reduction in expired ethane concentration in one subject after smoking a cigarette. 

Expired air samples were collected into gas-impermeable bags approximately every 30 

minutes for 4 hours. Therefore, the time course of ethane exhalation could be determined, 

although the samples were collected and analysed following the experiment, and time 

intervals between samples were long. A later study by the same group (von Basum et al., 

2003) reported data from three subjects who were asked to inhale and exhale directly into 

the spectrometer. A tracing of real-time ethane concentration was displayed, although 

subjects were asked to adhere to a pre-specified breathing pattern. 

 

Real-time measurement of ethane has not been applied previously to exercise. An earlier 

study (Wyse et al., 2005b), reported in the preceding chapter, reported a gradual increase 

in ethane output throughout incremental exercise to exhaustion by collecting data at 

discrete time points throughout the exercise. Real-time measurement of ethane output 

would constitute a useful extension to this work by allowing an extremely high density of 

data collection and substantial improvement in characterisation of the time course of the 

oxidative stress response during exercise. Thus, it was proposed to undertake pilot tests to 

determine if real-time ethane spectroscopy could be developed for use during exercise. The 
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specific aims of these pilot tests were to develop measurement procedures and analysis 

techniques. 

 

4.2  Zero calibration tests 

 

4.2.1 Rationale 

The spectrometer had been utilised previously for the measurement of ethane in single, 

discrete samples of expired air introduced to the inlet port of the spectrometer, but never 

for the continuous measurement of ethane in expired air over a prolonged duration. Thus, 

the initial two pilot tests were undertaken to determine if a useful output could be recorded 

from the spectrometer under its normal operating conditions which include a regular zero 

calibration using hydrocarbon-free nitrogen as described in section 2.3.3 (page 112). 

 

4.2.2 Methods 

 

4.2.2.1 Subjects 

Subjects were two young, healthy males. Both individuals had been regularly active for at 

least eight weeks prior to participation as determined by the physical activity questionnaire 

shown in Appendix A.5, and adhered to the exclusion criteria described in section 2.1.1 

(page 95). Subjects were medically screened for abnormalities in resting electrocardiogram 

(ECG) and blood pressure prior to participation in order to ensure suitability for maximal 

aerobic exercise. 
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4.2.2.2 Test protocol 

Each subject was familiarised with all equipment prior to the test as described in section 

2.2.2 (page 97). The test protocol consisted of incremental exercise to voluntary exhaustion 

on a mechanically-braked cycle ergometer (Monark 828E, Vansbro, Sweden). The cycle 

ergometer was chosen as the mode of exercise since the location of testing was required to 

be the laboratory housing the laser spectrometer, thus the treadmill was not a viable option. 

Subjects rested whilst seated on the cycle ergometer prior to the start of exercise for 4 

minutes, or until resting respiratory responses were stable and within the following ranges: 

V E of 5-10 l·min
-1

; R of 0.7-0.9; and PETCO2 of 37-43 mmHg. Subjects began by pedaling 

at a steady, comfortable cadence against an unloaded flywheel for 4 minutes. They were 

then asked to increase the cadence as quickly as possible to 60 rev·min
-1

 and were asked to 

maintain this cadence throughout the test. Work rate was incremented at 15 W·min
-1

 until 

the subject was no longer able to maintain the required cadence. At this point, the flywheel 

was rapidly unloaded and the subject was allowed to cool down at a slow and comfortable 

cadence for a recovery period of 6 minutes. 

 

4.2.2.3 Measurements 

 

4.2.2.3.1 Respired air measurements 

Respired air measurements including ventilation ( V E), breathing frequency (Bf) and end-

tidal oxygen (PETO2) and carbon dioxide (PETCO2) were made using a portable breath by 

breath metabolic cart (Jaeger Oxycon Mobile, Viasys Healthcare, Hoechberg, Germany). 

 

A schematic representation of the breathing assembly used for real-time testing is shown in 

figure 4.1. The subject wore a nose-clip and breathed through a mouthpiece which was 

connected to the measuring sensor of the Oxycon Mobile. The measuring sensor housed a 

volume sensor which was connected by cable to a measuring unit. The lightweight 
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measuring unit was connected to a transmitter, both of which were fixed to a harness worn 

over the subject‟s shoulders like a rucksack. The measuring unit contained oxygen and 

carbon dioxide sensors; this was connected to the measuring sensor at the subject‟s mouth 

by a gas sample line. Data were transmitted from the transmitter to the base unit of the 

system by telemetry. The base unit was connected to a laptop computer (Hewlett-Packard 

zt3000, Berkshire, UK). 

 

The measuring sensor was connected to a two-way non-rebreathing valve (Hans Rudolph 

2700, Kansas City, USA) by a short piece of rubber tubing. The subject wore a head-

support (Hans Rudolph 2726, Kansas City, USA) to bear the weight of the breathing 

assembly. 

 

The metabolic cart was calibrated prior to each use according to the manufacturer‟s 

instructions. This consisted of an automatic volume calibration in which flow rates of 0.2 

and 2 l·s
-1

 were measured. The gas sensors were calibrated using a gas mixture of 5 % 

CO2, 16 % O2 with a balance of N2, and with ambient air. In addition, the delay time 

between mouth and gas sensors was determined as part of the calibration procedure. 

 

4.2.2.3.2 Heart rate measurement 

Heart rate was measured throughout each test using a portable heart rate monitor (Polar 

Favor, Polar Electro Oy, Kempele, Finland). 
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Figure 4.1. Schematic representation of breathing assembly for real-time measurement of 

ethane output. 

Components are not drawn to scale. 
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4.2.2.3.3 Ethane sampling procedures 

Expired air for sampling ethane was drawn continuously into the laser spectrometer from a 

sample line connected to the breathing valve as shown in figure 4.1. The spectrometer was 

initially set up to sample the expired air continuously with a check of the zero reading with 

a gas mixture containing less than 0.1 ppb of ethane at intervals of 78 seconds. The tubing 

for capture of expired air shown in figure 4.1 was not used in the first two pilot tests. 

 

4.2.2.4 Analysis 

 

4.2.2.4.1 Data editing 

Prior to determination of peak oxygen uptake and estimation of the lactate threshold, 

ventilatory and pulmonary gas exchange variables were edited to remove any breaths 

which were uncharacteristic of the underlying physiological response. This can occur due 

to the subject voluntarily taking an atypical breath, or due to a mis-triggering by the 

computer software. For example, if the subject were to swallow or cough during a breath, 

the software may interpret this as two breaths rather than one. These instances were found 

by examining plots of Bf, PETO2 and PETCO2 versus time and any clearly atypical breaths 

were removed from the data set. Subsequently, V E, V O2 and V CO2 were each plotted 

against time. The response to each phase of the test: rest, unloaded pedaling, incremental 

exercise and recovery, was fitted with a regression line and prediction bands were added. It 

has been established that the noise associated with breath by breath measurement of 

ventilatory variables follows a normal distribution (Lamarra et al., 1987), and, therefore, 

any data points lying outwith four standard deviations of the mean response were also 

removed from the data set since these were highly unlikely to be part of the underlying 

physiological response. 
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4.2.2.4.2 Determination of peak oxygen uptake 

Oxygen uptake ( V O2), carbon dioxide output (V CO2) and respiratory exchange ratio (R) 

were calculated according to equations 3.1 to 3.7 (pages 137-139). Peak oxygen uptake 

was recorded as the mean oxygen uptake over the final 10 s of incremental exercise. 

 

4.2.2.4.3 Estimation of lactate threshold 

Lactate threshold was estimated according to the V-slope method of Beaver and colleagues 

(1986) in association with other relevant ventilatory and pulmonary gas exchange variables 

(Whipp et al., 1986). This method is based upon the production of non-metabolic CO2 

from the following reactions, which occur as lactic acid (HLa) is produced, dissociates into 

the lactate anion (La
-
) and a proton (H

+
), which is buffered by sodium bicarbonate in the 

muscle, or potassium bicarbonate in the blood. 

 

HLa  →  La
-
  +  H

+
                [4.1] 

 

H
+
  +  HCO3

-
  →  H2CO3  →  CO2  +  H2O            [4.2] 

 

The result of this is that, as V O2 continues to increase with increasing work rate during 

incremental exercise, the relationship between V O2 and V CO2 is altered such that V CO2 

begins to increase proportionately more than V O2. The point at which this occurs, the 

estimated lactate threshold ( L̂ ) can be ascertained from a plot of V CO2 versus V O2. 

 

The increased V CO2 triggers a concomitant and proportional increase in V E, however this 

increase in V E will be out of proportion to V O2, such that the ventilatory equivalent for 

CO2 ( V E/ V CO2) will remain stable immediately above the lactate threshold, whilst the 

ventilatory equivalent for O2 (V E/ V O2) will rise. Similarly, an increase would be expected 
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in PETO2 but not in PETCO2 at the lactate threshold. The presence of these relationships 

can be used to check that the response under examination is, in fact, the lactate threshold, 

rather than a non-specific hyperventilation due to, for example, subject anxiety. 

 

4.2.2.4.4 Determination of peak heart rate 

Peak heart rate was determined as the mean heart rate recorded over the final 10 s of 

incremental exercise. 

 

4.2.2.4.5 Ethane analysis 

The output from the spectrometer consisted of ethane concentration measured in parts per 

billion at each sampling time point; sampling occurred at 1.1 second intervals. Figure 4.2 

illustrates a typical example of the raw ethane concentration signal from the spectrometer, 

in which expired air was sampled throughout the testing period, with the exception of a 12 

second period at intervals of 78 seconds during which the zero calibration of the 

spectrometer was checked. Data were edited for any unusual ethane responses, for 

example, at approximately 820 seconds in figure 4.2. Examination of the response pattern 

over a shorter time interval, as shown in figure 4.3, indicated the approximate stabilisation 

of the ethane concentration around 0 ppb during these calibration check periods. The mean 

zero reading at each calibration point was calculated by examining the plot constructed for 

each calibration period and calculating a mean of the points closely clustered about the 

nadir. Mean minute ventilation was calculated for each expired air sampling period and, 

subsequently, mean expired ethane output was calculated, according to equations 3.8 and 

3.10 (page 140). This pattern of analysis was reproduced for pilot test two which shared 

the same sampling procedure. 
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Figure 4.2. Real-time raw ethane concentration signal from the spectrometer before and 

during incremental exercise to exhaustion in one male subject (pilot test one). 

Sampling pattern shows expired air sampling interspersed with verification of the zero reading of 

the spectrometer. The dashed vertical lines indicate the onset of unloaded pedaling and 

incremental exercise respectively. 
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Figure 4.3. Real-time raw ethane concentration signal during an incremental exercise test 

to exhaustion in one male subject (pilot test one). 

The data have been truncated to show a short time period of the response to emphasise the effect 

of zeroing of the spectrometer. 

 

 

4.2.3 Results 

 

4.2.3.1 Subject characteristics 

Subject characteristics are displayed in table 4.1. Subjects were young, healthy males with 

a mean age of 24  3 yr and a mean body mass of 73.5  12.8 kg (mean  standard 

deviation). Mean V O2 peak, estimated lactate threshold and peak heart rate were recorded 

for one subject only since the test for the other subject had to be terminated prematurely 

due to failure of the battery in the portable metabolic cart. This could not be replaced in 

time to continue recording data prior to the end of the incremental phase of the test. 
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However, the attainment of a true maximum effort was not the primary aim of these tests 

and peak data have been included for the purposes of subject description only. 

 

4.2.3.2 Zero calibration measurement 

A typical raw ethane concentration signal is shown in figure 4.2, and the fall in ethane 

concentration to around 0 ppb at regular intervals can be seen clearly. Analysis of the raw 

data indicated that the mean response to zeroing of the spectrometer was -0.1  ± 0.2 ppb in 

pilot test one and 0.0 ± 0.3 ppb in pilot test two (mean ± standard deviation), suggesting 

that the zero calibration was adequate under these testing circumstances. 

 

4.2.3.3 Ethane concentration response 

Ethane concentration and ethane output in response to the exercise stimulus in both tests 

are reported, however, it must be noted that no measurement of ambient ethane 

concentration was undertaken in the initial two pilot tests, therefore the data cannot be 

compared to previous or future data. The data are reported as an indicator of the pattern of 

response, since in previous tests, ambient ethane has been shown to be quite consistent 

throughout the testing period as reported in section 3.3.1.2 (page 147). 

 

Figure 4.4 shows post-analysis mean ethane concentration from pilot tests one and two. It 

can be seen that ethane concentration in the expired air varied little between the different 

phases of the test: rest; unloaded exercise; incremental exercise; and recovery. Pilot test 

one was terminated prior to attainment of voluntary exhaustion due to failure of the battery 

in the portable metabolic cart and, therefore, no data for the recovery phase were available. 

A similar pattern was seen in pilot test two. 
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4.2.3.4 Ethane output response 

Figure 4.5 shows post-analysis ethane output from pilot tests one and two. There was 

evidence of a small rise in ethane output during rest and at unloaded pedalling, however, in 

general, the response remained low and fairly stable during both conditions. In incremental 

exercise, ethane output began to rise more evidently as work rate increased. In test two 

(figure 4.5; bottom panel) ethane output increased as work rate increased during 

incremental exercise, and began to rise more steeply at approximately 1000 s into the test. 

This reflected the pattern of change in ventilation following lactate threshold. The 

estimated lactate threshold of this subject was 1.9 l∙min
-1

, which occurred at approximately 

1000 s into the test. In pilot test one, a more rapid rise in ethane output was not seen, 

however, this test had to terminated prematurely due to equipment failure. A glance at the 

two plots in figure 4.5 shows a difference in the scale of the rise in ethane output. In the 

first test, ethane output rose to approximately 30 pmol∙kg
-1

∙min
-1

 at test termination, whilst 

the peak ethane output response in pilot test two was approximately 180 pmol∙kg
-1

∙min
-1

. It 

is likely that the subject in pilot test one had not reached lactate threshold by the time the 

test was terminated. A further test utilising the same protocol and under the same 

conditions was conducted with the same subject 6 days following the test reported here and 

lactate threshold was estimated at 2.8 l∙min
-1

. The V O2 at test termination of pilot test one 

was 2.8 l∙min
-1

, therefore it is likely that the subject was just below or at lactate threshold 

at this time. Therefore, a sharp increase in ventilation and concomitant rise in ethane output 

were not expected by this stage of the test. Ethane output decreased very rapidly towards 

baseline in the recovery phase of pilot test two. 



 

Table 4.1. Subject characteristics for real-time pilot tests. 

         Subject Age 

(yr) 

Body mass 

(kg) 

Height 

(cm) 

2OV  peak 

(l·min
-1

) 

2OV peak 

(ml·kg
-1

·min
-1

) 

L̂  

(l·min
-1

) 

HR peak 

(beats·min
-1

) 

R peak 

         Zero calibration tests 

1 26 82.5 187.0 - - - - - 

2 22 64.4 171.5 2.6 40.4 1.9 195 1.3 

Mean   SD 24  3 73.5  12.8 179.3  11.0 - - - - - 

 
Ventilatory challenge tests 

1 * 38 49.0 157.0 - - - - - 

2 28 82.3 187.0 - - - - - 

Mean   SD 33  7 65.7  23.5 172.0  21.2 - - - - - 

         
Real-time measurement tests 

1 26 82.5 187.0 4.1 49.7 2.8 183 1.3 

2 22 64.4 171.5 2.4 37.3 1.7 191 1.6 

3 24 73.0 167.0 3.1 42.5 2.2 168 1.3 

Mean   SD 24  1 68.7  6.1 175.2  10.5 3.2  0.9 43.2  6.2 2.2  0.6 181  12 1.4  0.2 

 

L̂ estimated lactate threshold; HR heart rate; R respiratory exchange ratio; SD standard deviation; V O2 oxygen uptake. 

- data not available. Zero calibration test for subject 1 was terminated early due to equipment failure; Ventilatory challenge tests did not involve peak 

gas exchange or heart rate measurements. * All subjects were male with the exception of subject 1 in ventilatory challenge tests. 
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Figure 4.4. Mean ethane concentration prior to, during and following an incremental 

exercise test to exhaustion in two male subjects. 

Top panel shows pilot test one; bottom panel shows pilot test two. Pilot test one was terminated 

early due to equipment failure and shows no data for the recovery phase. The dashed vertical lines 

indicate the onset of unload pedalling, incremental exercise and recovery respectively. 
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Figure 4.5. Mean ethane output prior to, during and following an incremental exercise test 

to exhaustion in two male subjects. 

Top panel shows pilot test one; bottom panel shows pilot test two. Pilot test one was terminated 

early due to equipment failure and shows no data for the recovery phase. The dashed vertical lines 

indicate the onset of unload pedalling, incremental exercise and recovery respectively. 
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4.2.4 Discussion 

The ethane concentration varied little throughout the different phases of the exercise tests 

(figure 4.4). Since ethane output is a factor of ethane concentration and ventilation, it was 

unclear if the pattern of response of ethane output was simply a near duplicate of the 

ventilation response rather than an indication of the extent of lipid peroxidation. Further 

pilot tests were designed to investigate this issue, and are described in section 4.3 (page 

188). 

 

The ethane output response did not appear to be related to absolute work rate. The work 

incrementation rate was identical in both tests. The first pilot test was terminated at a work 

rate of 195 W at which point ethane output had risen to approximately 30 pmol∙kg
-1

∙min
-1

. 

Ethane output at the same work rate in the second subject, which occurred at 20 min into 

pilot test two, was approximately 140 pmol∙kg
-1

∙min
-1

, as shown in the bottom panel of 

figure 4.5. The second subject reached voluntary exhaustion at a work rate of 210 W. 

 

The data suggested that a useful output could be recorded in real-time, and directly from 

the spectrometer, to begin to characterise the ethane output response during an extended 

period of exercise. However, ambient ethane concentration was not monitored during these 

pilot tests. This is necessary for the correction of expired ethane concentration for 

background ethane levels. The next step would be to determine if ambient ethane could be 

measured in real-time along with expired ethane. Pilot tests to investigate this issue are 

described in section 4.4 (page 197). 
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4.3 Ventilatory challenge tests 

 

4.3.1 Rationale 

Previous pilot tests (described in section 4.2, page 173) revealed little variation in ethane 

concentration with incremental exercise, whilst ethane output rose along with increased 

ventilation. The aim of the pilot tests described below was to investigate if the rise in 

ethane output was simply a manifestation of the ventilatory response to exercise, rather 

than an indication of exercise-induced oxidative stress. This was accomplished by forcing 

an increase in ventilation in circumstances which would not be expected to induce a 

significant oxidative stress. 

 

4.3.2 Methods 

 

4.3.2.1 Subjects 

Two healthy individuals, one female and one male, volunteered to participate in these pilot 

tests. 

 

4.3.2.2 Test protocol 

Subjects were familiarised with personnel and equipment prior to undertaking the pilot 

test, as described in section 2.2.2 (page 97). During the test, the subject sat comfortably on 

a chair and was asked to breathe as normally as possible throughout the test. During pre-

specified periods, as indicated in table 4.2, the subject breathed through a mouthpiece 

attached to a two-way non-rebreathing valve, and expired air was collected in Douglas 

bags, as described in section 2.3.1.1 (page 100). The mouthpiece was inserted, and nose-

clip attached, two minutes prior to the start of each expired air collection period. A 

ventilatory challenge, in the form of additional dead space, was imposed at pre-specified 
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time points, again indicated in table 4.2, by adding a length of wide bore tubing to the 

inspired port of the breathing valve. The length of tubing was varied to alter the extent of 

the challenge. The female subject inspired through a tube with a volume of one litre, 

whereas the male subject inspired through tubes with volumes of both one litre and two 

litres. 

 

Both subjects rested for a variable time prior to and following the first ventilatory 

challenge, and following the second ventilatory challenge. Timings for each test phase are 

indicated in table 4.2. An additional dead space of one litre was imposed on the female 

subject on two occasions during the test, interspersed by a rest period, whilst the male 

subject was challenged by an additional dead space of one litre on the first occasion, and 

by two litres on the second occasion. 

 

4.3.2.3 Measurements 

 

4.3.2.3.1 Respired air measurements 

Expired air samples were of 2 minutes duration and were collected as indicated in table 

4.2. In the female subject, two resting samples were collected prior to the first ventilatory 

challenge in order to establish a baseline response. Resting samples were also collected 

following each ventilatory challenge to check that ventilation had returned to rest 

following the challenge. Samples were collected during the final two minutes of each 

ventilatory challenge. A similar pattern was followed in the male subject although two 

samples were collected during each ventilatory challenge and no resting sample was 

collected between the two challenges to allow the subject some respite from the 

mouthpiece. 
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Table 4.2. Timing of expired air samples in relation to test phase for ventilatory challenge 

tests. 

   Test Phase Timing of phase 

(min) 

Timing of expired air samples 

(min) 

   Subject 1 (female)   

Rest 0-14 2-4; 9-11 

Ventilatory challenge (1 l) 14-19 17-19 

Rest 19-28 24-26 

Ventilatory challenge (1 l) 28-33 31-33 

Rest 33-40 38-40 

   
Subject 2 (male)   

Rest 0-10 0-2; 7-9 

Ventilatory challenge (1 l) 10-14.25 10-12; 12.25-14.25 

Rest 14.25-17.25 No sample 

Ventilatory challenge (2 l) 17.25-21.5 17.25-19.25; 19.5-21.5 

Rest 21.5-34.5 25.5-27.5; 32.5-34.5 

 

The duration of all expired air samples was 2 minutes. 
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4.3.2.3.2 Ethane sampling procedures 

Expired air was sampled for the determination of ethane concentration as described in 

section 2.3.2.2 (page 107). 

 

Ambient ethane concentration was monitored directly by the spectrometer continuously 

throughout the test. Ambient air was drawn into the sample cell continuously with the 

exception of 12 second periods at 78 second intervals during which the sample cell was 

flushed with hydrocarbon-free nitrogen in order to check the zero calibration of the 

spectrometer. 

 

4.3.2.4 Analysis 

 

4.3.2.4.1 Respired air analysis 

Ventilation and V O2 were calculated by equations 3.3 and 3.5 respectively. 

 

4.3.2.4.2 Ethane analysis 

All expired air samples were analysed for ethane concentration within 30 minutes of the 

end of each experiment as described in section 3.2.1.4.3 (page 139). The ambient ethane 

signal from the spectrometer was plotted against time, as described in section 4.2.2.4.5 

(page 179), for each of the time periods during which expired air was collected for later 

ethane analysis. Data points corresponding to the zeroing phase of the spectrometer were 

removed, and a mean of the remaining data was taken to represent mean ambient ethane 

during the expired air collection period. Expired air ethane concentration was corrected for 

ambient ethane as described in section 3.2.1.4.3 (page 139). 
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4.3.3 Results 

 

4.3.3.1 Subject characteristics 

Subject characteristics are shown in table 4.1. 

 

4.3.3.2 Ventilation and ethane responses 

Figures 4.6 and 4.7 show ventilation, ethane concentration and ethane output responses in 

the female and male subjects respectively. As expected, ventilation increased markedly 

during the periods of ventilatory challenge in both subjects and returned to baseline 

thereafter. 

 

The ethane concentration response remained fairly stable in the female subject from 

baseline to the first ventilatory challenge. In the final three samples, ambient ethane 

concentration was greater than expired ethane concentration, therefore, expired ethane 

concentration was reported as 0 pmol∙l
-1

. In the male subject (figure 4.7), expired ethane 

concentration fell during the first ventilatory challenge and fell further during the second, 

greater, challenge. It then rose again to baseline following the final challenge. 

 

Ethane output, shown in the bottom panels of figures 4.6 and 4.7, rose during the first 

ventilatory challenge in the female subject. In the final three samples, calculation of ethane 

output was affected by the high ambient ethane as described previously. In the male 

subject, ethane output remained fairly stable from baseline through the first ventilatory 

challenge. Ethane output fell during the second challenge, despite the rise in ventilation, 

and increased again towards baseline during the following rest period. 
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Figure 4.6. Responses to a ventilatory challenge in one female subject (pilot test three). 

Top panel shows ventilation; middle panel shows ethane concentration; bottom panel shows 

ethane output. The first and second dashed vertical lines mark the onset and termination, 

respectively, of a one litre ventilatory challenge; the third and fourth dashed vertical lines mark the 

onset and termination, respectively, of a second one litre ventilatory challenge; the subject was at 

rest outwith these periods of challenge. 
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Figure 4.7. Responses to a ventilatory challenge in one male subject (pilot test four). 

Top panel shows ventilation; middle panel shows ethane concentration; bottom panel shows 

ethane output. The first and second dashed vertical lines mark the onset and termination, 

respectively, of a one litre ventilatory challenge; the third and fourth dashed vertical lines mark the 

onset and termination, respectively, of a two litre ventilatory challenge; the subject was at rest 

outwith these periods of challenge. 
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4.3.3.3 Oxygen uptake response 

Figure 4.8 shows the oxygen uptake response to the ventilatory challenge in the female 

subject (top panel) and in the male subject (bottom panel). 

 

0 5 10 15 20 25 30 35 40
0.1

0.2

0.3

0.4

0.5

0.6

V
O

2
 (

l·
m

in
-1

)

Time (min)
 

0 5 10 15 20 25 30 35 40
0.1

0.2

0.3

0.4

0.5

0.6

V
O

2
 (

l·
m

in
-1

)

Time (min)
 

Figure 4.8. Oxygen uptake response to a ventilatory challenge in one female subject (top 

panel) and one male subject (bottom panel). 

The first and second dashed vertical lines mark the onset and termination, respectively, of the first 

ventilatory challenge; the third and fourth dashed vertical lines mark the onset and termination, 

respectively, of the second ventilatory challenge; the subject was at rest outwith these periods of 

challenge. All challenges were of one litre, with the exception of the second challenge in the male 

subject which was of two litres. 
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Oxygen uptake was increased to a minor extent in both subjects during each of the 

ventilatory challenges, likely due to the increased work of breathing, and returned to near 

baseline following the challenges in which a sample was collected for analysis. 

 

4.3.4 Discussion 

The aim of the two preceding tests was to investigate if the rise in ethane output reported in 

previous tests was simply a representation of increased ventilation during exercise, rather 

than a marker of exercise-induced oxidative stress. To this end, subjects were presented 

with a ventilatory challenge in the form of inspiration through an additional dead space 

volume in order to increase ventilation in a situation unlikely to induce significant 

oxidative stress. Ethane production would not be expected to increase under these 

circumstances, and therefore, ethane output should not increase, unless simply an artifact 

of increased ventilation. In addition, the increase in ventilation was imposed without 

accompanying hyperventilation, allowing avoidance of a fall in arterial carbon dioxide 

pressure (PaCO2) and potential decreased ventilatory drive in response to respiratory 

alkalosis. 

 

The magnitude of the oxygen uptake response to the dead space challenge was minimal, 

and comparable to the increase seen in sustained isometric handgrip exercise (Alessio et 

al., 2000), however, the majority of the increase in this case was likely due to the increased 

oxygen cost of breathing (Coast & Krause, 1993). The ethane output responses suggested 

that no significant oxidative stress was induced by this minimal increase in oxygen uptake. 
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Ethane concentration tended to decline during the ventilatory challenges since any ethane 

expelled in the breath would be diluted by a greater volume of expired air due to the 

increase in ventilation. 

 

In general, the pattern of ethane output did not mirror the pattern of ventilation. In fact, as 

ventilation rose, there was a tendency for ethane output to remain stable, or decline, in the 

case of the greater ventilatory challenge in the male subject. Thus, the rise in ethane output 

seen with incremental exercise does not appear to be simply a manifestation of the rise in 

ventilation. 

 

4.4 Real-time measurements 

 

4.4.1 Rationale 

The initial pilot tests suggested that a useful real-time expired ethane signal could be 

recorded directly from the spectrometer whilst it was operating in its normal mode; that is, 

with regular zero calibration checks. However, ambient ethane measurement is also 

required in order to correct expired concentration for background ethane concentration. 

Therefore, it would be useful if the spectrometer could sample both expired air and 

ambient air during a period of exercise. This would remove the necessity for collection of 

independent ambient air samples in Tedlar bags throughout the exercise period. The 

purpose of the following pilot tests was to investigate the possibility of sampling both 

expired and ambient air for ethane concentration in real-time, and to develop a system for 

analysis of the output. 
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4.4.2 Methods 

 

4.4.2.1 Subjects 

Subjects were three regularly active males with a mean age of 24 ± 1 years and a mean 

body mass of 68.7 ± 6.1 kg (mean ± standard deviation). Activity level was assessed prior 

to participation using the physical activity questionnaire shown in Appendix A.5. Subjects 

were apparently healthy and were medically screened for abnormalities in resting 

electrocardiogram (ECG) and blood pressure prior to participation in order to ensure 

suitability for maximal aerobic exercise. Exclusion criteria were adhered to, as described in 

section 2.1.1 (page 95). 

 

4.4.2.2 Test protocol 

The test protocol was as described in section 4.2.2.2 (page 174). The intention was to 

impose the same gradually increasing work rate to voluntary exhaustion on each subject to 

assist comparison of responses between subjects. The incrementation rate of 15 W∙min
-1

 

was chosen to provide a maximum number of work rates for analysis of the oxidative 

stress response to the changing work rate. 

 

4.4.2.3 Measurements 

Respired air and heart rate measurements were made as described previously (sections 

4.2.2.3.1 and 4.2.2.3.2, pages 174-175). Expired air for sampling ethane was drawn 

continuously into the laser spectrometer from a sample line connected to the breathing 

valve as shown in figure 4.1. However, the operating conditions of the spectrometer were 

altered so that there was no regular check of the zero calibration. Instead, the spectrometer 

was set up to sample the expired air for 12 s followed immediately by a 12 s period of 

sampling ambient air. This cycle was continued throughout each test. This was the case for 

all tests with the exception of pilot test six, in which the respective sampling periods were 
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extended to 15 s each. Ambient air sampling took place through a sample line separate 

from the breathing assembly. 

 

The elephant tubing for capture of expired air was added to the expired port of the 

breathing valve in order to ensure that during the 12 s or 15 s sampling period, mixed 

expired air was sampled by the spectrometer. The sampling line drew gas into the 

spectrometer at a constant rate of 5 l·min
-1

. It had to be taken into consideration that mixed 

expired air would be drawn into the spectrometer from the expired port of the breathing 

valve for the duration of the expiration, however, during inspiration, the spectrometer 

would begin to draw gas from the ambient air. The elephant tube was used to create a 

„reservoir‟ of mixed expired gas and was of sufficient volume to retain mixed expired air 

during the subsequent inspiration before it was refilled by the next expiration. 

 

4.4.2.4 Analysis 

Pulmonary and gas exchange variables were edited as described previously in section 

4.2.2.4.1 (page 177). Determination of peak oxygen uptake, estimation of lactate threshold 

and determination of peak heart rate were carried out as described previously (sections 

4.2.2.4.2, 4.2.2.4.3 and 4.2.2.4.4, pages 178-179). 

 

4.4.2.4.1 Ethane analysis 

Figure 4.9 shows the ethane concentration from pilot test six, in which expired air was 

sampled for a 15 s period, immediately followed by a 15 s period of sampling of ambient 

air. It can be seen clearly that ethane concentration shifts cyclically between expired air 

values of approximately 200 pmol∙l
-1

 and ambient air values of approximately 0 pmol∙l
-1

. 
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Figure 4.9. Real-time raw ethane concentration signal from the spectrometer prior to, 

during and following incremental exercise to exhaustion in one male subject. 

Sampling pattern shows repetitive cycles of ambient air and expired air sampling. The dashed 

vertical lines mark the onset of unloaded pedaling, incremental exercise and recovery respectively. 

 

 

If this pattern is examined over a shorter time interval, as shown in figure 4.10, it can be 

seen that ethane concentration rose quite rapidly to a plateau when expired air was sampled 

and fell rapidly to a baseline level when ambient air was sampled. 
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Figure 4.10. Real-time raw ethane concentration signal during an incremental exercise 

test to exhaustion in one male subject. 

The data have been truncated to show a short time period of the response to emphasise the 

cyclical rise and fall in ethane concentration with successive sampling of expired air and ambient 

air. 

 

 

It was necessary to subtract ambient ethane concentration from expired ethane 

concentration throughout the test in order to correct expired ethane concentration for the 

influence of ambient ethane. To this end, each sampling interval was analysed separately; a 

plot was constructed of each ambient sampling interval showing both the previous and 

subsequent expired air sampling period; an example of this is shown in figure 4.11. It was 

subjectively determined at which point ethane concentration started to fall from the 

average expired concentration towards ambient concentration, and at which point it again 

started to rise towards expired concentration again. All data points which lay between 

either plateau were discarded; an example is shown in figure 4.11. In addition, any points 
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which clearly lay outwith the underlying response, for example, as seen at approximately 

1100 s in figure 4.9, were discarded. 
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Figure 4.11. Real-time ethane concentration signal from the spectrometer during an 

incremental exercise test to exhaustion in one male subject. 

The data have been truncated to show two cycles of expired air sampling and one cycle of ambient 

air sampling to demonstrate the data editing technique. Points indicated by arrows on the plot were 

removed from the data set. 
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Following this editing process, a mean concentration for each sampling period, both 

expired air and ambient air, was calculated. Mean ambient ethane concentration from the 

previous sampling period was subtracted from mean expired ethane concentration using 

equation 3.9 (page 140) in order to correct for background ethane. Mean minute ventilation 

was calculated for each expired air sampling period and ethane output was calculated 

according to equation 3.10 (page 140). This analysis procedure was followed for pilot tests 

three to six, which shared similar sampling characteristics. 

 

4.4.3 Results 

 

4.4.3.1 Subject characteristics 

Subject characteristics are displayed in table 4.1. Subject 1 took part in two tests (pilot tests 

five and six). Work rate at voluntary exhaustion was 345 W, 375 W, 255 W and 210 W for 

pilot tests 5, 6, 7 and 8 respectively. 

 

4.4.3.2 Ethane concentration response 

Figure 4.12 shows the ethane concentration response throughout the different test phases 

for each test. It was not possible to display a mean response since the incremental phase of 

the test varied in duration between subjects. Ethane concentration remained fairly stable 

throughout each test. 
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Figure 4.12. Mean ethane concentration prior to, during and following an incremental 

exercise test to exhaustion. 

Panel (a) shows pilot test five, panel (b) shows pilot test six, panel (c) shows pilot test seven and 

panel (d) shows pilot test eight. Pilot tests five and six show data from the same subject. The initial 

test phase is rest; the first dashed vertical line marks the onset of unloaded pedaling; the second 

dashed vertical line marks the onset of incremental exercise to exhaustion; the third dashed vertical 

line marks the onset of recovery. 
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4.4.3.3 Ethane output response 

Figure 4.13 shows ethane output before, during and following incremental exercise to 

exhaustion. 
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Figure 4.13. Mean ethane output prior to, during and following an incremental exercise 

test to exhaustion. 

Panel (a) shows pilot test five, panel (b) shows pilot test six, panel (c) shows pilot test seven and 

panel (d) shows pilot test eight. Pilot tests five and six show data from the same subject. The initial 

test phase is rest; the first dashed vertical line marks the onset of unloaded pedaling; the second 

dashed vertical line marks the onset of incremental exercise to exhaustion; the third dashed vertical 

line marks the onset of recovery. 
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In general, ethane output remained close to resting level during unloaded pedaling, rose 

gradually throughout the incremental phase of the test and declined rapidly at the onset of 

active recovery. The magnitude of the response was different between different subjects, 

and even between two tests with the same subject (figure 4.13, panels a and b), however, 

the pattern of response was similar in all four pilot tests. 

 

4.4.4 Discussion 

It was possible to measure ethane in both ambient air and expired air throughout the test by 

sampling each source in a cyclical fashion. An alternative method of determining ambient 

ethane would have been to collect ambient air samples in Tedlar bags during each expired 

air sampling interval for later analysis following the end of the exercise test. However, 

measuring ambient air directly by the spectrometer is more practical for two reasons. 

Firstly, a large number of expensive Tedlar bags would be required. In the four pilot tests 

described here, between sixty one and eight two samples of ambient ethane were analysed 

by the spectrometer. This would have required a supply of this number of Tedlar bags, 

since the spectrometer cannot analyse independent samples whilst also directly sampling 

ethane from the expired air or from the environment. Thus, the use of Tedlar bags to 

collect ambient air samples would have been prohibitively expensive and would have 

required considerable time for later analysis of the samples. Secondly, the use of direct 

measurement allowed the measurement of both ambient and expired ethane by the same 

method, thus eliminating any errors caused by the use of separate techniques of sample 

collection. 

 

The data analysis procedures required to generate real-time results were cumbersome and 

time-consuming. However, they did produce a response profile similar to that reported in 

the previous chapter (figure 3.3, page 150; figure 3.4, page 152) in which incremental 

exercise was performed on a treadmill, and expired air was collected in Douglas bags at 
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discrete time points throughout the test. This supports the validity of the real-time 

technique to some extent; however, further work should focus on the investigation of the 

ethane response by both methods within the same testing session in order to formally 

validate the real-time technique. 

 

4.5  Discussion 

The data suggested that the real-time measurement of ethane output may be a useful non-

invasive tool for the assessment of lipid peroxidation during long periods of exercise. A 

potential drawback is the limited portability of the spectrometer. The spectrometer has 

been described as a portable device by the designers (Gibson et al., 2002), however, this is 

with regard to its use within the oil industry. The spectrometer can be transported to any 

location around the world for a period of exploration. However, for the current exercise 

studies, although theoretically the spectrometer could have been moved to the laboratory 

setting, affording the advantages of air conditioning, a wider range of potential equipment 

for work rate forcing, and a suitable environment for blood sampling, in reality, this was 

impractical. It would have been necessary to move the spectrometer to the exercise 

laboratory and for it to remain in situ throughout all exercise tests. However, these took 

place over a period of several weeks and with other users requiring the use of the 

spectrometer, this was unfeasible. For the future, a truly portable version of the 

spectrometer is currently under development with a view to transport for use within the 

clinical setting. The validation of this model with enhanced portability could be useful for 

the study of exercise-induced oxidative stress. 
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4.5.1  Further Work 

A useful extension to this pilot work would be its continuation in a greater number of 

subjects using standardised procedures. Formal validation of the real-time technique could 

be accomplished by the assessment of the ethane response by both real-time and by 

Douglas bag within the same testing session. Unfortunately, it was not possible to carry out 

further tests within the constraints of the current series of studies. Following the 

completion of the tests reported here, the laser spectrometer required a new laser and was 

out of use for an extended period due to difficulty encountered in sourcing the correct 

specification for this bespoke piece of equipment. 

 

The utility of real-time monitoring of ethane output could be harnessed in a more practical 

way if a computer programme could be developed to perform the time consuming 

calculations required. This could potentially benefit both the exercise scientist and the 

clinician. 
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Chapter 5 

 

A study of the dynamics of the oxidative stress response to 

aerobic exercise in different intensity domains 



210 

5.1  Introduction 

 

5.1.1 Oxidative stress response to varying exercise intensity 

It has been established that aerobic exercise can result in exercise-induced oxidative stress 

(Vollaard et al., 2005), however, the oxidative stress response to increasing exercise 

intensity has not been well characterised. It is difficult to draw conclusions regarding any 

relationship between exercise intensity and oxidative stress since previous studies have 

utilised varying exercise modes, testing protocols and means of assessment of oxidative 

stress. In addition, it has not been established if there is a threshold intensity below which 

EIOS will not occur. 

 

Eleven previous studies have reported data relating oxidative stress to exercise intensity in 

human subjects performing aerobic exercise (Dillard et al.,1978; Jammes et al., 2004, 

2005; Kanter et al., 1993; Leaf et al., 1997, 1999; Lovlin et al., 1987; Quindry et al., 2003; 

Sen et al., 1994; Steinberg et al., 2006; Watson et al., 2005), although this was the main 

aim of only four of these studies (Dillard et al., 1978; Leaf et al., 1997; Quindry et al., 

2003; Sen et al., 1994). The methodology of each study is summarised in tables 5.1, 5.2 

and 5.3. Exercise test protocols were varied, but generally consisted of one of the 

following: the performance of one or more sub-maximal exercise intensities within the 

same test session with oxidative stress assessed following each work rate (table 5.1); 

incremental exercise to exhaustion with assessment of oxidative stress at, or close to, 

estimated lactate threshold and at peak exercise (table 5.2); and the assessment of oxidative 

stress following separate trials of constant load exercise (table 5.3). All studies assessed the 

extent of lipid peroxidation as a marker of oxidative stress; however, different techniques 

were used making direct comparison between studies difficult. 

 



 

Table 5.1. Summary of methodology of previous studies relating oxidative stress to various sub-maximal exercise intensities. 

Author(s) Exercise 

mode 

Test Protocol Oxidative stress 

markers 

Sampling points 

     Dillard et al. 

(1978) 

 

CE 20 min at 25% V O2 max, 20 min at 50% V O2 

max, 20 min at 75% V O2 max, 20 min rest 

 

Pentane Rest; after each WR; after 20 min 

recovery 

Lovlin et al. 

(1987) 

 

CE 5 min at 40% V O2 max, 5 min rest, 5 min at 

70% V O2 max, 5 min rest, 30 W·min
-1

 to 

exhaustion 

 

MDA (TBARS) Rest; 2.5 min after each 

submaximal WR; after exhaustion 

Kanter et al. 

(1993) 

 

TM 30 min at 60% V O2 max, 5 min with intensity 

increase to 90% V O2 max within first 2.5 min 

 

Pentane, 

MDA (TBARS) 
Rest; 15 s after 60% V O2 max 

WR; after 90% V O2 max WR 

Watson et al. 

(2005) 

TM 30 min at 60% V O2 max, 2 min at 10 km·h
-1

 at 

0%, 2 km·h
-1

 increase every 2 min until subject-

selected speed, 2%·min
-1

 to exhaustion 

 

F2-isoprostanes Rest; after 60% V O2 max WR; 

immediately & 1 h post-exercise 

 

CE cycle ergometer; TM treadmill; MDA malondialdehyde; TBARS thiobarbituric acid reactive substances; WR work rate 

 



 

Table 5.2. Summary of methodology of previous studies relating oxidative stress to incremental exercise to exhaustion. 

Author(s) Exercise 

mode 

Test Protocol Oxidative stress 

markers 

Sampling points 

     Leaf et al. 

(1997) 

TM Modified Bruce protocol, 5 min rest Ethane, Pentane, 

MDA 
Rest, at ̂ L, at peak exercise, 5 min into recovery 

(rest and recovery samples only for MDA) 

 

Leaf et al. 

(1999) 

 

TM Modified Bruce protocol, 5 min rest Ethane, Pentane, 

MDA 
Rest, at ̂ L, 5 min into recovery 

(rest and recovery samples only for MDA) 

 

Jammes et al. 

(2004) 

 

CE 2 min at 0 W, 20 W·min
-1

 to exhaustion, 

5 min unloaded, 25 min rest 

TBARS Rest, at ̂ L, at peak exercise, during recovery at 5, 

10, 20 and 30 min 

 

Jammes et al. 

(2005) 

 

CE 2 min at 0 W, 20 W·min
-1

 to exhaustion, 

5 min unloaded, 25 min rest 

TBARS Rest, at ̂ L, at peak exercise, during recovery at 5, 

10, 20 and 30 min 

 

Steinberg et al. 

(2006) 

 

CE 2 min at 0 W, 20 W·min
-1

 to exhaustion, 

5 min unloaded, 25 min rest 

TBARS Rest, at ̂ L, at peak exercise, during recovery at 5 

and 20 min 

 

 

CE cycle ergometer; TM treadmill; MDA malondialdehyde; TBARS thiobarbituric acid reactive substances; ̂ L estimated lactate threshold 

 



 

Table 5.3. Summary of methodology of previous studies relating oxidative stress to constant load exercise. 

Author(s) Exercise 

mode 

Test Protocol Oxidative stress 

markers 

Sampling points 

     Sen et al. (1994) 

 

CE 20 W·min
-1

 to exhaustion 

30 min at aerobic threshold 

30 min at anaerobic threshold 

 

TBARS Rest; 2 min & 24 h post-exercise 

Quindry et al. 

(2003) 

 

TM Incremental test using Broeder protocol 

45 min at 10% > ̂ L 

45 min at 10% < ̂ L 

 

MDA 

Neutrophil count 

Rest; immediately, 1 h & 2 h post-

exercise 

 

CE cycle ergometer; TM treadmill; MDA malondialdehyde; TBARS thiobarbituric acid reactive substances; ̂ L estimated lactate threshold 
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The first group of studies (table 5.1) assessed oxidative stress following various 

submaximal exercise intensities. Dillard and colleagues (1978) were the first authors to 

investigate the effect of exercise intensity on pentane production in humans. Six subjects 

performed 20 minutes of exercise at an intensity of 25% V O2 max, followed immediately 

by 20 minutes at 50% V O2 max and finally 20 minutes at 75% V O2 max. The authors 

suggested that pentane production increased during exercise, with an average 1.8-fold 

increase in pentane production at 75% V O2 max compared to rest, however, means and 

standard deviations were not reported for each exercise intensity. Individual plots of 

pentane production versus time, which are reproduced in figure 5.1, did not suggest a clear 

relationship between exercise intensity and pentane production due to inter-individual 

variability in the pattern of response. It was also shown, within the same series of 

experiments, that pentane production appeared to increase compared to rest following 20 

minutes of exercise at an intensity of 50% V O2 max, however, this was investigated in only 

four subjects and was not verified statistically. However, this observation was suggestive 

of increased lipid peroxidation at an exercise intensity as low as 50% V O2 max. 

 

Lovlin and colleagues (1987) investigated 5-minute periods of exercise at two submaximal 

intensities and observed a trend towards increased serum MDA with increased exercise 

intensity, i.e. MDA increased from 40% V O2 max to 70% V O2 max to peak exercise. 

However, MDA was actually significantly reduced at 40% V O2 max in comparison to 

resting levels, and only became significantly higher than baseline at peak exercise at which 

there was a 26% increase from baseline. The authors concluded that short periods of 

submaximal exercise, below 70% V O2 max, may inhibit lipid peroxidation. Baseline MDA 

was comparable to other studies which assessed oxidative stress by TBARS (Jammes et 

al., 2004, 2005; Steinberg et al., 2006) and therefore this finding was unlikely to be due to 

a spuriously high resting level. The duration of exercise at the two submaximal intensities 
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was very low in comparison to other studies which have investigated a minimum period of 

20 minutes at each intensity. There are currently no data to describe the effect of exercise 

duration on oxidative stress. 

 

Kanter and colleagues (1993) reported a significant increase in both pentane production 

and MDA from rest to 60% V O2 max, with a further rise to 90% V O2 max thus indicating a 

similar trend with increased exercise intensity. 

 

More recently, Watson et al. (2005) observed a non-significant fall in F2-isoprostanes 

following a 30 minute treadmill run at 60% V O2 max with a further significant fall at peak 

exercise. In contrast, subjects consuming a reduced antioxidant diet showed some increase 

in oxidative stress at 60% V O2 max which was sustained at exhaustion. In this group, the 

increase in F2-isoprostanes did not become significant until recovery. No other studies 

have utilised F2-isoprostanes as a marker of oxidative stress related to exercise intensity 

and therefore, there is no direct comparison available. 



216 

N
a

n
o

m
o

le
s
 p

e
n

ta
n

e
 e

x
p

ir
e

d
 p

e
r 

3
 m

in

Exercise level (% VO2 max)

0.3

0.6

0.0

0 50 7525

.

 

0.6

0.9

1.2

0.3

 

0.6

0.9

1.2

0.3

 

 

  

0.9

1.2

0.0

0.0

25 75 00 50 0

 

Figure 5.1. Pentane production versus exercise intensity in six individuals. Subjects 

exercised for 20 minutes at each intensity. A post-exercise value was recorded following 

20 minutes of rest. (Modified from Dillard et al., 1978). 
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The second group of studies (table 5.2) assessed oxidative stress close to lactate threshold 

and at peak exercise during incremental exercise to exhaustion. The investigation of the 

effect of exercise intensity on lipid peroxidation was the main aim of a study by Leaf and 

colleagues (1997). Lipid peroxidation was assessed, by measurement of expired ethane and 

pentane, at rest, during the minute following attainment of the lactate threshold, at peak 

exercise and 5 minutes following the end of exercise. Results showed a rise in both ethane 

and pentane production from rest to the lactate threshold, although this was significant only 

for ethane. A further significant rise was observed in both markers to peak exercise 

followed by a decline during recovery. The same authors (1999) employed a similar 

protocol in patients with coronary artery disease and found an increase in ethane and 

pentane at lactate threshold in comparison to resting values, but little change in MDA 

between measurements at rest and post-exercise. 

 

Jammes and colleagues (2004) also assessed oxidative stress at lactate threshold and peak 

exercise but found no significant increase in TBARS with exercise although there was a 

tendency for increase alongside exercise intensity. A significant increase in lipid 

peroxidation was only found during the recovery period. The same authors (Jammes et al., 

2005) repeated this testing protocol in a comparison of control subjects versus patients 

with chronic fatigue syndrome. These patients displayed a significant increase in TBARS 

at lactate threshold, with a further increase at peak exercise. However, the pattern of 

response in the control subjects was entirely different: there was a non-significant 

reduction in TBARS at lactate threshold followed by a rise at peak exercise; however the 

value at peak exercise was not significantly different from baseline. Steinberg and 

colleagues (2006) again utilised the same protocol in healthy subjects and found no 

increase in TBARS at lactate threshold but a significant rise at peak exercise. 
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Therefore, although it appears that there is a tendency for lipid peroxidation to increase 

above baseline at lactate threshold and to rise further at peak exercise, this is inconclusive 

due to the relatively few data available and the inconsistency of findings. 

 

The final group of studies (table 5.3) related oxidative stress to constant load exercise 

performed in separate trials. In one study (Sen et al., 1994), subjects completed an 

incremental test to exhaustion in order to determine aerobic and anaerobic threshold 

according to the method of Skinner & McLellan (1980). Thereafter, subjects completed 30 

minutes of exercise at each work rate on separate days. Oxidative stress was assessed 

immediately post-exercise and was found to increase significantly following both work 

rates and increased more following the higher intensity test. Interestingly, oxidative stress 

increased following exhaustion in the incremental test, however it was a smaller increase 

than in either of the constant load tests and did not reach statistical significance suggesting 

that exercise duration may perhaps have been a factor. 

 

A similar study (Quindry et al., 2003) assessed oxidative stress following maximal 

incremental exercise and constant load exercise below and above the lactate threshold. 

There was a significant positive relationship between neutrophil count, suggestive of a 

subsequent oxidative stress response, and post-exercise blood lactate concentration, 

although markers of lipid peroxidation were not elevated at any work rate. Oxidative stress 

was indicated following maximal exercise only, by a reduction in ascorbic acid, with no 

change in uric acid status. 

 

Thus, the majority of the studies available have reported a trend for increased lipid 

peroxidation with increasing exercise intensity; however, all prior studies have been 

limited to some extent by a paucity of data points. Sampling has been performed only at, or 

close to lactate threshold, at one to three submaximal intensities, and at peak exercise. Few 
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studies have assessed oxidative stress during, rather then following, exercise, and of those 

that have, only one time point (close to lactate threshold) has been investigated. Most 

authors have compared baseline levels to those immediately following exercise and during 

recovery. In general, there is a lack of consistency in findings. 

 

5.1.2 Exercise intensity domains 

Exercise may have a different impact on the oxidative stress response if performed below 

in comparison to above the lactate threshold. Lactic acid is produced as a product of 

anaerobic glycolysis which takes place in the cytoplasm of the muscle cell. The lactic acid 

dissociates rapidly as follows: 

 

HLa  →  La
-
  +  H

+
                [5.1] 

 

In order to prevent a change in the pH of the blood, H
+
 is buffered by HCO3

-
 as follows: 

 

 H
+
  +  HCO3

-
  →  H2CO3  →  CO2  +  H2O            [5.2] 

 

At work rates above the lactate threshold, this buffering is insufficient to prevent a drop in 

pH, and thus a metabolic acidosis. 

 

Lactate has been shown to have antioxidant properties in vitro (Groussard et al., 2000); 

however, it has been reported that the condition of acidosis, present after the lactate 

threshold, creates a pro-oxidant environment (Rehncrona et al., 1989; Siesjö et al., 1985). 

In relation to exercise, Lovlin and colleagues (1987) observed a positive correlation 

between MDA and blood lactate concentration during 5 minute periods of cycle ergometer 

exercise. In addition, a positive correlation between neutrophil count, suggestive of a 
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subsequent oxidative stress response, and post-exercise blood lactate concentration has 

been observed (Quindry et al., 2003). Acidosis has also been linked to oxidative stress in 

the circumstance of breath-holding (Joulia et al., 2002). One postulated mechanism for 

these effects is the conversion of the weaker superoxide radical into the more highly 

reactive hydroxyl radical by lactic acid (Clarkson & Thompson, 2000). Thus it might be 

expected that exercise at a work rate above the lactate threshold, during which metabolic 

acidosis is present, may result in a greater oxidative stress response. 

 

Exercise intensity is often characterised with reference to maximum oxygen uptake, i.e. as 

%V O2 max, and most studies which have assessed oxidative stress at various submaximal 

intensities have reported work rate in this way. However, this system is not ideal as it does 

not take into account inter-individual differences in the ability to sustain exercise. This 

ability can be characterised by the lactate threshold (θL), i.e. the onset of metabolic 

acidosis, and by the critical power, i.e. the highest work rate during a constant load test 

which can be achieved without a persistent increase in V O2 and arterial lactate 

concentration ([La
-
]a). 

 

In healthy individuals, θL occurs at approximately 50-60 % V O2 max, however, can be 

much higher in individuals with good aerobic fitness (Wasserman et al., 2004). Therefore, 

one individual exercising at a specified intensity, e.g. 60% V O2 max, may be exercising at 

a sub-θL intensity and another may be exercising at a supra-θL intensity with consequent 

differences in ventilatory and pulmonary gas exchange variables and the extent of 

metabolic acidosis. On consideration of the above, three intensity domains have been 

described (Wasserman et al., 2004). These are moderate, heavy and very heavy, where 

moderate exercise describes work rates below θL at which there is no sustained increase in 

[La
-
]a, and V O2, V CO2 and V E reach steady state. Heavy exercise encompasses the range of 
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work rates above θL and up to and including critical power at which [La
-
]a is elevated to a 

steady state, and a steady state of V O2 can be achieved. Very heavy exercise occurs at 

higher work rates at which [La
-
]a increases continually throughout the duration of exercise 

and steady states of V E and V O2 cannot be achieved. Thus, the lactate threshold occurs at 

the highest work rate at which exercise can be maintained without a sustained increase in 

blood lactate concentration (Wasserman et al., 1973). 

 

5.1.3 Aims 

Even though some previous studies have assessed oxidative stress at the lactate threshold, 

investigation of oxidative stress at a sub-lactate threshold work rate has been undertaken in 

only one study (Quindry et al., 2003). In addition, one group of authors assessed oxidative 

stress at a low relative exercise intensity of 40% V O2 max (Lovlin et al., 1987). It is likely 

that this was a sub-lactate threshold work rate since subjects were Physical Education 

students with a high aerobic capacity; however, since lactate threshold was not measured, 

this remains uncertain. Neither study reported an oxidative stress response. Quindry and 

colleagues (2003) suggested that the lack of response following both sub- and supra-lactate 

threshold work rates may have been due to a lack of sensitivity of measurement technique. 

 

Thus, the aims of this study were to better characterise the oxidative stress response to 

incremental exercise by measurement throughout the entire voluntary work rate range; to 

examine the magnitude and time course of the oxidative stress response during steady state 

exercise both above and below the lactate threshold; and to determine if this response is 

affected by the duration of steady state exercise. It was also intended to compare the 

assessment of oxidative stress by both the novel ethane technique and by a traditional 

plasma marker. 
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5.2  Methods 

 

5.2.1 Subjects 

Subjects in this study were six healthy, active males, each of whom was eligible to 

participate according to the exclusion criteria described in section 2.1.1 (page 95). In 

addition, subjects were medically screened for abnormalities in resting ECG and blood 

pressure prior to participation since this study required maximal aerobic exercise. Each 

potential subject was also required to complete a physical activity questionnaire to 

ascertain the extent of participation in regular exercise. 

 

Ethical approval for the study was granted on 4
th

 November 2005, and all subjects 

provided written, informed consent as described in section 2.1.2 (page 96) (see Appendix 

A.2 for information sheet and consent form).  

 

5.2.2 Test protocols 

Subjects were asked to visit the laboratory on four separate occasions and each visit took 

place at the same time of day whenever possible. There was a rest period of at least 48 

hours between each visit. The first visit consisted of a familiarisation session. At the 

second visit, the subject performed an incremental exercise test on a cycle ergometer for 

the purpose of non-invasive estimation of the lactate threshold ( ̂ L) and measurement of 

V O2 peak (μ V O2). The final two visits each involved a constant load test on the cycle 

ergometer, one at a sub-̂ L work rate and one at a supra-̂ L work rate. 

 

5.2.2.1 Familiarisation 

The familiarisation visit to the laboratory included the general procedures described in 

section 2.2.2 (page 97). In addition to this, the subject was familiarised with the cycle 
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ergometer. This involved correct seat adjustment so that the subject‟s leg was almost 

completely extended with the pedal at the lowest point, and adjustment of the handgrips to 

a comfortable position. These settings were recorded and replicated for each subsequent 

visit. 

 

5.2.2.2 Ramp test 

The subject performed a ramp test to voluntary exhaustion on an electromagnetically-

braked cycle ergometer (Lode Excalibur Sport, Groningen, The Netherlands). With this 

style of ergometer, an electromagnetic field produces a resistance to pedalling which varies 

with pedalling cadence; in this way, a specific work rate can be maintained despite 

variations in cadence. Work rate was controlled by a computerised workload programmer 

(Lode BV, Groningen, The Netherlands). This allowed work rate to be incremented in 

small steps of 1 W every 4 seconds, allowing a near continuous increase in work rate to 

create a ramp profile, that is, one in which the work rate is increased continuously at a 

constant rate (Wasserman et al.,2004). 

 

In cycle ergometer testing, the incrementation rate can be selected according to the 

subject‟s predicted μ V O2 so that exercise duration can be optimised (Buchfuhrer et al., 

1983). If test duration is too long, the subject may terminate the test due to boredom or seat 

discomfort rather than cardiorespiratory limitation. However, test duration was not the 

most important factor determining rate of incrementation in the current study since the 

primary aim was not to establish μ V O2. In fact, the aim was to investigate the oxidative 

stress response to exercise work rates from rest to maximal exercise. In order to compare 

inter-individual responses, work rate incrementation was standardised between subjects 

and was selected so that all subjects could perform the same protocol. 
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Exercise was preceded by at least 2 minutes of rest whilst seated on the ergometer; this 

allowed the subject time to become accustomed to the respiratory measuring apparatus. 

Exercise commenced only once it was clear that the subject‟s resting responses were stable 

and that V E was in the range of 5-10 l·min
-1

, RER was between 0.7 and 0.9 and PETCO2 

was 37-43 mmHg. 

 

Exercise testing on a cycle ergometer commonly includes a period of two to three minutes 

of “unloaded” pedalling before the incremental phase of the test begins.  During this time 

the subject is pedalling against zero resistance, however, about 10-15 W of work is done in 

moving the legs and maintaining the momentum of the flywheel. In this study, the ramp 

phase of the test was started immediately from rest in order to prevent any potential effect 

of this initial work done on oxidative stress. The incrementation rate of 15 W·min
-1

 was 

implemented as 1 W·4s
-1

 for all subjects which led to ramp phase durations of 14-24 

minutes. Thus, work rate at voluntary exhaustion ranged from 210 W to 360 W. The 

subject was encouraged to maintain a steady, comfortable cadence of at least 50 rev·min
-1

 

throughout the test, and to continue until exhaustion. The mass of the legs exerts an 

influence on the oxygen cost of cycling, and therefore, a constant cadence would ensure a 

constant influence at all work rates. The ramp was terminated when the subject was unable 

to maintain a cadence of at least 50 rev·min
-1

 or if the subject wished to voluntarily end the 

test for any other reason. At this point the work rate was reduced to 

20 W and the subject completed a 6 minute period of active recovery. 

 

5.2.2.3 Constant load tests 

Each subject performed two constant load tests: one at a sub-̂ L work rate and one at a 

supra-̂ L work rate. Each test was preceded by at least 2 minutes of rest whilst the subject 

was seated on the ergometer in order to ensure stable resting responses, as in the ramp test. 

The subject then pedalled at a minimum cadence of 50 rev∙min
-1

 for 20 minutes, or until 
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fatigue, at a pre-specified work rate as described below (section 5.2.2.3.1, page 225), 

followed by a 6 minute period of recovery at 20 W. 

 

5.2.2.3.1 Determination of work rates 

The work rates used for the constant load tests were calculated according to the non-

invasive lactate threshold estimated from the ramp test. The V O2 at ̂ L was estimated 

according to the V-slope method of Beaver and colleagues (1986) as described in section 

4.2.2.4.3 (page 178). The work rate at ̂ L was then ascertained from a plot of V O2 versus 

work rate. The work rate at ̂ L determined from a ramp test is not equivalent to the steady 

state work rate at the same V O2 (Whipp et al., 1981). The relationship between V O2 and 

work rate is linear for steady state exercise. During rapid incremental exercise (i.e. a ramp) 

the slope of the V O2 response to increasing work rate is identical to that for steady state 

exercise; however, there is an initial lag period before V O2 begins to increase. The lag time 

is equal to the mean response time (τ’), which is the sum of the phase I delay plus the 

phase II time constant (τ) (Whipp et al., 1981). The time constant for V O2 below the lactate 

threshold is 35-45 s in healthy individuals (Wasserman et al., 2004), and a mean response 

time of 60 s can be used as a practical approximation. Thus, in order to calculate the work 

rate at lactate threshold for steady state exercise in the current study, in which the ramp 

incrementation rate was 15 W·min
-1

, 15 W was subtracted from the work rate at lactate 

threshold as measured in the ramp test. 
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The following calculations were used to determine work rates (WR) for the constant load 

tests:  

 

Sub- ̂ L WR =  90 % (̂ L - 15 W)                [5.3] 

 

Supra- ̂ L WR =  40 % (Peak WR - [̂ L - 15 W]) + (̂ L - 15 W)         [5.4] 

 

The calculation for the supra-lactate threshold work rate was chosen to ensure that the 

work rate was above lactate threshold, but not above critical power, and thus, in the heavy 

rather than the very heavy domain. 

 

5.2.3 Measurements 

 

5.2.3.1 Respired air measurements 

Ventilatory and pulmonary gas exchange variables were measured continuously 

throughout each test using mass spectrometry (QP9000, Morgan Medical, Kent, UK) as 

previously described (sections 2.3.1.2, 2.3.1.2.1 and 2.3.1.2.2, pages 102-105). 

 

5.2.3.2 Blood sampling procedures 

Blood was sampled from an indwelling catheter inserted into an antecubital vein as 

described in section 2.3.4 (page 114). All samples were approximately 6 ml in volume. 

Two baseline samples, separated by a 10 minute period, were collected prior to the start of 

exercise whilst the subject was seated in a comfortable chair. The test protocol commenced 

approximately 10 minutes following the second baseline sample. During the intervening 

period, ECG electrodes were applied, the subject was made comfortable on the cycle 
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ergometer, respiratory gas exchange apparatus was attached, and the subject was allowed 

two to three minutes to become comfortable with breathing through the mouthpiece. 

 

During the ramp phase of the protocol, blood samples were drawn at 2 minute intervals, 

starting 2 minutes after the onset of exercise. An additional sample at peak exercise was 

attempted in circumstances in which the previous sample had been drawn at least 30 s 

previously. Blood samples were drawn at 2, 4 and 6 minutes into the active recovery 

period. The time points for blood sampling in the constant load tests are illustrated in 

figure 5.2. 

 

5.2.3.3 Heart rate 

Heart rate was monitored continuously as the R-R interval using a six-lead ECG (Q710, 

Quinton, Kent, UK) and disposable electrodes (Blue Sensor R-00-S, Ambu Ltd., 

Cambridgeshire, UK). This was done for two reasons: firstly, in order to measure the 

subject‟s maximal heart rate; and secondly, to monitor the pattern of response during 

exercise and recovery to provide warning of potential subject difficulty in the event of a 

significant deviation from the expected response. 

 

5.2.3.4 Arterial oxygen saturation 

Arterial oxygen saturation (SaO2) was monitored continuously throughout each experiment 

using a near-infra-red pulse oximeter (Satlite trans, Datex Engstron, Helsinki, Finland) 

placed on the ring finger of the left hand. Any test in which SpO2 fell by 4 % was 

terminated immediately (American Association for Respiratory Care, 2001). This was done 

in order to ensure that an adequate oxygen supply to the subject‟s tissues was maintained. 
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Figure 5.2. Schematic representation of the constant load test protocol and blood sampling points. 
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5.2.4 Analysis 

 

5.2.4.1 Determination of peak oxygen uptake 

Oxygen uptake, carbon dioxide output and respiratory exchange ratio were calculated on a 

breath by breath basis according to equations 3.1 to 3.7 (pages 137-139). Peak oxygen 

uptake was recorded as the mean oxygen uptake over the final 10 s of incremental exercise. 

 

5.2.4.2 Estimation of lactate threshold 

Lactate threshold was estimated using the V-slope method (Beaver et al., 1986) as 

described in section 4.2.2.4.3 (page 178). 

 

5.2.4.3 Determination of peak heart rate 

Peak heart rate was determined as the mean heart rate recorded over the final 10 s of 

incremental exercise. 

 

5.2.4.4 Blood analysis 

Blood samples were centrifuged at 3000 g at 4 °C for 15 minutes. Immediately thereafter, 

samples were stored on dry ice whilst the plasma was divided into aliquots of 

approximately 500 μl and stored at -80 °C until further analysis. 

 

5.2.4.4.1 MDA assay 

Preliminary analysis was carried out to determine plasma MDA concentration in samples 

from the first two tests (Bioxytech MDA-586, OxisResearch, Oregon, USA). MDA has 

been criticised as a sole indicator of lipid peroxidation (Janero, 1990), however, it was 

more cost effective to use this marker as a preliminary indicator of the pattern of response. 



230 

5.2.4.4.2 Isoprostane assay 

Plasma isoprostane concentration was measured using the Direct 8-iso-Prostaglandin F2α 

enzyme immunoassay kit (Assay Designs 900-091, Ann Arbor, MI, USA), as described in 

section 2.3.5 (page 115). 
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5.3  Results 

 

5.3.1 Subjects 

Subject characteristics are displayed in table 5.4. All subjects were involved in regular 

exercise participation, and the mean V O2 peak response was 46.3 ml·kg
-1

·min
-1

, suggesting 

a good level of cardiorespiratory fitness (American College of Sports Medicine, 2009). 

However, subjects‟ fitness was heterogeneous based on the American College of Sports 

Medicine classification system (American College of Sports Medicine, 2009); subjects 

ranged from excellent to poor maximal aerobic power. In relation to the criteria put 

forward for the indication of a true maximal effort (Duncan et al., 1997), a plateau in the 

V O2 response was not evident for any subject, according to the procedure of Poole and 

colleagues (Poole et al., 2008). Four subjects reached a peak heart rate which was within 

10 beats·min
-1

 of age-predicted maximum heart rate, whereas peak heart rate in the other 

two subjects was well below age-predicted maximum. Respiratory exchange ratio was less 

than 1.15 for all subjects. Thus, it is likely that most subjects did not reach a true maximal 

effort; however, this was not critical for achievement of the proposed outcomes of the 

study.



 

Table 5.4. Subject characteristics for study two. 

         Subject Age 

(yr) 

Weight 

(kg) 

Height 

(cm) 

̂ L 

(l·min
-1

) 

2OV  peak 

(l·min
-1

) 

2OV peak 

(ml·kg
-1

·min
-1

) 

HR peak 

(beats·min
-1

) 

R peak 

         1 27 82.8 187.0 3.2 4.5 54.4 183 0.95 

2 23 61.5 171.0 1.8 2.7 43.9 195 1.02 

3 40 99.6 187.0 2.3 4.2 42.2 151 0.94 

4 25 80.2 171.0 1.8 3.3 41.2 193 1.00 

5 28 74.5 175.5 1.6 3.5 47.0 184 1.00 

6 26 66.9 165.9 1.7 3.3 49.4 170 0.95 

Mean  SD 28  6 77.6  13.4 176.2  8.9 2.1  0.6 3.6  0.7 46.3  5.0 179  16 0.98  0.03 

 

HR heart rate; R respiratory exchange ratio; SD standard deviation; V O2 oxygen uptake; ̂ L estimated lactate threshold  
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Table 5.5 contains details of peak work rate generated during maximal incremental 

exercise; work rate at the estimated lactate threshold; and work rates used for sub- and 

supra-lactate threshold constant load exercise, calculated according to equations 5.1 and 

5.2 (page 219). 

 

 

Table 5.5. Work rates measured at peak exercise and estimated lactate threshold, and 

calculated for sub- and supra-lactate threshold constant load exercise. 

       Work Rate (W) 

      Subject Peak ̂ L RAMP ̂ L STEADY STATE Sub-̂ L Supra-̂ L 

      1 365 233 218 196 277 

2 204 97 82 74 131 

3 321 152 137 123 211 

4 253 114 99 89 161 

5 255 98 83 75 152 

6 235 102 87 78 

 

146 

Mean ± SD 272 ± 59 133 ± 53 118 ± 53 106 ± 48 180 ± 55 

 

SD standard deviation; ̂ L estimated lactate threshold 
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5.3.2 Oxygen uptake responses to constant load exercise 

The steady state oxygen uptake response for each constant load test is displayed in table 

5.6. The value reported for each test is the mean response over the final minute of the 

constant load phase. It can be seen that all sub-̂ L work rates did provoke a sub-lactate 

threshold V O2 response. The range was 88-96 % of the oxygen uptake response measured 

at the lactate threshold. All supra-̂ L work rates produced a supra-lactate threshold V O2 

response. The supra-̂ L constant load test for subject 5 could not be carried out due to 

limitations imposed on equipment usage which were outwith the control of the author. 

 

 

Table 5.6. Estimated lactate threshold and oxygen uptake responses to sub- and supra-

lactate threshold constant load tests. 

    Subject ̂ L 

(l·min
-1

) 

Sub-̂ L 

(l·min
-1

) 

Supra-̂ L 

(l·min
-1

) 

    1 3.2 2.8 3.7 

2 1.8 1.7 2.5 

3 2.3 2.2 3.4 

4 1.8 1.6 2.6 

5 1.6 1.5 - 

6 1.7 1.6 2.6 

 

̂ L estimated lactate threshold 
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5.3.3 Oxidative stress response to incremental exercise 

Blood samples were collected at 2 minute intervals during incremental exercise and during 

6 minutes of active recovery on the cycle ergometer. A blood sample was collected at peak 

exercise in three of the six subjects, and in these cases was collected within 16 seconds 

following the end of the ramp phase of exercise. A blood sample was attempted at peak 

exercise in two of the remaining subjects since the previous sample had been collected at 

least one minute prior to the end of the ramp in both subjects. However, it was not possible 

to withdraw a sample in either case due to a kink in the cannula in one subject and poor 

blood flow in the other. A peak blood sample was not attempted in the remaining subject 

since only 20 s had passed since collection of the previous sample. 

 

Preliminary analysis of samples from the first two subjects was undertaken to determine if 

an oxidative stress response was apparent, and to justify continuation of the study. MDA 

concentration, a marker of lipid peroxidation, from the first two incremental tests can be 

seen in figure 5.3. The data from subject 1, shown in the upper panel, was as expected: an 

incremental rise in MDA concentration as work rate increased incrementally. It can be seen 

that the MDA concentration was starting to fall during the 6 minute period of active 

recovery, but was still well above the resting value in the final sample collected. In 

contrast, data from the second subject did not follow this pattern. The resting value was 

greater than that seen in subject 1, and the concentration remained steady at this value for 

10 minutes into the ramp exercise period, at which point it fell close to the resting value 

seen in subject 1, and remained steady at this value for the remainder of the exercise test. 

This pattern of response does not suggest a physiological explanation; the ramp phase was 

14 minutes in duration for this subject, and an abrupt fall in lipid peroxidation at this time 

point was unexpected, perhaps suggesting an issue with the assay. 
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Figure 5.3. MDA response to incremental cycle ergometer exercise to volitional 

exhaustion in two male subjects. 

The dashed vertical lines indicate the onset of exercise and active recovery respectively. The upper 

panel shows the response of subject 1; the lower panel shows the response of subject 2. 
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Figure 5.4 shows the F2-isoprostane response to incremental exercise in all six subjects. 

The most salient feature is the abundance of missing data. Table 5.7 presents the data 

shown in these plots in numerical form and includes a key indicating the reason for each 

missing data point. Some samples could not be collected for technical reasons, for 

example, poor blood flow; however, the majority of data points were missing due to the 

measured concentration falling outwith the range of the assay. Of the data available, no 

obvious pattern of response was present, thus no statistical analysis was performed. 

 

The pattern of response for subject 1 is noteworthy. The blood samples collected were 

analysed for both MDA concentration (as displayed in figure 5.3) and F2-isoprostane 

concentration. At first glance, the pattern of response between the two markers of lipid 

peroxidation appears very different. However, if considered in isolation, samples at 2 min, 

6 min and 18 min in the F2-isoprostane concentration plot for this subject did increase 

incrementally in a similar manner to that seen in the [MDA] plot.  
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Figure 5.4. F2-isoprostane concentration prior to, during and following incremental cycle 

ergometer exercise to volitional exhaustion in six male subjects. 

Incremental exercise duration was subject dependent and varied from 14 to 24 minutes. The 

exercise period was followed by 6 minutes of active recovery. The dashed vertical lines indicate the 

onset of incremental exercise and active recovery respectively. The number in the top right hand 

corner of each panel refers to the subject number. 
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Table 5.7. F2-isoprostane response prior to, during and following incremental cycle 

ergometer exercise to volitional exhaustion. 

        F2-isoprostanes (pg·ml
-1

) 

 
       Subject 1 2 3 4 5 6 

       Time (min)       

       
Rest 203.2 HI LO 91.7 174.3 235.6 

2 276.5 24.6 - 75.9 591.1 - 

4 11.5 HI HI 84.9 HI HI 

6 310.3 HI LO 60.8 HI 135.0 

8 LO LO - HI - - 

10 - LO LO 208.0 - 653.6 

12 172.2 LO LO 104.5 304.0 143.2 

14 81.1 HI LO 81.6 133.4 267.8 

16 HI  LO - -  

18 396.6  LO 99.0   

20 -  HI    

22 64.5  LO    

24 142.7      

R2 HI HI LO HI HI 138.5 

R4 - HI 87.6 401.0 74.8 89.8 

R6 HI LO HI 113.0 - 100.5 

 

Value at rest is mean of two samples; R2 to R6 are samples taken at 2 to 6 min into recovery; 

- sample not collected for technical reasons; HI measured concentration was above the upper limit 

of the assay; LO measured concentration was below the lower limit of the assay; a blank cell 

indicates that the subject was not exercising at this time point. 
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5.3.4 Oxidative stress response to constant load exercise 

The data from preliminary analysis of the blood samples collected from the constant load 

tests of the first two subjects are shown in figure 5.5. The response to the sub-lactate 

threshold constant load test in subject 1 (upper left panel) was somewhat as expected, with 

a rise in [MDA] close to the onset of exercise, followed by a fairly steady response over 

the first 10 minutes of the exercise period. However, the response then fell close to the 

resting value for the latter half of the exercise period, and fell below the resting value 

during the active recovery period. There was no apparent response in the supra-lactate 

threshold constant load test for subject 1 until the active recovery period, at which point 

there was a noticeable increase in [MDA]. There was no clear response for subject 2 in 

either test. 

 

The resting [MDA] response was not consistent within each subject. For subject 1, the 

resting response in the incremental test was 1.9 µmol, whilst it was 5.9 µmol and 5.2 µmol 

in the sub- and supra-lactate threshold constant load tests respectively. In subject 2, the 

resting value was 5.7 µmol in the incremental test, but was lower at 

2.3 µmol and 2.6 µmol in the constant load tests. The observed range in [MDA] through all 

tests was 1.8 µmol to 8.6 µmol. 

 

Figures 5.6 and 5.7 show the F2-isoprostane responses to sub- and supra-lactate threshold 

constant load exercise respectively for each individual. As mentioned previously, the 

supra-̂ L constant load test for subject 5 was not carried out due to external constraints 

imposed on equipment usage. Similar to the incremental exercise data shown in figure 5.4, 

it can be seen that there are several missing data points. Tables 5.8 and 5.9 show the sub- 

and supra-lactate threshold constant load data in numerical form, with a key explaining the 

reason for each missing data point. Again, this was mainly due to the measured 
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concentrations falling outwith the range of the assay. The lack of any ostensible pattern of 

response precluded any statistical analysis. 

 

Resting F2-isoprostane values measured in all three exercise tests ranged from 80.6 pg·ml
-1

 

to 235.6 pg·ml
-1

, as shown in tables 5.7, 5.8 and 5.9, omitting the spuriously high value of 

692.2 pg·ml
-1

 for subject 1 measured prior to the supra-lactate threshold constant load test. 

More than one resting value was available for four subjects. Values were consistent 

between tests for only two of these subjects (subject 3: mean ± SD = 83.2 ± 3.6; subject 5: 

mean ± SD = 169.9 ± 6.3). The overall range of values through all tests was 11.5 pg·ml
-1

 to 

2345.7 pg·ml
-1

. 
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Figure 5.5. MDA response to constant load cycle ergometer exercise at sub- and supra-

lactate threshold work rates in two male subjects. 

The dashed vertical lines indicate the onset of exercise and active recovery respectively. The upper 

panels show sub-lactate threshold responses; the lower panels show supra-lactate threshold 

responses. The left hand panels show the responses of subject 1; the right hand panels show the 

responses of subject 2. 
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Figure 5.6. F2-isoprostane concentration prior to, during and following constant load cycle 

ergometer exercise at a sub-lactate threshold work rate in six male subjects. 

The steady state exercise period was followed by 6 minutes of active recovery. The dashed vertical 

lines indicate the onset of steady state exercise and active recovery respectively. The number in 

the top right hand corner of each panel refers to the subject number. 
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Table 5.8. F2-isoprostane response prior to, during and following constant load cycle 

ergometer exercise at a sub-lactate threshold work rate. 

        F2-isoprostanes (pg·ml
-1

) 

 
       Subject 1 2 3 4 5 6 

       Time (min)       

       
Rest HI LO 80.6 104.1 165.4 97.0 

2 HI LO 90.8 233.9 HI 292.1 

4 1346.4 HI 114.7 176.0 110.4 115.3 

6 47.7 LO 161.9 70.8 HI 42.8 

8 LO 1778.1 HI 123.5 - 74.8 

10 HI LO 97.1 203.3 279.4 HI 

15 39.2 LO 75.6 HI 145.6 55.8 

20 HI LO 88.7 53.7 1734.1 87.6 

R2 HI LO HI HI 109.9 HI 

R4 46.9 - HI 86.4 - 133.7 

R6 11.5 LO 81.2 HI 182.9 68.4 

 

Value at rest is mean of two samples; R2 to R6 samples taken at 2 to 6 min into recovery; - sample 

not collected for technical reasons; HI measured concentration was above the upper limit of the 

assay; LO measured concentration was below the lower limit of the assay. 
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Figure 5.7. F2-isoprostane concentration prior to, during and following constant load cycle 

ergometer exercise at a supra-lactate threshold work rate in five male subjects. 

The steady state exercise period was followed by 6 minutes of active recovery. The dashed vertical 

lines indicate the onset of steady state exercise and active recovery respectively. The number in 

the top right hand corner of each panel refers to the subject number. 
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Table 5.9. F2-isoprostane response prior to, during and following constant load cycle 

ergometer exercise at a supra-lactate threshold work rate in six male subjects. 

        F2-isoprostanes (pg·ml
-1

) 

 
       Subject 1 2 3 4 5 6 

       Time (min)       

       
Rest 692.2 LO 85.7 214.4 - 217.8 

2 26.4 HI 142.2 HI - 99.2 

4 HI LO 188.4 HI - 75.8 

6 HI 2345.7 151.8 HI - 89.3 

8 LO - 115.9 188.1 - 2026.1 

10 388.5 - 310.3 87.1 - HI 

15 HI - - 68.7 - HI 

20 516.0 LO 133.3 HI - HI 

R2 16.5 LO HI 430.2 - HI 

R4 - 265.8 HI HI - HI 

R6 HI LO 111.2 HI - 64.6 

 

Value at rest is mean of two samples; R2 to R6 samples taken at 2 to 6 min into recovery; - sample 

not collected for technical reasons; HI measured concentration was above the upper limit of the 

assay; LO measured concentration was below the lower limit of the assay. 



247 

5.4  Discussion 

Data reported in Chapter 3 indicated a linear relationship between work rate and oxidative 

stress during incremental treadmill exercise to exhaustion. However, this data captured 

only the work rate range between that which elicited a heart rate response of approximately 

150 beats·min
-1

 and exhaustion. In those subjects, this heart rate response equated to 

approximately 78 % of maximum heart rate. It was hoped to extend this investigation in 

the current chapter to the entire work rate range from rest to exhaustion. It was of interest 

to determine if the relationship between work rate and oxidative stress was similar at the 

lower end of the work rate range, and indeed, if an oxidative stress response was present at 

all at the lower work rates. The concept of a threshold intensity for an oxidative stress 

response remains an intriguing question yet to be answered. In addition, it was of interest 

to observe if the relationship between work rate and oxidative stress remained the same at 

work rates above the lactate threshold, or whether the presence of a metabolic acidosis may 

have magnified the response. Lactate threshold was not measured in the study reported in 

Chapter 3, and therefore it was not possible to identify any change in relationship at this 

point. 

 

5.4.1 Preliminary MDA analysis 

The preliminary MDA analysis carried out on blood samples collected from the first 

subject indicated a positive progressive relationship between work rate and oxidative stress 

very clearly. However, the samples analysed from subject 2 were not consistent with this 

finding. Some confidence in the pattern of response observed in subject 1 can be taken 

from the similarity in response to that reported in Chapter 3. 

 

The resting response of 1.9 μmol in subject 1 was similar to the majority of previous 

reports in the literature; however, a few studies have reported higher resting [MDA], 
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similar to that seen in subject 2 (Vollaard et al., 2005). The difference between the two 

subjects may simply highlight individual variation; however, it has been suggested that 

differences in technique between MDA assays have not always been clearly reported in the 

literature and may lead to wide variations in resting concentration (Vollaard et al., 2005). 

The peak response in subject 1 was 7.0 μmol. This was higher than that reported in many 

studies utilising a maximal incremental cycle ergometer exercise protocol (Ashton et al., 

1998, 1999; Jammes et al., 2004; Lovlin et al., 1987; Sen et al., 1994; Steinberg et al., 

2006; Viinikka et al., 1984), yet the progressive nature of the response seen in the current 

study is convincing. 

 

The lack of consistency in the pattern of response between these two subjects was likely 

due to a technical issue with the MDA assay which did not become apparent until at least 

after the samples from the first subject‟s incremental test had been analysed. The samples 

were processed in the following order: all samples from subject 1 before samples from 

subject 2; and for each subject samples from the incremental test first, followed by samples 

from the sub-lactate threshold test, and finally, samples from the supra-lactate threshold 

test. The responses observed for the first six samples of the sub-lactate threshold test in 

subject 1 were mostly plausible, but the rest of the data from the constant load tests were 

less convincing. It is probable that experimenter error was the problem in light of the time 

dependent pattern of appearance of less credible data. 

 

5.4.2 F2-isoprostane analysis 

Normal plasma concentration of F2-isoprostanes has been reported as 35 ± 6 pg.ml
-1

 

(Morrow & Roberts, 1997). Several previous studies have measured F2-isoprostane 

concentration prior to and following exercise. Reported values at rest have ranged from 

28 ± 2 pg·ml
-1

 (Mastaloudis et al., 2004b) to 75 ± 7 pg·ml
-1

 (Mastaloudis et al., 2001); 

however, most values have been at the lower end of this range: 34 ± 3 pg·ml
-1

 (Steensberg 
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et al., 2002), 35.0 ± 4.7 pg·ml
-1

 (Waring et al., 2003) and 44.8 ± 2.8 pg·ml
-1

 (Nieman et 

al., 2002). One study reported a substantially higher resting concentration of approximately 

2000 pg·ml
-1

 (Sacheck et al., 2003). 

 

In the current study, resting F2-isoprostane concentration was available for four subjects in 

each of the three testing sessions, and mean concentration was 176.2 ± 61.6 pg·ml
-1 

for the 

incremental test, 111.8 ± 37.1 pg·ml
-1 

for the sub-lactate threshold constant load test and 

302.5 ± 267.0 pg·ml
-1 

for the supra-lactate threshold constant load test. The range of values 

spanned from 80.6 pg·ml
-1

 to 692.2 pg·ml
-1

 over all tests and all subjects. In some subjects 

for which there was more than one resting value available, values were fairly similar. For 

example, in subject 3, the two resting values available were 80.6 pg·ml
-1 

and 

85.7 pg·ml
-1

. Similarly, in subject 5, resting values were 174.3 pg·ml
-1 

and 165.4 pg·ml
-1

. 

However, in other subjects, resting values were quite different. For example, in subject 4 

resting values were measured as 91.7 pg·ml
-1

, 104.1 pg·ml
-1

 and 214.4 pg·ml
-1

; and for 

subject 1, 203.2 pg·ml
-1

 and 692.2 pg·ml
-1

 were measured. Inter-individual variation in 

resting values was not high in previous studies, and thus high intra-individual variation 

would not be expected. The large differences between these values compared to those 

previously published for resting F2-isoprostane concentration, coupled with the low 

reproducibility of measurement within individual subjects, casts doubt upon the overall 

reliability of these data. 

 

Previously published post-exercise F2-isoprostanes concentrations have fallen in the range 

of 41-131 pg·ml
-1

 following exercise as diverse as ultramarathon running (Mastaloudis et 

al., 2001, 2004b; Nieman et al., 2002), 20 minutes of cycle ergometer exercise at a work 

rate of 80 W (Waring et al., 2003), a 2.5 hour treadmill run at 75 % V O2 max (Steensberg 

et al., 2002) and a 3 hour treadmill run at 70 % V O2 max (McAnulty et al., 2003). 

Responses during or following exercise in the current study ranged from 11.5 pg·ml
-1

 to 
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2345.7 pg·ml
-1

. Although many values in the current study were within the expected range, 

again, the lack of a clear pattern in response reduces the dependability of the data. 

 

Unfortunately, the large number of missing data points, alongside the lack of any clear 

pattern of response in the available data, and lack of confidence regarding the reliability of 

the data precluded any meaningful analysis and interpretation of the data collected. 

 

The concentration of 45 % of all samples was found to be outwith the range of the assay. 

Of all out of range samples, 64 % were above the upper range, and in 36 % the 

concentration was too low to be measured. This upper range is reported by the 

manufacturer as 100000 pg·ml
-1

 (Assay Designs 900-091, Ann Arbor, MI, USA), thus, 

there was no prior indication that this means of assessment may be unsuitable for the 

experimental conditions in the current study. The apparent random occurrence of the out of 

range samples, both below and above the manufacturer‟s indicated range suggests an 

inconsistent error, and thus, likely not due to experimenter error. Autoxidation of 

arachidonic acid in plasma (Morrow & Roberts, 1997) may occur in biological samples 

containing lipid, and this may artificially elevate the F2-isoprostane concentration in the 

sample. However, Morrow and Roberts (1997) suggested that autoxidation was not seen to 

occur in samples snap frozen in liquid nitrogen and stored at -70 °C for 6 months. Samples 

in the current study were frozen immediately upon collection and stored at -80 °C; 

however, the storage period prior to analysis was 20 months in the current study. This 

delay in analysis was unavoidable due to severe adverse circumstances. It is possible that 

during the storage time, some autoxidation occurred in some of the stored samples, which 

could explain the unexpectedly high values measured here. However, it is unclear why 

some samples should have been affected in this way, and not others. Some concerns have 

been put forward regarding the reliability of ELISA measurement of isoprostanes (Roberts 

& Morrow, 2000); however, unfortunately it was not possible to use HPLC in the current 
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study due to lack of access to equipment. The analysis issues experienced in the current 

study underline the potential value of non-invasive assessment of oxidative stress. 

 

5.4.3 Study design 

The use of a standard incrementation rate for all subjects brought about a test duration 

which was longer than optimal for assessment of peak V O2 in some subjects (Buchfuhrer et 

al., 1983). However, this was not perceived to be a limitation in design since this variable 

was measured simply as an aid to subject characterisation and for the estimation of a 

suitable supra-lactate threshold work rate. It was more important that all subjects utilised 

the same incrementation rate so that any changes in oxidative stress were comparable. This 

meant relatively long duration tests for a minority of subjects, however, allowed a greater 

density of blood sampling. It is well established that peak V O2 is higher in most subjects 

when measured using a treadmill in comparison to a cycle ergometer due to the use of a 

larger working musculature (Buchfuhrer et al., 1983; Porszasz et al., 2003). Wasserman 

and colleagues (2004) indicated that peak V O2 may be 5-11 % higher when utilising a 

treadmill protocol in comparison to cycle ergometry, although Porszasz and colleagues 

(2003) reported a difference of 23 % between modes. However, this was not a limitation in 

the present study since a key aim was to investigate the oxidative stress response to 

incremental exercise throughout the entire work rate range from rest to maximal exercise, 

rather than to accurately measure a maximal value. A further advantage of using the cycle 

ergometer in this study was the relative ease of obtaining blood samples due to minimal 

movement in the upper body during exercise. 

 

5.4.4 Limitations and further work 

The major limitation in this study was clearly the problems encountered with the blood 

assays as discussed in sections 5.4.1 and 5.4.2 (pages 247 and 248). In the case of the 
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F2-isoprostane analysis, it is likely that the extended period of storage had a detrimental 

impact on the integrity of the samples. 

 

It would be useful to replicate the experiments undertaken within this study, but to use the 

non-invasive measurement technique which has been used with success in other studies 

reported here. In addition, more than one plasma marker could be utilised, if financially 

viable, for confirmation of results as advised by Halliwell & Gutteridge (1999). The 

verification of the laser spectroscopy technique for the measurement of ethane output 

remains to be validated against traditional plasma markers of oxidative stress and this is 

one of the objectives for the work described in Chapter 7. 

 

5.5  Conclusions 

Preliminary analysis suggested that the oxidative stress response may increase 

progressively alongside work rate throughout the entire range from rest to exhaustion. 

However, this observation is far from conclusive as it is based on data from a single 

subject only.  
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Chapter 6 

 

Pilot tests investigating the potential for non-invasive 

assessment of oxidative stress during and following isometric 

exercise 
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6.1  Introduction 

Very few studies have investigated the effect of isometric exercise on oxidative stress 

(Bloomer & Goldfarb, 2004). Three previous studies (Dousset et al., 2002; Steinberg et al., 

2004; Steinberg et al., 2006) reported increased oxidative stress following static isometric 

handgrip exercise at 50 % or 60 % of maximal voluntary contraction (MVC). However, 

one previous study (Sahlin et al., 1992) suggested the existence of a threshold intensity 

below which a response was not stimulated, although this study utilised intermittent 

isometric contractions of the knee extensors. Further investigation of the oxidative stress 

response to sustained isometric contraction at a range of intensities was planned within the 

current series of studies. Thus, pilot tests were undertaken in order to determine firstly, 

whether the previously reported oxidative stress response could be replicated prior to 

commencing a full-scale study; secondly, to determine if oxidative stress could be assessed 

non-invasively in relation to this mode of exercise since this has not been investigated 

previously; and thirdly, to adjust the methodological design. 

 

6.2  Methods 

 

6.2.1 Subjects 

Two subjects participated in these pilot tests; one healthy male (age 28 yr; body mass 82.3 

kg) and one healthy female (age 38 yr; body mass 49.0 kg). Both were eligible according 

to the exclusion criteria set out in section 2.1.1 (page 95). No further inclusion or exclusion 

criteria were applied. 

 

6.2.2 Test protocols 

Subjects performed isometric contractions of the flexor digitorum muscles using a 

handgrip dynamometer. The handgrip dynamometer is a customised device incorporating a 
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strain gauge attached to a horizontal handle which the subject can grip to produce force. 

The strain gauge was connected to data acquisition software (Spike2 v.5.03, Cambridge 

Electronic Design Ltd., Cambridge, UK), running on a laptop computer (Tecra A4, 

Toshiba Information Systems (UK) Ltd., Surrey, UK), via a data capture unit (Micro 1401 

mk II, Cambridge Electronic Design Ltd., Cambridge, UK) and amplifier (IBLS 

Mechanical Workshop, University of Glasgow, Glasgow, UK). The dynamometer was 

calibrated with known weights prior to use in order to quantify the forces recorded. Figure 

6.1 illustrates a typical calibration plot which shows the response of the strain gauge to be 

linear (R
2
 = 0.99) throughout the range calibrated. It was possible to calibrate the 

dynamometer only throughout the range from 0-28 kg due to lack of availability of 

additional weights. 
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Figure 6.1. A typical calibration plot for the handgrip dynamometer. 

Response = 0.0147(Weight) + 0.001 

R2 = 0.99 
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A diagrammatic representation of the experimental set-up is shown in figure 6.2. The 

distance between the wooden handle attached to the strain gauge and the foam grip could 

be adjusted to take account of variations in hand size between individuals and this distance 

was kept constant for each individual between trials. 

 

 

wooden base

metal frame

strain gauge

wooden handle

foam grip

FRONT VIEW SIDE VIEW

transducer amplifier

data acquisition unit

computer monitor

 

 

Figure 6.2. Experimental set-up for the recording of force during isometric contraction of 

the flexor digitorum muscles. 
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6.2.2.1 Determination of maximal voluntary contraction 

Subjects visited the laboratory on three separate occasions and all visits for each individual 

took place at the same time of day whenever possible since maximal isometric force 

production has been reported to vary with time of day (Martin et al., 1999). At the first 

visit, subjects were introduced to personnel and were familiarised with all equipment and 

procedures to be used, as described in section 2.2.2 (page 97). This included instruction on 

the correct use of the handgrip dynamometer; the subject was seated and was asked to 

adjust the height of the seat so that he could grip the dynamometer with the arm relaxed 

and hanging perpendicular to the handle of the dynamometer. The grip size was adjusted 

for comfort as described above. Subjects performed both trials with the dominant hand. 

 

The subject was asked to perform a maximal voluntary contraction by grasping the wooden 

handle and foam grip together as hard as possible for 5 seconds. This was followed by a 5 

minute rest period. The subject then repeated the MVC manoeuvre twice more, with a 5 

minute rest period between each trial. The percentage difference between the highest MVC 

attempt and each other attempt was calculated. If the difference between any trial and the 

highest attempt was less than 5%, MVC was recorded as the highest of the three trials. If 

the difference between any trial and the highest attempt was greater than 5%, the subject 

was asked to perform a further two trials, and the overall MVC was recorded as the highest 

of all five trials. Force in kg was calculated according to the calibration data and then 

converted to newtons (N) by multiplying by 9.8, the known acceleration due to gravity, as 

indicated in equation 6.1. 

 

1 N = 1 
2s

mkg 
                 [6.1] 



258 

Healthy subjects typically exhibit peak force early in a maximal voluntary contraction 

followed by a gradual decline in force. Good reliability of measurement has been reported 

after 5 seconds of a 6 second sustained maximal grip strength contraction (Kamimura & 

Ikuta, 2001). Studies have indicated that three to five repetitions are adequate to determine 

MVC (Wilson & Murphy, 1996). MVC has been measured in a similar manner in previous 

studies in this area (Alessio et al., 2000; Dousset et al., 2002). 

 

6.2.2.2 Sustained contraction trials 

At the second and third visits respectively, the subject was asked to sustain a voluntary 

isometric muscle contraction at 40 % and 60 % of the previously determined MVC. During 

each trial, the subject sustained the specified contraction intensity until fatigue. The subject 

was able to view the computer monitor at all times during the contraction for feedback on 

performance. Reference lines were drawn across the screen at the required intensity level 

and at ± 2% of this level to provide visual cues to assist the subject in maintaining the 

contraction at the correct intensity. If the force fell more than 2% below the specified level 

at any point during the trial, the subject was given verbal feedback to encourage him or her 

to regain the correct intensity. If the subject was unable to regain the set level immediately, 

the trial was terminated. On cessation of the contraction, the subject rested comfortably in 

a chair for 30 minutes in all tests with the exception of the 60 % MVC sustained 

contraction trial in the female subject who rested for 65 minutes. 

 

6.2.3 Measurements 

 

6.2.3.1 Respired air measurements 

Samples of expired air of two minutes duration were collected in Douglas bags at the 

following time points: two baseline samples, separated by a period of ten minutes, were 

taken at rest prior to exercise; a sample was taken immediately following cessation of the 
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contraction; a recovery sample was collected five minutes after the cessation of exercise 

and then at 5 minute intervals up to 30 minutes following the end of exercise in all tests, 

with the exception of the 60 % MVC sustained contraction trial in the female subject in 

which samples were collected at 5 minute intervals for 65 minutes following the end of the 

contraction. Expired air collection procedures are detailed in section 2.3.1.1 (page 100). 

The subject was linked to the gas collection equipment one minute prior to the start of each 

sample in order to provide a short familiarisation to minimise the likelihood of 

hyperventilation during the sample, and the equipment was removed at the end of each 

sample for subject comfort. There was one exception to this procedure; there was no 

familiarisation period before the sample immediately following exercise so that the gas 

collection equipment did not interfere with the exercise. The mouthpiece and nose-clip 

were introduced as soon as possible after the end of exercise and the expired air sample 

was started immediately thereafter. 

 

6.2.3.2 Ethane sampling procedures and analysis 

Expired and ambient ethane samples were collected are described in section 2.3.2.2 (page 

107). All samples were analysed for ethane content as described in section 2.3.3 (page 

112). 
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6.3 Results 

 

6.3.1 Subject characteristics 

Subject characteristics are displayed in table 6.1. 

 

 

Table 6.1. Subject characteristics for isometric pilot tests. 

      Subject Gender Age (yr) Weight (kg) Height (cm) MVC (N) 

      1 male 28 82.3 187.0 519.4 

2 female 38 49.0 157.0 303.8 

Mean   SD  33  7 65.7  23.5 172.0  21.2 411.6  152.5 

 

MVC maximal voluntary contraction; SD standard deviation 

 

 

The duration of the sustained contraction at 40 % MVC was 129 s for subject 1 and 161 s 

for subject 2. Shorter contraction times were recorded at the higher contraction intensity of 

60 % MVC: 58 s for subject 1 and 52 s for subject 2. Both subjects closely matched the 

target intensity throughout each trial, sustaining 97-105 % of target force. 

 

6.3.2  Ethane output response 

Figures 6.3 and 6.4 show the ethane output response following a sustained isometric 

contraction at an intensity of 40 % MVC in two subjects. Figures 6.5 and 6.6 show ethane 

output in response to a sustained contraction at 60% MVC in two subjects. 
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Mean ethane output at rest across the four pilot tests was 7.5 ± 1.6 pmol·kg
-1

·min
-1

. This is 

somewhat lower than the baseline ethane output of 12.0 ± 9.4 pmol·kg
-1

·min
-1

 reported in 

the previous study. However, with the omission of the unusually high baseline value of one 

subject bringing the mean response in the previous study to 9.2 ± 5.4 pmol·kg
-1

·min
-1

, 

ethane output was more comparable between studies. 

 

There appeared to be a tendency for ethane output to be elevated substantially above 

baseline immediately upon recovery from the sustained contraction at both intensities in 

both subjects indicated by a mean increase in ethane output above baseline of 174 % in the 

40 % MVC trials and of 249 % in the 60 % MVC trials. 

 

The pattern of response throughout the remainder of the recovery period suggested a 

reduction in ethane output towards baseline output by 5 minutes into the recovery period, 

generally followed by stabilisation of the response. In some tests there did seem to be a 

less evident rise in ethane output at 10 minutes into recovery, however, this pattern was 

equivocal. 

 

The recovery period was extended to 65 minutes in the 60 % MVC trial in subject 2 as 

shown in figure 6.6. This was done in order to determine the potential value of utilising a 

longer recovery period in the main study described in chapter 7. The ethane output 

response may have been somewhat elevated above baseline between 35 and 55 minutes 

into recovery; however, there was little variation in the response over time until a reduction 

towards baseline at 65 minutes into recovery. 
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Figure 6.3. Ethane output at rest and during passive recovery from a sustained isometric 

contraction at 40 % maximal voluntary contraction in one male subject. 

B baseline sample; R0 immediate post-exercise sample; R5 to R30 samples collected at 5 to 30 

min into recovery. 
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Figure 6.4. Ethane output at rest and during passive recovery from a sustained isometric 

contraction at 40 % maximal voluntary contraction in one female subject. 

B baseline sample; R0 immediate post-exercise sample; R5 to R30 samples collected at 5 to 30 

min into recovery. 
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Figure 6.5. Ethane output at rest and during passive recovery from a sustained isometric 

contraction at 60 % maximal voluntary contraction in one male subject. 

B baseline sample; R0 immediate post-exercise sample; R5 to R30 samples collected at 5 to 30 

min into recovery 

. 
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Figure 6.6. Ethane output at rest and during passive recovery from a sustained isometric 

contraction at 60 % maximal voluntary contraction in one female subject. 

B baseline sample; R0 immediate post-exercise sample; R5 to R30 samples collected at 5 to 30 

min into recovery 
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6.4  Discussion 

The first aim of these pilot tests was to determine whether or not a previously reported 

oxidative stress response to sustained, static isometric exercise (Dousset et al., 2002; 

Steinberg et al., 2004; Steinberg et al., 2006) could be replicated prior to commencing the 

main study. The current data indicated that oxidative stress, as assessed by expired ethane, 

increased in response to a sustained isometric contraction. The peak response occurred 

immediately following the end of exercise, and thereafter returned towards baseline values, 

although there may have been some elevation above baseline later in the recovery period. 

 

Ethane output in recovery could not be compared to previous studies since this is the first 

known study to utilise a non-invasive measurement technique with this mode of exercise. 

However, the pattern of response was somewhat similar to that reported previously 

(Dousset et al., 2002; Steinberg et al., 2004; Steinberg et al., 2006) with an elevation in 

oxidative stress following isometric handgrip exercise; however the timing of the peak 

response was unclear. Two previous studies suggested the peak response occurred 5 

minutes into the recovery period (Steinberg et al., 2004; Steinberg et al., 2006), slightly 

later than in the current tests, and one previous study (Dousset et al., 2002) indicated a 

peak response at 20 minutes into recovery, although in this latter study only one 

measurement was made during the recovery period. 

 

An elevation in ethane output later in recovery may be expected since ethane produced by 

the muscle during exercise may naturally be trapped to some extent in the muscle during 

the contraction due to elevated intramuscular pressure (Sejersted et al., 1984) with 

subsequent, at least partial, venous occlusion. Thus, at the onset of recovery, as blood flow 

is restored to the exercising muscle, ethane may be able to flow through the systemic 

circulation with subsequent increased output at the lung. However, it is possible that the 

small volume of ethane liberated by the muscle during exercise may have cleared to the 
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lung within the 2 minute period of the expired air sample. Thus, further investigation of the 

pattern of response would be valuable. 

 

With reference to the second aim of these tests, to assess the measurement technique for 

this mode of exercise, it can be concluded that an oxidative stress response to isometric 

exercise can be shown using a non-invasive measurement technique and further 

investigation would be warranted. If this result could be replicated in further subjects, the 

findings of previous studies (Dousset et al., 2002; Steinberg et al., 2004; Steinberg et al., 

2006) could be confirmed and extended. The findings of these studies are reviewed in 

section 7.1.3.1 (page 271). 

 

The final aim of these pilot tests was to adjust the methodological design. To this end, one 

test was conducted with an extended recovery period to determine if this would have 

potential utility for the main study. Although there may have been some elevation in 

ethane output above baseline after the 30 minute recovery period, the response was not 

sufficiently prominent to recommend an extended recovery period in the main study, 

especially since time constraints for testing became a consideration (as described in section 

7.2.2, page 278). 
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Chapter 7 

 

A comparison of invasive and non-invasive means of 

assessment of oxidative stress during recovery from isometric 

exercise 
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7.1  Introduction 

 

7.1.1 Isometric exercise 

An isometric muscle contraction is defined as one during which there is no change in 

muscle length (Faulkner, 1995). This type of contraction is common in sporting activities 

such as rock climbing, gymnastics and horse riding, and is a frequent occurrence even in 

the sedentary population, being utilised in everyday activities, such as carrying shopping 

bags. 

 

In a sustained isometric contraction, intramuscular pressure increases in relation to the 

intensity of the contraction (Sejersted et al., 1984). Consequently, blood flow to the 

exercising muscle may be hindered by occlusion of supply vessels and it has been 

suggested that blood flow may be impaired by a contraction intensity as low as 15 % of 

maximal voluntary contraction (Sjøgaard et al., 1988). Simultaneous obstruction of outflow 

vessels may encourage the accumulation of metabolites such as K
+
, which have been 

associated with the onset of fatigue (Sjøgaard et al., 1988). 

 

Isometric exercise can be performed in a static manner, in which the contraction is 

sustained as described above, or can be performed in an intermittent fashion, in which 

contraction and relaxation follow a cyclical pattern, for example, contraction for ten 

seconds followed by relaxation for ten seconds. If the contraction is static, and is 

performed at an intensity above that which impairs blood flow, blood flow to the 

exercising muscle will be reduced or interrupted for the entire duration of the contraction. 

If the contractions are of an intermittent nature, blood flow will decrease and increase in a 

cyclical fashion in tandem with contraction and relaxation of the muscle (Sjøgaard et al., 

1988). It has been reported that transient reactive hyperaemia occurs during recovery from 

isometric contraction (Sjøgaard et al., 1988). 
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7.1.2 Ischaemia-reperfusion injury 

Ischaemia is defined as an inadequate blood supply; hypoxia is a deficiency of O2 (Martin, 

2007). Different tissues have varying resistance to ischaemic or hypoxic conditions, for 

example, skeletal muscle is fairly resistant to hypoxia, however, any cell, with the 

exception of erythrocytes, will become injured if exposed to ischaemic conditions for a 

sufficient period of time. 

 

A period of ischaemia during isometric exercise followed by restoration of blood flow 

shares some characteristics with ischaemia-reperfusion injury, which can be a serious 

complication in cases of organ transplantation, myocardial infarction or stroke (Dröge, 

2002). Ischaemia-reperfusion injury is tissue damage caused by the return of blood flow to 

ischaemic tissue, and this damage has been attributed, at least in part, to the production of 

free radicals once blood flow has been re-established at the ischaemic site (Babior, 2000). 

Several sources for this free radical production have been postulated including: neutrophil 

activation by the release of inflammatory cytokines in response to ischaemia (Liao et al., 

1991); and production of O2
-

 via the conversion of xanthine hydrogenase to xanthine 

oxidase (McCord, 1985). Both putative mechanisms were described in Chapter 1 (section 

1.3.3.3, page 86; section 1.3.3.4, page 87). These mechanisms may be responsible, to some 

extent, for the oxidative stress response associated with recovery from isometric exercise. 

As described previously, it is unlikely that increased oxygen consumption with 

concomitant increased mitochondrial production of reactive species contributes 

significantly to oxidative stress in isometric exercise since oxygen uptake does not increase 

substantially during this mode of exercise (Alessio et al., 2000). 
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7.1.3 Evidence of oxidative stress in isometric exercise 

 

7.1.3.1 Static isometric exercise 

There is little information in the literature regarding the effect of static isometric exercise 

on oxidative stress. One research group has studied the oxidative stress response to static 

isometric exercise in three separate investigations (Dousset et al., 2002; Steinberg et al., 

2004; Steinberg et al., 2006); the methodologies and main findings of which are 

summarised in table 7.1. In each study, subjects were asked to sustain a static isometric 

handgrip contraction at a specified intensity until fatigue. Contraction intensity was 60 % 

of maximal voluntary contraction (MVC) in the first study (Dousset et al., 2002) and 50 % 

MVC in the latter two studies (Steinberg et al., 2004; Steinberg et al., 2006), both of which 

would be expected to induce ischaemia to some extent. Oxidative stress was assessed at 

baseline, immediately following exercise and during up to 20 minutes of recovery. All 

three studies reported a significant rise in oxidative stress immediately following cessation 

of exercise. This was measured by a rise in plasma TBARS in all three studies and by a 

decrease in plasma RAA (Dousset et al., 2002; Steinberg et al., 2006) or erythrocyte GSH 

(Steinberg et al., 2004; Steinberg et al., 2006). 

 

The pattern of recovery was slightly different between studies. In two studies (Steinberg et 

al., 2004; Steinberg et al., 2006), oxidative stress was reported to reach a peak, as reflected 

by all assessment methods, at 5 minutes of recovery with a return to baseline at 20 minutes 

of recovery in one study (Steinberg et al., 2006), whilst measures at this time point were 

not reported in the other study (Steinberg et al., 2004). The third study (Dousset et al., 

2002) measured oxidative stress immediately following exercise and at 20 minutes of 

recovery and produced some conflicting data. Plasma RAA had returned to baseline by 20 

minutes of recovery similar to the later study (Steinberg et al., 2006), however plasma 

TBARS indicated that peak oxidative stress occurred at 20 minutes of recovery. Thus, it 
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appears clear that static isometric exercise at the intensities studied leads to increased 

oxidative stress during recovery; however, the time course of the increase is not well 

established. 

 

7.1.3.2 Intermittent isometric exercise 

The oxidative stress response to isometric exercise has also been studied using intermittent 

protocols. For example, Sahlin and colleagues (1992) investigated isometric knee 

extension exercise performed at an intensity of 30 % MVC. Each contraction was sustained 

for 10 s followed by 10 s relaxation for a total period of 80 minutes, or until exhaustion. 

Blood was sampled every 20 minutes during exercise and was analysed for MDA and total 

glutathione (TGSH). Muscle biopsies at baseline, 20 minutes and at fatigue were analysed 

for TGSH. Results indicated no significant increase in oxidative stress as measured by 

plasma MDA or muscle TGSH, however an increase in plasma TGSH was reported at all 

time points, although this was statistically significant only up to 60 minutes; the data at 80 

minutes were not included in the analysis since some subjects fatigued before this time. 

 

It was suggested that the intensity of contraction may have been too low to elicit change in 

some of the measured variables. A threshold for oxidative stress has been indicated for 

aerobic exercise (Leaf et al., 1997; Lovlin et al., 1987), however, this has not been 

explored for isometric exercise. A salient feature of the study design was the measurement 

of oxidative stress during, rather than following, a period of isometric exercise. All other 

studies cited in the literature have assessed oxidative stress only during recovery from 

isometric exercise. 

 



 

Table 7.1. A summary of the methodology and main findings of previous studies of oxidative stress associated with static isometric handgrip exercise. 

      Author(s) Exercise 

intensity 

(% MVC) 

Duration of 

exercise (s) 

(mean ± SE) 

Means of assessment of 

oxidative stress 

Time points of 

measurement 

Main findings 

      Dousset et al. 

(2002) 

60 42 ± 5 plasma TBARS; 

plasma RAA 

Baseline; 

R0; R20 

Significant increase in oxidative stress at R0; 

peak at R20 as assessed by TBARS; 

return to baseline by R20 as assessed by RAA. 

Steinberg et al. 

(2004) 

50 95 ± 12 plasma TBARS; 

erythrocyte GSH 

Baseline; 

R0; R5; R10; R20 

Significant increase in oxidative stress at R0; 

peak at R5; 

not reported if baseline reached by R20. 

 

Steinberg et al. 

(2006) 

50 100 ± 13 plasma TBARS; 

plasma RAA; 

erythrocyte GSH 

Baseline; 

R0; R5; R20 

Significant increase in oxidative stress at R0; 

peak at R5; 

return to baseline by R20. 

 

GSH reduced glutathione; MVC maximal voluntary contraction; RAA reduced ascorbic acid; SE standard error; TBARS thiobarbituric acid reactive substances. 

For time points of measurement, R denotes the recovery phase of the experiment and the subsequent number denotes the time in minutes into recovery. 
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Two previous studies have involved intermittent handgrip exercise. Alessio and colleagues 

(2000) investigated the oxidative stress response to isometric handgrip exercise at 50 % 

MVC using a 45 s contraction and 45 s relaxation cycle to fatigue. Markers of oxidative 

stress, including MDA, protein carbonyls and lipid hydroperoxides, were measured pre-

exercise, immediately post-exercise and one hour following the cessation of exercise. 

There was a significant increase in lipid hydroperoxides on cessation of exercise, the 

concentration remaining high for up to one hour after exercise. Other markers did not 

change from pre-exercise values. The design of this study was unusual from the point of 

view that subjects were allowed to change hands during the test protocol if fatigue and 

discomfort warranted it. The duration of the trial was determined by a previous maximal 

treadmill run, and once this time had elapsed the subject was asked to sustain the final 

contraction until exhaustion which typically occurred a few seconds later. The duration of 

exercise was not standardised between individuals. The effect of exercise duration on 

oxidative stress is currently unknown; however, it seems intuitively likely that a greater 

response may be linked to a longer duration of exercise. Until there is evidence to the 

contrary it would be wise to control for this potential confounding factor. 

 

Steinberg and colleagues (2002) measured TBARS, plasma RAA and erythrocyte GSH at 

rest, and then at 0 min, 5 min, 10 min, 20 min and 30 min during recovery from a 3 minute 

period of intermittent isometric handgrip exercise utilising a 1 s contraction and 1 s 

relaxation cycle which was deemed to be exhaustive. Intensity of exercise was 

approximately 20% MVC. Results showed a significant rise in TBARS immediately after 

exercise (greatest change at 5 min post-exercise) and a significant fall in GSH (greatest 

change at 20 min post-exercise) indicating increased oxidative stress. The results of this 

study make the idea of a threshold concept for oxidative stress in isometric exercise less 

clear. These authors (Steinberg et al., 2002) reported a significant rise in oxidative stress 

following intermittent isometric exercise at an intensity of approximately 20 % MVC, 
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whilst Sahlin and colleagues (1992) indicated the evidence for an oxidative stress response 

was less clear following similar exercise at 30 % MVC. Clearly the two studies are not 

directly comparable due to differing methodology and further work would be required to 

explore this issue.  

 

7.1.4 Limitations in the literature 

One limitation of the few previous studies of isometric exercise and oxidative stress is that 

a narrow range of contraction intensities has been studied. This has necessarily precluded 

the investigation of any effect of contraction intensity on the oxidative stress response. In 

addition, differing exercise protocols and modes of assessment of oxidative stress have 

been utilised, creating a challenge to establish a clear relationship between this exercise 

mode and oxidative stress. No previous study has had the primary aim of characterising the 

time course of the oxidative stress response to isometric exercise; rather static isometric 

contractions have been used as a tool to investigate other issues, for example, the effect of 

acute hypoxaemia on the oxidative stress response, and the reliability of oxidative stress 

assessment by various blood markers. Thus, information regarding the time course of the 

response in recovery is ambiguous. 

 

7.1.5 Assessment of oxidative stress 

Exercise-induced oxidative stress has been assessed typically using whole blood or plasma 

markers, and solely assessed in this way for isometric exercise. The use of non-invasive 

assessment, utilising the measurement of ethane gas liberated in the process of lipid 

peroxidation, has been employed successfully during and following aerobic exercise 

(Wyse et al., 2005b), and this is appealing from the point of view of subject comfort and 

safety aspects related to blood sampling and handling. However, ethane output has not yet 

been validated against traditional blood markers of lipid peroxidation. The successful 
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correlation of ethane output with commonly used blood markers would support a case for 

the use of non-invasive assessment of oxidative stress in isometric exercise, resulting in an 

improved capacity to perform time course analysis of the response in future studies 

through real-time assessment of ethane. 

 

The site of measurement of oxidative stress markers may be significant. End products of 

lipid peroxidation enter the circulation and can be measured in the plasma distant from the 

site of production and in the expired air. A measurement of oxidative stress markers at the 

venous outflow of an exercising muscle may give the most accurate assessment of the 

exercise-induced response in terms of both the size of response and the timing; however, 

this is not always possible due to the impracticality of access to some measurement sites. 

Blood sampled remotely may give a good indication of the response, as may ethane 

measured at the lung. 

 

7.1.6 Aims 

There have been numerous reports of an increase in exercise-induced oxidative stress 

following aerobic exercise (Vollaard et al., 2005); however, few studies have investigated 

the oxidative stress response to isometric exercise (Bloomer & Goldfarb, 2004). A 

limitation of the few previous studies is that differing exercise protocols and modes of 

assessment of oxidative stress have been utilised, creating a challenge to establish a 

relationship between exercise intensity and oxidative stress. 

 

The first aim of the current study was to better characterise the oxidative stress response to 

isometric exercise using a within subject design to overcome the previous limitation of 

diverse methodologies; specifically to investigate the effect of contraction intensity; to 

look for the presence of a threshold intensity for response; and to clarify the time course of 

the response in greater detail by assessing oxidative stress at more regular intervals and for 
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a longer period of time during recovery from exercise than in previous studies (Dousset et 

al., 2002; Steinberg et al., 2004; Steinberg et al., 2006). 

 

A further aim of this study was to investigate the relationship between oxidative stress 

measured in the plasma at the exercising muscle with that measured in the plasma at a 

remote site to determine the effect of measurement site. 

 

Furthermore, oxidative stress has not been measured previously by non-invasive means in 

isometric exercise. Therefore, the final aim of this study was to allow comparison of 

invasive with non-invasive response to investigate the validity of non-invasive 

measurement of oxidative stress in this mode of exercise. 
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7.2  Methods 

 

7.2.1 Subjects 

Six healthy males, aged between 24 and 29 years, volunteered for this study. All met the 

exclusion criteria described in section 2.1.1 (page 95). No further inclusion or exclusion 

criteria were applied. 

 

Ethical approval for this study was granted on 24
th

 May 2005, and all volunteers gave 

written, informed consent prior to participation. The relevant information sheet and 

consent form are shown in Appendix A.3.  

 

7.2.2 Test protocols 

Subjects participated in two tests on separate occasions: firstly, determination of maximal 

voluntary contraction of the flexor digitorum muscles using a handgrip dynamometer; and 

secondly, a sustained contraction trial at 60 % of the previously determined MVC. Both 

tests took place at the same time of day to control for variations in maximal force with time 

of day (Martin et al., 1999). 

 

The original intention was to test several intensities of contraction in each subject, 

specifically 20 %, 40 %, 60 % and 80 % MVC; however, unfortunately this was not 

possible due to constraints on laboratory availability. It was essential to carry out this 

testing in a low ethane environment in order to avoid unnecessary contamination of 

samples. All available laboratories had been tested for ambient ethane concentration prior 

to the start of this study and all others had prohibitively high concentrations ranging from 

625-17857 pmol·l
-1

 (14 to 400 ppb). The start of testing was substantially delayed due to 

malfunction of the laser spectrometer and the need to source bespoke replacement parts. 
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When testing was finally scheduled, it was advised that the laboratory to be used for this 

study was due for refurbishment and surrender to another faculty of the university. There 

was no other laboratory space available which was suitable for both ethane determination, 

requiring a low ambient ethane concentration, and for blood sampling. Therefore, it was 

necessary to amend the design of the study to include just one contraction intensity due to 

time constraints. 

 

The intensity for the sustained contraction trials was chosen as 60 % MVC since previous 

studies have shown a significant oxidative stress response at 50 % and 60 % MVC 

(Dousset et al., 2002; Steinberg et al., 2004; Steinberg et al., 2006) allowing for some 

comparison with previous work. The higher intensity was chosen since successful pilot 

work had been carried out using this intensity.  

 

Test protocols and equipment are described in detail in sections 6.2.2, 6.2.2.1 and 6.2.2.2 

(pages 254-258). One exception to the previously described sustained contraction protocol 

was that all subjects rested comfortably for 30 minutes following the cessation of 

contraction. 

 

7.2.3 Measurements 

A schematic representation of the test protocol showing expired air, ambient air and blood 

sampling points, is shown in figure 7.1. 

 

7.2.3.1 Respired air measurements 

Expired air collection procedures are described in section 6.2.3.1 (page 258). Recovery 

samples were collected at 5 minute intervals for a period of 30 minutes following the 

cessation of contraction. 
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7.2.3.2 Ethane sampling procedures 

Expired and ambient ethane sampling procedures are described in section 2.3.2.2 (page 

107). 

 

7.2.3.3 Blood sampling procedures 

Blood was sampled from an indwelling catheter placed in an antecubital vein, in both the 

exercising and non-exercising arms, at the same time points as the start of the expired air 

samples. Details of the blood sampling procedure are described in section 2.3.4 (page 114). 

Blood samples were drawn from the non-exercising arm in order to facilitate correlation of 

whole body invasive and non-invasive markers of oxidative stress. The exercising arm 

provided a marker of regional changes for comparison with the whole body response 

measured at the lung and in the contra-lateral control arm. 

 

7.2.4 Analysis 

 

7.2.4.1 Ethane analysis 

Expired air and ambient air samples were analysed for ethane content as described in 

section 2.3.3 (page 112). 

 

7.2.4.2 Blood analysis 

Following each test, blood samples were centrifuged at 3000 g at 4 °C for 15 minutes. 

Immediately thereafter, samples were stored on dry ice whilst the plasma was divided into 

aliquots of approximately 500 μl, and were then stored at -80 °C until further analysis. 
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Blood samples were analysed using a commercial ELISA kit (Assay Designs 900-091, 

Ann Arbor, MI, USA) for the presence of 8-iso-Prostaglandin F2α, as described in section 

2.3.5.2 (page 115). 

 

7.2.4.3 Statistical analysis 

Repeated measures analysis of variance was used to reveal any statistically significant 

differences in oxygen uptake and in ethane output between measurement points during 

rest, exercise and recovery. The assumption of sphericity was examined using Mauchly‟s 

W test. In cases where this assumption was contravened, the greenhouse-Geisser 

adjustment was applied. Where the analysis of variance indicated at least one significant 

difference, pairwise comparisons, with the application of a Bonferroni adjustment for 

multiple comparisons, revealed the location. 

 

In cases where data conformed to a normal distribution, a Paired t-test was used to 

determine if there was any statistically significant difference between the two resting 

measurements of ethane concentration and ethane output. Where the data did not conform 

to a normal distribution, a Wilcoxon Signed Ranks test was utilised. Normality was tested 

using the Shapiro-Wilk test. 

 

The relationships between oxygen uptake and ethane output; F2-isoprostane concentration 

from the exercised versus the non-exercised arm; and ethane output versus F2-isoprostane 

concentration from the non-exercised arm were each examined using correlation. A 

Spearman‟s Rho test was utilised where data did not conform to a normal distribution, 

which was tested using the Shapiro-Wilk test. 
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Figure 7.1. Schematic representation of the sustained contraction trial protocol. 

Exercise was continued until exhaustion. The duration of the exercise period was variable from 53-85 s. The reduction in force due to fatigue is not shown. Expired air 

samples were of 2 min duration. Blood samples were collected at the start of each expired air sample. 
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7.3  Results 

 

7.3.1 Subjects 

Subjects were healthy, male volunteers, all of whom were regularly active in football, 

rugby or cycling. Subject characteristics are shown in table 7.2. 

 

 

Table 7.2. Subject characteristics for study three. 

     Subject Age (yr) Weight (kg) Height (cm) MVC (N) 

     1 28 82.3 187.0 519 

2 29 77.0 175.5 428 

3 25 83.2 171.0 518 

4 26 68.2 167.0 409 

5 24 64.8 171.5 397 

6 24 96.2 185.4 517 

Mean   SD 26  2 78.6  11.4 176.2  8.2 465  59 

 

MVC maximal voluntary contraction; SD standard deviation 

 

 

7.3.2 Maximal voluntary contraction 

Each subject was asked to produce at least three maximal handgrip efforts in order to 

determine maximal voluntary contraction force. If the difference in force between any 

attempt and the highest force measured was less than 5 %, then the highest force from the 

three attempts was recorded as the subject‟s MVC. If the difference in force was greater 

than 5 % between any attempt, the subject was asked to perform a further two attempts and 

the highest force of all five attempts was recorded as the subject‟s MVC. This was the case 
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for only one subject as seen in table 7.3, which shows force produced at each attempt at 

maximal voluntary contraction for all subjects. Maximal voluntary contraction force, as a 

mean and standard deviation of all six subjects, was 465  59 N, as shown in table 7.2. 

 

 

Table 7.3. Maximal voluntary contraction attempts for each subject. 

       Subject Attempt 1 

Force (N) 

Attempt 2 

Force (N) 

Attempt 3 

Force (N) 

Attempt 4 

Force (N) 

Attempt 5 

Force (N) 

MVC (N) 

       1 466 427 519 451 498 519 

2 405 428 425 - - 428 

3 518 515 503 - - 518 

4 409 407 399 - - 409 

5 346 381 397 - - 397 

6 517 489 483 - - 517 

 

- not measured 

 

 

Figure 7.2 shows a typical plot of the output from the data acquisition unit during a 

maximal voluntary contraction trial. The tracing shows the first, and highest, attempt at 

producing a maximal voluntary effort in subject 4. Maximum force was reached within 5 s 

of the onset of contraction in all subjects. The signal from the data acquisition unit was 

later converted from a voltage to a force measured in newtons (N) as described in section 

6.2.2.1 (page 257). 
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Figure 7.2. Typical force output during a maximal voluntary contraction trial in one male 

subject. 

 

 

7.3.3 Sustained contraction trial 

Each subject participated in one sustained contraction trial. This involved maintaining a 

force equivalent to 60 ± 2 % MVC until exhaustion. Contraction time was measured from 

the point at which force first became equal to 60 % MVC minus 2 %, to the time point at 

which force fell below this level and could not be recovered immediately. Figure 7.3 shows 

Time (s) 
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a typical recording of a sustained contraction trial in one subject and the dashed vertical 

lines indicate the start and end of the contraction. As can be seen from the figure, the 

subject was given visual feedback to guide force production throughout the trial by means 

of horizontal lines drawn at the target force and at 2 % above and below this value. In all 

subjects, force increased to the target force rapidly, within 5 s of the start of the 

contraction, and was sustained within 2 % of this value throughout the trial as described. 

Table 7.4 shows the mean force sustained during the contraction for each subject as an 

absolute force, and also as a percentage of the target force (60 % MVC). All subjects 

closely matched the target force, although the mean force sustained was lower than 

expected in some cases. This was due to the effect of large transient deviations below the 

target force where an immediate recovery was made and the subject was allowed to 

continue the contraction. Mean contraction time was 70.0  14.1 s as shown in table 7.4. 

 

 

Table 7.4. Sustained isometric handgrip contraction at 60 % maximal voluntary 

contraction. 

     Subject Contraction 

time (s) 

Mean Force 

sustained (N) 

Target 

Force (N) 

Mean Force sustained 

(% Target Force) 

     1 52.9 301 311 97 

2 69.4 251 257 98 

3 53.9 303 311 98 

4 85.2 239 245 98 

5 83.1 233 238 98 

6 75.7 298 310 96 

Mean ± SD 70.0 ± 14.1 271 ± 33 279 ± 36 97 ± 1 

 

MVC maximal voluntary contraction; SD standard deviation 



 

 

 

Figure 7.3. Typical force output during a sustained contraction trial at 60 % maximal voluntary contraction in one male subject. 

Horizontal lines at 0.365 V, 0.358 V and 0.351 V correspond to 62 % MVC, 60 % MVC and 58 % MVC respectively. Vertical lines indicate the start and end of contraction. 

Time (s) 
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7.3.4 Oxygen uptake response 

The oxygen uptake response to sustained isometric handgrip exercise and recovery is 

shown in figure 7.4. The figure shows the mean response of five of the six subjects. The 

first three expired air samples of subject 3 were discarded due to a temporary malfunction 

of the dry gas meter, and therefore, no measurement of oxygen uptake could be made. 

Thus, this subject has been omitted from the mean oxygen uptake response data. Oxygen 

uptake was seen to rise above baseline in the sample collected immediately upon cessation 

of exercise. Oxygen uptake then returned towards baseline within 5 minutes of passive 

recovery and remained stable for the remainder of the recovery period. Repeated measures 

analysis of variance was performed and the Greenhouse-Geisser adjustment was applied 

(ε = 0.178) since the assumption of sphericity was violated (p = 0.000). This analysis 

revealed borderline significance (F(1.248, 4.991) = 6.542; p = 0.047); however, pairwise 

comparisons indicated no significant differences between time points. 
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Figure 7.4. Mean oxygen uptake response of five subjects prior to and following sustained 

isometric handgrip exercise to exhaustion at 60 % maximal voluntary contraction.  

Data points show mean and standard deviation. B baseline sample: mean of two samples at rest; 

R0 immediate post-exercise sample; R5 to R30 samples taken at 5 to 30 min into recovery. 
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7.3.5 Ethane response 

 

7.3.5.1 Ambient ethane concentration 

Ambient ethane concentration was measured at each expired air sampling point and mean 

values for each test are shown in table 7.5. Ambient ethane concentration ranged from 53.6 

pmol·l
-1

 to 281.3 pmol·l
-1

 (1.2 ppb to 6.3 ppb) across all samples, with a mean and standard 

deviation of 115.2 ± 58.6 pmol·l
-1

 (2.6 ± 1.3 ppb). 

 

 

Table 7.5. Mean ambient ethane concentration during each sustained contraction trial. 

   Subject [C2H6] 

(ppb) 

[C2H6] 

(pmol·l
-1

) 

   1 1.3 ± 0.0 58.0 ± 2.2 

2 2.1 ± 0.1 93.3 ± 4.1 

3 2.1 ± 0.2 92.3 ± 7.7 

4 5.1 ± 0.7 228.2 ± 32.8 

5 3.2 ± 0.1 141.9 ± 6.6 

6 1.7 ± 0.1 77.9 ± 2.4 

 

All values are mean ± standard deviation. 
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7.3.5.2 Ethane concentration and ethane output at rest 

Resting ethane concentration and ethane output were each determined as a mean of two 

baseline samples collected 10 minutes apart prior to the start of exercise, and were 

calculated using equations 3.8 to 3.10 (page 140). Values for each subject are displayed in 

table 7.6. The mean and standard deviations shown were inclusive of all six subjects for 

ethane concentration, but inclusive of only five subjects for ethane output. Ethane output 

could not be calculated for subject 3 due to the missing expired air volume data for the 

baseline samples, as explained in section 7.3.4 (page 288). The relatively high standard 

deviations underline the inter-individual variability in resting ethane. There was no 

significant difference between the two resting samples for ethane concentration 

(Z = -0.954; p = 0.340), or ethane output (Z = -0.184; p = 0.854), shown by a Wilcoxon 

Signed-Ranks test in both cases. 

 

 

Table 7.6. Mean resting ethane concentration and ethane output in each subject prior to 

sustained isometric exercise. 

    Subject [C2H6] 

(pmol·l
-1

) 

V C2H6 

(pmol·min
-1

) 
V C2H6 

(pmol·kg
-1

·min
-1

) 

    1 11.2 77.1 0.9 

2 29.0 185.5 2.4 

3 15.6 NA NA 

4 26.8 87.1 1.3 

5 11.2 72.4 1.1 

6 6.7 74.2 0.8 

Mean ± SD 16.7 ± 9.1 99.3 ± 48.5 1.3 ± 0.6 

 

NA not available; SD standard deviation. 
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7.3.5.3 Ethane output post-exercise 

Ethane output was measured at rest, immediately post-exercise and at 5 minute intervals 

during a 30 minute period of passive recovery. Figure 7.5 shows the ethane output 

response in six individuals. 

 

Ethane output could not be calculated for the first three expired air samples in subject 3 

due to the lack of expired air volume measurement, as described in section 7.3.4 (page 

288). Ethane output fell to 0 pmol∙kg
-1

∙min
-1

 in several samples in subjects 1, 4 and 5. 

Examination of the raw data indicated that expired ethane concentration was equal to 

ambient ethane concentration at these sampling points. This was due to a reduction in 

expired ethane concentration in each case since ambient ethane concentration was stable 

throughout each test. However, these samples were omitted from the data set since there 

was uncertainty regarding the true ethane output value. It is possible that ethane production 

was present, but masked by ambient ethane. 

 

The temporal pattern of response was variable amongst subjects. The peak oxidative stress 

response tended to occur immediately following exercise or within 5 minutes of recovery. 

In subjects 1 and 2 the pattern of response was a rise in oxidative stress in the first 5 

minutes of recovery from exercise and then a decline back to baseline by the end of the 30 

minute recovery period. The lack of data for the first three time points precluded analysis 

of the pattern of response in subject 3. In subject 4 the response was elevated slightly from 

baseline by 5 minutes into the recovery period and fell at the next time point, however, 

rather than declining to baseline as in subjects 1 and 2, ethane output then rose throughout 

the remainder of the recovery period. In subject 5 the lack of values at 0 and 5 minutes into 

recovery concealed the timing of the peak response; however a decline in response to the 

end of the recovery period was noted. In subject 6 there was little deviation from the 

baseline response throughout the recovery period. 
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The magnitude of the peak ethane output response was similar in two subjects (subjects 1 

and 6) with a range of 1.1 to 1.4 pmol·kg
-1

·min
-1

. The peak response in subject 2 was 3.6 

pmol·kg
-1

·min
-1

; however, examination of the plots in figure 7.5 showed that this subject 

also had a higher baseline response than all other subjects. Since the responses 

immediately or 5 minutes post-exercise were missing in the other subjects, the peak 

response may have been missed. 

 

The mean ethane output response of five subjects is shown in figure 7.6. The mean 

response was similar throughout the entire period of measurement and the large standard 

deviations indicated a high inter-individual variability. The peak response occurred 

immediately post-exercise and remained close to this value after 5 minutes of recovery. 

Repeated measures analysis of variance was performed and the Greenhouse-Geisser 

adjustment was applied (ε = 0.143) since the assumption of sphericity was violated 

(p = 0.000). This analysis indicated no significant difference in ethane output between any 

time points (F(1.000, 1.000) = 2.486; p = 0.360). 

 

Figure 7.7 suggests no obvious correspondence between the ethane output response and the 

oxygen uptake response to isometric exercise. A Spearman‟s Rho test indicated no 

significant correlation (ρ = -0.260; p = 0.115). 
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Figure 7.5. Ethane output response prior to and following sustained isometric handgrip 

exercise to exhaustion at 60 % maximal voluntary contraction in six male subjects. 

The number in the top right hand corner of each panel refers to the subject number. B baseline 

sample: mean of two samples at rest; R0 immediate post-exercise sample; R5 to R30 samples 

taken at 5 to 30 min into recovery. 
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Figure 7.6. Mean ethane output response of five male subjects prior to and following 

sustained isometric handgrip exercise to exhaustion at 60 % maximal voluntary 

contraction. 

Data points show mean and standard deviation. B baseline sample: mean of two samples at rest; 

R0 immediate post-exercise sample; R5 to R30 samples taken at 5 to 30 min into recovery. 
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Figure 7.7. Relationship between mean ethane output and oxygen uptake in five male 

subjects prior to and following sustained isometric handgrip exercise to exhaustion at 60 

% maximal voluntary contraction. 

 

 

7.3.6 F2-isoprostane response 

Blood samples were collected at the same time points as the expired air measurements: at 

baseline, immediately post-exercise and at 5 minute intervals throughout a 30 minute 

passive recovery period.  Samples were collected from both the exercised arm and the non-

exercised arm, as shown in table 7.7 and in figure 7.8, and were analysed for the presence 

of F2-isoprostanes, a marker of lipid peroxidation. 
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Data from the non-exercised arm are missing from subject 5, and data from the exercised 

arm are missing from subject 6. In both cases, this was due to inability to cannulate the 

subject within several attempts. Several further samples were not collected due to difficulty 

withdrawing blood at the sampling time. Other values, marked as „HI‟ in table 7.7, were 

omitted from the data set since analysis indicated that the measured F2-isoprostane 

concentration was above the upper limit of the assay, thus the true value was obscured. 

 

Figure 7.8 shows a direct comparison between the exercised arm and the non-exercised 

arm. From this, and the mean data shown in figure 7.9, it can be seen that the pattern of 

response differed between the exercised and non-exercised arms. There was a clear peak 

response immediately post-exercise in the exercised arm; however, this may be somewhat 

misleading since this value was the response from only one subject, since responses from 

the other subjects were missing as already described. The response did not vary much from 

baseline at the other time points throughout recovery. In the non-exercised arm, there was a 

peak five minutes in to the recovery period and then again 30 minutes into recovery. The 

response rose above baseline immediately after exercise and continued to rise in the first 

five minutes of recovery. Thereafter it recovered towards baseline until the second peak at 

the end of the measured recovery period. The missing data precluded analysis of variance 

to investigate any differences between time points for either the exercised or the non-

exercised arm. The baseline and peak responses were similar in magnitude in both arms. 

The standard deviations in figure 7.9 tended to be lower in the exercised arm. There are 

two instances where no standard deviation is shown; these values show the response of 

only one subject. Figure 7.10 illustrates no clear relationship between F2-isoprostane 

concentration in the exercised versus the non-exercised arm, and there was no significant 

correlation between the two variables in the four subjects for whom data were available 

from both arms (ρ = 0.063; p = 0.846). 

 



 

Table 7.7. F2-isoprostane response prior to and following sustained isometric handgrip exercise to exhaustion at 60 % maximal voluntary contraction. 

   F2-isoprostanes (pg·ml
-1

) 

       Subject 1 2 3 4 5 6 

             Time Point EX N-EX EX N-EX EX N-EX EX N-EX EX N-EX EX N-EX 

             B 399.8 222.3 566.5 HI 156.2 255.1 199.1 239.0 197.4 - - 319.4 

R0 HI 475.2 946.9 HI HI - HI 371.3 HI - - HI 

R5 228.4 733.8 - 1044.2 HI HI - 213.2 208.9 - - HI 

R10 237.1 246.1 HI 937.5 326.6 322.0 - 276.3 374.0 - - HI 

R15 188.2 HI 364.3 586.6 224.0 275.3 HI 221.9 HI - - - 

R20 236.3 328.7 598.3 HI 252.0 HI 267.3 

 

81.8 239.3 - - 250.8 

R25 221.4 HI HI - 256.8 HI HI - 238.1 - - 307.8 

 

R30 243.5 661.8 HI - 285.8 907.4 HI - 183.4 - - - 

 

EX exercised arm; N-EX non-exercised arm; B baseline sample: mean of two samples at rest; R0 immediate post-exercise sample; R5 to R30 samples taken at 5 to 30 

min into recovery; - sample not collected; HI measured concentration was above the upper limit of the assay. 
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Figure 7.8. F2-isoprostane response prior to and following sustained isometric handgrip 

exercise to exhaustion at 60 % maximal voluntary contraction in the exercised and non-

exercised arm in six male subjects. 

The number in the top right hand corner of each panel refers to the subject number. B baseline 

sample: mean of two samples at rest; R0 immediate post-exercise sample; R5 to R30 samples 

taken at 5 to 30 min into recovery.  exercised arm;  non-exercised arm. 
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Figure 7.9. Mean F2-isoprostane response prior to and following sustained isometric 

handgrip exercise to exhaustion at 60 % maximal voluntary contraction in the exercised 

arm (EX; upper panel) and non-exercised arm (N-EX; lower panel). 

Data points show mean and standard deviation. B baseline sample: mean of two samples at rest; 

R0 immediate post-exercise sample; R5 to R30 samples taken at 5 to 30 min into recovery. 

 exercised arm;  non-exercised arm. 
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Figure 7.10. Relationship between F2-isoprostane concentration in the exercised arm 

versus the non-exercised arm in four male subjects prior to and following sustained 

isometric handgrip exercise to exhaustion at 60 % maximal voluntary contraction. 



302 

7.3.7 Relationship between expired air and blood markers 

Figure 7.11 shows a comparison of the F2-isoprostane response in the non-exercised arm 

with the ethane output response in five subjects. Both markers give an indication of the 

systemic oxidative stress response. Figure 7.12 displays mean values of F2-isoprostanes in 

the non-exercised arm alongside mean values of ethane output. These data were displayed 

previously in figure 7.9 and figure 7.6 respectively. 

 

There was no obvious relationship seen in either the individual plots or in the plot of mean 

responses (figures 7.11 and 7.12 respectively) between invasive and non-invasive measures 

of lipid peroxidation. Peak responses occurred 5 minutes and 30 minutes into the recovery 

period in the blood as seen in figure 7.12. There was no clear peak response in the ethane 

output data: the highest values were recorded immediately post-exercise and at 5 minutes 

into the recovery period; however, these values were not significantly different from the 

baseline response as described in section 7.3.5.2 (page 291). Figure 7.13 indicates no clear   

relationship between ethane output and F2-isoprostane concentration in the non-exercised 

arm. Statistical analysis confirmed no significant correlation between the two variables 

(ρ = 0.270; p = 0.278). 
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Figure 7.11, Panel 1. F2-isoprostane response and ethane output response prior to and 

following sustained isometric handgrip exercise to exhaustion at 60 % maximal voluntary 

contraction in two male subjects. 

The number in the top right hand corner of the pair of panels refers to the subject number. For each 

subject, the upper panel shows the F2-isoprostane response and the lower panel shows the ethane 

output response. B baseline sample: mean of two samples at rest; R0 immediate post-exercise 

sample; R5 to R30 samples taken at 5 to 30 min into recovery. 
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Figure 7.11, Panel 2. F2-isoprostane response and ethane output response prior to and 

following sustained isometric handgrip exercise to exhaustion at 60 % maximal voluntary 

contraction in two male subjects. 

The number in the top right hand corner of the pair of panels refers to the subject number. For each 

subject, the upper panel shows the F2-isoprostane response and the lower panel shows the ethane 

output response. B baseline sample: mean of two samples at rest; R0 immediate post-exercise 

sample; R5 to R30 samples taken at 5 to 30 min into recovery. 
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Figure 7.11, Panel 3. F2-isoprostane response and ethane output response prior to and 

following sustained isometric handgrip exercise to exhaustion at 60 % maximal voluntary 

contraction in one male subject. 

The number in the top right hand corner of the pair of panels refers to the subject number. The 

upper panel shows the F2-isoprostane response and the lower panel shows the ethane output 

response. B baseline sample: mean of two samples at rest; R0 immediate post-exercise sample; 

R5 to R30 samples taken at 5 to 30 min into recovery. 
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Figure 7.12. Mean F2-isoprostane response in the non-exercised arm and mean ethane 

output response prior to and following sustained isometric handgrip exercise to exhaustion 

at 60 % maximal voluntary contraction. 

The upper panel shows the F2-isoprostane response and the lower panel shows the ethane output 

response. B baseline sample: mean of two samples at rest; R0 immediate post-exercise sample; 

R5 to R30 samples taken at 5 to 30 min into recovery. 
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Figure 7.13. Relationship between mean ethane output and F2-isoprostane concentration 

in the non-exercised arm in six male subjects prior to and following sustained isometric 

handgrip exercise to exhaustion at 60 % maximal voluntary contraction. 
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7.4  Discussion 

 

7.4.1 Maximal voluntary contraction 

Mean maximal voluntary contraction was 465 ± 59 N. This was greater than two of the 

three studies which have previously investigated the effect of isometric handgrip exercise 

on oxidative stress. Steinberg and colleagues reported mean maximal voluntary 

contractions of 367 N (Steinberg et al., 2004) and 333 N (Steinberg et al., 2006). However, 

it should be noted that the subjects in both studies were substantially older than subjects in 

the present study with a mean age of 59 yr and 44 yr respectively. Unfortunately, the 

remaining study (Dousset et al., 2002) which utilised a cohort of male subjects with a 

similar mean age (30 ± 3 yr) did not report absolute MVC. 

 

7.4.2 Sustained contraction duration 

The mean duration of the sustained contraction at a force equivalent to 60 % MVC was 

70.0  14.1 s as shown in table 7.4. This was substantially longer than the contraction 

duration of 42  5 s reported by the only previous study to utilise this contraction intensity 

(Dousset et al., 2002). However, subjects in the previous study were reported to rest for 

only 10 minutes between the initial MVC trial and the sustained contraction trial, thus 

perhaps there was some residual fatigue. There was a minimum of 72 h between the MVC 

trial and the sustained contraction trial in the current study, with the exception of the tests 

for one subject whose sustained contraction trial took place 80 minutes following the MVC 

trial due to constraints on the availability of the subject. However, this subject had a 

contraction duration above the mean response (subject 6, table 7.4). 
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7.4.3 Oxygen uptake response 

The oxygen uptake response was not measured in previous studies which utilised a similar 

isometric exercise protocol to the current study (Dousset et al, 2002; Steinberg et al., 2004, 

2006); however, Alessio and colleagues (2000) did measure oxygen uptake during an 

intermittent handgrip exercise protocol. They reported a two-fold increase in V O2 from a 

baseline response of approximately 3-4 ml·kg
-1

·min
-1

. The current study showed a similar 

response with a mean baseline V O2 of 3.5 ml·kg
-1

·min
-1

 rising to a peak of 

6.0 ml·kg
-1

·min
-1

 immediately following exercise. 

 

One postulated mechanism of exercise-induced oxidative stress is an increase in 

mitochondrial production of oxidant species as oxygen uptake increases during exercise, as 

described in section 1.3.3.1 (page 83). It has been suggested that this may not be a key 

mechanism in the oxidative stress response to isometric exercise since a greater oxidative 

stress response was found following isometric exercise in comparison to aerobic exercise 

over the same time period, despite a substantially lower oxygen uptake response in 

isometric exercise (Alessio et al., 2000). In the current study, the ethane output response 

pattern did not correlate well with the oxygen uptake response: the peak in ethane output 

did not coincide with the peak in oxygen uptake immediately following exercise, and there 

was no significant correlation between the two variables; thus supporting the premise that 

additional mechanisms of oxidant production may be operating in this mode of exercise. 
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7.4.4 Ethane response 

 

7.4.4.1 Ambient ethane concentration 

Ambient ethane concentration, as a mean of all time points measured in all subjects, was 

115.2 ± 58.6 pmol·l
-1

. This was within the range of 68 to 800 pmol·l
-1

 reported in previous 

studies (Dumelin et al., 1978; Knutson et al., 1999; Sexton & Westberg, 1984; Zarling & 

Clapper, 1987), and was fairly similar to the mean ambient ethane concentration of 185.3 ± 

64.9 pmol·l
-1

 reported in our previous study (Wyse et al., 2005b), as described in chapter 

three. Statistical analysis confirmed no significant difference in mean ambient 

concentration between these two studies (Independent samples t-test; t(12) = 2.064, p = 

0.061). A low ambient ethane concentration is desirable to minimise the possibility of 

contamination of expired air samples. 

 

A high ambient ethane concentration should not affect the ability to detect ethane 

production, as long as the subject has been breathing the ambient air in the testing 

environment for a sufficient period for equilibration to occur (see section 2.3.2.4.1, page 

109). This was the case for all experiments in this study. Ethane production was calculated 

as 0 pmol·kg
-1

·min
-1

 for several samples in this study since ambient ethane concentration 

and expired ethane concentration were equivalent. In each case, this was due to a reduction 

in expired ethane concentration, rather than a rise in ambient ethane concentration. This is 

perhaps a limitation with the use of the laser spectroscopy technology; however, it does not 

seem to occur with high frequency. This issue occurred in 1 % of the samples collected in 

our previous study described in chapter 3, and in 13 % of samples collected in the current 

study. 
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7.4.4.2 Ethane concentration and ethane output at rest 

Ethane concentration and ethane output were both expressed as a mean of two samples of 

expired air collected at rest, prior to the start of exercise. No significant difference was 

found between the two resting measurements of either variable, thus strengthening the 

confidence in reproducibility of the measurement technique as reported in chapter three 

(section 3.4.1.2, page 161). 

 

A mean ethane concentration at rest of 16.7 ± 9.1 pmol·l
-1

 fell within the range of 10.4 to 

50 pmol·l
-1

 previously reported in the literature (Knutson et al., 1999; Zarling & Clapper), 

and was somewhat lower than the value of 72.7 pmol·l
-1

 reported in our previous study 

described in chapter three (Wyse et al., 2005b). The same procedures were used for the 

collection and analysis of expired air for the presence of ethane in both studies; however, 

statistical analysis confirmed a significant difference in mean ethane concentration at rest 

between each study (Independent samples t-test; t(12) = 3.698; p = 0.003). 

 

Similarly, the mean ethane output at rest of 99.3 ± 48.5 pmol·min
-1

 in the current study 

was comparable to a previously reported values of approximately 85 pmol·min
-1

 in healthy 

individuals (Leaf et al., 1997). However, again mean ethane output in the current study 

was substantially lower in comparison to the value of 872.1 pmol·min
-1

 reported in our 

previous study (Wyse et al., 2005b), described in chapter three. Statistical analysis 

confirmed a significant difference in this variable between the two studies (Independent 

samples t-test; t(11) = 2.351; p = 0.038). When mean ethane output was standardised for 

body mass, the value in the current study fell within the range previously reported 

(Knutson et al., 1999). Both studies utilised a similar cohort of healthy, trained male 

subjects and the same testing environment. Thus, the reason for this discrepancy in the 

mean values between studies is unclear. Procedures for the measurement and analysis of 

ethane did not differ between studies, and the consistency of ambient ethane concentration 
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suggests no technical inconsistencies with equipment or experimenter error. It is possible 

that the difference between studies simply underlines a high inter-individual variability in 

ethane concentration at rest, which has been indicated as a common feature of ethane 

measurement (Thekedar et al., 2009), and is supported by the wide range of values 

reported in the literature (Knutson et al., 1999; Zarling & Clapper), This may not just be 

variability between different individuals, but potentially variability within individuals at 

different times. Three subjects participated in both studies described here, separated by a 

period of 2 years, and in two of these individuals resting ethane concentration was 

substantially higher in the first study. Factors such as training status or antioxidant status, 

not measured in either study, may impact on resting oxidative stress (Leaf et al., 1999), 

although the literature is far from conclusive. As indicated in chapter three, the variability 

in expired ethane requires further investigation. 

 

7.4.4.3 Ethane output post-exercise 

Previous data has indicated a significant rise in oxidative stress following static isometric 

handgrip exercise at 50-60 % MVC, with the peak response occurring at around 5 minutes 

into recovery (Dousset et al., 2002; Steinberg et al., 2004; Steinberg et al., 2006). 

However, due to some conflicting data in this small number of studies, one aim of the 

present study was to repeat these measurements over an extended 30 minute recovery 

period and to sample at 5-minute intervals throughout. The increase in ethane output 

following sustained isometric handgrip exercise to exhaustion in the current study was not 

significant, although the mean response suggested a rise in ethane output immediately 

after, to 5 minutes after the end of exercise. All studies used a similar exercise protocol; 

however, previous studies utilised plasma markers of lipid peroxidation, whereas the 

current study is the first to have used ethane output as a marker of lipid peroxidation in 

relation to isometric exercise. Subjects in the current study exercised at the same or a 

higher relative intensity in comparison to those in previous studies. It is still unknown if 
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there is a threshold exercise intensity below which an oxidative stress response will not 

manifest. Subjects in the current study may have been better trained than subjects in 

previous studies, who were described simply as healthy individuals. It has been suggested 

that a period of training may reduce the oxidative stress response to a specified exercise 

stimulus (Miyazaki et al., 2001), and therefore, it is possible that subjects in the current 

study may not have reached a potential threshold for developing a significant oxidative 

stress response. However, it is possible that a larger sample size may have produced 

significance at the contraction intensity utilised. It is unlikely that the lack of a significant 

oxidative stress response was due to a limited exercise duration. Mean contraction time 

was 70 s at 60 % MVC, in comparison to previous isometric studies which reported 

contraction times of 42 s at 60 % MVC (Dousset et al., 2002), 95 s at 50% MVC 

(Steinberg et al., 2004), and 100 s at 50% MVC (Steinberg et al., 2006). 

 

The pattern of response as measured by ethane output in the current study was similar to 

that reported in previous studies in which an immediate increase following the end of 

sustained isometric contraction, shown in three studies (Dousset et al., 2002; Steinberg et 

al., 2004; Steinberg et al., 2006), was followed by a further increase to a peak response at 5 

minutes into the recovery period, shown in the two studies in which oxidative stress was 

measured at this time point (Steinberg et al., 2004, 2006). One study showed that the peak 

response did not occur until 20 minutes into the recovery period (Dousset et al., 2002), 

although it was only measured at this time point and immediately after exercise. Thus, the 

results of the current study show partial agreement with previous literature in terms of the 

timing of the peak oxidative stress response following this mode of exercise. The 

F2-isoprostane response measured in the non-exercised arm in the current study suggested 

a peak response later in the recovery period, and perhaps this is evidence of a later 

response to the exercise stress, potentially due to a different mechanism. Further study 

would be required to investigate this. 
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In the current study, the ethane output response was observed to have returned close to the 

baseline value by 10 minutes into the recovery period, although there is some lack of 

clarity due to the lack of statistical significance. The previous studies assessed oxidative 

stress as far as 20 minutes into the recovery period; however, results were conflicting. 

Dousset and colleagues (2002) reported a peak response after 20 minutes of recovery, 

whilst Steinberg and colleagues (2006) reported that the ethane output response had 

returned to baseline following this time period. The third study (Steinberg et al., 2004) did 

not report at which time point the response had returned to baseline. Thus, again, there is 

partial agreement with some of the previous literature in terms of the temporal pattern of 

the ethane output response during the recovery period. The tendency for a quicker return to 

baseline here may have been influenced by the measurement technique. The previous 

studies cited utilised plasma markers of lipid peroxidation, and it is possible that ethane 

clears more quickly from the lungs than from the circulation, leading to a quicker return to 

baseline with ethane output as a marker. 

 

Information about the pattern of oxidative stress response following isometric exercise 

may help to elucidate the mechanisms involved in the response. An immediate response 

would suggest an immediate mechanism, for example, mitochondrial production of 

reactive species; whereas a delayed peak response may indicate an alternative mechanism, 

for example, generation of free radicals by neutrophils (Hessel et al., 2000; Ji, 1999). The 

finding of two peak responses in the recovery period may indicate the involvement of more 

than one mechanism in this exercise mode. It must be emphasised that the aim of the 

current study was not to investigate the mechanistic basis of the oxidative stress response, 

but simply to delineate the timing of the response. 

 

Interestingly, the magnitude of the peak response in the current study 

(1.9 ± 1.5 pmol·kg
-1

·min
-1

) was substantially lower than that reported following maximal 
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aerobic exercise (142.1 ± 27.5 pmol·kg
-1

·min
-1

), as reported in chapter 3. This may be 

expected since the activated muscle mass is lower in isometric exercise, and several 

mechanisms of production of reactive species are related to the process of muscle 

contraction (Vollaard et al., 2005). This finding contradicts that reported previously by 

Alessio and colleagues (2000) who measured lipid peroxidation as assessed by TBARS 

and lipid hydroperoxides in the same cohort of individuals following both maximal aerobic 

and isometric exercise. These authors found the increase in lipid peroxidation to be greater 

following isometric exercise when assessed by lipid hydroperoxides, with no significant 

change in TBARS in either condition. They concluded that different mechanisms of 

oxidative stress were likely in the different exercise modes, and that the mechanism of 

oxidative stress in isometric exercise is not primarily due to production of free radicals in 

the electron transport chain. Our results support this hypothesis since there was no clear 

relationship between oxygen uptake and lipid peroxidation measured by ethane output, as 

previously discussed (section 7.4.3, page 309). 

 

7.4.5 F2-isoprostane response 

F2-isoprostanes were measured in blood collected from both the exercised arm and from 

the non-exercised arm. The magnitude of the peak response was similar in both arms; 

however, the pattern of response differed. In the exercised arm, there was a clear peak 

response immediately following the cessation of exercise; however, this was based on only 

one observation since measurement at this time point was missing in all other subjects. In 

contrast, in the non-exercised arm the highest responses occurred 5 minutes into the 

recovery period, and then again 30 minutes into the recovery period. The earlier peak 

response in the exercised arm may have been influenced by the proximity of the sampling 

site to the site of production of reactive species in the exercising muscle. The presence of a 

later peak in the non-exercised arm may indicate the presence of an alternative mechanism 

of oxidative stress, as discussed in the previous section (section 7.4.4.3, page 312); 
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however, it is unclear why this response was not also present in the exercised arm. The 

high inter-individual variability, and the fact that samples were missing at some time points 

in some individuals may have obscured the underlying response. The lack of correlation 

between the sampling sites may have been due to the paucity of data; however may have 

been a function of the transit time required for markers of oxidative stress to arrive at the 

sampling site. 

 

The F2-isoprostanes assay was not altogether successful in the current study, with the 

concentration of 33 % of all samples falling outwith the upper range of the assay, thus 

limiting the amount of useable data. The mean F2-isoprostane concentration at rest was 

303.8 ± 174.9 pg·ml
-1

 in the exercised arm and 259.0 ± 42.5 pg·ml
-1

 in the non-exercised 

arm. Both values are substantially higher than those previously reported in the literature 

which fall within a range of 28-75 pg·ml
-1

 (Mastaloudis et al., 2001; Mastaloudis et al., 

2004b; Nieman et al., 2002; Steensberg et al., 2002; Waring et al., 2003), although one 

study did report a resting concentration of approximately 2000 pg·ml
-1

 (Sachek et al., 

2003). Previous studies investigating oxidative stress in aerobic exercise which have 

utilised F2-isoprostanes as a marker of lipid peroxidation have reported concentrations in 

the range of 41-131 pg·ml
-1

 at post-exercise or recovery (Mastaloudis et al., 2001, 2004b; 

McAnulty et al., 2003; Nieman et al., 2002; Steensberg et al., 2002; Waring et al., 2003). 

Only one study reported a relatively high post-exercise concentration of 3000-4000 pg·ml
-1

 

following downhill running (Sacheck et al., 2003). One previous study reported a post 

exercise F2-isoprostane concentration of approximately 35 pg·ml
-1

 following 2 hours of 

resistance exercise (McAnulty et al., 2005b). No previous studies to date have utilised 

F2-isoprostanes as a marker in relation to isometric exercise. Thus, values in the present 

study are generally not comparable to previous literature. 
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Blood samples from the study reported in Chapter 5 and from this study were analysed at 

the same time, thus, the analysis issues regarding potential autoxidation of samples with 

subsequent elevation of F2-isoprostanes concentrations, discussed in section 5.4.2 (page 

248), are also pertinent here. The storage period of samples from the current study was 17 

months, and again the delay before analysis was unforeseen and unavoidable. The issues 

with analysis of blood samples emphasise the potential utility of non-invasive assessment 

of oxidative stress. 

 

7.4.6 Relationship between expired air and blood markers 

No significant relationship was observed between the ethane output response and the F2-

isoprostane response in the non-exercised arm, both of which gave an indication of the 

systemic oxidative stress response. Again this was likely due to the small subject number, 

the high percentage of missing invasively measured data, and to the high inter-individual 

variability in response. Therefore, validation of ethane output against blood markers of 

lipid peroxidation is still required. 

 

7.4.7 Limitations and further work 

One of the original aims of the current study was to better characterise the oxidative stress 

response to isometric exercise, specifically by investigating the effect of contraction 

intensity, by looking for the presence of a threshold response and by clarifying the time 

course of the response. Unfortunately, it was not possible to achieve the first two 

objectives due to the unexpected withdrawal of a suitable testing environment, as described 

previously (section 7.2.2, page 278). Thus, these remain a valuable focus of future work. 

 

Despite the above limitation, it was still possible to undertake a novel investigation into the 

suitability of non-invasive assessment of oxidative stress in relation to isometric exercise. 
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However, the ability to form clear conclusions regarding the time course of the oxidative 

stress response was limited by low subject number due to unavoidable early termination of 

data collection, as described (section 7.2.2, page 278). The lack of data at some time points 

was a substantial limitation to the interpretation of the findings. 

 

The low subject number also hindered the analysis of data with regard to the validation of 

non-invasive assessment of lipid peroxidation against traditional blood markers. It would 

also have been useful to compare the ethane output response against more than one blood 

marker, as recommended by Halliwell & Gutteridge (1999), however economic constraints 

were prohibitive. F2-isoprostanes were chosen as a single blood marker of lipid 

peroxidation since they have been used increasingly within exercise-induced oxidative 

stress studies in recent years, and have been suggested as being well suited to this purpose 

(Vollaard et al., 2005), and have been reported as one of the best markers of lipid 

peroxidation (Dalle-Donne et al., 2006; Milne et al., 2005). Their use also allowed 

avoidance of the methodological issues associated with the use of MDA, as described 

earlier (section 1.2.2.3.1, page 64). 

 

Rodriguez and colleagues (2003) reported an increase in oxidative stress related to 

intermittent isometric handgrip exercise during which a cuff was inflated around the upper 

arm to ensure ischaemia during exercise. It has previously been shown that an oxidative 

stress response is brought about through isometric exercise alone (Dousset et al., 2002; 

Steinberg et al., 2004; Steinberg et al., 2006) and through ischaemia alone (Cordis et al., 

1993; Grissoto et al., 2000). It would be of interest to determine how much of the oxidative 

stress response to isometric exercise may be due to ischaemia rather than exercise per se. 

In order to investigate this, oxidative stress could be measured following the conditions of 

ischaemia alone with no exercise, an isometric exercise protocol, and a repeat of the 

exercise protocol performed under conditions of total ischaemia.  
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7.5  Conclusions 

The current study supported the previous finding of a peak oxidative stress response 

following isometric exercise within the first 5 minutes of the recovery period; however, 

further details of the time course of the oxidative stress response to isometric exercise 

sustained to exhaustion remain to be clarified. Oxidative stress was assessed by ethane 

output for the first time in relation to isometric exercise and was found to be a viable 

technique; however, its use remains to be validated against more traditional plasma 

markers, and both intra- and inter-individual variability in ethane output require further 

investigation. The potential value of non-invasive assessment was underlined by 

F2-isoprostane analysis issues. Oxidative stress mechanisms additional to mitochondrial 

oxidant production may operate in isometric exercise. 
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Chapter 8 

 

General Discussion 
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8.1  Experimental findings 

The common themes linking the studies presented here are the time course of the oxidative 

stress response to exercise, and the means of assessment of oxidative stress during and 

following exercise. These investigations have initiated some thought-provoking findings. 

 

Oxidative stress was assessed in the first study (Chapter 3) via ethane output measured by 

laser spectroscopy. This was a novel technique, and the focus of the investigation was to 

determine if the technique was viable for use during exercise in humans, horses and dogs. 

It had previously been utilised in a life sciences environment, specifically in lung cancer 

patients (Skeldon et al., 2006), and in horses with respiratory inflammation (Skeldon et al., 

2005); however, had never been utilised in an exercise environment in any species. It was 

known from previous literature that an oxidative stress response was expected following 

maximal exercise (Vollaard et al., 2005); however, this response had been measured rarely 

by non-invasive means (Leaf et al., 1997, 1999, 2004). In addition, no previous study had 

measured oxidative stress during incremental exercise over several time points. Results 

indicated that measurement of ethane output by laser spectroscopy was a practicable 

technique for measuring oxidative stress during treadmill exercise, and a rise in oxidative 

stress at peak exercise measured by non-invasive means was shown for the first time in a 

trained population. A progressive relationship between work rate and ethane output was 

shown throughout incremental treadmill exercise to exhaustion, with an increase in 

oxidative stress apparent within 2 minutes of the onset of exercise, and a return to resting 

values by 20 minutes into the recovery period. The magnitude of the response at rest and 

following maximal exercise did not closely match that reported in previous studies 

(Knutson et al., 1999; Leaf et al., 1997, 1999, 2004; Zarling & Clapper, 1987), warranting 

further investigation. Limitations in study design were such that the exercise protocol did 

not allow assessment of oxidative stress across the entire work rate range from rest to 

exhaustion, and it was not possible to investigate the potential confounding factor of 
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exercise duration. In addition, it was not possible to compare oxidative stress measured by 

the new technique with that measured by an alternative technique (Halliwell & Gutteridge, 

1999). It was intended that the limitations of the first study should be addressed in the 

second study (Chapter 5). 

 

In the meantime, pilot work was undertaken to investigate and develop the potential of 

real-time monitoring of ethane output (Chapter 4). A similar technique had been reported 

previously (Dahnke et al., 2001; von Basum et al., 2003), but had not been applied in an 

exercise setting. This technique would permit an extremely high density of data collection, 

allowing a more detailed characterisation of the time course of the oxidative stress 

response to exercise, and could be particularly useful during long periods of exercise. 

Although the technique was time-consuming in terms of the lengthy data analysis required, 

it showed promise. The response profile during incremental treadmill exercise was similar 

to that reported in the previous chapter, thus validating the real-time technique to some 

extent. 

 

In the second study (Chapter 5), it was intended to assess oxidative stress both by expired 

ethane and by blood marker. The original ethical application reflected this aim; however, 

this was unachievable due to long term failure of the laser spectrometer. It became 

apparent that a new bespoke laser was required for the instrument and there was substantial 

difficulty in sourcing this. Due to time constraints, the decision was made to proceed with 

the second study despite the loss of capability for ethane measurement, and to measure 

oxidative stress using only a blood marker. This did not impact too greatly on the main 

aims of this study which were to determine if the relationship between oxidative stress and 

work rate was linear throughout the entire work rate range from rest to maximal exercise; 

to determine the magnitude and time course of any increase in oxidative stress at both sub- 

and supra-lactate threshold work rates; and to establish if oxidative stress varied as a 
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function of exercise duration as well as work rate. These objectives could be met utilising 

only a blood marker of oxidative stress. Preliminary analysis suggested that oxidative 

stress may increase throughout the entire work rate range; however, unfortunately, due to 

technical problems with the analysis of the blood samples, it was not possible to reach any 

concrete conclusions regarding the aims of this study. 

 

It was not until the third study (Chapter 7) that the opportunity arose to compare laser 

spectroscopy, as a method of oxidative stress measurement, with blood markers, although 

funding constraints limited the assessment to just one blood marker. This study utilised 

isometric exercise as a means to initiate an oxidative stress response. It was already known 

that isometric exercise at 50 or 60 % MVC could produce a significant increase in 

oxidative stress during the early recovery period (Dousset et al., 2002; Steinberg et al., 

2004; Steinberg et al., 2006), and the original plan for this study was to extend this finding 

by investigating oxidative stress at a range of isometric intensities. This was intended to 

provide some insight into the existence, or not, of a dose-response relationship between 

exercise intensity and oxidative stress, and to determine a potential threshold for response, 

as has been suggested for aerobic exercise ((Leaf et al., 1997; Lovlin et al., 1987). 

However, time constraints allowed the investigation of a single exercise intensity only:  

60 % maximal voluntary contraction was chosen following successful pilot work which 

utilised non-invasive measurement of oxidative stress for the first time in isometric 

exercise (as described in Chapter 6). Despite this, it was still possible to investigate the 

time course of the response in more detail during recovery from isometric exercise. Again 

problems with blood analysis were encountered, and thus it was not possible to compare 

ethane output against traditional plasma markers; however, results corroborated the 

previous finding of a peak oxidative stress response occurring early in the recovery period 

and indicated that ethane output was a viable technique for use in relation to isometric 

exercise. 
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8.2  Implications of findings 

Although some advances in the characterisation of the oxidative stress response have been 

made, in both aerobic and isometric exercise, much remains unclear. The three main 

studies reported here investigated the time course of the oxidative stress response to 

varying modes of exercise: incremental treadmill and cycle ergometer exercise to 

voluntary exhaustion; constant load cycle ergometer exercise both above and below the 

lactate threshold; and isometric handgrip exercise sustained to exhaustion. Unfortunately 

due to limitations imposed during all three studies, the time course remains to be clarified 

for each mode of exercise. However, the importance of the pattern of response over time 

may be significant since it could have a bearing on adaptive responses to training. 

 

8.2.1 Adaptations to training 

Initial literature on oxidative stress focussed on its potential negative impact on the body, 

specifically oxidative damage to body tissues with the potential for pathogenesis (e.g. Jain, 

2006; Singh & Jialal, 2006) and accelerated ageing (Harman, 1956). More recently interest 

has shifted to the potential impact of reactive species on training adaptation (Powers et al., 

2010). It has been postulated that reactive species may act as signaling molecules which 

trigger adaptive responses to exercise, such as mitochondrial biogenesis and enhanced 

antioxidant enzyme capacity (Gomez-Cabrera et al., 2008a,b). Specifically, it has been 

reported that exercise causes activation of nuclear factor-κΒ in rats exposed to exhaustive 

exercise, leading to upregulation of the expression of the antioxidant enzyme SOD, and 

enhanced expression of nitric oxide synthase (Gomez-Cabrera et al., 2005) which may be 

important in skeletal muscle hypertrophy and fibre type transformation (Smith et al., 

2002). Crucially, these responses were prevented when allopurinol was administered to 

inhibit the formation of reactive species, indicating this was a key component in the 

adaptive process. Further work by the same group suggested that vitamin C 



325 

supplementation throughout a period of exercise training in rats and humans interfered 

with the adaptive processes of mitochondrial biogenesis and antioxidant enzyme 

upregulation (Gomez-Cabrera et al., 2008a). Similarly, a combination of vitamin C and 

vitamin E supplementation prevented a rise in insulin sensitivity and enhanced antioxidant 

enzyme capacity in comparison to a non-supplemented group (Ristow et al., 2009). The 

magnitude and time course of the oxidative stress response may be critical, since it has 

been suggested that a moderate response over a short time period may signal adaptation, 

whereas a higher magnitude of response over a longer time period may lead to cell damage 

(Powers et al., 2010). Thus, information regarding a potential threshold intensity for the 

oxidative stress response, and how the response could be affected by exercise duration may 

be beneficial. 

 

8.2.2 Antioxidant supplementation 

The potential of antioxidant supplementation to interfere with training adaptation calls into 

question whether it may, in the balance, be detrimental to athletic performance. 

Antioxidant supplementation is widespread, with an estimated 70 % of American citizens 

utilising antioxidant supplements at least occasionally, and 40 % utilising them regularly 

(Hathcock et al., 2005). The use of antioxidant supplementation in the context of 

performance improvement has been studied by several authors. Some evidence suggests 

that vitamin deficiency may be detrimental to exercise performance. Davies and colleagues 

(1982) reported a 40 % lower endurance time for vitamin E deficient rats in comparison to 

rats fed a control diet over a period of 6 months. However, in general, performance does 

not appear to be enhanced when vitamin requirements are met (Clarkson & Thompson, 

2000; Evans, 2000; Singh et al., 1992). For example, no effect on swimming performance 

was observed following a 6 month period of vitamin E supplementation in non-deficient 

individuals (Lawrence et al., 1975). Thus, evidence seems to suggest that antioxidant 

supplementation does not improve performance in the absence of pre-existing deficiency. 
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Antioxidant supplementation has been studied in the context of oxidative stress as well as 

that of sporting performance. The joint position statement from the American College of 

Sports Medicine, the American Dietetic Association and the Dieticians of Canada (2000) 

states that vitamin and mineral supplementation should not be required by any athlete who 

is consuming an adequate caloric intake from a balanced diet. Dietary antioxidant 

supplements are consumed by some athletes in an attempt to counteract the oxidative stress 

associated with strenuous exercise; however, it is unclear whether this supplementation is 

actually required or beneficial (Urso & Clarkson, 2003). For example, Watson and 

colleagues (2005) observed that although oxidative stress was lower in a group of healthy 

individuals consuming a normal diet, oxidative stress was not shown to rise significantly 

above baseline in a group consuming a diet restricted in antioxidant content. Thus, the 

authors concluded that antioxidant supplementation was likely not required. In fact, 

consumption of antioxidants in excess of requirements may actually be detrimental. 

McAnulty and colleagues (2005a) provided vitamin E supplements to a group of triathletes 

for a period of two months. It was found that lipid peroxidation was actually higher 

following a triathlon event in the vitamin E supplemented group in comparison to the 

placebo group. It was suggested that a high vitamin E concentration may have a pro-

oxidant rather than an antioxidant effect. Evidence for reduced oxidative stress following 

supplementation is equivocal. However, the interpretation of findings in antioxidant 

supplementation studies is somewhat confounded by a lack of standardisation between 

studies in terms of supplements consumed, duration of supplementation, varied exercise 

protocols and differing means of assessment of oxidative stress. All factors could 

potentially effect the outcome of any supplementation regime. 

 

Vitamin deficiency in healthy individuals is rare (Kanter, 1998), and antioxidant 

supplementation may not be required in non-deficient individuals since, although acute 

exercise may reduce endogenous antioxidant reserves in the short term, it has been 
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reported often that exercise training can result in enhancement of antioxidant enzyme 

capacity (Finaud et al., 2006). For example, the effect of training on antioxidant enzyme 

activity in older adults was studied via a twelve week resistance training programme 

during which only one leg was trained (Parise et al., 2005). Biopsies of the vastus lateralis 

muscle taken at baseline and 48 hours following the final training session indicated a 

significant increase in CuZnSOD and CAT, but not in MnSOD following training. 

Enhanced antioxidant enzyme activity has also been reported following endurance training. 

Miyazaki and colleagues (2001) found increased activities of erythrocyte SOD and GPx 

but not CAT at rest following a twelve week training programme during which untrained 

subjects ran at 80 % of maximum heart rate for 60 minutes, five days per week. 

 

8.2.3 Assessment of oxidative stress 

The other common aim of the current studies was the investigation of a novel technique for 

the non-invasive assessment of lipid peroxidation. Non-invasive assessment is appealing 

for reasons of subject comfort and safety. There is no “gold standard” invasive means of 

assessment of lipid peroxidation, and it has been suggested that more than one plasma 

marker should be utilised in any study (Halliwell & Gutteridge, 1999). This, of course, 

creates added financial burden and requires greater time for analysis. The novel technique 

investigated here would be cost effective and time efficient as well as more pleasing for the 

participant. It was not possible to show that ethane output as measured by laser 

spectroscopy is a viable technique for the assessment of oxidative stress in both dynamic 

and isometric exercise. Its use remains to be validated against traditional plasma markers 

of oxidative stress; however, the technique itself has been validated against absolute 

measures of known ethane concentration so it could be argued that this is sufficient 

validation and justification for its use. 
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8.3  Conclusions 

The findings presented here provide some new insight into the nature of the oxidative 

stress response in both aerobic and isometric exercise. Although, due to severe adverse 

circumstances, it was not possible to firmly describe the time course of the response in any 

mode of exercise, some evidence was produced in support of previous studies. 

 

The use of the novel non-invasive technique of laser spectroscopy was tested for the first 

time in relation to exercise situations and appears to be suitable for the study of exercise-

induced oxidative stress. The availability of this technique may lead to a greater ability to 

describe oxidative stress events during exercise in future studies. However, inter-individual 

variability in the ethane output response was a feature in all studies and remains a relevant 

topic for further investigation. 
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Appendix A.1  Information sheet and consent form 
 
The effect of exercise intensity on ethane production during treadmill 
exercise 
 

 

 

 

Institute of Biomedical and Life Sciences 

University of Glasgow 

 

 

INFORMATION SHEET 

 

TITLE OF INVESTIGATION: A comparative study of the production of exhaled gases 

(carbon monoxide, hydrogen peroxide and ethane) following maximal exercise in 

human, canine and equine athletes subjects 
 

We invite you to participate in an investigation which we believe to be of potential 

importance. In order to help you to understand what the investigation is about, please read 

the following information carefully. Be sure you understand it before you formally agree to 

participate. If there are any points that need further explanation, please ask a member of 

the research team.  It is important that you understand what you are volunteering to do and 

are completely happy with all the information before you sign this form.  

 

What is the purpose of the study? Exercise is thought to affect breath levels of certain 

gases (ethane, hydrogen peroxide and carbon monoxide) in human athletes. The purpose of 

this study is to compare the effect of exercise on breath carbon monoxide and ethane in 

dogs, in horses and in humans. 

 

Why have I been chosen? You have been selected as a possible participant in this 

investigation because you are aerobically trained and in good health. Before you become a 

subject, you will be medically screened by a trained physician and complete a medical 

questionnaire. People who have asthma, heart-related and/or circulatory problems, 

hypertension or any other contraindicated condition will not be allowed to take part in the 

study. 

 

Do I have to take part? It is up to you to decide whether or not to take part. If you decide 

to take part, you will be given this information sheet to keep and you will be asked to sign 

a consent form. If you decide to take part, you are still free to withdraw at any time and 

without giving a reason. 

 

What will happen to me if I take part?  You will be asked to visit the laboratory on no 

more than three separate days over a one-month period.  Each visit will last no more than 2 

hours. 

 

On your first visit, you will be introduced to the laboratory personnel and familiarised with 

all the equipment used. You will be asked to complete two confidential questionnaires: the 

first will allow us to obtain information related to your general health; and the second will 

allow us to quantify your past exercise/activity involvement. You will also undergo a 

medical screening to ensure you are in good health to participate. 
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On your second visit you will be asked to perform what is called a “progressive exercise 

test” on a treadmill. During this test, the running speed and gradient will start at a very low 

level and increase gradually every minute. The idea is that you keep going until you can do 

no more. The test will be stopped when you decide you can go no longer. You may be 

asked to repeat this test once more on a separate occasion. 

 

In all tests we will ask you to breathe through a mouthpiece similar to that used for 

snorkelling, and use a noseclip. This is so we can monitor the air you breathe in and out. 

Normally your expired air (the air you breathe out) will be analysed to determine how hard 

your muscles are working, but at intervals throughout the test some of the air will e 

collected in small sample containers to analyse for the gases of interest (ethane, hydrogen 

peroxide and carbon monoxide). 

 

A small harmless device will be placed on your finger to measure the amount of oxygen in 

your blood. This is achieved by shining light into your finger and measuring how much is 

absorbed by the blood. 

 

Finally, you will not be able to consume any alcohol 48 hours prior to each lab visit. You 

will be excluded from participating in this study if you take drugs (recreational or 

performance-enhancing drugs). 

 

What are the side effects of taking part? There are none. 

 

What are the possible disadvantages and risks of taking part?  Exercise has a 

negligible risk in healthy adults, although maximal exercise does carry a small risk of 

inducing myocardial ischaemia (“heart attack”). The primary symptom of myocardial 

ischaemia is chest pain on exertion. If you experience any unusual sensations in your chest 

during the experiment, you should cease exercising immediately. Your heart rate will be 

monitored via adhesive electrodes placed at points on the chest (an “electrocardiogram” or 

ECG). In the unlikely event you experience serious problems during the exercise, 

medically-qualified personnel are on call at all times during the test and approved 

emergency procedures are in place. 

 

At the end of the tests you will be very tired (exhausted), your legs will be very heavy and 

you will be out of breath. It is also not uncommon to feel a little light-headed and 

nauseous. 

 

You may experience difficulty swallowing while breathing through a mouthpiece and 

wearing a nose-clip; this is due to a slight but transient pressure build up in your ears. Also, 

you may experience increased salivation while breathing through a mouthpiece. There are 

no specific risks associated with collection of breath samples. 

 

What are the possible benefits of taking part? The results from the exercise tests will 

give you a good idea of how fit you are. The research team will take the time to explain 

these results to you. The information from these tests will provide us with valuable 

information on the effect of exercise on production of certain gases (carbon monoxide, 

hydrogen peroxide and ethane). 



374 

What if something goes wrong? If you are harmed by taking part in this research project, 

there are no compensation arrangements. If you are harmed due to someone's negligence, 

then you may have grounds for a legal action but you may have to pay for it. The principal 

investigators, although not medically qualified, are fully trained in Basic Life Support. In 

the event of an untoward incident, the principal investigator(s) will provide basic life 

support including chest compressions and ventilation, and will apply an advisory 

defibrillator (if necessary) until emergency medical staff are on hand. 

 

Will my taking part in this study be kept confidential? All information which is 

collected about you during the course of the research will be kept strictly confidential. 

 

What will happen to the results of the research study? Results will be published in a 

peer-reviewed scientific journal once the study is completed. You will automatically be 

sent a copy of the full publication. You will not be identified in any publication. 

 

If you are worried about any unwanted side effects from any of the above procedures, you 

should contact: 

 

Dr Andy Cathcart 

University of Glasgow, 

Glasgow. G12 8QQ 

Phone: 0141 330 2416 

Fax:  0141 330 2915 

E-mail: A.Cathcart@bio.gla.ac.uk 

mailto:N.MacFarlane@bio.gla.ac.uk
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Title: A comparative study of the production of exhaled carbon monoxide, hydrogen 

peroxide and ethane following maximal exercise in human, canine and equine athletes 

subjects (Approved: 19/05/04) 
 

 

Consent Form 

 

 

I  ......................................................………..... 
 

give my consent to the research procedures which are outlined above, the aim, 

procedures and possible consequences of which have been outlined to me. 
 

 

Signature ……………………………………… 

 

 

Date  ……………………………………… 
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Appendix A.2  Information sheet and consent form 
 
A study of the dynamics of the oxidative stress response to aerobic 
exercise in different intensity domains 
 

 

 

 

Institute of Biomedical and Life Sciences 

University of Glasgow 

 

 

INFORMATION SHEET 

 

TITLE OF INVESTIGATION: A study of the dynamics of the oxidative stress response 

to aerobic exercise in different intensity domains 
 

We invite you to participate in an investigation which we believe to be of potential 

importance. In order to help you to understand what the investigation is about, please read 

the following information carefully. Be sure you understand it before you formally agree to 

participate. If there are any points that need further explanation, please ask a member of 

the research team.  It is important that you understand what you are volunteering to do and 

are completely happy with all the information before you sign this form.  

 

What is the purpose of the study? Oxidative stress is thought to be a common feature of 

exercise and refers to damage to body tissues through chemical reactions which occur 

during exercise. The purpose of this study is to investigate the effect of different intensities 

of exercise on oxidative stress. 

 

Why have I been chosen? You have been selected as a possible participant in this 

investigation because you are aerobically trained and in good health. Before you become a 

subject, you will be medically screened by a trained physician and complete a medical 

questionnaire. People who have asthma, heart-related and/or circulatory problems, 

hypertension or any other contraindicated condition will not be allowed to take part in the 

study. 

 

Do I have to take part? It is up to you to decide whether or not to take part. If you decide 

to take part, you will be given this information sheet to keep and you will be asked to sign 

a consent form. If you decide to take part, you are still free to withdraw at any time and 

without giving a reason. 

 

What will happen to me if I take part?  You will be asked to visit the laboratory 

typically on four separate days and on no more than seven separate days over a one-month 

period. Each visit will last no more than 2 hours. 

 

On your first visit, you will be introduced to the laboratory personnel and familiarised with 

all the equipment used. You will be asked to complete two confidential questionnaires: the 

first will allow us to obtain information related to your general health; and the second will 

allow us to quantify your past exercise/activity involvement. You will also undergo a 

medical screening to ensure you are in good health to participate.  
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On your second visit you will be asked to perform what is called a “progressive exercise 

test” on a cycle ergometer.  During this test, the work rate (a measure of how hard you are 

exercising) will start at a very low level and increase gradually every minute. The idea is 

that you keep going until you can do no more.  The test will be stopped when you decide 

you can go no longer. You may be asked to repeat this test once more on a separate 

occasion. 

 

On all other visits you will be asked to perform what is called a “constant workrate 

exercise test” on a cycle ergometer. During this test, the work rate (a measure of how hard 

you are exercising) will start at a very low level and then be increased to either a light level 

which you will be able to perform comfortably or a hard level which you will only be able 

to sustain for less than 30 minutes. 

 

Ideally we will ask you to perform only three exercise tests: one progressive exercise test 

and two constant work rate tests. However, we may ask you to repeat any, or all, of these 

tests if we are unable to interpret the results. You will not be asked to repeat any test more 

than once. 

 

In all tests we will ask you to breathe through a mouthpiece, similar to that used for 

snorkelling, and use a nose-clip.  This is so we can monitor the air you breathe in and out. 

Normally your expired air (the air you breathe out) will be analysed to determine how hard 

your muscles are working. 

 

We will take blood from you at various times during these tests. With the use of a surgical 

needle, a small plastic tube (called a catheter) will be inserted into a vein on the inside of 

your elbow. This is common practice and will cause only a mild “prick” of the skin. A 

small tap is connected to the inserted tube which allows repeated samples of blood to be 

taken without having to use a needle each time. Typically there is no discomfort associated 

with the presence of the catheter during the test. No more than 100 ml (about 10 dessert 

spoons) of blood is taken in any one test. 

 

A small harmless device will be placed on your finger to measure the amount of oxygen in 

your blood. This is achieved by shining light into your finger and measuring how much is 

absorbed by the blood.  

 

Finally, you will not be able to consume any alcohol 48 hours prior to each lab visit. You 

will be excluded from participating in this study if you take drugs (recreational or 

performance-enhancing drugs). 

 

What are the side effects of taking part? There are none. 

 

What are the possible disadvantages and risks of taking part?  Exercise has a 

negligible risk in healthy adults, although maximal exercise does carry a small risk of 

inducing myocardial ischaemia (“heart attack”). The primary symptom of myocardial 

ischaemia is chest pain on exertion. If you experience any unusual sensations in your chest 

during the experiment, you should cease exercising immediately. Your heart rate will be 

monitored via adhesive electrodes placed at points on the chest (an "electrocardiogram" or 

ECG). In the unlikely event you experience serious problems during the exercise, 

medically-qualified personnel are on call at all times during the test and approved 

emergency procedures are in place.  
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At the end of the tests you will be very tired (exhausted), your legs will be very heavy and 

you will be out of breath.  It is also not uncommon to feel a little light-headed and 

sometimes nauseous.   

 

You may experience difficulty swallowing while breathing through a mouthpiece and 

wearing a nose-clip; this is due to a slight but transient pressure build up in your ears. Also, 

you may experience increased salivation while breathing through a mouthpiece. 

There are no specific risks associated with collection of breath samples. 

 

You may experience mild discomfort during the placement of the catheter and/or from the 

sampling of blood from the catheter. When the catheter is removed, a little bruising may 

occur. A small wound may also be evident. This may take a few days to heal. 

 

What are the possible benefits of taking part? The results from the exercise tests will 

give you a good idea of how fit you are. The research team will take the time to explain 

these results to you. The information from these tests will provide us with valuable 

information on the effect of different exercise intensities on oxidative stress. 

 

What if something goes wrong? If you are harmed by taking part in this research project, 

there are no compensation arrangements. If you are harmed due to someone's negligence, 

then you may have grounds for a legal action but you may have to pay for it. The principal 

investigators, although not medically qualified, are fully trained in Basic Life Support. In 

the event of an untoward incident, the principal investigator(s) will provide basic life 

support including chest compressions and ventilation, and will apply an advisory 

defibrillator (if necessary) until emergency medical staff are on hand. 

 

Will my taking part in this study be kept confidential? All information which is 

collected about you during the course of the research will be kept strictly confidential. 

 

What will happen to the results of the research study? Results will be published in a 

peer-reviewed scientific journal once the study is completed. You will automatically be 

sent a copy of the full publication. You will not be identified in any publication. 

 

If you are worried about any unwanted side effects from any of the above procedures, you 

should contact: 

 

Dr Andy Cathcart 

Institute of Biomedical and Life Sciences, 

West Medical Building, 

University of Glasgow, 

Glasgow G12 8QQ 

Phone: 0141 330 3736 

Fax:  0141 330 2915 

E-mail: A.Cathcart@bio.gla.ac.uk 
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Title: A study of the dynamics of the oxidative stress response to aerobic exercise in 

different intensity domains (Approved:24/11/05 ) 

 

 

Consent Form 

 

 

I …………………………………………….. 

 

give my consent to the research procedures which are outlined above, the aim, 

procedures and possible consequences of which have been outlined to me. 

 

 

Signature ……………………………………. 

 

Date  ……………………………………. 
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Appendix A.3  Information sheet and consent form 
 
The effect of varying the intensity of isometric exercise on oxidative 
stress 
 

 

 

 

Institute of Biomedical and Life Sciences 

University of Glasgow 

 

 

INFORMATION SHEET 

 

TITLE OF INVESTIGATION: The effect of varying the intensity of isometric exercise 

on oxidative stress 
 

We invite you to participate in an investigation looking at the effect of varying the exercise 

intensity during handgrip exercise on oxidative stress. In order to help you to understand 

what the investigation is about, please read the following information carefully. Be sure 

you understand it before you formally agree to participate. If there are any points that need 

further explanation, please ask a member of the research team.  It is important that you 

understand what you are volunteering to do and are completely happy with all the 

information before you sign this form.  

 

What is the purpose of the study? Oxidative stress is thought to be a common feature of 

exercise and refers to damage to body tissues through chemical reactions which occur 

during exercise. This study aims to investigate the effect of different intensities of handgrip 

exercise on oxidative stress levels. We also aim to clarify, to some extent, the cause of 

oxidative stress during this type of exercise, which can be done by sampling blood during 

post-exercise recovery. In addition, oxidative stress during this type of exercise has 

traditionally been measured by analysing blood samples taken during exercise. We wish to 

investigate the utility of using breath measures of oxidative stress as a more pleasant 

alternative for future studies in this area. 

 

Why have I been chosen? You have been selected as a possible participant in this 

investigation because you are in good health. Before you become a subject, you will 

complete a confidential medical questionnaire. People who have asthma, heart-related 

and/or circulatory problems, hypertension or any other contraindicated condition will not 

be allowed to take part in the study. 

 

Do I have to take part? It is up to you to decide whether or not to take part. If you decide 

to take part, you will be given this information sheet to keep and you will be asked to sign 

a consent form. If you decide to take part, you are still free to withdraw at any time and 

without giving a reason. 

 

What will happen to me if I take part?  You will be asked to visit the laboratory on no 

more than three separate occasions, typically within a two-week period.  All visits will take 

place in Lab 327 of the Kelvin Building and will take place at the same time of day 

whenever possible. 
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At the first visit, you will be introduced to the people who will carry out the tests and you 

will be familiarised with all equipment and procedures to be used. You will be given the 

opportunity to have any queries abut the study answered and will be asked to sign a 

consent form. You will be asked to complete a confidential medical questionnaire to ensure 

that you are suitable as a participant for the study. You will then be asked to perform three 

to five maximal voluntary muscle contractions with your dominant hand using a handgrip 

dynamometer which is a device for measuring grip strength (similar to gripping the handle 

of a suitcase as hard as possible). This will determine your maximum grip strength for that 

hand. Five minutes rest will be given between each maximal contraction. This visit should 

last for no longer than one hour. 

 

At your second and third visits, you will be asked to sustain a voluntary muscle 

contraction, using the handgrip dynamometer, for as long as possible (up to a maximum of 

30 minutes) at four specified intensities. The intensities will be 20%, 40%, 60% and 80% 

of your previously measured maximum grip strength. Two of these trials will be performed 

at the second visit and two at the third visit. A recovery period of 30 minutes will be given 

after each contraction. 

 

During each trial, we will ask you to breathe through a mouthpiece, similar to that used for 

snorkelling, and use a nose-clip. This is so we can monitor the air you breathe out. The air 

you breathe out will be analysed to detect ethane gas, which is a product of oxidative 

stress. 

 

We will take blood from you at various times during these tests. With the use of a surgical 

needle, a small plastic tube (called a catheter) will be inserted into a vein on the inside of 

your elbow. This is common practice and will cause only a mild “prick” of the skin. A 

small tap is connected to the inserted tube which allows repeated samples of blood to be 

taken without having to use a needle each time. No more than 160 ml (about 16 dessert 

spoons) of blood is taken in any one test. 

 

We will continue to monitor the air you breathe out and your blood during recovery 

periods. These visits should last for no longer than 3 hours each. 

 

Finally, you will be asked to refrain from all strenuous exercise in the 24 hour period prior 

to each test and you will not be able to consume any alcohol 48 hours prior to each lab 

visit. You will be excluded from participating in this study if you take drugs (recreational 

or performance-enhancing drugs). 

 

What are the side effects of taking part? There are none. 

 

What are the possible disadvantages and risks of taking part? Isometric exercise has a 

negligible risk in healthy adults. You may experience mild discomfort during the 

placement of the catheter in a vein on the inside of the elbow and/or from the sampling of 

blood from the catheter. When the catheter is removed, a little bruising may occur. A small 

wound may also be evident. This may take a few days to heal. 

 

What are the possible benefits of taking part? The information from these tests will 

provide us with valuable information on the effect of different exercise intensities on 

oxidative stress during isometric exercise but will provide no information of personal 

benefit other than your maximum grip strength. 
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What if something goes wrong? If you are harmed by taking part in this research project, 

there are no compensation arrangements. If you are harmed due to someone's negligence, 

then you may have grounds for a legal action but you may have to pay for it. The principal 

investigators, although not medically qualified, are fully trained in Basic Life Support. In 

the event of an untoward incident, the principal investigator(s) will provide basic life 

support including chest compressions and ventilation, and will apply an advisory 

defibrillator (if necessary) until emergency medical staff are on hand. 

 

Will my taking part in this study be kept confidential? All information which is 

collected about you during the course of the research will be kept strictly confidential. 

 

What will happen to the results of the research study? Results will be published in a 

peer-reviewed scientific journal once the study is completed. You will automatically be 

sent a copy of the full publication. You will not be identified in any publication. 

 

If you are worried about any unwanted side effects from any of the above procedures, you 

should contact: 

 

Dr Niall MacFarlane 

Institute of Biomedical and Life Sciences, 

West Medical Building, 

University of Glasgow, 

Glasgow. G12 8QQ 

Phone: 0141 330 5965 

Fax:  0141 330 4612 

E-mail: N.MacFarlane@bio.gla.ac.uk 

mailto:N.MacFarlane@bio.gla.ac.uk
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Title: The effect of varying the intensity of isometric exercise on oxidative stress 

(Approved: 24/05/05) 
 

 

Consent Form 

 

 

I  ......................................................………..... 
 

give my consent to the research procedures which are outlined above, the aim, 

procedures and possible consequences of which have been outlined to me. 
 

 

Signature ……………………………………… 

 

 

Date  ……………………………………… 
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Appendix A.4  Medical Questionnaire 
 

 

 

 

CENTRE FOR EXERCISE SCIENCE AND MEDICINE 

 

MEDICAL HISTORY 

 

(CONFIDENTIAL) 
 

 

Please read. 

 

It is important to take a record of your medical history. You may have, or may have 

once had a condition that would make this type of testing unsuitable for you.  For this 

reason we ask you to be as truthful and detailed as possible.  At no point will this 

information be made available to any one other than the principal investigators for 

this study.  If you have any doubts or questions, please ask. 
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SUBJECT DETAILS: 

 

NAME: 

 

AGE:      D.O.B: 

 

SEX (M/F): 

 

GP NAME & ADDRESS: 

 

 

SMOKING:   

Never Smoked        …… 

   Not for >6 months  …… 

   Smoke <10 per day …… 

   Smoke >10 per day …… 

 

 

ILLNESSES: 

 

ALLERGIES: 

_________________________________________________________________ 

 

HOSPITALISATIONS: 

_________________________________________________________________ 

 

MUSCULO-SKELETAL DISORDER:  

(Arthritis, Joint Pain, Fractures, Sports injury, Others) 

_________________________________________________________________ 

 

CARDIOVASCULAR DISORDER: (Fever, Heart Murmurs, Chest Pain, 

Palpitations, High Blood Pressure, Others) 

 _________________________________________________________________ 

 

RESPIRATORY DISORDER: (Asthma, SOB, Cough, URTI, Others) 

_________________________________________________________________ 

 

GASTROINTESTINAL DISORDER: (Jaundice, Bleeding, Others) 

_________________________________________________________________ 

 

DIABETES: 

_________________________________________________________________ 

 

CNS DISORDER: (Fits, Blackouts, Tremor, Paralysis, Epilepsy, Other)  

_________________________________________________________________ 

 

PSYCHIATRIC TREATMENT:  

_________________________________________________________________ 

 

FAMILY HISTORY:  (Sudden death in a first degree relative under the age of 35 

years) 

_________________________________________________________________ 
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ARE YOU CURRENTLY TAKING ANY MEDICATION?   No / Yes* 

 

(*Please specify)___________________________________________________ 

 

 

ARE YOU CURRENTLY TAKING ANY SUBSTANCES TO HELP IMPROVE 

YOUR TRAINING OR CONTROL YOUR WEIGHT i.e. CREATINE, 

PROTEIN SUPPLEMENT?        No / Yes* 

 

(*Please specify)___________________________________________________ 

 

 

ARE YOU CURRENTLY TAKING ANY OTHER SUPPLEMENTS i.e. FOOD 

SUPPLEMENTS, VITAMINS?       No / Yes* 

 

(*Please specify)____________________________________________________ 

 

 

CAN YOU THINK OF ANY OTHER REASON WHY YOU SHOULD NOT 

TAKE PART IN ANY OF OUR TESTS? 

 

_________________________________________________________________ 

 

 

SYMPTOMS: 

 

Do you experience any of the following, particularly on exercise? 

 

   Breathlessness   No / Yes 

   Chest Pain    No / Yes 

   Dizzy Fits/Fainting  No / Yes 

   Palpitations   No / Yes 

 

 

Please note that if you feel unwell on the day of the proposed test, or have been feeling 

poorly over the preceding day or two, please inform the investigators and DO NOT 

TAKE PART in the exercise test. 
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DECLARATION: 

 

I have completed this questionnaire fully and truthfully. I have not kept any information 

from the investigators that may put myself at risk during high-intensity exercise, or affect 

the results that they obtain.  I understand that I may withdraw from any one test or the 

study as a whole if I feel unwell, or feel uncomfortable with any part of the testing 

procedure. 

 

 

 

(Signature)……………………………… 

 

(Date) .………………….. 

 

 

 

 

PHYSICAL EXAM: 

 

 

 

WEIGHT:   ___________  HEIGHT: ____________ 

 

PULSE (Resting): ___________  BP (Resting): ____________ 

 

 

 

Screened by:  …………………………….. 

 

(Signature)  ………………………………. (Date) ……………………….. 
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Appendix A.5  Physical Activity Questionnaire 
 

 

 

 

UNIVERSITY OF GLASGOW 

INSTITUTE OF BIOMEDICAL AND LIFE SCIENCES 

SUBECT QUESTIONNAIRE AND ASSENT FORM FOR HIGH INTENSITY 

EXERCISE TESTING 
 

 

If you feel unwell on the day of a proposed test, or have been feeling poorly within the last two 

weeks, you are excluded from taking part in an exercise test. The considerations that follow apply 

to people who have been feeling well for the preceding two weeks. 

 

 

NAME:  ……………………………………………………. 

 

SEX: M/F   AGE:  ………. (yr) 

 

HEIGHT:  ………. (m)  WEIGHT:  ………. (kg) 

 

 

Details of last medical examination (where appropriate): 

 

Date:  ……………………. Location:  ……………………………..……………….. 

(day/mo/yr) 

 

Exercise lifestyle: 

What kind(s) of exercise do you regularly do (20 min or more per session), and how often? 

(Please circle the number of times per average week): 

 

Walking    1 2 3 4 5 

Running    1 2 3 4 5 

Cycling    1 2 3 4 5 

Swimming    1 2 3 4 5 

Skiing    1 2 3 4 5 

Rowing    1 2 3 4 5 

Gymnastics    1 2 3 4 5 

Martial Arts    1 2 3 4 5 

Tune Up    1 2 3 4 5 

Popmobility    1 2 3 4 5 

Sweat Session   1 2 3 4 5 

Weight Training   1 2 3 4 5 

Field Athletics   1 2 3 4 5 

Racket sports   1 2 3 4 5 

Rugby/soccer/hockey  1 2 3 4 5 

Others* 

 

* (Please specify)  ………………………………………………………………………… 

 

How long have you been exercising 

at least twice/week for at least 20 min/session?  ……………… years 
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Smoking: (Please tick one) Never smoked  ………. 

Not for > 6 months ………. 

Smoke < 10 per day ………. 

Smoke > 10 per day ………. 

 

 

Illnesses: Have you ever had any of the following? (Please circle NO or YES) 

 

Anaemia  NO/YES Asthma    NO/YES 

Diabetes   NO/YES Epilepsy    NO/YES 

Heart Disease  NO/YES High Blood Pressure  NO/YES 

Other*   NO/YES 

 

* (Please specify)  ………………………………………………………………………… 

 

Symptoms: 

Have you ever had any of the following symptoms to a significant degree at rest or during 

exercise? That is, have you had to consult a physician relating to any of the following? 

 

Rest   Exercise 

Breathlessness      NO/YES  NO/YES 

Chest Pain       NO/YES  NO/YES 

Dizzy Fits/Fainting     NO/YES  NO/YES 

Heart Murmurs      NO/YES  NO/YES 

Palpitations       NO/YES  NO/YES 

Tightness in chest, jaw or arm    NO/YES  NO/YES 

Other*       NO/YES  NO/YES 

 

* (Please specify)  ………………………………………………………………………… 

 

Muscle or joint injury: 

Do you have or have you had any muscle or joint injury which cold affect your safety in 

performing exercise (e.g. cycling or running), strength testing or strength training? 

NO/YES* 

 

* (Please specify)  ………………………………………………………………………… 

 

Medication: 

Are you currently taking any medication?      NO/YES* 

 

* (Please specify)  ………………………………………………………………………… 

 

Family History of Sudden Death: 

Is there a history of sudden death in people under 40 years in your family?  NO/YES* 
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The following exclusion and inclusion criteria will apply to this study: 

Exclusion criteria 

If you have any of the following, you will be excluded from the study: 

(a) Asthma, diabetes, epilepsy, heart disease, a family history of sudden death at a young 

age, fainting bouts, high blood pressure, anaemia and muscle or joint injury. 

(b) If you are taking any medication that may adversely affect your performance or health 

in this study, you will not be allowed to take part in the study. 

(c) If you take recreational drugs, you will not be allowed to take part in the study. 

(d) If you have ingested alcoholic drinks in the previous 48 hours, you will not be allowed 

to take part in the study. 

Inclusion criteria 

(a) Male or female subject, aged at least 18 years and normally no more than 35 years. 

(b) In good health at the time of testing. 

 

 

 

 

Signature  ……………………………………….………….. Date  ………………. 


