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Every 3-Connected, Locally 
Connected, Claw-Free Graph 
is Hamilton-Connected 

ABSTRACT 

A. S. Asratian 
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S-901 87 UMEA, SWEDEN

DEPARTMENT OF MATHEMATICAL CYBERNETICS 
YEREVAN STATE UNIVERSITY 

YEREVAN 375049, REPUBLIC OF ARMENIA 

A graph G is locally connected if the subgraph induced by the neighbourhood of each 
vertex is connected. We prove that a locally connected graph G of order p � 4, containing 
no induced subgraph isomorphic to K1,3, is Hamilton-connected if and only if G is 3-
connected. © 1996 John Wiley & Sons, Inc.

1. INTRODUCTION

We use [1] for terminology and notation not defined here and consider finite simple graphs 
only. Let V(G) and E(G) denote, respectively, the vertex set and edge set of a graph G. 
For each vertex u of G, the neighbourhood N(u) is the set of all vertices adjacent to u 
and M(u) = N(u) u {u}. If W is a nonempty subset of V(G), then we denote by (W) the 
subgraph of G induced by W. A graph G is called claw-free if G has no induced subgraph 
isomorphic to Kt,3· 

A graph G is said to be hamiltonian if it has a cycle containing all the vertices of G. A 
path with end vertices x and y is called an (x, y)-path. An (x, y)-path is a Hamilton path 
of G if it contains all the vertices of G. A graph G is Hamilton-connected if every two 
vertices x, y are connected by a Hamilton (x, y)-path. 

The following concept of local connectivity was defined in (4): A graph G is locally n­

connected, n � l, if (N(u)) is n-connected for each u E V(G). Later, Oberly and Sumner 
[8] proved that every connected, locally connected, claw-free graph G with IV(G)I � 3
is hamiltonian. Clark (6) improved this result by showing that in a graph G satisfying
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the Oberly-Sumner condition, each vertex of G lies on a cycle of every length from 3 to 
I V (G) 1 inclusive. 

When is a locally connected, claw-free graph Hamilton-connected? This problem was 
investigated first by Chartrand, Gould and Polimeni 131. They proved that a connected, 
locally 3-connected, claw-free graph is Hamilton-connected. Later, Kanetkar and Rao [7] 
improved this result, by showing that the condition of 3-connectedness can be changed to 
2-connectedness. Moreover, they proved that even in this case each pair of distinct vertices 
3: and y of G is connected by a path of every length from d(x,y) to IV(G)J-l inclusive. 

In this paper we give a complete solution of the problem. We prove that a locally 
connected, claw-free graph G with IV(G)l 2 4 is Hamilton-connected if and only if G is 
3-connected. This result was conjectured by Broersma and Veldman [2]. 

2. NOTATIONS AND PRELIMINARY RESULTS 

Let P be a path of G. We denote by P' the path P with a given orientation and by the 
path P with the reverse orientation. If u, w E V ( P ) ,  then uPw denotes the consecutive 
vertices of P from u to TJ in the direction specified by P .  The same vertices, in reverse 
order, are given by w h .  We use w+ to denote the successor of w on P and w- to denote 
its predecessor. We assume that an (z,y)-path P' has an orientation from 3: to y. We 
will denote by k(G) and a(G) the connectivity and the independence number of a graph 
G, respectively. Let H be a graph with V ( H )  = A u {u,w} where (A) is a complete 
subgraph of H and u z ,  wz E E ( H )  for each z E A. In this situation we let u[A]w denote a 
Hamiltonian (u, w)-path of H. 

Proposition 2.1. Let G be a connected, locally connected, claw-free graph, and u a vertex 
of G. If there exist two non-adjacent vertices z1,z2 E N ( u )  such that N ( u )  n N ( z l )  n 
N ( z 2 )  = 0, then the sets Al = {zI} U ( N ( z l )  n N ( u ) )  and A2 = { z2}  U ( N ( z 2 )  n N ( u ) )  
have the following properties: 

( 1 )  Al u A2 = N ( u ) , A l  n A2 = 0 and lAil 2 2 for i = 1,2.  
(2) The graphs H1 = (Al)  and H2 = ( A 2 )  are complete and there exists an edge vlw2 

where wl E A1 and v2 E Aa. 

Proof. Clearly, Al n A2 = 0. If A1 U A2 $. N ( u )  then there is a vertex z3 E N ( u )  
such that zjz1,23z2 4 E(G)  and the set {z1,z2,z3,u}  induces K1,3; a contradiction. So 
Al  u A2 = N ( u ) .  If one of the graphs H I  and H 2 ,  say H1, contains two nonadjacent 
vertices s and t then the set { u , s ,  t , z z }  induces K1,3; a contradiction. So, H1 and H2 
are complete graphs. The connectedness of ( N ( u ) )  implies that there exists an edge wlw2 

I 

Proposition 2.2. Let G be a connected, locally connected, claw-free graph, and let u be 
a vertex of G. Furthermore, let w be a cut .vertex of H = ( N ( u ) ) .  Then the following 
properties hold: 

where w1 E Al and 212 E A2. Then d(u )  > 2, (All 2 2 and IA21 2 2. 

( 1 )  The graph H - w has two components and each of them is a complete graph. 
(2) The graph H has at most two cut vertices. Moreover, if H has two cut vertices then 

they are adjacent. 
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Proof. The first property follows from the fact that G is claw-free. Let HI and H2 
be components of H - w. Then for some i E {1,2}, say i = 1, w is adjacent to all the 
vertices of H,. Since w is a cut vertex of N, we can deduce that z1 = w for each edge 
zlz2 E E(G) with z1 E V(H1) U {w}, z2 E V(H2). This means that H has at most two cut 
vertices. Moreover, H has two cut vertices if and only if w is adjacent to only one vertex 

I 
Proposition 2.3. Let G be a connected, locally connected, claw-free graph. If w E N ( u )  
and w is not a cut vertex of H = ( N ( u ) )  then there is a Hamilton (u, v)-path of ( M ( u ) ) .  

If H has no cut vertex then 2 5 k ( H ) .  Since G is claw-free, a ( H )  5 2. Hence, 
by a theorem of Chvatal and Erdos [5], H is hamiltonian. This implies that there exists a 
Hamilton (u, v)-path of ( M ( u ) ) .  

If H has a cut vertex w, then by Proposition 2.2, H - w has two components and each 
of them is a complete graph. Since w is not a cut vertex, the existence of a Hamilton 

I 
Let z be an internal vertex of an (z, y)-path P, x # y. We say that P has a local detour 

of z if there exists a path in ( N ( z )  \ {z, y}) with origin outside P and terminus a neighbour 
of z on P. The following result was obtained in [6]. 
Proposition 2.4 [6]. Let G be a claw-free graph with /V(G) /  2 3 and P be an (z, y)-path 
of length n,z  # y,3 5 n 5 IV(G)l - 2. If P has a local detour then G contains an 
(5 ,  9)-path Q of length n + 1 with V(P) c V(Q). 

Theorem 2.5. Let G be a connected, locally connected, claw-free graph and z, y be two 
distinct vertices of G. If there exists an (z,y)-path of length at least 3 including the set 
N ( z )  u N(y) then there exists a Hamilton (2, y)-path of G. 

ProoJ It is sufficient to prove that if P is an (z, y)-path of length n < IV(G)l - 1 and 
N(z)UN(y) C V(P) then there exists an (x,y)-path Q of length n + l  with V(P) c V(Q) .  

Let P = xozl...z,, where zo = z and z, = y. Since G is connected and n < 
IV(G)l - 1, the set U = Uyz;N(zi) \ V(P) is not empty. If P has a local detour at xj 
for some 1 5 j 5 n - 1 then, by Proposition 2.4, there exists an (z,y)-path Q of length 
n + 1 such that V(P) c V(Q). Assume now that 

from V(H2). This vertex is the second cut vertex of H. 

Proof. 

(u, w)-path of ( M ( u ) )  is evident. 

(1) for each j = 1,. . . ,n - 1, P has no local detour at z j .  

Consider a vertex w E U. Since G is claw-free, zJ-1z3+1 E E(G)  for each x3 E N ( v )  n 
V(P). Let i l  = rninzZvEE(G) i and ulu2..  . u, be a shortest (w, zl+il)-path in the graph 
( N ( z i l ) ) ,  where u1 = w and u, = zl+il. Since G is claw-free, T 5 4. Furthermore, 
since N ( z )  u N(y) C V(P), (1) implies that T 2 4. So, T = 4,u3 E {zo,~,} and u2 E 
V(P) \ (20,  zn}. 

Let u2 = ziz for some i2,1 5 il < i2 5 n - 1. 
Case 1. u3 = $0. We have ~ , ~ z l + i ~ ,  m i 2 ,  xi2zo E E(G) and vzo, wz1+i2 4 E(G). Then 

zlfi2z0 E E(G),  because G is claw-free. If il = 1 then there is an (z, y)-path Q of length 
n + l ,  whereQ=zozizvzlx~...~i,_lziz+l...z,.Letil 2 2thatisvzl 4 E(G).SinceG 
is claw-free, E(G) n {zlzl+il, zlzl+iz, zl+ilzl+iz} # 0. Hence there exists an (z, y)-path 
Q of length n + 1 where 

e -+ + 
~ o ~ i , ~ ~ i ,  P1cizi+i~P~i~-~~1+i,P~, if ~ 1 z 1 + i ~  E E(G), 
~o~i ,~zi ,Pzi+i ,z i l - i  Pzlzl+i,Px, if z1z1+i2 E E(G), 
xOPxi,~zi, Pzl+z, zl+z2Pzn 

c t + 

Q = {  + + + 

if ~ i + i , z i + t ~  E E(G)- 
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+ t 

Case 2. u3 = z,. If wz,pl E E(G) then Q = ~OP~z,vx,plPxl+z,z~ is the (z, y)-path 
of length n. + 1. 

Let wznll $! E(G). Then i2 < n - 1 and we have zz3z~3-17wx23,z,z2J E E(G) and 
w ~ ~ , v x , ~ - ~  $! E(G) for 3 = 1 ,2 .  This implies z,zzl-~,znxzZ-~ E E(G) because G 
is claw-free. We have now that z,~,-1,z,z,~-l,z~z,~-1 E E(G). Therefore E(G) c1 
{z,~~zzl~l,z,~lzzZ~17z~~~lzzz~l} # 0 since G is claw-free. Then G has an (z, y)-path 
Q of length n + 1, where 

I 

Theorem 2.6. Let u, w be two distinct vertices of a 3-connected, locally connected, claw- 
free graph G with d(u, w) < 2. If N(v)nN(wl) nN(w2) # 8 for each pair of non-adjacent 
vertices wl ,  w2 E N ( v )  then there exists a Hamilton (u, v)-path of G. 

Taking Theorem 2.5 into consideration, it is sufficient to prove that there exists 
a (u,v)-path Q with N ( u )  u N ( v )  V(Q) .  First we prove that there is a (~,v)-path P 
with N ( u )  C: V ( P ) .  Let H = ( N ( u ) ) .  

d(u,v) = 2. Since G is 3-connected, by a theorem of Whitney [9], there are 
three (u,v)-paths Q1,Q2, Q3 such that Qz = uP,v, (V(P,) n N(u)I = l , i  = 1,2 ,3 ,  and 
P17 Pz, P3 are vertex disjoint. If V(P.1 n N ( u )  = {uz}  for i = 1 ,2 ,3  then, by Proposition 
2.2, one of the vertices ul, u2, u3, say ul,  is not a cut vertex of ( N ( u ) ) .  Hence, by Propo- 
sition 2.3, there is a Hamilton (u,ul)-path P’ = uPqu1 of ( M ( u ) ) .  Then N ( u )  G V ( P )  
for the (u,  w)-path P = uP4Plw. 

Case 2. d(u, w) = 1. If v is not a cut vertex of H then, by Proposition 2.3, there exists 
a Hamilton (u,v)-path P of ( M ( u ) )  and N ( u )  5 V ( P ) .  

Now let v be a cut vertex of H. Then, by Proposition 2.2, N ( u )  = A U B U {w} 
where A n B = 0, w $! A U B and (A), (B) are complete graphs. Since G is 3-connected, in 
G- {u,v} there is a path zzPozl such that z1 E A, z2 E B and V(Po)nM(u)  = 0. Consider 
a Hamilton (zl,z2)-path P’ of H. Let P’ = zlPlvbP2z2, where zlPl is a Hamilton path 
of (A) and bP2z2 is a Hamilton path of (B). Then the (u,v)-path P = ubP2zzPozlP1w 
satisfies N ( u )  5 V ( P ) .  

So, in each case there exits a (u,v)-path P with N ( u )  C V ( P ) .  Consider a (u,v)-path 
Q with V ( P )  V ( Q )  which has the maximum number of vertices from N(w). Suppose 
that N ( v )  \ V ( Q )  # 0 and z E N ( v )  \ V(Q) .  Clearly, ZZI- $i! E(G) where v- is the 
predecessor of v in Q. Then there exists z1 E N ( v )  n N ( z )  n N(u-) .  Clearly, z1 E V(Q)  
(otherwise there is a (u,v)-path Q’ = ugv-zlzw which satisfies V ( P )  c V(Q’) and 
IN(w) n V(Q’)I > IN(v) n V(Q)I; a contradiction). 

Since N ( u )  C V ( Q ) ,  z1 # u. Hence z ; z t  E E(G) in Q since G is claw-free. Then there 
is a (u,v)-path Q’ = u & ~ z ~ ~ w - z l z w  satisfying V ( P )  c V(Q’) and lN(v) n V(Q’)I > 

I 

Proof. 

Case 1. 

1N(u) n V(Q)I; a contradiction. So, N(w) u N ( v )  C V(Q) .  
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3. MAIN RESULT 

Theorem 3.1. Let G be a 3-connected, locally connected, claw-free graph. Then for 
any pair of vertices z, y with d(z,  y) 2 3 there is a Hamilton (z, y)-path of G. 

ProuJ: Taking Theorem 2.5 into consideration, it is sufficient to prove that there is an 
( 2 ,  y)-path Q with N ( z )  U N(y) C: V(Q). 

Cuse 1. There is an (z,y)-path zP0y such that IN(z) n V(P0)l = INfy) n V(P0)l = 1, 
the unique vertex z1 E N ( z )  n V(Po) is not a cut vertex of ( N ( x ) )  and the unique vertex 
y1 E N(y) n V(Po) is not a cut vertex of (N(y)). Such a path we call a convenient 

Then, by Proposition 2.3, there is a Hamilton (z,zl)-path zQ1q of ( M ( z ) )  and a 
Hamilton (yl,y)-path y1Q2y of (M(y)). The path Q = zQ1POQ2y satisfies the condition 

(x, Y)-Path. 

N ( z )  u N(Y) C V(Q). 
Case 2. There does not exist a convenient (2 ,  y)-path. 
Since G is 3-connected, there exist three (5, y)-paths zP1y, zP2 y, zP3y such that V(Pz)n 

V(P,) = 0 for 1 5 i 5 j 5 3. We can assume that (V(Pz)  n N(z)I = IV(Pz) n N(y)I = I 
for i = 1,2,3.  Let V ( P z )  n N ( z )  = {xz} and V(Pz )  n N(y) = {yz}. 

Since xPzy is not a convenient (z,y)-path, either z, is a cut vertex of ( N ( z ) )  or yz 
is a cut vertex of (N(y)), i = 1,2,3.  This implies, by Proposition 2.2, that one of the 
graphs ( N ( z ) )  and (N(y)), say ( N ( z ) ) ,  contains exactly two cut vertices and the other, 
(N(y)), contains at least one cut vertex. We assume that y1 is a cut vertex of (N(y)) 
and z2,z3 are cut vertices of ( N ( z ) ) .  By Proposition 2.2, 22x3 E E(G).  Furthermore, 
N ( z )  = A1 u A2,N(y)  = B1 u Bz where A1 n AZ = 0 = B1 n B2 and (Az), (Bt) 
are complete graphs for i = 1,2. Without loss of generality we assume that z1 ,x2  E 
A l r z 3  E A2 and y1 E B2. So, (A1( 2 2, (A2(  2 2 and (B2( 2 2. Let P, = Qsuzyz for 
i = 1,2,3.  Then 

vlz  $! E(G)  for each z E N(y) n N(yl) which is not a cut vertex of (N(y)). (2) 

(Otherwise we obtain a convenient (z, y)-path Q = ~ Q 1 v ~ z y ) .  Let u1 E B1 nN(yl). Since 
G is claw-free, (2) implies that u1 is adjacent to vl,  u1 is the second cut vertex of (N(y)) 
and IB1J 2 2. 

Subcase 2.1. y2 and y3 belong to different Bi's. 
Then we can produce an (z, y)-path with N ( z )  u N(y) & V(Q) in the following way. 

If y2 E B1 and y3 E B2 then 

If y2 E B2, y3 = u1 and w3z E E(G) for some z E B1 \ {u1} then by considering the path 
Pj = Q3u3z instead P3 will obtain the previous situation. 

Now let y2 E B2,y3 = uI and N(w3) n B1 = {ul}. This implies that ~ 3 ~ 1  E E(G)  
because otherwise the set {yl,ul, v3, g} induces K1,3 where g t B1 \ (2~1). Then 
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Subcase 2.2. 

Q = z[A2 \ { 2 3 } ] d ' 3 ~ 3 [ B 2  \ ( ~ 2 , ~ 3 } ] ~ 2 P 2 ~ 2 [ A i  \ { ~ i , ~ ) ] ~ i Q i ~ i ~ i [ B i  \ { u i } ] ~  

satisfies the condition N ( z )  U N(y) C V(Q). If y2,y3 E B1 then by considering u1 instead 
I 

Theorem 3.2. Let G be a 3-connected, locally connected, claw-free graph. Then for 
each pair of adjacent vertices z, y there is a Hamilton (2, y)-path. 

If for some v E {z, y}, N ( v )  n N ( w , )  nN(w2)  # 0 for each pair of non-adjacent 
vertices wl ,  w2 E N ( v )  then, by Theorem 2.6, there is a Hamilton (2, y)-path. Suppose now 
that there exist non-adjacent vertices zl, z2 E N ( z )  and non-adjacent vertices ~ 1 , 2 1 2  E N(y) 
such that N ( z )  n N(zl) n N(z2)  = 0 = N(y) n N(v1) n N(v2). Then, by Proposition 2.1, 
N ( z )  = Al u A2 and N(y) = B1 u B2 where A1 n A2 = 0 = B1 n B2, lAzl 2 2, (B,I 2 2 
and (A%), (B,)  are complete graphs for i = 1,2.  Without loss of generality we assume that 
y E Al. Suppose there does not exist a Hamilton (5 ,  y)-path of G. Then, by Theorem 2.5, 

y2 and y3 belong to the same B,. If y2, y3 E B2 then the path 

y1 we will obtain the same situation since v ~ u ~ , v ~ y ~  E E(G).  

Proof. 

there does not exist an (z, y) - path Q with N ( z )  u N(y) C V(Q). (3) 

Case 1. 
By Proposition 2.3, there is a Hamilton (z,y)-path of ( M ( z ) ) .  Then (3) implies that 

N(y) \ M ( z )  # 0 and the vertex 5 and the set N(y) \ M ( z )  are in different B2's in N(y). 
Without loss of generality we assume that z t B2 and N(y) \ M ( z )  C B1. Since (N(y)) 
is connected, 

y is not a cut vertex of ( N ( z ) ) .  

there exists an edge z'u with u E N ( z )  \ {y} and 2 E N(y) \ M ( z ) .  (4) 

Furthermore, 

there does not exist an edge zu such that 
z E N(y) \ M ( x ) , u  E N ( s )  \ {y} and u is not a cut vertex of ( N ( z ) ) .  (5 )  

Assuming the contrary, we can produce a path Q contradicting (3) in the following way. 
Let u1u2 be an edge such that al E A l ,  a2 E A2 and u $ { a l ,  u2). 

If u E Al and y # a1 then 

Q = .[A2 \ { ~ 2 1 1 ~ 2 ~ 1 [ A i  \ { a i , ~ , u } I 4 ( N f y )  \ M ( z ) )  \ { ~ ) I v .  
If u E A2 and y # al then 

Q = ~ [ A I  \ { ~ , a i ) l a i a 2 [ A 2  \ { u , ~ ~ } I ~ z [ ( N ( Y )  \ M ( x ) )  \ { ~ ) I Y ,  
Now suppose that y is the only choice for al. Then {u, y} is a cut set of ( N ( z ) ) .  If u E Al 
then u has a neighbour v in A2 and (3) implies that there is a vertex s E Al \ {u, y}. 

If s E B1 then Q = .[A2 \ { v } ] v u z [ ( N ( y )  \ M ( z ) )  \ {z}]s[Al\ {s, y, u } ] y .  If s E B2 and 
a2 E B1 then 

Q = .[A2 \ {a2>la2[(N(y) \ M ( s ) )  \ { z 1 1 4 4 1  \ { Y , ~ } I Y .  
If s E B2 and u2 E B2 then sa2 E E(G) and 

Q = 4 4 2  \ {a2}lass[A1\ i s ,  Y> 'LL)I~4("Y) \ M ( z ) )  \ {z>lv. 
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In each case we obtained a contradiction to (3). So, (5)  is proved. 
Now consider an edge zu with u E N ( z )  \ {y} and z E N(y) \ M ( z ) .  Then, by (9, 

u is a cut vertex of ( N ( z ) ) .  (Note that if u E Al then (3) implies /All 2 3). Choose 
vertices g1 E N ( u )  n (Al \ {y}) and g2 E N ( u )  n Az. Then E(G) n {zgl, zgz}  # 0 since 
G is claw-free. This and ( 5 )  imply that ( N ( z ) )  has two cut vertices, u1 and uz, and 
N ( z )  n ( N ( z )  \ {y}) = {ul,uz} for each vertex z E N(y) \ M ( z )  having neighbours in 
N ( z )  \ {y}. The last property and (3) imply that IN(ul) n (N(y) \ M ( z ) ) l  = 1. 

Let N ( u l )  n (N(y) \ M ( z ) )  = { zo} .  Clearly, (3) implies that IN(y) \ M ( z ) (  2 2. Since 
G is 3-connected, in G - {ZO, y} there exists a path slPosz such that sz E N(y) \ ( M ( z )  U 
{zo}),s1 E N ( z )  \ {y} and V(Po) n ( N ( z )  u N(y)) = 0. But now we can indicate an 
(z, y)-path Q with N ( z )  U N(y) C V(Q) ,  contradicting (3). 

If s1 E A2 then 

Q = z[Az \ { s i } I ~ i P o s z [ ( N ( ~ )  \ M ( z ) )  \ {zo,sz)lzoui[Ai \ { u i l ~ ) I ~ .  

If si E Ai then Q == z[A2 \ { ~ z } ] ~ z z o [ ( N ( ~ )  \ M ( z ) )  \ {zo, ~2}]sz*osi[Ai \ ( ~ 1 ,  Y}]Y. 

when z is not a cut vertex of (N(y)). 
Remark 1. 

Case 2. 
By Proposition 2.1, (A1] 2 2. Hence, N ( z )  n N(y) 2 Al \ {y} # 0. Without loss of 

generality we assume that Al nB1 # 0. Then Al \ {y} C B1 and Al nB2 = 0. Furthermore, 
A2 n B2 # 0 because z is a cut vertex of (N(y)). 

Since G is 3-connected, in G - {z, y} there exists a path g2Pogl such that gz E Az, g1 E 
Al and V(Po) n M ( z )  = 0. Now we shall produce an (5 ,  9)-path Q with N ( z )  U N(y) C 
V(Q) ,  contradicting (3) .  

By using the same argument, we will obtain a contradiction in the case 

z is a cut vertex of (N(y)) and y is a cut vertex of ( N ( z ) ) .  

If z E Bz then B2 C Az U {z} and Q = .[A2 \ {g2}]gzPogi[Bi \ v(Po)]~. 
Now let z E B1. Then B1 = (Al \ {y}) u {z}. Choose a vertex a E A2 n B2. If 

v(P,) r- ( B ~  \ = 0 then Q = z [ ~ ~  \ {gl,y}lgl F o  gz[A2 \ {a,g2}la[~2 \ ~ 2 1 ~ .  ~f 
V(Po) n (Bz \ A2) # 0 and b is the last common vertex of Po and B2 \ A2 then 

Q = .[A2 \ {a)la[B2 \ (A2 U {b})lb&~i [Ai \ (91, ~ 1 1 ~ .  
In each case we obtained a contradiction to (3). So, there exists a Hamilton (z, y)-path of 
G. The proof of the theorem is complete. 

I 

Theorem 3.3. Let G be a 3-connected, locally connected, claw-free graph. Then for 
any pair of vertices z, y with d(z, y) = 2 there is a Hamilton (z, y)-path of G. 

Proof. If for some v E {z,y},N(w) n N(wl)  n N ( w Z )  # 0 for each pair of non- 
adjacent vertices wl ,  w2 E N ( v ) ,  then, by Theorem 2.6, there is a Hamilton (5 ,  y)-path 
of G. Suppose now that there exist non-adjacent vertices zlr  22 E N ( z )  and non-adjacent 
vertices ylr  y2 E N(y) such that 

~ ( z )  n N(zl) n N(z2) = 0 = N(Y) n N(yl) n N(y2).  (6) 

By Proposition 2.1, N ( z )  = A1 u A2,N(y)  = B1 u Bz, where A1 n A2 = 0 = B1 n 
B2, (A,( 2 2, (B,( 2 2 and (At), (B,) are complete graphs for i = 1,2. Taking Theorem 
2.5 into consideration, it is sufficient to prove that there exists an (z,y)-path Q with 
N ( z )  u N(y) C V(Q).  Without loss of generality we assume that A1 n B1 # 0. 
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Case 1. A1 n B2 # 0 or B1 fl A2 # 0. 
We assume that Al n B2 # 0. Let u, E A1 n Bi for i = 1,2.  
Subcase 1.1. One of the sets Al n B1, A1 n B2 contains a cut vertex of ( N ( z ) ) .  
Let, for example, u2 be a cut vertex of ( N ( z ) )  and q E N ( u 2 )  n A2. If [Al  n BIJ 2 2 

and u3 E (Al n B2) \ {ua) then the following path Q includes N ( z )  U N(y) : Q = .[A2 \ 
{g)]gW[& \ N(z)]%[Ai \ {ui, 212, W}]ui[Bi \ N(z)]Y. Now let Ai n B2 = f . 2 ) .  we shall 
show that there is a vertex wo E Bz \ { u 2 }  such that N(wo)nA2 # 0. Assuming the contrary, 
we obtain that B2 n A2 = 0. Furthermore, wu1 E E(G) for each w E B2 \ {uz}, because G 
is claw-free and u2 is a cut vertex of ( N ( z ) ) .  But then u1 E N(y) n N(w1) n N(w2) for 
each pair of non-adjacent vertices wl,  w2 E N(y) ,  which contradicts (6). 

So, there are vertices zo E A2 and vo E B2 \ { u 2 )  which are adjacent. Then the following 
path Q includes N ( z )  U N(y) : 

Q = .[A2 \ { ~ 0 } ] ~ 0 ~ 0 [ ~ 2  \ l.2, ~ 0 ) 1 ~ 2 [ A i  \ {UI 7 u d b 1  [BI \ N ( ~ ) ] Y .  

Subcase 1.2. Al  n B1 and Al n B2 contain no cut vertex of ( N ( z ) )  and IAl n B3 I 2 2 

Let u0,ul E A1 n B1 and u 2  E B2 n Al.  Clearly, there is an edge a1a2 such that 
for some j E (1, 2). 

al  E Al \ {u2} and a2 E A2. Then there is an (z,y)-path Q, 

Q = .[A2 \ {.2}]a2R[Ai \ { 7 ~ 0 , ~ 1 , ~ 2 , a i ) ] ~ [ B 2  \ N(z)Iy 

with N ( z )  u N(y) C V(Q)  where 

a1uo[B1 \ N(Z)Iu1 ifa1 4 {uo,u1) 
R = ai [Bi \ N(z)]u1 if al = uo 

if al = u1 { a1 [B1\ N(z)luo 

Subcase 1.3. Al n Bi = {ui} and u, is not a cut vertex of ( N ( z ) )  for i = 1,2. 
First we consider the situation when A2 n (B1 U B2) # 8. W.1.o.g. we assume that A2 n 

BZ # 0. Let s E A2 n B2. Then the following (z, y)-path Q includes the set N ( z )  U N(y) : 

Now let A2 n (B1 U B2) = 0. Since G is 3-connected, in G - {ul, u2} there is an (z, y)-path 
zs1Ps2y, where s1 E N ( z ) , s 2  E N(y) and V ( P ) n ( N ( z ) U N ( y ) )  = 0. W.1.o.g. we assume 
that s2 E B2. Clearly, there is an edge a1a2 with al E Al \ {ul) and a2 E A2.  Now we 
will produce an (z, y)-path Q with N ( z )  U N(y) C V(Q). 

If s1 E A2 then 

Q = z [ A z  \ {sI)]sIPs~[Bz \ {sz,u~)]w[AI \ {~I>U~)I~I[B~ \ { ~ I ) ] Y .  

If $1 E A1 then Q = 4 4 2  \ {a2)la2R[A1 \ { a l , u 1 , ~ 2 , ~ 1 ) 1 ~ 1 [ B 1  \ {ul)ly, where 

~ 1 ~ 2 ~ 2  \ { u 2 , ~ 2 } 1 ~ 2 f i s 1  

alPsz[B2 \ {uz,s2)]u2 

if a1 4 { ~ 1 , ~ 2 )  

R =  { a l p 2  \ {al ,  s2)1s2& if a1 = wS2 
if a1 = s1. 

Remark 2. By symmetry, the case B1 n A2 # 0 requires the same argument but for sets 
B1 n Al and B1 n A2. 
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Case 2. Al n B2 = B1 n A2 = 0 and also A2 n B2 = 0. Then 

Al n B1 contains a vertex u1 which is not a cut vertex of ( N ( z ) ) .  (7) 

This is evident if IAl n B1l 2 2. If IAl n B1 I = 1 then (7) follows from the fact that G 
is claw-free. Clearly, (7) implies that there is an edge a1a2 such that al E Al \ {ul} and 
u2 E A2. Furthermore, we have that (N(y)) is connected. 

If there exists an edge 211212 with 211 E B1 \ Al and 212 E B2 then there is an (z, 9)- 
path Q = .[A2 \ {a2}]asai[A1 \ {ai ,ui}]ui[Bi  \ ( N ( z )  U {211})]21i~[B2 \ {7~2}]y with 
N ( z )  u N(y) C V(Q) .  

Suppose now that v1 E A1 for each edge 211212 with 211 E B1 and 212 E B2 and consider 
one of these edges, 211212. Clearly, B1 C Al.  (Otherwise a set {z,u1, w2,gl} induces K1,3, 

where g1 E (B1 \ A,) n N(v1)). If 211 is not a cut vertex of ( N ( z ) )  then there is an edge 
w1w2 such that w1 E Al \ (211) and w2 E A2. Then the path Q = .[A2 \ {w2}]w2w1[A1 \ 
{wl, ~1}]211212[B2 \ {v2}]y satisfies the condition N ( z )  u N(y) c V(Q) .  

Now we assume that u1 is a cut vertex of ( N ( z ) ) .  Let SO E N ( q )  n A2. Then v2s0 E 
E(G).  (Otherwise 'u2z E E(G) for each z E B1 since G is claw-free. But then w2 
E N(y) n N(bl) n N(b2)  for each pair of non-adjacent vertices bl,b2 E N(y), which 
contradicts (6)). 

Subcase 2.1. SO is not a cut vertex of N ( z ) .  Then there is an edge q a O  with a0 E 

A2 \ { S O }  and an (z,y)-path Q = z[Al \ { w I ] w ~ o ( A ~  \ {~o,so}Iw~[Bz \ {v~}]y with 
N ( z )  u N(Y) C V(Q) .  

Subcase 2.2. 
Clearly, there is an edge blb2 such that bl E B1 \ {q} and b2 E B2. Then there is an 

(2, y)-path Q = z[A2 \ {so)]sovi[Ai \ (211, bi}]blb2[B2 \ { b z } ] ~  with N ( z )  U N(Y) C V(Q) .  
Subcase 2.3. 
Then there is an edge 111213, where 213 E B2 \ (212). By (71, the set Al n B1 contains a 

vertex u1 which is not a cut vertex of ( N ( z ) ) .  Clearly, u1 # 211. Then there is an (z, y)-path 
Q = z[A2 \ { s o } ] s o ~ ~ [ B ~  \ {W,'%}]21321i[Ai \ { v i , u i ) ] ~ i ~  with N ( s )  U N(Y) C V(Q) .  

Subcase 2.4. (N(y)) has two cut vertices, w1 and u2, and ( N ( z ) )  has two cut vertices, 
u1 and so. 

Since G is 3-connected, in G - { z , s ~ }  there is a path s lPs2  where s1 E A2,s2 E 
N(y) U Al and V ( P )  n ( N ( z )  U N(y)) = 0. Then we can produce an (z, y)-path Q with 
N ( z )  u N(y) C V(Q)  in the following way. 

v1 is not a cut vertex of (N(y)). 

212 is not a cut vertex of (N(y)). 

If s2 E BZ then Q = ~ [ A I  \ { ~ 1 } 1 ~ 1 ~ 0 [ A 2  \ {SO,~~}IS~PS~[B~ \ (s2)ly and if 32 E A1 

Case 3. Al nB2 = A2 nBl = 0 and A2 nB2 # 0. 
Subcase 3.1. 

then Q = s [ A l  \ {s2}]s2 5 s1[A2 \ { s ~ , s o } ] s o ~ z [ B ~  \ { m } ] ~ .  

cut vertex of ( N ( z ) ) .  
For each i E {1,2} the set Ai n Bi contains a vertex ui which is not a 

(a) {u1,u2} is a cut set of ( N ( z ) ) .  Then there is an edge a1u2 where al E Al \{ul} and 
an edge ula2 where a2 E A2 \ {u2}. Consider the set {al, a2, y, u2}. Since {u l ,  u2} 

is a cut set of (N(z) ) ,a la2  # E(G). Then yal  E E(G) or ya2 E E(G) because G is 
claw-free. Since these situations are similar, we consider the case yal  E E(G) only. 
We have that al E A1 and Al n B2 = 0. Therefore a1 E B1. Then 

Q = s[Ai \ {ai,ui}]ai[Bi \ {ui)]uiaz[Az \ {a2,212}1~2[B2 \ { ~ z } ] Y  

is an (2, y)-path Q with N ( z )  U N(y) C V(Q) .  
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(b) {u1,u2) is not a cut set of ( N ( z ) ) .  

Then there is an edge u1u2 where a, E A, \ {u,} for i = 1,2 .  If one of the sets 
A, n B3, 1 5 j 5 2, say Al n B1, contains a vertex u g  @ {u1,u2}, then the path Q = 
zuo[B1 \ Al]u~[Al \ {uo,ul,al}]a1a~[A2 \ {a2,u~}]u2[B2 \ A2]y satisfies the condition 
N ( z )  u N ( y )  C V ( Q ) .  

Now let A, n B, = {u,} for i = 1 ,2 .  Since G is 3-connected, in G - {u1,u2} there 
is an (y,z)-path yslPszz, where s1 E N ( y )  \ { u I , u ~ } ,  sz E N ( z )  \ {u1,u2} and V ( P )  n 
( N ( z )  u N(y)) = 0. We assume that s1 E Bz. Now we will produce an (z,y)-path Q 
satisfying the condition N ( z )  U N(y) C V(Q) .  If s2 E A1 then Q = z[A2 \ (u:!}]u~[B2 \ 
{uz, s l}s lPsz[Al \  { S 2 , U l } I U l [ B l \  {ullly. 

If s2 E A2 and a2 # s 2  then 

The same path, but with a2 deleted, corresponds to the case s2 E A2 and s 2  = a2. 
Subcase 3.2. For some i E { 1,2} the set A, nBz consists of the unique vertex u, which 

is a cut vertex of ( N ( z ) ) .  
We assume that Al n B1 = { u l }  and u1 is a cut vertex of ( N ( z ) ) .  Let u2 be a vertex 

from A2 n N ( u l ) .  Since G is claw-free, yyu2 E E(G).  So, u2 E B2. Then ulzl  E E(G) for 
some w1 E Ax \ { u l }  and z1 E B1 \ { u l } .  (Otherwise zu2 E E(G) for each z E B1 since G 
is claw-free. Therefore, u2 E N(y)nN(wl) nN(w2) for each pair of non-adjacent vertices 
w1, w2 E N(y),  which contradicts (6)). 

If N ( u l )  n A2 = {u2} then uz is a cut vertex of ( N ( z ) ) .  Hence, by symmetry, u2z2 E 
E(G) for some v2 E A2 \ {u2> and z2 E B2 \ {u~}. Then N ( z )  U N(y) C V ( Q )  for an 
(2, y)-path Q,  

Now let IN(ul)  n A21 2 2 ,u3  E N(u1) n A2 and u3 # u2. Then for an (z,y)-path 

the condition N ( z )  U N(y) & V(Q)  holds. The proof of Theorem 3.3 is complete. 
I 

Theorem 3.4. A locally connected, claw-free graph G with 1V(G)1 2 4 is Hamilton- 
connected if and only if G is 3-connected. 

Clearly, if G is Hamilton-connected and has at least 4 vertices then it is also 
3-connected. Conversely, if G is a 3-connected, claw-free graph with IV(G)I 2 4 then it 
follows from Theorems 3.1-3.3 that G is Hamilton-connected. I 

Prooj 
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