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Abstract 

Many animation systems rely on key-frames or poses to produce animated se- 
quences of figures we interpret as articulated, e. g. the skeleton of a character. The 

production of poses is a difficult problem which can be solved by using techniques such 
as forward and inverse kinematics. However, animators often find these techniques dif- 
ficult to work with. 

The work, presented in this thesis, proposes an innovative technique which ap- 
proaches this problem from a totally different direction from conventional techniques, 
and is based on Interactive Genetic Algorithms (IGAs). 

IGAs are evolutionary tools based on the theory of evolution which was first de- 

scribed by Darwin in 1859. They are derived from Genetic Algorithms (GAs) them- 
selves based on the theory of evolution. IGAs have been successfully used to produce 
abstract pictures, sculptures and abstract animation sequences. 

Conventional techniques assist the animator in producing poses. On the contrary, 
when working with IGAs, users assist the computer in its search for a good solution. 
Unfortunately, this concept is too weak to allow for an efficient exploration of the 
space of poses as the user requires more control over the evolutionary process. 

So, a new concept was introduced to let the user specify directly what is of interest, 
that is a limb or a set of limbs. This information is efficiently used by the computer to 
greatly enhance the search. Users build a pose by selecting limbs which are of interest. 
That pose is provided to the computer as a seed to produce a new generation of poses. 
The degree of similarity is specified directly by the user. Typically, it is small at the 
beginning and increases as the process reaches convergences. 

The power of this new technique is demonstrated by two evaluations, one which 
uses a set of non expert users and another one which uses myself as the sole but 
expert user. The first evaluation highlighted the high cognitive requirement of the 
new technique whereas the second evaluation showed that given sufficient training, 
the new technique becomes much faster than the other two conventional techniques. 

For these evaluations, solutions to the problem of forward and inverse kinematics 

were implemented. For forward kinematics, a widget called a joint ball was used as 
the manipulation tool. The problem of inverse kinematics was tackled in a different 

manner from conventional techniques, resulting in the implementation of a fast and 
effective algorithm. 

This work used a humanoid for the articulated figure. It is made of nineteen limbs 

and has thirty degrees of freedom. Volumes such as cubes, spheres and cylinders were 
used to flesh out the skeleton. A new technique was also designed to render cylinders 
effectively. 
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Preface 

The purpose of producing poses 

To animate articulated figures or robots, animation packages rely on key-frames. 
A key-frame describes the position or pose of the robot at a particular time step. 

Consequently, much work has been devoted and is still devoted to improving posing 
(positioning) systems. Two main techniques are being used by these systems. These 
are forward and inverse kinematics. However, animators still find the task of posing 
an articulated figure hard. 

Hypothesis 

In this thesis, I argue that a completely innovative positioning system which relies 
on an interactive genetic algorithms type interface with direct control by the user 
is a more powerful interface and will allow animators to produce poses faster than 
conventional positioning systems. 

Description of the innovative technique 

Interactive genetic algorithms (IGAs) have been successfully used previously to 
produce abstract pictures or animated sequences of images, plants, etc. They are 
based on genetic algorithms which are powerful search and optimisation tools. Genetic 
algorithms are themselves based on the theory of evolution which was first described 
by Darwin in 1859. 

Conventional techniques assist the animator in producing poses. With an IGA 
instead, the animator assists the computer in producing poses. The IGA explores the 
space of poses and its search for a given pose is guided by the user. However, poses are 
not abstract objects and animators would not produce poses by randomly exploring 
the space of poses, as this takes far too long. Consequently, IGAs do not offer enough 
control for animators to assist the computer efficiently. 

As a result, a new concept was introduced to let the user specify directly what is of 
interest. This information is being used efficiently by the computer to greatly enhance 
the search. Instead of specifying the goodness of fit of a particular pose produced 
by the computer, the animator directly selects the joint configurations which are of 
interest. From this selection the computer constructs a new pose which is used as a 
seed to proceed with the search. The user can also specify how far the target pose 
deviates from its predecessor. 

Verification of the hypothesis 

To verify the hypothesis, it was decided to perform an evaluation. Although a 
licence for a posing system using forward kinematics was available when this work 
was being performed, there was no such licence for a posing system using inverse 
kinematics. As a result, and also to decrease the side effect of using a different interface, 
the two most common techniques were also implemented. 

- iii - 



For forward kinematics, a widget called a joint ball, which allows users to work on 
two angles at the same time, was used as the sole manipulation tool. 

The problem of inverse kinematics was tackled in a different manner from conven- 
tional techniques, resulting in the implementation of a fast and effective algorithm. 

Since no expert users were available for an evaluation of these techniques, non 
expert users were used instead in the hope that results could be generalised. Unfortu- 

nately, there were too few participants and the variability between them was too big 
to be able to obtain significant results. However, this evaluation highlighted the fact 
that these implementations were not perfect but could be improved. Also, it was felt 
that given sufficient training, the new technique would perform better than the other 
techniques. 

Consequently, another study was performed in which I was the sole but expert 
user. Such an evaluation has already been performed in the past, and since variability 
amongst expert users may be assumed to be less important, the hope was that results 
based on a single expert subject would generate useful evaluative data. 

Results 

The outcome of the study were as follows: 

O First, it was shown that given sufficient training, the generator will indeed allow 
animators to pose articulated figures faster than conventional techniques 

O However, there was evidence that the generator is a lot more mentally demanding 
an requires a lot more training than conventional systems 
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Chapter I 

Introduction 

1 The use of computers in the production of films and 
cartoons 

The use of computer animation in the production of animated sequences for car- 
toons and films is steadily increasing. This is a potentially highly profitable area of 
business. Huge amounts of money are invested by firms such as DreamWorks, Time- 
Warner, Walt Disney to conduct research into what is still not feasible. The use of 
computer during the process of film production greatly aids the quality of the resulting 
films. For example, one just has to remember the special effects used in films before 

and even during the eighties. One of the first computerised effects-made films was 
Blade Runner which was made in 1982. It already used computerised special effects. 
The use of computers also opens new universes, which were difficult not to say im- 

possible to produce without computers. In particular, Star Wars and Jurassic Park 

would have been impossible to produce without computers. The use of computers also 
increases the quality of films and cartoons. Since cartoons are of great complexity, the 

use of computers during the production process do not incur such a great speed-up 
but it allows cartoons to be edited at a much lower cost than they used to be. 

2 Previous work 

In the computer animation literature, the word positioning seems to be preferred 
over the word posing. In this thesis, these words describe the same process and were 
used interchangeably. 

Most animation applications rely on key-framing, a technique in which poses or 
key-frames are specified in time and position. Thus positioning an articulated figure 
(that is a robot) is part of a longer process used to animate it. Since techniques to 

position articulated figures can also be used to animate them, most of the work has 
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been devoted to how to animate articulated figures. In the first part of this chapter, 
the techniques used to animate an articulated figure are reviewed before focusing on 
the techniques used to position it. 

Although a lot of research has been performed in the area of computer assisted 
animation of articulated figures [Stu86, Gir9l, WMS88, NMT85, Tha88, dJAGAN76, 
CCP82, Ca188], it is still an active area of work. 

In this thesis and also as usually done in the computer animation literature, the 
term computer animation is used to mean computer assisted animation. That is, the 
computer is used as a tool to aid the animator to produce animations. Computer 

animation might imply that it is the computer which produces animations, with none 
or virtually no external help. This meaning does not apply in this work. 

2.1 History of computer animation 

Twenty five years ago, computer scientists started to model human figures [Csu75, 
dJAGAN76] to study ergonomic problems. In the seventies, real computer animation 
began [BS79]. Researchers started to model actors by means of spheres, cylinders and 
other simple drawing primitives [Kno8l]. Simple interpolation techniques, based on 
spline mathematics and represented in parametric form [HS85, Stu84, KB84, SB85], 

and some motion capture techniques such as rotoscopyl [NMT85, Tha88] were devel- 

oped during this period. To bring more interactivity to these systems, a new techniques 
from the field of robotics, based on kinematics, started to appear [BTT90, BT92, 
Ze182]. In the mid-eighties, researchers started to use the laws of physics, called dy- 

namic systems [WMS88, Wil87a, Gir86, AGL87, Hah88, BOK80, AG85, Wil87c] to 

simulate motion with a great deal of realism. Even though computer animation has 

gained even more realism, a great deal of work still remains to produce convincing 
animations. 

2.2 Review of computer animation 

Computer animation is a vague term. In computer animation, there are animations 
or simulations of natural phenomena like fire, clouds, etc. In this thesis, this aspect of 
computer animation will not dealt with. The discussion will focus on the animation of 
three dimensional actors. These actors are bodies of 3D articulated rigid limbs or body 

parts. Therefore, we are nor interested in two dimensional animation at this stage, nor 
are we interested in the animation of actors having a single body part or actors having 
flexible body parts. Although our domain of study has been considerably narrowed, 
it is still too vague. Animation systems can be separated into low-level and high-level 

animation systems. In modern computer animation systems, these two levels may be 

combined together in a single interface. It results in a gain of productivity, speed and 

'Rotoscopy involves reproducing an animation by first recording the data from a real figure pro- 
ducing the animation we want to reproduce. Cameras have to be used for this purpose. 
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effectiveness. The animators first specify the animation at a high level using tools such 
as scripts and adjust finer details at a later stage by the use of techniques involving 
direct motion control [BC89, Gre9l, HS85, MC90, v091, Wi187b, Ze182, Ze185]. In low- 
level animation systems, the animation is described in terms of intermediate frames, 

rotation angles and translations or forces and torques. In high-level animation systems, 
script languages, behavioural animation and task oriented animation are used instead 
[BS79, Ca188, CCP82, NMT85, Stu86, TP88]. 

2.2.1 Labanotation 

Labanotation, a method of specifying animation has only been used in the early 
eighties. Badler and Smoliar [BS79] made a careful and thorough study of this nota- 
tion. This notation was chosen after concluding that 

The digital representations of human movements involve an explosive 
amount of data, most of which would probably be ignored in any given in- 
vestigation. Movement notation systems, designed to record human move- 
ment in symbolic form are a more fruitful area of investigation. 

The purpose of Labanotation is to describe the position and trajectories of a set of 
points in space. It was developed in 1928 by Rudolph Laban and used in choreography 
(Fig. 1.1). This notation appears to be well suited for choreography, the domain it was 
developed, but it appeared to be of limited use in computer animation. Two main 
drawbacks were identified. First, the script which has to be written to specify an 
animation is rather difficult to understand and moreover tends to become large as the 
animation gets long. Second (and maybe paradoxically) the resulting script is always 
under-specified: several different animations may be specified by using exactly the 
same script. This is not at all a problem in choreography where the imprecision allows 
the choreographers to bring their own personal touch to the final result but the need 
for determinism is predominant in computer animation. As a result, the Labanotation 
has now been abandoned in computer animation. 

2.2.2 Kinematics 

To animate articulated figures, forward and inverse kinematics can be used. 

2.2.2.1 Forward kinematics: In forward kinematics, the animation is specified 
in terms of rotations and translations. These operations are applied to each joint 

of the body to perform a given task. The computer then calculates the necessary 
frames to display the animation by interpolating the given information. This technique 
is computationally light but requires that the animator specifies a set of rotation 
and translation vectors at each time step. This is usually far too much to ask of a 
professional animator. As a result, it is usually not used in today's animation packages. 
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Figure I. 1: Labanotation 
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The Labanotation is used as a script to specify the motion to achieve. A set of symbols can be 
specified at different time intervals. These, unfortunately, inherently lack any accuracy. 

2.2.2.2 Inverse kinematics: In the animation literature, the word kinematics 
alone is frequently used and usually refers to the inverse aspect of kinematics. With 
inverse kinematics[BT92, CCP82, Ca188, Dai88, Stu86, Wil87b, KB82, Kor82, JU85, 
BKK+85], constraints, such as the initial positions and final positions, also called goals, 
of one or more body part, also called end-effectors, have to be specified (Fig. 1.2). The 

computer will then compute the necessary rotations and translations to bring the end 
effectors to their required positions. Once the necessary rotations and translations 
have been obtained, forward kinematics is used to interpolate along the time dimen- 

sion. Usually, the problem to be solved will be under-constrained, so several motions 
may satisfy the constraints specified by the user. Optimisation methods have been im- 

plemented to try to work out the best of these. In particular, genetic algorithms have 
been successfully used by Miller [MP94] and Davidor [Dav9la] to solve this problem. 

2.2.3 Dynamics 

Like kinematics, dynamics may be divided into two sub-techniques. These are 
forward and inverse dynamics. 

2.2.3.1 Forward dynamics: The production of realistic animations with key- 
framing is still difficult, because dynamic systems use physical laws to produce an- 
imations, computers are used to simulate reality. Jane Wilhelms[Wil87c] provided the 
following definition for dynamics: 
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0 

Figure 1.2: Inverse kinematics 

\Vit h inverse kinematics systems, the ini- 
tial position and usually one goal to 
reach by one effector (but there could be 
more) have to be specified. Here the goal 
is the black ball and the end effector is 
the tip of the hand. Notations of every 
limb is automatically calculated by the 
application. 

Dyuaiüics refers to the description of inotion as the relationship between 
forces and torques acting on masses. If we treat the objects modeled in 

computer graphics as masses and apply forces and torques to tlietii, we 
can use physics to find out the motion these masses should undergo. This 

motion should mimic the motion that Nvoulcl actually occur to such masses 
in the real world. hence dynamics simulates the motion, rather than just 

animating it. 

Aý a result. the generated animations should he highly realistic. With forward dy- 

naniics. dvnannic equations of motion which describe how masses Nvi1l inove hider the 
influence of forces and torques have to be set up [Bar87, Hah8S, d, IAGA\76, Wi187a, 
\V'i187c. AVMISB$. Aß'i191]. The main drawback of this method is that obviously the an- 
imator has to specify all forces and torques to apply at each body part. The equations 
are then solved to produce the animation. The fact that all forces interact with each 
other snakes this process time-consuming although fast recursive formulations such as 
the Armstrong fornnilation [AG85] have been made available. To reach interactive 

times, some people have used simplified algorithms [v090, Ove94]. Due to the fact 

the physics are simulated. it is now possible to simulate collision effects realistically 
[Bar87. Dai88. Hah8S. AIP89. AI\V88. \Vi1S71), AVMIS88]. The animator just has to let 

the computer make the computations and wait for the results. 

2.2.3.2 Inverse dynamics: With forward dynamics, animators have to specify 
for(-es and II)rcýucs. This IS not an intuitive approach to producing animations, thus 
the need for inverse dynamics [\Vil9l, Hah88]. Like inverse kinematic systems, users 
are solely required to position a set of end-effectors with a set of goals to reach. The 

computer tries to work out the necessary forces and torques at each time step to 

perform the task. However, computation timties mleecled for animating even a simple 
articulated figure are usually far too big for the technique to be usable. Inverse (Iy- 
natnics can only be used with truly simple models and over a short period of time. 
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Animation of articulated figures such as a humanoid for instance is well out of reach. 

2.2.4 Hybrid systems 

In an effort to ease the use of dynamics and to make them interactive, work has 
been performed on hybrid methods which use concepts like kinematics, knowledge- 
based systems, scripts, libraries of motions, in combination with dynamics [AGL87, 
ADH89, BC89, Ca188, FW88, GM85, Gir9l, Gre9l, IC88, v090, RH91]. 

2.2.5 Rotoscopy 

Rotoscopy is an old animation technique [NMT85, Tha88]. Rotoscopy involves 

reproducing an animation by first recording the data from a real figure producing the 
animation we want to reproduce. Cameras or more sophisticated devices may be used 
for this purpose. Since the technique is 2D based, it is not well suited to 3D animation. 
As a result, it is not used very much. 

2.2.6 Motion capture 

For the last few years, special hardware has been built to capture the motion of 
a human or another animal. The price of such devices is high and they are difficult 
to calibrate. However, when well calibrated, results are impressive and nowadays, it 
is the easiest and the fastest technique to animate an articulated figure. Literature in 
this area [BN93, J. 96, HM95, HM96, MTD96, SSK96] is scarce and difficult to find. 
It seems that most of the research has been undertaken by private companies which 
prefer to keep the results for themselves as an obvious asset over competitors. 

2.2.7 Key-framing 

Key-framing has been one of the first techniques to be used in 3D computer an- 
imation [Stu84, KB84, SB85]. It comes directly from the schools of cartoon films 
[Las87, TJ81, PW94] such as the well known school of Walt Disney. In Walt Disney, 

when a new cartoon film has to be made, the story is story-boarded first (Fig. I. 3). 
Then, the most experienced animators draw the most important frames. Due to their 

special importance, these frames are called key-frames. There is usually one key-frame 

every twelve frames. After this, other animators, less skilled, draw what are called 
breakdown frames. There are usually one breakdown frame every four frames. To 
finish the animation, the missing frames are drawn by even less skilled animators. 
These frames are called in-between frames or in-betweens for short. This stage, which 
is called in-betweening, is time-consuming, so it is usually sub-contracted to small 
firms located in parts of the world where labour is cheap but maybe not of such a 
good quality. Reasonably enough, early work in computer animation attempted to 
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automate this stage. Lnforturiatelvv, the problem is not as simple as it might sound 
and is a lot more intricate in 2D aiiiiuatioti than it is in 3D anitnatiou. 
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Figure 1.3: Tue making of cartoons 

The making of cartoons is a complex process which in particular involves skillful artists to draw key- 
frarnes. Less skillful artists will draw the in-betweens. Key-framing systems in 3D animation comes 
from this concept, except that the computer replaces less skilled artists. 

This technique is particularly interesting for us because it relies entirely on key- 
frames or poses to animate an articulated figure. Unfortunately, to produce complex 
animations, a large number of key-frames may have to be specified. Positioning an 
articulated figure is not an easy task. Although, because of its sill mjplicity, this inetliocl 
is still the t, lost widely used [B\I\\ 87. ADHS9, BNS8, NMIT85, NTDS8, StuS4, KB84, 
SB85]. 

2.2.8 Gait systems 

Inverse kinematics are also used in combination with gaits to produce typical nio- 
tions such as walks, runs. etc [BTT90, RH91, GM185, NIZ90, Gir8G]. A gait describes a 
sequence of positions or states which laut together will perform a cyclic motion. A set 
of gaits are usually assembled together and synchronised to achieve periodic motion. 
Thus the gait of a leg representing a walking motion is described by the foot being 
lifted from the ground. moved forward in the air and placed back onto the ground. 
Once a gait has been ('oml)uted, it can be easily reused. Usually, because only the 
position of a limb is known (such as the foot), inverse kinematics is used to compute 
the position of other limbs. Gaits are not limited to inverse kinematic systems. A 
key-framing system could also use gaits to achieve greater re-usability. 

2.2.9 Motion controllers 

Instead of using gait systems. motion controllers or motor controllers have also 
been used [ßH91, N"O91, MIZ90, BC89. Ze182, AGL87, Ze185, AVi187b, Gre9l, H\VA+91, 
GT95]. A motion control is like a state machine which is used to animate an articulated 
figure to produce the desired motion. Usually, a controller operates on a single joint but 
some implementations are able to deal with many joints at a time [Si11191b, Sim94a]. 
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This is a particular fruitful area for dynamic systems. Animating an articulated figure 

using inverse dynamics is nearly impossible for complicated figures such as a humanoid. 
One solution is to generate a state machine or motion controller which will decide 

which forces and torques to apply depending upon input parameters, the task to 
achieve and the current state. At the beginning, one or many controllers are randomly 
generated. They are evaluated and rated according to how well they performed the 
task. Random search is used to generate better motion controllers. This is a time 
consuming process so really powerful machines are required and it can still takes 
hours or days to compute even simple motion controllers. However, once they have 
been computed, they can theoretically be used whenever they are necessary. These 

motion controllers are reliable, often capable of handling well, totally unexpected 
situations. 

3 Analysis 

3.1 Disadvantages 

All techniques used to animate an articulated figure exposed so far suffer from a 
few disadvantages which will be summarised here. 

3.2 Kinematics and dynamics 

Inverse kinematics and inverse dynamics (assuming the latter is not too compu- 
tationally expensive) are good tools to edit existing motions [BT92]. They are also 
good at producing short motions such as grasping a chair, etc. When producing long 
motions such as walks, runs, etc, they have to be used in combination with techniques 
like gaits, motions controllers or key-framings. 

3.3 Rotoscopy and motion capture 

Rotoscopy and motion capture require special hardware and assume that the en- 
tities from which the motion will have to be captured do exist. As a result, these 
techniques are out of reach for most potential users and they have only been used to 
animate humanoids. 

3.4 Gait and motion controllers 

Gait systems require the use of another technique such as inverse kinematics or 
motion controllers. Finding the right motion controllers is usually slow. Furthermore, 

users have no control over the resulting motion. Adding constraints or using a motion 
editing system is the sole alternative. 
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3.5 Key-framing 

Key-framing systems are usually simple to use. However, complex animations 
require many key-frames henceforth the production of key-frames must be as easy 
and fast as possible. hey-framing systems do not normally handle interactions with 
the enviroiunent. Thus, resulting motions which are not normally acceptable can be 

generated (Fig. 1.4). As many key-frames as necessary will have to be generated to 
handle these hypes of problems. 

c! l, st 
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Common interpolation techniques are not intelligent enough to detect and 
handle collisions. As a result, when a collision happens, the animator usually 
has to produce one or more key-frames to produce a correct animation and 

restart the interpolation process. 

Animating hands is a complex process [ßG91, yITLT88, ST94, LK95]. Key-framing 

systems are usually not suited for this type of problem. Hands are mainly used to grasp 
objects. Goal-directed systems such as inverse kinematics are more appropriate. 

4 Positioning articulated figures 

In modern animation svstetiis, computers are used to aid animators to produce 

animated sequences of images. In October 1994, I started to work as a research 

assistant, at the University of Glasgow, on a project called MIME (Make It Move 

Easily, funded by EPSRC). The goal of the project was to animate articulated figures 

such as a humanoid by letting the burden of the animation process fall onto the 

computer. Unlike modern animation systems, the goal was to create a system in 

which the animator assisted the computer to produce animated sequences. 

For this purpose, we used a new concept at the time called interactive genetic 
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algorithms [Daw86, ST90, Sim9l, TL91, STH91, Ven95]. The details of this part of 
the project will be detailed later. However, our first attempts were unsuccessful and 
it was concluded that the only way to achieve the initial goal was to sub-divide the 

process of animating an articulated figure in three separate parts. This thesis will focus 

entirely on the first part which deals with the problem of positioning an articulated 
figure. 

4.1 Existing techniques 

4.1.1 Forward kinematics 

Although forward kinematics is not the best technique to animate an articulated 
figure, it can be used effectively and easily to position one. Many posing systems 
actually rely on it [Mac]. However, literature on this topic is scarce [Gir86, Gir87, 
GM85]. Obviously, animators do not specify directly rotation angles. Instead rotation 
angles are mapped onto specially dedicated tools such as sliders or a tool referred to 
as joint balls. Users interact with these tools and results are displayed in real time. 
Joint balls and sliders were implemented. This will be detailed in chapter IV. 

4.1.2 Inverse kinematics 

Although inverse kinematics was developed mainly to animate an articulated figure, 
it can be used effectively to position one as well. The main problem is the time required 
to compute rotation angles from one position to another. Although computer speeds 
have greatly improved since this technique was first used, interactive work might still 
be out of reach for real-time interaction with a complex articulated figure with modern 
personal computers. Computing rotation angles is not all. The articulated figure still 
needs to be rendered and displayed. This is also a time consuming process. 

The work presented in this thesis resulted in the construction of a new technique 
to position articulated figures. Since it needed to be evaluated against conventional 
posing systems and inverse kinematics in particular, a system capable of doing inverse 
kinematics was implemented. In 1982, Korein & Sadler proposed a faster solution to 

the problem of inverse kinematics. From this article, a new technique which would 
tackle the problem of inverse kinematics in a totally different fashion, was devised. 

This technique could solve the problem of inverse kinematics at a much lower cost 
than conventional techniques. The implementation of this solution enabled users to 
interact with a humanoid in real time. Although the rendering system was efficient, 
most of the computation time was spent in rendering and displaying the robot. This 

will be detailed in chapter IV. 
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4.1.3 Inverse dynamics 

Inverse dynamics were used by David Forsey and Jane Wilhelms [FW88] to position 
an articulated figure. This work was done based on the assumption that since dynamics 
are based on physical laws, positioning an articulated figure using dynamics would be 
more intuitive and therefore faster than using inverse kinematics. 

However inverse dynamics imply the users have to specify weights, friction coeffi- 
cient, etc. In their research, David Forsey and Jane Wilhelms used the volumes used 
to represent their robot to evaluate the weight of each limb. Default values which 
usually work well were set for the other parameters. This gross approximation might 
invalidate this whole work. 

At the time, their technique was not interactive although a fast recursive formu- 
lation was used. No evaluation was performed to verify that inverse dynamics were 
indeed better at positioning articulated figures that inverse kinematics. This still has 
to be demonstrated. This is a common problem in computer animation where peo- 
ple devise new techniques but carry no effective study to demonstrate the power and 
weaknesses of their technique. 

4.1.4 Other techniques 

Other techniques such as rotoscopy and motion capture could also be used to 
position articulated figures but there is usually no point in doing that. Using these 
techniques, animating articulated figures is as easy as positioning them. 

4.1.5 Proposition 

Constructing poses constitutes one of the main tasks of most animation systems. 
Even techniques which do not usually rely on poses, such as gaits, could be adapted 
to use poses to their advantage. The main problem with the production of poses is 
that there is no easy technique to produce them. Common drawbacks to conventional 
techniques are they are too slow, too cumbersome to use or are not fast enough to 
interact with an articulated figure in real-time. 

For my PhD, I decided to investigate the potential of an entirely new technique to 

produce poses. Not all tasks that professional animators might want were implemented 

as these were not felt to be necessary to test the new concept. Thus the possibility of 

specifying multiple constraints was not implemented. 

With conventional techniques, the computer is used to assist animators along the 

pose production process. In the thesis, I argue that a system in which the user assists 
the computer in trying to produce poses is more efficient than conventional positioning 
systems. For this purpose, an interface derived from the field of interactive genetic 

algorithms was used [Daw86, ST90, Sim91, TL91, STH91, Ven95]. 
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In Chapter II, the origin of the technique is presented. Chapter III will be spent 
detailing the implementation and the interface of the technique. To be able to evaluate 
the technique, two conventional techniques were implemented: forward and inverse 
kinematics. These implementations will be described in chapter IV. Chapter V will 
focus on the preparation, the results of the evaluation and the evaluation itself. In 

chapter VI, the thesis is concluded and potential future work is presented. 

- 12 - 



Chapter II 

The articulated figure 

1 Introduction 

The actor is the key object in an animation system. A badly designed actor 
will produce bad animations. Rendering is just as important: If it is insufficiently 
representative, the animator cannot evaluate efficiently the quality of a particular pose 
or animation. If it is too detailed the computer will spend too much time rendering 
frames thereby making real-time evaluation impossible. This chapter will present all 
the main techniques used both in modeling and rendering and present the ones which 
have been chosen for this work. 

2 Actor design 

An actor can be represented by any components, simple or complex, rigid or flexible 

and fixed or movable. A posing system is only used to change the position or shape 
of the actors in a scene. In this chapter, we are solely interested in the posing of 3D 

rigid articulated figures. 

A lot of work has already been done on the modeling stage of human and other 
bodies [Stu84, NTD88, NMT85, Ca188, TP88]. In [Stu84], David Sturman made a 
comprehensive definition of a rigid articulated figure and also specifies some features 
that a rigid articulated figure model should own: 

The information stored in a model is an important aspect of any anima- 
tion system. One simple way to define a model is as a set of rigid objects 
jointed at nodes, organised hierarchically into an articulated body. At 
each node or joint, a 3D transformation matrix controls the position of the 
portion of the body below that joint. Transformations matrices are nested 
in accordance with the body structure. The position of the model at any 
one instant is determined solely by the transformation matrices. The only 
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intelligence contained in the model is the topology of the body parts and 
the degrees of freedom (DOFs) at each joint. Alone the model is a static 
entity. To make the model move, the animator uses the animation system 
to control the 3D transformation values at each joint. The "rigid object" 
stipulation allows scaling of the body parts (using the joint matrices) but 

not bending or changing their basic geometries. 

Starting from this definition, we see that a 3D rigid articulated figure is an actor 
made of segments or limbs or body parts all connected together by means of joints. 
The figure is said to be in 3D because it is represented in three-dimensional space. 
The word rigid is also used to say that each body part has a fixed length and a fixed 

shape. This means that objects like deformable balls and cartoon characters cannot be 

modeled using this representation. Though one of the final goals of this research was to 
assist cartoon characters animation, special effects like stretching and squashing were 
not implemented. To evaluate our animation system, a humanoid was implemented. 
A very simplified skeleton was used as a model. It is made of exactly 19 segments. 
Such a skeleton is shown in figure II. 1. 

Figure 11.1: Example of a simple 
skeleton with only 30 DOFs 

Example of a simple skeleton with only 
30 degrees of freedom (DOFs) and 19 
limbs. The skeleton is represented in 
the seated position with the hands at the 
back of the head. 

2.1 The model file 

Models describing articulated figures are first written manually into text files. One 

of these text files is specified when the application is launched. 

2.1.1 Tree structure 

To represent a given actor, a tree structure made of joints and limbs is specified. 
Each node specifies a body part usually referenced as limb and each link specifies a 

-14- 



Chapter 11. Tb rirticulat(d fi(Urf 

Joint. The tree is an i'-tree. Each parent l)odý- part can have frone 0 to ii children. 

Each find) has, a uauuie which is sometimes displayed as it liiiit to the user. It does 

not uuiake sense to have the starting coordinates of the limbs outside their parent's 
Heuei) so starting coor<liuiates of all children have to be on their parent's limb. Most of 
the tüiu', joints Will he located at the beginning or at the ending coordinates of their 

corresponding lüul)s. The lilt erl)reter of the posing system is not case-sensitive. 

2.1.2 Degrees of freedom 

If it finidl) vVd })criuittcct to itt(ve iiiall directions, the pat11 described by the ex- 
treluuitV of tlic 1ill i1) would lie on the surface of a sphere in vvliidi the centre is the joint 

position and the raclitts is the length of the 1i1ä1). Obviously, no limb of any kind c(Iii 
perform such motions. They are limited ill some wads so the path described by the 
tilg of the limb always lies in it limited area on the surface of a sphere 11.2. 

Figure 11.2: Area of permissible 
motions 

If the joint is at. the centre of tine sphere, 
and the length of the limb corresponds 
to the radius of the sphere, then t he area 
ill which the tip of the limb can move is 
described in green 

Those couistraunt, Halve to lxs integrated in the posing system. Ali accurate specifi- 
cation of the area where each 1inib is allowed to iiiove woiilcl he too cumbersome to sl)ec- 
ifv and riot useful for our own purposes. horc'in used polygons for which each vertex lay 

oti a unit Sphere to approximate the area of allowable motions [KB82. Kor82, . JU85]. 
This was only ; iii apl>roxilllilt ioni since tit(, valid area also depends on a type of move- 
mneuit called twist and oil the positions of surrounding limbs. This area also varies 
anuoulgst iu(livicluals. To check if a position was valid, an algorithtiº was devised to 

check the positions was iulsi(ie the valid area. Although probably fast, this algorithms 
could not 1w its fast as it cruder approximation of this area, an al)proxiinat, ion was 
clioseui here. Korciu also stated that the üiipleiºientation of Iris algoritliiii was lhard. 
Their work «V. I; also uueatnt to be used to simulate huiiiaii beings for tlice . Tackt"' svs_ 
tetra [Bad8G. BP\V93]. ; iii all"llatic)ii sv-sterii developed by Badler & al. 

15 



Chapter II. The articulated fiyzirf 

We are nut interested in simulating an accurate human figure but solely in pro- 
ducitig believable postures. Every object in a scene has six DOFs. These count for 

the translations along the three Euclidean coordinate axes and the rotations around 
them. For all articulated figure. all limbs except the oil(, at the top of the tree, the 

root limb, are glued at their joint position. In other words. the, - are not allowed to 

move away from their joint positions. Therefore, DOFs dealing with translations can 

simplV he ignored. Only DOFs involving rotations need to he taken into account. 

There are three different categories of DOFs [\TDb8] which directly relate to three 

cliffereiit types of motion. These are called flexion, pivot and twist motions. They are 

(iefiulecl as follow: 

sue. sha,. ý. 

ýu 
ua vn 7awa tm 

Tw"t 

Figure 11.3: Degrees of Freedom (DOFs) 

Flexion motions are the most common. Some joints can also produce pivot motions and 
a few others allow twist type motions. 

1 Flexion: The flexion is a rotation of the limb which is influenced by the joint 

aiici causes the motion of all limbs linked to this joint. This flexion is carried out 
relative to the joint point and a flexion axis which has to be defined. 

1 Pivot: The pivot makes the bending axis rotate around the limb which is influ- 

en eci 1iß" the joint. The pivot axis is the axis perpendicular to the flexion axis 

and the axis of the limb. 

-1 Twisting: Twisting causes a torsion of the limb which is influenced by the joint. 
The direction of the twisting axis is found similarly to the direction of the pivot. 

In engineering. another notation called the yaw notation is more often used. It is 
described in Hoggar's hook ([Hog92]. page 208). DOFs are not expressed relative to 

the joint fntt ill scene coordinates. This makes it easier to deal with some problems 
such as the note-coiiitiiutativity of the matrix multiplication. The order in which the 

matrix multiplication is made is of major importance to the result obtained. 
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Figure II. 4: The yaw notation 

The Yaw axis is vertical, the Roll axis is 
horizontal and the Pitch axis is for the 
depth 

In a typical systems, the rotations have to be specified in the following order: 

1. Yaw. or heading. around a vertical axis 

2. Pitch, aroiitici a horizontal axis 

3. Roll. around an axis aloiig the depth of the scene 

The first notation was the one used. Like other common animation systems, it 

was found to he the most appropriate for our purposes. When a limb is created, its 

main arxis, its flexion axis and their directions are specified. They are optional. If 

thev are not specified. the Y axis is assumed for the axis of the limb and the X axis 
is assumed for the flexion axis. Possible axis are only Euclidean coordinates axis X, 
* and Z axes. Arbitrary axes were not worth the difficulty to implement theta. The 
X axis is horizontal and points toward the right, the Y axis is vertical and points 
upward. the Z axis is horizontal and points inward. The + and - signs are used to 

specifi" the direction of the axis, the - meaning that the direction is inverted. The 
default direction is +. Thus. for the joint at the hip for the left leg of a humanoid, 

the description would look like something like this: 

Axis -V 
FlexionAxis -\ 
PivotDof 0 80 
FlexionDof -20 160 
TwistDof -90 90 

Once the flexion axis has been specified, the three types of DOFs are specified. 
There are all optional. If they are not specified, it is assumed that the motions 
corresponding to a given DOF are not allowed. For each DOF, the miiiinnn l and 
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tnaxinntni angles. in degrees. describing the area in which the limb is allowed to move 
must be specified. Angles are specified in degrees and are specified in the clockwise 
direct iota. 

Dealing with the DO Fs in this way. a valid area would look like something like 
tüis 

Figure 11.5: Model of the area of 
permissible motions 

The technique used to model degrees of 
freedom results only in simple areas such 
as this one to approximate the area of 
permissible motions. 

2.1.3 Representing the model 

To reud(ýr t iic , ur ig Illated figure. a few primitive colours are used. These are: 

_ ý- `- 

A set of shades for different primary colours are pre-computed and stored in 
a dedicated colour neap to speed up rendering. 

The different shades are pre-computed and stored in dedicated colour ramps to 
allow for fast rendering. 

To display the figure on the screen. several techniques may be used most of which 
are discussed and reviewed in [Stu84. NTD88,1MIT85, Ca188. TP88]. 
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Chapter II. The articulated figure 

O Wire framing: The simplest of these techniques is simply to draw a line seg- 
ment to represent each limb. It is fast but unfortunately, resulting pictures are 
far from being convincing and crucially lack the capability to represent twists. 

O Volumes: Volumes may also be used. Pictures produced are a lot more convinc- 
ing and any types of posture can be efficiently represented. However, compared 
with the wire-frame technique, rendering is also a lot more time consuming. For- 
tunately, fast rendering techniques have been built which allow rendering at a 
reasonable speed and thus allow interactivity. 

O Surfaces: Surfaces may also be used and it is certainly the best of the avail- 
able techniques to represent an articulated figure. A surface is made of patches 
which will match as close as possible the shape of the real figure being model 
(e. g. a human). The number of polygons necessary to represent an articulated 
figure is likely to be overwhelming for a good representation. Polygons approx- 
imation techniques, which gather polygons in a single one to produce simpler 
surfaces but close enough to produce pictures of apparently the same quality, do 

exist [HDD+93, CVM+96, KT96, LKR+96, AS96] but the number of polygons 
is likely to stay large. Several techniques are also available to render objects 
made of surfaces. The simplest one is the flat shading technique. It is fast 
but it does not produce pictures of very good quality unless polygons are very 
small. Gouraud shading is another technique which can produced images of 
relatively good quality. Basically, colours are computed at each vertex of the 

polygon to shade. They are then interpolated to approximate the illumination 

model. Phong shading is the last of the usable techniques [BW86]. Instead of 
computing colours at each vertex of the polygon to shade, normal vectors are 
computed. These are then interpolated and the relative shading intensity is de- 
duced at each pixel. It produces images of even better quality but it is also 
the slowest of the three. Fast algorithms for converting surfaces to polygons are 
available [LCWB80, Cla, LR80, Kau87]. Although the best pictures are pro- 
duced by using surface representations, the rendering process is also much more 
time consuming than with the two previous techniques. It would be difficult to 

reach real-time animation without some special hardware and this hardware was 
not available while this research was taking place. Furthermore, producing the 

original surfaces and making them move along with their corresponding limb is 

not an easy task and is a time consuming problem to solve. 

It was eventually decided to represent articulated figures by means of volumes. 
Several volumes may be used to represent an object onto a screen: 

O Spheres: Spheres can be used to represent a body on a screen. Efficient al- 
gorithms to display spheres have already been implemented [Kno8l, Pat93]. 
Knowlton does not exactly render spheres: he displays a pre-computed sphere 
instead of a real one. For this reason, the algorithm is said to work in a 21/2 

space only. A wide range of pre-computed spheres are also necessary. Patter- 

son's algorithm [Pat93] is said to suffer from a parabolic approximation of the 
real sphere equation but this defect is barely noticeable. To represent an ar- 
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ticiilate(1 figure sole! by beaus of spheres would require a large collection of 

-1)liere,,. This counterbalances the efficiency of the algorithms. 

Cylinders: Another way to represent a body is to use cylinders. Cylinders are 
more time consuming to produce than spheres but they can be efficiently used to 
nel>lace a collection of spheres. . Jatnes Blinn [B1i89] developed an efficient algo- 
ritliens to render tubes. The technique is based upon tubes decomposition into 

polygons at the eye and light silhouettes 11.7. If the axis of the cylinder (or tube) 
is perpendicular to the viewing direction (both sides are hidden), the illusion is 

perfect. Otherxrise the polygons quickly become noticeable (the polygons are 
clearly visible). As a result, a fast cylinder algorithm was implemented. It is 
detailed in Appendix II. Basicall, ". this algorithm is derived from Patterson's fast 

sphere algorithm. The silhouette points on the visible face of the cylinders are 
first computed. Their colour is calculated at the saune time. The main surface 
is then rendered 1>y sweeping these points along the main axis of the cylinder 
using forward trapping. It might not be as fast as Blinn's tube algorithm but it 
does not have anv visual defects. 

Figure II. : Bliiin's tube technique 
I'sing the silhouette and light vectors, 
fuhr polygons are generated and ren 
dered using conventional techniques to 
produce tlhe illusion of looking at a cYlin- 
(h r. 

1 Cone.: iiul)lcI llt(d. "l'lwr alg; uritliiii used tu rcu(ler ( lüi(ler", 

was adapted for cones. Rendering is fast although the algorithm could not be 

(, l)tinliSeci as much as with cylinders. 

1 Cubes: Most pictures which have been produced in the computer animation 
literature to represent articulated figures hitherto were mostly made of a collec- 
tion of cubes. Nice pictures can be produced with little processing power. This 

solution has become a standard in the area until now. Cubes have also been 

ii. ('d in the representation of the humanoid. 

1 Ellipsoids: Ellipsoids are another class of objects Which Wvoul(i be iiice to use. 
Hýmeýer. to my knowledge, no efficient algorithm is available for the time be- 
ing to render such 3D objects. Herbisous-Evans details an algorithm used to 
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render ellipsoid., . 11ESO. HES2] for their animation system. However, the repre- 
sentation for such objects is only in 2D and so can only be extended to a 21/2 

representation. This «"as not found to he satisfying for this animation system. 

To render articulated figures. the following primitives have been implemented: 

1 sphere: The ! position. radius and colour treed to be specified. 

1 Cylinder: The positions of the two extremity points, the radius and colour need 
to hr -pecified 

1 cone: 'l lie position, of the origin and the end of the cone, the radius and colour 
IUIVC to be specified 

1 cube: Four points forming three orthogonal vectors and the colour have to be 

"j ecified. Onl, " four points are necessary to make a cube. Specifying these points 
iN riet (', NV alld requin'S <i lit of lýracti(e. 

(l 

) 

Figure ILS: Volumes used 

-gall 

C 
c'(Clý 

A 

C- rl 

Four different volumes are being used. Fast renderers have been implemented for each 
of them to allow for real time animation production. 

2.1.4 Exploiting similarities 

Articulated figures usuallY have many similarities. For instance, the right and left 

sides are identical apart from the fact that coordinates on one axis (usually the X 
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axis) are reverse(!. Tlieýseý , üiiilarities can be exploited by positioning and animation 
svstelns. For a positioiiing sy*stPPlli. model files specifying articulated figures caii be 

siiialler and soiree mirroring functions can he implemented. 

For this purpose. a special directive has been implemented (Fig. I1.9). It is called 
Mirror. This directive is specified just before the joint directive. All the children 
limbs of the limb being mirrored are also mirrored. Thus specifying that the thigh 
is mirrored will also mirror the left leg and the foot. This directive is followed by 
two Nvor(Is. which are usually left and right. They are used as a prefix for each naive 
of the limbs being mirrored. Thus when the articulated figure will be mirrored, the 
LeftTh. igk the RiyhtThigh. etc will be created. The axis of the 1üºil) is used to direct 
the mirroring operation. For example. if the axis of the limb is the t axis, the X 
coordinates of the top limb being mirrored are inversed. 

'a: t 9enetared using Me mut? 4 S uc14tw 
'Plain f, n, B 

axes 

  PIIP 
x 914W A tO the Spef44ed Set 

4 

Pte{ix- given to tAe. gene4alyd sei- o1 Glnäs 

Figure 11.9: Mirroring a set of 
limbs 

When a sit cation like the one shown on 
the left occurs, the mirror directive can 
be used. Only one side has to be de- 
scribed, the other one being automati- 
cally deduced by the computer. Further- 
more, it will allow the animation to take 
advantage of this information to ease fur- 
ther the job of the artist. 

To conclude, Figure. II. 10 shows the piece of code describing the ino(lel used in 
this thesis. 

2.1.5 The problem of the spine 

The spine of the human laxly is made of 33 vertebrae. To produce the best 

animations possible. \Ionheit and Badler [_1B91] argue that an accurate modeling of 
the htunan spine and torso becomes necessary. In their work, they implemented a 
kineinati( Illo(lel of the 11,11 lall spine and torso. A careful stildv of how the spine is 

also allowed to move was also performed. However, the goal of this work was more 
to simulate the htullan spine and torso rather than animate it. Our purpose is not 
sillrillatio11 of the lltiiiiali 1)o(1V SO we (10 'lot llee(1 to use that Iimiiv vertebrae. III 

fact, to Inociel well enough the human spiele, only three limbs would he required. The 
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top { 
axis x 
000000 
mirror right left joint 000 hip { 

axis x 
000 -1600 
sphere -12 00 12 grey 
joint -16 00 thigh { 
axis -y 
flexionaxis -x 
0000-450 
pivotdof 0 80 
flexiondof -20 160 
twistdof -90 90 
cylinder 0000 -45 08 orange 
sphere 0 -45 0 10 orange 
joint 0 -45 0 leg { 

axis -Y 
flexionaxis -x 
0000-550 
flexiondof -160 0 
cylinder 0000 -25 06 pink 
cylinder 0 -20 00 -45 05 pink 
joint 0 -55 0 foot { 

axis -: 
flexionaxis -x 
00000-30 
flexiondof -20 20 
pivotdof -30 30 
cube -6 0 -30 -6 9 -30 
60-30-608 yellow 

} 
} 

} 
} 

joint 000 spine { 

axis y 
flexionaxis x 
0000500 

pivotdof -50 50 
flexiondof -70 45 
twistdof -45 45 

sphere 0008 orange 
cylinder 0000 12 0 11 orange 
sphere 0 15 0 10 orange 
cylinder 0 20 00 32 0 15 orange 
sphere 0 35 0 10 orange 
cylinder 0 40 00 52 0 19 orange 
mirror right left joint 0 50 0 shoulders { 

axis x 
000 -25 00 
cylinder -25 000007 grey 

joint -25 00 upperarm { 
axis -y 

flexionaxis -x 
0000-330 

pivotdof 0 180 
flexiondof -60 80 
twistdof -90 90 

sphere 0008 orange 

cylinder 0000 -33 05 orange 
sphere 0 -33 07 orange 
joint 0 -33 0 forearm { 

axis -y 
flexionaxis -x 

0000-250 
flexiondof 0 160 
cylinder 0000 -25 04 pink 
sphere 0 -25 06 pink 
joint 0 -25 0 hand { 

axis -y 
flexionaxis -x 

0000-120 
flexiondof -45 45 
pivotdof -70 70 
cube -2 -12 -4 -2 0 -4 
2 -12 -4 -2 -12 4 yellow 

} 
} 

} 
} 
joint 0 50 0 neck { 

axis y 
flexionaxis x 
0000 170 
flexiondof -45 20 
pivotdof -45 45 
twistdof -90 90 
cylinder 0 17 00008 orange 
joint 0 17 0 head { 

axis y 
0000 12 0 
sphere 0 12 -5 16 pink 
sphere 0 16 -3 16 yellow 
cube -3 30 -18 3 30 -16 

-3 33 -18 -3 16 -12 yellow 
sphere -6 16 -17 4 blue 
sphere 6 16 -17 4 blue 
cube -2 11 -24 -2 19 -17 

2 11 -24 -2 10 -21 red 
cube -5 6 -20 -5 7 -20 

56 -20 -5 6 -16 red 
} 

} 
} 

} 

Figure II. 10: Description of a humanoid 

This humanoid was the articulated figure used during this research. Other creatures 
could be easily implemented as well. 

position of the the different objects along the spine would be interpolated to simulate 
many more limbs. 

In the model presented here, the spine is made of only one limb. Positions achieved 
with the system were judged to be satisfying enough to demonstrate the hypothesis. 
To improve the realism, a curve could have been used to pose the different objects 
used to represent the torso (spheres and cylinders). This has not been performed but 
is considered for future work. 
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Figure 11.11: Juxo. the lain! ) 

A lamp Nvas also implemented to show 
that this work did not focus solely onto 
humanoids. This lamp was called Juxo 

since the name Luxo is trademarked. 

2.1.6 The hands and the feet 

Animating 1ºauds is it coºººplex process [RG91, AITLTSS. ST94, LK95]. We decided 

that a positioning systems was not appropriate. As a result, the hand is modeled by 

a , -iºigle 11u11> segment and is represented by it cube. 

Sonic applicatioiis may require an accurate model for the feet. This was not the 

catie leere. Coi1sec{ueiitly. it single cube was used to render each foot. 
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Chapter III 

Origin of the technique 

1 Richard Dawkins's Biomorph 

One of the most famous arguments of the creationist theory of the universe is the 
eighteenth-century theologian William Paley's saying: 

Just as a watch is too complicated and too functional to have sprung into 
existence by accident, so too must all living things, with their far greater 
complexity, be purposefully designed. 

Like many people, Richard Dawkins, a professor of zoology at Oxford University 

was not impressed by William Paley's argument. In 1986, he wrote The Blind Watch- 

maker [Daw86]. He argued that there is not need for an intelligent upper being and 
that the watchmaker is simply nature and its tool is called evolution. 

To have a watch produced by sheer luck is virtually impossible. However nature 
and the principle of evolution which has been revealed for the first time by Darwin in 
1859 is far more than just sheer luck [Dar59]. In simple terms, Darwinian evolution 
involves three major concept: Reproduction, mutation and survival of the fittest. The 

combination of the three can perform amazing feats, such as producing human beings 

who will invent watches after billions of years of evolution. 

To show how powerful evolution is, Dawkins implemented Biomorph, a program 
which produces forms made of small line segments. The number of line segments, 
their length and direction was defined by a structure which we can call a chromosome. 
To make the program simpler, reproduction involved only one parent. Thus, the 

advantage of sexual reproduction was simply ignored and only mutation was used to 

evolve these forms. Although the program did not use all the ingredients of evolution, 
it amazingly fulfilled the expectations of his creator. Many forms which resembled 
shapes of different animals were produced. Dawkins also produced all the letters of 
the alphabet. 
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2 Mutator model 

In 1990 and 1991, Steven Todd and William Latham worked on a program which 
they called mutator. Steven Todd is a computer scientist working at IBM whereas 
William Latham is an artist. Together, they tried to bring the best of both worlds in 
a single project. In [ST90], they provided a definition of Mutator: 

Mutator assists an artist to create computer sculptures. The artist makes 
a series of judgments of examples presented by the computer. For a major 
part of the create process the artists focuses on aesthetic considerations, 
freed from the mechanics of computer interaction and form realization. 

As mentioned in [ST90], Mutator was first used to produce sculptures but in later 
versions [TL91], it was also used to produce animations. These animations were simple 
as creatures could only grow in size. Creatures had a life cycle in which they were first 
born, grew and died. They also moved along a simple path in space. 

At the initial stage, the user needs to create a structure defined as a vector which 
gathers all the parameters necessary to create a sculpture. Typical parameters are: 

O sphere: the number of spheres in the sculpture 

O ribs: the number of items 

O grow: shrinkage and expansion of the elements 

O bend: bend stack 

O etc 

Parameters values are ranged to avoid the production of useless sculptures. In 

effect, Mutator is used to browse an n-vector space. 

The simplest form of mutator presents the user with nine forms: an original sculp- 
ture and eight mutations. The user simply selects the favorite sculpture and a new set 
of eight sculptures is produced. At the first generation, the original sculpture is set to 
an initial parameter vector. The user is allowed to set the intensity of the mutations 
to permit fast initial exploration of a wide space, followed by fine tuning. 

In a more complex form, Mutator allows the user to make marriages. Users select 
two parents which are then used to create the children by mixing the parameters of 
the two parents. 

3 Interactive Genetic Algorithms 

In 1975, John H. Holland published an article called Adaptation in natural and 

artificial systems [Hol75]. In this book, he described how Darwinian evolution could 
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be used to solve searching problems. These type of algorithms were called Genetic 
Algorithms (GAs). Genetic algorithms use three main concepts: selection, reproduc- 
tion and mutation, the selection being the mechanism of the survival of the fittest. To 

perform the selection, the computer needs to evaluate how good or how fit a solution 
(an individual) is compared to other solutions (individuals). For this purpose, an ob- 
jective or fitness function is provided. For each individual, this function will provide 
a value (the objective value). The goal of the algorithm is then to minimize or to 
maximize the objective value depending upon what has to be achieved. Appendix A 

explains in more detail how genetic algorithms work. 

Interactive Genetic Algorithms (IGAs) refer to the type of algorithms where the 
objective function is the user. With this type of algorithm, it is the user who has to 
provide the objective value. 

The mutator model and IGAs are quite similar. They were more or less developed 
at the same time. With the mutator, not so much emphasis is put on the biological 
aspect of evolution. IGAs were completely derived from John H. Holland's GAs and 
henceforth have a more theoretical background. 

3.1 Fields investigated 

Genetic Algorithms have been used in many areas such as robotics, plane modeling, 
etc [Dav91b]. In comparison, IGAs have been applied to just a few fields. 

3.1.1 Pictures and objects 

Mutator was used to produce abstract sculptures [ST90, TL91, STH91]. The artist 
used aesthetic considerations to select one or two sculptures which are then used as 
seeds for the next generation. Although generated sculptures do not recall anything 
known, they are amazing and resulting pictures are extremely appealing. 

In 1991, Karl Sims implemented the first true IGA for which, to demonstrate the 

capabilities, he applied to produce 3D plant structures, 2D abstract images, solid tex- 
tures and abstract animations [Sim91]. To be more accurate, a genetic algorithm was 
not used but instead a concept referred as genetic programming. Instead of producing 
individuals (images, 3D plants, etc), genetic programming [Koz92, Koz94] is used to 

generates programs. These programs were written in Lisp. It is particularly difficult 

to write a non-working program in Lisp therefore it is particularly well suited to this 
type of problem. Once generated, the programs are executed to produce the indi- 

viduals, these being images, solid textures or animations. The instructions provided 
were also purposely limited so that, for example, the IGA used to produce images 

could only produce useful images. Set of functions are also provided so that visually 
interesting solutions could be produced. This is particularly true for the production 
of images. For the production of plants, like conventional GAs, a parameter set called 
a chromosome was used. It contains 21 elements or genes. It tells information such as 
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how fast a segment grows, when it should generate buds, in which direction, etc. A 

program is then executed which interprets the parameter set and generates the corre- 
sponding plant. To produce images, solid textures and animations, Lisp programs are 
first generated, then executed. To produce something, programs usually need inputs. 
For images, the input is the position of the pixel to colour. For solid texture, the input 
is the position of the voxel to colour. For animation, the information is the position of 
the pixel plus the time value. Implementation of such programs is not difficult. The 

choice of the set of functions is very important though. 1 

More recently, evolutionary techniques were successfully applied to generate 2D 
and 3D textures [TH95, Pet971. 

3.1.2 Virtual creatures 

A few years later, Karl Sims published two papers, one in Siggraph '94 [Sim94b] 

and one in Artificial Life '94 [Sim94a]. These papers described how artificial creatures 
with a brain and a body were evolved. Brains were made of neurons and bodies of 
rectangular cubes of different size. The initial population of creatures was made of 
randomly generated creatures of which more than half simply did nothing. Every 
creature was rated on their capability to achieve a given task (e. g. move forward, 
follow a point, etc). A genetic algorithm was used to evolve these creatures onto a 
connection machine with hundreds of processors. Physical laws were used to simulate 
the real world in which creatures were put in. This was the most time consuming 
process. The system was not interactive and could run for days. 

One year later, Ventrella published an article [Ven95] describing how the motion 
produced by artificial creatures could be guided interactively by a user. His creatures 
were made of rigid segment linked by joints. Only the joints were allowed to move 
and no constraints (Degrees of freedom) were enforced. Creatures were also allowed 
to change their shape. Apparently, it did not produce interesting results apart for a 
scheme where the body of the creatures had to be symmetric. Motion was specified 
by means of sine wave functions whose amplitudes, frequencies and phases could vary. 
Animation and rendering was fast enough to allow for interactive work to proceed. Like 

conventional IGAs, users selected pleasing results which were used to produce the next 
generation. To get useful results, a few constraints such as maintaining the head at a 
given height and insisting for locomotion had to be enforced. In the background, the 

genetic algorithm was generating many simulations and only the ones which fulfilled 

the constraints were displayed. 

'I personally implemented an IGA which also used genetic programming but I did not have access 
to all the functions that Karl Sims used (noise functions particularly). As a result, generated pictures 
were far less varied and interesting. I also could not afford the computing power he was using on so 
programs tended to be much shorter and simpler. 
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3.2 Limits 

Originally, the plan was to animate an articulated figure using an IGA. We were 
quite optimistic in being able to achieve this goal since the examples detailed in the 

computing science literature looked impressive. 

At first, limbs were allowed to move freely in the areas defined by the degrees of 
freedoms (DOFs) over a short time span. A set of short animated sequences were 
produced which could be played by the user. The user selected the preferred ones and 
these were used to produce a new set of animations. The system quickly produced 
interesting animations but the user had virtually no control over what was going on. 
We realised that the size of the space was far too big (about 10640) for an interactive 

system to be able to search through it efficiently, no matter how powerful the search 
algorithm is. During this period, an automatic user was also implemented to try to 

work out what would be the ideal size of the population, the number of generations, 
the most useful operators and parameters for the search algorithm. The computer 
produced a randomly generated target animation. It then compared each animation 
and selected the closest ones. A simple least square technique was used to evaluate 
how close an animation was to another one. Trials were made with a populations 
of nine and twelve individuals. Higher than that, the screen becomes too small to 
be able to display everything properly. I realised that the process never reaches the 
target animation. On average, when the search process stopped, it was still half way 
to the target. Usually, after forty generations, the convergence speed was too slow. So 

at the same time, the search process was converging too fast because all the genetic 
material needed to reach the target disappeared too soon and it was also converging 
too slowly because forty generations are far too many generations for an interactive 

system. To animate his artificial creatures, Ventrella [Ven95] experienced the same 
type of problems: many generations were necessary and the user had virtually no 
control over how a particular creature was achieving its task. This made the system 
quite interesting from an artificial life point of view but not so useful from an animator 
point of view. The same conclusion could also be drawn for Karl Sims's evolving 
creatures [Sim9l, Sim94b]. In his system, users were simply not there. Apart from 

ensuring that some constraints were fulfilled, there was no means by which a user 
could interact with the system and guide the search. 

It was concluded that an IGA is not appropriate to animate an articulated figure. 
Since the main problem was related to the size of the search space, the first thing 
to do was to make it smaller. So instead of generating animations from scratch, the 

system was divided in three major parts, the first one to produce poses, the second 
one to produce short motions and the last one to produce fully complex animations 
(Fig. III. 1). 

An IGA was implemented to produce poses. For the first generation, random poses 
were computed and displayed onto the screen. The user was able to grade each pose 

according to how close they were to a target pose. The higher the grade was the 
higher the likeliness of the corresponding pose was to be chosen to produce the next 
generation. This was just a more powerful selection mechanism. 
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Figure I1I. 1: An animation systeiii iii time parts 

To make the animation s'"stem as viable as possible. it was divided into three separate parts: the 

production of poses. the production of simple motions such as walks, runs, etc and the production of 
fulls complex animations. Each part would use what has been produced by the previous part of the 

animation sYsteni. 

Trying to ºmiake the best use of the system, this was found to be far from satisfying. 
First, providing an objective value was like marking an exercise, that is an intellectually 
demanding task. Second. control over the evolution was poor. It was difficult to say 
the least to reach a target pose. Third. there «-as no way by which users could directly 

tell the computer what had to be used. It would have been much faster if the user 
was allowed to select the parts of interest. 

As it result, it Nva' concluded that for an IGA to be efficient, four rules have to be 
fulfilled: 

1 The size of the space to search should not be too big 

-1 The user should be good at grading one particular solution 

1 The user should not know what iiiakes a good solution 

1 The user should not look for an accurate target solution 

If these four riles can be fulfilled. an IGA will be a really powerful and enjoyable 
tool to use. Otherwise. the matter can be quite different. 

In the cases where an IGA has been tised successfully', most of these rules were 
fulfilled. If the size of the search space is really big, the user can definitely not afford 
to look for a particular solution. If. on the contrary the size of the space is small, then 
target solutions can be reached. 

In successful examples previously described, what was produced was usually so 

abstract that the user did not know what made a solution good. Grading or selecting 

pictures was an easy task for users. Users were not encouraged to look for a target 

solution, but instead to guide the evolution process in pleasing directions. The system 
developed by Ventrella [%'en95] was different, but he had to resort to a great deal of 

constraints such as maintaining the head at a given height. He also had to use simple 

creatures to keep the search space small, and even though resulting animations were 

rather abstract and control over them was poor. 

For the purpose of positioning an articulated figure, a simple IGA just cannot 
succ eecl: 
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O The size of the search space is usually too large (unless the articulated figure is 

very simple). 

O To provide an objective value is difficult, users know what is good and what is 

not (e. g. part of the arm but not the legs). 

O When animators want to pose an articulated figure, they do not want to be pulled 
by the evolution process in directions which do not interest them although poses 
produced that way may look quite interesting. 
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Generator 

1 Principle 

Having gained experience from previous unsuccessful trials, an innovative technique 
to position articulated figures, which could prove to be more powerful than existing 
techniques, was designed. Although it was proven that a true Interactive Genetic 
Algorithm (IGA) could not be used to position an articulated figure, letting the user 
directly select good limb positions is powerful concept. The newly produced pose can 
then be mutated to produce another population of poses and thus converge towards a 
target pose. 

A definition of this new technique might be: 

The generator is an evolutionary technique for which genes are clearly 
identifiable by the user and the cross-over process (i. e. the reproduction 
process) is explicitly performed by the user. Mutation is then applied to 
produce a new population of individuals. 

The previous chapter concluded by stating four rules which have to be fullfilled for 

an IGA to be useful at a problem at hand. Three similar rules can be stated for the 

generator: 

O Genes can be made clearly identifiable to the user 

O Particular values for theses gene can be made easily selectable by the user 

O There should not be too many such genes 

If these three rules can be fullfilled, then the generator can be used to solve the 

problem at hand. If on the contrary one of these rules cannot be fullfilled, the generator 
should not be used. A mutator or IGA type interface will perform better if the four 

rules for this type of interface can be fullfilled. 
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2 Producing a pose 

2.1 Definition 

A pose is the term used to describe an articulated figure in a particular position. 
Internally, that pose is defined by a set of limb configurations which are held in a 
dedicated structure. 

An articulated figure is represented by a tree for which each node corresponds to 

a joint. Each node has a corresponding matrix which is used to specify the current 
position of the limb relative to its parent. To find out the position of a given limb 
in the virtual world, all matrices from the root node to the corresponding limb have 
to be multiplied. Multiplication order is important. The resulting matrix is obtained 
by multiplying joint matrices together starting from the most distal limb back to the 

root of the tree: 

Mi=j=xMi_1, ifi>O 
Mo = jo, otherwise 

where M1 is the resulting matrix at joint i 
ji is the local transformation matrix at joint i 

To render the current limb, the resulting matrix has to be applied onto the objects 
representing that limb. New coordinates are derived and the rendering process can 
take place. This design allows to change easily the configuration at one joint without 
having to recompute anything else in the tree describing the articulated figure. 

2.2 Choice of a positioning scheme 

Given an articulated figure, there are an infinite number of possible poses. The 

size of a space always affects the powerfulness of a search algorithm; the smaller a 

space is, the faster it can be searched through. Consequently, the space of poses has 

to be kept as small as possible. 

There are many ways to browse a space and it depends a lot on its encoding. For 

example, the space of visible colours can be represented using the RGB encoding. It 

could also be represented using the HSV encoding. Although there is no noticeable 
difference to the human eye, the space using the HSV encoding is somewhat smaller 
than the one using the RGB encoding. Consequently, it should also be much faster to 

search through 1. Similarly, the set of poses might be represented in several different 

ways. 

In the tree describing the articulated figure, at each node (joint), there is a matrix 
which defines the configuration of the joint and hence of the different limbs down 

'It shoud be noted that shorter spaces are not always easier to browser as the new representation 
may make the browsing harder 
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that part of the tree. Thus, the search space could simply be arrays of matrices, one 
matrix for each joint. However, this would not be efficient as a matrix contains a lot 

of information such as scaling and translations which are not used. It would also be 
difficult to check the matrices do not break the constraints imposed by the degrees of 
freedoms (DOFs). Alternatively, an array of cells specifying the direction of the limb 

plus another angle for the twist could be used. Even better, three angles are sufficient 
to encode for any position for a single limb. One angle would be used for flexion, 

one for pivot and one for twist. Thus flexion & pivot would be polar coordinates. 
It is possible to reduce the parameter set even further. In some cases two different 
angles for the flexion and the pivot will result in the same position. This is redundant. 
Furthermore, solutions are not evenly distributed, that is solutions close to each other 
in the parameter's space might produce poses which look much more different; this 
is said to increase the chaotic nature of the search space. In practice, some positions 
would be a lot more difficult to obtain than others. 

2.2.1 Use of a hyper tessellated sphere 

To remedy to these problems, a tessellated hyper sphere was used. A tessellated 
sphere is made of a set of points that are evenly spaced from their neighbours 2. Hence 
there is no redundancy of information and no position is more difficult to achieve than 
others. The sphere has a radius of one and every points lie on its surface. A point is a 
3D vector and specifies only one direction. Points are numbered so a joint configuration 
is made of a number and of a twist angle. Henceforth, only two numbers are necessary. 
A vector of these joint configurations specifies one pose. Knowing the direction of a 
point and a twist angle, the corresponding matrix is easily obtained. This is explained 
later on. 

To generate a pose, an innovative search technique, which intensively involves the 
user, is used. At the beginning, of the search, the computer does not know what has 
to be generated therefore the search is being performed on the entire part of the space 
defined by the DOFs. As the search progresses, it is narrowed to reach convergence. 

To ensure the search will be optimal, several tessellated spheres are being used. 
Some have very few points, whilst some have many. An ordered chain of these spheres 
is used to make an object, the hyper tessellated sphere. The first sphere of the chain 
is the one with the fewest points and the last is the one with the most points. At 
the beginning of the search, since it has to operate on a big part of the search space, 
one of the crudest decomposition levels is used. As the search progresses, it also gets 
more and more focused. Finer decomposition levels are used accordingly. The number 
of levels of decompositions were carefully taken to ensure that all possible positions 
were representable. Seven levels of decomposition appeared to be sufficient for our 
purposes. 

2This is actually not quite right. Above a given number of points, algorithms able to produce 
evenly spaced points are not known. However, the tessellated sphere used was found to be good 
enough 
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i iir(' IV 
. 
1: Tessellated sI)11(1( 

A tessellated sphere produces a set of 
Imints which are more or less equally 
, paced, thus avoiding redundancy. 

ýýý ý; '.: 
.ý 

-ý. ' 
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Figiir IV. 2: 1Ivper tessellated sphere 

A hyper tessellated sphere is made of a set, of tessellated spheres. Each sphere corre- 
sponds to a decomposition. Here are shown the first 1 decomposition levels. Seven levels 

are being used by the application. 

For trist. although the search space is much siiialler, a hyper tessellated circle has 

lýeeii uised. The generation of the tessellated hyper circle and its use are similar to 

the generation and the use of t1ie tessellated hyper sphere. At joints where only one 
degree of freedom is used for Flexion S- Pivot, a hyper tessellated circle is used as well. 

2.2.2 How points are computed, saved 

To produce the hyper tessellated sphere, an algorithm «-laich provided by a net 

user, Mike Castle [Cas94]. was used. This algorithm was used to pro(luce a tessellated 

sphere of a>>v- required detail. The algoritluu starts by using a set of eight unit triangles 
(Initially., there are S triangles and 6 points). They describe two pyramids whose 

vertices lie oil the surface of the unit sphere. To tessellate it, the algorithm takes in 

turn every triangle. and for each triangle computes the nii(Il)oint of each edge. These 

point5 are tlieu projected hack onto the unit sphere. So for each triangle, four new 
triangles are created at each iteration. The uiiiºiber of triangles is multiplied by four 

at each iteration and the tuiinher of new points is half the number of triangles. Thus 
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the I1l1IIlber of pollits 1S 

Vumber of point. =6+ 
8x4" 

2 
= 6+4n+1 

= 6+2 2x (n+ 1) 

where u is the current iteration. The iteration number corresponds to the level of 
decomposition of the lip l)er tessellated sphere. 

Figure IV. 3: Tessellating a trian- 
gle 

To tessellate a triangle, the mid-points 
of each sigle are computed. Four new tri- 
angles are obtained. Coordinates of the 
mid-points are then projected back onto 
the surface of the sphere. 

Producing the livpPr tessellated sphere is slow. As a result, points of the hyper 

tessellated sphere are not calculated at ruin-time, but are retrieved frone a file instead. 

2.2.3 flow angles are computed 

Cot IIIilitiug II1( te", ", ellitt('(1 11Yper sphere is not sufficient. These points are used 
to iuove limbs in different directions. So it is necessary to check that the positions 
are valid. in other words that atiY new direction lies in the area defined l)}" the DOFs 

constraining the corresponding joint. 

To check a point describes a direction that is -within the DOF constraints, its angles 
are needed. The first angle describe the rotation oil the XV plane, the second one the 

rotation oil tlºe )-Z plane. The main axis is the I axis. the flexion axis is the X axis, 
ancf the pivot axis is the Z axis. If the point is valid, it ºteecls to he projected into the 
Binh coordinate system : 

Although the ("01111)tttations cottl(1 be Iperformed each till, (, it l)oitit is retrieved, it 

wroul(I be inefficient. It is not too time Consuming but thousands of these calculations 

may have toi be perfurtu('<f in it fIiLLlt of a second. So ittst( (I, they are perforitied «Bett 

the liv}>er tessellated ý, Pl1VIV is httilt, that is when the application is Iaun(lx, c1. 
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CI'ooint3D C'Lituh:: Transfo, rtii(CPoiut3D Point) coast 
{ 

C'Puint3D TransforinedPoýint: 

Point *= AxisSign: // Multiply by the sign of the limb axis 
Transforiuc'd1Poýint[Axis] = Point[1'1']; // Y is the main axis 
Transfornn'dPuitit[3 - (Axis + FlexionAxis)] = Point[XX]: // X is Flexion. 
Tr; InsfcýrtnivddPooint[FltexionAxis] = -FlexionAxisSign * Point[ZZ]; // axis 
return 'I'ransfoýrniedPoint: 

Figure IV 
. A: Transform it point in limb space 

The al, l)Ve Iuethod show how a point in the tessellated sphere space is projected into 
the IiniI space. 

rl /A 

Figure IV'A Getting angles from 

a direction vector 
This figure shows -where IIie angIes((Y and 
3) are and how they can be calculated 
knowing the x and coordinates of the 
direction vector. 

To (OI111nute the angles of it giv-eºi point (Fig. Iß'. 5), the r and -- coordinates values 
of a given point correspond to: 

T= si)l(Q) 

= sin(d) 

where « corresponds to the flexion angle in radian 
3 corresponds to t lcc' })iV Ot angle in radian 

Knowing r and :. getting the angles in straiglºtforww"ard: 
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a= sin-1(x) 
ß= sin-1(z) 

where sin-1 is the inverse of the sine function. 

2.2.4 Rotating limbs 

From the above, it can be seen that the sign of the y coordinate is not taken into 

account. These points are used to specify the new direction of the limbs, but there 

are not quite the new directions themselves. This is due to an implementation detail. 
To rotate a limb in a given direction, quaternions [Sho85, Sho87, P1e89, WJ93] are 
being used. Quaternions were discovered by Sir William Rowan Hamilton in October 
1843. They are efficient and well suited to solve rotations problems. 

To build a quaternion, two vectors have to be specified. The first vector represents 
the source and the other one is the center of rotation. if 0 is the angle between the 
two vectors, the quaternion will rotate any points along the plane defined by these two 

vectors by twice that angle (Fig. IV. 6). Therefore, to access any point on the surface 
of a sphere, if the source is the point at the top of the sphere, the center of rotation 
needs to lie anywhere in the top half part of the sphere. Hence, what is required is 

not an entire tessellated sphere but just a tessellated half sphere. So the y coordinate 
value can only be positive. 

This also means that if a limb can only move in the area defined by angles a, ß 

with a<Q, we are only interested in points lying in the area defined by 2,1. 

To generate the matrix which will move the limb in the position specified by the 
direction vector and a twist angle, we first need to compute the quaternion specified 
by the direction vector. This is done as follows: 

Q= (-A" V, Ax V) (IV. 1) 

where A is the main axis of the corresponding limb 
V is the direction vector after having been projected 

into the limb space 

The first part of the quaternion is the dot-product of A by V, that is the cosine 

of twice the angle between A and V. The second part is the cross-product of A by V, 

that is the sine of twice the angle between A and V times the axis of the quaternion 

normalised to unity. The quaternion is then transformed into a matrix using the 

following method: 
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8I 

zata t+aiU 

Figure IV'. 6: Computing a quateruioii 

A quateruion can be computed using the clot-product and the cross-product of the source 
vector and the center of rotation. If ,; is the angle between the source vector and the 

center of rotation. the resulting; quaternion will rotate objects twice this angle. Thus, 

rotating the source vector will produce this resulting vector. 

X., = Q, x2 
1z = Qyx2 
Zz = (7, x2 

_l'}- = (l., x (l,, x2 
XZ = QsxQ, x2 
}z = QyxQzx2 

(laxQSx2 
Q, x Q,, x2 

11'z = (2� x Q. x2 

1-}:: -Zl x . +ii'L xi - Wy 0 

_l y-W71- . 11 - Z2 }+i i'. V 0 (IV. 2) 
x, +ii''Y -ii', v- 1-1'2-I2 U 

0001 

where (l,, is thy angle part of the quaternion(tlxe result of the dot-product) 
Q(r y ,) are the coordinates of the axis of rotation of the quaternioii 
(the result of the cross-product) 

\ýýýr, 0111V" t11 twisting transformation is left to ixe addled to the nearly obtained 
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matrix. Again, this is done using a quaternion. The direction vector (normalised 

to unity) the limb is pointing to (relative to its parent) times the sine of the twist 

rotation angle becomes the axis of the quaternion. Mathematically, the quaternion is 

computed as follows: 

Q= (cos (a), sin(a) x D) (IV. 3) 

where a is the twist rotation angle 
D is the unit direction vector the limb is pointing to 

From this quaternion, a matrix is derived (Eq. IV. 2) and is multiplied by the 

previous one to obtain the transformation matrix at the current joint. 

Since a single quaternion cannot hold all necessary transformations, an algorithm 
using matrices was a lot easier to implement. This is why all calculations are eventually 
stored in a matrix. 

2.2.5 Structure of alternatives 

A class has been specially built to hold all the necessary information: 

class CAlternative { 
Point; Centre of rotation 
FlexionAngle; Corresponding flexion angle 
PivotAngle; // Corresponding pivot angle 
Number; // Identification number 
Level; // Level of decomposition 
Neighbours; Closest neighbours at each level 

} 

Figure IV. 7: Structure of an alternative 

This structure contains all the necessary information to generate a quaternion. It also 
contains the angles of the rotation thus making it easy to check that the rotation will 
be allowed by the DOFs. 

O Point: The points defined by its 3D coordinates. 

O FlexionAngle: The angle on the XY plane 

O PivotAngle: The angle on the YZ plane 

O Number: The index of this alternative 

O Level: Which hyper tessellated half sphere 

O Neighbours: The set of neighbours at the different levels 
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2.3 Getting a first point 

The interface of' the technique resembles in many respects the interface of con- 
veutional interactive genetic algorithnis. Typically, a set of nine poses for a given 
articulated figure is produced and rendered in a dedicated window. This means that 

nine is the size of the population. This is very small, therefore we need to make the 
best eise of it. 

For a given limb. the computer needs to show it in as many different positions as 
possible to ensure the space is well explored. For this purpose, when trying to find a 
set of possible positions for a given limb, the search starts at the crudest decomposition 
level. All the points at this level which lie in the area described by the DOFs of the 

corresponding limb are selected. If the number of points selected is higher than the 

size of the population. the selection stops, otherwise the search continues but at a 
fixier detail until the number of points selected is equal or higher than the size of the 

population. 
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J figure IV. 8: Valid alternatives 

I'o move a limb, a sufficient number of 
valid alternatives has to be reached first. 
The process starts at the coarsest level 

and each valid alternative is selected. If 

not enough alternatives have been re- 
trieved, the process is restarted at one 
finer level until a minimum number of 
alternatives has been obtained. 

\V'hen enough configurations for each limb have been obtained, they are used to 

produce the set of poses. At first, this used to be a random process (that is, to define 

one joint, every configuration for that joint had an equal chance of being used). How- 

ever, it was clear that some configurations were more important than others (some 

configurations are more likely to be found in poses at some joint than others). For 
instance, configurations involving only the flexion axis were more useful than configu- 
rations involving both flexion and pivot. Configurations belonging to coarser level of 
decomposition also tended to be more important. 

So, a procedure was implemented so that these configurations were more likely to 
be selected than others. For this procedure to work properly, configurations had first 
to be sorted. The first sorting criterion is whether the solution alternative involves 

41 - 



Chapter IV. Generator 

only a flexion motion. The second criterion is the level of decomposition, the crudest 
solution alternatives being first. 

When debugging this code, to check that the sorting procedure was working prop- 
erly, solutions were not displayed randomly but from the first to the last. Surprisingly, 
this simple scheme was much more powerful than a pseudo-random selection. Random 

selection is one of the main driving force for interactive genetic algorithms but, here, 
it just shuffles a clearly recognizable order. This order is always symmetric and eases 
considerably the search for good solution. This is a physiological phenomena, pat- 
terns clearly appears from the order. Pseudo-random selection simply destroys these 

patterns and henceforth considerably harden the user's task. 

2.4 Getting next points 

Once an articulated figure has been positioned, it is used as a seed to produce a 
new population of poses. At the limb level, the problem is that knowing the position 
of the limb, how to get a new set of positions. 

DOFs are used to forbid the production of impossible poses. However, enforcing 
DOFs can be annoying when some uncommon poses have to be produced. So, when 
animators want to do something which is normally not allowed by the DOFs, they 

should still be able to do it. Consequently, when generating a new population of poses, 
DOFs are partly discarded. If DOFS are used to restrict limbs of going too far in one 
direction or another, they will be ignored, except if it is the first generation. However, 
if a DOF specifies that a limb just cannot do certain type of motions (e. g. flexion, 

pivot or twist), that limb will still not be allowed to do them. For example, for the 
humanoid, hips are not initially allowed to move. When generating new populations, 
they are still not allowed to move. 

To generate a new set of poses, a pose is used as a seed but the computer still 
needs to know how much variation is allowed to generate the new set of poses. The 

variation is called the mutation intensity and it is specified by the user by means of a 
slider. The higher the mutation intensity is the more different generated poses will be 
from the seed. 

The mutation intensity is then translated into a maximum distance from the limb 

positions of the seed. For each joint position, the most important solutions are selected 
to be displayed later on. The process is divided into two stages: 

1. At the first stage, all the positions which distance is smaller than the maximum 
distance are stored into a temporary array. 

2. Starting from the coarsest level of decomposition, all positions which belong to 
this level are stored into an array until the size of the array is greater than the 
population size (Fig. IV. 9). 

The procedure in Fig. IV. 9 will return a set of positions which can then be used to 
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position the corresponding limb. Again to make the best use of this set, first entries 
are displayed first. 
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/* 
* Retrieve all alternatives which are close enough 

for (i = GetNbAlternatives() - 1; i >= 0; i--) { 
P2 = Alternatives[i]->GetPoint(); 
Dist = Distance(P, P2); 
if (Dist < MaxDistance) AilValids += Alternatives[i]; 

/* 
* Retrieve alternatives at the coarsest level 

Level = MaxLevel; 
for (i = AllValids. GetNbElems(); i>0; ) 

if (AllValids[--i]->GetLevel() == Level) 
ValidAlternatives += AllValids[i]; 

/* 
* Retrieve at finer levels until there are enough 

while (Level >0 && GetNbValidAlternatives() < IdealNumber) 
Level--; 
for (i = AllValids. GetNbElems(); i>0; ) 
if (AllValids[--i]->GetLevel() == Level) 

ValidAlternatives += AllValids[i]; 

Figure IV. 9: Sorting alternatives 

Alternatives are used by order of importance. So they are sorted, flexion only and coars- 
est alternatives first. 

where Alternatives is the array of positions 
AllValids is the temporary array containing all positions within the 

required distance 
ValidAlternatives is the array containing the most important positions 
within the required distance 

3 Genetic structure 

Although the technique which has been implemented is quite different from an 
IGA, the vocabulary has been kept. 

3.1 Gene 

Each gene is associated to a limb. It defines the configuration of this limb. The 

structure of the gene is approximately like this: 
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class CGene { 
FlexionPivot; 
Twist; 
FlexionDof; 
PivotDof; 
TwistDof; 
ValidFlexionPivots; 
ValidTwists; 
PreviousAlleles; 

// Pointer onto a CAlternative object 
// Specify the configuration of the joint 
// Minimum and maximum flexion 
// Minimum and maximum pivot 
// Minimum and maximum twist 
// Set of flexion & pivot to choose from 
// Set of twists to choose from 
// Configuration already selected 

Figure IV. 10: Gene structure 

A gene completely specifies a joint configuration. It also contains the DOFs of that joint 
so that it can make sure the configurations it builds are valid. The last three attributes 
specify what are the valid alternatives and the one which have already been selected. 
They are shared by all genes. 

The first two attributes specify the configuration of the associated limb. The 

next three attributes define the DOFs of the corresponding joint. When a particular 
position has been used, its corresponding alternative number is added into the Pre- 

viousAlleles attributes which behaves like a bucket. Thus, when new configurations 
are needed the ones inside this bucket will not be selected again. When all possible 
solution alternatives have been selected, the bucket is emptied. ValidFlexionPivots is 

an array containing the set of valid positions to choose from to produce a new con- 
figuration. ValidTwists is the same except that the set of valid positions is only for 

twists. Both attributes are shared by all genes. 

3.1.1 The mutation process 

There are two types of mutation: 

1. Mutations that only concern flexion & pivot. 

2. Mutations that only concern twist 

Working on all three types of rotation at the same time is not efficient at all. First, 
there is a combinatorial explosion and second it makes it a lot more difficult to work 
out what is useful and what is not. The type of mutations that is enabled at any one 
time is specified by the user. 

When a gene is being mutated, it looks in ValidFlexionPivots and ValidTwists to 

see whether there is any valid positions and if any, chooses the first one which has 

not been selected yet. The ID of the solution alternative selected is then added to the 
bucket (PreviousAlleles). 
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3.2 Chromosome 

The chromosome is a structure which holds the set of genes. It is also in charge 
of interpreting the genes and of generating the phenotype. A gene contains all the 
information necessary to produce the configuration of its associated joint, that is the 
matrix which defines the position and direction of the corresponding limb and its 
children. The phenotype is simply the set of joint configurations, that is an array of 
matrices. 

The field FlexionPivot of each gene points onto a solution alternative. For this 
solution alternative, the X axis stands for the flexion axis, the Y axis stands for the 
main axis of the limb and the Z axis stands for the pivot axis. Joints usually use 
different axes. So, to produce the phenotype, the chromosome takes all its genes in 
turn, and for each, if there is a FlexionPivot solution alternative, it is projected into 
the limb space and transformed into a rotation matrix. If there is also a Twist position, 
it is translated into a rotation matrix which is multiplied by the previous one. The 
result completely specifies the configuration of the corresponding joint (Fig. IV. 11). 

for (i = 0; i< GetNbGenesO; i++) { 
Allele = Genes[i]->Allele; 
if (Allele->FlexionPivot) 
Matrix = Skeleton- >Limb[i]- >TransformToQuaternion(Allele->FlexionPivot); 

else 
Matrix = Identity(; 

if (Allele->Twist) 
Matrix *= ToMatrix(Allele->Twist); 

Limbs[i] -> SetJointMatrix(Matrix); 

Figure IV. 11: Building the phenotype 

For each gene, flexion, pivot and twist rotations are gathered in a rotation matrix which 
is given to the corresponding joint. 

3.2.1 The mutation process 

Using a conventional GA, mutation is only used to create new genetic material, 
in the hope it will be useful. It is not the main driving force. The latter is the 
reproduction process which brings good individuals together to produce even better 
individuals. In the original population, most of the genetic material is already there, so 
mutation is mainly used to bring back genetic material which may have disappeared. 

With an IGA, things are different. The original population is too small to contain 
all the possible genetic material. As a result, mutation is typically much higher and 
as important as the reproduction process. 

Using the generator, mutation is the only driving force (apart from the user). 
Therefore, we have to make the best use of it. When a chromosome has to be mutated, 
an array of boolean flags, one for each gene, is used. If the flag is enabled, the 
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corresponding gene is mutated. With the generator, unless specified not to do so, 
there is no point in not mutating a gene. This would simply be a waste of space since 
the resulting limb position would be the same as the seed. Consequently, all flags are 
enabled and all genes are mutated. However, it can sometimes be a hindrance. When 
trying to produce a pose, some limbs will be positioned faster than others simply 
because the ideal position was found faster. In the next generations, there is no point 
in mutating these limbs. If they are still mutated, it makes the job of the user harder. 
For example, if the arm is already set but the position of the hand is not quite perfect, 
it is more difficult to work on the position of the hand if the position of the arm 
changes. So, the user is allowed to enable or disable the body parts which will be 

allowed to move. 

void Mutate(const aInt& Masks) 
{ 

for (i = 0; i< GetNbGenes(); i++) 
if (Mask[i]) Genes[i]->Mutate(); 

} 

Figure IV. 12: Mutation 

For some reasons, some genes are not allowed to mutate. So, an array of booleans, 
one for each gene, is specified. If the boolean associated to a gene is set, that gene is 
mutated. 

4 Search Engine 

The search engine is inherited from the first implementations when the application 
relied on a GA to pose an articulated figure. As a matter of fact, it can still be used 
by a true GA with no modification at all. With the generator, most parameters are 
simply not used. 

In input, the search engine is given a population of chromosomes. The goal of the 
search engine is to produce another population of chromosomes. Normally, each chro- 
mosome also has a fitness value so that the fittest individuals will be used to generate 
the output population. The selection of individuals to produce new individuals could 
be performed in several ways, so a variety of genetic selection mechanisms have been 
implemented. The default one is called tournament selection and it is this one which 
is used by Generator. Typically, when the search engine needs a chromosome, this 
selector is allowed to choose between n chromosomes and returns the best. 

With Generator, a chromosome is extracted from the seed pose which is used to 
create the input population. So the genetic selector is not important, it will always 
return the same thing, that is a copy of the seed chromosome. 

Using a conventional GA, a variety of genetic operators may be used to produce the 
new population, one or more being able to operate at the same time. Each operator 
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has a probability of heilig used. With the generator, only the mutation operator is 
being used. It requires one chromosome in input and «will produce a single chromosome 
ill output. 

seed pose 

9niliat 
9opalaaoa 

Figure IV'. 13: Search engine 

- cn~ 

A population of chromosomes made from the seed pose is specified to the engine which 
will produce a new population of chromosomes ready to be decoded and displayed. 

Before the production of each new population, valid solution alternatives for each 
of the joints have to be selected and stored in au array shared by all genes (Fig. IV. 14). 

For the first generation. a dummy chromosome is created and each gene is called 
in turn to select a valid set of alternatives which is then stored in the array of valid 
solution alternatives. DOFs constrain the selection process, so that useless poses 
cannot he produced. 

For the next generations. the poses built by the user are used as seeds.: chromo- 
some is extracted from this pose, and each of its genes is asked to produce a new set 
of valid solution alternatives, given a maximuin distance. 

The application is now ready to produce the first or the next population of chro- 
mosotnes. During the mutation process, each gene will retrieve the next unselected 
solution alternative. At the end, chromosomes will generate the phenotypes which will 
be used to produce the poses. These poses are then rendered and displayed. 

5 Interface 

5.1 Producing the first population 

\VIieii the application is launched, a set of nine standing articulated figures is 
displayed. Although there is no restriction to the type of articulated figure which can 
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Figure IV. 14: Array of valid alternatives 

Valid alternatives (that is the main ones which do not break constraints) for each gene 
are first selected. They are then stored in an array statistically declared, that is an array 
shared by all genes. Thereafter, each gene will retrieve an alternative and mark it as 
selected so that it will not be selected again. 

be implemented, only a humanoid has been encoded to test the system. 

. The first generation will create a population of poses for which each limb position 
is sorted by order of importance, that is flexion and coarsest position appear first. 
DOFs are also used to avoid the generation of impossible or unlikely positions. For a 
given joint, the space of configurations is made of two sub-spaces which are the space 
of flexion&pivots rotations and the space of twist rotations. Although these two spaces 
could be searched at the same time, in practice, this is too inefficient. If the first space 
as cardinality n and the second has cardinality m, the joint space (the space of joint 
configurations) has cardinality n*m. This is a space of much bigger size, which is 
consequently much more difficult to search through. The user selects which space to 
search through and nearly always, the first generation is used to search the space of 
Flexion&Pivot type positions. They are the ones which carry the most information. 
If twists are necessary, they are used at the end. 

After the poses have been generated, they are displayed (Fig. IV. 15). The number 
of poses displayed corresponds to the size of the population. Nine poses was found to 
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Figure Iß'. 15: First generation 

At the first generation, a set of nine poses are displayed. They all differ strongly from 

each other. This allows users to produce many types of pose eery quickly using just 

what is being displayed. 

he an ideal number. it is neither too small nor too big. If the size of the population 
is too small, the computer cannot display enough information to make the interface 
interesting. If it is too big. it is very difficult to snake everything fit on the screen. 
With a bigger screen. it might be worthwhile to investigate the use of the interface 

with a bigger population. 

Once built, the articulated figures are rendered on their own sub-«inclo«". These 

suh-windows are composed of three views. The train view displays the articulated 
figure at its original size. A camera is used when rendering the articulated figure. 
Rotating the camera allows the user to see the figure from different angles. Beside the 

main view, the articulated figure. viewed from the right and the top, is also displayed 

at half its original size. Side vvie«ws are very helpful when some litiibs are hidden or 
when it is difficult to w(k out their true positions. 
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5.2 Producing the seed 

The next task for the user is to assemble a pose which will be used as a seed to 
generate the next population. Initially, this pose represents a standing figure. 

5.2.1 Selecting body parts 

At the first generation, some interesting positions have already been produced. 
There is also a great deal of variety and so most of the configurations that the user 
will be interested in will be there. The user can select them directly from the screen. 
Interesting joint configurations can be selected by clicking on the corresponding limb. 

A 2D point is obtained. This point truly lies on the projection plane. So, by 
knowing the projected positions of each limb, it is easy to work out which one is the 

closest. However, this has a problem. It is not possible to work out which limb is in 
front. For example, what the user does when selecting a limb is to click on what is 

visible, that is its graphic representation. The projected skeleton is just a set of line 

segments. So, using it, the computer might select an equally close limb or even closer 
limb, but one which was hidden by the one the user truly wanted to select. 

A better implementation would be to use what the user expects, that is the rep- 
resentation of the articulated figure. A ray starting from the position of the camera 
and cutting the projection plane at the position clicked by the user is easily obtained. 
This ray is in world coordinates and intersects the graphic representation of the limb to 
select. Because we do not have the coordinates of the limbs in this coordinate system 
(although they could be easily obtained), the ray is projected back in the articulated 
figure coordinate system. 

Cameras are used to project objects composing the scene to obtain their new 
coordinates before rendering them. One might think that using the inverse of the pro- 
jection matrix of the camera would project back projected points into their original 
position. However the projection matrix is not invertible3. So instead, the transfor- 

mation matrix, that is the translation concatenated to the rotation of the camera, is 

used. 

Applying the inverse of this transformation projects back coordinates to their orig- 
inal value: 

P8 = [0,0,0,1] x M-1 (IV. 4) 
Pf = CxM-1 

3A11 points from a single line cutting the lens of the camera will be projected onto exactly the same 
point on the projection plane. There is no way the computer can work out the original position of a 
point if it only has its coordinates on the projection plane. 
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where C is where the ray cuts the projection plane 
M is the transformation matrix associated with the camera 
P3 will produce the position of the camera. So in fact, because it is already 
known, this operation is not necessary. 
Pf is now just a point belonging to the ray which will enable us to find the equation 
of the latter. 

So, the limb to select is the one which will cut the closest object representing it. 
An intersection algorithm was devised for each graphic primitive (sphere, cylinder, 
cube and cone). They are all based on some simple geometry principles such as the 
intersection of a line and a point, the intersection of two lines and the intersection of 
a line and a plane [G1a90]. 

The intersection of a point and a line is used with the sphere and is performed as 
follows: 

The ray is represented by the following equation: 

Lt(s) = Pr + Vs (IV. 5) 

then the closest point of the ray to the point is: 

(Pr 
I VC) 

s V1 
(IV. 6) 

L,. (s) will give the closest coordinate of the ray to the 3D point C. If C is the 
centre of the sphere and the distance between the L,. (s) and C is less than the radius, 
then the ray intersects the sphere. 

For the intersection of two lines, we have the following equations: 

Li(s) = P, + V,. s (IV. 7) 

L, (t) = Pc + Vet (IV. 8) 

The closest point on the two lines is: 

((PC-Pr)XVr)"(VrxV) 
(IV. 9) IVrxVC12 

So if the second equation defines a cylinder or a cone, and P, is one of the sides, 
and VV is the unit vector of the cylinder or the cone respectively, the one thing to make 
sure is that the value of 1 lies between 0 and 1. Otherwise the ray might intersect the 
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line of the cylinder or the cone but not these objects themselves. s and t will define 
two coordinates and if the distance between them is smaller than the radius, the ray 
intersects these objects. For the cone, things are a bit trickier and we omit the details. 

A cube is made of polygons and each of them describes a plane. To see if a ray 
intersects a polygon, we need to find the point at which the ray will intersect the plane 
and if this point is inside the polygon. 

A plane is defined by two terms, let's say JN and Jd. JN is the normal of the plane 
and Jd indicates the position of this place. Jd is computed like this: 

Jd = -P " JN (IV. 10) 

where P is a point of the plane. 

From the previous equation, we can replace P by a point somewhere on the ray: 

(Pr+VS)"JN+Jd=0 (IV. 11) 

Solving for s, we get: 

Jd+Pr"JN 
(IV. 12) Vrs"JN 

A polygon of n vertices can be viewed as a set of n-2 triangles. So if P is a point 
inside a triangle which vertices are VO, Vi and V2, then 

PVOV2 (IV. 13) 

and a >= 0, ß >= 0 and a+ ß <= 1 

The limb to select is the one whose representation was intersected by the ray and 
is the closest to the camera. 

In some occasions, it may be difficult to select one limb that way. This is the 

case when the limb to select is pointing straight towards the camera. In such a case, 

neighbouring limbs are likely to be selected (Fig. IV. 16). In some cases, limbs behind 

the one to select but closer to the ray defined by the mouse click will be selected. In 

other occasions, it might be interesting to select more than one limb at once. In such 
cases, the user simply draws a rectangle and all the body parts wholly inside it are 
selected. Using the camera, a three-dimensional rectangular region is obtained and all 
limbs lying entirely inside are selected. This rectangular region is defined by four lines, 

all parallel to the camera direction. To test if a limb is inside it, it is only necessary 
to check that its projected X and Y coordinates are inside the rectangle(Fig. IV. 17). 
Any views, the main one or the two small ones beside it, can be used to select the 
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Figure I\ 
. 
16: Selection atnhig'lit y' 

In cases illustrated by the above picture, the selection is ambiguous. The liip will prob- 
ably not be selected because it is hidden. Ah hough the user probably wanted to select 
the left thigh. it is likely that the left leg will be selected because it is in front. If the 
ray is closer to the hip, then it is this one Ichich will he selected. 

limbs. The siiiall views are useful when it is difficult, to perform a selection using the 

Il lain view. 

b 016.4 
\ 

Figure IV. 1 i: Selecting a group of limbs 

to solve the problem shown in Fig. IV. I6 and to allow for multiple selection, the user 
can draw a rectangle on ttie screen. :A volume is deduced and all limbs lying entirely 
inside are selected. 

\V'lieii a 11 1111) is selected. it is copied in the seed 1)osc,. No confirmation is asked. 
The Seed pose is then rendered and clispla, yeci. This lose is displayed in a separate 
Wciui(io«W hesi<ie the main one (Fig. IV. 18). 

\V11 91 sr1P("tiug valid altc"riiatives for joints, the process tries to retrieve am inimutti 

of it positions. n being the size of they population. Barely will it retrieve exactly 71, 

1)ositioIIS. Soiuetinies it will retrieve Up to three tunes Biore. The selection inechanisttt 

works at a (IP("unil)ositioni level granularity. First, it selects all alternatives which may 
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be clisj)lave(1 independently of their importance. Then it selects all alternatives at 

any. given (letails. Starting frone the coarsest to the finest until there are at least n 

altertiativ-es (Fig. IV. 9). Coilseyuently. it may select snore alternatives than it was 

asked for. Some of these alteriiatiVes will not be displayed because they Nvere judged 

not important enough. Although this is usually the case, they will still be required for 

some loses. To reach them. the user would have to build a seed pose with what there 
is and ask the computer to produce it new generation. Since this is it bit slow, the 

concept of Imp-, Was used. For each generation, three pages of poses are cotiiputed 

which can he accessed at ativ time. Thus, if a configuration cannot be found on the 
first page, it tnav. gell be oil the second or third one (although rarely the third page is 

used). Pressing N brings the next page whilst pressing F brings the first page. Hot 

keys were used to increase the interactivity of the system. The implementation of this 

Concept resulted in a great speed-111). 

5.3 Producing next generations 

Pose. 

ht 

op 

Press this Dutton when ready Ok 

Figure IV. 18: Pose builder 

Using the set, of poses generated in fig- 

ure IV. 15, this pose H°as constructed. It 

might represent, a person sitting on some 
invisible chair and stretching the arms. 

When the user is more or less satisfied with the seed pose (Fig. IV. 18), the next 

generation can he produced. Because all loses are derived frone the saiiie seed, gen- 

crated poses are all more or less similar to their creator. The higher the mutation 
itrtenisitY, the more different the generated poses will be. The mutation intensity is 

directly controlled by the user by ineaiis of a slider. To give an idea of how strongly 
lirºil)S will he affected by this parameter. cones are rendered on the skeleton of the 

articulated figure and (lisplayed onto a dedicated window(Fig. IV'. 23). They are used 

to show the area where the positions the computer will come up with will lie. 

Using the first population, a good approximation of the target pose is easily pro- 
duced. The second generation is usually used to search the twist rotations space. 

III this example. the anus have to he rotated so that the hands point towards the 
hips and the right leg also has to he rotated so that its foot lies on top of the other 
leg. This will be clone by selecting imitations vhiicli only perform twists. Because 
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Figure Iß". 19: Second generation 

This generation is for twist t, vpe rotations. -Notice that the torso has also moved: this 
may be a hindrance because it makes it harder to see the positions of the arms. Only 
limbs shown in Orange color can twist. 

«"e' want to trist the antis and the leg it lot. the mutation intensity is brought to its 

tnaxitºutrnt. Once the second generation hass been produced (Fig. IV. 19), the next pose 
(Fig. IV. 20) is de'rived. 

6 Tuning 

L ýuýtllý. Duce Hill ttýe'r iý tºture' ur less satisfied with the current solution, a bit of 
fine tinting still has to be performed. For example, a set of limbs may not be hetzt 

enough, etc. It is also very nice to experiment wvitlt poses similar to the cttrreiit oil(,. 
(hic' of the advantages of this interface is that often users w ere looking for a given 
1>osc' but VI1(le(I up producing another one, not because they could not produce the 
one they had origittall, " in tuiuci, but rather because they managed to create a pose 
which looks better that' tlte' Otte they were looking for. This purely subjective choice 
«"ottlci not so easily he expressible' using other more conventional hosing systems. 
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Figure IV'. 20: Second pose 

I sing the second generation, hands were 
brought towards the hips and the left 
foot now lies on top of the right leg. 

t'sually. two geIi ratiOus are regtiirccl to 1>rociucc a pose 1. A thirst one might be 

tuIC(IsSilrv. for ttiiiinig. Ill 0111' ('xainpk. the position of every single limbs was slightly 
("hatige(1 toi bring a touch of -naturalness" (Fig. Iß'. 21). 

Q 

w 

Figure IV. 21: Third pose 

To improve the realism, another genera- 
tion was produced from which this pose 

179 

was obtained. 

In iiiaiiy animations. characters which stand completely still (lo not look natural. 
It is ä111c11 better if they would iiiove it leit. The pose which has been produced could 
be used ill it ac<tuelice featuring a nueetiiig between people. It, iiiight move it bit, use 
its Band. turn its head. move its feet. Using traditional techniques, this is still a lot of 

work. Using this model. it single generation (Fig. Iß'. 22) can produce as many different 

poses its there are on the sviudow, all usable for this type of aniniatecl sectuc, nce. 

4If nt, twist is required. then one generation is general Iv enough. 
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Figure I\". 22: Fourth generation 

Producing several iOSeS aightIv different frone each other is useful for mann animated 
se<fuvnres to firing the character to life. 

6.1 Selecting, part of the articulated figure 

\V'hell ºººutat ing t l1( seed pose to produce a new population, the computer Nvill 
alter all limbs. This may bei a hindrance. For example, if the torso is already correctly 
1>Iýu º ci. ºnoviººg the torso again will liar(leu the selection of a correct aria position. 

To OVPrcoiuc these problems. usc"rs call enable or disable liiiihs allowed to inovc 
using the same window already used to (lisl)Iaý the skeleton and its corks (Fig. Iß 

. 
23). 

When the computer is asked to provide a new set of positions, only the enabled body 

parts will be altered. Selected body parts can also be completely reinitialised. 

6.2 Virtual lall 

Wh ell the art icllilt v(l hgiims are rendered to their full size, a special camera is 

used. This camera can be rotated to tie"' the scenes frone different angles. Ali object 
called a virtual ball gill nºove the virtual camera on the surface of a sphere with a 
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Figure IV. 23: Skeleton window 

To forbid some limbs to move, they have 
to unselected. Here, the spine and the 
right leg have been disabled. Cones show 
where the next alternatives will lie. 

specified radius. It makes sirre that the direction of view of the camera always (points 
towards the (entre of the scenne. where the articulated figure lies. To bring the camera 
to a given position a (juaternion is used (Fig. IV. 24). 

osaa aYvo w 

111 

ý1ýeý 

Figure Iß'. 24: Virtual ball 

Pressing first the mouse button down 

specifies the position of the source vec- 
tor. ]teleasing it specifies the destina- 
tion vector. With these two vectors, a 
quaternion is obtained which defines the 
new position of the camera and its orien- 
tat. ion so that it appears that the object 
has been rotated. 

This tool can he rendered oil it canviLs on its own. For more convenience, it can also 

tose a catºva' ill W11W11 it scene is rendered. When this is the case, it is usually Iliddeit. 

Because soinctitnes inoiise buttons are already used, it is possible to specify it flag to 

this tool sayiitl; than it will obey mouse events when a key stich as shift or control is 

pressed. III t his application. the iuouse was already used to select body parts. So, the 

virtual ball was ºnade to ohey hiºouseevents only when the control key was pressed. 
So. pressing control and the left "'Ouse lntttoti wheti the mouse is moved will rotate 

the scene. This tool was also illlpletiieuted so that the outcome was intuitive to the 

user. Thus dragging the niouise to the right will rotate the articulated figure to the 
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right, etc. To make the virtual ball even easier to use, double clicking was used to 
reset the camera in the default view. 

6.3 Undo operations 

When trying to select a limb or a group of limbs, it is common to make mistakes. 
The computer tries to work out what the user wants to select but it may get it wrong. 
So, clicking on a limb might select another one. Before copying the selection into the 

seed pose, a confirmation could be asked for but this would drastically slow down 

the selection process. This would also be unnecessary most of the time. The obvious 
solution is to be able to backtrack. For this purpose, a simple undo command has been 
implemented. Before generating a new pose, the current one is saved. So, to undo an 
operation, the saved pose is copied into the seed pose. In fact, the containment of the 

seed pose and of the saved pose is exchanged. Thus, undoing twice is the equivalent of 
doing nothing at all. Again, for greater interactivity, a hot key (Control-Z) was used 
to activate the command. 
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Conventional techniques 

1 Introduction 

The design of a new technique is only the first part of a research work. In most ar- 
eas, techniques will already exist. The next step is to evaluate how good this technique 
is, compared to existing ones. 

To pose an articulated figure, two main techniques have already been developed. 
These are forward and inverse kinematics. There are some others and variations based 

on these two but to evaluate the generator against all possible techniques would have 
been infeasible. 

An inverse kinematic system was implemented since an animation program using 
such a technique was not available at the time this research was taking place. However, 
LifeForm [Mac], a software which uses key-frames to animate articulated figures, was 
available. It also comes up with a positioning system which uses forward kinematics. 
However, a program using forward kinematics was implemented too, since using an 
entirely different interface from the other two techniques might bias the results of the 

comparative study. 

From this, it is clear that the evaluation will be performed using a particular 
implementation of two known techniques. Some implementations are better than 

others, the ones presented here may not be perfect 1. So, whatever the outcome of the 

evaluation is, it will just say that one particular implementation of a given technique 
is better than the implementation of another technique. This tends to prove that the 
first technique is better than the second one. 

'And in fact, this study allowed me to realise that they were not perfect. 
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2 Forward kinematics 

2.1 Review 

Forward kinematics is a simple but powerful technique. An articulated figure is 
made from a set of segments called limbs connected together by means of joints. It 
is usually represented by a tree, where each node is a joint. At each joint, there 
is a transformation matrix. This matrix is used to rotate the associated limb and 
consequently all limbs down the tree connected to that one. It is also used to project 
the limb into the body coordinates. Quaternions were not used because either they 
would eventually have had to be converted into a set of matrices to take into account 
previous rotations and translations, or a set of quaternions and translations vectors 
would have had to be used and this would have quickly become more time consuming 
than simply using matrices. No other transformation such as scaling is allowed. There 
are three types of rotations: 

O Flexion: This is a rotation of the limb which is influenced by the joint and 
causes the motion of all limbs linked to this joint. This flexion is carried out 
relative to the joint point and a flexion axis which has to be defined. 

O Pivot: The pivot makes the bending axis rotate around the limb which is influ- 
enced by the joint. The pivot axis is the axis perpendicular to the flexion axis 
and the axis of the limb. 

O Twisting: Twisting causes a torsion of the limb which is influenced by the joint. 
The direction of the twisting axis is found similarly to the direction of the pivot. 

To position an articulated figure, the simplest solution is to specify the transfor- 

mation matrix at each joint. Forward kinematics is about just that. Obviously, there 
is little chance that an animator, who is usually not a mathematician, will be able to 
specify directly a set of matrices for each joint. In a positioning system which uses for- 
ward kinematics, the interface translates animator instructions into a set of matrices 
which specify the new position of the articulated figure. The result is then rendered. 
Because calculations are simple, all this is easily performed in real time. 

The interface is what will differentiate between a good positioning system and a bad 

one. To animate legged animals, Michael Girard implemented a key-framing system 
called PODA [Gir86, Gir87, GM85]. To produce key-frames, forward and inverse 
kinematics were used but he did not explain how the interface behaved. Thomas 
Calvert & al. implemented LifeFormstm, an animation system for the Macintosh and 
other platforms[SC92]. Literature on this particular topic is scarce. Typical systems 
use sliders and another type of object which are refered here to as joint balls [Mac]. 

Experimentations were performed with three types of interface: 

1. Three sliders, mapped to rotations around the X, Y and Z axis, were first used. 
The interface was neither easy nor intuitive. 
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00 01" 

Figure V. 1: Joint ball 

The joint ball is shown in its three possible states: 

1. Nothing is selected or not associated DOFs are enabled 
2. Only one DOF is enabled (usually flexion or twist) 
3. Both DOFs are enabled (flexion and pivot) 

2. The sliders were then mapped to rotations around the flexion, pivot and twist 
axis instead. The intuitiveness of the interface improved but it was still rather 
difficult to use 

3. Joint balls, a type of widget used by LifeForm, were implemented. A joint ball 

can deal with two angles at the same time. If only one angle has to be dealt with, 
then a joint circle is used instead. Interaction is intuitive and fast (Fig. V. 1). 

2.2 The interface 

2.2.1 Selection 

The window used to position the articulated figure is shown in Fig. V. 2. The same 
window is used by all techniques, thus avoiding all bias due to a possible different 

environment. 

In the main view, the articulated figure is rendered at its original size. A virtual 
ball is used so that the figure can be seen from different angles. By default, the camera 
is placed at the front of the scene. On the right hand side of the window, the same 
figure is rendered at 40% of its original size from two different angles. The view at 
the top uses a camera placed on the left hand side of the articulated figure, the one 
at the bottom uses a camera placed above the articulated figure. The two objects on 
the left hand side of the window are the joint balls. 

Using this interface, only one limb can be moved at a time. In other words, the 
interface allows to work on only one joint configuration at a time. 

Before trying to move one limb in one direction or another, the first thing to do is 
to select this limb. This is performed by double-clicking on the rendered limb either 
on the main view or on one of the side views. The same algorithm detailed in the 

previous chapter which uses a ray thrown from the camera and cutting through the 
limb to select is used. 
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Poser Xj 

ýkl Right 

Top 

Press this button when ready: Ok 

Figure V. 2: I'usees builder 

The same window is used to produce by all three techniques to avoid any bias related to a different 
interface. The objects on tle left are the joint balls. The figure is shown on the right from two 

different viewpoints. 

2.2.1.1 Feedback to the user: The balls on the left hand side are called joint 
balls. "Tie uºie at die top is used for flexion and pi-, "ot, the other one is used for twist. 
A joint ball operates «"itil two degrees of freedom (DOFs). It has three modes of 
oß)(1 t iCCus vVliich depends on the DOFs (Fig. V. 1): 

1 The two, DOFs are empty (also said to be disabled), so the joint ball is disabled. 
It is represented by an empty circle. 

1 Only the first DOF is enabled (flexion DOF normally). The joint ball is repre- 

. sentecl by a circle and a red line segment inside. It is the size of the radius, and 
is drau"ui starting frone the center of the circle. The line segment can be rotated 
around to l)ro<lucc' the rotation angles. Angles can range froh -180° to 180°. 
Mapping fron' the minimutnº to the maxitinim angle allowed was also tried, but 

t leis was found to be harder to use. 

1 Both DO F, are enabled. The joint hall is reI>rescilte(I by a sphere. A line 

. hnielit, the size of the radius, is drawn, starting from the centre of the sphere. 
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The end point of the line segment can lie anywhere on the surface of the sphere. 
The sphere is transparent so the whole line segment can be seen. The position of 
the end point defines two angles, one for each axis of the DOFs. Again, mapping 
from the minimum to the maximum angle specified by the DOFs was tried but 
it just made this tool less intuitive to use. So instead, angles can take values 
from the range -180° to 180°. 

The conversion between the current joint configuration to these two widgets is 

easily performed. A joint configuration is made of a position on the hyper tessellated 

sphere for flexion & pivot and a position on the hyper tessellated circle for twist. The 

main axis for the tessellated sphere is the Y axis whereas it is the Z for this widget. 
So exchanging Y and Z coordinates and mapping onto the radius of the widget is the 

only thing which needs to be performed. 

The use of the tesselated sphere is not a requirement of this implementation of 
forward kinematics. Neither it is for the implementation of inverse kinematics which 
will be detailed later on. During this work, an application was built which contained 
all three techniques. It was felt that it would be a nice feature to be able to switch from 

one technique to the other. Consequently, poses generated using one technique had 
to be made understandable to the other techniques. Since the common denominator 

was the chromosome, for each technique, a chromosome was eventually produced. 

2.2.2 Positioning 

Once the selection has been performed, the user just has to drag the line segments 
of the joint balls around to position the selected limb in the desired position. Each 

time the mouse is dragged, line segments representing rotations angle have to be 

updated. Using the circle, the position of the line segment is easily computed. It is 

the vector made of the mouse position relative to the center of the circle normalised to 
its radius. Using the sphere, the mouse produces X and Y coordinates. Using these, 

the Z coordinate is easily obtained: 

Z= R2-X2-Y2 (V. 1) 

where R is the radius of the sphere. 

At the same time, the articulated figure needs to be rendered again so that the user 
sees the result. For this purpose, the line segment is projected back from the space 
of the joint ball onto the hyper tessellated sphere space or hyper tessellated circle 
space. At this point, the position obtained corresponds just to a 3D point but not to 

a valid alternative. So because, a valid alternative is needed, it has to be retrieved. 
The positions on the tessellated sphere could be searched through sequentially but 

this would be too slow. Instead, the neighbours attribute of the alternatives structure 
is used to speed up the search. First the closest point at the highest or crudest level 
is selected. Then its neighbours at the next level of detail are searched through to 
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retrieve the closest to the position being searched. The closest one is then selected 
and the process is repeated one level of detail finer until the finest level of detail has 
been searched. In pseudo-code, this gives something like thisThe pseudo-code is: 

/ºº11ººtºº"t1º1º"ºº"ºº"""tººtº1ºº"ºººIºIt1ºººRRºR"ºººRºººtººIt1º55.5/5/ 

GetAlternative: Return the closest point on the hyper tesselated 
" sphere or circle to Point " 
t "R 
' INPUT : Point - Retrieve the closest alternative to '" 
' OUTPUT: func - The closest alternative '  
00.1"I"""It10º0ºº"""t"tttºI"RR"ºººº1ºººRltttº11111tºRRºRtt RºIIRIIiRºt/ 

CAlternative& GetAlternative(const iCPoint3D& Point) const 
{ 
unsigned fit i, CurrentLevel; 
CAlternative . Best, . Current; 
long Dist, BeetDist; 

/" 

Select the closest point at tI'e crudest level of detail 

"/ 
Beet = Alternatives[O); 
BestDist - Distance(Point, Best- >GetPointo); 
for (i = 1; i< NB CRUDEST ALTERNATIVES; i++) { 

Dist = Distance(Point, Alternatives[i]->GetPointO); 
if (Dist < BestDist) { 
BestDist = Dist; 
Beet = Alternetives(i]; 

} 

/" 

" Search through all lese! of details 

"/ 
CurrentL*vel = Best->GetLevel() - 1; 
while (CurrentLevel 1= 0) { 

Current as Best; 
for (i = 0; 1< Current->GetNeighbours()[CurrentLevel]. GetNbElems(); i++) { 
Diet = Distance(Point, Current ->GetNeighbours()[CurrentLevel][i]->GetPoint()); 
If (Dist < BestDist) { 

BestDiet = Dist; 
Best = Current- >GetNeighbourso[CurrentLewl][i]; 

} 
} 
CurrentLevel--; 

} 
return *Best; 

} 

Figure V. 3: Alternative from 3D vector 

This sample code is used to retrieve the closest alternative on the tessellated hyper- 
sphere to a direction vector. The process starts by retrieving the closest alternative at 
the coarsest level of detail. It then proceeds by searching its neighbours at one level of 
detail finer, recursively, until the finest level of detail was searched through. 

Even with forward kinematics, the chromosome structure is still being used. This 
is mainly to preserve implementation simplicity. The alternative retrieved is used to 

modify the gene encoding the selected limb. The chromosome is reinterpreted and the 

result displayed. Because most parts of the articulated figure have not moved, this 

part is specially optimised to avoid rendering the entire figure but just the parts which 
have moved. 

3 Inverse kinematics 

Sometimes called goal-directed positioning, inverse kinematics has become a pop- 
ular technique to pose articulated figures in the past few years. Instead of having 
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to move every limb one by one, one has only to move the tip of a given limb called 
end effector, in a particular direction and the computer will move as many limbs as 
necessary for the end-effector to actually follow the path defined by the user. 

3.1 Review 

3.1.1 Inverse dynamics 

Although inverse dynamics are not inverse kinematics, inverse dynamics have also 
been used to position articulated figures. Furthermore, the technique bears quite a 
few similarities with inverse kinematics, hence this is why it is discussed here. 

In 1988, Forsey and Wilhelms [FW88] used inverse dynamics to pose an articulated 
figure, a humanoid in their example. Although inverse dynamics is a lot more compu- 
tationally expensive than inverse kinematics, they started from the assumption that 
because inverse dynamics are based on physics, posing figures would be more intuitive 
to the user. 

The mass of each limb of the articulated figure was automatically computed from 
the volume of each limb (limbs were represented using cubes). This avoided the effort 
to the user of having to specify each of them. A fourth order Runge-Kutta scheme was 
used for the dynamic computation. Goals had to be placed before the computation 
could take place and not before. This limited the interactivity of the system. Without 

entering in the details, the main drawback of the system, as one would have realised, is 
the time it takes to do the computations. On modern computers, the technique would 
still be too slow to allow for interactive work. By truly interactive, it is meant that if 
for example, the hand is grasped and moved around, the hand must move around in 

real time, i. e. something like 12 frames a second. In that system, the new position of 
the hand had to be specified before the computation could take place. 

3.1.2 Analytical solutions 

When trying to position a 3D chain, a set of equations can be obtained [KB82]. 
Solving these equations will produce the orientation of the different segments to achieve 
the goal specified. 

If the goal is perfectly constrained, i. e. if the number of DOFs is equal to the 

number of constraints imposed by the goal parameters, then an analytic solution can 
sometimes be found [KB82]. The goal parameters are the position of the end effector 
or the area where it should lie, but also the orientation of the end effector, the limits 

at joints, etc. 

Algebraic solutions have two main advantages over numerical techniques. First, 
they are performed more quickly and, second, they will find all possible solutions. 
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Unfortunately, they have been used with simple systems only and there is no guarantee 
that a solution will be found. 

When the system is under-constrained (it is said to be redundant), that is if there 
are more DOFs than constraints, it is sometimes possible to find solutions analytically 
but it is usually better to fully constrain the system first and then to try to find an 
analytic solution. 

Analytical techniques may produce more than just one solution and they do not 
ensure these are valid, since DOFs are ignored during the calculations. 

3.1.3 Numerical solutions 

With perfectly constrained systems, numerical solutions typically involve differen- 
tiating the constraints equations to obtain a Jacobian matrix J. From J, changes of 
the joint positions result in changes in the orientation of the limbs. To perform inverse 
kinematics, the Jacobian has to be inverted. Knowing the position of the end-effector, 
the Jacobian will produce the necessary changes in the joint positions. Inverting the 
Jacobian is computationally expensive. The complexity of the matrix greatly increases 
with the complexity of the articulated figure. Numerical solutions relies on iterative 
techniques to find a solution. At each iteration, all the entries of the matrix need to 
be evaluated. 

Numerical solutions always converge towards one solution. Nothing is there to 
ensure the solution will not break joint limits. During the search, special care must 
be taken to ensure the solution is valid. This further adds to the computational cost 
of the technique. Since iterative techniques are used, the solution greatly depends of 
the initial estimate of the solution. 

With redundant systems, a more general approach in which an objective function 

which has to be minimised is generally used. Possible objectives are the minimization 
of time, energy or displacement. The method of Lagrange multipliers is used [Whi72, 

uLM96]. With a system of no joint limits, it leads to a perfectly constrained system 
which can be easily optimised. The method will find all minima for the objective. 

To solve for articulated systems with joint limits, minima that do not satisfy joint 
limits can be simply discarded. Another method is to eliminate the inequalities by 

adding a new variable and an equality constraint. If there are n DOFs, there will 2n 

additional variables to solve. Another way is to increase the value of the objective 
function when joints reach their limits. These are referred to as penalty functions. 
Another technique is to ignore inequalities until a joint limit is exceeded in which case 
the joint is brought back to a valid configuration. A discussion about these techniques 

can be found in [WC78]. 

In all cases, the minimisation of the objective function is a computationally expen- 
sive task. 
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3.1.4 The multiple constraints solution 

In [BMW87, BMB86], Badler & al. evaluated the potential of a six DOFs input 
device to position an articulated figure amongst other things. The interface of their 
system was similar to the one presented by Forsey [FW88]. An end effector was 
selected and a position to reach was specified. An original and simple algorithm was 
used to solve the inverse kinematics problem. With a chain of n limbs where 0 is the 
root and n-1 is the end effector, the algorithm looks like that: 

1. j=n-1 
2. orient segment j toward the goal 
3. new goal = (old goal position) - (length of the segment j) 
4. j=j-1 
5. orient segement j toward the new goal 
6. if (segment j was oriented toward the goal) OR 

(orientation is beyond joint limits) then goto step 4. 
7. if U is equal to 0) OR (distal joint of segment i has reached its goal) stop 
8. goto step 1. 

Figure V. 4: Simple inverse kinematics algorithm 

This algorithm relies on a simple recursive orientation scheme of the different limbs of 
the kinematic chain. Although Badler & al. describe this algorithm as being a simple 
and not clever implementation of inverse kinematics, it seemed that it achieved what 
was asked from it. May be an idea to investigate further. 

We clearly see that, as the complexity of the articulated figure increases, the num- 
ber of iterations might become huge. However, although they wrote "it was not an 
efficient or clever solution to the problem of inverse kinematics", it seems that it did the 
job. Maybe it is an alternative to this common problem worth investigating further. 

3.1.5 The workspace solution 

In [Kor82, KB82], James Korein developed a positioning system which involved the 

computation of pre-computed workspaces to build a perfectly constrained kinematic 

system. The latter could then be solved analytically. A workspace is defined as the 

volume which can be reached by a segment and all segments connected to that one 

until the end-effector. For example, a chain made of three segments ql, q2 and q3i their 

workspace is M, IV2 and IV3 respectively (Fig. V. 5). To reach a point p, this point 

needs to be in workspace tiV1. If not, it is unreachable. If it is, ql needs to be rotated 
sufficiently so that p lies inside WV2. The process is repeated for the next limbs. The 

pseudo-code is: 

Each adjustment requires finding the intersection between a workspace surface and 

a line or circle. The final links of the chain which comprise a perfectly constrained sys- 
tem can be solved analytically. The method requires pre-computation and storage of 

workspaces. Workspaces of high dimension requires a lot of memory and make the in- 
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`W2 

,2 9ý3 

W3 

�ný 'WI 

Figure V. 5: Workspaces 

A workspace defines the volume in which 
a limb and its children can move. Here 
lt"i represents the volume that Qi, Q2 

and Q3 can access. It includes 1V2 and 
1 V3. 

if goal p is not in 11', 
then it is not reachable: give up. 

Other vise: 
for i=1 to number of joints in the chain 

adjust q, only as much as is necessary so that 
the next workspace iT, +i includes the goal p. 

Figure V. 6: Inverse kinematics using Nvorkspaces 

Work-spaces allow tu determine if a goal is inside the reach of a kinematic chain. Ad- 
justing joint configuration just enough so that the goal is still in the reach of the next 
sul)-kineinatic chain allows to eventually solve the inverse kinematic problem using an- 
alvt ical niet hods. 

tersection between workspace surfaces and lines or circles harder and computationally 

expensive. 

3.2 The interface 

3.2.1 Select ioii 

The window. already usvd for forward kinematics and displaying the seed pose, is 

used again for inverse kinematics (Fig. V. 2). Again, this is to avoid all bias frone using 

a different interface. 

To select a limb. the user simply needs to double click oil it. The same algorithrii 
used for forward kinciuatics is used to fitul out Which limb to select. To show that 

a lind) Iia; been sele(t('(I. volumiirs of tli(e Iinil)s are rendered in reverse triode, that is 
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dark becomes light and vice-versa. 

Sometimes, moving a limb will also move other limbs to allow the end effector to 
follow the mouse. When the other limbs are already positioned, this is annoying. To 

avoid this side effect, users can define a rectangular region around the group of limbs 

which are allowed to move. To show that the other limbs will not move, they are 
shown by straight lines and small spheres for limb segments and joints respectively 
instead of their usual graphic primitives. 

3.2.2 Positioning 

The end position of the selected limb is called the end effector. Once a limb has 
been selected, the user can drag it around to achieve a given pose. When dragging 

a limb with a mouse, we are left with the problem a finding the position of the 

next goal to reach from the position of the mouse. This is solved by using a plane 
which is perpendicular to the direction of view and containing the position of the 

end effector. The new position must also be somewhere on this plane. Knowing the 

position of the mouse and the direction of view, a ray, whith coordinates determined 
by equations IV. 4, is thrown which will intersect this plane at the new position of the 

end effector (Eq. IV. 12). Because the end effector usually does not completely reach 
the goal, either due to constraints making the goal unreachable or because of rounding 
errors in the computations, the plane may move as the end effector is being dragged 

around. 

It is usually easier to place a limb using one view rather than using another one. 
For example, starting from a standing leg and trying to bring it in the seated position, 
it is easier to work when the articulated figure is seen from one of the sides rather than 
from the front. It is the role of the virtual ball to rotate the virtual camera. The pilot 
study before the evaluation helped to implement a powerful tool. Originally, when the 

virtual camera was being rotated, the articulated figure was displayed again only when 
the mouse button was released. Although it was felt that this was not a problem, most 

people could not predict the view they would end up with. Surely enough, experience 
would overcome this problem but it was not possible to train participants of the 

comparative study for long enough. As a result, I decided to redraw the figure as the 

virtual camera was rotated around. People had then no problem using the virtual 
ball. However, it requires some processing power that not all machines are capable of 

yet. 

3.3 Implementation 

3.3.1 Principle 

Solving the problem of inverse kinematics usually involves finding the rotations at 
the different joints which will bring the end effector to the goal. As a result, the usual 
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40p**O, Figure V. : Invers kiu itiatics using translations 

ýF 

The end effector is brought to the goal. The position of the beginning of the limb is 

recomputed. The parent limb is then called as the recomputed beginning of the limb a 
sub-goal. 

Nvav to think about this problem is in terms of rotations to apply at each joint to fulfill 

the goal. 

Another approach to hring the tend effector to the goal is to simply perform a 
translation. Translating the end effector enforces a rotation phis a translation of the 

parent Joint. This translation enforces in turn another rotation and translation of 
its parent johlt (Fig. V. 7). Translations quick! become so small that. they can be 
discarded. At the endl, we are left with only rotations, the rotations of the joint 

miep(1e(I to bring the ends effector to the goal (Fig. V. 8). 

Figur(' V. ': Aýýýý invense kiji uuiti(,, algoriillttt 

This algorithm is simple. I a,. ically. if the current Limb is too far to reach the goal and 
it hay a parent, it aAs the parent tu achieve a new goal which is computed on the ideal 

position for this lind,. Once the parent ba:,; done what it could, the current limb does 

what it can. 

3.3.2 Degrees of freedom 

3.3.2.1 Problem: Computations are straightforward. -No 
inversion of a JaCol>ian 

iý neeee(le(l. No opt itui. atloll tuethUxl is required. Conscecjtucetrtlt, this Illet1lo(I is 11111(, 11 

faster that conventional ilietlttxis. 
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Unfortººuiºt('ly. this ºloes ºiot take into account DOFs. Experimentations with that 

particular inh! )lChnentation showed it Nva5 far from being practical. It was obvious that 

constraints imposed by DOFs had to be brought in. 

Figure V-9: Detailed first fm, ýý, 

During t lie first pass. I he limb goes to the goal and makes any correction necessary. It 
thin calls the parent limb so that the joint between the parent and tie current limb lies 

where the current limbs would like it to be. 

3.3.2.2 First pass (Fig. V. 9): For this purpose, the technique works iii two passes. 
Lº the first lass, the algoritliºiº coºnpººtes the ideal position for the beginning of the 
1iºn1). tlºe one which would not break the constraints. If this ideal position is different 
from the existing position. the parent liºiib (if any) is called to solve the new goal, that 
is to bring tlºe e11º1 of its limb to the beginning of the current one. In the second bass, 
the parent joint has cioººe tlºe best it could to get closer to the goal it was given, so 
tlºe current joint also does the lest it call to get closer to the goal to achieve without 
breaking the constraints. 

The first pass is only called if there is a parent linilb. If there is no parent limb, 
that is if the current 1itºilh is the root node of the skeleton's tree (the hip with the 
1nºnºauoi(i). olle solution is to translate the limb and so the entire figure. Trying it 

out. this wa found to be annoying, so instead, nothing was done. 

Iºº tlºe first the end of the current linib (the end effector) is translated to the 

goal to achieve (the target position). Because the length of the limbs has to be kept 

unchanged. it probably modifies the position of the beginning of the limb so the latter 
is recomputed. At this l)oiºit. the constraints imposed by the DOFs may be broken so 
these are checked. Because constraints are expressed in the hyper tessellated spliere 
space. Iiºnh positions are }projected into the tessellated sphere space. Corresponding 

angles are computed and then checked against the DOFs. If an angle is too big or too 

srººall, it is brought hack to the closest valid value. Angles are then used to compute 
the corresponding lpoiººt iºº the Hyper tessellated sphere space. It is then projected into 

the 1iºnlh space. If constraints were broken, the cud of the limb do not reach the goal 

atºý tuore. So to uvercoºººe the problem. a rotation of the parent joint, which would 
bring the encl of the ('ººrreººt limb as close as possible to the goal, is perforined. 

This rotation is tlºeu applied to find what would be the ideal position of the be- 

giººººiug of the current limb. As seen iii Figure V'. 10, it simple translation would not 
have worked) correctly. Because this rotation only involves the Iparent, joint, it has not 
altered the configuration of the current joint, so it is still valid. At the end, the parent 
lit111) is called to try to bring tlºe beginning of the current limb iºº the required position. 
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*0 
Figure V AO: Inverse kinematics and DOFs 

When a limb is already at the edge of the allowed area, rotating at the joint configuration 
t, ) re; trh the goal will certainly break the constraints. 

Kuhale 

end t4 ftmG 
W eyrn to El: iiiy it 

as, ciase, as, 
pissi U, e, 

Figure \'. 11: 5c(-n(I p; i� 

clieck against 

clank 

011(1 the parent lind) has done what it could. the current limb has to to its best to 
achieve the gal. The end of the Iinub is rotated towards the goal and constrained are 
checked. 110 Iramforniation matrix is deduced from that configuration 

3.3.2.3 Second pass (Fig. V. 11): After the parent limb has achieved the best it 

could. it uºaY haI)lxeºº that it could not reach the required position. Rotating the end 
of the limb to bring it as close as possihle' to the goal alight still break constraints. 
So. the segment tuacle of the new start of the limb and the goal is projected into the 
tessellated sphere space. Angles are computed, corrected and the new vector produced. 
It is Iproj('cted lack into the limb space. The joint configuration, needed to l)ritºg the 
linºl) segtuº'nt from the resting position to the current position, is then deduced. 

3.3.3 Mapping on the hyper tessellated sphere 

Whe l position. ' are 111ayºpe<1 ºn to the sJ)here spice, there are not checked if they 

(1ºº exist auºougst the set of pre-coniptºteº1 1)OSitiotis (unlike with forward kinematics). 
There is no point in doing this. Firstly, it might he too slow, secoºullV" since there 

are only a finite nºuººher of Points, it ºnigh t look a hit jerky when the liºiºh is ºlragged 
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void Reach(iCPoint3D& Position, int Threshold, CLimb" Caller) 
{ 

If (End == Begin) { // Zero size Ism6 P Let's call the parent 
if (Parent) Parent->Reach(Position, Threshold, Caller); 
EXIT REACH; 

// Jomt w fired Y Lets cdl the parent 
if (! iaSelected 11 (FlexionDof. Empty() && PivotDof. Empty()) { 

if (Parent) Parent->Reach(Position + (TraneBegin - TransEnd), Threshold, Caller); 
EXIT REACH; 

// We haven't finished yet have we 9 
if (Distance(TransEnd, Position) > Threshold) { 

// Compute desired posd. on of current limb 
if (Position == TransBegin) 

IdealBegin += Position - TransEnd; 

a1s41 
IdealBegin = Position + (TransBegin - Position) r Distance(Begin, End) / 

Distance(Position, TransBegin); 

// See the end posstson of the parent lamb 
If (Parent) { 

ParentTransformation - Parent-> BringEndTo(IdealBegin); 

// Get the Inverse matrix and determine position in local space 
ParentTransformation = ParentTransformation 

Parent- >GetParentTransformationo; 
Limb = Parent ->GetChild(Parent->GetChildNo(this)); 
if (! Null(Limb. JointPos)) { 

ParentTransformation = ParentTransformation. Translation(Limb. JointPos 
Distance(IdealBegin, Parent->GetTlansBegin()) / 
Normalise(Limb. JointPos)) a ParentTransformation; 

} 
INTO LIMB SPACE; 
if (! Null(Loca! Position/3)) { 

VALIDATE(CDof()); 
LocalPosition = GetPoint(LocalPosition) a ParentTransformation); 
VI = LocalPosition - Parent->TransBegin; 
V2 = Position - Parent->TransBegin; 
Q= QuaternionToRotate(Vi, V2); 
IdealBegin = Rotate(Q, IdealBegin - Parent->TransBegin) + Parent->TransBegin; 
IdealBegin = (IdealBegin - Position) * Normalise(Begin - End) / 

Normalise(IdealBegin - Position) + Position; 
Parent->Reach(IdealBegin, 

TRESHOLD, Caller); 

INTO LIMB SPACE 
if (! Null(LocalPosition / 3)) 

VALIDATE(PivotDof); 
else 

EXIT REACH; If This is auspicious, lets do nothing 

if (LocalPosition 1= Begin) { 
Q= QuaternionToRotate(End - Begin, iCPoint3D(LocalPosition) - Begin); 
if (Distance(GetPoint(End sQa ParentTransformation), Position) < 

Distance(TransEnd, Position)) { 
Transformation = Q; 
hasMoved = TRUE; 

EXIT 
REACH; 

} 
} 

Figure V. 12: An innovative algorithm to the inverse kinematics problem 

around 2. Instead when the user releases the mouse button, for each joint segment 

which has moved, rotations are projected into the hyper tessellated sphere space. 
Closest positions are selected and configurations are re-computed. So when the user 

releases the mouse button, there is a slight change between the previous pose and the 

one newly displayed. 

2Moving a limb using joint balls is always a bit jerky, although this does not seem to be too 

inconvenient 
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Evaluation 

1 Introduction 

The design of an innovative technique is normally the first step of any research 
work. Usually, techniques already exist which try to tackle the same type of problem. 
The next step is to compare the new technique against existing techniques to work 
out which one is the best according to a few criteria (speed, ease of use, workload, etc) 
assuming the innovative technique is better than the previous ones (the hypothesis). 

Chapter IV describes the generator, an innovative technique used to position ar- 
ticulated figures. A few techniques to position articulated figures have already been 
developed from which the main two, forward and inverse kinematics, were implemented 
(Chapter V). Thus, the hypothesis is: 

The generator, an innovative technique used to position articulated figures, 
requires less work and can position articulated figures faster than forward 
and inverse kinematics, two conventional techniques. 

Ideally, this type of experiment would be performed using expert users. Unfortu- 

nately, finding professional animators who knew forward and inverse kinematics was 
not possible. It would also have been necessary to train them intensively to bring 

their knowledge of the generator to a level of expertise high enough to allow for a fair 

comparison. 

So, non expert users were used instead in the hope that the results could be 

generalised to expert users. However, it quickly became obvious that some techniques 

required more training than others. Thus, some results would not able to be generalised 
to expert users. It was also felt that given sufficient training, the generator would 
become faster, although maybe not easier, than the other two techniques. So, a second 
experiment was conducted for which I was the sole participant. The new hypothesis 

to verify was: 
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Given sufficient training, the generator will out perform forward and in- 
verse kinematics at positioning articulated figures. 

If results were clearly in favor of one technique or another, this would be an indi- 
cation of the potential, or lack of it, of that technique. 

2 First experiment 

2.1 Design 

2.1.1 Designing the tasks 

Although this experiment involves the comparison of three techniques, the interest 
lies mainly in the comparison between: 

1. The generator and forward kinematics 

2. The generator and inverse kinematics 

Some care has to be taken regarding the participants [JPBHC94]. There could be 
three sets of participants, one set for each technique. However, some participant will 
find the tasks easier to execute than others. If it can be ensured that participants 
of one set are as skilled as participants of the other sets (this is called participant 
matching), then the problem is solved. This is usually done by using big sets and 
randomisation. Unfortunately, the time allocated for this research would not have 

suffice to recruit enough participants and to perform the experiment. 

Another solution is to make participants use more than just one technique, that is 
to have repeated measures within each participant experiment. Participants who will 
perform badly at one technique can also be expected to perform badly at the others. 
Performing this type of evaluation brings two problems: 

O To be really effective, an evaluation must not be too long. Having each par- 
ticipant using all three techniques would have meant that most single evalu- 
ations would have lasted longer than an hour, that is somewhat too long for 

an evaluation. It is usually recommended than an evaluation last less than an 
hour [JPBHC94]. However, it was possible for each participant to use two tech- 

niques, so this scheme which was used instead. Evaluations lasted approximately 
fifty minutes. 

O Unless the tasks being measured are completely unrelated, an order effect will 
appear. There are two types of order effects: 

The positive order effect. The next task is somewhat similar to the first one 
and thus after having performed the first task, the next one appear much 

-77- 



Chapter VI. Evaluation 

easier. The first task will then be rated negatively compared to the second 
ones. 

The negative order effect: When performing the next task, the participant 
get tired and so find the next task more boring and harder than the first 

one. The first task will then be rated positively compared to the second 
one. 

To cancel these side effects, the solution is to use two sets of participants. Both sets 
use the same techniques but in reverse order. Thus the order effect is counter-balanced. 

Four sets of people were used in all, two to compare the generator against forward 
kinematics and two to compare the generator against inverse kinematics: 

First Part Second Part 
Group A Generator Forward Kinematics 
Group B Forward Kinematics Generator 
Group C Generator Inverse Kinematics 
Group D Inverse Kinematics Generator 

2.1.2 Choice of the participants 

For this experiment, participants were inexperienced users of animation packages, 
although they knew how to use a computer. The only requirement was that they knew 
how to use a keyboard and a mouse. 

Originally, it was planned that thirty-two people would take part in the study. 
Thus, there would be eight participants per group. Thirty-two represents a compro- 
mise between too few participants to get accurate results and too many which would 
take too long. From experts in statistics (personal discussion), I was also told that I 

would require at least twenty people to get sufficient results. 

Since many people were required, it was decided to offer them five pounds as 
incentive to participate. This funding came from the research project (MIME, funded 
by EPSRC) I was working on. 

The University of Glasgow hosts a conversion masters course in Information Tech- 

nology which is followed by approximatively one hundred students. Due to their 
background, they are the perfect participants. Unfortunately, the evaluation study 
was carried out during the summer period where some had already left and the others 

were working on their summer project. Although thirty-two of them were targeted, 

only twelve took part in the study. 

The Department of Computing of the University of Glasgow hosts a number of 
research students. Unfortunately, over four years there, I had the opportunity to 

present my work to many of them. They could not be allowed to take part in the 

study as knowing bits of my research may have influenced their performance. - So, only 
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people who did not know my research interests were allowed to take part in the study. 
Eventually eight more people offered to participate. Due to time limitations, it was 
not possible to get more participants. Fortunately, there were just enough participants 
to validate the study. 

2.1.3 Choice of the tasks 

Participants who performed the evaluation were non-expert people. But ideally, 
they would have been experienced users. Some of the techniques are more difficult to 
master than others, and this is particularly true for the generator. Participants had 
to be brought to a level of expertise which would allow fair comparison. To make 
matters even worse, participants had to be trained not with a single technique but 

with two. Ideally, they would be trained as long as was necessary. However, if the 
training lasted too long, they would become bored even before the experiment started. 
Usually people can stay concentrated for a bit less that an hour. It is also recognised 
that such an experiment should not last more than an hour [HC97]. If this is not 
possible, then the experiment should be divided into several parts with enough time 
between each to allow participants to rest. An experiment with a single participant 
might thus be spread over several days. 

To have several parts for each individual experiment would have considerably com- 
plicated this study. Most people would also not have been willing to take part, and 
the number of participants is already to the bare minimum. So, instead, a single 
evaluation had to be performed in less than an hour. 

The task was about posing articulated figures. Some poses are more difficult to 
produce than others. It is important that these poses are easily understood by the 
participants. The computer can generate many possible poses randomly but most of 
them do not relate to anything known. Ideally, participants would be trained with as 
many poses as possible, and the evaluation would be performed with as many poses 
as possible as well. Poses should be typical poses that one would expect to produce 
using a positioning system, some easy and some harder. 

All these problems can only be answered experimentally. So a pilot study involving 
four people was performed. The poses used for this experiment were poses than one 
could see in the literature or poses that people asked me to perform to demonstrate 
the technique. They were not chosen because they were easy or hard to produce using 
a particular technique. 

2.1.4 Pilot study 

Before performing an evaluation, it is necessary to sort out any problems which 
might arise during the experiment by making a pilot study. Usually two or three people 
are necessary. Four people were used here. The first two were of major help in solving 
a few basic problems and improving the interface a lot. Since further implementation 
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WAL carried imt. again two people were used to ensure the sYsteui was ready for the 
evaluiit i0>> i. 

Apart from improving the interface. the pilot study gras also used to work out 
the ideal Wolin er of poses. the distances for each lose defining that two poses can he 

considered ýitnilar1 mid to write and test the training sheets. 

Figure VI. I: Poses used for the evaluation 

i 

These are the poses which were shown to the participants of the study. They all resem- 
I& something everyone can relate to and are not difficult to produce using any of the 
techniques implemented. 

It was realised than only three poses can be performed per technique, that is six 
poses in all. This is a small number; four poses would have been better but it would 
have iuade the evaluation too long for trau participants. At, the end of the pilot 
study. three poses were selected (Fig. VI. 1). The first two poses were used to train 
the participants. the evaluation being truly performed on the last one. This scheine 
was also decided during the pilot study as it required on average two poses to get 
acquainted with atn* given technique. Each user built these poses twice, once for each 
technique they had to use. 

2.1.5 Performing the experiment 

2.1.5.1 Starting and ending the experiment: AVheii users sit in front of the 

c0111fntter . lud urn to perform a poor. them mu-. t be soniethirig Which tells their when 

to stop. Producing the exact pose is extremely difficult. There is always a slight 
discrepancy which is not noticeable even to the practiced eye. 

Letting the participants decide when to stop is not satisfactory either. They may 
stop early with one technique simply because they do not like it. 

It is hot much letter to let the experimenter clecicie when to stop. A technique 
might. even unconsciously-. be favored against the other ones. 

'This is described in more details later on 
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As a result, the computer is assigned the duty to test when the user has produced 
a pose close enough to the target. For this purpose, the computer needs to be able to 
compare how similar a pose is to another one. Ideally, the judgment would mimic a 
human referee. 

Humans find it difficult to spot small differences. They are much better are spotting 
big differences. Thus a pose which all limbs points in more or less the same direction 
as another limb will be virtually identical to a human. At the same time, a pose 
which is the exact replicate of another one apart from one limb which points into an 
altogether different direction will look entirely different to a human. 

A pose is the exact replicate of another one if: 

1. all joint configurations (rotation angles) are the same 

2. all positions of the limbs in 3D space are the same 

There are two problems with the first solution. First, it does not take into account 
the size of the limbs (the longer the limb is the bigger the differences are) and second, 
differences at a joint configuration alters the differences down the branches originating 
from that joint. 

These problems are inherently solved by the second solution. Furthermore, it 
makes more sense to use this solution as it uses what the users sees, and not a repre- 
sentation which will have to be decoded. 

The computer can accurately sum up any differences. Thus, the computer could 
be used to sum up distances between the end of all limbs and the target limbs. The 
number obtained would be a kind of similarity ratio. A similarity ratio of zero implies 
the two poses being compared are identical. A threshold could be worked out and used 
as a magic number. A distance below that threshold would indicate the two poses are 
similar enough. 

However, this algorithm does not take into account the fact that the human eye 
is more receptive to big differences than small ones. Consequently, the computer was 
used to sum up all squared distances instead. At the end, the square root is returned 
because it simply looks like a more tractable number: 

i=n 

OverallDistance =E lAiBiJ2 (VI. 1) 
i=1 

where Ai is the coordinate of the tip of the limb i of the first pose. 
Bi is the coordinate of the tip of the limb i of the second pose 

This ensures that small distances have less weight than big ones. If the overall 
distance is below a given threshold, the computer decides that the user has reached 
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the pose. This number depends on the size of all limbs of the robot. With our 
humanoid, a distance of 100 appears to work most of the time. The size of all limbs 
being 561, this distance is approximatively to 18% of the size of all limbs. 

Interestingly enough, some poses are easier to reach than others. For example, 
perfectly straight positions such as the military position are easier to reach than the 

ones where all limbs are astray. So the threshold actually depends on the target pose. 
For the three poses used in this evaluation, the thresholds were obtained experimen- 
tally during the pilot study. The differences are 80,140 and 100 for the first, second 
and third pose respectively. 

2.1.5.2 Description of the experiment: When the participant sits in front of 
the screen and starts the experiment, the computer first displays the pose to produce 
(Appendix 4). The participant is allowed to view it from multiple angles. The experi- 
menter also makes sure the participant understands the pose before trying to construct 
it. When the participant is ready, the computer reinitialises everything and displays 
the robot in the standard military position. If this is the first pose, a training sheet is 

provided which explains how the technique works and what has to be done to reach 
the target pose. The experimenter also stands beside the participant to provide fur- 

ther recommendations and answer any questions. No recommendation was provided 
for the last pose as it would have invalidated the study. Also, participants were not 
allowed to ask questions for the same reason. When the pose is sufficiently close to 
the target pose, the computer stops the task by displaying that it is now finished. The 

experiment then continues by displaying the next pose. 

2.1.6 What to evaluate? 

Most evaluations are about working out if there is a relationship between what are 
called dependent and independent variables. The dependent variables describe what is 
being measured and the independent variables define the conditions under which the 
experiment takes place. The assumption is that the scores of the dependent variables 
depend on the independent variables. 

Here, the independent variables are the generator, inverse and forward kinematics. 

This section is about finding useful dependent variables. 

2.1.6.1 Quantitative differences: The most useful information is probably the 

time one takes to achieve a given pose. The shorter it takes to achieve a given pose, 
the better the technique. Because the computer is in charge of starting and stopping 
the experiment, it is also in charge of measuring the time taken to accomplish the 

tasks. 

The number of iterations it takes to fulfill a task were also recorded. An iteration is 
described as moving a limb from one position to another. The way one limb is moved 
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differs from one technique to the other so it is difficult to see if there is a relationship 
between techniques. However, it is fair to suspect that the more iterations there are 
the longer it takes. So the more iterations one technique requires, the less powerful 
it is. Reducing the number of iterations would be the obvious optimisation. On the 
contrary, a technique for which few iterations are necessary but is still slow implies 
the problem lay with the technique itself. 

The number of errors is also a useful indication of the power of a given technique. 
Unfortunately, it was not possible to design an algorithm which would recognise er- 
rors. As a matter of fact, it happened that what I initially thought were errors from 
participants eventually turned out to be just another way to produce the required 
pose. Consequently errors have been ignored in this study. 

2.1.6.2 Qualitative differences: An evaluation cannot be complete without an 
investigation of the qualitative differences between the techniques being compared. 
Qualitative differences refers to abstract concepts such as how hard a technique is to 
use. One technique could well be faster but harder than other techniques. 

The workload associated with a given technique provides useful information to 
appreciate qualitative differences. Research in human factors is partly devoted to 
the study of workload assessment techniques. Many such techniques have been de- 

veloped [Jex88, Egg88, Wi188, Rei88, Mes88a, Mes88b]. For a non expert, it is not 
easy to work out which one would be the most appropriate given a particular prob- 
lem. Researchers at NASA developed the NASA-TLX(Task Load Index) [Sta88], a 
workload assessment technique. NASA-TLX has been successfully used in a wide 
variety of applications, ranging from flight simulators to laboratory tests of prob- 
lem solving [DAS93, Dem93, RAK93, Bec92, Dud9l, MK91, Bre94]. As a result, the 
NASA-TLX was also used in this study. 

Hart & Wickens [SH90] defines workload as: 

the effort invested by the human operator into task performance; workload 
arises from the interaction between a particular task and the performer. 

The basic assumption is that cognitive resources are required for a task and there 
is a finite amount of these. As a task becomes more difficult, the same level of perfor- 
mance can be achieved but only by the investment of more resources. 

When trying to measure the workload associated with a particular task, researchers 
divide the workload in more precise categories, such as mental workload or physical 
workload. It was in an effort to standardize workload studies, that Hart & Staveland 

produced the NASA-TLX. With this method which is the result of many years of 
study, the workload is divided in six categories: 

O Mental demand: How much mental and perceptual activity was required (e. g., 
thinking, deciding, calculating, remembering, looking, searching, etc) ? Was the 
task easy or demanding, simple or complex, exacting or forgiving ? 
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O Physical demand: How much physical activity was required (e. g., pushing, 
pulling, turning, controlling, activating, etc. ) ? Was the task easy or demanding, 

slow or brisk, slack or strenuous, restful or laborious ? 

O Temporal demand: How much time pressure felt due to the rate or pace at 
which the tasks or task elements occurred ? Was the pace slow and leisurely or 
rapid and frantic ? 

0 Performance: How successful the participants think they were in accomplishing 
the goals of the task set by the experimenter ? How satisfied were they with 
their performance in accomplishing these goals ? 

0 Effort: How hard did they have to work (mentally and physically) to accomplish 
their level of performance ? 

0 Frustration: How insecure, discouraged, irritated, stressed and annoyed versus 
secure, gratified, content, relaxed and complacent did the participants feel during 
the task ? 

Users rate the task they have just performed for each categories using a set of 
scales (Appendix D. 1). An overall workload score, based on a weighted average of 
ratings on the six sub-scales, is then computed. 

With the traditional TLX, there is also a paired-comparison between each cate- 
gory to derive weights for a user's subjective feeling of importance of that category. 
Individual scores are then multiplied by the weights and the average is computed. To 
speed up the application of the TLX, Byers & al. [JB89] proposed that the weight- 
ings were not needed; instead an average of the factor scores could be used to give the 
overall workload. They carried out a comparison of traditional TLX and 'raw' TLX 
(just the average). Their results showed no significant differences. They concluded (p. 
484): 

RTLX (Raw TLX) is attractive for use because of its simplicity and es- 
sential equivalence with TLX. Because of its simplicity, we believe it has 

substantially greater potential in industrial and research settings than its 

predecessor. RTLX is recommended for use as a tool for multidimensional 
assessment of operator workload. 

Consequently, The RTLX was used in place of the TLX. 

A technique might be slow and difficult to use but it might still be an enjoyable 
tool. Professional animators work with this type of tool every day. It is obviously 
preferable if they enjoy using them. Brewster [Bre94] used a seventh category to 

measure the overall preference. This category was also added for this experiment. 

Participants were asked to complete the first set of scales just after the first task 
had been completed to avoid that during the second experiment, participants forgot 

the impressions they had of the first technique. The different categories are abstract 
so it is difficult to judge them on their own. It would have made it easier to rate 
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each technique when the experiment had ended, but this was ruled out. Instead, 

participants were allowed to rectify what they had initially specified although this 
rarely happened. Instead the second ratings were always relative to the first ones. This 

resulted in different scores for the generator when it was compared against forward 
kinematics and when it was compared against inverse kinematics. This is acceptable 
because results need to be consistent only within each part. It does not matter if they 
differ from one part to the other. 

It is not possible to prefer a technique without having tried it before. So an 
exception to the rule stating that participants must rate the different scales just after 
each experiment completed, was made to the overall preference. It was rated at the 
very end instead. 

2.1.7 Documents relative to the study 

2.1.7.1 Welcome form: Every country has rules to protect participants of a study 
like this one. Basically, participants are told the information gathered is anonymous 
and will be used solely for research purposes. What the experiment is about is ex- 
plained and they are also told that they can leave at any moment should they decide 
to do so. Such a form is shown in appendix C 

2.1.7.2 Training: Training is an important part of this study. Three scripts were 
written to explain, step by step, how each technique worked (Appendix 4). During the 
training, the experimenter also stood beside the participant to answer any questions 
and to make sure that everything was understood. 

2.1.7.3 Rating sheets: The first page of these sheets explains what workload is 

and how it works (Appendix 2). Then a table is shown to explain the meaning of 
each category. Participants were allowed to consult it at any moment when rating the 
techniques. 

2.2 Analysis 

2.2.1 Choice of the statistical technique 

A choice had to be made to decide which technique to use to assess the results. 
Although three techniques were being evaluated, they were only two experiments: The 

generator versus forward kinematics and the generator versus inverse kinematics. 

A few techniques have been developed to deal with this type of problem, one of 
them being the t-test. The t-test compares two groups of scores. The t-test exists in 
two versions, the related (correlated) t-test and the unrelated(uncorrelated) t-test (also 
known as the student t-test). The related t-test compares two sets of scores from the 
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same group of participants to see if their means differ significantly. If the scores come 
from two separate group of people, the unrelated t-test has to be used. The latter 
version has a wider scope of application than its predecessor but may not provide so 
much useful results [HC97]. 

The t-test is powerful, simple and robust against noise. It also handles well small 
samples. Because of all these advantages, both related and unrelated t-tests have been 
used in this study. 

Related and unrelated t-tests also come in two versions, the one-tailed and the 
two-tailed t-tests. If it is known that scores are in one direction, then the one-tailed 
t-test may be used. However, this is unlikely to be the case in most studies. It is also 
strongly recommend to use the two-tailed t-test even if the one-tailed t-test could be 

used. In this study, only the two-tailed t-test has been used. 

The object of an evaluation is to reject the null hypothesis. The null hypothesis 
describes the assumption that the independent variable has no effect on the dependent 

variable. In this study, the independent variables are the generator, forward and 
inverse kinematics. The dependent variables are the speed, the workload attributes 
and the overall preference. The null hypothesis is rejected if results from the t-test are 
statistically significant. Statistically significant means the results are in the extreme 
5%. They are said to be extremely statistically significant if they are in the extreme 
1%. To be in the extreme n% means that if the null hypothesis was in fact true, the 
likeliness of these results happening by pure chance (or lack of it) is less that n%. In 

other words, the likeliness of making a mistake is less than n%. 

At some point, we will have to work out if two paired groups of scores are correlated. 
If these scores would be plotted on a scattergram, one axis for each group of scores, 
they would be perfectly correlated if the scores describe a straight line. The Pearson 
correlation coefficient is a commonly used tool which provides two major pieces of 
information: 

1. The closeness of the fit of the points of a scattergram to the best-fitting straight 
line through the scores. 

2. Information about whether the slope of the scattergram is positive or negative. 

Sometimes, the scores may not describe a line but a curve. In this case, the practice 
is to rank the scores. The problem with that is that some information will be lost (e. g. 
the distance from the line or the curve). The Spearman's Rho coefficient is another 
correlation tool. Before doing any calculations, it ranks the scores. So, it is commonly 
used in place of the Pearson correlation coefficient when the scores fit a curve instead 

of a straight line. 

The Spearson's Rho correlation coefficient could be used all the time in place of the 
Pearson correlation coefficient but because it discards some information, it is better 
to use the latter when the scores on the scattergram describe a straight line. Here, 

everywhere a correlation had to be calculated, scores did not describe a curve but 

rather a straight line. As a result, the Pearson correlation coefficient was used. 
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2.2.2 Generator versus Forward kinematics 

"I'll first f). u-t Of the , inmlvsis compares the generator and forward kinematics. 

it 

lieted limb 

Figure \'I. 2: Understanding the generator 

Starting frone the standard military stance (not shown here) and clicking on the leg shown 
on the figure on the left will produce the configuration on the right. Some participants 
had trouble understanding this. It also requires some thinking to work out what the 

outcome of a selection will be. 

Figure V1.3: t', siiig; fuuward kinematics 

As can be seen from this figure, although the right arm is in exactly the same position, it 

was brought there by two different paths. The first went through the pivot plane whereas 
the second cone used t he flexion plane only. Some participants found this situation very 
c infusing. 

2.2.2.1 Workload 

2.2.2.1.1 Mental workload: Before the experiment took place, it was strongly 
suspected t hat t he mental workload associated with the generator would be a lot higher 

than the iiieirtal workload associated with forward kinematics. With the generator, 
users have to look at each pose to find what they need to produce the required pose. 
To make matters worse. users have to workout the position of the limb relative to 
its parent and not the global position of the limb (Fig. VI. 2). This is clearly more 
difficult than jiist using a tool to drag the limb in the required position. However, most 
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participants had problems achieving some positions using the joint balls. Basically, 

they are an infinite number of paths to rotate a limb by 180°. When users need 
to turn the 1iuiih in one, direction by an angle of say 160°, they may take a wrong 
path. The get close at the beginning but are not able to get closer after a while 
(Fig. A'I. 3). Consequently. they had to think a lot to understand what was going on. 
As a result. although the mean was in favor of forward kinematics, the difference was 
not statistically significant (Fig. VIA). 
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Figure VI. -I: Higher mental workload with the generator 

  Generator 
  Forward kinematics 

Although the mental workload was higher with the generator, the difference was not 
,t atistically significant. 

2.2.2.1.2 Physical workload: Although dragging a mouse is not what one 
would call physically difficult. it is more difficult than just a single click. As a result, 
it was expected that the physical workload associated with forward kinematics to be 
higher than the one associated with the generator. Although the mean was in favor 

of this a,,; suniption, the variance associated with forward kinematics was too high for 
the difference to be significant. 

2.2.2.1.3 Time pressure: Time pressure was a difficult category to compre- 
hend. Time pressure is high when things are going to fast and this was not the case 
for anyone. They were virtually no difference amongst the two techniques. 

2.2.2.1.4 Effort expanded: As a whole, participants found the generator 
harder to use tliani forward kinematics but the difference in the mean was not sig- 

nificant. 
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2.2.2.1.5 Performance level achieved: As a whole, participants also felt that 
tli(, -, - were better it rising for%%-ard kinematics but the difference was not significant. 

2.2.2.1.6 Frustration: It was expected that frustration would be higher for 
tl1( generator since some participants had problems finding the right limb positions. 
However. the problem illustrated in Fig. VI. 3 counterbalanced this effect and there 
was virtually no difference between the two techniques. 
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Figure VI. A: Forward kinematics's workload lower than generator's 

Although the workload associated with forward kinematics was lower than the workload 
at, ýsociated with the generator, the difference was not statistically significant 

2.2.2.1.7 Workload: The workload was slightly higher for the generator but 

the differences were definitely not significant (Fig. V1.5). 

2.2.2.2 Overall preference: As suspected however, the overall preference was 
strongly in favor of forward kinematics. There is a negative correlation of t= -2.25 
between the overall preference of the generator and forward kinematics which is sig- 
nificant to the 5V level with a sample size of 10 (Fig. V1.6). 

2.2.2.3 Speed: Interestingly enough, participants managed to produce poses faster 

using the generator although the difference between the two means was not significant 
(Fig. VI-7). 

2.2.2.4 Number of iterations: Interestingly enough there was no difference be- 
the miniber of iteeratiuii- used in both techniques although the concept of iter- 
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Figure V*I. 6: Participants preferred forward kinematics 

  Generator 
lU Forward kinematics 

Participants preferred using forward kinematics than using the generator. This difference 

uas stat. i, t. ically significant 1rßthe_510_ leve 

50 

45 

40 

35 

30 

25 

20 

15 

10 

5 

Figure V I. : The generator faster than forward kinematics 

  Generator 
  Forward kinematics 

Unexpectedly, participants constructed poses faster using the generator than using for- 

ward kinematics. However, this difference was not significant. 

ation is quite different for one technique to the other. Basically, each iteration took 

a little less time with the generator as it did with forward kinematics, that is it took 

slightly longer to position a joint in the right configuration as it took to look for a 

correct configuration. These differences were not significant though. 
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2.2.3 Generator versus inverse kinematics 

The first p<<rt of the allalvsis compares the generator and inverse kinematics. 

2.2.3.1 Workload 

2.2.3.1.1 Mental workload: It was expected that mental workload would be 
lii,, her for the generator although maybe not as high as with forward kinematics. How- 

ever since moving a limb using that implementation of inverse kinematics required a 
bit of practice, the mean was lower for the generator than it was for inverse kinematics. 
That difference was not significant though. 

2.2.3.1.2 Physical workload: It was also expected that physical demand 

would he higher for inverse kinematics since users had to select and then tin-select 
joints, rotate the camera, etc. Unsurprisingly, there was a negative correlation of 
t= -2.82 between the physical workload of the generator and inverse kinematics 

which is significant to the 5% level with a sample size of 10 (Fig. VI. 8). 
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Figure N TS: Physical demand higher with inverse kinematics 

Not surprisingly, participants found inverse kinematics were a lot more demanding phys- 
ically than the generator was. This difference was statistically significant to the 5% level. 
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2.2.3.1.3 Tinie pressure: AV-lien using in,, -erse kinematics, mobs can jump from 

one position to ainother. This is difficult to control. As a result, participants gave high 

scores for this category to inverse kinematics. So there was a negative correlation of 
t= -3.30 between the time pressure of the generator and inverse kinematics which is 

extremely significant to the lVc level with a sample size of 10 (Fig. VI. 9). 
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Figure VI. 9: Time pressure higher with inverse kinematics 

  Generator 
Q Inverse kinematics 

With inverse kinematics, limbs can suddenly move from one position to the other. As 

participants found this difficult to control, time pressure felt was higher than with the 

gvm rator. It was statistically significant to the 5% level. 

2.2.3.1.4 Effort expanded: Although the mean is slightly higher for inverse 
kinematics. intcr(-tiligly enough. the difference was not statistically significant. 

2.2.3.1.5 Performance level achieved: Participants also found that their 

perfi, riiiaticc era, better with the generator but the difference was not statistically 
significant. 

2.2.3.1.6 Frustration: As expected, participants found inverse kinematics more 
frustrating but the difference was trot significant. 

2.2.3.1.7 Workload: All factors combined, there was a negative correlation of 
t= -2.37 het vicen the workload of the generator and inverse kinematics which is 

significant to the 5Vh level with a sample size of 10 (Fig. ß'I. 10). 

2.2.3.2 Overall preference: However although participants preferred the genera- 
tor. the <li(fercn('e N va-'-, not significant. It is because of too large a variance amongst 
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Figure VI. 1(): The workload higher for inverse kinematics 

  Generator 
Q Inverse kinematics 

The workload experienced by the participants was higher for inverse kinematics. This 
difference was significant to the 5%. 

the scores of the inverse kinematics technique. 
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2.2.3.3 Speed: Participants produced poses faster using the generator however the 
difference 1)etv ecti the two means did not reach statistical significance, although it was 
getting quite close to it (6% and needed 5%. Fig. VI. 11). 
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Figure VI. 11: The generator faster than inverse kinematics 

  Generator 
Q Inverse kinematics 

Although participants built poses quite faster using the generator than inverse kinemat- 
ics, this ctiffvr(ýnce was not statistically significant. 

2.2.3.4 Number of iterations: There was no difference for the number of iter- 

atlulls used hV both tecliiiiques. As a result, each iteration took slightly longer to 
coinlýlete iisiug im-crse kiiieinatics than it (lid using the generator. However, the dif- 
fereiice (lid not reach statistical significance. 

2.2.4 Conclusion 

With this Implementation of the generator, forward and inverse kinematics, most 
differences were not statistically significant. A larger sample would have been neces- 
sary to get more significant results. 

The hypothesis arguing that the generator will be easier to use than forward kine- 

inatics gras rejected. Its opposite was also not proven. However, the preference of the 

participants in favor of forward kinematics was significant. 

However, the hypothesis arguing that the generator will be easier to use than that 
implementation of inverse kinematics Nras proven. 

There was no significant difference for the time taken and the number of iterations 

used to achieve the last pose. However, the Pearson coefficient showed there was a 
strong correlation to the 5 level between the time taken to achieve the last pose and 
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the number of iteration used. Since a finite number of iterations was required to achieve 
this particular pose, it implies that all the unnecessary iterations are errors. Thus the 
number of errors is strongly correlated to the speed of the technique. Errors happened 
when users selected joint configuration just to see if they fitted with what they were 
looking for. It can then be assumed that a better knowledge of the relationship between 
joints and limbs, and also a better knowledge of position of the joint configuration 
would decrease the number of errors and hence speed-up the technique. 

3 Second experiment 

3.1 Design 

It was felt that the generator required more training than the other two techniques. 
Although people could improve using all techniques, improvements with kinematics 
would stagnate before improvements with the generator would. 

To check this assumption, the only solution was to perform another evaluation but 
this time using one or more expert users. It can be safely assumed that variability 
amongst expert users is less than variability amongst non expert users. So this type 
of evaluation typically requires less particpants than the previous evaluation. An 
evaluation involving a single participant is thus allowable. Apart from me, no one was 
available. Theoretically, it would be possible to train someone to use all techniques 
but this would require a whole day or even longer to bring this person to my level of 
expertise. Consequently, it was decided to carry out an evaluation with myself being 
the sole participant. 

Although this type of evaluation is uncommon, it has actually already been used. 
Results can only be interpreted as an indication that the hypothesis is indeed true. 
Another study should be carried out to confirm these results. 

3.1.1 Improvements 

During the first experiment, it was realised that the implementation of inverse 
kinematics could be improved a lot: 

O One of the problems was due to the fact that the camera tended to be used a 
lot more than with other techniques. Rotating the camera to see the articulated 
figure from a different angle takes a bit of time. To avoid this, the arrow keys 

were mapped onto four different views. Thus, rotating the camera is both much 
faster and more accurate. 

O Initially, side views were meant to visualise and select body parts, not to rotate 
them. This was changed so one could position body parts using any view. This 

made a major difference to the power of the technique. In fact, the figure needed 
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not be rotated anymore, all three views being sufficient. During the evaluation, 
no rotations were performed. 

O When dragging body parts around, more limbs than expected might be involved 
in the process. This is really annoying and the solution to this problem was to 
draw a rectangle to select the parts which are allowed to move. This also takes 

a bit of time. Instead, it is now possible to type in the maximum number of 
limbs involved in the process. Thus typing 3, and dragging the hand around will 
also drag the forearm, the upper-arm but not the torso. This also made a major 
difference on the performance of the technique. 

O Sometimes, a set of limbs will jump from one configuration to another. They are 
perfectly valid kinematically but it is annoying and difficult to control. Girard 
& al. [Gir9l] solved this problem by using forward dynamics to interpolate 
from one position to the other so that smooth motion resulted. That solution 
would have been too costly to implement on the type of hardware this system 
was running on. Instead, a simple frame correlation scheme was implemented. 
Basically, if after asking the skeleton to reach for a goal, the new configuration 
does not bring the end effector closer to this goal, it is simply discarded. The 

motion is still not C2 continuous but this improvement was satisfactory. 

Unlike for inverse kinematics, no improvement could be seen to be made with 
forward kinematics. Although the use of joint balls necessitates a bit of practice, it is 

still fairly easy and intuitive. 

After the first experiment, two major improvements for the generator were devised: 

O As can be seen from the analysis of the results of the first experiment, the mental 
workload is high (although differences were not statistically significant). This is 

mainly due to the fact that users have to look for joint configurations and to 

compute mentally what would the outcome be if they selected them (Fig. VI. 2). 
The technique was modified so that when a limb is selected, it is copied in 

the poses produced by the generator as well as the seed. Thus, the mental 
computation required would lessened. 

O It is also common that when a limb is selected, it still needs to be moved a 
bit or twisted a bit. Generating a new population requires approximatively five 

seconds. So, it might be helpful if when a limb is selected, the user can also 

specify that it still needs to be mutated for flexion & pivot or twist. This could 
be done using the control or shift keys. For instance, if the user holds the shift 
key down whilst selecting a limb, the computer would copy that limb in the seed 

pose and display all poses of the main window again but with this limb slightly 

mutated. A mutation intensity of 20% usually works well. Unfortunately, there 

was not enough time to implement this scheme. 
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3.1.2 The dependent variables 

There is no point in using the NASA-TLX anymore. The TLX can only be per- 
formed with a set of users and I was the only participant. 

The time spent and the number of iterations used to construct a pose are still 
useful information. On top of this, the number of generations used and the number 
of page switch were also added. For each generation, the computer generates three 
pages of poses. If a joint configuration cannot be found in one page, it may be in the 
next ones. A page switch describes the change from one page to another. A drop in 
performance as the number of generations and page switch increased could then be 
expected. This would suggest further improvements. 

3.1.3 Design of the experiment 

For this second experiment, the computer randomly generated poses which had to 
be constructed using one of the techniques. There are two ways this experiment could 
have been performed: 

1. Each technique is used in turn to produce a complete different pose each time. 
There is no order effect problems but with small samples, results might be af- 
fected by the fact that some poses are harder to produce than others. 

2. Each pose produced is constructed by the three different techniques. Thus, if 

a pose is harder to construct, it will be harder for all techniques, not just one. 
However, the order effect reappears which needs to be dealt with. 

The second option was used as it should produce more accurate results when small 
samples are used (it will allow to use correlated analysis which is always better than 
uncorrelated analysis). To solve the order effect, a simple circular queue scheme was 
used so that the first technique to construct a new pose changes at each new pose. 

To make sure that statistically significant results would be obtained, forty poses 
had to be produced. I also trained for the evaluation by producing a bit more than 
fifty poses with each technique. Since the implementations of the generator and inverse 
kinematics had evolved, I needed to familiarise myself with them. Since the generator 

was first implemented, I produced several hundred poses with each technique. To train 

another person would have been difficult indeed. 

The t-test is appropriate when two group of scores have to be compared. To 

compare three group of scores, another tool has to be used. The analysis of variance 
(ANOVA) can also be used in place of the t-test. The advantage of the ANOVA over 
the t-test is that it can be used to compare several group of scores. The t-test is 

simpler and displays more information than the ANOVA, this is why it was used. The 
ANOVA test exists in several versions: one way with uncorrelated scores, one way 
with correlated scores and multi-factorial or n-ways with uncorrelated scores. The 
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latter is used when the experiment involves several types of independent variables. 
Here. there is only one type of independent variable, that is, the technique used. If 
during this experiment, scores had also been measured under the effect of alcohol for 

example. the iniilti-factorial ANOVA would have been used. Since each technique is 

used to produce every single pose. the related/correlated ANOVA test can be used. It 

will produce more useful results than the unrelated ANOVA test. 

3.2 Analysis 

3.2.1 Time spent 

As expected. results were statistically significant. In fact they were extremely 
sigiºificitnt. As can be seen from Fig. ß'I. 12, on average, it took nie 36 seconds to 
produce the poses using the generator. It took 55 seconds and 47 seconds using 
forward kinematics and inverse kinematics respectively. The differences between the 
generator. forward kinematics and inverse kinematics are extremely significant to the 
1c7 according to the one way correlated ANOVA test. 
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Figure VI. 12: The w, llerator faster than both forward and inverse kinematics 

The generator was, much faster than both forward and inverse kinematics. This difference 

was extremely significant to the 1% level. 

-98 



Chriptet J. Evaluation 

Although I used the generator for a long time, I still had to search through poses 
to find coiifigiirations that I did not know well. I reckon that with more training I 

could do better and decrease the time necessary to produce a pose under 30 seconds. 
Interestingly. the last ten poses were constructed in just under 30 seconds whereas the 
first ten were constructed in slightly Biore than 46 seconds (Fig. VI. 13). There is no 
such statistically significant evolution with forward and inverse kinematics. 

  First ten 
  Last ten 

Figure VI. 13: Generator performance improving in the course of the evaluation 
Poses produced using the generator improved consistently while the evaluation was being 
performed. Comparing the first and last ten poses produced, we see a clear difference 
which is significant to the 5`7c level. 

It is also interesting to note that the new implementation of inverse kinematics 

performs a lot better than forward kinematics. Before this evaluation, I tried to use 
the previous version. and it was taking in(, on average twice as long to construct a 
pose. 

It is important to note that the number of joints is rather small (seventeen). As 

the conipleXity of the skeleton increases, so would the power of inverse kinematics. 
However, for the purpose of entertainment, the complexity of the skeleton used was 
felt to be good enough. 
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3.2.2 Number of iterations used 

Although the number of iterations used was slightly higher with forward kinematics 
(Fig. VI. 14). t he differences were not statistically significant at all. In other words, each 
iteration is performed faster using the generator than using the other two techniques 
(Fig. VI. 15). 
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Figure VI. 14: No difference in the number of iterations 

  Generator 
  Forward kinematics 
13 Inverse kinematics 

Although the number of iterations used was marginally higher using forward kinematics, 
this difference was not significant. 

3.2.3 Iterations. generations and page switches 

The Pearson correlation coefficient was calculated to work out if there was a rela- 
tionship between the time spent and the number of iterations, generations and page 
switches used. Unsurprisingly, there was a strong positive correlation which was sig- 
nificant to the 1(/c level for each variable. 

Interestingly enough. the correlation coefficient was higher with page switch and 
even higher for the number of generation used than for the number of iterations. How- 

ever, the statistical significance of this discovery could not be assessed. This would 
suggest that the cost associated with a generation switch is higher than when there is 

no generation switch. This is not surprising as a new generation tends to create con- 
figurations that the user has not seen before. Hence, the user has to look at each pose 
instead of trying to remember where is the best configuration. Switching to another 
page also seems to affect the performance of the technique. This is not a surprise as 
the first page tends to be a lot more well known than the others. Furthermore, there 
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Figure V'I. 13: Less time per iteration using the generator 

  Generator 
  Forward kinematics 
Q Inverse kinematics 

Each iteration was performed fa_ster using the generator than using the kinematics. This 
difference was statistically significant to the 5% level. 

is also a cost which is due to the rendering process. Although rendering is fast, a page 
switch takes on average three seconds on nib workstation. A generation switch takes 
slightly more. 

Before performing this evaluation, the generator was improved so that each joint 

configuration selected by the user is also copied in the pose produced by the computer. 
The reason behind this is simple: if the user has selected a particular configuration, 
the other configurations will not he used. They will just make the task of the user 
harder. Although its significance could not be assessed, this improvement had it cost 
in terms of errors and thus performance. Poses were redrawn in the background so 
that the user could carr'" on selecting other configurations. Ideally, this rendering 
process would have taken place inside another thread. However producing a multi- 
threaded application is a lot harder than producing one which uses a single thread. 
Instead, a scheduler in which poses were rendered when the application was idle was 
itnpleinenteci. This works fine most of the time but if the user clicks somewhere while 
a pose is being rendered and move somewhere else, when the application will have 
finish rendering that pose. it will retrieve the mouse click event but at the current 
mouse position. As a result, a wrong joint configuration might be selected. This type 

of error is very costly. The user tray not realise it soon enough which would result in 

an increase in the number of generations (A generation is necessary to create again 
the information lost). Unfortunately, it was not possible to measure how often these 

errors appeared. With training, it is possible to reduce these errors and their impact. 
This would explain some of the differences in performance between the first and last 

ten poses. In fact. it was felt that this improvement was more a hindrance than an 
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advantage since I knew so well the first pages. A truly threaded implementation should 
completely solve this problem. 

4 Conclusion 

This first hypothesis argued that the generator was easier and faster to use than 
the other two techniques. This hypothesis was rejected and, in fact, a bigger number 
of participants would probably have proven that, at least, the generator is harder to 

use than forward kinematics. 

Although participants preferred forward kinematics over the generator, there was 
virtually no difference in speed between the two techniques. It is unfortunate that the 
implementation of inverse kinematics was not perfect. 

However, since a training effect was clearly recognisable in the second evaluation, 
special care has to be taken before generalising these results. It may well be that 

given sufficient training, animators do not find the generator cognitively difficult for 
instance. 

Furthermore, the small size of the samples and the great variability within them 
raises questions about these samples being truly representative of the population ther 
are coming from. For instance, another similar study may well draw different conclu- 
sions. 

The second hypothesis was arguing that given sufficient training, the generator 
will help produce poses faster than using forward or inverse kinematics. 

Using an improved version of the generator and inverse kinematics and using me at 
the sole but expert user, results seemed to prove that indeed, given sufficient training, 
the generator will perform better than the other two techniques. It is also interesting 
to note that inverse kinematics performed a lot better than forward kinematics. This 

comes more in line with what expert animators would expect. 

There was a statistically significant improvement in terms of speed from the first 
ten to the last ten poses using the generator (Fig. VI. 13). Although there was also 
an improvement for forward kinematics and a decrease in performance for inverse 
kinematics, these changes were not statistically significant. Analysing the logs from 

when I was using the system to train myself before the evaluation, all techniques 
improved (and these improvements are statistically significant) but improvements with 
kinematics were far from being as good as they were with the generator (Fig. VI. 16). 
The time taken to generate a pose with the generator was nearly halved. This is 

another indication in favor of the assumption indicating the generator is faster than 
the other two techniques given sufficient training. 

Although, I felt the mental workload is still higher with the generator than it is 

with the other techniques, it tends to diminish as my knowledge of the first few pages 
improves. What seems to be the most tiring is the process where the user has to 
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Figure V'I. 16: The generator improving more than other techniques 

Although all techniques improved from the beginning of the training session to the end 
of the evaluation, improvements frone the generator were a lot more significant. These 

results are all significant to the 5`/c level. 

scrutinise each pose to find what is of interest. Scores for the other categories of the 
NASA-TLX would be fairly low. On the contrary, mental workload would be low with 
kinematics and physical workload higher than with the generator, the highest being 

with forward kinematics. 
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Chapter VII 

Conclusion 

1 Introduction 

The work described in this thesis was performed when I started to work on a 
new generation of animation system. The initial goal was to use Interactive Genetic 
Algorithms (IGAs) to animate articulated figures. 

The initial research was unsuccessful but enabled me to understand how such 
systems work and how their power can harnessed. 

It became clear, however, that an IGA would never be capable of producing useful 
animations of an articulated figure (interesting animations could easily be produced) 
but the user had virtually no control over what was produced. This was mainly due 
to the overwhelming size of the space of possible animations. 

The solution to this problem became to subdivide the animation system in three 
distinct parts. The first part was dedicated to the production of poses which could 
then be used in a key-framing animation system. This thesis was devoted to that first 

part. 

2 Origin of the technique 

When Richard Dawkins, a professor of zoology at Oxford wrote The Blind Watch- 

maker [Daw86], he also wrote a little program which would demonstrate the power of 

evolution. His program, which he called Biomorph, was used to produce forms made 

of small line segments. The number of line segments, their length and direction were 
defined by a structure similar to a chromosome. To make the program simpler, sexual 

reproduction was not used. Although this program did not use all the ingredients of 

evolution, complicate forms alike shapes of different animals were produced. Biomorph 

also managed to produce all the letters of the alphabet. 
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In 1991, Stephen Todd and William Latham [ST90, TL91] wrote Mutator, a 
program used to assist the artist to produce 3D images. Mutator is similar to Biomorph 

apart from the fact that the user can specify the mutation intensity and allows to 

make marriages. Forms which can marry are directly selected by the user. This is 
different from conventional genetic algorithms where the user has no control over the 

reproduction process. 

During the same period of time, Karl Sims [Sim91] used genetic programming [Koz92, 
Koz941 with a Biomorph like interface to generate 3D plant structures, 2D abstract 
images, solid textures and abstract animations, all appealing to the human eye. 

My research originated from this work and we were optimistic in be able to extend 
the applicability of this type of tool to animate articulated figures. However, as I 

previously mentioned, this did not work out and I focused instead on the production 
of poses. 

Again, it quickly became clear that producing poses using these tools was hard. I 

concluded that four conditions have to be fulfilled before one chooses to use IGAs in 

an application: 

0 The size of the space to search should not be too big 

O The user should be good at grading one particular solution 

O The user should not know what makes a good solution 

O The user should not look for an accurate target solution 

Since these conditions were not fulfilled, it was not a surprise that that actual 
positioning system was not satisfactory. 

I realised there was a much faster and efficient way to produce poses. The solution 

was to let the user directly selects useful joint configurations to produce a special pose 
(the seed pose), which could then be mutated to produce another set of poses which 
similarity to the original pose depended upon a mutation intensity specified by the 

user. 

The thesis was devoted to the study of this innovative and powerful concept. 

3 Design of the articulated figure 

Before extending to the study of the technique itself, I need to talk about the 

articulated figure. 

First, it is a 3D character made of rigid limbs each connected by means of joints. 

It is represented internally using an n-tree, that is a parent limb can have many 
joints/limbs or none. A few articulated figures were implemented, but all of the 

research work was performed using a humanoid. 
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Limbs are rigid, that is they may move but they are not allowed to change of 
geometry. Thus squash and stretch movements cannot not be simulated. 

Given a limb connected at a joint, there are only three possible degrees of free- 
dom (DOFs). These are the three possible rotations at the joint at which the limb 
originates. The root limb (the hip for the humanoid) has six DOFs, the same three 
rotations plus translations along three orthogonal axes. 

Different notations have been used to specify the rotation axis. The notation which 
was chosen here is described by Thalmann &al. [NTD88] and relies on the user to 

specify the main axis of the limb plus a flexion axis. The pivot axis is automatically 
deduced. This notation has the advantage of being more meaningful and thus more 
understandable than other common notations. To facilitate the implementation, axis 
can only either be the X, Y or Z axis. 

Some limbs may rotate around the three orthogonal axis. Some may rotate around 
just some of them whereas some may not be able to rotate at all. The amplitude of the 

rotation also varies from one limb to the other, from one individual to the other and 
even from one stance to another. To simulate this complex process would be impossible 

and entirely useless for our purposes since we are not interested in simulation but only 
in animation. Instead, DOFs for each rotation axis can be specified by the user when 
the robot is first built. 

To represent the articulated figure, there was a choice of many techniques. Since 

accelerated hardware which allows fast rendering was not available at the time the 

research was carried out, volumes (cones, cubes, cylinders and spheres) were chosen 
instead. They can be rendered at a small computation cost whilst still preserving 
the shape of the robot. An innovative algorithm to render cylinders and cones was 
implemented so that rendering of the articulated figure allows interactive work on it. 

4 Generator 

During this research I developed an application which I called Generator. A defi- 

nition was provided: 

The generator is an evolutionary technique for which genes are clearly 
identifiable by the user and the cross-over process (i. e. the reproduction 
process) is explicitly performed by the user. Mutation is then applied to 

produce a new population of individuals. 

Three rules were also stated to work out if the generator can be used for a particular 
problem: 

O Genes can be made clearly identifiable to the user 

O Particular values for these genes can be made easily selectable by the user 
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O There should not be too many such genes 

The interface is similar to the interface of an IGA. Basically, the computer generates 
poses which are then displayed in their own window. To get a better understanding 
of what has been generated, the figure is also shown from the top and left sides. 

Unlike typical IGAs, the user does not specify an objective value relative to some 
kind of "goodness" of the pose, but directly selects joint configurations which are of 
interest. This selection is then used to produce a seed pose which is displayed on its 
separate window. 

When the user is satisfied with the pose which has been produced, it can be 
mutated to produce another set of poses. New selections will ensure this process will 
eventually converge towards a target pose. 

Flexion&pivot and twists rotation types are searched through separately. Since the 
formers define the main characteristics of the pose they are typically searched through 
first. A seed pose is produced for the second generation which is generally used to get 
any twist rotations which may be required. A third and maybe a fourth generation 
may be necessary to fine tune the result. 

To allow for fast and efficient covering of the space of solutions, a hyper tessellated 
scheme was used. When the flexion&pivot rotations space is being searched through, a 
tessellated hyper-sphere is used. When the flexion or twist rotation space are searched 
through, a tessellated hyper-sphere is being used. 

The process of generating a new set of poses works in two separate passes. 

During the first pass, a set of alternatives (a point on the tessellated hyper-sphere or 
hyper-circle) is selected. This process first uses the coarsest tessellation(decomposition) 
level and goes on using finer tessellation levels until at least a given number (the num- 
ber of poses displayed) have been retrieved. This automatically sorts the alternative 
by order of importance. It was noticed that the coarsest tessellation level an alter- 
native belongs to, the more likely it is to be used to build a pose. An alternative is 

retrieved if it is valid, that is, if does not break any constraints (DOFs, distance from 

seed configuration). Since all valid alternatives of the current level of tessellation is 

retrieved, it is likely that a number of alternatives exceeding the required number has 
been selected. To be able to visualise these alternatives, the concept of pages was 
brought in. Basically, an alternative will not be displayed twice if there are some valid 
alternatives which have not been displayed yet. So, by viewing the second and the 
third page of poses, the user can see some of the alternatives which were selected by 

the computer but which were not shown on the first page. 

During the second pass, the computer retrieves each alternative in turn, from the 
first to the last. Because alternatives have been sorted in the previous pass, they 

are also displayed sorted. Because the articulated figure is symmetric, resulting poses 
also look symmetric. This is of great help to the user as patterns naturally appears. 
It considerably diminish the time required to produce a pose. Once an alternative 
has been used, it is marked so that it cannot be displayed again until all selected 
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alternatives have been displayed. Thus it was possible to implement the concept of 
pages where joint configurations which did not appear on the first set(page) of poses 
would appear on the second or the third one. 

The articulated figure which is initially described by the user is used to produce 
conventional animations. In some cases, it may happen that the user will want to 
do more than what is allowable. In other words, the user will want to break the 
constraints that were initially set. So, to solve this problem, DOFs were only enforced 
at the first generation. Further generations will ignore DOFs and thus constraints 
imposed by them may break. It was felt that it was the best solution versus allowing 
for difficult or even impossible motions if constraints were not strong enough. 

To speed up the use of the interface, some commands of the generator (mutate, 
initialise, etc) were mapped onto hot keys. 

There are two ways that the user can select a limb: it can be clicked on or a 
rectangle can drawn around it. All limbs entirely included in the rectangle are selected. 

5 Implementation of common techniques 

5.1 Forward kinematics 

To evaluate the power, or lack of it, in the generator, it was decided to implement 
techniques commonly used to pose articulated figures like our humanoid. 

The first and most simple of these techniques is referred to as forward kinematics. 
Widgets similar to the one used in LifeForm [Mac] were implemented so that two 
DOFs (flexion&pivot) could be handled at the same time. These were called joint 
balls. When testing with two other types of interface, we came to the conclusion that 
this one was by far the most powerful. 

When a joint is selected, flexion&pivot use one joint ball and twist uses the other. If 
both DOFs can be moved (flexion&pivot), the widget uses a graphical representation 
of a sphere. Grabbing a point and moving it on the sphere will make the selected 
limb rotate accordingly. If only one DOF can move (flexion or twist), a circle is used 
instead. The principle stays the same. If no DOF is selected, the joint ball is drawn 

as an empty circle and the corresponding limb cannot be moved. 

5.2 Inverse kinematics 

Inverse kinematics is a complex and still a slow problem to solve. To allow for better 
interactivity than conventional techniques, an innovative algorithm was implemented. 

It more or less originated from Korein [KB82, Kor82, JU85] which used the concept 
of workspaces to rotate limbs at the beginning of the kinematic chain just enough 
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so that the problem left by the fully constrained kinematic sub-chain can be solved 
analytically. 

With the new algorithm, the end-effector tries to achieve the goal by translating to 
it. The new starting coordinates of that limb are deduced. They become the new goal 
to achieve for its parent. The parent proceeds in a similar manner until it is already 
in the right position or the root of the tree has been reached. At all steps, constraints 
imposed by DOFs are checked. Consequently, the parent may not have reached the 
goal the current limb was asking for. As a result, when the parent has done what it 

could, the current limb takes over again and tries to perform the best it can. 

To get the best of this new technique, digits were mapped as hot keys specifying 
how long the kinematic chain is. Thus pressing on the key numbered "2" tells the 

algorithm that the current kinematic chain only has two limbs/joints. Also, a frame 

correlation scheme was used to avoid the jerkiness inherent to this technique. 

6 Evaluation 

6.1 First part 

After the generator was implemented, it was not obvious to see which of the tech- 

niques (Generator, forward kinematics and inverse kinematics) was the best. To de- 

termine the power or lack of it of the generator relative to the other conventional 
techniques, I decided to perform a proper evaluation 

6.1.1 Preparation 

Ideally, the evaluation would have been performed using expert users that is, 

animators experienced with the computer technology. However, this was not feasible 

so instead unskilled people but familiar the computer technology had to be used. 

The evaluation involved comparing the generator against forward and inverse kine- 

matics. To counterbalance order effects, four groups of participants had to be used. To 

get statistically significant results, eight participant per group would have been nec- 
essary. However I did manage to get only five people per group and this was virtually 
the minimal number of participants if any results were to be obtained. 

Participants were IT students who had already spent one year in the Department 

and research students who did not know anything about my research, this in an effort 
to avoid all bias in favour of one or the other technique. 

All participants were asked to produce three poses, these being the same for ev- 
eryone. For the first pose, a training sheet was provided. The second pose was used 
to get confident with the technique and the third one was used for the measurements. 
The experiment was divided into two parts. The first one involved producing these 
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poses using one technique and the second part involved producing the same poses 
but using another technique. These poses are typical poses that anyone can relate to 
and were actually suggested to me when demonstrating the system. These poses were 
selected on the assumption that they are not easier to perform using one technique or 
the other. These poses and the degree of difficulty of the tasks was obtained from a 
pilot study and were made so that one experiment does not last more than an hour. 

The computer was given the responsibility to determine when the user has reached 
a pose sufficiently similar to the target pose. A simple least square calculation was 
used for this purpose. The computer was also used to measure the time taken to 
complete each task. 

A simplification of the NASA-TLX [Sta88], the RTLX (Raw-TLX) was used to 
determine the workload associated with each technique. After a task was completed, 
the participant had to fill in scales the purpose of which was to determine the workload 
of the task just completed. At the end of the experiment, another scale, used to specify 
the overall preference, was added. 

6.1.2 Results 

The related t-test was used to analyse the data from this evaluation. It resulted 
that, most of the time, differences in the means were not statistically significant due 
a too small population as expected from the small number of participants. 

6.1.2.1 Generator versus forward kinematics: None of the differences between 
the means of the workload attributes of the generator and forward kinematics were 
significant. This came as a bit of a surprise though, because I expected the generator 
to be so difficult to become accustomed to. 

However, participants preferred to use forward kinematics rather than the genera- 
tor and this difference was statistically significant. Although participants managed to 

produce poses faster using the generator, this difference was not statistically signifi- 
cant. 

6.1.2.2 Generator versus inverse kinematics: Participants found the physical 
demand and the time pressure associated with inverse kinematics more demanding 

than with the generator. These differences were statistically significant. Not sur- 
prisingly, the workload associated with inverse kinematics was also higher and this 
difference was again statistically significant. 

Participants also produced poses faster using the generator than using inverse 
kinematics but this difference was not quite sufficient to be statistically significant. 
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6.2 Second part 

Before the first experiment even took place, I was convinced the generator required 
a great deal of training, and therefore participants would perform badly using the 
generator because I could not afford to give them the necessary training. 

Although participants did not perform as badly as I had assumed they would, I 
decided to perform another experiment with, this time, an expert user. Unfortunately, 

the only expert user available was myself so results can only be taken in terms of 
indication and not facts. However, I felt this work would not have been complete 

without this experiment 

6.2.1 Preparation 

During the first experiment, I noticed the implementation for inverse kinematics 

was not perfect and could be improved. This is sad as it entirely changes some of 
the implications of the evaluation. It is important to keep in mind that these evalua- 
tions are not performed on the techniques themselves but on implementations of these 
techniques. There are good and less good implementations. Mine are probably not 
perfect. 

Inverse kinematics was improved in three different ways: 

0 Rotating the articulated figure is not necessary anymore since selection and 
positioning can also be performed using side views. 

O The length of the kinematic chain can be specified using digits from the keyboard 

as hot keys 

0A frame correlation scheme solves the jerkiness inherent to the technique. 

The generator was also improved so that selection is copied in the seed pose like 

before but also in the other poses which the computer had generated. This was meant 
to diminish the mental workload inherently associated with the technique. 

This time, poses could not be selected in advance. Instead, the computer was used 
to generate poses randomly. Each technique was then used to produce them. The 

computer was also used to determine when a pose was sufficiently close to the target. 
At each pose, the order of the techniques was changed to counterbalance the order 

effect. 

The speed, the number of iterations and the number of page switch for the gener- 
ator were logged for analysis. 

To make sure statistically significant results would be obtained, forty poses were 
used during this evaluation. 

Before the evaluation took place and since I had to be an expert user, I trained on 

about fifty poses. 
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6.2.2 Results 

Since the related t-test can only be used when two set of scores have to be com- 
pared, the correlated ANOVA test was used instead. The ANOVA test is similar to 
the t-test except that it allows one to compare many set of scores at the same time. 

Differences in speed were extremely significant, favouring the generator. Although 
I did expect differences in favour of the generator, I did not expect such big differences. 
Furthermore, it is interesting to notice there was a significant difference between the 
first and last ten poses produced during this evaluation with the generator. Such a 
difference also exists with the other techniques but it is not so significant. Comparing 
logs from the training session and the evaluation, we can see that all techniques im- 

proved but the average time was nearly cut by two with the generator which confirms 
that the training is of primary importance with the generator. 

7 Conclusion 

7.1 Advantages 

Given sufficient training, these results indicate the generator will be a more effective 
technique than inverse and forward kinematics. However, as the articulated figure 
becomes more complicated, inverse kinematics will become more powerful as it is 
possible to position several limbs at once using this technique. 

7.2 Disadvantages 

However, I agree with the participants of the first evaluation: forward and inverse 
kinematics are a lot more entertaining tools to use. The generator is mentally de- 

manding as it requires the users to stay aware of many things happening at the same 
time at different location on the screen. This is of major importance as eventually 
this type of tool will be used by professional animators who have to work many hours 

with this type of tool. The more interesting to use they are the better it is. 

The results also highlight the importance of the training, a training which may be 

costly in a real world situation. Other characters were built and I personally preferred 
to use inverse kinematics to pose them. Once used to them, no further training is re- 
quired. On the contrary, the generator requires training with each different character. 

To finish, here follows a table summarising the results of the work presented in 
this thesis: 
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What was proven 
O The generator allows expert users to produce 

poses faster than using other conventional tech- 
niques. 

0 The generator facilitates the making of "breath 

of life" effects by allowing users to easily pro- 
duce poses similar to a given one. 

What was not proven 
Q The generator does not facilitate the produc- 

tion of poses. The production of poses seems 
to require more cognitive effort when using the 
generator rather than when using other conven- 
tional techniques. 

What might be the case 
O All these techniques have their own advantages 

and disadvantages. The implementation of a 
hybrid system cumulating the advantages of all 
techniques might be the way to go for to imple- 
ment a powerful positioning system. 

8 Future work 

8.1 A better evaluation 

If one would decide to invest further effort in the generator, the first thing to 
do would be to verify the results obtained during the second evaluation. Thus, an 

evaluation would have to be performed with one or more expert users, and not the 

person carrying out the evaluation. 

8.2 Improving the technique 

Copying joint configurations in the seed pose as in the poses produced by the com- 

puter definitely eased the building process. The current implementation does not use 
true multi-tasking. Thus poses are rendered in the background. This causes problems 

such as an interface slow to react and even selection of wrong limb configurations 

which inflict a consequent penalty on the time spent producing a pose. 

A true multi-tasking implementation should solve these problems. It would then 
be interesting to study the power of such an implementation. 
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8.3 The making of a professional positioning system 

As recommended previously, the implementation of a hybrid positioning system 
which would combine in a single application the generator, inverse and forward kine- 
matics might the ideal solution. All techniques have their own advantages and disad- 
vantages. By building a system which would use all of them, it should be possible to 
avoid the disadvantages while preserving the advantages of each technique. 

Furthermore, what professional animators want to be able to do is to lock or 
"rubber-band" bones in particular positions or orientations. They will also want to 
be able to produce symmetric poses. For example, they should be able to specify that 
both hands are separated by a given vector (usually the current vector). 

Also, the generator could also be used in combination with inverse kinematics. 
That would be a two layers positioning system. The generator would use inverse 
kinematics to produce the different individuals. Users would select one or more end 
effectors while still being able to assign constraints to some bones (positional or direc- 
tional constraints) and use the generator to find a new position or orientation for the 
end effector(s) in space. For each individual, the generator calls the inverse kinematic 
system by specifying a set of constrains and the inverse kinematic system produces 
the pose which fulfils these constraints. 

8.4 The generator as a browser for poses 

Key-framing animation systems usually have to rely on many key-frames to pro- 
duce animations. These are usually stored in a simple database with directories con- 
taining other directories or poses. 

The generator could be used to implement a new type of search tool. Basically, the 
interface would be similar to the current one apart from another window displaying 

poses from the database. As the user builds the seed pose, the computer searches 
through the database to retrieve poses bearing similarities with the seed pose. The 

poses displayed could also be used by the selection process. If the pose is not in the 
library, at the end, the pose which the computer should have found is the seed pose. 
Because it was not in the database, it can be added to it so that it will be found the 

next time it is being looked for again. 

Even if the building mechanism is fast, this mechanism guarantees a pose will be 

produced at least as fast. 

8.5 An IGA/Generator for animating faces 

In 1995, Patrick Lambourne [Lam95] used an IGA to alter the shape of a face and 
even to produces impressions such as happiness, sadness, etc. The program was rather 
successful although it was not heavily tested. I recalled that for an IGA to work, four 
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conditions have to be fulfilled. These were only partly fulfilled but it appears to be 
sufficient. 

The generator should perform better that this IGA though. Thus, the generator 
could also be used to produce faces as key-frames and then try to animate them. 

In conclusion, the generator could be used anywhere attributes defining a solution 
displayed on a screen are clearly identifiable and selectable. A seed can then easily be 
produced and evolved towards a target. The user has to have a clear understanding of 
this attribute and how it interacts with other attributes to produce the result displayed 
on the screen. If this is the case, there is no need to rely on reproduction to find this 
attribute as a selection scheme will do the job more effectively and much faster. 

- 115 - 



Appendix A 

Advanced topics for genetic 
algorithms 

1 Introduction 

Genetic algorithms are a family of computational models inspired from natural 
evolution. Specific solutions are encoded using chromosome like data-structures. Re- 
combination operators are applied to assemble together useful information. 

2 Data structures 

2.1 Chromosome 

Our genetic patrimony is made of long chains of DNA, each one called a chromo- 
some. Chromosomes are made of genes. A chromosome encodes one individual or 
solution. In this work, chromosomes were used to encode poses. 

2.2 Genotype 

Human beings have 21 chromosomes. This is called the genotype. With genetic 

algorithms, usually only one chromosome is used to encode an individual. Therefore, 

most of the time, the genotype and the chromosome are equivalent. 

2.3 Phenotype 

A chromosome encodes only one individual or solution. The individual, that is 
the result of the chromosome, is called the phenotype. In this work, phenotypes were 
poses. 
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2.4 Gene 

A gene encodes one particular feature of the solution. In this work, a gene was 
used to encode the configuration at one joint. Genes from each chromosome were used 
to encode each joint configuration. So a chromosome encoded a whole pose. 

2.5 Allele 

The value of one gene is called the allele. The gene is like a variable in a program 
and the allele is its value. In this work, the allele is one flexion&pivot and one twist 
rotation. 

2.6 Population 

Genetic algorithms works on several chromosomes at the same time. At any one 
time, there is always a set of chromosome which is being worked on. This is the 
population. 

3 Generation 

The goal of a genetic algorithm is to evolve the population of chromosomes to 
find the ones which will encode the best solutions. This is achieved by producing a 
population of chromosomes and testing it. This process is performed several times. 
Each such iteration is called a generation. 

4 Reproduction 

At each generation, chromosomes of the current population are used to produce 
the next population of chromosomes. Good chromosomes are recombined together 
in the hope that better chromosomes will be produced. This is called reproduction. 
This process is performed using reproduction operators. Genetic algorithms may use 
several such operators. 

5 Crossovers operators 

The main recombination/reproduction operators are called crossover operators. 
There are several versions of this type of operator. 
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5.1 One-point crossover 

The one-point crossover operator uses two chromosomes. These are usually of the 
same length although it does not have to be the case. A cutting point is chosen and 
two new chromosomes are generated. The first one is made of the first part of the 
parent chromosome plus the second part of the second chromosome and vice-versa for 
the second chromosome. 

5.2 Two-point crossover 

The previous operator is limited to only one crossing site. As a result, some 
of the features of the chromosomes cannot be recombined effectively ([Dav9lb], page 
47). The first solution to this problem is to use a two-point crossover (Fig. A. 1) in 
which two crossing sites have to be chosen instead of one. In fact, by using a circular 
representation, the one-point crossover operator then becomes a special case of two- 
point crossover. Hence, the two-point crossover is a powerful generalisation of the 
one-point crossover. The two-point crossover operator also seems to be more powerful 
than the n-point crossover where n>2. 

Figure A. 1: The two-points crossover operator 

This example shows first the one-point crossover and then the two-points 
crossover. As can be seen from this figure, the two-points crossover is only a 
generalisation of the one-point crossover. 

5.3 Uniform crossover 

The two-point crossover produces good results but unfortunately has some limita- 
tions. One solution is to use the uniform crossover instead. With this operator, for 
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each bit position of the two off-springs, a random selection is made to decide which 
parent contributes its bit value for which child. A crossover mask [DBM93], computed 
randomly, can be used to get the same results. If there is a one to one position in the 
crossover mask, then the corresponding gene value of the first parent is copied into 
the corresponding gene of the first child otherwise it is copied into the corresponding 
gene of the second child. e. g.: 

Crossover mask 0 1 1 1 0 0 1 
First parent 1 1 0 0 1 0 1 

Second parent 0 1 0 1 0 1 0 
First child 0 1 0 0 0 1 1 

Second child 1 1 0 1 1 0 0 

5.4 The blended crossover 

The blended crossover operator is application-dependent but, due to the fact that 
it has been used successfully in the field of computer animation and particularly path 
motion optimisation [MP94], I will describe it here. This operator only makes sense 
if integer coding (also referred to as gray-encoding) is used. This different coding 
will be explained in detail later on. Using integer encoding, genes can have several 
values instead of two for the binary coding. Using one-point and two-point crossover 
operators, changes can produce discontinuities in some applications. One solution 
might be to avoid choosing crossing sites which are likely to contain discontinuities. 
Unfortunately, such requirements may not preserve continuity all the time. A better 

solution is to use the blended crossover which will avoid sudden changes in the genes 
(Fig. A. 2). Briefly, changes are moderately propagated using a blending scheme (the 
further apart the genes are the smaller the changes) to smooth out changes occurring 
at one point. 

Before crossover 

Cross site 

String I -J -FT-F 

String 2 

After crossover 

Figure A. 2: The blended crossover 

This figure shows the blended crossover in actions. The changes are slightly prop- 
agated around to diminish the disruptive effects of the usual crossover operators. 

- 119 - 



Appendix A. Advanced topics for genetic algorithms 

6 Other operators 

Previous operators have biological origins. They are robust and have been used 
successfully in many areas. Nevertheless, in some applications, hybrid operators have 
proved to be more useful. Although less robust than conventional operators, they are 
general enough and have been used in many applications. Some of them are described 
in what follows. 

6.1 Non-biological crossover operators 

6.1.1 The analogous crossover operator 

The main areas of applicability for the analogous crossover operator are robotics, 
path planning and computer animation'. When using the one-point or two-point 
crossover operators, one or more cross site positions have to be chosen. These are 
chosen randomly and independently of their corresponding genotype character. This 
is inconvenient in computer animation in which the use of such operators can bring 
discontinuities in the motion produced. The analogous crossover operator selects the 
crossing sites based on the similarity of the genotype character at this particular cross 
site. In other words, the crossing site will be chosen depending upon the similarity 
the genes of each chromosomes have at that particular position. Thus the closer one 
gene of the first chromosome is to the corresponding gene on the other chromosome 
the higher the probability that the gene position is to be selected as a crossing site 
(Fig. A. 3). 

6.1.2 The segregation crossover operator 

The segregation crossover operator also provides some nice features for computer 
animation. It is only relevant when the genes composing the chromosomes are ho- 

mogeneous and multi-valued. The usual crossover operator will use the same cross 
site for both chromosomes. With the segregation crossover operator, a first cross site 
is selected randomly. The alleles of each gene in the second chromosome are then 
compared against the alleles of the selected gene to find the nearest one. The locus 

of the genes with the nearest allele is chosen to be the second cross site (Fig. A. 4). 
This operator has the capability of destroying the organisation within the genes and 
to eliminate poor alleles so that they will have no chance to come back to life later. 

6.2 The inversion operator 

In all genetics applications, the ordering of the genes within chromosomes is of 
prime importance. GAs works by recombining into a single chromosome the good 

'See [Dav91a] page 78 for a detailed analysis of this operator 
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Figure A. 3: The analogous crossover 

With the analogous crossover, the cross sites are chosen dependently to the geno- 
type character of the two chromosomes to mate. This may avoid some of the 
disruptive effects of the usual crossover operators. 

features of two chromosomes. These good features are schemata2. Quite often these 

schemata (lo not belong to the same block (otherwise we would have a true building- 

block). Therefore it is fairly possible that they may be destroyed in further recombi- 

nations, of different chromosomes. To avoid this incouvenietice, reordering of the gene 
locus can be used to try to find the best ordering which will preserve these schemata. 
These operators also exist in nature where the. N,, are used to guide the search for better 

codiugs of the chromosomes. 

The simplest of these operators is called the inversion operator. With this operator, 

t%-,, o different geiles are chosen randotiilY on a single chromosome. The block of genes 
between these two geiles (including these genes as well) is there simply cut, reversed 

and pasted back again e. g.: 

1234567 

1265437 

A thorough review of the different reordering operators was ma(1e by Goldberg 

([E. G89], lagt' 166). 

This operator does not produce a new chromosome. It is still the same chromosome 
biet ordered iii it (iiffereiit manner. All the genes with this chromosome have kept their 

21f scheiua contains only 0 or I (for a binary alphabet), then it is called a building block. 
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V 
1 Befit second crossing site 

/ ýC I- 
I- ýI 

I-II- ý- 
_I 

_ý 

First cro,,, ing ý, itc 
determined randomly 

i 

_i_ 

ii 

Figure A. 4: The segregation crossover operator 

The segregation crossover operator uses the saaue philosophy of the analogous 
crossover operator. But since it does not take into account the locus of the cross 
sites, it is more powerful than the other one. So cross sites with different locus 

may he obtained. If they are identical, it then results in a pure analogous crossover 
operation. 

initial values laut their positions have changed. The sole purpose of this reorgaiiisation 
is to reset ii iterestiiig sclieniata in a form which Nvi11 make tlieni difficult tobe destroyed. 

6.3 The addition and deletion operators 

III most applications, the length of the Chromosomes is specified at the beginning 

and cannot cliattge dturitig the search of the optiiiituu solution. Nevertheless, in sonic 

other applications and particularly in computer animation, the length of the cliro- 

tnosotucs can evolve whilst the search progresses. In some of these al)l)lications, it is 

even absolutely essential. To deal with this requirement two operators (tit(, addition 

and (leletiou operators) were devised ([Davv91a], page 84). The inechanisins of these 

operators are very siuit>le. The deletion operator simply selects randomly a gene to 
delete and the addition randomly selects a gene position where to add the new gene. 
Several policies can be used to choose the value of tit(, new gene but only three of theta 

are really interesting. These are the random, the duplication and the related scheittes. 
\V'itli the ratidotu polio-. the new allele is chosen completely randomly atuid the set of 

possible alleles. With the dul)licatiolt Policy, the new allele is cit1ºer duplicated front 

the previous or the next gelle. With the related schedle, the meat of the previous and 
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of the next allele becomes the allele of the new gene. This interpolation scheme has 

nice properties specially in computer animation due to the fact that it permits the 
tuning of the search towards the finest details without bringing any disruption in the 
current motion path. More generally, it is also clear that this operator only makes 
sense if the allele-alphabet contains more than two elements, in other words it only 
makes sense if the GA does not deal with binary strings but with q-ary strings where 
q>2. 

7 The schema hypothesis 

A schema [Ho175, E. G89] is a template describing a subset of strings with similar- 
ities at certain string positions. For this purpose, we add to the alphabet used by the 
allele another symbol (*) which is called the "don't care" symbol. Thus the binary 
alphabet is transformed into the ternary alphabet 0,1, *. A schema is then said to 
match a particular string if at every position, a0 matches a 0, a1 matches a1 and 
a* matches either. Thus for an alphabet of k elements, there are (k + 1), possible 
schemata where l represents the length of the string. 

It seems a bit surprising to want to augment the number of available possibilities 
(e. g. for a binary string of length 5, only 25 = 32 solution alternatives exist and 
35 = 243 schemata are possible) but it facilitates the understanding of how GAs 

work and helps to determine the speed at which a GA can converge. For a given 
string of length l and an alphabet containing k elements, only kt are possible. So for 

a population of n strings, there are between ki and nki possible different schemata. 
What is interesting here is to compute the number of schemata which can be processed 
usefully in one generation. 

The most widely quoted result here is Holland's estimate of O(n3) schemata use- 
fully processed in a single generation. Simply stated, that means that despite the 

processing of only n strings, something like n3 different schemata will be processed in 

a single generation. This result is so important that Holland called it implicit par- 
allelism. However special care has to be taken about this result. To see where the 

problems are, the conclusive equation used by Goldberg [E. G89] is used. 

ns - 
(l - l8 + 1)n3 (A. 1) 

4 

where 
n, is the number of schemata s processed in a single generation 
1 is the length of the strings 
1, is the length of the schemata s 
n is the size of the population 

As can be seen from this equation, the result is first dependent on the length of 
the schema desired. It is also dependent upon the length of the string such as the 
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longer the schema is the smaller the number of successfully processed schemata is. 
This is quite normal and is due to the disruptive effects of the crossover and mutation 
operators. The longer the schema is the more likely it will be disrupted by one of 
these operators. Thirdly and more importantly is the role played by the size of the 
population. In fact the value of this parameter dominates the final result and this can 
be seen seen in the above equation. For the purpose of demonstration, Goldberg set 
the population equal to kf where k is the number of solutions in the alphabet. In 

conclusion, if this population is different the results may also be different but it seems 
quite difficult to guess what they could be. Finally, this is based on the assumption 
that a large number of different schemata are in the initial population and is largely 
true only at the first generation. After the first generation the population has already 
evolved in such a way that a great deal of unfit schemata have already disappeared 

permanently. 

So this result suffers from a lot a problems which makes a large community of 
researchers dubious of its real efficiency and consequences. This equation states that 
something like O(n3) schemata are processed at each generation but what the users of 
GAs are really looking for is not a maximum of schemata to be processed in a single 
generation but the number of generations which will be necessary for a given problem 
before reaching the point of convergence. Is it fair to assume that by evaluating n 
solutions, we in fact implicitly evaluate n3 solution alternatives? The answer to this 
question is not clear and is fairly problem dependent. Due to the lack of confidence I 
had in this result, I compared several implementations of GAs in different domains and 
computed the number of evaluations of solution alternatives they took before reaching 
the point of convergence. Surprisingly, it seemed that less evaluations were needed 
than this equation indicated. In other words, n evaluations of solution alternatives 
seemed to implicitly evaluate more than n3 solution alternative. However, special care 
has to be taken with this observation [Dav91b]. First they were nearly all hybrid 
implementations of GA and they used large populations. 

8 The epistasis problem 

The epistasis problem is an advanced topic in genetic algorithm research but is of 
great importance to computer animation. 

In biology, epistasis refers to the "masking" or "switching" effect among genes. A 
biology textbook says [HB93]: 

A gene is said to be epistatic when its presence suppresses the effect of a 
gene at another locus. Epistatic genes are sometimes called inhibiting genes 
because of their effect on other genes which are described as hypostatic. 

In the FAQ of genetic algorithms [HB93], they define the epistasis problem seen 
from the artificial genetic research side: 
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When evolutionary computation (EC) researchers use the term epista- 
sis, they are generally referring to any kind of strong interaction among 
genes, not just masking effects. A possible definition is: 

Epistasis is the interaction between different genes in a chromosome. 
It is the extent to which the contribution to fitness of one gene depends on 
the values of other genes. Problems with little or no epistasis are trivial to 
solve (hill-climbing is sufficient). But highly epistatic problems are difficult 
to solve, even for GAs. High epistasis means that building blocks cannot 
form, and there will be deception. 

When a chromosome is said to have a high epistasis, this means that many of its 

genes are dependent on other genes. A problem is said to be deceptive when small 
building blocks may give high fitness but their combination in a single chromosome 
is likely to result in rather a small fitness. These building blocks do not belong to 
the global optimum but just to some local ones. Combining one with another which 
does not belong to the same local optimum will result into another point in the search 
space which is likely to be worse than the two previous points. 

For a normal GA, the detection of an epistasis problem is elusive because its effects 
can only be detected at the phenotypic level. The epistasis problem tends to use very 
long building blocks which makes the improvements on the fitness function difficult 
to obtain. A problem with no epistasis is a uniform problem suitable to be solved by 

a hill-climbing search method whereas a problem with a very high epistasis can only 
be solved by random search method. A problem with the mild epistasis is suitable for 
GAs. Therefore if a given problem has to much epistasis, it is convenient to work out 
a representation which will transform the original problem into another problem with 
mild epistasis 3. 

A problem with a high epistasis is sometimes referred as a GA-Hard problem. 

9 GA with small populations 

Interactive Genetic Algorithms (IGAs) use very small populations. This may lead 
to many problems such as premature convergence or getting stuck into a local optimum 
[ree93]. 

The first condition that all populations have to meet is that every possible solution 
alternative in the search space is reachable, from the original population, only by 

crossover. By including the mutation operator, it is theoretically possible to reach any 
point in the search space but the search becomes more random and thus slower. The 

condition to be able to fulfill the first statement is that at least one instance of each 
allele exists at every locus in the whole population. In other words, if an allele does 

not appear at particular locus within a given population, then a subset of the space of 

solution alternatives will never be explored at all. Reeves then tried to compute the 

3See in Davidor's book [Dav91a] page 33,120 and 141 
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probability that at least one instance of each allele will appear at every locus in the 
whole population. He found that: 

1,. _ 
J4'! S(M, 9) L 

(A. 2) 

where 
q is the size of the alphabet 
M is the size of the population 
L is the length of the strings 
S(M, q) is called the Stirling number of the second kind 

and can be written: 

S(M + 1, q) = S(M, q- 1) + qS(M, q) (A. 3) 

with M<1, q< 2 and S(M, 1) = 1VM. 

The implications of this result are somewhat startling. It means that for a binary 

alphabet, in a randomly generated population of a relatively small size, we can be 

virtually certain to have an instance of each allele at every locus. However for q- 
ary alphabet where q>2, minimal population sizes become substantial even for 

short strings. For instance, for a confidence of 95%4, the size of the population using 
an alphabet of size 8 and strings of length 10, is about 60 whereas the size of the 
population using binary alphabet and strings of length 30 810 = (23)10 = 230 is only 
around 10. 

The result appears to contradict the common belief that integer coding would pro- 
duce better results and furthermore faster. This was not really unfounded. It was 
mainly based on the fact that most of the current implementations of the genetic algo- 
rithms use hybrid methods and in particular are using integer coding. This assertion 
seems to prove it is clearly a mistake. A recent article argues that a high-cardinality 

alphabet allow to sample more schemata but this is in fact at the cost of a much larger 

population. 

The previous part has tried to compute the best population size to ensure a correct 
exploration of the space of solution alternatives. This has to be done for a randomly 
generated population. But if the population is deterministically generated, we can 
then be sure that it meets the primary conditions. In other words, we can ensure that 

all the alleles are represented at each locus and that a correct number of schemata 
are represented in the population. A technique had to be found which would auto- 
matically build a first population which would span correctly the space of solution 
alternatives [Smi93]. In other words, we might expect that the distance between each 
individual is nearly the same. This problem is a common problem of digital commu- 
nication engineering which is solved by the use of error-detecting codes. These codes 

4We want to be sure at 95% that all the instances of each allele are represented at every locus. 
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imply that all their elements are equally spaced. Some statistics have been generated 
for this paper and it appears that on average there are at least 20% more schemata of 
mid-order in systematically generated populations than in randomly generated pop- 
ulations. Nevertheless, these experiments were only based on binary strings. The 

experiments with q-ary strings where q>2 were still in progress and whereas no re- 
sults were provided for these alphabets they suggested that the advantages of a such 
mechanism should be even more beneficial. 
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Fast cylinders 

1 Introduction 

TO ! (3 l v'ci ta (viin(ler o" it -c reeti. we awed the coordinates (Pt, P2) of the segtnetit 
rýý}>rýý"ýýnt ink t Iie (eilt re of the cylinder and also its radius R (Fig. B. 1). 

9: 

ýpf 

Figure B. l: Attributes describing a cylinder 

To describe a cylinder. it is necessary to specify points Pi and P2 and the colour of the 
object. 

The algorithm described here assumes an orthographic projection is used. Unre- 

alistic images might be produced if perspective projection is used. Nevertheless, one 
use a perspective projection on the condition that dimensions of the cylinder are 

scaled according to the camera position and state. Results would probably be good 
enough for cylinders distant enough to the camera. Otherwise, visual artifacts will 
J)econie apparent. 

«'hell drawing a cylinder on the screen, three cases may occur (Pi is at one end 
and P2 is at the other): 

1. P, is right in front of Pl. That is PI,. = P.,., Piy = Pty and Pi, < P2z. The 
result is the Sams' if P2 is in front of P1. Only one disc has to be drawn to 
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represent the whole cylinder. This disc will be located in P1 or P2 (depending 

on the Z coordinates) and will have R as radius. 

2. Pl and P2 belongs to the same XY plane, that is P1z = P2z. Thus both sides 
are invisible. A single rectangle is used to represented the whole cylinder. 

3. When it is neither of two previous cases, the side being the nearest to the observer 
is drawn, the other one being hidden. The side is represented by an ellipsoidal 
disc. A surface having the shape of the ellipsoidal disc is also swept along the 
cylinder. 

2 First case: only one side is visible 

Since a single disc has t be drawn, the resulting picture is simple to compute. The 

colour is computed first and the Bresenham's circle algorithm ([JFH90], page 81 and 
99) is used to obtain the points on the perimeter of the disc. Since up to four points 
(two points for two scan lines) are computed at each iteration, the filling procedure is 

straightforward. 

3 Second case: only the main body is visible 

The resulting image is a bit trickier to obtain. First, the cylinder may point in any 
direction with the constraint that P1, z = P2, z (Fig. B. 2). 

Figure B. 2: Only the sweep sur- 
face is visible 
The example shows a case where no side 
is visible. In this case, only the sweep 
surface has to be drawn. 

P3 and P4 are first computed. Then, the Bresenham's line algorithm [JFH90], page 
74) is used to display the sweep surface. 

Let say that u is the normalised vector of P. Then 

1 üi = (x, y) 

So we have: 
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P3 =2 (-y, x) (B. 1) 

P4 =2 (y, -x) (B. 2) 

In the implementation, divisions by two will be replaced the much faster shifting 
operations. Since, all points lie on the same xy plane, their z component can simply 
be ignored. 

Then, il is computed: 

_P 
12- 

iP1 
21 

and 
'PI = (x2 - x1)2 + (y2 

- y1)2 

Computing the latter expression each time would be costly for a fast algorithm 
due to the square root function involved. Since it corresponds to the length of the 
cylinder which is known when the cylinder is created, it can be computed and stored 
with the data structure describing that cylinder. 

To display the cylinder, the Bresenham's line algorithm could be used twice at each 
iteration first to compute the position of each point on the line segment P3P4 and again 
to sweep each point of the line segment P3P4 along the cylinder. A closer look to the 

algorithm reveals that the Bresenham's algorithm is called several times with exactly 
the same parameters. A better implementation would use the Bresenham's algorithm 
only twice in all, once for the points on the line segment P3P4 and once again to sweep 
these points along the cylinder. Thus, every points between P3 and P4 will have to 
be stored in a dedicated array. The structure associated with each point in this array 
will be made of the current x and y coordinates plus the colour of the pixel. If a 
z-buffer is being used, the z value for each point is also required. However, a problem 
remains. When displaying the surface, holes may appear each time the line algorithm 
changes both in x and y. The solution is to forbid such a thing by displaying the 

pixel each time either the value in x or y has changed. Thus, generated lines must be 
6-connected. 

This solution is still not complete though since the Z coordinate of each point on 
P3P4 still needs to be computed. This is achieved using the equation of a sphere: 

x2 + y2 + Z2 =R 2 (B. 3) 

Where 
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X =x-xc 
Y=y-yc 
Z=z - zc 
and C(xc, yc, zc) is either Pl or P2 

Patterson [Pat93] used forward diferencing to compute as quickly as possible each 
values of z. 

Since the values for X, Y and r are known for each pixel, two possible solutions 
result for Z. These are: 

Z= R2-X2-Y2 

and 
Z= -R2-X2-Y2 

The problem here is that a square root operation is involved. Since this penalty 
would be too costly, the solution adopted here, which was proposed by Fuchs [FGH+85] 

and used successfully by Patterson, is to replace the square root operation by a division 
by R. Though this may be seen to be a coarse approximation, results produced that 

way always were convincing. Therefore: 

Z- 
R2-X2-Y2 

R 

and 
Z_-R2-X2-Y2 

R 

Points facing away from the observer (results from the second equation) are dis- 

carded. With the Bresenham's line algorithm, only 2R iterations will be performed 
whatever the direction of the cylinder. Thus, equation 3 can be simplified accordingly. 

Z= . do(t) = 
R2R t2 (B. 4) 

where t is a parameter which spans the range -R to R. This is a parametric func- 
tion which can be easily decomposed into an equation suitable for forward differencing. 

11: 'o(t+1) = . 10(t) _ 
2t+1 

R 
.1 (t + 1) = . ro(t) +. P1(t) (B. 5) 

similarly, 
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. F'i(t+ 1) = mi(t) -R 

. 1'1(t + 1) = . ß'1(t) + Y2 (B. 6) 

Since at the beginning we have t= -R, so 

Y-0 = Fo(-R) =0 
2R- 1 R) =R 

-172 
2 

-R 

The implementation of these results are straightforward. 

4 The common case 

4.1 Displaying the disc 

(B. 7) 

In this case, one disc and the sweep surface of the cylinder are visible. The disc of 
the cylinder which is visible is the one where its corresponding z value for Pl or P2 is 
the smallest one. The side is represented by an ellipsoidal disc. 

Several implementation could have been used to draw this disc. In the first ver- 
sion of the algorithm, a bounding square was used in combination with a subdivision 
algorithm alike the Bezier algorithm to approximate the ellipse. One inconvenient 

of this algorithm was its computational cost when computing the z coordinates and 
when re-ordering the points afterwards. In the current version of the algorithm, each 
shade is also computed iteratively. That was not possible using the former version 
henceforth inflicting another penalty on the rendering time. 

In another version, the Bresenham's circle algorithm was used to compute the real 
coordinates of each point. One problem was that I failed to find a suitable algorithm 
which would directly draw a circle in a three dimensional scene. Consequently, the 

circle was computed using the usual algorithm in 2D and then each point was trans- 
formed to get their real coordinates in 3D. Moreover, two problems remained which 
were related to the ordering of resulting vertices and the fact that several of these 

vertices had the same x and y values whereas in some other places, there were holes. 
Shading could also not be computed iteratively. 

The current solution uses forward differencing to compute both positions and 
shades. 
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4.1.1 Computing the position of each point 

To compute the position of each point, Bezier splines were used. A Bezier spline 
is expressed parametrically by: 

Co (t) 
p(t)=p. C=Lo... p ] 

cn (t) 

where 
n is the order of the Bezier spline 
PO """ pn are the control points 
Co(t) """C, a(t) are the basis polynomials 

The basis polynomial can be rewritten: 

Co(t) MOO 

Cn(t) mnO 

... mon to 

... mnn to 

(B. 8) 

(B. 9) 

If the C; are the Bernstein polynomials (C; = BP) and if the spline is cubic (four 
control points), the resulting M matrix is: 

1 -3 3 1 
0 3 -6 3 M= 
0 0 3 -3 
0 0 0 1 

This is exactly what we have (Fig. B. 3). 

kz 

k3 
op ka 

Figure B. 3: How to compute the 
points of the ellipse 
In this figure we can see that P is the 
centre of the ellipsoid and ki, k2, k3, k4 
are the control points. Only one side is 
drawn at a time. 

Rewriting P(t) in the usual form, we have 

P(t)' = at3 + bt2 + ct +d 

-133- 

(B. 1O) 

(B. 11) 



Appendix B. Fast cylinders 

where 
a= -k1 + 3(k2 - k3) + k4 
b= 3(kl - 2k2 + k3) 
c= 3(-kl + k2) 
d=k1 

Let's assume that we know P(t). We then have 

P(t + 1) = a(t + 1)3 + b(t + 1)2 + c(t + 1) +d 

= P(t) +a+b+c+ (3a + 2b)t + (3a)t2 

= P(t) + Pi (t) (B. 12) 

similarly, 

Pl(t+1) = a+b+c+(3a+2b)(t+1)+3a(t+1)2 
= Pi (t) + 6a + 2b + 6at 

= Pi(t) + 6a + 2b + P2 (t) (B. 13) 

and again 

P2(t + 1) = 6a + 2b + 6a(t + 1) 

= P2 (t) + 6a 

= P2(t) + Ps(t) (B. 14) 

If we start at t=0, we then have 

Po = P(0) =d 
Pi = ß'i(0)=a+b+c 
P2 = P2(0) = 6a + 2b 
P3 = P3(0) = 6a (B. 15) 

To compute each point, A=P; + Pj+1 have to be computed for each i between 
0 and 2. The problem with this representation is that a single iteration is enough to 

get to the end. The step has to be made smaller. So if n points are needed 

P(tnl) = a(tn1)3+b(tn1)2+c(- +1) 
+d (B. 16) 

n 
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If we multiply this by n3, we have 

P(t+1) = n3p(t+1) J 
= a(t + 1)3 + nb(t + 1)2 + n2c(t + 1) + n3d 
= A(t + 1)3 + B(t + 1)2 + C(t + 1) +D (B. 17) 

where 
A=a 
B= nb 
C= n2c 
D=n3d 

And from B. 15: 

P(t) = At3 + Bt2 + Ct +D (B. 18) 
Po = P(O) =D 
Pl = Pl(0)=A+B+C 
P2 = P2(0) = 6A + 2B 
P3 = P3(0) = 6A 

In the current implementation, the divisor is the first number 2'a above 4R where n 
is a natural number and R is the radius of the cylinder, this in an effort to use shifting 
operations whenever possible. 

Each point computed is stored into a dedicated array containing its position and 
colour. The way the colour is computed will be explained in the next section. Special 

care has to be taken to avoid redundant points. Thus, it is fairly possible that several 
different parametric points share the same resulting coordinates. To solve this problem, 
the forward differencing method was extended to make it more dynamic by selecting 
the best available step value between three possible values. The implementation of 

such an algorithm is simple. It just tries the first solution by taking the biggest step 

value and then it checks that no necessary intermediate solution has been discarded 

by comparing either the new column value or the new row value depending upon the 
direction of the cylinder'. If this is not the case (if a solution is missing), it tries 

the lower step size until the missing solution is found. Within each block, the code 

generated is significantly optimised to avoid redundant computations. 

Before doing any of these computations, the first stage is to determine the coordi- 

nates of the kis. Knowing Pl and P2, u is computed as previously mentioned in Eq. 3. 

'If the cylinder is more horizontal than vertical, then the points are stored in line order otherwise 
they are stored in column order. So if points are stored in line order, there must be at least one point 
per line 
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Then, the coordinates of kl have to be computed. The vector is obtained from lk , 
where C is either P4 or P2, is of length R and is perpendicular to the vector it. If we 
call v the vector Ckl, then we have 

u. v = uxvx + uyvy + uyvz =0 

From simple geometry and due to the orthogonal projection, it can be shown that 
v, z = 0. By deduction, there are only two possible solutions: 

vx = -uy and vy = ux 

and 
vx = uy and vy = -ux 

This solution works in every cases except when the u_, = uy =0 and uz is the only 
value which is different of 0. Fortunately, this case cannot occur at this stage because 
it simply means that the cylinder can be represented by a single disc. The value of k4 
is obtained similarly. 

k2 and k3 still have to be computed. Both Ck2 and Ck3 must be two vectors 
perpendicular to both the vector ü and the vector v. To obtain these points, we 
process like previously. Let state that l is equal to the vector Ck2, then we have 

u. l = uylx + ugly + uzlz =O 

V. 1 = Vyly + vyly + vzlz = vyly + vyly =0 

lx _ 
yyly 
vx 

uxvyly 
+ uyly + uzlz =0 

vy 

uxvy ly(v + uy) + uzlz =0 
x 

U-vy 
+ uy lz = ly 

u, z 

Any solutions will satisfy what is being looked for so ly is arbitrarily set to 1. Thus: 

ux 
vs 

+U 
y lz = 

uZ 

and 
Ix 

-- 
VY 

vx 
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The value of k2 is then 

k2 =r+ lei 

and the value of k3 is 

k3 = 7' + k4 

The satire procedure is used to compute the points on the other side. 

4.2 Displaying the sweep surface 

Each point has now been stored in the right order into an array ready to be used 
by the sweeping process. The Bresenhain's line algorithm is used for this purpose. 
Since all the lines forming the sweep surface are parallel, the algorithm can work in a 
single pass. However. things are not that simple (Fig. B. 4). 

Figure B. 4: Holes in the sweep stir- 
face 

This example illustrates what, a typical 
situation may be when drawing a cylin- 
der. A technique has to be found to fill 

all these holes. 

As (-all be seen froiii figure B. 4, if only the simple Bresenham's line algorithin 
is used, then holes will appear. The problem is made even harder by the fact that 

these holes are of variable length and dependent upon the direction of the cylinder and 

of the relative position of each point. An example is used to illustrate the approach 

used to solve this problem. For purpose of simplicity, lines were drawn froin left to 

right and from bottom to top. The direction of the cylinder is also more horizontal 

than vertical therefore there must be a single point per line (Fig. B. 4). In the current 
ünpleinentation. lines were drawn in descending y order. Though, this is not necessary, 

this approach would be slightly different if this was not the case. 

The process works in two parts. The first part takes place when the point is stored 
for the first time in the array whereas the second part takes place when displaying the 

sweep surface itself. 

4.2.1 First part: 

For ea("li point a(1(Ied into the array, three different cases may occur: 
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O In the first case, the new point is added at the same column as the previous 
point. Therefore, each time the point will move one line up, this point will do it 
as well. So no special care has to be taken. 

Q In the second case, the new point is before the previous point (its x is below the 
one of the previous point). In this case no hole is produced as well. So, no special 
care needs to be taken. However, a number of pixels will be drawn many times. 
To improve the efficiency of the algorithm, a pixel should not plotted more than 
once. Unfortunately, no algorithm, which cost of ensuring such a requirements 
would not overcome its potential gain, was found. 

O In the third case, the new point is located after the previous one (its x value is 

greater the one of the previous point). In this case, the size of the gap has to 
be measured (It is equal to the difference between the two x values) and stored 
with the position of the point and its colour. 

In the first two cases, the size of the hole is set to zero. 

4.2.1.0.1 Second Part: In this part, two different situations can occur. 

O The next point computed stays on the same line. In other words, it is just the 
x value which increases. In this case, nothing special needs to be done. 

O In the other case, both the line number and the column number change. There is 
a possibility that a hole will be made. Again, two different situations can occur 

ü The size of the hole is zero, therefore no special care needs to be taken. 

The size of the hole is greater than zero. A hole will then appear if nothing 
is done against it. What we have to do is to go one line up as intended, 
then come back of a number of pixels equals to the size of the hole and 
draw a horizontal line equal to the size of the hole + 1. This will have the 
effect of drawing the point and filling the hole at the same time. 

5 Determining the colour 

In this section, some of the formulae used are based on Patterson's article [Pat93]. 

Thus, they are not be described in details here. When displaying a cylinder on a 

screen, two parts have to be displayed. These are the sweep surface and one of the 

sides of the cylinder which can be represented either by a disc or by an ellipsoidal disc 

depending upon the situation. The ways colours are obtained for the two parts are 

quite different and so are described separately. 
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5.1 Displaying the disc 

In the current implementation of this algorithm, a simple lighting model which 
uses a single light source positioned at infinity is being used. Hence, computations are 
easier and much faster than more complex model. However, the light source is not 
fixed. If this would be the case and pointing in the direction i where Jul = (0,0,1), 

computation would be even simpler but resulting pictures may look too artificial. 
Since the light source is at infinity, light rays are parallel for every objects in the 
scene. Therefore the normalised value of the light vector is computed at the very 
beginning and used as a constant. 

The lambert law formula for diffuse illumination at a point on a surface with unit 
normal N is 

Colour = base colour + (Kd x max(N " L, 0) + Ka) (B. 19) 

where 
base-colour is the primary colour of the object 
Kd is the proportion of light scattered by diffuse reflection 
K. is the proportion of ambient light 
N is the normal vector at the intersection point between the ray and the surface 
L is the unit vector towards the light source 

This formula is certainly one of the simplest of the equations used to model light. 
However it is good enough for our purposes. It can even be simplified a little bit. The 

constant Ka which gives the proportion of the ambient light can be set to zero if it 
is ensured that the lowest colour available is equal to this constant. This is achieved 
by specifying that K. is the lowest colour shade possible for the colour palette. The 

constant Kd then specifies the maximum number of shades available for a particular 
colour. Thus, Eq. B. 19 becomes 

Colour = base-colour + (n x max(N " L, 0)) (B. 20) 

where 
base-colour is the primary colour of the object 
n is the number of different shades available 
N is the normal vector at the intersection point between the ray and the surface 
L is the unit vector towards the light source 

The only unknown is the normal vector N. For the disc of the cylinder, N is 
computing as following: 

If Pl is in front of P2 
then N= p qth 

else N= to 9 hP 
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where length is the length of the cylinder (P1P2). With N= (x, y, z), the dot- 

product N"L is: 

N. L=xlx+yly+zlz (B. 21) 

The colour value is obtained directly. 

5.2 Displaying the sweep surface 

The colour of each line composing the sweep surface still has to be computed. 
Since the light source is placed at infinity, these colours are the same all along their 
corresponding line. 

Colours can be computed iteratively. If this could not be the case, then for each 
new point its value would have to be computed using equation B. 20. This would 
inflict a big time penalty to the algorithm. 

When displaying the cylinder, we know that two different cases can occur. Ei- 
ther no side is visible or only one side is visible. Since they have been implemented 
differently, they will be described separately. 

5.2.1 When the no sides are visible: 

To compute the colour of each line composing the sweep surface iteratively, we need 
to combine Eqs. B. 4 and B. 20 together. Again this is mainly based on Patterson's 
fast sphere algorithm [Pat93]. 

Combining Eqs. B. 4 and B. 20 together, we get: 

- base colour +nx max ((xe Y, 
R2 

RPL, 
0 (B. 22) 

where 
X is the current x value of normal vector 
Y is the current y value of normal vector 
t is a parameter which span the range -R to R 
base-colour is the primary colour of the object 
n is the number of different shades available 
L is the unit vector towards the light source 
R is radius of the cylinder 

Simplifying for explanation purposes: 

. F(X, Y, t) = base-colour + (n x max (.. o, 0)) (B. 23) 
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and 

. F(X, Y, t) =nX, Y, 
R2 

R 
t2 L (B. 24) 

Rewriting Fo 

Fo(X, Y, t) = n(Xlx + Yly + 
R2R t2 1) (B. 25) 

A parametric function with three parameters results. It can be divided into three 
separate functions: 

Jý'y(X) = n(Xly+Yly+ 
R2R t2 1) 

R2 - t2 

V(Y) = n(Xlx + Yly +R 1) 
R2 - t2 

17t(t) = n(Xly +Yly +R l) 

The result of the modification of one parameter independently to the others can 
be studied. Since results are the same for Tx and Y y, only 7 is described. Yt is 
described a bit later. 

The parameter X can increase or decrease depending upon the direction of the 
cylinder. To simplify the analysis, only the case in which X values increases is shown. 
This will be easily generalised afterwards for decreasing X values. 

, ýi(X + 1) = n((X + 1)lx +Yly + 
R2R t2lz) 

= F. (X) + nlx (B. 26) 

Thus, each time X increases by one pixel, the constant nx 19 x only needs to be 

added to the function F. Similarly, if X is decreasing, then -n x 10 x is used instead. 
For the Y parameter, the results are the same except that l"x is replaced by l"y. 

Now let's study Eq. B. 25 when only the parameter t is changing. 

to (t) =n (X Iý + Y131 + 
R2 - t2 

R1) 
2-( )2 Yto(t+l) = n(Xlx+Yly+R 

R+1 lz) 
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R 2- 2 2t 
. to(t+ 1) = n(Xlx +Yly +Rt1, ) - nR+ 

lIZ 

ýFto(t + 1) = Fto(t) - n2tR 
+l 1, 

Fto(t+ 1) = . 
rio(t) +. Fti(t) (B. 27) 

Differencing a bit further, 

. 
ýtl(t+ 1) = -n 

2(t )+1 

X, t1(t + 1) _ -n2tR 
1lz 

- 
2n 

,z 

ýtl (t + 1) _ Ytl (t) - 
2nlx 

R 

. 1(t + 1) _ . Tt1(t) + ßt2 (t) (B. 28) 

At the beginning t= -R, so 

. Fto = Fto(-R) =n 
(xii 

+ Yly + 
R2 

R 
-R R 

1, = n(Xlx +Yly) 

-2R+1 =n2R 
1 

RR 
2nlz 

. pia = . ßt2 (-R) 
R 

(B. 29) 

This is a parametric function which can be easily decomposed into equations suit- 
able for forward differencing. 

. F'o(t + 1) = . do(t) - n2tR 
1L 

Fo(t + 1) = .. To(t) +Y, (t) (B. 30) 

similarly, 

. ß'1(t+1) = 21(t)+n2L 

. J1(t+1) = ,. 'i(t)+. 'r2 (B. 31) 

Since at the beginning we have t= -R, so 
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R2 - t2 
. Fo = . FO(R) = base-colour + (n 

R 
L) 

Y1 = . Pi(R) = -n2 
R 1L 

. F2 =n2L (B. 32) 

The implementation of these equations into an algorithm is straightforward. 

5.2.2 When only one side is visible: 

To compute the colour of each line composing the sweep surface iteratively, Eqs. B. 18 

and B. 20 are combined together. 

JF(t) = base-colour + (nmax ((X, - P. � (t), Yc - Py(t), Z, - P2(t)) L, 0)) (B. 33) 

where 
t is a parameter which span the range 0 to k 
k is the number of iterations 
Px is the current x coordinate 
Py is the current y coordinate 
Pz is the current z coordinate 
(Xe, YY, Z. ) represents the centre of the disc 
base-colour is the primary colour of the object 
n is the number of different shades available 
L is the unit vector towards the light source 

Like in the previous paragraph, this can be simplified by just taking the important 
bits of the above equation. 

(t) = base-colour + max (Fo, 0) 

,0 (t) =n (Xc -P (t), Y, - Pb (t), Z, -P (t)) L 
fo(t) =n ((Xc - Px(t))lx + (Yc - ýy(t))ly -F (Zc - PZ(t))lz) (B. 34) 

Like in the previous paragraph, we only need to study the changes in one coordi- 
nate. This is easily generalised to other coordinates. In our example, only changes of 
the X coordinate have to be studied. Eq. B. 34 can then be rewritten with the Y and 
Z coordinates fixed. 

''o(t) = n. ((Xc - P., (t))lx + Yly + Zlx) 

, 0(t) =n 
((X, 

- (Axt3 + Bxt2 + Cat + Dx))lý, + Yly + Zlz) (B. 35) 
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where 

and 

and 

A-x = ax 
Bx = nbx 
(ix nz Cx 
Dx = n3dx 

n is the number of iterations 

ax = -k1 + 3(k2x - k3x) + k4x 
bx = 3(k1x - 2k2x + k3y) 
cx = 3(-k1 + k2x) 
dx = klx 

kl, k2, k3, k4 are the control points 

Differencing B. 35, we get: 

, P'0 (t + 1) = n[{Xc - (Ax(t3 + 3t2 + 3t + 1) + Bx(t2 + 2t + 1) + 
Cx(t + 1) + Dy)}lx +Yly + Zlz] 

Jo(t + 1) = n[{X, - (A, t3 + BBt2 - Cyt + Dy)}l., + Yly + Zl, ] - 
n[Ax(3t2+3t+1)+Bx(t2+2t+1)+Cx(t+1)+Dx]ly 

Fo(t + 1) _ Fo(t) - n[Ax(3t2 + 3t + 1) + By(t2 + 2t + 1) + Cx(t + 1) + Dy]lx 

-FO 
(t + 1) = To (t) +. Fi(t) (B. 36) 

Rewriting . ß'1(t): 

t2 -n[Ax(3 + 3t + 1) + B. + 2t + 1) + Cx(t + 1) + Dý]l2 

. ß'1(t) _ -n[(3Ax + Bx)t2 + (3Ay + 2Bx + CC)t + 
Ax + Bx + Cx + D.,, ])lx (B. 37) 

We can now difference . ß'1(t): 

. ý1(t + 1) _ -n[(3Ax + Bx) (t2 + 2t + 1) + (B. 38) 
(3Ax+2Bx+C. T)(t+1)+A.,; +Bx+C, +D, ]lx 

-n[(3Ax + Bx)t2 + (3Ax + 2Bx + CC)t + Ax + Bx + Cx + Dx]ly 

-n[(3Ax + Bx)(2t + 1) + 3Ax + 2Bx + Cx]lx 

. ß'1(t + 1) _ . ß'1(t) - n[(3Ax + Bx) (2t + 1) + 3Ax + 2Bx + CC]lx 

. ß'1(t+ 1) _ . ß'1(t) +. 12(t) (B. 39) 

Again differencing . T2(t), we have: 
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. ß'2(t + 1) = -n[(3Ay + B--)(2(t + 1) + 1) + 3A, + 2B, + CC]l, 

.. '2(t + 1) = -n[(3Ax + Bx)(2t + 1) + 3A, + 2Bx + CC]lý - n[(3A,,,, + By)2t]l. 

. ß'2(t + 1) _ . F2(t) - n[2(3Ax + By)]l., 

7'2(t + 1) = . ß'2(t) +. F3(t) (B. 40) 

Forward differencing is now finished. At the initialisation, the parameter t is equal 
to zero. So: 

ý0 = 17x(0) = n[(XX - Dx)lx + Yly + Zlz] 
71 = 771(0) _ -n[Ax+Bx+Cx+Dx]lx 
'r2 = F2 (0) = -n[6Ax + 3Bx + C_]lx 
13 = 13(0) = -n[2(3Ax + Bx)]lx 

The implementation of these equations is straightforward. 

6 Conclusion 

A fast algorithm to render cylinders was described. Many of the concepts used 
where first suggested by Fuchs [FGH+85] and successfully used by Patterson [PW94]. 
This algorithm assumes an orthogonal projection and a single light sources placed at 
infinity. It cannot use texture mapping but is sufficient to provide a useful represen- 
tation of articulated figures. 

Compared to Blinn's fast cylinder algorithm [B1i89], it does not suffer the visual 

artifacts when the algorithm is viewed from the sides. Using Blinn's algorithm, poly- 

gons become clearly visible. However, this algorithm is a great deal more intricate to 

implement. 
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Forms for the evaluation 
1 Usability Evaluation 

Thank you for agreeing to help evaluate the usability of different positioning tech- 

niques. I am interested in finding out which technique is the most appropriate to use 
to pose 3D articulated figures, a humanoid in this case. 

Posing articulated figures is an important part of the animation process to pro- 
duce films such as Toy Story, Jurassic Park, etc. I have implemented the three main 
techniques used. 

During this evaluation, you will use two of these techniques. You will have a 
training session for each of the techniques in which you will learn how to produce one 
pose. Next, you will try out your skills to produce two other poses. I will measure 
how long it takes you to achieve these poses. So you should try to produce these poses 
as fast as possible. 

When you have achieved a pose, the computer will tell you that it is finished. 
Sometimes, although you may believe that you have completed the task, the computer 
is not satisfied with what you have produced so far and does not say that it is finished. 
This is because you are missing some small details. So, because I am more experienced 
in the poses to achieve, I shall also be beside you to tell you what, but not how, you 
still need to do to reach the required pose. 

After each session, you will have to fill in a short questionnaire about the technique 

you have just used. Please remember it is these techniques which are being evaluated 
and not you. The results of this evaluation may be published, but all the data recorded 
is anonymous. If you're not happy then you may stop at any time, and recordings and 
notes taken will be destroyed. 

Tell me when you are ready and I will instruct you on how to proceed with the 

exercise. Do you have any questions ? 

I have read the above and will be paid five pounds for participating. 

Signature: Date: _/_/97 
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2 Explaining the NASA-TLX 

2.1 Introduction 

Positioning or posing articulated figures is an important part of the animation 
process in the industry. The aim of this experiment is to work out which of the 
existing techniques is the best, This experiment will be divided into two sessions of 
half an hour each. 

2.2 Workload tests 

After each session, I will ask you to fill-in some tables. I am not only interested in 
finding out how fast you produced the required poses, I also want to find out about 
your experiences during the completion of the tasks. I am now going to describe how 
I will do this. 

I am examining the "workload" you experienced. Workload is difficult to define 

precisely but easy to understand generally. The factors that influence your experiences 
in the positioning may come from the technique used itself, your feelings about your 
own performance, how much effort you put in, or the stress and frustration you felt. 
The workload contributed by these different factors may change as you get more 
familiar with the technique. The physical parts of workload are easy to measure but 
the mental ones are harder. 

Since workload is something that is experienced individually by each person, there 

are no effective measures that can be used to estimate the workload of different activ- 
ities. One way to find out about workload is to ask people to describe feelings they 

experienced, Because workload may be caused by many different factors, we would 
like to evaluate several of them individually. This set of 6 scales was developed for you 
to use in evaluating your experiences in different tasks. Please read the definitions of 
the scales carefully. If you have a question about any of the scales in the table please 
ask me about it. It is extremely important that they be clear to you. You may keep 
the descriptions with you during the experiment. 

After each session, I will ask you to fill-in the 6 scales. You will evaluate the 
technique you have just used by marking each scale at the point which matches your 
experience. Each line has a description at each end. Please consider your response 
carefully. Consider each scale individually. Your ratings will play an important role 
in the evaluation being conducted, thus your active participation is essential to the 

success of this experiment, and is greatly appreciated. The last scale described on the 

sheet will not be used until after both halves of the experiment have been completed. 
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Rating Scale Definitions 
Title End points Description 

Mental demand Low/High How much mental, visual activity was 
required? (e. g. thinking, deciding, 
calculating, looking, searching) 

Physical demand Low/High How much physical activity was required ? 
(e. g. pushing, pulling, turning, controlling) 

Time pressure Low/High How much time pressure did you feel 
because of the rate at which things occured? 
(e. g. slow, leisurely, rapid, frantic) 

Effort expended Low/High How hard did you worked(mentally and 
physically) to accomplish your level 
of performance ? 

Performance level Poor/Good Hou successful do you think you were in 
achieved doing the task set be the experimenter ? 

How satisfied were you with your 
performance 

Frustration Low/High How much frustration did you experience ? 

experienced (e. g. were you relaxed, content, stressed, 
irritated, discouraged ?) 

Overall preference Low/High Rate your preference for the two techniques. 
Which one made the task easier ? 

Figure C. 1: Workload scales 
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3 Sample marking sheet 
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4 Training sheets 

4.1 Learning to use the generator 
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The purpose of this evaluation is to evaluate how good different techniques 

are at posing (or positioning) articulated figures (a humanoid in this case). 

For this purpose, we are going to try to produce the following pose. It might 

represent someone sitting on some invisible chair with the hands pointing 

toward the pelvis. 

We are going to use a tool called Generator. 

i 
Right 

Top 

Colours have been selected to help you. Apart from the head, they all 

mean something. 

Grey: The corresponding limb cannot move 

Pink: Only flexion motions are possible (cf forearms) 

Yellow: Flexion and pivot motions are possible. The joint resembles 

part of a sphere 

Orange: Flexion and Pivot Plus Twist motions are possible. For Twist, 

the limb rotates around it self. 
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When you are ready, press on Ok at the bottom of this window. 
The computer then displays a pose that you will try to achieve. 
Take a careful lookat it. It is also displayed beside you on a 
sheet of paper. Ask me if you cannot find this sheet of paper. 
When you are ready, press Ok. 

While you try to pose the figure, the computer will record all 

sort of informations which will enable me to work out how good 
the technique is. Try to produce the pose as fast as possible. 
When you will be close enough to it, the computer will tell you 
that it is fine and that you can stop. 
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You should have in front of you a big window with nine standing 
humanoids. Beside each humanoid, you have different views of the same 

character. The one at the top shows the humanoid from the front, the one 
below shows the humanoid from the right hand side and the one at the 

bottom shows the humanoid from above. 
IGA result window 

QyQQ 
RýRht t 

O 

- 9J-t 

Ilk L ,t 
i 

TOP TOP 0 

: ̀+ 
!T MT 

r 16 e 
Right Riaht Right 

ý r, t 

TOP rop 
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On the left of the screen, you should have a window called Poser. In this 

window, you should have a standing humanoid. 

Poser XJ 

0; 

Right 

4A 

cxFý Top 

Press this button when ready: Ok 

At the bottom, there is also a grey window called the Main Window. From 

this window, we are only interested in the second panel. 

Pose 

100 

iý Flexion & Pivot ( Twist 
Mutate Initialise 

Next Flush 
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The first thing to do is to press the Mutate button on the panel. 
Alternatively, you can also press the M key. Nine poses are then produced 

and displayed by the computer onto the IGA Result Window (the window 

with the nine figures): 

IGA result window 

t Right Rqht 

Rw. ht 

t Rght 

rcip Ü rap 

RjRht Right 
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To select a limb, you just have to click on it. If the limb is pointing right 

toward you, it may not work. In this case, either you use one the views 

beside it or you draw a rectangle around the limb. 

If you want to select more than one limb, you just need to draw a rectangle 

around the groups of limb positions you want to copy and all limbs which 

lie entirely inside it will be copied. 

If you have made a mistake, you can undo the last operation by pressing 

control-u. Undoing twice just comes back to the original. Just try it out. 

You may also want to rotate the humanoids to see them from a different 

angle. For example, if you want to rotate the humanoids from left to right, 

bring the mouse cursor at the level of the hip on the right side. Once there, 

press the control key, the left mouse button and drag the mouse cursor 

leftward. This will rotate the current figure. Once you are in the right 

position, release the mouse button and the control key. All other figures will 

be redrawn at this point. 

If you have problems rotating the humanoid, try to go trough the centre of 

the humanoid (the hip), the results will be more predictable. 

To bring back the articulated figure in the original view (the front view), 

press the control key again, and double click. 
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Once all limbs have been selected, you should end up with a figure looking 
like this. 

Poser 

t-i 

t 

0 

Top 

Press this button when ready: Ok 
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In what will follow, the computer will use the pose displayed in the Poser 

window as a seed to generate a new set of positions. On the Panel, you 

also have a slider. It tells how strong the mutation will affect the seed pose. 

At 100, the value it has at the moment, it will look very different from the 

seed pose. At 0, all poses generated will be exactly like the seed pose. 

Although the pose we have at the moment is just perfect, bring the slider to 

a value of 20. After moving the slider, notice the cones in the Skeleton 

Window, a window on the left hand side of the screen. They more or less 

describe the areas where new positions will lie. 

Rotate 
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After pressing Mutate or the M key, a new set of positions are displayed. 

Notice how close they are to the original position. 
IGA result window 

L 
*00 

r -Vý 44 

? 

r- 

Rwht t 
l. 

r7 

FjKht -t RLO-It 

NSA- 

rap rap 

Fight RjRht 

ý 
,ý Right 

The computer tries to display first what looks to it the most important 

positions. But you may be looking for one which is less conventional. If this 

is the case, the computer computes three pages of positions, so your 

positions might be in the next two. Pressing N brings you to the next page. 
Pressing F brings you back to the first page. You should try this out now. 
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The next thing to do is to rotate the arms so that the hands point towards 

the hip. To perform this, you need to select Twist from the Panel. Because 

the changes are quite big, you should bring the slider back to 100. 

Pressing Mutate, you will get something like this: 

IGA result window 

Right 

0 

91,1 

Rip-ht .. f 

tO 

Rght 

TOO TOP 

IL 

TOP 

A 
1"I", 

RjRht Right 

rý 

Tap 

r 

Right Rwjit Rwht 
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As not only the arms but also the torso and the legs have moved, you may 
find it difficult to see the interesting positions. So, to avoid this problem, 

you will draw a rectangle around the group of limbs forming the arms and 

the torso in the Skeleton window. If you press the shift key while dragging 

the mouse cursor to draw the rectangle, the group of limbs inside the 

rectangle will be disabled. Using the shift key, disable the torso and the 

neck. You should end up with something looking like this: 

Skeleton window x1 l 

Rotate 

Mutating again, you can see that only the arms have been rotated. Select 

the one you think are the best (by clicking onto the arm, not the forearm ! ). 
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Before you go to the evaluation strictly speaking, you will try to produce the 

following pose. It represents a sportsman jumping over a barrier. I will be 

there to help you and answer your questions if any. 

op 
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Now, so that I can evaluate how good the technique is, you will 

try to produce the following poses. 

The first one represents a runner. 

J 

Right 

m 

op 
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The second one represents someone lying on some invisible 

chair, the left leg resting on top of the other one, the hands at 

the back of the head. 

Right 

ý r. 
low 

Tap 
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4.2 Learning to use forward kinematics 
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The purpose of this evaluation is to evaluate how good different 

techniques are at posing (or positioning) articulated figures (a 

humanoid in this case). 

For this purpose, we are going to try to produce the following 

pose. It might represent someone sitting on some invisible chair 

with the hands pointing toward the pelvis. 

The technique we are going to use is called forward kinematics. 

- 

Q--6 

Right 

Top 

Colours have been selected to help you. Apart from the head, 

they all mean something. 

1%4ýý 

j 
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Grey: The corresponding limb cannot move 

Pink: Only flexion motions are possible (cf forearms) 

Yellow: Flexion and pivot motions are possible. The joint 

resembles part of a sphere 

Orange: Flexion and Pivot plus Twist motions are possible. 

For Twist, the limb rotates around it self. 

On the left of the screen, you should have a window called 

Poser. In this window, you should have a standing humanoid. 

Poser 

,gt 

1i 

sc TO 

Press this button when ready: Ok 

1ý 



Slide 171 April 30,1998 171 

When you are ready, press on Ok at the bottom of this window. 
The computer then displays a pose that you will try to achieve. 
Take a careful lookat it. It is also displayed beside you on a 

sheet of paper. Ask me if you cannot find this sheet of paper. 
When you are ready, press Ok. 

While you try to pose the figure, the computer will record all 

sort of informations which will enable me to work out how good 

the technique is. Try to produce the pose as fast as possible. 
When you will be close enough to it, the computer will tell you 

that it is fine and that you can stop. 
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To produce the required pose, we will start with the legs. Let's 

first select the right thigh of the humanoid (it is on your left). To 

do that, just move the mouse cursor to the thigh and double 

click the left mouse button. The thigh should highlight. You 

should end up with something like this: 

Poser 

lZt 

4t 

JGHTl1GH Top 

Press this button when ready: ok 
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A 

ý` 
,, 

In animation, there are two types of motions. Limbs can be 

moved left to right and up to bottom. These types of motions are 

called flexion and pivot. Some limbs can also rotate around 
themselves. These are called twist motions. 

On the left of the window, you can see two objects (a sphere 

and a circle). These are called joints balls. When you selected 

the thigh, the first object became a sphere with a red spot in the 

middle and in the second object, a line was drawn. At the 

bottom, the name of the limb (RIGHTTHIGH) was written. 

The first object is for flexion and pivot motions whereas the 

second one is for twist motions. 
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Try now moving the red spot of the sphere upwards. You should 

see the right leg of the humanoid moving up as well. Try to 

place it so that it is horizontal and pointing towards you like this: 

Poser 

(72 lllý 

GHTI'HIGH Top 

Press this button when ready: Ok 

If you have made a mistake, you can undo the last operation by 

pressing control-u. Undoing twice just comes back to the 

original. Just try it out. 



Slide 175 April 30,1998 175 

The next thing to do is to select the right leg. Because it is 

hidden by the shoe, you can either select it by using one the 

view on the right hand side of the window, or you can rotate the 

figure to see it from a different angle. 

To rotate the humanoid, bring the mouse cursor at the level of 

the head. Once there, press the control key, the left mouse 

button and drag the mouse cursor downwards. This will rotate 

the figure. Once the right leg is visible, release the mouse 

button and the control key and double click on the leg. 

If you have problems rotating the humanoid, try to go trough the 

centre, the results will be more predictable. 

To bring back the articulated figure in the original view (the front 

view), press the control key again, and double click. 
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With the leg joint only, it is not possible to move left to right so 

pivot motions are disabled. As a result, only a circle with a red 

line appears at the top left of the window. Since twist is not 

allowed as well, there is no red line at the bottom. By moving 

the red line, try to bring the leg in a seated position so that it 

looks like this: 

Poser Xý 

-0 N'' I 

pia 
Right 

r 

UHTLD Top 

Press this button when ready: ok 
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By now, you should be able to position the left leg in a similar 

position. I leave it as an exercise for you to do. 

We now want to move the arms so that the hands points toward 

the hips. Working with the right arm, first select the upper arm 

and move it upwards, then select the forearm and bend it so that 

it looks like this: 

Poser XJ 

Right 

. 
} 

0 

RjG, H7T'OPJKAFý Top 

Press this button when ready: Ok 

Do the same with the other arm. 

The next thing to do is to twist the upper arms so that the hands 

touch on the hip. The pose is now finished 

Moo) 



Slide 178 April 30,1998 178 

Before you go to the evaluation strictly speaking, you will try to 

produce the following pose. It represents a sportsman jumping 

over a barrier. I will be there to help you and answer your 

questions if any. 

op 
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Now, so that I can evaluate how good the technique is, you will 

try to produce the following poses. 

The first one represents a runner. 

rýL 

R' ht 

Top 
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The second one represents someone lying on some invisible 

chair, the left leg resting on top of the other one, the hands at 

the back of the head. 

, 

0. "6ý Ic- 

Right 

Top 
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4.3 Learning to use inverse kinematics 
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The purpose of this evaluation is to evaluate how good different 

techniques are at posing (or positioning) articulated figures (a 

humanoid in this case). 

For this purpose, we are going to try to produce the following pose. It 

might represent someone sitting on some invisible chair with the 

hands pointing toward the pelvis. 

The technique we are going to use is called inverse kinematics. 

l iý} 

Right 

Top 

Colours have been selected to help you. Apart from the head, they all 

mean something. 

1*11*ý 

-i 
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Grey: The corresponding limb cannot move 

Pink: Only flexion motions are possible (cf forearms) 

Yellow: Flexion and pivot motions are possible. The joint 

resembles part of a sphere 

Orange: Flexion and Pivot plus Twist motions are possible. 

For Twist, the limb rotates around it self. 

On the left of the screen, you should have a window called 

Poser. In this window, you should have the a standing 

humanoid. 

Poser 

, IGHTUPF Top 

Press this button when ready: Ok 
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When you are ready, press on Ok at the bottom of this window. 
The computer then displays a pose that you will try to achieve. 
Take a careful lookat it. It is also displayed beside you on a 

sheet of paper. Ask me if you cannot find this sheet of paper. 
When you are ready, press Ok. 

While you try to pose the figure, the computer will record all 

sort of informations which will enable me to work out how good 

the technique is. Try to produce the pose as fast as possible. 
When you will be close enough to it, the computer will tell you 

that it is fine and that you can stop. 
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To produce the required pose, we will start with the left leg of 
the humanoid. The first thing you need to do is to select the 
left leg. For this purpose, bring the mouse cursor on top of the 
left leg and double click the left mouse button. The leg will 
highlight. The name of the limb will also be written at the 
bottom left of the window. The window should look like this: 

Poser 

ýt 

LEFrLE)G Top 

Press this button when ready: ok 

Note if a limb you are trying to select points toward you, it may 

not work. You will have to rotate the figure or to use one of the 

views on the right hand side of the window to select it. 
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The next thing to do is to bring the leg in the seated position. 
Doing it with the humanoid facing you would be too difficult. 

Instead you should rotate the figure to see it from the side. 

To rotate the humanoid, bring the mouse cursor at the level of 
the hip on the right side. Once there, press the control key, the 

left mouse button and drag the mouse cursor leftward. This 

will rotate the figure. Once you are in the right position, 

release the mouse button and the control key. 

If you have problems rotating the humanoid, try to go trough 

the centre, the results will be more predictable. 

To bring back the articulated figure in the original view (the 

front view), press the control key again, and double click. 
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I i 

You can now move the leg by dragging it around with the 

mouse. You will see as the end of the leg tries to follows the 

mouse cursor, the thigh will move as necessary. The leg might 

slightly be tilted inwards or outwards. This does not matter. 

We will correct this defect later on. Try now moving the other 
leg so that it looks like this: 

Poser XJ 

f 
'll 

Right 

Top 

Press this button when ready: ok 

If you have made a mistake, you can undo the last operation 

by pressing control u. Undoing twice just comes back to the 

original. Just try it out. Coming back in the original view, bring 

the legs in the correct position. 
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Select now the left hand of the figure and try to move the 

entire arm so that the hand points toward the pelvis. You will 

probably find this impossible to do as it makes the torso move 

and the upper arm does not want to go in the position you 

want it to go. So, undo the changes by pressing control u and 

draw a rectangle around the upper arm while pressing the shift 

key. The window should look like this: 

Poser Xf 

40 

0 

iRjW-it 

0 

Top 

Ok, start now Ok 

All the limbs which lie entirely inside the rectangle are 

enabled, the others are disabled. If no limb is enabled, the 

computer assumes that you want everything to be enabled. 

Thus, clicking only once will enable everything. You should 

now find it easier to pose the arm in the required position. 
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Once this is done, bring the upper arm in the right position. 
Then, enable the forearm and the hand only, and move them 

by dragging the hand so that the hand points toward the hip. 

You should end up with something like that: 

Poser XJ 

6- 40 AI 

Rdght 

Top 

The pose is now finished. Press Ok Ok 

Do the same thing with the other arm. The pose is not finished 
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Before you go to the evaluation strictly speaking, you will try to 

produce the following pose. It represents a sportsman jumping 

over a barrier. I will be there to help you and answer your 

questions if any. 

r r'ý 

le I "A 
- 

Xý- 

Ruht 

J- 

(I 

Tap 
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Now, so that I can evaluate how good the technique is, you will 

try to produce the following poses. 

The first one represents a runner. 

ght 

P KIM 
r 

Top 
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The second one represents someone lying on some invisible 

chair, the left leg resting on top of the other one, the hands at 

the : ý<ýcý O` the head. 

Right 

-. 

op 



Appendix D 

Raw data and analysis 
1 First evaluation 

1.1 Workload raw data 
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Figure D. 1: Workload Data 

The first set of values is for the generator with forward kinematics. The second set if for 

the generator with inverse kinematics 

I 

-194- 



Page 
missing 



Appendix D. Raw data and analysis 

1.2 Mental demand 

FTat Mbr4 dem. nd 

VMmc. 2.8305956 2.0066@887 
Obs. vatlorr 10 10 
Poo1sd variants 2A4861111 
Iygotlwizsd Moan Oil. - 0 
d 18 
t Stal 1.78622066 

P(T<. t)one-hA 0.0154 092 
t CfOuI one-td 1.73406306 
P(T'. t) two-t. 4 0.09091984 

t Giti. I lwo-ta8 2.10092367 

i-TM Mental dmnd 

V. 6- 4.15 6.33640556 
Obeemad r 10 10 
Pooled Valance 5.24340276 
HyyoO turd Mein Dp e-e 0 
AI 1e 
i sm -0.4150164 
P(Týti)0ns-W 0.34151662 
1 Cri6M onsdel 1.73406306 
P(T--1) Iwo-ta 0 66303324 

I CGltlul Iwo-tI4 2.10092367 

Figure D. 2: Mental demand 

Differences in the means are not statistically significant. 

 o., ý. d 
oý ýý l 
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Appendix D. Raw data and analysis 

1.3 Physical demand 

I"T. N: Phyüul dsmend 

M. an 2.9 4.3 
V s. c. 3.03055556 8.54444444 
Ob"-M- 10 10 

Poolsd Variance 5.7875 
Hpotlw. imd M.. n Dillwws 0 
a 19 

I st. t -1.3477443 
P(T" 1)-40 0.09723002 
1 GOlul d&-td 1.73406306 
P(T<. q {N-1.4 0.19446004 
f CnOal two. t. A 2.10092367 

. r... d 

t-Teat Physical demand 

Mean 2.6 545 
Vvüncs 2.23686888 7.96944444 
ObMrvitlmr 10 /0 
Pooled Variance 5.10416667 
Hypothesized Mein DMiwsrca 0 

M 16 
1 Stil -2.6207655 
P(T<K) One-W 0.0056605) 
I Critical artet 1.73406306 
P(Tn. 1) Iwo-h I 0.01132105 
I Oft m Motail 2.1009287 

Figure D. 3: Physical demand 

Participants found that inverse kinematics were a lot more demanding physically than 
the generator was. This difference was statistically significant to the 5% level. 
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Appendix D. Raw data and analysis 

1.4 Time pressure 

fT. a TM ywýww 

U. - 3.675 4.125 
V. l, ca 6.2506w" 7.76617666 
oewv. 6wn. ww 

POO»d Van6na 6.07261667 
mooIwie. d Mwn0 6 Nnc. 0 
a +6 

s6 -0.7552176 
P(T 1)on. -w 6.36326635 

1 C, lcal pm-4 1.77406706 
P(T -t) Iwow 07 

C b-i Iwo-w 2 10092367 

I-T"t Tbý 

Msr 175 5 

Vw1 1c. 3 15277778 6.52777775 
ab. Wrv. O 10 10 

Pooled Ve W. c+ 484027778 
HW*«fod Usw oMla. 1aý. 0 
a 1e 
t em -3.3031575 
V(7<+1) ~co 0.0019797 
1 d19t01 du. w 1.73409306 
P(TM)W 0.00096339 
1 G19ui t. > W 2.10092357 

Figure D. 4: Time pressure 

io- / 
t/ý 
eý 

ý- 

ý/, 
ý_ 
ý 'ý 
i 
0 

The time pressure related to inverse kinematics was somewhat higher than the one 
related to the generator. This difference is statistically significant. 
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Appendix D. Raw data and analysis 

1.5 Frustration 

I-Test Fn Mbn esp. Wn Md 

V. A., c. 1A30561 9.527778 
ae. uvu6 s 10 IS 
Poo. d V. b- $x79,67 
Hypoue. iaa Mm DMs vno. o 

a +e 

Slit o. z71YW 
P(T<g) artd o. 7Wý61 

cm" -ta 1.734063 
P(1. () 1.0W 0.788722 

1 Ci c11 tweöl 2.100924 

I. TMt F, a*$ ion H pS WlCSE 

V. i. 4 538000 4.708067 
Opserlav s 10 10 
Pnc Sd vo vK 4.652770 

Hyro0 . »e Ms. i Do me, 0.0 
d 16 

t sw -1.347m PR<-4) 0»-W 0.00rn7 

I Cftd O ud 1.73m 
P(TM) Iwo-W 0.1911Bä 
t 4i11ow two-tai 2.100 1 

Figure D. 5: Frustration experienced 

Differences in the means are not statistically significant. 
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Appendix D. Raw data and analysis 

1.7 Workload 

4TMt WmHeu A 

Ibn 5.070633 4.654167 
valk s 2.649001 1.649246 
00MnsI . 10 10 
Pooled Vrrn s 2256124 

Nt0e6ýss d ºMrt D S. S. y0 
40 16 
t 651 0.331336 
P(TM) Ow 0.775156 
t C'mw writs 1,734063 

V(7cq)IW -t 0750913 
t Cr4al hour 2.100624 

fTwt WMWW 

vnltao 157552 3.157581 
ob.. v. k- 10 10 
PoW, A vm wO 

ý 2.767210 

ýoswm. a Us o+ wr 0 
er Is 

I. "2.343504 
P(T. y)pr-W 0.01SJ 3 
t C. tcM onºW 1.734063 l 
P(T<y) twoW i 0.0307! 5 
1C9 MO-t 2.100924 

Figure D. 7: Workload 

Participants found inverse kinematics somewhat more demanding to use than the gen- 
erator. This difference was statistically different. 
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4 pprndix D. Raw data and analysis 

1. S OvrraII preference 

O. PA rd B- Oý"l P, 44 . - 
Fo+w&d 

(Gsnds, O. EV IG G -m. 
1 44 Fvs , FM 6.00 7.00 
2 47 Mw Second 4.00 0.00 
3 28 Fec. . FMII 6.75 8.25 

4 ]1 MW SSodtl 2.25 7.75 
s 23 FW ä. FYI 2.7$ 7.25 
$ 21 MYw Second 7.25 4.25 
7 29 Udo FNI1 8.25 8.25 
" 22 MY. Second 0.50 0.00 

23 Mw Fim 5.75 0.75 
10 23 M. 4 5. Il 4.50 7 

um: 55.00 73.50 
Mein 5.50 7351 

' 
.. j, 

..; I-TW: OeWp. loom 

re. 
 OwYOr ßýM"Na FawsN 

"Mý Ms 
"Fdý ý 

55 7.36 

. w. Vý 4.763.55 2.015557 

tw" 
OEwn tw 10 10 
POOIW V ., ce 3.35027e 

tO" IhG. WMs5n D0. 0 
tw" t q ý 

100" tow SYt -2.2ýEl7 
_ 7 

0 Otl I C*c. l 0104a 1 34003 
P(Toq r-tY 0.037445 
t CONtal lwoW 2.100924 

Ii 
, ý; rt U. ". " r; t fl pr-"fvneii ' ag ainst forward kinematics 

Part e; I t, tý prerorrefI to use forward kirre matics rat her than the generator. That diff('. r- 

1 11, , _1.0 11 I', i' l); Iiiticatit. 
Group A"B-O . II PM wwtc. 

knýrw 
poodpwo Age AwWR ddýr Owwnlo, 14rwma 

11 25 Make Fnst 7.00 4.00 
¶2 25 U. ls S co-d 5.50 9.50 
13 22 Ui Net &00 7,00 
N L MW Second 9.00 1.00 
is 24 MW Flip 5.00 8.50 
IS L Fowls Bsoord 7.50 5.50 
17 22 Farm l Fm 6.75 4.75 
15 31 I1yw S. cond 7.25 3.25 
,s 72 " flnl als 8.75 
ZO 21 Mow Secab 8.75 6. 

um 7,. 50 -00 
Mein. 7 

. 
15 5 

1.: ast OvwmI PAMOIW 

7r 

"ý 
ýOilýMrs Inws1 

rwom kn01"Whn 
M~ 7.15 5.6 
V-rw 1.47222 5.711111 

"a 
OOuw. Omr 

A 

10 10 
road v n., c. a. exale7 

as /yqlarw.. d wu, D. - 0 
_: a I. 

cstal I7711ee lw PR<. 0 a* 0.04673 
so , C40M. 0 1.73,063 

PRd11. ouM 00aW 
1 C48C& two-up 2.100924 

Fi., m- v 1).! º: t )'. Drall preference against inverse kinematics 

1'arti, ip: lnts preferred to use the generator rather than the inverse kinematics but that 
di(femnce was not statistically significant. 
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16 
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I-Tint: Ton* psrd pomp a *'We 
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394 $24 
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234 4bß 

MGM 309.4 460.3 
Wrwce 29490.92 29O61.57 
OOwwaWs 10 10 
Poo40 Mrrwe 2927 

. 09 
NypoMd Mum D s... a0 
a t9 
t Sm . 091547 

PR<. Q o«rw o teeats 
t Crftw - , . 
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P(T<. p Mv4mr 0.37303 
t DOW twow 2.100924 

sm 

350 

m 
no IV 

too 

ant Tbn. w. 1 Pm" " iw+ 

MGM 330.1 as .. ý 
w.. ro. 8290 058 3024467 . 00 
Oassr rwr 10 10 no 
Pooled 2: 772.16 300 

nyocýI. WW. a w in ow.. na 0 so 
to I. '°° 
19111111 "1.910 ,. ° 
P(f<-0 on*4W 0.032154 IN 
1 Cher on*r 1.734063 ýD 

° v(T<-lno 0064306 
t Crmc l lwow 2100924 

I). It': I ui . required to pose t he articulated figure 

. ooft"W 1 

ob-h -0. i 

On average, p(> were produced faster using the generator but differences in the means 
were ii 'tatistically significant. 

"GInFneor 

-  FarwdKrnrOCF 
i 

- 202 



Appendix D. Raw data and analysis 

1.10 Number of iterations 

Forward Generator we $. 

2 
0 
4 

7 
a 
a 

10 
11 
12 
'13 
1s 
s 11 
a 

17 
18 

23 47 
20 14 
38 26 
20 21 
17 22 
23 32 
25 17 
25 30 
14 29 

27 
24 
22 
33 
38 
13 
1s 
15 
1s 

I-Test Two-Sample Assuming Equal Variances t-Test Two-Sample Assuming Equal Variances 

Generator Forward 
Mean 26 23.5 
Variance 87.11111 44.72222 

871 0bservetb 10 10 

18 Pooled Var 65.91667 

19 °ttl°dz 0 

18 18 

15 t Stet 0.688537 

24 P(Tc4) on 0.249947 

15 
191 

It Critical or 1.734063 
P(T O Mrt 0.499893 

26 t Critical 1w 2.100924 

Generator Inverse 
Mean 22.55556 20.88889 
Variance 67.27778 51.11111 
Ohservatlo 99 
Pooled Var 69.19444 
Hypothesis 0 
dl 16 
t Stat 0.459531 
P(Tct) om 0.326018 
It Critical or 1.745884 
P(Tot) twi 0.652035 
t Critical tw 2.119905 

Figure D. 11: Number of iterations 

Althongh the number of iterations used was marginally higher using forward kinematics, 

this difference was not significant. 
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`l Sel O1I(1 evaluation 

2.1 I r: iiiiing 

ÖeuýiuýinrD 9N 1(, 3 t- CIJ inuNöm8Cl)v 
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vSt 
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co C-i Nmf off wý mmN l7 O Y7 t0 ^mWR 
fV 

NNNNNNNN 
f`7 (7 

RMMA 
f^7 

Am 

Anova Single Factor 

SUMMARY 

Groups Count Sum Average Vanance 
Generator 40 2187 54 675 340.6865 
Forward 40 2455 61.375 436.5481 
Inverse 40 2614 65.35 790.2846 

ANOVA 
Source of Vans SS df MS F P-value F cnt 

Between G 2328.617 2 1164.308 2.228314 0.112262 3.073765 
Witten Gro 61133 25 117 522.5064 

Total 63461 87 1 19 

-0 
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40 
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  Forward kinematics 

Q Inverse kinematics 
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Iý 11ýý1 
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-11s1(Ierat)IP Ittll)ro vezlIerlt N(rv Belli ('(1 while performing 

OW s('('()"(, 

1. % ah1'11 1- I'. 

204 



111(1 unu1i/. "(. s 

2 
.. 
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0 
1 
2 
3 
4 
s 
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6 
9 

10 
11 
12 
13 
1f 
15 
16 
17 
16 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
36 
39 
40 

G. nrs Fwd 

26 40 30 Anove S. n e Factor 

23 56 33 
99 78 as SUMMARY 

46 48 34 G'ot. ps Count Sum Average Va once 
16 St 27 &ene. ata 1468485.80488 316211 
29 56 31 Forward 2237454.56098 257.9024 
66 66 45 Inge 1922 4116 87805 414.4598 
31 46 39 

So 49 34 
61 54 35 ANOVA 
39 66 54 Sawce of Vane SS al MS F P-value F cnf 
43 49 58 Between G 729026 2 3645.13 11 06179 3 9E05 3.071776 
24 72 51 WAhn Gro 39542.93 120 329.5244 
48 118 12S 

21 SO 54 Total 46833.19 122 
55 55 60 
35 58 55 

22 33 36 

39 23 35 
13 53 41 
19 52 35 
42 53 98 
31 71 28 

42 42 37 
23 46 49 

31 50 30 
44 M 35 

37 60 43 60 
30 59 35 

43 66 67 50. 
0 

21 41 30 
33 46 43 40   Generator 
32 56 67   Forward kinematics 

41 5e 40 30 
Q Inverse kinematics 

23 50 61 
2 

26 44 43 
50 67 53 10 
26 62 50 
22 37 56 p ,. 
40 36 27 

4 34 21 

N() pus' the articulated figure 

xv-- " pro (iced ruusiderabl}" faster using the generator. Differences in the means 
ýýerr r" iuely ý-ignifiants. 
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: ýýiýýr nrlir U. /i'u71 rln/n and anal 

2.3 \iiiiih''r of itI 'rat ions 

Gen"m Fo wd W- 

0 8 6 6 
1 8 10 8 
2 12 13 13 
3 11 a 9 
4 6 9 5 
S 7 9 5 
6 14 12 a 

7 6 12 a 
a 10 12 4 

9 13 11 7 
10 8 15 10 

11 1, 9 9 

12 6 10 8 
13 9 17 20 
14 12 a 11 

is 12 11 13 

16 9 11 10 
17 6 5 8 
16 8 4 6 

19 7 a 10 
20 6 7 8 
21 11 12 14 

22 17 is S 
23 10 9 7 
24 a 10 10 
25 10 12 a 
26 10 a a 
27 10 10 a 
28 7 10 a 
29 13 9 14 
30 6 6 7 
31 6 a a 
32 10 13 10 
33 10 12 10 
34 5 10 11 

35 9 7 10 
36 12 13 11 
37 9 10 17 
38 7 6 10 
39 a 9 a 
40 3 5 5 

Move. Smg4 FaCtw 

SUMMARY 
Groups Count Sum Average Variance 

Gan. ratd 41 368 8.97561 6.42439 

Fo wvd 41 403 9.829268 7.945122 

1rne.. 41 371 9.04878 9.247561 

ANOVA 
Sake Of V. ne SS df MS 

_F _ 
V-value F cot 

8etwesn G 18.35772 2 9.178862 1.165961 6315188 3.071776 
W 0tvn G+o 944 6629 120 7.872358 

Taal 963 0407 122 

I 

  Csarrerata 

  Forward kmemalioa 
0Inveraa knematics 

l i, . ii 1). 1 1': \i11111)(I O1 it('raitioiis 

difference in the number of iterations necessary to produce a 
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2. ! ('orrclatioii het%VPen time, iterations, etc 
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20 19 61, . Iß 60191 297561 0653666 -1.167115 292079 6.651257 0726773 2.141562 so 1111475 11.34563 24.5925 
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3660198 897561 1917866 2199.15 7064965 6.267999 0759012 1.273052 3116353 11.77632 14.99216 
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e 

ý "GMMýYer i 
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3IO Ievww wmaeeM j 

eda 

Figure [). I: ): ('ýýrrel: itiuu between tunes, iterations, etc 

Io final if there %va. s a correlation between time, number of iterations, number of gen- 
>'ratiui>.: >nd number of page switch, the Pearson coefficient was computed manually. 
I"; xc,,!; " , >s ()f rr; lt help here. 
Iicl, vv ýuýýýýn i! t, lime per iteration for each technique. 

207 



IppU tida. r D. Rar, data and analysis 

2. -1 Correlation between t iiiie, iterations, etc 
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Figure D. 15: Correlation between times, iterations, etc 

To find if there was a correlation between time, number of iterations, number of gen- 
erations and number of page switch, the Pearson coefficient was computed manually. 
ExceIT'%t was of great help here. 
Below is shown the tinie per iteration for each technique. 
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