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Abstract 

Maternal metabolism undergoes dramatic changes in pregnancy in order to 

sustain and nourish the developing fetus. During healthy pregnancy the mother 

goes from an anabolic state in early pregnancy to a state of catabolism in late 

pregnancy with increased lipolysis together with a significant reduction in insulin 

sensitivity. Pre-eclampsia (PE) characterised by hypertension and proteinuria is a 

major cause of maternal and perinatal morbidity. There is acute ‘atherosis’ in 

PE placenta, and lipid accumulation within glomerular cells and liver.  PE women 

have an early, excessive triglyceride and free fatty acid (FFA) rise and greater 

cardiovascular disease (CVD) risk in later life. The cause of these lipid 

abnormalities in PE is unknown but disordered adipocyte function including 

exaggerated lipolysis and aberrant release of adipokines (such as IL-6 and TNF 

alpha) is a major candidate pathway.  Elevations in FFAs, and pro-inflammatory 

adipokines could underpin the oxidative stress, endothelial dysfunction, 

inflammation, and insulin resistance - characteristic features of PE.  

The aims of this thesis were to acquire a better understanding of lipid 

metabolism and function in normal pregnancy, to determine if adipocyte 

function was altered in PE and, if so, to establish mechanisms. In addition I 

planned to corroborate epidemiological evidence of increased future CVD risk 

and to establish which risk factors accounted for this increased risk. 

I collected subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) 

biopsies in non-labouring pregnant healthy (n=31) and PE (n=14) women who 

underwent caesarean section. Maternal blood was collected prior to delivery and 

phenotyping of the mother was performed including plasma assay for 

cholesterol, triglyceride, HDL-cholesterol, IL-6, TNF-α, leptin, adiponectin, high 

sensitivity CRP, glucose and insulin concentrations. Maternal BMI at booking, 

standardised blood pressure measurements and birth weight centile were also 

recorded.  I determined ex vivo lipolytic activity (basal, isoprotenerol stimulated 

and insulin suppression of lipolysis) and adipokine production in response to 

lipopolysaccharide (LPS) stimulation from these biopsies. The gene expression of 

relevant target genes and macrophage densities in each adipose depot by 

immunocytochemistry (ICC) was also performed.  In addition I performed carotid 

ultrasound assessment of women with a previous history of PE (n=31) and 
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matched controls (n=29). Ethical approval was obtained from Glasgow Royal 

Infirmary LREC and all patients gave their informed consent.  

I found that in normal pregnancy, adipocyte lipolytic function is independent of 

maternal BMI. Adipocyte lipolytic function of SAT and VAT are also independent 

of each other. Adipose tissue is very metabolically flexible and the rate of whole 

body lipolysis is still insulin sensitive in late gestation. VAT is more closely 

related to markers of maternal insulin resistance (IR) and is more sensitive to 

catecholamine stimulation and less sensitive to insulin suppression of lipolysis 

than SAT, the basis of the “portal paradigm”.  Increasing BMI is associated with 

an increase in VAT cell size, with increased lipolysis and an increase in pro-

inflammatory adipokines, a potential mechanism through which increasing 

obesity could predispose to metabolic complications of pregnancy.  In contrast 

SAT cell size is not closely related to BMI and this may reflect the adaptation of 

this depot to increasing fat mass through both hypertrophy and hyperplasia, a 

metabolically advantageous response. TNF alpha is an important correlate of 

basal lipolysis in SAT. 

In PE there is decreased insulin sensitivity of both SAT and VAT compared to 

controls as calculated by the fat cell insulin sensitivity index (or responsiveness 

to insulin once the tissue is stimulated by isoproterenol). This would potentially 

make a significant impact on total circulating FFA as almost 60% of circulating 

FFA are from these adipose depots. The rise in FFA in PE occurs early in 

pregnancy and contributes significantly to IR. Therefore the IR of adipose tissue 

could lead to a vicious cycle of increased lipolysis, increased FFA and further 

exacerbation of IR. In contrast to controls, SAT cell size is intimately related to 

BMI suggesting that adaptation to increasing fat mass is mainly through 

adipocyte hypertrophy which could lead to increased endoplasmic reticulum 

stress, increased IR and increased release of inflammatory adipokines. I have 

shown that SAT cell size does relate to adipokine release in PE, with increased 

release of leptin, CRP and PAI-1 and paradoxical increase in the anti-

inflammatory IL-10. I had hypothesised that in addition to an inherent defect in 

adipocyte function there was an additional factor present in maternal serum of 

women with PE released from the placenta which excessively stimulated 

lipolysis. I failed to demonstrate any effect of maternal serum on adipocyte 

lipolysis in either controls or PE.  
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I also found that after stimulation with LPS, there was increased release of TNF 

alpha and IL-6 in VAT in PE but not in controls, with higher gene expression of 

these adipokines. TNF alpha release also correlated negatively with the fat cell 

insulin sensitivity index (FCISI) of VAT implicating a paracrine effect in this 

tissue. I also demonstrated an increase in gene expression of cfms (activated 

macrophages) relative to control gene, and increased density of cfms+ 

macrophages/adipocytes in the VAT of PE women implicating activated adipose 

tissue macrophages as a potential source of the increased release of 

inflammatory adipokines.  

Lastly I attempted to corroborate epidemiological evidence for the increase 

future risk of CVD women with a history of PE by assessing two surrogate 

markers for atherosclerosis - carotid IMT and carotid plaque scores. Both were 

found to be increased, with plaque scores significantly so. Classic risk factors 

such as age, lipids, BP and smoking did not attenuate this effect and BMI only 

marginally attenuated it, therefore only partially explaining this increased risk.   

In summary the data presented in this thesis provides further evidence that PE is 

a “metabolic syndrome of pregnancy” with disordered adipocyte function and 

metabolism, with an increased future risk of CVD in later life. Further studies on 

adipose accumulation, function and composition in normal and complicated 

human pregnancy are warranted. 
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1.1 Introduction 

Human pregnancy is characterised by striking changes in maternal metabolism 

and body composition in order to provide sufficient energy and nutrients to the 

developing fetus and later for lactation. In this review, I will describe the 

physiology of lipolysis in human adipose tissue as a prelude to the examination 

lipoprotein metabolism during normal pregnancy and in the presence of 

additional maternal metabolic stresses such as obesity and other risk factors for 

diabetes. The evidence regarding the contribution of lipids to the pathogenesis 

of pre-eclampsia will be assessed, and the relationship of pregnancy with 

cardiovascular disease in later life explored.  Finally the potential areas in this 

field necessitating further research will be considered.   

1.2 Physiology of lipolysis in human adipose tissue  

The major area of storage of triglycerides (TG) is white adipose tissue (WAT) and 

it allows surplus fuel to be stored in times of calorific excess and expended 

during times of need such as fasting or prolonged exercise. Lipolysis is the 

catabolic process through which TG are broken down into glycerol and non-

esterified fatty acids (NEFA). Three main organs produce and export fatty acids 

(FA): white adipose tissue (WAT), the intestine and liver. In humans, the main 

source for adipocyte TG is from chylomicrons and very low density lipoproteins 

(VLDL). Lipoprotein lipase produced in the adipocyte and transported to the 

endothelial surface of capillaries. TG in the lipoprotein particles are hydrolyzed 

by LPL releasing NEFA for uptake and storage by adipocytes. In WAT, LPL activity 

is cyclical, being highest after meals and lowest after fasting. 1 2In normal 

subjects there is fine-tuning of TG synthesis and lipolysis in response to 

hormonal and neural influences and is innervated by the autonomic system 

(parasympathetic and sympathetic nervous system). Lipolysis leads to release of 

NEFA which are not only energy substrates but are also highly toxic to cells and 

have been implicated in most of the pathological processes involved in obesity 

and insulin resistance.3 4  

The mobilization of fat stored in AT is mediated through both hormone sensitive 

lipase (HSL) and the more recently characterised adipose triglyceride lipase 

(ATGL).5 HSL was considered the key enzyme catalysing the rate-limiting step of 

AT lipolysis but this concept has recently been challenged with the finding that 
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ATGL is the predominant lipase in AT and an important regulator of TG 

degradation in skeletal muscle. ATGL was independently reported by three 

groups  and is also subject to a recent review.6 It is thought to be important in 

both basal and catecholamine-stimulated lipolysis. ATGL knockout mice show 

blunted fat cell lipolysis and as a consequence become obese with deposition of 

TAGs in multiple sites, particularly the heart.7 The sequential hydrolysis of TAG 

is regulated by the lipases and results in the liberation of FA at each step with 

the generation of DAG (diacylglycerol), MAG (monoacylglycerol), and glycerol. 

The current view is that ATGL and HSL work in a serial manner- ATGL initiates 

lipolysis by acting on TAG to produce DAG, which is then hydrolysed by HSL to 

MAG, which are finally converted to FA and glycerol by monacylglycerol lipase 

(MGL) 8(Figure 1) 

 

Figure 1 Sequential hydrolysis of triacylglycerides  

ATGL initiates lipolysis by acting on TAG to produc e DAG, which is then hydrolysed by HSL 

to MAG, which are finally converted to FA and glyce rol by MGL.  

Catecholamines, insulin and natriuretic peptides are considered to represent the 

major regulators of lipolysis in humans (Figure 2). Several novel lipolytic and 

anti-lypolytic agents have been discovered but their function in vivo are still to 

be clarified. Catecholamines are the most important stimulator of lipolysis and 

act via the symphathetic nervous system through ß1, ß2 and ß3 adrenoreceptors 

(AR) in the human fat cell. They initiate activation of lipolysis by stimulation of 

cAMP production via Gs–proteins and activation of protein kinase A (PKA).
9 The 

two main targets for PKA phosphorylation are HSL and the perilipins 10, and this 

results in a dramatic increase in lipolysis. Perilipins are a family of proteins 

which regulate coordination of lipid storage and utilization in various cell 

types.11 Perilipin A is the predominant form which covers the lipid droplets in 

mature adipocytes. Perilipin phosphorylation results in important physiological 



   

Shahzya S Huda, 2010 Chapter 1 25 

alteration of the droplet surface that facilitates the action of HSL and ATGL.11  

Coexisting on the human fat cell are α2-adrenoceptors which when stimulated 

inhibit cAMP production and lipolysis through GI-inhibitory proteins
12. Thus in 

humans, the balance of beta and alpha adrenoreceptors mediates the net effect 

of catecholamines on lipolysis. The relative importance of β and α-adrenergic 

effects in human fat depots varies with age, adipose mass, WAT location and 

sex. 

Insulin is a potent mediator of fat metabolism and promotes glucose uptake by 

adipocytes and re-esterification of NEFA. Insulin is the main inhibitor of lipolysis 

and acts by it ability to lower cAMP levels via activation of phosphodiesterase 3B 

and therefore reducing PKA activity. 13 

Natriuretic Peptides (NP) are known to have a key role in the regulation of salt 

and water homeostasis and the control of blood pressure. They have also been 

found to exert a powerful lipolytic response in human AT via activation of a 

cGMP dependent pathway in contrast to cAMP seen with catecholamines.14 

Expression of atrial natriuretic peptides (ANP) receptor mRNA and binding 

studies have confirmed the presence of types A and C ANP-receptors (NPR-A and 

NPR-C).15  Not surprisingly it appears that insulin (as it acts via PD 3B to lower 

cAMP) has no effect on ANP stimulated lipolysis in contrast to its potent 

inhibition of catecholamine induced lipolysis.16 Real-time PCR has shown that 

large adipocytes express higher mRNA levels of NPR-A than small adipocytes on 

their cell membrane.17   NP appears to contribute to the physiological response 

of increased lipolysis during exercise 18 and this is particularly relevant in 

subjects receiving ß AR blockade.19 20  
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Figure 2 Major pathways involved in the stimulation  of human fat cell lipolysis. Adapted 

from 21 

Signal transduction pathways for catecholamines via  adrenergic receptors, metabolite-

driven inhibitory receptors and atrial natriuretic peptides via type A receptor (NPR-A). 

Protein kinases (PKA and PKG (cGK-I)) are involved in target protein phosphorylation. HSL 

phosphorylation promotes its translocation from the  cytosol to the surface of the lipid 

droplet. Perilipin phosphorylation induces an impor tant physical alteration of the droplet 

surface that facilitates the action of HSL. ATGL ac ts to initiate lipolysis by acting on TAG to 

produce DAG, which is then hydrolysed by HSL to MAG .  Docking of adipocyte lipid-binding 

protein (FABP4) to HSL favours the outflow from the  cell of NEFAs released by the 

hydrolysis of triacylglycerols. Insulin, via stimul ation of fat cell insulin receptors and 

phosphodiesterase-3B stimulation promotes cAMP degr adation and antilipolytic effects 

while it is not active on cGMP-dependent pathways ( not shown in the diagram). ATGL, 

adipose triglyceride lipase; FABP4, adipocyte fatty  acid binding protein 4; GC, guanylyl 

cyclase; Gi, inhibitory GTP-binding protein; Gs, st imulatory GTP-binding protein; HSL, 

hormone-sensitive lipase; MGL, monoacylglycerol lip ase; NEFA, nonesterified fatty acid; 

NPR-A, type A natriuretic peptide receptor.  

1.3 Lipid Metabolism in Normal Pregnancy  

1.3.1 Early Pregnancy 

Maternal metabolism during pregnancy adapts to benefit the growth and 

development of the fetus and can be divided into two phases.  During the initial 

two thirds of gestation, when fetal energy demands are limited, maternal fat 

stores increase.22 This is attributable in part to maternal behavioural change 

including hyperphagia 23 and to increased adipose tissue lipogenesis.24 In early 
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pregnancy insulin sensitivity is normal or even slightly improved with normal 

peripheral sensitivity to insulin and hepatic basal glucose production.25 This 

metabolic environment together with pregnancy related endocrine changes 

including increasing levels of oestrogen, progesterone and cortisol favours 

lipogenesis and fat accumulation. 26 

 

1.3.2 Late Pregnancy  

During the latter stages of pregnancy this anabolic state switches to a state of 

catabolism with a marked increase in lipolysis rates and a corresponding rise in 

maternal free fatty acids (FFA) and glycerol.27 28(Figure 3) This change is 

enhanced by an increase in hormone-sensitive lipase (HSL) activity and mRNA 

expression and a decrease in lipoprotein lipase (LPL) activity.29 Exaggerated 

catecholamine release in response to even modest maternal hypoglycaemia and 

the insulin resistant state of late pregnancy contribute to this switch.30 31 Insulin 

effects on lipolysis (adipose tissue) and fat oxidation (in liver and muscle) are 

significantly impaired during the 3rd trimester compared to earlier in pregnancy 

and also post partum.31 Reduced expression of PPARγ and its target genes may 

also contribute to accelerated fat metabolism in late pregnancy.32 This catabolic 

state corresponds to the time of maximum fetal growth and by increasing FFA 

use in the mother, increases availability of glucose and amino acids for the 

fetus.33 Increased lipolysis and therefore maternal glycerol production supports 

gluconeogenesis as glycerol is preferentially used as a substrate for glucose 

which easily transfers to the fetus.27 34 During times of fasting or starvation in 

late pregnancy there is increased ketogenesis from FFA in the  maternal liver.35 

Ketone bodies are readily transferred to the fetus and can be utilized for energy 

or for fetal lipogenesis.36 37 There is an excellent review by Herrera et al 

exploring lipid metabolism in normal pregnancy in further detail.38 
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Figure 3 Lipoprotein metabolism in late pregnancy 

This diagram summarises the main changes in lipopro tein metabolism which occur in 

advancing gestation. Due to increasing insulin resi stance there is an increase in hormone-

sensitive lipase (HPL) activity and a decrease in l ipoprotein lipase (LPL) activity. This 

results in a marked increase in lipolysis rates and  corresponding increase in free fatty acids 

(FFA), delivered to the liver. These are channeled into hepatic triglyceride synthesis and 

increased secretion of VLDL. Oestrogen (E2) is the primary determinant of increased 

hepatic VLDL production. E2 also acts to promote Ap o A1 production and reduce hepatic 

lipase (HL) activity with a resultant increase in H DL production. The reduced LPL activity 

contributes to the increase in plasma VLDL levels b y reducing the peripheral catabolism of 

this lipoprotein. 

 

1.4 Body Composition 

All women increase maternal fat stores in early pregnancy irrespective of pre-

pregnancy adiposity to meet the feto-placental and maternal demands of late 

gestation and lactation. Women of normal weight gain around 3.8 kg of fat 39 

during pregnancy although there is substantial variation. 40-42 Total fat appears 

to increase to a peak toward the end of the second trimester before diminishing 

which corresponds to the period of increased lipolytic activity.43 44  In women of 

normal weight the majority of fat is accumulated centrally in the subcutaneous 

compartment of the trunk and upper thigh.45 46 In later stages of pregnancy there 

is an increase in both the thickness of pre-peritoneal fat (visceral) and the ratio 
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of  pre-peritoneal to subcutaneous fat as measured by ultrasound.47 This pattern 

may be relevant to increasing insulin resistance and lipid changes that occur as 

pregnancy progresses. Indeed accumulation of hepatic fat has been shown to be 

an important mediator of insulin resistance during pregnancy in the rat model.48 

Regionality of fat accumulation may be important due to regional variations in 

metabolic function as highlighted previously. Obese women, who will have more 

saturated subcutaneous fat stores, tend to accumulate fat more centrally than 

lean women, at least as estimated by using the skin-fold thickness technique, an 

observation which may reflect their more insulin-resistant state.46 Visceral 

adiposity appears correlated more strongly to adverse metabolic outcomes in 

pregnancy including gestational diabetes mellitus, gestational hypertension and 

pre-eclampsia.49-51 Furthermore visceral adiposity in early pregnancy appears to 

correlate better than subcutaneous fat or body mass index (BMI) with metabolic 

risk factors such as blood pressure, insulin resistance and lipids.52 Lean subjects 

have a greater increase in percent of body fat in pregnancy compared with 

obese subjects but there is no difference in actual total fat mass.46  

A large population-based Swedish study of 151 025 women highlighted the 

relevance of inter-pregnancy weight gain.53 It demonstrated that an increase of 

BMI of 3kg/m2 between two consecutive pregnancies resulted in an increased 

risk of pre-eclampsia, gestational diabetes, gestational hypertension, caesarean 

delivery, still birth and large for gestation age births even if a women has a 

healthy BMI for both pregnancies. This study re-inforces the evidence for 

causality between being overweight and obese and adverse pregnancy outcome    

 

1.5 Changes in Lipoprotein Profile during Pregnancy  

Pregnancy is characterized by marked increases in plasma lipid concentrations as 

gestation advances. Plasma cholesterol and triglyceride concentrations rise by 

25-50% and 200-400% respectively. The increase in triglyceride is mainly due to 

VLDL triglyceride which shows a three fold increase from 14 weeks’ gestation to 

late pregnancy.54 VLDL comprises two fractions, VLDL1 which is secreted by the 

liver to supply tissues with triglyceride fatty acids in the post-absorptive state 

and VLDL2 which is the major precursor of the major cholesterol transporting 

particles IDL and LDL. VLDL1 and VLDL2 increase in parallel by an average of 4-
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fold as plasma triglyceride increases with advancing gestation.55  These changes 

are due to increased adipose tissue lipolysis resulting in increased delivery of 

FFA and glycerol to the liver where they are re-esterified for the synthesis of 

triglycerides and incorporated into VLDL. The insulin resistant condition of 

pregnancy may contribute to the increased VLDL production but the effect of 

oestrogen is more likely the primary determinant of increased VLDL production 

by the liver.55 56 In addition to increased VLDL production there appears to be a 

decrease in maternal VLDL catabolism which may be due to a reduction in LPL 

activity in the third trimester.56 Oestradiol concentration rises steadily 

throughout pregnancy which suppresses postheparin hepatic lipase activity which 

in turn results in reduced triglyceride hydrolysis in IDL and LDL particles. 

Moreover there is an increase in cholesteryl ester transfer protein activity in mid 

trimester of pregnancy which would, in the presence of high plasma TG, 

contribute to enrichment of lipoprotein fractions with triglyceride.55 56 

 

Despite a rise in TG in normal pregnancy, HDL-cholesterol levels are elevated by 

the 14th week and rise by a maximum of around 40% at 28 weeks’ gestation 

mainly due to an increase in the HDL2 subfraction with a proportional fall in 

HDL3a and HDL3b. 54 56 The mean concentration of HDL-cholesterol is around 2 

mmol/L compared to around 1.5 mmol/L in the non-pregnant.55 This increase in 

HDL is driven by rising oestrogen concentration which acts on the liver to 

promote apo AI production and a simultaneous fall in hepatic lipase activity 

(which is responsible for hydrolysis of HDL2 to smaller HDL3 which is more 

rapidly removed from the circulation).55 56 

  

During normal pregnancy there is a rise in LDL of around 70%. 55.   Although this 

increase is less marked than TG there are some important qualitative changes in 

the LDL composition favouring a more “atherogenic” profile with a proportional 

increase in small dense LDL (LDLIII) in late pregnancy.57 55 In keeping with the 

non-pregnant population, this is driven by higher plasma triglycerides where a 

“threshold” effect may be seen.55 

 

1.6 Placental Transfer of Lipids 

Fatty acids are required by the developing fetus as they are important 

constituents of cell membranes.58 The fetus can produce some of the FFA from 
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fetal lipogenesis but the majority is acquired via the maternal circulation via the 

placenta. All of the essential fatty acids must be acquired from the mother from 

which the long chain polyunsaturated fatty acids (LCPUFA) are derived.59 These 

are of particular importance as they form membranes within the brain and 

nervous system. FFA can be released from circulating maternal TG-rich 

lipoproteins by placental lipoprotein lipase. Fatty acids cross the placenta by 

simple diffusion and more importantly through fatty acid binding proteins 

located in placental membranes and cytoplasm.60 The maternal LCPUFA status is 

a key determinant of FA status in the fetus although the placenta is able to 

selectively transfer important PUFA.59 Maternal supplementation with LCPUFA 

such as docosahexanoic acid (DHA) found in oily fish can also influence 

preferential uptake from mother to fetus.61  

 

Cholesterol, essential for fetal growth, is also transported from mother to fetus 

although it has been shown in animal models that fetal synthesis can provide a 

significant proportion required for fetal growth.62  Cholesterol is transported 

across the placenta from maternal LDL and HDL via LDL receptors and scavenger 

receptor B1 respectively. Cholesterol is transferred to fetal HDL probably via 

membrane localized efflux cholesterol transporter proteins ACBG1 and ABCA1.63 

Maternal hypercholesterolaemia can result in the presence of fatty steaks in the 

fetal aorta and may have implications for future disease in the offspring, 

although this remains to be definitely proven64  

1.7 Lipid Metabolism Obese vs Lean Pregnancy 

Maternal obesity is a well established and potentially modifiable risk factor for 

adverse pregnancy outcome including hypertensive disorders of pregnancy, fetal 

macrosomia and gestational diabetes mellitus (GDM).65 Rates of obesity are 

rising within the obstetric population with evidence of a 2-fold increase in 

women attending for antenatal care in the last decade.66 Therefore an 

understanding of metabolic differences between lean and obese women during 

pregnancy is useful.  Lean subjects have a greater increase in percent of body 

fat in pregnancy compared with obese subjects but there is no difference in 

actual total fat mass.46 Obese women tend to accumulate fat more centrally 

than lean women, at least as estimated by using the skin-fold thickness 

technique, an observation which may reflect their more insulin-resistant state.46 

In lean women there is an inverse relationship between changes in fat mass and 
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changes in insulin sensitivity in early pregnancy.28 In contrast in obese women 

there was no such relationship in early gestation but one does materialise over 

the longer gestation period from pre-pregnancy to late gestation.42 This suggests 

a slower metabolic responsiveness of obese women during pregnancy. Indeed in 

obese women there was an initial increase in insulin sensitivity from pre-

pregnancy to early pregnancy.42  

 

Interestingly obese women do not show any alteration in either basal 

carbohydrate oxidation or non-oxidisable carbohydrate metabolism from early to 

late pregnancy in contrast to a 50-80% increase in basal fat oxidation.42 This 

corresponds to the period of fat accumulation and reduced insulin sensitivity. In 

addition women with a high BMI have the largest increase in their basal 

metabolic rate (BMR) compared to women with normal or low BMI. 67 68 These 

differences lend support to the hypothesis that there is an adaptive process in 

obese individuals who are insulin resistant to prevent additional weight gain.69  

 

Maternal obesity results in alteration of the plasma lipid profile with higher 

serum triglyceride and VLDL cholesterol concentrations than those observed in 

lean women.70 71 This is seen together with lower HDL-cholesterol although LDL-

cholesterol and total cholesterol concentrations remain similar.71. This pattern 

of dyslipidaemia is similar to that of the metabolic syndrome in the non-

pregnant population.72  

1.8 Lipid Metabolism GDM vs NGT 

 
Gestational diabetes mellitus (GDM) is defined as a glucose intolerance at the 

upper end of the population distribution that is first detected during 

pregnancy.73 It is present in around 4-9% of all pregnancies depending on the 

population studied. 74 75 Its clinical importance reflects an increased perinatal 

morbidity related to fetal macrosomia, increased maternal risk of type 2 DM in 

later life and long term risk to offspring including obesity, sustained glucose 

intolerance and impaired intellectual ability.76 77 A detailed discussion of 

carbohydrate metabolism in pregnancy is beyond the scope of this review. In 

summary, normal pregnancy is characterized by a progressive increase in insulin 

secretion by 3-3.5 fold in late pregnancy coupled with increasing insulin 

resistance to levels around 50-70% less than that of non pregnant women.25 78 In 
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addition there is an increase in basal hepatic glucose production in spite of 

increased fasting insulin concentration.78 In GDM there is a similar increase in 

first-phase insulin response but the increase is attenuated compared to normal 

controls.79 However obese women with GDM have an exaggerated second-phase 

response compared to obese controls.80 As expected, insulin resistance is also 

greater in GDM than controls as measured by insulin suppression of glucose 

production.79 80 Thus, women who develop GDM begin pregnancy far closer to the 

metabolic thresholds beyond which they would develop glucose intolerance; 

pregnancy simply pushes these women beyond this threshold. 

 

In GDM there is dyslipidaemia consistent with insulin resistance. Plasma TG 

levels are significantly higher than in normal pregnancy and there is enrichment 

of lipoprotein fractions with TG within VLDL and HDL particles.81 There is also 

evidence that GDM increases LDL susceptibility to oxidation.82 As previously 

described post-prandial free fatty acids (FFA) are increased in late pregnancy 

due to insulin resistance and this effect is more pronounced in GDM.83 Women 

with GDM were found to have lower levels of insulin receptor substrate 1 (IRS-1) 

which may contribute to reduced suppression of lipolysis.32  

 

Lean women with impaired glucose tolerance prior to pregnancy had a smaller 

increase in fat mass compared to lean women with NGT.28 In obese women there 

was no apparent difference between women with NGT and GDM in the amount of 

or distribution of accumulated fat.42 46  

1.9 Lipid Metabolism in Pre-eclampsia 

 
Pre-eclampsia (PE) occurs in 2-4% of pregnancies and is a leading cause of 

maternal and neonatal morbidity and mortality in the developed world. It is a 

multi-system disorder resulting in the classic manifestations of hypertension due 

to vasoconstriction, proteinuria due to glomerular damage and oedema due to 

increased vascular permeability.84 Placental damage associated with the 

condition can result in intrauterine growth restriction. Delivery is the only known 

cure - thus, PE is a frequent cause of premature delivery and low birth weight.  

As yet the underlying pathogenesis of the disorder had not been completely 

understood. The clinical signs of PE are relatively simple manifestations of a 

complex underlying pathological process with activation of the coagulation 
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system, platelets and leukocytes and disturbances in metabolism which combine 

to provoke widespread endothelial damage and dysfunction. This in turn 

augments further activation of leukocytes and coagulation resulting in a vicious 

cycle of vascular injury. The disorder is likely to be a result of heterogeneous 

causes resulting from the interaction of placental and maternal factors.85 In the 

presence of a placental trigger the maternal response will depend on the 

maternal genotype and phenotype resulting in the clinical syndrome of PE.86  

 

1.9.1 Excess fat accumulation in several tissues 

The classic pathological lesion seen in the placental bed in PE is ‘acute 

atherosis’ resulting from the accumulation of lipid-laden macrophages 

surrounded by areas of fibrinoid necrosis in the spiral arteries – features 

comparable  to atherogenesis in non-pregnant women.84 Similarly, the 

characteristic lesion in the glomerulus – endotheliosis - involves the 

accumulation of lipids within glomerular endothelial cells while the liver also 

accumulates excess fat.84 This process is even more marked in HELLP syndrome 

and acute fatty liver of pregnancy, which are severe complications related to 

PE. Lipid accumulation at sites of endothelial damage emphasise the potential 

role of lipid disturbance in the vascular injury of PE. Therefore, whatever the 

precise nature of the ‘triggering’ placental factor in PE, it almost certainly 

provokes a disturbance in lipid metabolism which contributes to vascular damage 

 

1.9.2 Dyslipidaemia of pre-eclampsia 

In PE the hyperlipidaemia of normal pregnancy is exaggerated further via greater 

synthesis and potentially via lower peripheral catabolism (see Figure 2 for 

summary). Although direct evidence for impairment of peripheral catabolism is 

lacking there is a suggestion of the over representation of common mutations in 

the LPL gene in women with PE.87 These mutations are associated with a 

reduction in LPL activity and dyslipidaemia in the non-pregnant.  It has long been 

recognised that maternal hypertriglyceridaemia is significantly higher among 

pre-eclamptic women than normal matched controls.88-91 Importantly this rise 

occurs well in advance of manifestations of the disease.92 93 Furthermore there 

are some important qualitative changes in lipid composition as a consequence of 

high plasma TG. There is an almost three fold higher VLDL1 and an almost two 
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fold higher VLDL2 concentration than in control healthy pregnancy.89  Total LDL 

concentrations are similar but the exaggerated rise in TG drives increased 

production of small dense LDL in PE pregnancy to almost three times that seen 

in normal pregnancy with a reduction in large, buoyant LDL subfractions.89 94-96 It 

has been established in cardiovascular disease that hyperlipidaemia results in 

endothelial damage via oxidative stress and parallels exist between the 

atherogenic lipid profile seen in PE. Small, dense LDL exhibit enhanced oxidative 

potential and once oxidised these particles are believed to be highly atherogenic 

promoting foam cell formation and endothelial dysfunction.97 Soluble vascular 

cell adhesion molecule-1 (VCAM-1), a marker of vascular dysfunction, is elevated 

in PE and correlates with LDL cholesterol in pregnancy.98  Plasma triglycerides 

also correlate with the lipid peroxidation metabolite malondialdehyde.99 

Oxidised LDL but not native LDL inhibits trophoblastic cell invasion in a 

concentration dependent manner and this may be a further mechanism by which 

dyslipidaemia leads to impaired placentation and PE.100 Furthermore there is a 

reduction in endothelial protective HDL cholesterol.89 94 101  

 

1.9.3 Elevated Fatty Acids and their effects 

Together with an early rise of plasma triglycerides in women who go on to 

develop PE, a rise in FFA is also observed independent of maternal adiposity 

suggesting early exaggerated adipocyte lipolysis.92 Elevated FFA can be 

detrimental in several ways. Exposure of the liver to elevated FFA leads to 

reduced hepatic insulin extraction leading to systemic hyperinsulinaemia and 

accelerated gluconeogenesis.102 There is also increased esterification of FFA and 

reduced hepatic degradation of apolipoprotein B which leads to an increased 

synthesis and secretion of small VLDL particles and triglycerides. In addition to 

the effects on the liver, increases in FFA promote peripheral insulin resistance 

by reduction of insulin mediated glucose uptake (primarily in skeletal muscle).103  

Elevation of FFA has also been shown to impair endothelial function, via several 

potential mediatory mechanisms, through blunting of nitric oxide dependent 

tone via increases in the formation of reactive oxygen species in endothelial and 

vascular smooth muscle cells.104 105   

 

These adverse effects have also been confirmed in pregnancy and PE women. 

Increased FFA are an important mediator of insulin resistance in pregnancy.106 
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The high ratio of FFA to albumin in serum of PE women compared to normal 

controls resulted in increased uptake of FFA  by cultured endothelial cells which 

are further esterified into TG.107 In addition serum of PE women induces VCAM-1 

expression in endothelial cells an effect mimicked by the addition of FFA to 

serum of normal pregnancy.108  

 

FFA are also implicated in inflammation and have been shown to be an 

important mediator of inflammation in macrophages and are associated with 

increased CRP levels in obese women.109 110 Thus the combination of insulin 

resistance, dyslipidaemia, oxidative stress, endothelial dysfunction and 

inflammation apparent in PE could be in part be attributable to this early 

elevation in FFA. There is preliminary evidence that the trigger for this increase 

in FFA and adipocyte lipolysis is present in serum of women with PE.107  

 

1.10 Factors influencing adipocyte function  

1.10.1 Anatomical Location 

There are important differences between visceral or intra-abdominal and 

subcutaneous WAT depots. At the same BMI, women on average have greater 

subcutaneous fat mass and higher plasma levels of FFA than men. Visceral 

adiposity is more closely related to adverse metabolic outcomes including insulin 

resistance, hyperinsulinaemia, dyslipidaemia, hypertension and the metabolic 

syndrome.111 In visceral fat there is a higher turnover of lipids due to its greater 

sensitivity to catecholamine-induced lipolysis and decreased sensitivity to 

insulin.112 Visceral fat is in direct contact with the liver via the portal venous 

system. The liver is therefore exposed to chronic elevation of NEFA which as 

outlined above produces alteration in liver metabolism and promotes hepatic 

insulin resistance - the basis for the ‘portal paradigm’. In addition, visceral fat 

may further influence increased insulin resistance through a variety of 

inflammatory pathways.113 The differences are enhanced in obesity and 

polycystic ovarian syndrome. Alternatively, rather than visceral fat being 

directly or fully responsible for metabolic dysregulation of obesity, its rising 

volume may also simply signal saturation of ‘good’ fat storage capacity.  Drolet 

et al have proposed a model whereby subcutaneous fat acts as the primary fat 

depot and when the storage capacity of this depot is reached “overspill” into 



   

Shahzya S Huda, 2010 Chapter 1 37 

secondary fat depots including, amongst other tissues, visceral fat, occurs.114 

Excess subcutaneous fat appears to be metabolically favourable.115 The much 

higher subcutaneous storage capacity of women compared to men and therefore 

less propensity to accumulate fat in the visceral compartment likely explains the 

lower prevalence of metabolic disturbances, and diabetes in middle-age, in 

women compared to men. This theory may also in part explain why certain racial 

groups such as South Asians are at increased susceptibility to central obesity and 

its metabolic consequences. 116 Similarly, in certain chronic illnesses, e.g. HIV, a 

loss of subcutaneous fat storage capacity may ‘push’ fat more centrally into key 

metabolic organs and instigate greater insulin resistance.117  Interestingly, fat 

from ‘ectopic sites’ such as visceral fat is preferentially lost with modest weight 

loss and may explain how modest weight loss appears to provide significant 

metabolic and clinical benefits.118 

1.10.2 Fat cell size and function. 

The adipocyte is the only cell type whose size may vary considerably in 

physiological conditions. Regional growth of AT is determined by the capacity of 

the mature adipocyte to accumulate and mobilize TG. Sex differences in body 

fat distribution and adipocyte metabolism suggest that the storage capacity and 

propensity of fat cells to enlarge (fat cell hypertrophy) or to differentiate (fat 

cell hyperplasia) may be regulated in a depot specific fashion. In women 

adipocytes from subcutaneous depot are larger than visceral fat, with marked 

regional differences in AT metabolic function in these two depots.114 Pre-

adipocytes produce two functionally distinct forms of adipocytes which 

characteristically predominate at different sites.119 Differentiation of these pre-

adipocytes into lipid-storing, mature adipocytes are dependent on the 

expression of numerous transcription factors including CEBPα, PPARγ and 

SREBPIc which are differentially expressed in subcutaneous and visceral AT.114  

As adipocytes increase in size both lipogenesis and lipolysis become increasingly 

active with increasing fatty acid flux across their cell membranes. Key enzymes 

utilized in AT metabolism have increased activity and mRNA levels in  larger 

adipocytes compared to smaller adipocytes such as fatty acid synthase, HSL, LPL 

and GLUT4, with upregulation of genes required for lipid metabolism as 

determined in microarray analysis.  
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Adipocyte size in fat is also related to adverse metabolic complications. 

Individuals with type II diabetes and dyslipidaemia had larger subcutaneous 

adipocytes, and adipocyte size in femoral fat is related to fasting plasma insulin, 

TGs and HDL- cholesterol ratios in men and women. Increasing adipocyte size is 

associated in a shift toward dominance of pro-inflammatory adipokines including 

TNF alpha and IL-6. This may be a result of dysregulated release of adipokines in 

hypertrophic larger adipocytes.120 Adipocyte hypertrophy is also thought to 

result in endoplasmic reticulum (ER) stress which results in activation of 

metabolic factors that trigger insulin resistance, with release of inflammatory 

cytokines and increased macrophage recruitment.121  

1.11 Adipokines and Pregnancy 

 
The view that adipose tissue is simply a storage organ of excess triglycerides has 

changed dramatically over recent years. It has been shown to secrete a diverse 

range of cytokines, proteins and signals which have both paracrine and 

endocrine actions and a wide-ranging influence on the metabolic and 

physiological function of other organs.122 In particular fat cells secrete factors 

involved in inflammation (TNFα, IL-6), haemostasis (PAI-1), insulin sensitivity 

(adiponectin) and energy balance and control of appetite (leptin). Adipokines 

including adiponectin, leptin, TNF alpha and IL-6 are increasingly implicated as 

important mediators of maternal metabolism particularly in relation to insulin 

resistance (IR) and lipid metabolism.  

1.11.1 Adiponectin 

Adiponectin is the most abundant adipokine in circulation and is synthesized 

exclusively in adipocytes and in contrast to other adipokines it is negatively 

correlated with adiposity.123 In humans, low plasma adiponectin concentrations 

are highly correlated with insulin resistance in obesity and type 2 diabetes.124  

Adiponectin is an insulin-sensitizing agent and mediates its effects through 

activation of adensosine monophosphate (AMP) protein kinase leading to 

increased uptake of glucose by myocytes and reduction in hepatic 

gluconeogenesis125 and by  increasing fatty acid oxidation in skeletal muscle by 

the sequential activation of AMP activated protein kinase, p38 mitogen-activated 

protein kinase and PAR alpha phosphorylation. Human adiponectin circulates in 3 
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isoforms- high molecular weight (HMW), middle MW and low MW. Although the 

total adiponectin level correlates well with insulin sensitivity, it has been found 

that the HMW isoform is an even better correlate.126 Maternal HMW adiponectin 

is the most prevalent adiponectin isoform regardless of gestational age or BMI 

status.127. The relevance of adiponectin in lipid and glucose metabolism in 

pregnancy is still to be elucidated. Catalano et al have demonstrated that total 

adiponectin secretion and adiponectin mRNA levels in WAT decline with 

advancing gestation in lean women, associated with a 25% increase in fat mass 

128. Adiponectin is negatively correlated with HOMA in late pregnancy in healthy 

women without GDM.129 Similar to subjects with obesity or type 2 diabetes, 

studies have shown that adiponectin is reduced in women who have had GDM130 

and in women with GDM during pregnancy compared to controls matched for 

BMI. In human and animal studies, maternal adiponectin levels were found to 

decreased or unchanged during normal pregnancy.131 132 Reduced adiponectin 

concentration may be consistent with increasing IR of pregnancy, whereas a lack 

of association may represent an independent role of adiponectin in pregnancy. 

As PE is a state of IR it was assumed that adiponectin levels would be lower, 

however Ramsay et al were the first to show that maternal adiponectin levels 

were marked elevated by nearly 50% in PE.133 However since then although 

several studies supported this finding, others showed the converse and no 

change in adiponectin levels.131 132 The lack of correlation between adiponectin 

levels and markers of IR in PE may suggests an atypical role of adiponectin in 

this syndrome. Interestingly adiponectin mRNA expression in adipose tissue of PE 

women was found to be similar to healthy controls.134  

1.11.2 Leptin 

Leptin is mainly synthesized and secreted by adipose tissue and is involved in 

involved in control of food intake and energy balance. Without functional leptin 

severe obesity occurs as in the ob/ob mouse.135 Adipocytes secrete leptin in 

direct proportion to adipose tissue mass as well as nutritional status. Plasma 

leptin concentrations positively correlate with subcutaneous fat due to its mass 

effect and higher secretion rate as compared to visceral fat.136 Insulin is a 

potent activator of leptin mRNA expression and protein secretion and is the 

major mediator of increased postprandial leptin concentrations.137 Obese 

individuals have higher leptin mRNA and protein levels than lean individuals.138 
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Serum leptin levels are elevated throughout normal human pregnancy and 

concentrations increase with advancing gestational age.139 140 Although the origin  

of leptin is still to be established, the placenta is thought to be a major 

contributor of maternal hyperleptinaemia 141. Leptin has wide ranging effects in 

reproduction including maternal physiology, implantation, paracrine effects in 

the placenta and fetal development and growth.142 Leptin has some important 

effects on lipid metabolism acting peripherally to prevent TG accumulation in 

peripheral tissues, but also regulates fuel partitioning by promoting lipid 

oxidation and protein synthesis and by curtailing lipogenesis, resulting in a 

selective loss of adiposity while preserving lean body mass.143 144 It mediates its 

liporegulatory actions both centrally and directly on the liver and WAT indicated 

by reduced expression of key enzymes involved in fatty acid synthesis in these 

tissues 145 146.Therefore one potential role of hyperleptinaemia in pregnancy may 

be to enhance mobilization of maternal fat stores to provide energy substrates 

for the developing fetus. 

The majority of studies suggest that maternal leptin concentrations and 

placental leptin synthesis are increased in pregnancies complicated by PE, with 

levels correlating with the severity of disease even before its clinical onset.147-149 

The role of leptin in the pathogenesis of PE is still to be elucidated but increased 

leptin could be considered to be a compensatory response aiming to increase 

nutrient delivery to an underperfused, hypoxic placenta. Leptin does correlated 

with other inflammatory markers including TNF alpha and IL-6 in normal and PE 

pregnancy, and may therefore be involved in the inflammatory and metabolic 

processes of both.150 

1.11.3 TNF alpha 

The inflammatory cytokine TNF alpha is associated with obesity and insulin 

resistance151 and is an independent predictor of CHD and CVD events and total 

mortality among men.152 Absolute levels and expression of TNF alpha in obese 

individuals compared to lean are higher. In addition TNF alpha correlates with 

insulin levels and decreased insulin sensitivity in IR individuals.153 154 It can lead 

directly to insulin resistance by inhibiting insulin signaling through several 

mechanisms including inducing serine phosphorylation of the insulin receptor 

IRS1.155 TNF alpha can also induce IR by stimulation of adipocyte lipolysis, and 
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through modulation of other adipokines including adiponectin and leptin. TNF 

alpha contributes to endothelial dysfunction via inhibition of endothelium 

dependent vasodilatation156 and triggers pro-coagulant activity and fibrin 

deposition.157 It is produced widely in immune cells, placenta and adipose tissue. 

TNF alpha is a potent regulator of lipid metabolism and induces lipolysis through 

multiple signaling pathways.158 TNF alpha rises during normal pregnancy 

primarily thought to be due to placental production, and is an important 

independent predictor of insulin sensitivity in late pregnancy.159 Maternal TNF-

alpha levels are higher in PE compared to normal pregnancy and could 

contribute to the pathogenesis of the condition through its effects on IR and 

endothelial dysfunction. Despite higher levels in PE, placental expression of TNF-

alpha does not appear to be higher therefore suggestive of an alternative source 

for the increased plasma levels.160 

1.11.4 IL-6 

IL-6, another proinflammatory cytokine implicated in IR, is secreted in 

significant amounts by SAT, in addition to a wide range of other cells  and 

correlates with BMI in non-pregnant.161  In vivo, administration of IL-6 stimulates 

whole body lipolysis and exerts anti-insulin effects.162 163 TNF alpha induces Il-6 

gene transcription and protein secretion in differentiated adipocytes.164 Similar 

to TNF alpha,  IL-6 is produced by the placenta, immume cells and AT and serum 

levels increases during pregnancy.165 IL-6 is increased in obese compared to lean 

women in pregnancy 166. IL-6 has also been related to pregnancy-associated 

insulin resistance.167 

1.11.5 CRP 

The best characterized biomarker of inflammation is C-reactive protein (CRP) 

produced predominantly by the liver. CRP is an acute-phase reactant synthesized 

mainly in the liver and is regulated by circulating levels of IL-6, although IL-1 and 

TNF alpha can also induce hepatic CRP mRNA expression.168 The liver was 

believed to be the major source of CRP, with its synthesis mainly under 

transcriptional control by IL-6 and, to a lesser extent, by other cytokines. 

However, now adipose tissue-derived IL-6 appears to be a major regulator of 

hepatic CRP production. CRP is also produced by adipose tissue, but it is unclear 
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to what extent AT contributes to circulating CRP levels. Elevated CRP is a strong 

independent predictor of the metabolic syndrome, cardiovascular disease and 

diabetes 169 170. CRP is positively correlated with plasma FFA in non-pregnant 

women.110CRP levels in normal pregnancy fluctuate widely but median values are 

consistently elevated throughout pregnancy.171 In addition, CRP is elevated in 

metabolic complications of pregnancy including PE and GDM, although this may 

be in part secondary to increased adiposity 172 173.  

1.11.6 Plasminogen Activator Inhibitor-1 

PAI-1 is a regulatory serine-protease inhibitor that decreases fibrinolysis and 

correlates well with visceral adiposity, hyperinsulinaemia and the expression of 

which is increased in the VAT of obese individuals.174 175 The link between PAI-1 

and the metabolic syndrome is now well established, with the more severe the 

syndrome the higher the plasma level of PAI-1.176. The mechanisms of PAI-1 over 

expression in obesity are complex and it is likely that a variety of inducers at a 

variety of sites are involved, including ectopic fat in the liver and visceral fat.177 

178 PAI-1 is also implicated in adipose tissue differentiation and in the control of 

insulin signalling in adipocytes.179 180 In normal pregnancy in order to prepare the 

body for the haemostatic challenge of delivery fibrinolytic capacity is 

diminished, mainly due to markedly increased levels of PAI-1 from endothelial 

cells (a marker of endothelial dysfunction) and PAI-2 from the placenta. The 

ratio of PAI-1/PAI-2 is elevated in women with PE and in particular early onset 

disease and obese relative to lean pregnant women.181 182  

1.11.7 Pregnancy, pre-eclampsia and cardiovascular disease 

 
There is increasing epidemiological evidence to suggest that adverse pregnancy 

outcomes such as PE, preterm delivery and low birth weight are associated with 

increased risk in later life of cardiovascular disease (CVD) in the mother. 183-186 

Jonsdottier et al, in a population based study investigated the association 

between hypertensive complications in pregnancy and death rates from ischemic 

heart disease (IHD). They found that the relative risk (RR) of dying from IHD was 

significantly higher among eclamptic women (RR=2.61; 1.11-6.123) and those 

with PE (RR=1.90; 1.02-3.52) than those with hypertension alone.184 In a 

retrospective cohort study in Scotland using discharge data of almost 130,000 
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women, PE was associated with a two-fold increased risk of subsequent IHD 

(RR2.0;1.5-2.5).185 More alarmingly if a woman had a combination of PE, preterm 

delivery and a baby of low birth weight she had a risk of IHD admission or death 

seven times that of controls (95% CI 3.3-14.5). A recent meta-analysis combining 

eight studies (2 346 997 women) with a mean follow up of 11.7 years 

demonstrated a relative risk of 2.16 (1.86-2.52) of IHD in women with pre-

eclampsia substantiating previous evidence.187 This doubling of risk remains 

robust even after adjusting for pre-pregnancy hypertension, diabetes mellitus, 

obesity, dyslipidaemia, the metabolic syndrome and smoking.186  

 

Gestation of onset also appears to influence the risk - if PE occurred prior to 37 

weeks’ gestation the risk of IHD was almost eight-fold (7.71,4.4-13.5).187 Indeed 

parity itself is associated with increased risk of CVD with prospective studies 

finding a positive association.188 189  A study by Lawlor and colleagues found a “J” 

shaped association between number of children and CHD, with the lowest 

prevalence among those with two children and a linear increase with subsequent 

children.190  Although the association was attenuated by adjustment for obesity 

and metabolic risk factors it was not completely obliterated. The authors 

suggest that normal pregnancy is a state of insulin resistance and dyslipidaemia 

and repeated pregnancies may have adverse long-term effects. These 

epidemiological links are biologically plausible as PE and CVD share many 

features including dyslipidaemia, insulin resistance, endothelial dysfunction, 

inflammation and oxidative stress common risk factors, either genotypic or 

phenotypic, might underlie both PE and CHD. Greer and Sattar proposed a model 

whereby pregnancy with its concomitant digression into a metabolic syndrome is 

a “stress test” of maternal metabolic response (Figure 4).191 Women who 

develop adverse pregnancy outcomes such as PE make greater excursions into 

metabolic disturbances during pregnancy and are predisposed to metabolic and 

vascular disease in later life. 
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Figure 4 Risk factors for vascular disease are iden tifiable during excursions into the 

metabolic syndrome of pregnancy.  

Adapted from 191. 

1.11.8 Summary of aims and objectives: 

There are several directions in which further research would be beneficial and 

will be explored in this thesis and are summarized as follows: 

• To investigate the lipolytic function and properties of adipocytes in 

normal human pregnancy including its relationship to BMI, differences in 

function depending on regionality of the adipose tissue, and relationship 

to maternal markers of inflammation and insulin resistance. 

• To compare adipocyte lipolytic function between PE and normal 

pregnancy and to determine whether the basal or stimulated adipocyte 

release of FFA is exaggerated in women with PE. 

• To determine if plasma from women with PE excessively stimulates 

adipocytes suggesting the presence of a stimulatory lipolytic factor in PE 

plasma. 

• To determine if adipocyte release of adipokines is exaggerated under 

either basal or stressed conditions in women with PE compared to 

controls. 

• To determine if macrophage infiltration of adipose tissue, as a marker of 

tissue inflammation, is increased in women with PE compared to controls  
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• To corroborate epidemiological evidence that women with PE have an 

increased cardiovascular risk in later life using carotid ultrasound 

surrogate markers for atherosclerosis and to determine which risk factors 

can account for any observed difference. 

 

 

 

 



 

   

2 Materials and Methods 
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2.1 Subjects 

Ethical approval was obtained from the Glasgow Royal Infirmary Local Research 

Ethics Committee 1 (REC reference no 06/S0704/14).  All subjects were given an 

information leaflet (case or control appropriate) and gave written informed 

consent to participate.   

2.1.1 Cases 

We recruited non-labouring pregnant women with pre-eclampsia (PE) undergoing 

caesarean section. PE was defined according to the International Society for the 

Study of Hypertension in Pregnancy (ISSHP)192 criteria i.e. DBP greater than 

110mm Hg on one reading or > 90mm Hg on repeated readings with proteinuria 

(≥0.3g of protein per 24 hours or ≥2+ protein on dipstick testing, in the absence 

of infection or renal disease). All gestations were included however gestation 

matched controls less than 32 weeks were difficult to find. In total 14 cases 

were recruited. 

2.1.2 Controls 

Healthy non-labouring pregnant women undergoing elective CS, either at term 

(>37 completed weeks of gestation) or pre-term but without hypertension or 

intra-uterine growth restriction (IUGR) being delivered for other obstetric 

indications were recruited as controls. IUGR was defined as an estimated fetal 

weight less than the 5th centile or less than the 10th centile plus either 

oligohydramnios or abnormal umbilical artery doppler. In the preterm group this 

was for problems such as placenta praevia or antepartum haemorrhage. Control 

women were matched to PE cases for smoking habit, age (+/- 5 years) and 

booking BMI (+/- 2 kg/m2). In total 36 healthy pregnant women were recruited. A 

subgroup of matched controls were used for comparison in Chapters 4,5,and 6.  

2.2 Buffers 

The following physiological buffers using distilled water were prepared using 

chemicals from Sigma Ltd, Poole Dorset unless otherwise stated. 
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2.2.1 KRH Buffer 

KRH buffer (NaCl 118mM, NaHCO3  5mM, KCL 4.7 mM, KH2PO4 1.2mM, MgS04 

1.2mM, HEPES 25mM, pH adjusted to 7.4) was prepared in advance, autoclaved 

and stored at 4°C. Wash, collection and digestion buffers were prepared on the 

day of tissue collection. 

2.2.2 Wash Buffer 

The wash buffer was derived form the KRH buffer and contained in addition 2.5 

mM CaCl2 and 151 mM bovine serum albumin (Sigma Ltd, Poole, Dorset, UK) with 

pH adjusted to 7.4. 

2.2.3 Collection Buffer 

Wash buffer with addition of glucose to obtain concentration of 3mM.  

2.2.4 Digestion Buffer 

For each gram of fat tissue 4ml of collection buffer with 2mg/ml collagenase 

(Collagenase, Worthington Type 1, Lorne Laboratories, Twyford, Essex, UK) was 

added.  

2.3 Tissue collection 

Maternal blood (20ml) was obtained prior to caesarean section into a selection 

of blood bottles with varying additives including K2EDTA, lithium heparin, clot 

activator, buffered sodium citrate and potassium oxalate. They were transferred 

to the laboratory to be immediately centrifuged at 3000rpm for 15 minutes and 

the resulting plasma and serum pipetted into aliquots (colour-coded to 

appropriate additive) and stored at -70°C. Tissue collection buffer was prepared 

fresh on day of collection and pre-warmed to 37°C. The surgeon was briefed to 

obtain a sample of subcutaneous adipose tissue (SAT) around the size of a 50 

pence coin (around 6-8g) on entry into abdominal cavity and this was placed in 

the collection buffer. Immediately after delivery of the cord and placenta, a 

sample of cord blood was obtained and transferred into pre-prepared blood 

bottles. A sample of visceral adipose tissue (VAT) was obtained from the 
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omentum after closure of the uterus and haemostasis secured. This was again 

the size of a 50 pence coin and was also placed in collection buffer.  Both 

samples were transferred to the laboratory where processing of fat was 

immediately commenced. A research technician was available on return to the 

laboratory to process the cord blood and other tissue. Cord blood was 

centrifuged and the resulting serum/plasma was divided into aliquots to be 

stored at -70°C. Two samples of cord around 2cm in length, four samples of full 

thickness placenta, paired samples of SAT and VAT when excess tissue was 

available were “flash-frozen” in liquid nitrogen and then placed in pre-cooled 

metal containers to be stored at -70°C.  A further 2 samples of placenta were 

fixed in 10% buffered paraffin prior to being embedded in paraffin, cut into 

sections and mounted on slides for later use. 

2.4 Processing the fat sample 

The fat sample was placed in a petri dish with warm wash buffer and any large 

blood vessels, fibrous tissue or skin was removed before weighing the sample. 

Two sections of both SAT and VAT of around 1g were flash frozen and placed in 

pre-cooled metal containters and stored at -70°C for later total RNA extraction. 

Adipocyte cell suspensions were prepared in accordance with the method 

described by Rodbell.193 In brief the fat sample was added to the appropriate 

volume of digestion buffer and cut into smaller pieces with scissors before 

agitating in a 37°C water bath (Grant, OPS-200) for 30 minutes. At the end of 

the 30 minutes the digestate was passed through a metal tea strainer (pore size 

600uM). The filtrate comprised a layer of adipocytes floating on top of the 

digestion buffer.  

Using a needle and syringe, the digestion buffer was replaced with warm wash 

buffer 5 times prior to aspirating as much buffer as possible below the adipocyte 

layer to leave adipocytes suspended at approximately 90% cytocrit.  

Adipocyte cell suspension (100ul) was added to 900ul of warm wash buffer in a 

15ml Falcon centrifuge tube. All assays were carried out in duplicate. All 

reagents were added to the relevant tubes and the timing of the assay was 

commenced. The tubes were placed in a 37°C shaking water bath at 91 cycles 

per minute and incubated for 120 minutes.  
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The remaining adipocyte suspension was divided into 150ul aliquots and frozen 

at -70°C for later quantification of DNA.  

2.5 Lipolysis Assay - Conditions and reagents 

2.5.1 Basal lipolysis 

No reagent was added to adipocyte cell suspension and warm wash buffer 

2.5.2  Insulin 

Insulin (Human Actrapid® Novo Nordisk)(10ul) was added to 590µl of KRH buffer 

to produce the insulin STOCK (10µM).This was diluted by a factor of 10 to a 

concentration of 1µM. 10ul of 1µM solution was added to the adipocyte cell 

suspension ( total volume 1ml) to give a final concentration of 10nM.   

2.5.3  Isoproterenol 

Isoproterenol is a non-specific beta adrenergic agonist which stimulates lipolysis 

in the adipocyte. Isoproterenol (49.5mg) was added to 100ml of KRH buffer to 

obtain a STOCK of 2mM.  This was diluted by a factor of 100. 10ul of this solution 

was added to the adipocyte cell suspension to give a final concentration of 

200nM. 

2.5.4  Isoproterenol and insulin 

Insulin and isoproterenol was prepared as above and 10 ul of each solution was 

added to give a final concentration of 10nM and 200nM respectively. 

2.5.5  Lipopolysaccharide 

Sterile balanced salt solution (1 ml of autoclaved KRH buffer) was added to a 

vial of 1mg LPS powder.  Concentration of LPS STOCK: 1mg / ml. This was 

diluted by a factor of 10 in KRH buffer and 10ul of this solution was added to the 

final adipocyte cell suspension to give a concentration of 1µM.  
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2.5.6 Determining concentrations and time lines 

A time course of lipolysis and dose response curves for isoproterenol and insulin 

were determined by Dr EK Tan who had worked on refining the methods for 

submission as a thesis for a degree of Master of Science. 

2.5.6.1 Time course 

Using adipose tissue of normal healthy pregnant women at term a time course of 

lipolysis was determined by measuring NEFA release with isoproterenol 

stimulation. Maximum isoproterenol stimulated release was at 180 minutes and 

then plateaued. A time point of 120 minutes which was within the linear phase 

of stimulation was chosen as the sampling time point 

2.5.6.2  Isoproterenol and Insulin dose-response 

Increasing concentrations of isoproterenol resulted in increasing release of NEFA 

as calculated as percentage stimulation above basal release to a maximum at 

2uM, with a plateau after that. A concentration of 200nM which was within the 

linear phase of the dose- response curve was used in the lipolysis assay. Similarly 

the concentration of insulin was chosen based on a dose response curve 

determining percentage suppression below basal release.  

2.5.6.3  Lipopolysaccharide 

Lipopolysaccharide (LPS) is an endotoxin and constitutes the lipid portion of the 

outer leaflet of Gram-negative bacteria. It acts on toll-like receptor (TLR) 4 on 

adipocytes. It was shown to neither stimulate nor suppress lipolysis (Dr EK Tan).  

A time-course and dose–response curve was performed to determine the 

concentration of LPS to use in the final lipolysis assay by measuring the cytokine 

IL-6 by ELISA (R&D Systems, Abindgdon, UK)  

An initial experiment was performed using increasing concentrations of LPS 

(0,1nM,10nM,100nM,1000nM,10000nM) added to adipocyte suspensions prepared 

as before. Samples of the supernatant were taken at time points 0, 30 mins, 60 

mins, 120 mins and 18 hours for analysis of IL-6 concentrations. This showed that 

IL-6 did not appear to be released from the adipocytes until at least 2 hours 
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incubation. Time points 120 mins and 18 hours were chosen for practicality of 

sampling. At 18 hours all concentrations were greater than 400 pg/ml. Dilutions 

were not performed. (Figure 5) 
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Figure 5 Release of IL-6 from adipocytes  

IL-6 release did not appear to occur until at least  120 minutes incubation. The maximum 

sensitivity of the ELISA was 400 pg/ml. Time points  120 mins and 18 hours were chosen for 

practicality of sampling. At 18 hours all concentra tions were greater than 400 pg/ml. 

Dilutions were not performed.  

A time course was performed (n=3) with sampling taken at 2, 4, 6, and 18 hours 

(Figure 6) 
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Figure 6 Time course of IL-6 release with increasin g concentrations of LPS 

 
From a practical point of view the best sampling time of the supernatant during 

the lipolysis experiments would either be at 2 hours or 18 hours (overnight). The 

2 hours time point was chosen as it was in the linear portion of the graph. 

A dose-response curve was also performed (n=4)(Figure 7). 
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Figure 7 Effect of increasing concentration of LPS on IL-6 release sampled at 2 hours 
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We therefore determined that a concentration of 10-6 M LPS to be used in the 

final methodology.  At levels of 10-5 M of LPS concentrations of IL-6 paradoxically 

fell implying a possible toxic effect of very high concentrations of LPS on the 

adipocyte. 

 

2.5.7 Measuring Fatty Acid Concentration 

At the end of the assay (time = 120mins) aliquots (5ul) obtained from the buffer 

layer below the cellular suspension were obtained for estimation of non-

esterified fatty acid concentration (NEFA) using a Wako NEFA-C Assay kits (Alpha 

laboratories, Eastleigh, Hampshire, UK). The Wako enzymatic method relies 

upon the acylation of coenzyme A(CoA) by the fatty acids in the presence of 

added acyl-CoA synthetase (ACS). The acyl-CoA produced is oxidized by added 

acyl-CoA oxidase (ACOD) with the generation of hydrogen peroxide. Hydrogen 

peroxide, in the presence of peroxidase (POD) permits the oxidative 

condensation of 3-methyl-N-ethyl-N-(b-hydroxyethyl)-aniline (MEHA) with 4-

aminoantipyrine to form a purple colour. This was measured by a microplate 

spectrophotometer (Multiscan EX, Thermo Electron Corporation) at 550nm. The 

within-run precision of the assay is 2.7%CV, 1.1%CV and 1.1%CV for mean 

concentrations of 0.33mmol/L, 0.62mmol/L and 0.99mmol/L, respectively 

(manufacturer). The linear range of the assay is 0-2.0mmol/L.  

2.5.8 Measuring Glycerol Concentration 

At the end of the assay (time = 120 minutes) aliquots (10ul) obtained from the 

buffer layer below the cellular suspension were obtained for estimation of 

glycerol concentration using a colorimetric glycerol assay kit (Randox 

Laboratories Ltd, Co Antrim, UK). This utilizes a quinoneimine chromagen system 

in the presence of glycerol kinase, peroxidise and glycerol phosphate oxidase 

which results in the formation from glycerol of n-(4-antipyryl)-3-chloro-5-

sulphonate-p-benzoquinoneimine to produce an orange colour. The optical 

density was measured at 520nm using a microplate spectrophotometer. 
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2.6 Fat cell sizing 

An unfixed fresh cellular suspension of adipocytes (10ul with 10ul KRH buffer) 

was prepared on a glass slide. An Olympus BX50 microscope using a x10 lens 

connected to 3-CCD colour camera (JVC) was used for digital image capture. 

Computer visualisation of the images were achieved with the image analysis 

program Image-Pro Plus 4.0 (Figure 8) and later analysed with Adobe Photoshop 

Version 7.0. An image of a stage micrometer with 100um markings was taken to 

convert pixels as measured by Adobe Photoshop to microns.(Figure 9)  

Diameter of adipocyte in um = y/x*100 when y= cell diameter in pixels and x= 

number of pixels between markings in stage micrometer ie 100um 

At least 100 adipocytes on the digital images were manually measured to derive 

the mean diameter of each adipocyte preparation. 

 

Figure 8 Image of cellular suspension of adipocytes  (x100 magnification) 
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Figure 9 Image of stage micrometer with 100um marki ngs (x100 magnification) 

2.7 Determining Fat Cell Numbers 

Fat cell number is important to determine as cellular density will influence the 

rate of lipolysis as measured by fatty acid and glycerol concentration in aliquots 

of the supernatant. Fat cell number was measured indirectly by quantifying the 

DNA content in a known volume of adipcotye suspension. The number of 

adipocytes would be directly proportional to the amount of adipocyte DNA 

content and lipolysis rates are expressed per ug of DNA. The DNA was isolated 

from a known quantity of adipocyte suspension that was previously frozen at -

70°C and thawed at room temperature using the Blood Prep DNA Purification 

protocol on the ABI PrismTM  6100 Nucleic Acid PrepStation (Applied 

Biosystems)(Figure 10). 
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Figure 10 Protocol for DNA isolation using the ABI Prism TM  6100 Nucleic Acid PrepStation 

Purification solution was added to adipocyte suspensions (2 x 150 ul of 

adipocytes for each specimen ie total of 300ul of cells) in eppendorf tubes. This 

was spun at 13,000 rpm for 2 minutes to separate lipid and water phase. Using 

fine-tip pastettes the water phase was carefully pipetted into the relevant well 

leaving the lipid phase behind in order to minimise clogging.  The standard 

BloodPrepTM protocol was adapted below (Table 1). 
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Step Description Volume Position Incubation Vacuum Time(sec) 

1 Load 1st 
sample 

650ul Waste 0 80 300 

Repeat 
Step 1 a  

Load 2nd 
sample  

650ul Waste 0 80 300 

2 Add 
purification 
solution 

650ul Waste 0 80 400 

Repeat 
Step 2 a 

      

3 Add Wash 
solution 

650ul Waste 0 80 60 

Repeat 
Step 3 b 

      

4 Add Wash 
solution 

600ul Waste 0 80 60 

5  Add Wash 
Solution 

300ul Waste 0 80 60 

6 Preelution 
Vacuum 

- Waste 0 100 120 

7(ensure 
collection 
tray in 
place) 

Touch off 
(rock 
gently) 

 Waste    

8 Elution 
solution 1 

100ul Collection 180 0 - 

9 Collection  Collection 0 60 120 
10 Elution 

solution 2 
100ul Collection 0 60 120 

a 300ul of adipocyte cell suspension was used to improve DNA yield above the 
limit of Nanodrop sensitivity (ie 5ng/ul). A max of 150ul of sample can be 
added at Step 1 
b An additional wash step was added to minimise contamination with 
guanidine HCL present in purification solution 

Table 1  Adapted BloodPrep TM protocol to isolate DNA from adipocytes. 

The concentration of DNA was quantified using Nanodrop® ND 100 which is a 

cuvette free spectrophotometer which can accurately measure nucleic acid 

concentrations in small volumes (from 1ul). Absorbance readings are performed 

at 260nm where DNA absorbs light most strongly, and the number generated 

allows one to estimate the concentration of the solution. A “blank” 

measurement with a 50:50 mixture of elution buffer I and II was performed to 

minimise high absorbance at 230nm due to salts in the elution buffers. Measuring 

the intensity of absorbance of the DNA solution at wavelengths 260 nm and 

280nm is used as a measure of DNA purity. DNA absorbs UV light at 260 and 280 

nm, and aromatic proteins absorbs UV light at 280 nm; a pure sample of DNA has 

the 260/280 ratio at 1.8 and is relatively free from protein contamination. A DNA 
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preparation that is contaminated with protein will have a 260/280 ratio lower 

than 1.8. 

The results were deemed acceptable if the concentration of DNA was > 5ng/ul 

and absorbance ratio at 260/280 was between 1.60 -2.00 (Figure 11). If not, the 

graphs were individually assessed to determine if there was an identifiable peak 

at absorbance 260nm, and if so the result was accepted. (Figure 12). If not, the 

process was repeated again using stored 150ul aliquots of adipocyte suspensions.      

 

 

Figure 11 Concentration of DNA of adipocyte prepara tion as measured on nanodrop 

The concentration of DNA was >5ng/ul and the absorb ance ration at 260/280 was between 

1.60-2.00 (1.88). 
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Figure 12 Concentration of DNA of adipocyte prepara tion as measured on nanodrop 

The concentration of DNA was >5ng/ul. The absorbanc e at 260/280 was greater than 2.00 

(2.05) but there was an identifiable peak at absorb ance 260nm. Therefore the result was 

deemed acceptable. 

2.8 Bioplex 

At time=120min paired 120ul aliquots of the buffer layer below the adipocyte 

layer was frozen at -80°C for later analysis of cytokines. Cytokine quantification 

was carried out with Bio-Plex (BIO-RAD®) system and suspension array 

technology. This is a multiplexed, particle based, flow cytometric assay which 

utilises anti-cytokine monocloncal antibodies linked to microspheres 

incorporating distinct proportion of two fluorescent dyes. Each of the 100 

spectrally addressed bead sets can contain a captive antibody specific for a 

unique target protein. Fluorescent intensity of the bead identifies the reaction. 

Analyte-specific antibodies are pre-coated onto colour-coded microparticles. 

Microparticles, standards and samples are pipetted into wells and the 

immobilised antibodies bind the analytes of interest. After washing away any 

unbound substances, a biotinylated antibody cocktail specific to the analytes of 

interest is added to each well. Following a wash to remove any unbound 

biotinylated antibody, streptavidin-phycoerythrin conjugate (Streptavidin-PE), 

which binds to the captured biotinylated antibody, is added to each well. A final 

wash removes unbound Streptavidin-PE and the microparticles are resuspended 

in buffer and read using the Luminex analyzer. One laser is microparticle-
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specific and determines which analyte is being detected. The other laser 

determines the magnitude of the phycoerythrin-derived signal, which is in direct 

proportion to the amount of analyte bound. Our assay was customised to detect 

and measure multiple adipokines (Table 2) using the R + D Systems Obesity Base 

Kit (cat no LOB000). 

 
 

Adipokine Cat No: 
Serpin E1/PAI-1 LOB1786 
CCL2/MCP-1 LUH279 
IL-6 LUH206 
Leptin LUB398 
TNF alpha LUH210 
Adiponectin LOB1065 
IL-10 LUH217 

Table 2 Adipokine antibodies and catalogue numbers 

 
The previously frozen samples were thawed at room temperature and spun at 

10,000rpm for 1 min then diluted in Calibrator diluent RD5K in a ratio of 1:20. 

All standards, buffers and reagents were prepared as per the manufacturers 

protocol. The desired number of wells of 96 well filter plate was prewet with 

100ul wash buffer and then removed by vacuum filtration. The bottom of the 

filter plate was dried thoroughly with a clean paper towel (lint free). The 

diluted microparticle mixture was resuspended and 50ul pipetted into each well.  

Standard or sample (50ul) was added into each well. The plate was covered with 

foil and shaken at 500rpm for 3 hours at room temperature. Buffer was removed  

by vacuum filtration and washed 3 times with 100ul Bio-Plex wash buffer 

blotting the bottom of filter plate with clean paper towel after every wash to 

prevent cross-contamination. Diluted biotin antibody cocktail (50ul) was added 

to each well and then covered with foil and shaken at 500rpm for 1 hour at room 

temperature.  The buffer was removed by vacuum filtration and a further 3 

washes were performed. Diluted streptavidin-PE (50ul) was added to each well, 

covered with foil and shaken at 500rpm for 30 mins at room temperature. At the 

end of the incubation the buffer was removed and a further 3 washes 

performed. The microparticles were then resuspended in each well with 100ul 

wash buffer and the plate covered with sealing tape and shaken at 500rpm for 

2mins. The plate was read on Biorad Bioplex analyser Luminex 100 within 90 

minutes. All results were in pg/ml.  
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2.9 Isolation of Total RNA  

RNA was isolated using the Tissue RNA Isolation protocol from Applied 

Biosystems for ABI PRISM 6100 Nucleic Acid Prepstation.  Keeping the tissue 

frozen using dry ice and liquid nitrogen 50mg tissue was weighed into a pre-

cooled universal and the exact weight was noted. Nucleic acid purification lysis  

(2.5ml) (1:1 PBS) was added. This was homogenised for 30 secs and left on wet 

ice for 30 mins (placenta) or 1 hour (adipose tissue). The homogenized lysate 

was stored at -20oC until purification. The lysate underwent prefiltration 

according to the manufacturer’s protocol in order to increase the yield of total 

RNA and reduce clogging in the purification tray. In this technique the 

homogenised lysate was passed across the tissue pre-filter tray and collected. 

Purification of the filtered tissue lysate was achieved by passing the lysate 

through a purification tray containing an application-specific membrane. Wash 

solutions (AbsoluteRNA Wash solution) were applied to the membrane and the 

purified RNA was eluted into a 96-well PCR plate. This process was performed 

using the manufacturer’s semi-automated protocol.  

2.10 Quantitative real time PCR 

RNA was reverse transcribed to cDNA using the High Capacity cDNA Reverse 

Transcription Kit (Applied Biosystems, Warrington , UK) according to the 

manufacturer’s instructions. A No RT control was also performed (Table 3). 

Preparation Sample mix with RT(ul) No RT control (ul) 

10 x RT buffer 1 1 
25 x dNTPs 0.4 0.4 
10 x random primers 1 1 
Multiscribe reverse 
transcriptase 

0.5 0 

Superasein (1U/ul) 0.5 0.5 
Nuclease free water 1.6 2.1 
Total volume per 
reaction  

5 5 

 + 5ul RNA + 5ul RNA 
Total voume 10 ul 10ul 

Table 3 Constituents of assay. 

cDNA was quantitated using TaqMan® technology on an ABI Prism 7900HT 

(Applied Biosystems).The target assays were purchased from Applied Biosystems 

and listed in Table 4. Briefly 1.25ul of 20 x target assay or control assay mix was 
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added to 12.5ul of 2 x Mastermix (Applied Biosystems), 10.25ul deionised 

distilled water and 1ul cDNA. The thermal cycler conditions were 50oC 2min, 

95oC for 10 min then 40 x 95oC for 15 secs and 60oC for 1min. Data was analysed 

using the Sequence Detection software, which calculated the threshold cycle 

(CT) values. The expression of the target assays were normalized by subtracting 

the CT value of the endogenous control (18s and PPIA) from the CT value of the 

relevant target assay. The fold increase relative to the control was obtained by 

using the formula 2-∆CT. 

Gene 
symbol 

TaqMan® gene expression assay Assay ID Source 

CD68  CD68 molecule Hs00154355-
m1 

Applied 
Biosystems 

PP1A peptidylprolyl isomerase A 
(cyclophilin A) 

Hs99999904-
m1 

Applied 
Biosystems 

18S Endogenous control 4310893E 
 

Applied 
Biosystems 

IL-6 Interleukin-6 Hs00174131-
m1 

Applied 
Biosystems 

TNF-α Tumour necrosis factor- alpha Hs00174128-
m1 
 

 

c-fms colony stimulating factor 1 
receptor 

Hs99999197-
m1 

Applied 
Biosystems 

Table 4 Taqman gene expression assays 

 

2.11 Immunocytochemistry 

2.11.1 Processing of biopsies 

Biopsies of SAT and VAT which had previously been flash frozen in liquid nitrogen 

and stored at -70◦C were defrosted at room temperature. Approximately 1cm3 

section was fixed in 30 ml of zinc formalin (Cellpath Acetic Zinc Formalin) for 24 

hours. It was then processed on a Leica ASP overnight and taken through the 

following solutions: zinc formalin for 1 hour 15 minutes, 70% methylated spirit 

for 1 hour, 90% methylated spirit for 1 hour, methylated spirit phenol for 1 hour, 

industrial alcohol for 3 x 1 hour, xylene for 45 minutes, then 2 x 1 hours and 3 

wax treatments for 1 hour, 1 hour 30 minutes, and 1 hour 30 minutes. The 

paraffin blocks were subsequently used in immunocytochemistry (ICC). Sections 

7 um thick were cut from the paraffin embedded tissue on a microtome (Leica 
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RM 2135) and mounted on electrostatic superfrost slides, heated to 60◦C 

overnight and stored in slide boxes until used. Placental tissue as was fixed in 

10% buffered formalin prior to being embedded in paraffin, cut into 5um 

sections and mounted on slides for later use. 

 

2.11.2 ABC method 

The antibodies used in ICC were polyclonal anti human cFMS (Chemicon cat 

no.CBL776) and monoclonal anti-human macrophage CD68 (Dako-CD68, PG-M1 

code no. M876) which represent activated and total macrophages respectively.  

The sections were heated to 60◦C for 35 min, depariffinized in xylene, and 

rehydrated in a graded alcohol series. Endogenous peroxidise activity was 

quenched using 0.5% hydrogen peroxide in methanol. Sections were washed in 

PBS. In sections to be incubated with anti-cfms, antigen was retrieved by 

microwaving in a pressure cooker (Lakeland Plastics Ltd., Cumbria, UK) at full 

power for 5 min in citrate buffer (10 mM, pH 6.0). The sections were washed in 

H20 then blocked with 20% goat/20% human serum. Section to be incubated with 

anti CD68, antigen was retrieved by pre-treatment with 0.1% trypsin in TRIS 

buffer containing 0.1% calcium chloride for 15 minutes and then washed in PBS. 

They were blocked by adding 20% horse/20% human serum. Sections were then 

incubated overnight for 16 hours at 4◦C with the primary antibody diluted either 

in 2% goat serum at a dilution of 1:25 (cfms) or in 2% horse serum at a dilution of 

1:50(CD68). Slides were washed in PBS and were incubated for 30 minutes with 

2◦Ab biotinylated anti-rabbit IgG (Vector laboratories)  diluted 1:200 in 2% goat 

serum (cfms) or biotinylated horse anti-mouse (Vector) diluted 1:200 in 2% horse 

serum both with 5% human serum added. Sections were washed in PBS and then 

incubated with avidin DH/biotinylated horseradish peroxidase H reagent (Vector) 

in PBS for 30 min before final washing. The antigen was localized using 1 mg/ml 

diaminobenzidine tetrahydrochloride (Sigma-Aldrich), 0.2% hydrogen peroxide in 

50 mM Tris HCl, pH 7.6, and appeared as a brown end product. Sections were 

counterstained with Harris hematoxylin (Sigma-Aldrich).  In sections using anti –

CD68 negative controls included slides incubated without the primary antibody 

and sections incubated with a mouse monoclonal antibody against IgG1 (Dako-
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X931), an enzyme that is neither present nor inducible in mammalian tissue. 

Tonsillar tissue was used as a positive control for all primary antibodies used. 

2.12 Quantification of macrophage cell density  

Macrophages were identified using histological analysis in ten randomly selected 

high powered fields (x 400 objective magnification) and were counted by two 

independent observers who were blinded to the specimen details. The area for 

each high-powered filed was 0.23mm2. Macrophages within the blood vessels 

were not included in the counts. Tissue macrophage densities were expressed as 

cell count per field (placenta) and cell count per adipocyte.   

2.13 Maternal and Cord Blood Phenotyping 

Maternal blood (20ml) was obtained prior to caesarean section into a selection 

of blood bottles with varying additives including K2EDTA, lithium heparin, clot 

activator, buffered sodium citrate and potassium oxalate. They were transferred 

to the laboratory to be immediately centrifuged at 3000rpm for 15 minutes and 

the resulting plasma and serum pipetted into aliquots (colour-coded to 

appropriate additive) and stored at -70°C. Cord blood was obtained from the 

cord with a needle and syringe after delivery of the placenta. The sample was 

also centrifuged and stored as aliquots at -70°C. 

Cholesterol and triglyceride were determined by enzymatic colorimetric assays 

on a Roche 917 analyser (Roche Diagnostics Ltd., Burgess Hill, United Kingdom). 

LDL and HDL were measured after ultracentrifugation at 105,000g at 4 oC for 16 

hours, followed by precipitation of the LDL fraction using a solution of heparin 

and manganous chloride. Glucose was measured by hexokinase/glucose-6-

phosphate dehydrogenase assay on an Abbott c8000 analyser (Abbott 

Diagnostics, Maidenhead, United Kingdom). High sensitivity C-reactive protein 

(CRP) was measured by an immunoturbidimetric assay (Roche Diagnostics Ltd., 

Burgess Hill, United Kingdom). Insulin was measured by a direct sandwich 

Enzyme-Linked Immunosorbent Assay (ELISA) (Mercodia AB, Uppsala, Sweden). 

IL-6 (Cat No:HS600B), TNF-alpha (Cat No: HSTA00D), leptin (Cat No: DLPOO) and 

adiponectin (Cat No:DRP300) were all by the quantitative sandwich ELISA (R&D 

systems, Abingdon, UK). NEFA in serum was measured using a Wako NEFA-C 

Assay kits (Alpha Laboratories, Eastleigh, Hampshire, UK) and read on a 
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microplate spectrophotometer (Multiscan EX, Thermo Electron Corporation) at 

550nm.   

2.14 Statistics 

Data was assessed for normal distribution using a Ryan-Joiner test and 

transformed to achieve a normal distribution where necessary. Comparisons 

between groups was made by two sample t-test (control vs PE) or paired t test 

(SAT vs VAT), and expressed as means with standard error for the mean (SEM). 

For non-parametric data comparisons were made using Mann-Whitney U test and 

data expressed as median and inter-quartile range.  Pearson’s correlation 

coefficients were calculated to assess associations between variables, and 

results were expressed as r value, R2 and p-value.  A p-value of <0.05 was 

considered significant. The data was adjusted for potential cofounders using the 

General Linear Model. All statistical analysis was carried out in Minitab (version 

15). 

 



 

   

3 Adipocyte Lipolytic Function in Normal 

Pregnancy  
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3.1 Introduction 

Obesity, which is characterized by an increase in adipose tissue, is increasing in 

the western world to epidemic proportions. It is widely shown that increasing 

adiposity is linked to a broad range of metabolic abnormalities including insulin 

resistance hypertension, dyslipidaemia and increase risk of cardiovascular 

disease. Obesity or adiposity affects almost all aspect of female reproductive 

life including the metabolic complications of gestational diabetes and pre-

eclampsia. Adipose tissue itself has increasingly been found to have far reaching 

metabolic and endocrine effects and alterations in adipose tissue function with 

increasing adiposity may provide, at least in part, the link between adiposity and 

metabolic complications of pregnancy. It is therefore important that we have a 

better understanding of its function in both normal and abnormal states. 

I have investigated the lipolytic properties of adipocytes taken at elective 

caesarean section (CS) from women with healthy pregnancies of varying BMI. 

Much of the work on adipocyte function in pregnancy from AT explants has been 

on animal models and the following investigations represent the first detailed 

examination of adipocyte characteristics in normal human pregnancy in over 30 

years194. This will provide the basis for future comparisons with complications of 

human pregnancy involving adipocyte metabolism and function including pre-

eclampsia, IUGR and GDM. 

3.2 Specific Research Questions 

1. Do adipocytes respond to catecholamines and insulin in a similar manner 

to those of the non-pregnant ie isoproterenol stimulates lipolysis and 

insulin suppresses lipolysis? 

2. Are direct measures of adipocyte lipolytic function related to maternal 

BMI? 

3. Are direct measures of adipoyte lipolytic function related to plasma 

measures of insulin resistance? 

4. What are the relationships between maternal adipokine and inflammatory 

markers and direct measures of adipocyte lipolytic function? 
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5. What is the relationship of adipocyte cell size and measures of adipocyte 

function?  

6. Are there functional differences in AT metabolism in pregnancy depending 

on their anatomical locations and does this pattern reflect other insulin 

resistant states. 
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3.3 Results 

3.3.1 Subjects 

Thirty six non-labouring women were recruited as described in methods section 

2.1.2. The characteristics are described in Table 5. 

Characteristics Cohort (n=36) 
Age, y 31.2(5.3) 
BMI, kg/m2 28.2(5.4) 
Lean <30kg/ m2 (%) 72.2 
Smokers (%) 8.3 
DEPCAT* 4(4-6) 
Gestation at delivery, wk      38.9(1.2) 
Parity (0,1,2) 7,22,7 
Systolic pressure, mmHg 114.6(13.4) 
Diastolic pressure, mmHg 69.9(8.2) 
Birthweight, g 3466.8(532) 
Birthweight centile 57.7(28.4) 

Table 5 Characteristics of control women.  

All values expressed as mean and standard deviation  (*median and interquartile range) 

 
Lipolysis assays were undertaken as set out in methods section 2.5, 2.6 and 2.7. 

Maternal biochemical markers were determined as detailed in methods section 

2.12. 

 

3.3.2 Action of Isoproterenol and Insulin on Lipoly sis 

In SAT when lipolysis rates are expressed as the release of NEFA isoproterenol 

stimulates lipolysis (0.36[0.05] vs 0.76[0.07] mmol/L/ugDNA, p<0.001) and 

insulin suppresses basal lipolysis (0.36[0.05] vs 0.24[0.02] mmol/L/ugDNA, 

p=0.001). Insulin also attenuates the effect of catecholamine stimulation of 

lipolysis (0.76[0.07] vs 0.56[0.06] mmol/L/ugDNA, p <0.001)(Figure 13).  
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Figure 13 Comparison of NEFA release in subcutaneou s fat in healthy pregnancy.  

Isoproterenol stimulates release over basal (p<0.00 1), insulin suppresses release (p=0.001), 

and insulin attenuates isoproterenol stimulation (p <0.001) (n=36). SBA =basal liploysis in 

SAT, SISO=lipolysis in presence of isoproterenol in  SAT, SINS=lipolysis in the presence of 

insulin in SAT, SINS=lipolysis in the presence of i soproterenol and insulin in SAT. Values 

displayed as mean and SEM. Comparisons made using p aired t-test to basal release unless 

otherwise indicated. *=p ≤0.05, **=p≤0.01, ***=p≤0.001. 

A similar effect in subcutaneous fat of healthy controls is seen if lipolysis rates 

are calculated from glycerol release. Isoproterenol stimulates lipolysis 

(114.6[14.6] vs 270.1[19.4] umol/L/ugDNA, p<0.001), no effect is seen with 

insulin on basal release (114.6[14.6] vs 127[18.2] umol/L/ugDNA, p=0.5) but 

insulin does attenuate catecholamine stimulation of lipoloysis (270.1[19.4] vs 

242.4[25.4] umol/L/ugDNA, p=0.034).(Figure 14) 
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Figure 14 Comparison of glycerol release in subcuta neous fat in healthy pregnancy 

Isoproterenol stimulates release (p<0.001) and insu lin attenuates isoproterenol stimulation 

(p=0.034)(n=36). SBA =basal liploysis in SAT, SISO= lipolysis in presence of isoproterenol in 

SAT, SINS=lipolysis in the presence of insulin in S AT, SINS=lipolysis in the presence of 

isoproterenol and insulin in SAT. Values displayed as mean and SEM. Comparisons made 

using paired t-test to basal release unless otherwi se indicated.  *=p ≤0.05, **=p≤0.01, 

***=p≤0.001. 

 

Similarly in visceral fat of control women isoproterenol stimulates lipolysis when 

calculated from NEFA release (0.25[0.05] vs 0.61[0.11] mmol/L/ugDNA, 

p<0.001), insulin suppresses basal release (0.25[0.05] vs 0.20[0.04] 

mmol/L/ugDNA, p=0.034) and insulin attenuates the effect of isoproterenol 

(0.61[0.11] vs 0.51[0.09] mmol/L/ugDNA, p<0.001) (Figure 15) 
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Figure 15 Comparison of NEFA release in visceral fat in heal thy pregnancy.  

Isoproterenol stimulates release (p<0.001), insulin  suppresses release (p=0.034) and insulin 

attenuates isoproterenol stimulated release (p<0.00 1)(n=36). VBA =basal liploysis in VAT, 

VISO=lipolysis in presence of isoproterenol in VAT,  VINS=lipolysis in the presence of 

insulin in VAT, VINS=lipolysis in the presence of i soproterenol and insulin in VAT. Values 

displayed as mean and SEM. Comparisons made using p aired t-test to basal release unless 

otherwise indicated. *=p ≤0.05, **=p≤0.01, ***=p≤0.001. 

When lipolysis rates are expressed as glycerol release isoproterenol stimulates 

release (80[13.3] vs 189.5[17.5] umol/L/ugDNA, p<0.001), insulin has no effect 

on basal release (80[13.3] vs 80.6[11.9] umol/L/ugDNA p=0.95) and insulin 

appears to attenuate isoproterenol stimulated release (189.5[17.5] vs 172.3[19] 

umol/L/ugDNA, p=0.111)(Figure 16). 
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Figure 16 Comparison of glycerol release in viscera l fat in healthy pregnancy. 

Isoproterenol stimulates release (p<0.001) and ther e is a trend for insulin to attenuate the 

effect of isoproterenol (p=0.111)(n=36). VBA =basal  liploysis in VAT, VISO=lipolysis in 

presence of isoproterenol in VAT, VINS=lipolysis in  the presence of insulin in VAT, 

VINS=lipolysis in the presence of isoproterenol and  insulin in VAT. Values displayed as 

mean and SEM. Comparisons made using paired t-test to basal release unless otherwise 

indicated. *=p ≤0.05, **=p≤0.01, ***=p≤0.001. 

 

 
The degree of stimulation by isoproterenol was calculated as a percentage of 

basal release of NEFA ie percentage stimulation = (SISO-SBA)/SBA)*100 and the 

degree of suppression by insulin was calculated as a proportion of basal release 

ie :(SBA-SINS/SBA)*100.  Visceral fat is more responsive to stimulation by 

isoproterenol compared to subcutaneous fat (239[32] vs 159 [20]%, p=0.04) 

(Figure 17) and this trend was also apparent when lipolysis was expressed by 

glycerol release (337[83] vs 236[34]%, p=0.265).(Figure 18). There was a trend 

for basal suppression of lipolysis to be lower in VAT although this did not reach 

significance (8.8[7.6] vs 22.7[4.6]%, p=0.123). 



   

Shahzya S Huda, 2010  Chapter 3 75 

0

50

100

150

200

250

300

350

SISO%  SINS%  VISO%  VINS%

P
er

ce
nt

ag
e 

(%
)

*

 

Figure 17 Percentage stimulation and inhibition of NEFA release in SAT and VAT in healthy 

pregnancy. 

Visceral fat is more responsive to stimulation by i soproterenol (p=0.04)(n=36). SISO% -

percentage stimulation of lipolysis by isoprotereno l in SAT, SINS%-percentage inhibition of 

lipolysis by insulin in SAT, VISO% -percentage stim ulation of lipolysis by isoproterenol in 

VAT, VINS%- percentage inhibition of lipolysis by i nsulin in VAT. Values displayed as mean 

and SEM. *=p ≤0.05, **=p≤0.01, ***=p≤0.001. 
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Figure 18 Percentage stimulation and inhibition of glycerol release of SAT and VAT in 

healthy pregnancy.  

There was a non significant trend for VAT to be mor e sensitive to isoproterenol stimulation 

than SAT when expressed as glycerol release. SISO% -percentage stimulation of lipolysis 

by isoproterenol in SAT, SINS%-percentage inhibitio n of lipolysis by insulin in SAT, VISO% -

percentage stimulation of lipolysis by isoprotereno l in VAT, VINS%- percentage inhibition of 

lipolysis by insulin in VAT. Values displayed as me an and SEM. 

3.3.3 Relationship of stimulated, inhibited and bas al lipolysis 

In SAT, the metabolic flexibility (ie its responsiveness to stimulation and 

inhibition) of the adipocytes is related to the basal lipolysis of the cell. The 

lower the basal lipolysis of the AT the increased susceptibility it is to stimulation 

by isoproterenol (r=-0.056, R2 31.8%, p<0.001) (Figure 19). 
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Figure 19 Basal Lipolysis versus percentage stimula tion in SAT in healthy pregnancy. 

The higher the basal lipolysis the lower the percen tage stimulation by isoproterenol 

(p<0.001)(n=36). 

In addition in SAT basal lipolysis is related to sensitivity of the fat to suppression 

by insulin. As basal lipolysis increases so does the degree of suppression by 

insulin (r=0.58, R2 = 33.5%, p<0.001) (Figure 20). 
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Figure 20 Basal lipolysis versus percentage inhibit ion in SAT in healthy pregnancy. 

The higher the basal lipolysis the higher the perce ntage inhibition by insulin (p<0.001) 

(n=36). 

A similar effect is apparent in VAT – increasing basal lipolysis is related to 

reduced susceptibility to stimulation by isoproterenol. (r=-0.45, R2 = 20.5%, 

p=0.009)(Figure 21). 
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Figure 21 Basal lipolysis versus percentage stimula tion in VAT in healthy pregnancy.   

As basal lipolysis increases the less responsive VA T is to stimulation by isoproterenol 

(p=0.009)(n=36). 

However there is no apparent relationship between basal lipolysis and sensitivity 

to suppression with insulin in contrast to that seen in subcutaneous fat (Figure 

22). 
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Figure 22 Basal lipolysis versus percentage inhibit ion in VAT in healthy pregnancy.   

There is no apparent relationship (p=0.219)(n=36). 

There is also an inverse relationship between the sensitivity of SAT and VAT to 

stimulation by catecholamines and inhibition by insulin. (r=-0.46,R2 = 20.7%, 

p=0.005 and r=-0.74, R2 = 54.5%, p<0.000 respectively) (Figure 23 & Figure 24).  
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Figure 23 Percentage stimulation of lipolysis by is oproterenol vs percentage inhibition by 

insulin in SAT.  

There is an inverse relationship (p=0.005) (n=36). 
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Figure 24 Percentage stimulation of lipolysis by is oproterenol versus percentage inhibition 

by insulin in VAT.  

There is an inverse relationship (p<0.000)(n=36). R elationship remains robust when re-

tested without apparent outlier (r=-0.75, p=0.000).  
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3.3.4 Relationship of lipolytic function between VA T and SAT. 

There is no relationship between basal lipolysis in SAT and VAT when expressed 

as either release of NEFA or glycerol. The lipolytic function of SAT and VAT 

appear to be independent. The only apparent correlation is between that of 

isoproternol stimulation of lipolysis when expressed as NEFA release/ugDNA – the 

sensitivity of catecholamine stimulation of SAT is positively associated with that 

in VAT (r=0.46, R2=21.5, p=0.008)(Figure 25). 
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Figure 25 Percentage stimulation of lipolysis versu s percentage stimulation  in SAT. 

There is positive correlation between percentage st imulation of lipolysis in VAT and SAT 

(p=0.008)(n=36). 

3.3.5 Relationship between lipolytic function of AT  and maternal 

and fetal characteristics. 

There was no correlation between any measure of lipolytic function (ie absolute 

levels of basal, insulin suppressed or isoproterenol stimulated lipolysis or 

percentage stimulation or inhibition of lipolysis) and maternal BMI, age, parity, 

systolic BP ,diastolic BP, gestational age at delivery, birth weight and birth 

weight centile. 
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Maternal plasma levels of NEFA were positively correlated with gestational age 

at delivery (r=0.37, R2=14.0%, p=0.025) (Figure 26). 
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Figure 26 Relationship between gestational age at d elivery and maternal NEFA. 

There is a positive correlation between gestational  age at delivery and maternal NEFA 

(p=0.025)(n=36). 
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3.3.6 Fat Cell Insulin Sensitivity  

A direct measure of insulin sensitivity of the fat cell was calculated from the 

percentage inhibition of catecholamine stimulated lipolysis by insulin measured 

from the release of NEFA. This was derived from the following calculation 

(Figure 27): 

(SISO-SISO+INS)/(SISO-SBA)*100 
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Figure 27 Fat cell insulin sensitivity index. 

The fat cell insulin sensitivity index (FCISI) is c alculated from the percentage inhibition of 

catecholamine stimulated lipolysis by insulin ie (S ISO-SISO+INS)/(SISO-SBA)*100. 

This was called the fat cell insulin sensitivity index (FCISI). 

Using this measure, visceral fat was less insulin sensitive than subcutaneous fat 

(11%[27] vs 82%[21] p=0.04) in the normal pregnant woman.(Figure 28) 
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Figure 28 Comparison of FCISI between VAT and SAT. 

Visceral fat is less insulin sensitive as measured by the FCISI (11%vs82% p=0.04)(n=36). 

Values displayed as mean and 95% confidence interva l. 

There was no correlation between FCISI in SAT and VAT (r=-0.05, p=0.79). 

Maternal plasma glucose, insulin and subsequent HOMA (Homeostatis Model 

Assessment) did not correlate with absolute values for basal lipolysis, stimulated 

lipolysis or insulin attenuated catecholamine stimulated lipolysis in either SAT or 

VAT. HOMA is a measure of whole body insulin resistance and is calculated by 

the product of the fasting concentrations of glucose and insulin divided by a 

constant (22.5)195.  FCISI in visceral fat was negatively correlated with maternal 

glucose (r=-0.46, R2 = 21.5%, p=0.008) which remained robust after adjustment 

for age, BMI and parity (p=0.016).(Figure 29) FCISI in visceral fat was also 

negatively correlated with HOMA (r=-0.32), R2=10.3%, p=0.073) and this 

association became more robust after adjusting for age, BMI and parity 

(p=0.05).(Figure 30) Interestingly the converse was true for subcutaneous fat. 

There was a positive correlation between FCISI in SAT and maternal glucose (ie 

the more insulin sensitive the SAT the higher the maternal glucose) (r=0.49, 

R2=23.6, p=0.003), which persisted after adjustment for age, BMI and parity 

(p=0.005).(Figure 31) In addition there was also a positive correlation with SAT 
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FCISI and HOMA (r=0.34, R2=11.2%, p=0.046) which again remained robust after 

adjustment (p=0.047).(Figure 32) 

87654

400

300

200

100

0

-100

-200

-300

-400

-500

Maternal glucose (mmol/L)

V
is

c
e
ra

l 
Fa

t 
FC

IS
I 

(%
) r= -0.464

 

Figure 29 Relationship between FCISI in VAT and mat ernal glucose. 

FCIS in VAT is negatively correlated with maternal glucose r=-0,464, p=0.016 adjusted for 

age, BMI and parity (n=36). 
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Figure 30 Relationship between FCIS in VAT and mate rnal HOMA. 
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FCISI in VAT is negatively correlated with maternal  HOMA, r=-0.32, p=0.05 after adjustment 

for age, BMI and parity (n=36).  
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Figure 31 Relationship between FCISI in SAT and mat ernal glucose. 

FCISI in SAT is positively correlated with maternal  glucose r=0.49, p=0.005 adjusted for age, 

BMI and parity (n=36). 
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Figure 32 Relationsip between FCISI in SAT and mate rnal HOMA. 
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FCISI in SAT is positively correlated with maternal  HOMA r=0.34,p=0.047 adjusted for age 

BMI and parity (n=36). 

 
Absolute values of basal lipolsis, isoproterenol stimulated lipolysis and insulin 

suppressed lipolysis in ether SAT or VAT did not correlate with plasma markers of 

maternal glucose, insulin or HOMA.  

3.3.7 Relationship of serum lipids and lipolytic ac tivity 

 Maternal serum TGs increase as visceral fat cell insulin sensitivity decreases (r=- 

0.5, R2=24.8%, p=0.004, which is independent of BMI (p<0.001) (Figure 33). 
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Figure 33 Relationship between maternal TG and FCIS I in VAT.  

Visceral fat cell insulin sensitivity is negatively  correlated with maternal plasmaTG 

(p=0.004)(n=36). 

 

3.3.8 Relationship of Maternal NEFA and Maternal Gl ucose, 

Insulin and HOMA 

Maternal fasting levels of NEFA are inversely related to maternal glucose levels 

(r=-0.47, R2 = 21.9%, p=0.004)(Figure 34) and maternal insulin levels (r=-

0.59,R2=34.5%, p<0.001)(Figure 35), and therefore not surprisingly with HOMA 
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(r=-0.59,R2=35.2%,p<0.001)(Figure 36). All relationships remained robust after 

adjustment for age, BMI and parity (p=0.002;p<0.001;p<0.001 respectively). In 

addition, as expected, maternal glucose was positively correlated with maternal 

insulin levels (r=0.7, R2=49.1% p<0.001)(Figure 37). 
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Figure 34 Relationship between maternal NEFA and ma ternal glucose.  

Maternal fasting NEFA is negatively correlated with  maternal fasting glucose 

(p=0.004)(n=36). 
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Figure 35 Relationship between maternal NEFA and ma ternal insulin. 

Maternal fasting NEFA are negatively correlated wit h maternal fasting insulin 

(p<0.001)(n=36). 
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Figure 36 Relationship between maternal NEFA and ma ternal HOMA. 

Maternal fasting NEFA are negatively correlated wit h maternal HOMA (p<0.001)(n=36). 
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Figure 37 Relationship between maternal insulin and  maternal glucose. 

Maternal fasting insulin is positively related to m aternal fasting glucose (p<0.001) (n=36). 

3.3.9 Relationship of adipokines and lipolysis 

3.3.9.1 Adiponectin 

In this cohort, although there was a trend for a negative association with BMI 

this did not reach significance (p=0.07). There was no correlation with other 

maternal and fetal characteristics ie age, parity, BP, gestational age at delivery, 

birth weight and birth weight centile. 

There was no correlation between adiponectin and any measure of lipolytic 

function in either SAT or VAT (ie absolute levels of basal, insulin suppressed or 

isoproterenol stimulated lipolysis or percentage stimulation or inhibition of 

lipolysis). 

A positive correlation was seen with progesterone (r=0.44, R2=19.2%, p=0.007) 

but not with either oestradiol or hPL (human placental lactogen). This 

relationship remained robust after adjustment for age, parity, BMI, smoking and 

gestation at delivery (p=0.026)(Figure 38). 
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Figure 38 Relationship between maternal plasma adip onectin and maternal progesterone. 

Adiponectin is positively correlated with maternal progesterone (p=0.026) after adjustment 

for age, parity, smoking and gestation at delivery (n=36).  

There was no correlation between adiponectin with markers of insulin resistance 

including maternal glucose, insulin or HOMA in this cohort of normal pregnant 

women at term.  

There was no correlation between adiponectin with maternal NEFA, total 

cholesterol (TC), triglceride(TG), nor high density lipoprotein cholesterol (HDL). 

Adiponectin was negatively correlated with log CRP (r=-0.33, R2=11% p=0.048) 

but this relationship was attenuated when adjusted for maternal BMI (p=0.151). 

No association was found between adiponectin and TNF alpha, IL-6 or leptin.  

3.3.9.2 Leptin 

There is a positive association between leptin and BMI (r=0.5, R2=24.5%, 

p=0.002)(Figure 39). There was no association between leptin and maternal age, 

parity, systolic and diastolic BP, gestation at sampling, birthweight and 

birthweight centile.  
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Figure 39 Relationship between plasma leptin and ma ternal BMI. 

Leptin is positively correlated with BMI (r=0.5, p= 0.002) in normal pregnant women (n=36). 

Leptin correlates with measures of lipolytic function in VAT but not SAT. There is 

a positive correlation between maternal leptin and absolute values of lipolysis in 

the presence of isoproterenol expressed as NEFA release (r=0.36, 

R2=12.6%,p=0.046)(Figure 40) and the presence of isoproterenol and insulin 

expressed as NEFA release (r=0.38, R2 =14.%, p=0.034.(Figure 41) These 

associations remain after adjustment for age, parity, BMI and smoking (p=0.04 

and p= 0.05 respectively). 
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Figure 40 Relationship between maternal leptin and stimulated NEFA release in VAT. 

Leptin is positively correlated with NEFA release i n the presence of isoproterenol in VAT 

(r=0.36, p=0.040) adjusted for age, parity, BMI and  smoking (n=36). 
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Figure 41 Relationship between maternal leptin and NEFA release in presence of 

isoproterenol and insulin in VAT. 

Leptin is positively correlated with NEFA release i n the presence of isoproterenol and 

insulin in VAT (r=0.38, p=0.05) adjusted for age, p arity, BMI and smoking (n=36). 
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Figure 42 Relationship between maternal leptin and glycerol release in VAT. 

Leptin is positively correlated with glycerol relea se in the presence of isoproterenol and 

insulin in VAT (r=0.35, p=0.05) (n=36). 

There is no correlation between leptin and maternal progesterone, oestradiol 

and hPL. 

Leptin is positively correlated with markers of plasma insulin resistance: 

maternal insulin (r=0.45, R2=20.4%, p=0.006) and maternal HOMA (r=0.42, 

R2=17.9%, p=0.01) and remains after adjustment for age, BMI, parity and smoking 

(p=0.01 and p=0.015).  

There is a strong positive association of leptin with log CRP (r=0.59, R2=33.4%, 

p<0.001) but no association was seen with IL-6 and TNFα (Figure 43). This 

relationship remains after adjustment for age, parity, BMI and smoking 

(p=0.006). 
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Figure 43 Relationship between plasma leptin and pl asma CRP in healthy pregnancy. 

Leptin is positively associated with log CRP (r=0.5 9, p=0.006) after adjustment for age, 

parity, BMI and smoking (n=36). 

There was no relationship between leptin and maternal NEFA and lipids in this 

cohort.  

For a summary of the correlations between maternal plasma adipokines and 

inflammatory markers with fetal and maternal characteristics, and markers of 

lipid and glucose metabolism see Table 6 and Table 7. 
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Plasma 
Marker 

Age BMI Systolic BP Diastolic BP Gestational 
Age 

Birthweight      Birthweight 
centile 

Adiponectin NS r=-0.30 
p=0.07 

NS NS r=0.32     
p=0.058 

NS NS 

Leptin NS r=0.5 
p=0.002 

NS NS NS NS NS 

Il-6 NS r=-0.35 
p=0.037 

NS NS NS r=-0.39     
p=0.02 

r=-0.38    
p=0.026 

TNF-α NS r=-0.34 
p=0.04 

NS NS NS NS NS 

CRP NS r=0.37 
p=0.027 

NS NS NS NS NS 

Table 6 Summary of correlations between maternal pl asma adipokines and inflammatory 

markers with maternal and fetal characterisitics (n =36). 

Plasma Marker SAT 
Lipolytic 
Measures  
 

VAT 
Lipolytic 
Measures 
 

Glucose Insulin HOMA SAT 
FCISI 

VAT 
FCISI 

NEFA TG TC HDL 

Adiponectin NS NS NS NS NS NS NS NS NS NS NS 

Leptin NS ISO:r=0.36 
p=0.046 
ISO+INS: 
r=0.38   
p=0.034 

NS r=0.45 
p=0.006 

r=0.42 
p=0.01 

NS NS NS NS NS NS 

Il-6 NS NS r=0.35 
p=0.03 

NS NS NS NS NS NS NS NS 

TNFapha Basal: 
r=0.44 
p=0.008 
ISO%: 
r=-0.35 
p=0.036 
INS%: 
r=0.4 
p=0.015 

NS NS NS NS NS NS NS NS NS NS 

CRP NS ISO: r=0.35 
p=0.05   
ISO+INS: 
r=0.45 
p=0.01 

NS NS NS NS NS NS NS NS NS 

Table 7 Summary of correlations between maternal pl asma markers of inflammation and 

adipokines with measures of lipid and glucose metab olism (n=36). 

All lipolytic measures are expressed as NEFA releas e/ugDNA. ISO-in presence of 

isoproterenol; ISO+INS- in presence of isoprotereno l and insulin; ISO% -percentage 

stimulation by isoproterenol; INS%-percentage inhib ition by insulin.
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3.3.10 Regional differences in the relationship bet ween 

adipose lipolytic function and plasma markers of 

inflammation 

3.3.10.1 C-reactive protein 

CRP is positively correlated with BMI (r=0.37, R2=13.6%, p=0.027) (Figure 44). 

There is no association between CRP and parity, smoking, DEPCAT and 

gestational age of sampling in this cohort. As previously described CRP is 

positively correlated with leptin.  
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Figure 44 Relationship between BMI and maternal CRP . 

BMI is positively correlated with log CRP (p=0.027)  (n=36).  

In addition, maternal log CRP is related to VAT function but not SAT function. 

There is a positive correlation between log CRP and NEFA release in the 

presence of isoproterenol (r=0.35, R2=12.2%,p=0.05) ( Figure 45) and this 

association becomes more robust when adjusted for age, BMI and parity 

(p=0.024). In addition it is also positively associated with NEFA release in the 

presence of isoproterenol and insulin (r=0.45, R2=19.9%, p=0.010) and this 

remains robust after adjustment for age, parity and BMI (P=0.008)(Figure 46). 
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Figure 45 Relationship between maternal CRP and sti mulated lipolysis in VAT. 

Maternal log CRP is positively associated with NEFA  release in the presence of 

isoproterenol in VAT (p=0.024 adjusted for age, BMI  and parity) (n=36).  
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Figure 46 Relationship between maternal CRP and lip olysis in presence of isoproterenol 

and insulin. 

Maternal log CRP is positively associated with NEFA  release in the presence of 

isoproterenol and insulin in VAT (p=0.008 adjusted for age, BMI and parity) (n=36). 
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These correlations are also apparent between log CRP and glycerol release in 

presence of isoprtoerenol and isoproterenol and insulin in VAT (p=0.024 and 

p=0.005 respectively). 

3.3.10.2 TNF-alpha 

TNF alpha strongly correlates with SAT basal lipolysis when expressed as NEFA 

release mmol/l/ugDNA.(r=0.44, R2=18.9%, p=0.008) This is more robust when 

adjusted for age, BMI and parity (p<0.001).(Figure 47)  This relationship is also 

apparent when basal lipolysis is expressed as glycerol release/ug DNA (p=0.04). 
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Figure 47 Relationship between maternal TNF alpha a nd basal lipolysis in SAT. 

Maternal log TNF alpha is positively correlated wit h basal release of NEFA in SAT (r=0.44, 

p<0.001 adjusted for age, BMI and parity) (n=36). 

In addition, TNF alpha is also correlated with other measures of lipolytic 

function in SAT including percentage stimulation of NEFA release by 

isoproterenol (r=-0.35, p=0.036) and percentage suppression of NEFA release by 

insulin (r=0.4, p=0.015). Similarly an association is seen with percentage 

stimulation of glycerol release by isoproterenol (r=-0.33, p=0.05).  
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There are no associations between plasma TNF alpha and measures of lipolytic 

adipocyte function in VAT. 

In addition there is no relationships between maternal plasma TNF alpha and 

plasma markers of insulin resistance in this cohort.  

3.3.10.3 IL-6 

 
Maternal plasma IL-6 correlates with the birth weight centile of infants born to 

women with healthy pregnancies (r=0.37, R2=13.5%, p=0.03) which remains 

robust after adjustment for age, BMI and parity (p=0.01). 

Maternal IL-6 is positively correlated with maternal TNF alpha (r=0.45, R2=19.8%, 

p=0.006). 

1.21.00.80.60.40.20.0

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-0.1

-0.2

-0.3

log IL-6

lo
g
-M

T
N
Fa

lp
h
a

r=0.45

 

Figure 48 Relationship between maternal plasma IL-6  and TNF alpha. 

Maternal IL-6 is positively correlated with materna l log TNF alpha (r=0.45, p=0.006) (n=36). 

Maternal IL-6 is not correlated with any measures of lipolytic function.  
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3.3.11 Relationship of fat cell size with maternal and fetal 

characterstics 

Subcutaneous fat cells are larger than visceral fat cells (109.1[1.8] vs 85.6[2.4] 

um, p=0.000) (Figure 49) 
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Figure 49 Comparison of size of adipocytes in SAT a nd VAT. 

Subcutaneous fat cells are larger than visceral fat  cells (mean 109.1 vs 85.6 um p=0.000) 

(n=36). Values displayed as mean and SEM. 

Visceral fat cell size is strongly correlated with maternal BMI (r=0.50, R2=24.8%, 

p=0.003) which remains robust after adjustment for age and parity (p=0.008) 

(Figure 50). This relationship is lacking in subcutaneous fat (p=0.085). There is 

no correlation of either VAT or SAT cell size and maternal BP, DEPCAT, gestation 

at delivery and birth-weight. Subcutaneous and visceral fat size are closely 

related (r=0.71, R2=50.6%, p<0.001) independent of BMI (p<0.001) (Figure 51). 
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Figure 50 Relationship of BMI with VAT cell size. 

Visceral fat cell size is positively correlated wit h BMI independent of age and parity (r=0.50, 

p=0.008) (n=36). 
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Figure 51 Relationship of VAT and SAT cell size. 

Subcutaneous and visceral fat cell size are positiv ely correlated (r=0.71, p<0.001) (n=36). 
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There is no correlation between fat cell size in SAT and VAT and plasma 

measures of insulin resistance.  

3.3.12 Relationship of fat cell size with plasma in flammatory 

markers and adipokines 

Matenal plasma leptin is positively correlated with SAT (r=0.35, R2=12.2%, 

p=0.037) and VAT cell size (r=0.44, R2=19.6%, p=0.01), but this relationship is not 

independent of BMI (p=0.15 and p=0.11 respectively when adjusted for BMI). 

Similarly maternal plasma adiponectin is negatively correlated with VAT cell size 

r=-0.36, R2=12.9%, p=0.04), but this relationship is attenuated when adjusted for 

BMI (p=0.19). Maternal plasma IL-6 (1/1L-6) is also negatively correlated with 

SAT r=-0.4, R2=15.7%, p=0.017) and VAT cell size (r=-0.41, R2=17.0, p=0.017) but 

this relationship is not independent of BMI (p=0.054 and p=0.097 respectively). 

Maternal plasma log CRP is positively correlated with VAT cell size but not SAT 

(r=0.44, R2=19.4%, p=0.01). This is again attenuated when adjusted for BMI 

(p=0.07). There is no correlation between maternal TNF alpha and VAT or SAT 

cell size. 

 

3.3.13 Relationship of fat cell size with measures of adipocyte 

lipolytic function 

SAT cell size is negatively correlated with the FCISI of SAT (r=-0.41, R2=16.5%, 

p=0.014) independent of age, parity and BMI (p=0.031) (Figure 52). 
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Figure 52 Relationship between fat cell size and fa t cell insulin sensitivity in SAT. 

Subcutaneous fat cell size is negatively correlated  with SAT fat cell insulin sensitivity index 

(r=-0.41, p=0.031 adjusted for age, BMI and parity)  (n=36). 

There is no relationship between SAT cell size and absolute levels of basal 

lipolysis, isoproterenol stimulated lipolysis and insulin suppressed lipolysis. VAT 

cell size is positively correlated with basal lipolysis in VAT(r=0.39, R2= 18.8, 

p=0.013)(Figure 53), lipolysis in the presence of isoproterenol (r=0.43, R2= 26.7, 

p=0.002), lipolysis in the presence of insulin (r=0.45, R2= 24.5, p=0.004) and 

lipolysis in the presence of isoproterenol and insulin( r=0.47, R2= 27.1%, p=0.002) 

(Figure 54). There is no relationship between VAT cell size and VAT FCISI. 
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Figure 53 Relationship between VAT cell size and ba sal lipolysis. 

Basal lipolysis when expressed as NEFA release in V AT is positively correlated with VAT 

cell size (p=0.013) (n=36). 
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Figure 54 Relationship between VAT cell size and li polysis in presence of isoproterenol and 

insulin. 

VAT cell size is positively correlated with VAT lip olysis in presence of isoproterenol and 

insulin (p=0.002) (n=36). 
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3.4 Discussion 

This is the first detailed examination of adipocyte lipolytic function from 

primary adipocytes in normal human pregnancy for over 30 years.  

3.4.1 Metabolic Flexibility 

We have confirmed that isoproterenol, a synthetic catecholamine that 

stimulates both beta1 and beta2 adrenergic receptors (with no alpha receptor 

capabilities) stimulated lipolysis in both subcutaneous and visceral AT.  Insulin 

not only suppresses basal lipolysis in these two fat depots but also attenuates 

the effect of catecholamine stimulation. In our cohort the release of NEFA 

appears to be a more sensitive measure of adipocyte lipolysis than glycerol 

release, particularly when assessing insulin suppression of basal lipolysis. This is 

possibly secondary to differential effects of insulin on HSL and ATGL, with HSL 

being of greater importance in stimulated lipolysis and ATGL having greater 

emphasis in basal lipolysis8. In addition glycerol is the end product of lipolysis 

after three separate consecutive steps, whereas NEFA is released after each 

consecutive step (Figure 1). Our data suggests that the lower the basal lipolysis 

of the adipocyte in SAT the increased susceptibility to stimulation by 

catecholamines and reduced sensitivity to suppression by insulin. This suggests 

an inherent metabolic flexibility of the tissue ie those with low basal lipolysis 

are more readily stimulated by catecholamines and respond more effectively to 

‘stressful’ stimuli and correspondingly as basal rates of lipolysis are already low 

they are less readily suppressed further by insulin. This would be metabolically 

advantageous in pregnancy in the third trimester to facilitate energy supply to 

the fetus. A similar effect is seen in VAT in that the adipocytes are more 

responsive to catecholamine stimulation if basal lipolysis is low, and there is an 

inverse relationship between the sensitivity of VAT to stimulation by 

catecholamines and inhibition by insulin.   

3.4.2 Insulin and catecholamine sensitivity 

We have found some important regional differences in adipocyte function in 

pregnancy. It appears that VAT and SAT function independently of each other. In 

our cohort, VAT is more sensitive to stimulation with isoproterenol than SAT. We 

have also demonstrated that VAT is less insulin sensitive than SAT. This is similar 
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to that seen in the non-pregnant and forms the basis of the portal paradigm. 

Visceral fat is more sensitive to the lipolytic action of catecholamines and less 

responsive to the anti-lipolytic effects of insulin thereby leading to increased 

NEFA release. Visceral fat is drained by the portal vein and increased NEFA have 

direct effects on hepatic function including hyperinsulinaemia, hyperglycaemia 

and dyslipidaemia.  The FCISI in VAT (our measure for insulin sensitivity of the 

fat depot) is also related to maternal plasma markers of insulin resistance with 

an inverse relationship with plasma glucose and HOMA. Interestingly the 

converse was true for SAT. This suggests that visceral fat insulin sensitivity may 

be a better marker for maternal metabolic parameters than subcutaneous fat. 

This is supported by a study by Bartha et al which demonstrated that measures 

of visceral fat thickness by ultrasound correlated better with diastolic BP, 

glycaemia, insulinaemia, HOMA, triglycerides and HDL cholesterol than BMI as 

measure in early pregnancy.52 Similarly we have also demonstrated that visceral 

fat insulin sensitivity is inversely correlated with maternal plasma triglycerides. 

NEFA supply to the liver is a major determinant of VLDL TG production196, 

therefore if VAT is insulin resistant, this would result in increased delivery of 

NEFA from this depot thereby contributing to hyper-triglyceridamia. Indeed, 

splanchnic fat (a combination of VAT and liver fat) contributes to a greater 

degree to VLDL TG in insulin resistant men and women in the post-prandial 

state.197  

3.4.3 Lipid metabolism in late pregnancy 

Circulating NEFA arises from lipolysis in adipose tissue and therefore maternal 

plasma levels of NEFA provides a relatively crude measure of whole body 

lipolysis. During the latter stages of pregnancy there is a marked increase in 

lipolysis rates and a corresponding rise in maternal free fatty acids (FFA) and 

glycerol.27 28 This change is enhanced by an increase in hormone-sensitive lipase 

(HSL) activity and mRNA expression and a decrease in lipoprotein lipase (LPL) 

activity.29 Reduced expression of PPARγ and its target genes may also contribute 

to accelerated fat metabolism in late pregnancy.32 Exaggerated catecholamine 

release in response to even modest maternal hypoglycaemia and the insulin 

resistant state of late pregnancy contribute to this switch.30 31 Insulin effects on 

lipolysis (adipose tissue) and fat oxidation (in liver and muscle) are significantly 

impaired during the 3rd trimester compared to earlier in pregnancy and also post 
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partum.31 In keeping with this, in our cohort lipolysis rates appear to increase as 

pregnancy advances which is reflected by the positive correlation seen between 

gestational age and maternal NEFA. Interestingly we also found a strong negative 

correlation with fasting levels of maternal NEFA and maternal levels of insulin, 

HOMA and glucose. This suggests that even in the late 3rd trimester of women 

with healthy pregnancies, AT is still sensitive to the anti-lipolytic effects of 

insulin in the fasting state. Similarly Frayn et al have shown that NEFA release 

from subcutaneous abdominal AT in IR men is still suppressed by high insulin 

concentrations in the fasting state.198  

3.4.4 Adipokines, lipid metabolism and normal pregn ancy 

Adipokines including adiponectin, leptin, TNF alpha and IL-6 are increasingly 

implicated as important mediators of maternal metabolism particularly in 

relation to insulin resistance (IR) and lipid metabolism as detailed previously. In 

our cohort we have found no correlation between adiponectin and any measure 

of lipolytic function in either SAT or VAT in late pregnancy nor maternal NEFA 

and lipids. Furthermore our data are suggestive of a negative association of 

adiponectin with BMI (p=0.07). Similarly Catalano et al also showed no 

relationship with measures of lipid metabolism including maternal plasma NEFA 

under conditions of hyperinsulinaemia and the rate of lipid oxidation in basal 

and insulin-stimulated conditions. Despite in-vitro data of adiponectin 

influencing lipid oxidation, its action is impaired in obese subjects.199 200 This 

disparity could be related to the action of other pro-inflammatory adipokines 

such as IL-6 or TNF alpha, which are increased in normal pregnancy. We also 

found no relationship between maternal markers of glucose metabolism and 

adiponectin. Adiponectin as previously detailed has insulin –sensitizing 

properties and levels are lower in insulin resistant states including type II DM and 

obesity. Its role in pregnancy however is still to be defined. Several studies have 

already suggested lack of correlation between adiponectin levels and markers of 

insulin resistance, particularly in complications of pregnancy including PE and 

IUGR.133 201 202  In our study adiponectin is positively associated with 

progesterone, a pregnancy specific hormone, suggesting a possible pregnancy 

specific function for this adipokine. It is hypothesised that adiponectin may act 

in a compensatory fashion in an effort to counteract the effect of inflammation 
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and insulin resistance particularly when these conditions are exaggerated such as 

complicated human pregnancy. 

As expected, there was a strong positive correlation between leptin and BMI in 

this cohort of normal pregnant women, consistent with increasing body fat mass. 

Interestingly maternal serum levels of leptin correlated with measures of VAT 

lipolytic function in normal pregnancy and not SAT. This suggests that in 

pregnancy, leptin may exert its liporegulatory effects more predominantly in 

VAT compared to SAT which may be due either to increased expression and 

secretion from this adipose depot or increased sensitivity to its effects. This may 

also be relevant in complicated human pregnancy - expression of leptin was 

upregulated in VAT but not in SAT in women with GDM. 203 Similarly despite 

hyperleptinaemia in pregnancies complicated by PE, there was no increased 

mRNA expression of leptin in SAT, suggesting either placenta or VAT as the 

source of excess leptin134. As yet no studies have examined expression of leptin 

in visceral fat of normal or complicated human pregnancy. Leptin appears to be 

a significant correlate for markers of insulin resistance in pregnancy including 

maternal insulin and maternal HOMA. Our data are consistent with previous 

studies that demonstrated correlation between measure of insulin sensitivity in 

pregnancy and leptin. 129 204Although this relationship is apparent, it is still 

unclear whether leptin directly influences insulin resistance in pregnancy.  

In our cohort, CRP is associated with increasing BMI.  As in the non –pregnant, we 

have shown that CRP is independently associated with leptin and negatively 

correlated with adiponectin (although not independent of BMI), which 

underscores the potential role of interactions between adipokines.205 Our data 

suggests that CRP is more closely related to visceral adiposity (and in particular 

lipolytic function), a feature already demonstrated in both healthy and IR states 

in the non-pregnant.206-208 The direct anatomical relationship of VAT and the 

liver, the major source of CRP, may underlie this apparent association.  

Our data again highlights regional differences in AT functionality in normal 

pregnancy. TNF alpha is strongly correlated with basal lipolysis in SAT and other 

measures of lipolytic function in this fat depot such as percentage stimulation of 

lipolysis by catecholamines and percentage suppression by insulin. There are no 

apparent correlations with measures of VAT lipolytic function. Regional 
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differences in TNF alpha and its effects on lipolysis have not been well 

characterized in the non-pregnant, although our data suggest a more dominant 

role for TNF alpha in SAT lipid metabolism in late pregnancy. Kirwan et al found 

that TNF –alpha was correlated with insulin sensitivity in late pregnancy and was 

the most important predictor of insulin sensitivity when compared to the 

reproductive hormones, leptin and cortisol. In contrast we found no correlation 

between TNF alpha and plasma markers of insulin resistance including glucose, 

insulin and HOMA.  

We have shown that IL-6 is positively correlated with the birth weight centile of 

women with normal healthy pregnancies. IL-6 has been implicated in fetal 

growth although the studies examining this relationship are few and 

contradictory.209 210 Recently Catalano et al have shown that IL-6 is higher in 

both maternal and cord blood of women who are obese compared to lean, with 

obese women having bigger babies.211 Increased Il-6 may reflect increased 

insulin resistance rather than increasing fat mass per se with a corresponding 

increase in fetal insulin and size. 

3.4.5  Adipocyte cell size 

Fat cell size and relation to adipocyte function in pregnancy also demonstrates 

important variations according to AT location. We have demonstrated that 

booking BMI does not seem to be an important determinant of adipocyte lipolytic 

function unlike fat cell size. As in the non-pregnant woman, visceral adipocytes 

are smaller than subcutaneous adipocytes, and more closely related to BMI than 

subcutaneous fat. This may in part be explained by the finding in non-pregnant: 

women with higher subcutaneous fat mass exhibit both adipocyte hypertrophy 

and hyperplasia, whereas increased omental fat was primarily due to 

hypertrophy.114 Visceral fat cell size appear to be more closely related to direct 

measures of lipolytic function including basal lipolysis and absolute levels of 

stimulated, suppressed and insulin attenuated stimulated lipolysis, than 

subcutaneous fat cell size. In contrast subcutaneous fat cell size is related to the 

FCISI of the tissue with larger fat cells being less insulin sensitive than their 

smaller counterparts. This is consistent to previous studies which have shown 

that enlarged subcutaneous adipocytes independently predict insulin sensitivity 

and type 2 DM.212 213 Our data demonstrate correlations between adipokines and 
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fat cell size in both visceral and subcutaneous fat although not independent of 

BMI. Increasing cell size is predominantly correlated with the pro-inflammatory 

adipokines of leptin, and CRP but negatively correlated with the anti-

inflammatory adiponectin. This may be one mechanism through which obesity 

leads to increased inflammation and IR in pregnancy resulting in adverse 

metabolic complications. 

3.4.6 Summary 

My findings are summarised by the following diagrams:  

Error! Objects cannot be created from editing field codes. 

Figure 55 Visceral fat function in normal pregnancy  

As BMI increases in normal pregnancy so does viscer al fat cell size, with resultant increase 

in maternal leptin, CRP, IL-6 and lower adiponectin  levels. Leptin and CRP correlate with 

lipolytic function in visceral fat. The insulin sen sitivity of visceral fat lipolysis is related to 

measures of maternal insulin resistance including H OMA, glucose and triglycerides.  

 

 

 

In subcutaneous fat there is no relationship with m aternal BMI and fat cell size, although 

cell size does correlate with the insulin sensitivi ty of the fat depot. Maternal TNF alpha is 

closely related to lipolytic function in SAT in nor mal pregnancy. However lipolysis in SAT 

does not appear to influence maternal markers of in sulin resistance and glucose 

metabolism.  



 

   

4 A Comparison of Adipocyte Lipolytic Function 

between Normal and Pre-eclamptic Pregnancies 
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4.1 Introduction 

Pre-eclampsia (PE) occurs in 2-4% of pregnancies and is a leading cause of 

maternal and neonatal morbidity and mortality in the developed world. It is a 

multi-system disorder resulting in the classic manifestations of hypertension due 

to vasoconstriction, proteinuria due to glomerular damage and oedema due to 

increased vascular permeability.84 As yet the underlying pathogenesis of the 

disorder had not been completely understood. The clinical signs of PE are 

relatively simple manifestations of a complex underlying pathological process 

with activation of the coagulation system, platelets and leukocytes and 

disturbances in metabolism which combine to provoke widespread endothelial 

damage and dysfunction. This in turn augments further activation of leukocytes 

and coagulation resulting in a vicious cycle of vascular injury. The disorder is 

likely to be a result of heterogeneous causes resulting from the interaction of 

placental and maternal factors.85 In the presence of a placental trigger the 

maternal response will depend on the maternal genotype and phenotype 

resulting in the clinical syndrome of PE.86 There are several reasons, as discussed 

in Chapter 1, why disordered lipid and adipocyte metabolism could contribute to 

the pathogenesis of this condition and include lipid accumulation at sites of 

endothelial damage, exaggerated dyslipidaemia and an early rise in FFA 

independent of maternal adiposity suggesting early exaggerated adipocyte 

lipolysis. There is preliminary evidence that the trigger for this increase in FFA 

and adipocyte lipolysis is present in serum of women with PE.107 These 

hypotheses are summarised in  Figure 56.  
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Figure 56 A summary of the potential role of a dist urbance in lipid metabolism in the 

pathogenesis of pre-eclampsia.   

A factor(s) released from the placenta enhances per ipheral lipolysis which is already 

stimulated in normal pregnancy by HPL.  This result s in an increased flux of free fatty acids 

to the liver.  These are channelled predominantly i nto hepatic triglyceride synthesis so there 

is increased secretion (over and above normal pregn ancy) of triglyceride-rich lipoproteins 

(VLDL 1).  Accumulation of triglyceride occurs in the hepa tocyte when this pathway is 

saturated.  Increased concentrations of VLDL 1 in the circulation drives the production of an 

atherogenic lipoprotein profile by stimulating exce ssive synthesis of small, dense LDL 

(LDL-III) and by lowering HDL-cholesterol.  This li pid profile may contribute to endothelial 

dysfunction and therefore the expression of pre-ecl ampsia in the mother.  Finally, this 

pathway plays a part in the formation of lipid-lade n macrophages (foam cells) in the spiral 

arteries of the decidua basalis, and as a result, m ay be involved in the enhanced placental 

production of pro-inflammatory mediators in PE. 
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4.2 Aims and Objectives 

4.2.1 Hypotheses 

1. That adipocyte release of fatty acids is exaggerated under either basal or 

stimulated conditions in women with PE, thereby implicating adipocyte 

function in its pathophysiology. 

2. That plasma from women with PE excessively stimulates adipocytes from 

healthy women as compared to plasma taken from healthy controls 

thereby suggesting the presence of an excessive lipolytic factor in PE 

plasma. 

4.2.2 Specific Research Questions 

1. Are there differences in basal or isoproterenol-stimulated lipolysis 

between adipocytes derived from women with pregnancies complicated 

by PE compared to healthy pregnant women matched for age, smoking 

and booking BMI?  

2. Is insulin-suppression of isoproterenol-stimulated lipolysis impaired in PE, 

and does the pattern of defects in PE reflect that in other insulin resistant 

conditions? 

3. Does plasma from women with PE stimulate adipocyte lipolysis excessively 

in comparison to plasma from healthy pregnant women matched for age, 

BMI, and smoking? 

4. Is the adipocyte defect dependent predominantly in one functional tissue 

depot - i.e. visceral vs subcutaneous? 

4.3 Results 

Fourteen cases each with two matched controls for age, BMI and smoking were 

recruited as described in methods 2.1. Processing of tissue and lipolysis assays 

were carried as detailed in methods sections 2.2 -2.7. Maternal biochemical 

markers were determined as detailed in methods section 2.12. 
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4.3.1 Subjects 

The characteristics of the subjects are described in Table 8. 

Characteristics Controls (n=28) PE (n=14) P value 
Age, y 30.8(5.1) 31.5(6.3) 0.72 
BMI, kg/m2 29.6(5.25) 31.1(8.0) 0.53 
Smokers (non,current)** 26,2 11,2 0.41 
DEPCAT* 5(4-6) 6(4-7) 0.14 
Gestation at delivery, days      272.5(9.1) 249.4(21.5) 0.002 
Parity (0,≥1)** 6,22 8,6 0.02 
Systolic pressure, mmHg 115.3(14.4) 127.1(13.1) 0.013 
Diastolic pressure, mmHg 69.6(8.6) 79.1(9.0) 0.003 
Birthweight, g 3525(533) 2330(926) 0.001 
Birthweight centile 60.3(28.1) 26.0(31.2) 0.003 

Table 8 Characteristics of cases and controls.  

Blood pressure refers to booking values. All values  expressed as mean and standard 

deviation (*median and interquartile range). Compar isons made by paired t test except * 

Mann-whitney, and ** chi-squared test.  

 
Subjects were matched for age, BMI and smoking. Due to the most common 

indication for elective caesarean section being previous caesarean section it was 

difficult to obtain sufficient primiparous women in the control group to match 

for parity.  Women with PE had significantly higher systolic and diastolic BP at 

booking. They were more likely to deliver earlier than the control group and had 

babies with lower birthweight and birthweight centile (adjusting for gestational 

age).  

4.3.2 Maternal Lipids and Plasma Markers of Insulin  Resistance 

Maternal triglycerides were significantly elevated in PE compared to controls. 

There was no difference in total cholesterol or HDL between the two groups. 

Maternal NEFA were also significantly elevated in PE compared to controls. 

Although maternal glucose, insulin and HOMA were all higher in PE compared to 

controls, these differences did not reach significance. These results are 

summarised in Table 9. 

 



118 
 

Shahzya S Huda, 2010  Chapter 4 118 

Plasma Markers Controls (n=28) PE (n=14) P value 
Total Cholesterol (mmol/L) 6.24 (0.97) 6.53 (1.48) 0.53 
Triglycerides (mmol/L)* 2.6 0.58) 3.9 (2.3) 0.02 
HDL (mmol/L) 1.86 (0.36) 1.7 (0.41) 0.24 
NEFA (mmol/L)* 0.4 (0.18) 0.55 (0.24) 0.02 
Glucose (mmol/L) 4.7 (0.41) 5.3 (1.2) 0.09 
Insulin (mU/L)* 10.9 (7.2) 16.6 (12.3) 0.20 
HOMA* 2.38 (1.8) 4.2 (0.98) 0.14 

Table 9 Comparison of maternal lipids and plasma ma rkers of insulin rsistance. 

All values expressed as mean and standard deviation . Statistical analysis by paired t-test. 

*Data transformed to normal distribution but expres sed as non-transformed values.  

 

4.3.3 Differences in Lipolysis 

4.3.3.1 Subcutaneous Adipose Tissue 

There is no difference in basal SAT lipolysis between control and PE when 

expressed either as release of NEFA (0.56[0.25] vs 0.68[0.29] sqrt NEFA 

mmol/L/ugDNA, p=0.23) (Figure 57) or glycerol release (9.88[4.25] vs 12.1[6.1] 

sqrt glycerol umol/L/ugDNA, p=0.24). 
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Figure 57 Basal Lipolysis in SAT between controls a nd PE. 

There is no significant difference in basal lipolys is when expressed as NEFA release 

between controls and PE (p=0.226) (PE:n=14, control s:n=28). NEFA SBA = SAT basal 

release of NEFA. Comparisons made using student t-t est and results displayed as mean and 

SEM. 

 
There is no difference in rates of lipolysis in the presence of isoproterenol in SAT 

when expressed as either release of NEFA (0.77[0.42] vs 1.0[0.72] 

mmol/L/ugDNA, p=0.27) (Figure 58) or release of glycerol(267[108] vs 344[214] 

umol/L/ugDNA, p=0.22). Similarly there is no difference in rates of lipolysis 

between controls and PE in the presence of insulin or insulin and isoproterenol 

when expressed as either release of NEFA or release of glycerol. (Figure 59) 
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Figure 58 Lipolysis in presence of isoproterenol in  controls and PE. 

There is no significant difference in NEFA release in the presence of isoproterenol  between 

controls and PE (p=0.27) (PE:n=14, controls:n=28).  Comparisons using student t-test and 

results displayed as mean and SEM. NEFA SISO = SAT in the presence of isoproterenol. 
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Figure 59 Lipolysis in presence of insulin in contr ols and PE. 

There is no significant difference in NEFA release between controls and PE in the presence 

of insulin (p=0.133) or in the presence of insulin and isoproterenol (p=0.14) (PE:n=14, 

controls:n=28). Comparisons using student t-test an d results displayed as mean and SEM. 

SINS= SAT in presence of insulin; SINS+SIO=SAT in t he presence of insulin and 

isoproterenol.  

 
There is no difference in percentage stimulation by isoproterenol in SAT 

between controls and PE (168[132] vs 130[142] %, p=0.42)(Figure 60) when 

related to lipolysis expressed as NEFA release. The same holds true for lipolysis 

expressed as glycereol release (252[217]% vs 235[313]%,p=0.85). 



122 
 

Shahzya S Huda, 2010  Chapter 4 122 

0

20

40

60

80

100

120

140

160

180

200

CONTROL PE

P
er

ce
nt

ag
e 

S
tim

ul
at

io
n 

by
 Is

op
ro

te
re

no
l (

%
)

 

Figure 60 Percentage stimulation by isoproterenol i n controls and PE. 

There is no difference in percentage stimulation by  isoproterenol between controls and PE 

(p=0.42) (PE:n=14, controls:n=28). Comparisons usin g student t-test and results displayed 

as mean and SEM. 

 
 
There is no difference in percentage suppression by insulin of lipolysis between 

controls and PE (28[25.9] vs 22.8[29.6]%, p=0.59)(Figure 61) when expressed as 

NEFA release. The same holds true for glycerol release (-15.5[56.4] vs -36[107]%, 

p=0.51) 
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Figure 61 Percentage suppression of lipolysis by in sulin in controls and PE. 

There is no difference in percentage suppression of  lipolysis by insulin between controls 

and PE when expressed as NEFA release (p=0.59) (PE: n=14, controls:n=28). Comparisons 

using student t-test and results displayed as mean and SEM. 

 
 

4.3.3.2  Visceral Fat 

In VAT there is no difference in basal lipolysis between controls and PE when 

expressed as release of NEFA (-0.8[0.41] vs -0.77[0.35] log NEFA mmol/L/ugDNA, 

p=0.81) (Figure 62) or glycerol (7.9[3.6] vs 9.54[3.6] sqrt glycerol 

umol/L/ugDNA, p=0.18).  

There is no difference in lipolysis in presence of isoproterenol between controls 

and PE when expressed as release of NEFA (-0.3[0.34] vs -0.47[0.35] log NEFA 

mmol/L/ugDNA, p=0.16) or glycerol (13.6[3.7] vs 13.2[4.2] sqrt glycerol 

umol/L/ugDNA, p=0.8). Similarly there is no difference in lipolysis in presence of 

insulin (-0.87[0.4] vs -0.84[0.33] log NEFA mmol/L/ugDNA, p=0.8) or insulin and 

isoproterenol (-0.4[0.38] vs -0.48[0.33] log NEFA umol/L/ugDNA, p=0.46) 

between controls and PE when expressed as NEFA release (Figure 63). This is 

also the case when expressed as glycerol release (1.74[0.37] vs 1.9[0.34] log 

glycerol umol/L/ugDNA, p=0.11 and 2.17[0.29] vs 2.3[0.24] log glycerol 

umol/L/ugDNA, p=0.3 respectively). 
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Figure 62 Basal lipolysis in visceral fat in contro ls and PE 

There is no difference in basal lipolysis when expr essed as release of NEFA between 

controls and PE in VAT (p=0.81) (PE:n=14, controls: n=28). Values displayed as mean and 

SEM of non-transformed data. Comparison made on log  transformed values by student t-

test. 
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Figure 63 Lipolysis in visceral fat in controls and  PE in the presence of isoproterenol, 

insulin and isoproterenol and insulin. 

There is no difference in lipolysis between control s and PE in the presence of isoproterenol 

(p=0.16), insulin (p=0.8) or isoproterenol and insu lin (p=0.46), when expressed as release of 

NEFA (PE:n=14, controls:n=28). Values displayed as mean and SEM on non-transformed 

data, but comparisons made by transformed data usin g student t-test. VISO= VAT in 

presence of isoproterenol, VINS= VAT in presence of  insulin, VISO+INS= VAT in presence of 

isoproterenol and insulin.  

 
There is no statistical difference in percentage stimulation by isoproterenol 

between controls and PE when expressed as NEFA release (265[176] vs 

152[177]%, p=0.06) or glycerol release (385[498] vs 369[1087]%, p=0.96).  

Furthermore there is no statistical difference in percentage inhibition by insulin 

between controls and PE when expressed as NEFA release (4.5[44.1] vs 

11.6[20.5]%, p=0.48) or glycerol release (-44[179] vs -25.9[89.7]%, p=0.67) 

4.3.4 Fat Cell Insulin Sensitivity Index 

A direct measure of insulin sensitivity of the fat cell was calculated from the 

percentage inhibition of catecholamine stimulated lipolysis by insulin measured 

from the release of NEFA. This was derived from the following calculation 

(Figure 27): 
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Figure 64  The fat cell insulin sensitivity index 

Fat cell insulin sensitivity index is calculated fr om the percentage inhibition of 

catecholamine stimulated lipolysis by insulin ie (S ISO-SISO+INS)/(SISO-SBA)*100. SBA= 

SAT basal lipolysis, SISO= SAT in presence of isopr oterenol, SISO +INS=SAT in presence of 

isoproterenol and insulin.   

 
This was called the fat cell insulin sensitivity index (FCISI). 

Using this index we found that SAT in controls was more insulin sensitive than in 

PE (65.7[18] vs 15.8[13], p=0.032) (Figure 65). 

Furthermore, VAT also appears to be more insulin sensitive in controls compared 

to PE although this did not quite reach significance ( 35.2[14] vs -3.0[14], 

p=0.06)(Figure 66) 
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Figure 65 The fat cell insulin sensitivity index of  SAT in controls and PE. 

The FCISI of SAT is greater in controls than in PE,  p=0.032 (PE:n=14, controls:n=28). 

Comparisons using student t-test and results displa yed as mean and SEM. 

 
 

-10

0

10

20

30

40

50

60

70

80

90

100

CONTROL PE

F
C

IS
I (

%
)

 

Figure 66 The fat cell insulin sensitivity index of  VAT in controls and PE. 

The FCISI (fat cell insulin sensitivity index) of V AT appears greater in controls than in PE 

(p=0.06) (PE:n=14, controls:n=28). Comparisons usin g student t-test and results displayed 

as mean and SEM. 
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4.3.5 Regional differences in adipocyte cell size a nd adipocyte 

function between controls and PE. 

4.3.5.1  Relationship of adipose fat cell size and BMI 

SAT cell size is closely correlated with BMI in PE (r=0.69, R2=47.1%, 

p=0.007)(Figure 67) as is VAT cell size (r=0.83, R2=69.5%, p<0.0001)(Figure 68). 

This is in contrast to that seen in the normal population as described in Chapter 

3 where only VAT cell size correlates with BMI. Indeed when we looked at the 28 

matched controls (a sub population of the “normal population”) the same lack of 

association between SAT cell size and BMI is seen (p=0.82)(Figure 69), but is 

present in VAT (r=0.39, R2=15.2%, p=0.04). 
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Figure 67 The relationship between maternal BMI and  SAT cell size in PE. 

There is a positive correlation between maternal BM I and SAT cell size in PE (p=0.007) 

(n=14). 
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Figure 68 The relationship between maternal BMI and  VAT cell size in PE. 

There is a positive correlation between maternal BM I and VAT cell size in PE (p<0.0001) 

(n=14). 
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Figure 69 The relationship between BMI and SAT cell  size in controls. 

There is no correlation between maternal BMI and SA T cell size in controls (p=0.82) (n=28). 
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4.3.5.2  Relationship of adipocyte cell size and li polytic function 

Also interestingly we have demonstrated that SAT cell size is closely correlated 

with SAT lipolytic function in PE including basal lipolysis(r=0.67, 

R2=45.1%,p=0.009)(Figure 70), lipolysis in presence of isoproterenol (r=0.6, 

R2=35.8%,p=0.024) and in presence of isoproterenol and insulin (r=0.66, 

R2=43.3%, p=0.01) which becomes more robust after adjustment for BMI and 

parity( p=0.007, p=0.004 and p=0.004 respectively). Conversely these 

associations are lacking in normal controls. However VAT cell size in controls 

strongly correlates with VAT cell function including basal lipolysis 

(r=0.67,R2=45.5%, p=0.001 adjusted for BMI and parity)(Figure 71), lipolysis in 

presence of isoproterenol (r=0.56, R2=31.1%,p=0.015 adjusted for BMI and 

parity), lipolysis in presence of insulin( r=0.64, R2=41.2%,p=0.003 adjusted for 

BMI and parity), and lipolysis in presence of isoproterenol and insulin (r=0.54, 

R2=28.6%, p=0.036 adjusted for BMI and parity) suggesting that in normal 

pregnancy VAT cell size is an important determinant of visceral fat cell function.  
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Figure 70 Relationship between SAT cell size and ba sal lipolysis. 

SAT cell size is positively correlated with SAT bas al lipolysis in PE (p=0.009) (n=14).  NEFA 

SBA= SAT basal release of NEFA 
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Figure 71 Relationship between VAT cell size and ba sal lipolysis 

VAT cell size is positively correlated with VAT bas al lipolysis in controls (p=0.015) (n=28). 

NEFA VBA = VAT basal release of NEFA. 

4.4 The Effect of Maternal Serum on Adipocyte Lipol ysis: 

Pre-eclamptic vs Controls. 

I wanted to determine whether serum from women with PE stimulates adipocyte 

lipolysis excessively in comparison to serum from healthy pregnant women 

matched for smoking, BMI, age.  

4.4.1 Methods 

Healthy women from singleton pregnancies undergoing elective caesarean 

section at term were recruited as outlined in methods section 2.1. Lipolysis 

experiments were carried out as outlined in methods section 2.3 and 2.4. Only 

subcutaneous fat biopsies were obtained. As SAT from the same subject was 

used for all conditions in each experiment correction for fat cell number was not 

required.  
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All assays were carried out in duplicate. The reagents were prepared as outlined 

in methods section 1.5.  All reagents were added to the relevant tubes and the 

timing of the assay was commenced. The tubes were placed in a 37°C shaking 

water bath at 91 cycles per minute and incubated for 120 minutes. Control and 

pre-eclamptic serum was obtained from previously stored serum samples frozen 

at -80°C and defrosted at room temperature. An aliquot from tubes containing 

either control or PE serum was taken at time=0 to correct for NEFA and glycerol 

already present in the serum. Comparisons between the groups was perfomed 

using the paired t-test.  

 

4.4.2 The effect of control serum on lipolysis in a dipose tissue 

explants. 

I attempted to determine whether maternal serum per se has any effect on rates 

of lipolysis in SAT in vitro. The condition of each tube used in this experiment is 

outlined in Table 10 Conditions of assay The number of subjects in this 

experiment was n=4.  

Condition Control 
900ul Buffer 
100ul adipocyte cells 

Serum 
800ul Buffer 
100ul adipocyte cells 
100ul control serum 

Basal No reagent No reagent 

Isoproterenol 
200nM 

Isoproterenol  Isoproterenol  

Insulin  
10nM 

Insulin Insulin 

Table 10 Conditions of assay 

4.4.2.1 Results 

There was no difference in basal lipolysis rates when expressed as NEFA release 

(1.12[0.02] vs 1.1[0.01] mmol/L, p=0.39) or glycerol release (20.6[10.7] vs 

27.3[17.3] µmol/L, p=0.39) in the presence of or absence of control serum. 

(Figure 72 and Figure 73)  Similarly, there was no difference between lipolysis 

rates in the presence of insulin when expressed as NEFA release (0.1[0.0] vs 
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0.09[0.02] mmol/L, p=0.61) or glycerol release (23.4[8.1] vs 29.6[19.6] µmol/L, 

p=0.64). However lipolysis rates in the presence of isoproterenol were increased 

in the control serum group when expressed as NEFA release (0.32[0.12] vs 

0.56[0.14] mmol/L, p=0.004)(Figure 74) or glycerol release (81.8[41] vs 

156[51.5] µmol/L, p=0.04). This was also true of percentage stimulation of 

lipolysis by isoproterenol when calculated from NEFA release (157%[97.9]vs 

379%[96.6], p=0.002) and glycerol release (375%[291] vs 809%[269], 

p=0.08)(Figure 75).  
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Figure 72 The effect of control serum on basal lipo lysis and in the presence of insulin 

(NEFA). 

There was no difference in basal lipolysis (p=0.39)  or insulin suppressed lipolysis (p=0.61) 

with the addition of maternal serum when expressed as NEFA release (n=4). 

 



134 
 

Shahzya S Huda, 2010  Chapter 4 134 

0

5

10

15

20

25

30

35

Basal  Basal+Serum Insulin Insulin+Serum

G
ly

ce
ro

l r
el

ea
se

 (
um

ol
/L

)

 

Figure 73 The effect of control serum on basal lipo lysis and in the presence of insulin 

(glycerol). 

There was no difference in basal lipolysis (p=0.39)  or insulin suppressed lipolysis (p=0.64) 

with the addition of maternal serum when expressed as glycerol release, n=4. 
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Figure 74 The effect of control serum on lipolysis in the presence of isoproterenol. 

Lipoloysis was increased in SAT exposed to isoprote renol and maternal serum compared to 

isoproterenol alone (p=0.004) (n=4). **p= ≤0.01 
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Figure 75  The effect of control serum on the perce ntage stimulation of lipolysis 

The percentage stimulation of lipolysis was increas ed in SAT exposed to maternal serum in 

addition to isoproterenol when calculated from NEFA  release (p=0.002) (n=4). **p= ≤0.01. 

 

4.4.3 Does PE serum excessively stimulate lipolysis  in AT 

compared to serum from healthy controls 

A preliminary experiment was performed to determine whether the effect of PE 

serum on lipolysis rates in SAT explants was different to that of serum from 

control women. The conditions of each tube are outlined in Table 11. All tubes 

contained 800ul warm wash buffer and 100ul adipocyte cells, giving a 

concentration of 10% volume/volume of maternal serum. All conditions were 

carried out in duplicate. Only NEFA concentration at time=120 minutes was 

determined. The number of subjects in this experiment was n=6. 
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Conditions Control 
800ul Buffer 
100ul adipocyte cells 

PE 
800ul Buffer 
100ul adipocyte cells 

Basal 100ul control serum 100ul PE serum 
Isoproterenol  100ul control serum 

+ isoproterenol 200nM 
100ul PE serum+ 
Isoproterenol 200nM 

Table 11 Conditions of each assay. 

 

4.4.3.1 Results 

There was no difference between the release of NEFA from adipocytes exposed 

to control serum compared to PE serum with a concentration odf 10% 

volume/volume (0.17[0.04] vs 0.14[0.04] mmol/L, p=0.44) with . There was no 

difference between isoproterenol stimulated NEFA release in adipocytes exposed 

to control serum compared to PE serum (0.66[0.05] vs 0.6[0.05] mmol/L, p=0.3). 

Furthermore there was no difference in percentage stimulation of NEFA release 

by isoproterenol in the two groups (383%[156] vs 390%[94], p=0.97) 

4.4.4 A comparison of pooled PE serum and pooled co ntrol 

serum on adipocyte lipolysis. 

Aliquots (500ul) of serum from 20 PE and 20 controls matched for BMI were 

thawed and pooled. This pooled serum was aliquoted (500ul) and refrozen at -

80ºC. The experiment was carried out as outlined in the methods above. The 

conditions of each tube is outlined in Table 12. The number of subjects in this 

experiment is n=4. 
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Condition (% volume/volume) Serum Wash Buffer Adipocytes 

Basal Nil 900ul 100ul 
10% 100ul control  800ul 100ul 
20% 200ul control 700ul 100ul 
30% 300ul control 600ul 100ul 
10% + isoproterenol (200nM) 100ul control 800ul 100ul 
10% 100ul PE 800ul 100ul 
20% 200ul PE 700ul 100ul 
30% 300ul PE 600ul 100ul 
10% + isoproterenol (200nM) 100ul PE 800ul 100ul 

Table 12 The condition of each assay.  

The total volume in each falcon tube was 1 ml. All conditions were carried out in duplicate 

 
 

4.4.4.1 Results  

There was no statistical difference in release of NEFA from adipocytes incubated 

in increasing concentrations of control and PE serum (10% volume/volume 

0.14[0.06] vs 0.06[0.09]mmol/L, p=0.3; 20% volume/volume 0.11[0.1] vs 

0.1[0.09]mmol/L, p=0.85; 30% volume/volume dilution 0.2[0.09] vs 0.015[0.05] 

mmol/L p=0.16 control vs PE), when these concentrations are used.(Figure 76)  

In addition there was no dose response effect in the ranges of concentrations 

used for either control serum(10% volume/volume vs 30% volume/volume, 

p=0.24) or PE serum (10% volume/volume vs 30% volume/volume, p=0.38) 

(Figure 76). Furthermore no difference was seen in lipolysis rates after 

stimulation with isoproterenol in the presence of serum (0.5[0.13] vs. 0.39[0.13] 

mmol/L, p=0.46) nor percentage stimulation (968[302] vs 1268[713]%, p=0.54). 
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Figure 76 Effect on increasing concentrations of co ntrol and PE serum on basal lipolysis. 

There is no difference in lipolysis rates of adipoc ytes exposed to control or PE serum in 

increasing concentrations (10%, 20%, 30% volume/vol ume, p=0.3, p=0.85 and p= 0.16 

respectively).Comparisons made using paired t-test and results displayed as mean and 

SEM.  
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Figure 77 A comparison of the effect of control and  PE serum on lipolysis in the presence of 

isoproterenol. 

There is no difference in lipolysis rates when expr essed as release of NEFA between 

adipocytes incubated with isoproterenol (200 nM) to gether with either control or PE serum 

in a concentration of 10% of total volume (p=0.46).  Comparison made using paired-t-test and 

results displayed as mean and SEM.  

 

4.5 Discussion 

4.5.1 Metabolic Phenotype 

The pre-eclamptic women in our cohort conform to the described metabolic 

phenotype86. They have a higher booking blood pressure, with an exaggerated 

hyperlipidaemia of pregnancy consisting of higher maternal serum TG and FFA. 

There is also a suggestion of increased insulin resistance with higher maternal 

glucose, insulin and HOMA compared to controls, despite an earlier gestational 

age at sampling. As expected our cases tend to deliver earlier and have babies of 

lower birth-weight centile than the controls. 

4.5.2 Lipolytic function of SAT and VAT 

Our data suggests that SAT and VAT in vitro does not differ in basal lipolysis, nor 

have an exaggerated response to catecholamine stimulation in women with PE 
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compared to controls. In addition there was no difference in either AT depot in 

the absolute response to insulin inhibition. However, we have demonstrated by 

using our FCISI that SAT in women with PE is less insulin sensitive than that in 

control women and a similar tendency is seen in VAT. Our FCISI reflects 

responsiveness to insulin once the tissue is stimulated by the catecholamine 

isoproterenol – a non-selective β-adrenergic agonist which acts to promote 

lipolysis through elevating cellular cAMP production and activation of protein 

kinase A (PKA) and HSL. Insulin inhibits lipolysis by its ability to lower cAMP 

levels via activation of phosphodiesterase 3B (PDE 3B) and therefore reduce PKA 

activity. FCISI may be more relevant in vivo than simple stimulation or 

suppression of adipocyte lipolysis as it represents a functional test of AT 

lipolysis. There may be a dysregulated response in SAT in women with PE 

whereby stimulated fat cells are less sensitive to effects of insulin resulting in 

excessive release of FFA. The mechanisms through which this occurs may be 

secondary to several factors including autocrine and paracrine effects of other 

“lipases” including the inflammatory adipokines such as TNF alpha which can 

attenuate the anti-lipolytic effect of insulin by suppressing PDE 3B activity and 

expression214. Metformin, a drug which is an insulin sensitizing agent and lowers 

circulating FFA inhibits isoproterenol stimulated lipolysis by reducing cellular 

cAMP production and PKA activity and attenuates the phosphorylation of 

perilipiin during isoproterenol-stimulated lipolysis in primary rat adipocytes 

illustrating potential interactions between insulin sensitivity and catecholamine 

stimulated lipolysis.215 In addition the rise of FFA in PE occurs in early pregnancy 

well in advance of manifestations of the disease. Sivan et al demonstrated that 

FFA in early pregnancy induces insulin resistance to levels similar to that seen in 

late pregnancy106. This may therefore result in a “vicious” cycle of reduced 

insulin sensitivity of the tissue resulting in increased release of FFA in early 

pregnancy with further exacerbation of insulin resistance in PE.   

4.5.3 Fat Cell Size  

Interestingly we see a discordant relationship between BMI and adipocyte size in 

controls and PE. As we have previously demonstrated, BMI is not as closely 

related to adipocyte cell size in SAT compared to VAT in normal controls. This 

may be explained by this depot adapting to increased fat mass and accumulation 

of lipid by both hyperplasia and hypertrophy of the cells, whereas increased VAT 
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is primarily due to hypertrophy, a phenomenon seen in non-pregnant women114. 

However in PE, SAT cell size is intimately related to BMI. This is possibly due to 

differences in the behaviour of this tissue in these metabolically challenged 

women to accumulate excess lipid by cell hypertrophy. This process is 

metabolically detrimental.  Individuals with type 2 diabetes and dyslipidaemia 

have larger adipocytes. Furthermore increasing adipocyte size is associated in a 

shift toward dominance of proinflammatory adipokines including TNF alpha and 

IL-6.120 Adipocyte hypertrophy is also thought to result in endoplasmic reticulum 

(ER) stress which results in activation of metabolic factors that trigger insulin 

resistance, with release of inflammatory cytokines and increased macrophage 

recruitment.121 Thus the propensity for SAT to accumulate fat mass by 

hypertrophy as opposed to hypertrophy and hyperplasia would potentially 

predispose them to metabolic complications of pregnancy such as PE. We also 

have shown that SAT cell size in PE is closely related to lipolytic function of the 

tissue independent of BMI, a relationship lacking in normal controls. Conversely 

VAT cell size is an important determinant of VAT function in normal controls but 

not in PE. This highlights potential disparate functional metabolic roles of each 

tissue depot in each group of women. 

4.5.4 The Effect of Maternal Serum 

Although we have show in vitro that AT does not have increased basal lipolysis or 

responsiveness to catecholamines per se, we hypothesised that there may be a 

factor originating from the placenta present in the maternal serum of PE which 

excessively stimulates lipolysis over and above that seen in normal pregnant 

women. We based this on a study by Endresen et al who showed that incubation 

of endothelial cells with sera from women with PE resulted in increased uptake 

of TG, with increased lipolytic activity of PE sera of 3-4 fold as measured by 

release of FFA 107.  Serum from control women did not appear to have an effect 

on basal lipolysis in SAT explants nor lipolysis in presence of insulin. Preliminary 

results indicated an exaggerated response to isoproterenol in the presence of 

control serum at 10% (volume/volume) but this was not reproduced in 

subsequent experiments. When using 10% serum (volume/volume) from PE and 

controls we found no difference in either basal or stimulated lipolysis. In 

addition there was no effect from increasing concentrations of serum between 

PE and controls on basal or stimulated lipolysis. There was an apparent 
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statistical difference in basal lipolysis in the presence PE serum at concentration 

of 30% but this was probably secondary to correcting for FFA already present in 

the serum. As FFA concentration is higher in PE serum and due to the margin of 

error of the NEFA assay its likely that this resulted in an “over-correction”. 

Overall we failed to demonstrate an effect of serum on lipolysis on SAT explants 

in vitro nor any differences between PE and controls, suggesting either an 

absence of a factor influencing lipolysis in serum of PE women or a lack of effect 

in vitro as compared to in vivo. Alternatively the processing of the blood sample 

and incubation with AT in buffer may have altered or inactivated such a factor.   

4.5.5 Limitations 

One limitation of our study is the disparity in gestational age of the cases and 

controls as there are some important metabolic changes in late pregnancy 

including the switch to a state of catabolism with a marked increase in lipolysis 

rates and increased insulin resistance. Unfortunately it was very difficult to 

obtain “pre-term” samples from healthy women being delivered for reasons 

other than IUGR or PE in a non-urgent manner to allow recruitment to a study. 

However, the mean gestational age of our cases was 35 weeks which is well into 

the third trimester by which time the majority of changes in carbohydrate and 

lipid metabolism have occurred. 27 28 80 Also in normal pregnancy IR increases as 

pregnancy advances. Therefore the effect of increased IR in adipose tissue PE is 

likely to be even more apparent if matched for gestational age.   

In summary, we have found some important differences in adipocyte cell 

function between controls and PE which could contribute to the metabolic 

challenges and pathophysiology of this disease.  This is summarised in Figure 78 

and Figure 79. 

. 
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Figure 78 Comparison of SAT and VAT cell size and l ipolytic function in controls and PE 

In PE, SAT cell size is closely correlated with BMI , an effect not seen in controls. This 

maybe due to the adaptation of this fat depot to an  increase in fat mass by adipocyte 

hypertrophy which could result in increased ER stre ss and release of pro-inflammatory 

adipokines. Although VAT cell size is closely relat ed to BMI in PE, it is not related to 

lipolytic function in this depot unlike in controls .  
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Figure 79 SAT and VAT in PE is less insulin sensiti ve than controls. 

Decreased insulin sensitivity of SAT and VAT could potentially lead to exaggerated lipolysis 

with increase release of circulating FFA. FFA can f urther contribute to insulin resistance, 

endothelial dysfunction and dyslipidaemia, all feat ures of the syndrome of PE. 



 

   

5 Adipose Tissue, Inflammation and Pre-

eclampsia 
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5.1 Introduction 

Endothelial dysfunction as part of an overall more general inflammatory reaction 

is a hallmark of pre-eclampsia and involves placental and systemic circulations216 

217.  Healthy pregnancy is a state of systemic inflammation and therefore pre-

eclampsia may represent an extreme end of maternal systemic inflammatory 

responses engendered by the pregnancy itself216.  Notably all the inflammatory 

changes of normal pregnancy are exaggerated in pre-eclampsia and features of 

the disease are derived not only from endothelial dysfunction but a wider stress 

response including the acute phase response and effects on metabolism.217 The 

corollary is that any maternal or fetal factor, which would enhance this 

inflammatory response, would predispose to endothelial dysfunction and pre-

eclampsia.  For example maternal diabetes and maternal obesity are associated 

with an increased risk of endothelial dysfunction with a concomitant increase in 

the risk of pre-eclampsia71 218.Many similarities between the metabolic syndrome 

and pre-eclampsia can be found including insulin resistance, dyslipidaemia, 

inflammation and endothelial dysfunction. The link between adiposity, 

inflammation and insulin resistance has been increasingly defined since 

Hotamisligil first demonstrated this relationship in 1993219. White adipose tissue 

(WAT) secretes a number of pro-inflammatory mediators which contributes 

significantly to the chronic inflammatory state and metabolic complications of 

obesity113. Therefore it is plausible that similar disturbances in adipocyte 

function could contribute to the development of the clinical syndrome of PE.  

5.1.1 Adipokines 

WAT secretes a diverse range of cytokines, proteins and signals which have both 

paracrine and endocrine actions and a wide-ranging influence on the metabolic 

and physiological function of other organs122. It releases a host of pro-

inflammatory cytokines (e.g. TNF alpha, IL-1,IL-6,IL-8, IL-10), chemokines (e.g. 

MCP1, MIP-1 alpha) and acute phase proteins (e.g. serum amyloid A, C-reactive 

protein, haptoglobin, PAI-1). In addition there are AT specific adipokines such as 

leptin which acts not only in the control of appetite and energy balance, but 

contributes to inflammation through modulation of T-cell and monocyte 

functions220, and the anti-inflammatory and potent insulin-sensitising agent 

adiponectin. The function of important adipokines and their potential roles in 

normal and complicated pregnancy have been detailed previously. 
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5.1.2 Adipose Tissue Macrophages 

WAT is a heterogeneous tissue composed of several cell types including mature 

adipocytes, pre-adipocytes, fibroblasts,endothelial cells, histiocytes, and 

adipose tissue macrophages (ATM).The non-adipocyte cells are termed the 

‘stroma vascular fraction’ (SVF). Many of the pro-inflammatory factors are 

secreted by the non-adipocyte cells, and this is of particular relevance in the 

pathological condition of obesity 221. Similar to the Th1/Th2 concept of T-cell 

activation, a concept of M1/M2 polarization has been described for 

macrophages. Macrophages are classically stimulated by IFNγ alone or in 

combination with LPS and produce inflammatory cytokines, reactive oxygen 

species such as NO and are capable of inducing Th1-polarized T-cell responses. 

These pro-inflammatory “classical” macrophages are named M1.222 In contrast 

M2 or “alternatively activated” macrophages are induced by IL-4 and IL-13 and 

have an anti-inflammatory phenotype.223 They down-regulate inflammatory 

processes that are initiated by M1 by production of IL-10, TGFβ, and the IL-1 

receptor antagonist.222. In obesity, there is increased macrophage recruitment 

and retention with a shift toward the more pro-inflammatory M1 phenotype. The 

driving force behind this is thought to be secondary to adipocyte hypertrophy, 

cell death and local hypoxia within expanding WAT.224-226 The alteration in the 

cellularity of WAT contributes to adipose inflammation, altered production of 

adipokines and promotion of insulin resistance through dysregulation of glucose 

and lipid metabolism227.  Monocyte chemotactic protein-1, acting through its 

receptor CCR2 is strongly implicated in ATM recruitment and remodelling228. It is 

over-expressed in obese rodents and obese diabetic humans, and is implicated in 

insulin resistance 229 230. In addition macrophage accumulation is also required 

for angiogenesis at sites of inflammation and ischaemia in AT. The action of 

these inflammatory cells may represent one of the key links between adiposity 

and its metabolic complications including those occurring in pregnancy.  

5.1.3 Toll-like receptors and innate immunity 

In addition to adipokine receptors, adipocytes and the SVF express all toll-like 

receptors (TLR) except 5 and 7231. TLRs are part of the innate immune system 

that classically alert the immune system to the presence of pathogens. TLR4 is 

an LPS receptor which is also activated by long-chain fatty acids that transduce 
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cytokine expression 232. Activation of TLR4 in adipocytes alters key mediators of 

insulin signalling and glucose uptake including NFKB target genes and via an 

MyD88 independent pathway 233. TLR4 deficient mice were protected from diet 

induced obesity and IR 234. Previous groups have reported that experimental 

human endotoxinemia promotes adipose inflammation and alters adipokine 

function coincident with systemic IR 235.  

5.1.4 Macrophage Markers 

Cfms is a type III receptor tyrosine kinase that is selectively expressed on 

macrophages and their progenitor cells and serves as the exclusive receptor for 

colony-stimulating factor (CSF-1), a cytokine which controls the production, 

differentiation and function of macrophages236.Upon binding to CSF-1, cfms 

undergoes autophosphorylation and dimerization, and ultimately induces the 

phosphorylation of downstream signalling proteins, thereby driving the 

differentiation and activation of these cells237. Thus, ligation of cfms by CSF-1 

results in activation and proliferation of macrophages and their subsequent 

release of inflammatory mediators. Therefore the identification of cfms+ 

macrophages would represent activated ATM. All tissue macrophages highly 

express CD68, a transmembrane glycoprotein of unknown function, and anti-

CD68 is commonly used as a macrophage marker in ICC.  

5.2 Aims and Objectives 

5.2.1 Hypotheses 

1. That adipocyte release of adipokines is exaggerated under either basal or 

stressed conditions in women with PE, thereby implicating adipocyte function 

in its pathophysiology. 

2. That macrophage infiltration of adipose tissue, a marker of tissue 

inflammation, is increased in women with PE compared to controls. 

 

5.2.2 Specific Research Questions 

1. Is the release of the adipokines IL-6, TNF-alpha, IL-10, CRP, leptin, 

adiponectin and PAI-1 altered in adipocytes from women with PE under basal 

conditions or when stimulated by LPS? 
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2. Is the basal release of MCP-1 altered in adipocytes in women with PE or when 

stimulated by LPS? 

3. Is the adipocyte defect dependent predominantly on one functional tissue 

depot - i.e. visceral vs subcutaneous? 

4. If differences in adipokine release are found, is this reflected by differences 

in the gene expression in adipose tissue? 

5. Does either basal or stimulated adipokine release relate to maternal markers 

of insulin resistance and adipocyte lipolysis? 

6. Does either basal or stimulated adipokine release relate to adipocyte cell 

size? 

7. Is there a higher percentage of macrophages (CD68+) and activated 

macrophages (cfms+) in the adipose tissue of women with PE?  

 

5.3 Methods 

Fourteen PE and matched controls for age, BMI, smoking and parity were 

recruited as outlined in Methods section 2.1. Adipose tissue was processed as 

outlined in methods section 2.3-2.5. At time=120min paired 120ul aliquots of the 

buffer layer below the adipocyte layer was frozen at -80°C for later analysis of  

adipokines by Bio-Plex (BIO-RAD®) system a suspension array technology as 

outlined in section 2.8. Adipokines were corrected for cell number by dividing by 

the quantity of DNA in a known volume of adipocytes as outlined in methods 

section 2.7. The values are therefore expressed as pg/ml/ugDNA. RNA was 

isolated from adipose tissue using methods described in 2.9. Reverse transcribed 

RNA to cDNA was synthesised and cDNA was quantitated using TaqMan 

technology as outlined in section 2.10.  

Immunocytochemistry and quantification of macrophage cell density was 

performed as outlined in methods section 2.11 and 2.12 . 

Statistical analysis was performed as per methods section 2.14. 
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5.4 Results 

5.4.1 Subjects 

The characteristics of the subjects are described in Table 13. Subjects were 

matched for age, BMI and smoking.  

Characteristics Controls (n=14) PE (n=14) P value 
Age, y 30.0(5.8) 31.5(6.3) 0.51 
BMI, kg/m2 29.7(6.6) 31.1(8.0) 0.62 
Smokers (non,current)** 12,2 11,2 0.82 
DEPCAT* 4(4-5.75) 6(4-7) 0.06 
Gestation at delivery, days      270.3(11.2) 249.4(21.5) 0.004 
Systolic pressure, mmHg 114.7(12.3) 127.1(13.1) 0.013 
Diastolic pressure, mmHg 69.9(9.0) 79.1(9.0) 0.009 
Birthweight, g 3304(633) 2330(926) 0.004 
Birthweight centile 50.7(31.7) 26(31.2) 0.046 

Table 13 Characteristics of cases and controls. Blo od pressure refers to booking values. All 

values expressed as mean and standard deviation (*m edian and interquartile range). 

Comparisons made by paired t test except * Mann-whi tney, and ** chi-squared test.  

5.4.2 Adipokines 

5.4.2.1 TNF-alpha 

There was no difference in subcutaneous adipose tissue (SAT) of basal release of 

TNF-alpha (p=0.10) or LPS stimulated release (p=0.97) between controls and PE. 

Similiarly there was no difference in visceral adipose tissue (VAT) of basal 

release (p=0.64) or LPS stimulated release (p=0.39) between controls and PE. In 

addition there was no significant difference in basal release of TNF-alpha 

between SAT and VAT in controls (p=0.23) or PE (0.88). 

TNF-alpha secretion was significantly increased in VAT after stimulation by LPS 

in PE (64.1[20.6] vs 89.1[26.0] pg/ml/ugDNA, p=0.018), but not in controls 

(45.4[9.2] vs 55.5[11.8] pg/ml.ugDNA, p=0.16)(Figure 80). 
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Figure 80 Comparison of basal release and stimulate d release of TNF-alpha in visceral 

adipose tissue.  

TNF-alpha secretion was significantly increased in PE (p=0.018)(n=14) but not in controls 

(n=14). Raw data shown but analysis performed on tr ansformed data by paired t-test, and 

expressed as mean and SEM. *=p ≤0.05. 

Conversely, TNF- alpha secretion was significantly increased in SAT after 

stimulation by LPS in controls (34.0[7.7] vs 57.7[13.6] pg/ml/ugDNA, p=0.02) but 

not in PE (62.1[14.6] vs 49.0[11.0] pg/ml/ugDNA, p=0.26) (Figure 81). Basal 

release of TNF-alpha from SAT in PE is almost double that of controls although 

not significantly so (62.1[14.6] vs 34.0[7.7] pg/ml/ugDNA, p=0.097).  
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Figure 81 Comparison of basal release and LPS stimu lated release of TNF-alpha in 

subcutaneous adipose tissue.  

TNF-alpha secretion was significantly increased in controls (p=0.02) (n=14) but not in PE 

(n=14). Analysis performed on transformed data by p aired t-test, but raw data shown and 

expressed as mean and SEM. *=p ≤0.05. 

In controls, TNF-alpha basal secretion from SAT is positively correlated with BMI 

(r=0.63, R2=39.4%, p=0.009) as is TNF-alpha secretion after stimulation by LPS 

(r=0.59, R2=34.9, p=0.016)(Figure 82 and Figure 83). This relationship is not 

affected when adjusted for cell size (p=0.014 and p=0.018 respectively).There is 

no correlation with BMI and VAT basal or stimulated TNF-alpha secretion.  
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Figure 82 Relationship between maternal BMI and bas al release of TNF-alpha in SAT of 

controls.  

There is a positive correlation between BMI and bas al release of TNF-alpha from SAT in 

controls (p=0.009). SQRT TNF-alpha= square root TNF -alpha. 
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Figure 83 Relationship between maternal BMI and LPS  stimulated release of TNF-alpha from 

SAT of controls.  

There is a positive relationship between TNF-alpha and BMI (p=0.016). SQRT TNF-alpha= 

square root TNF-alpha. 

There is no correlation with SAT or VAT TNF-alpha secretion (either basal or 

stimulated) and maternal triglycerides, maternal NEFA, maternal glucose, insulin 

or HOMA. SAT or VAT TNF-alpha secretion (basal or stimulated) is not correlated 

with maternal plasma TNF-alpha, leptin or adiponectin or CRP. In addition there 

appears to be no apparent relationship between SAT or VAT TNF-alpha secretion 

(basal or stimulated) and direct measures of adipocyte lipolysis and adipose 

tissue insulin sensitivity. However VAT TNF-alpha secretion, both basal and 

stimulated, correlates with maternal IL-6 plasma levels (r=0.55, R2=30.0%, 

p=0.042 and r=0.54, R2=29.3%, p=0.045 respectively). 

Conversely, unlike in controls, in PE there is no apparent correlation between 

SAT TNF-alpha release (basal or stimulated) and maternal BMI (p=0.40 and 

p=0.88 respectively). In addition, VAT TNF-alpha release does not correlate with 

maternal BMI in PE.  

Similar to data from controls, there is no correlation in PE between TNF-alpha 

release (basal or stimulated) and maternal TG, maternal NEFA, glucose, insulin 

or HOMA. Furthermore no relationship was found with maternal serum leptin, 
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adiponectin, maternal TNF-alpha, IL-6 and maternal CRP. However SAT basal and 

stimulated release of TNF alpha was positively correlated with NEFA release in 

the presence of isoproterenol (r=0.63, p=0.017 and r=0.62, p=0.017 respectively) 

and NEFA release in the presence of isoproterenol and insulin (r=0.58, p=0.03 

and r=0.55, p=0.04 respectively).  

In PE, VAT basal release of TNF-alpha is negatively correlated with FCISI (fat cell 

insulin sensitivity) of VAT(r=-0.60, R2=41.5%, p=0.018 adjusted for BMI), as is 

stimulated release of TNF-alpha(r=-0.53, R2=34.3%, p=0.037 adjusted for BMI) 

(Figure 84 & Figure 85). The FCISI is a direct measure of insulin sensitivity of 

adipose tissue and is calculated from the percentage inhibition of catecholamine 

stimulated lipolysis by insulin measured from the release of NEFA (see section 

3.3.6). This relationship is not seen in SAT in PE, nor SAT and VAT in controls.  
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Figure 84 Relationship between basal release of VAT  TNF-alpha and FCISI. 

Basal release of VAT TNF-alpha is negatively correl ated with FCISI of VAT in PE (p=0.018 

adjusted for BMI) (n=14). SQRT TNF-alpha = square r oot TNF-alpha, FCISI=fat cell insulin 

sensitivity index. 
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Figure 85 Relationship between stimulated release o f VAT TNF-alpha and FCISI. 

Stimulated release of VAT TNF-alpha by LPS is negat ively correlated with FCISI of VAT in 

PE (p=0.037 adjusted for BMI) (n=14). SQRT TNF-alph a = square root TNF-alpha, FCISI=fat 

cell insulin sensitivity index 

5.4.2.2  IL-6 

Statistical analysis was performed on log transformed data to ensure normal 

distribution. Values are expressed as mean and SEM of untransformed data 

unless otherwise stated. There was no significant difference between basal 

release of IL-6 in SAT between controls and PE (169.1[61.3] vs 107.8[27.0] 

pg/ml/ugDNA, p=0.74), nor after stimulation with LPS (173.5[40.6] vs 76.8[16.9] 

pg/ml/ugDNA, p=0.12). In VAT, there was no difference between basal release 

of IL-6 (454[93.8] vs 584[180] pg/ml/ugDNA, p=0.90) or after stimulation with 

LPS (581[117] vs 912[242] pg/ml/ugDNA, p=0.65) between controls and PE. 

IL-6 secretion was significantly increased in VAT after stimulation by LPS in PE 

(584[180] vs 912[242] pg/ml/ugDNA, p=0.007), but not in controls (454[9308] vs 

581[117] pg/ml/ugDNA, p=0.09) (Figure 86).  There was no significant difference 

in IL-6 secretion in SAT after stimulation by LPS in controls and PE.  
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Figure 86 Comparison of the basal release of IL-6 a nd LPS stimulated release in visceral 

adipose tissue. 

IL-6 release was significantly increased in PE (n=1 4) but not in controls (n=14) (p=0.007). 

Data normalized by log transformation prior to anal ysis by paired t-test but displayed as 

untransformed data as mean and SEM. **=p ≤0.01. 

Basal and LPS stimulated release of IL-6 in SAT positively correlated with BMI in 

controls(r=0.60, R2=35.9%, p=0.014 and r=0.65, R2=41.7%, p=0.007 

respectively)(Figure 87). 
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Figure 87 Correlation between BMI and LPS stimulate d release of IL-6 in controls. 

LPS stimulated release of IL-6 in SAT positively co rrelated with BMI in controls (p=0.007). 

There was no correlation between SAT and VAT basal and stimulated release of 

IL-6 and maternal total cholesterol and TG, maternal NEFA, and maternal serum 

markers of insulin resistance including glucose, insulin and HOMA. There was no 

relationship between SAT and VAT basal and stimulated release of IL-6 and 

maternal serum IL-6, TNF alpha, CRP, leptin or adiponectin. Furthermore there 

was no correlation between IL-6 release in SAT and VAT and direct markers of 

adipocyte lipolysis or FCISI. There was no correlation between SAT and VAT cell 

size and IL-6 release. Basal and stimulated release of IL-6 from SAT was 

negatively correlated with maternal HDL (r=-0.59,R2=34.8%, p=0.016 and r=-0.52, 

R2=26.8%, p=0.04 respectively) an effect which is attenuated when adjusted for 

BMI (p=0.053 and p=0.13 respectively). 

Basal release of IL-6 is higher in VAT than SAT in controls (169.1[61.3] vs 

454.7[93.8] pg/ml/ugDNA, p=0.009), as is IL-6 release after stimulation by LPS 

(173.5[40.6] vs 581[117] pg/ml/ugDNA, p=0.003)(Figure 88). 
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Figure 88 Comparison of basal and LPS stimulated re lease of IL-6 from SAT and VAT. 

Basal and stimulated release of IL-6 is higher in V AT than in SAT (p=0.009 and p=0.003 

respectivey) (n=14). Data displayed as mean and SEM . **=p≤0.01. 

In PET, there is no correlation between basal and stimulated IL-6 release and 

BMI in SAT and VAT. There was no correlation between IL-6 release in SAT and 

VAT and maternal lipids, NEFA or maternal markers of insulin resistance. There 

was no correlation between SAT and VAT basal and stimulated IL-6 release and 

maternal plasma IL-6, TNF-alpha, CRP, leptin or adiponectin. There was no 

association between SAT and VAT basal and stimulated IL-6 release and direct 

measures of adipocyte lipolysis and insulin sensitivity.  

Basal and LPS stimulated release of TNF-alpha and IL-6 are closely related in SAT 

and VAT in controls (Table 14) and PE (Table 15). 
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CONTROLS SAT TNF-alpha 
Basal 

SAT TNF-alpha 
LPS stimulated 

VAT TNF alpha  
Basal 

VAT TNF alpha 
LPS stimulated 

SAT IL-6  
Basal 

r=0.71 
R2=50.4%   
p=0.002 

   

SAT IL-6 
LPS 
stimulated 

 r=0.87 
R2= 74.9% 
p<0.001 

  

VAT IL-6 
Basal 

  r=0.79 
R2=61.6%   
p=0.001 

 

VAT IL-6 
LPS 
stimulated 

   r=0.79 
R2=63.0%   
p=0.001 

Table 14 Correlations between basal and stimulated TNF-alpha and IL-6 release from SAT 

and VAT in controls (n=14) 

PRE-
ECLAMPTICS 

SAT TNF-
alpha 
Basal 

SAT TNF-alpha 
LPS stimulated 

VAT TNF 
alpha  
Basal 

VAT TNF alpha 
LPS stimulated 

SAT IL-6  
Basal 

r=0.79 
R2= 63.2%  
p=0.001 

   

SAT IL-6 
LPS stimulated 

 r=0.74 
R2= 55.0% 
p=0.002 

  

VAT IL-6 
Basal 

  r=0.72 
R2= 52.2% 
p=0.004 

 

VAT IL-6 
LPS stimulated 

   r=0.86 
R2= 73.5% 
p<0.001 

Table 15 Correlations between basal and stimulated TNF-alpha and IL-6 release from SAT 

and VAT in controls (n=14) 

5.4.2.3 Adiponectin 

Basal and LPS stimulated release of adiponectin from VAT in controls is 

positively correlated with measures of visceral lipolytic function (see Figure 89 

and Table 16). No apparent relationship in PE is found.  
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Figure 89 Relationship of basal release of adiponec tin and VAT stimulated lipolysis.   

Basal release of adiponectin is positively correlat ed with NEFA release in the presence of 

isoproternol (p=0.008). Data normalised by log tran sformation prior to statistical analysis. 

VISO = VAT in the presence of isoproterenol.  

Controls (VAT) VISO VINS VISO+ VINS 
Basal release of adiponectin r=0.67, 

p=0.008 
r=0.59, 
p=0.027 

r=0.71, 
p=0.004 

Stimulated release of 
adiponectin 

r=0.65, 
p=0.011 

r=0.57, 
p=0.034 

r=0.72, 
p=0.004 

Table 16 Correlations between basal and stimulated release of adiponectin and measures of 

lipolytic function in VAT.  

VISO= NEFA release from VAT in presence of isoprote rnol. VINS = NEFA release from VAT 

in presence of insulin. VISO + VINS = NEFA release from VAT in presence of isoproterenol 

and insulin. 

 
No other significant differences between controls or PE were found, nor were 

there any other significant correlations (data not shown).  
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5.4.2.4 PAI-1 

In controls, there was a greater amount of PAI-1 released from VAT than SAT 

both basally (median 26.1 vs 110.0 pg/ml/ugDNA, p=0.01, Mann-Whitney) and 

after stimulation with LPS (median 32.2 vs 81.8 pg/ml/ugDNA, p=0.02, Mann-

Whitney)(Figure 90).  Similarly in PE there is a greater amount of PAI-1 released 

from VAT than SAT both basally(median 35.2 vs 123.8 pg/ml/ugDNA, p=0.03) and 

after stimulation(median 34.0 vs 144.6 pg/ml/ugDNA, p=0.01 Mann-

Whitney)(Figure 91). 
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Figure 90 Difference in PAI-1 release between VAT a nd SAT in controls. 

There is a greater amount of PAI-1 released from VA T compared to SAT both basally 

(p=0.01) and after stimulation with LPS (p=0.02) in  controls (n=14). Data displayed as median 

and interquartile range. Analysis by Mann-Whitney. *=p≤0.05. 
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Figure 91 Difference in PAI-1 release between VAT a nd SAT in PE. 

There is a greater amount of PAI-1 released from VA T compared to SAT both basally 

(p=0.03) and after stimulation with LPS (p=0.01) in  PE (n=14). Data displayed as median and 

interquartile range. Analysis by Mann-Whitney. *=p ≤0.05. 

Basal PAI-1 release from SAT is positively correlated with BMI in controls (r=0.64, 

R2=41.3%, p=0.007) and PE(r=0.63, R2=40.2%, p=0.015). HDL is negatively 

correlated with PAI-1 release from SAT in PE only (r=0.60, R2= 35.6%, p=0.024) 

which is attenuated but not obliterated when adjusted for BMI (p=0.036). 

No other significant differences between controls and PE were found, nor were 

there any other significant correlations (data not shown).  

5.4.2.5 Leptin 

In controls, basal release of leptin from SAT is higher than VAT (1033[191] vs 268 

[72] pg/ml/ugDNA, p=0.002), as is release after LPS stimulation (973[165] vs 

261.1[72.1] pg/ml/ugDNA, p=0.005)(Figure 92).  

This effect is similar in PE (1334[191] vs 220.4[55.3] pg/ml/ugDNA, p=0.001 and 

1269[399] vs 182.2[47.2] pg/ml/ugDNA, p<0.001)(Figure 93).   
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Figure 92 Comparison of release of leptin from SAT and VAT in controls.  

Release of leptin from SAT compared to VAT is great er both basally (p=0.002) and after 

stimulation with LPS (p=0.005)(n=14). Comparison ma de using unpaired t-test. **=p ≤0.01. 
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Figure 93 Comparison of release of leptin from SAT and VAT in PE.  

Release of leptin from SAT compared to VAT is great er both basally (p=0.001) and after 

stimulation with LPS (p<0.001) (n=14). Comparisons made using un-paired t-test. 

***=p≤0.001. 

BMI does not correlate with leptin release from SAT or VAT in PE or controls.  
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In PE, basal and stimulated release of leptin from SAT is negatively correlated 

with maternal serum adiponectin (r=-0.78, R2= 61.2%, p=0.001 and r=-0.76, 

R2=57.0%, p=0.001 respectively)(Figure 94). This is independent of BMI (p=0.007 

and 0.009). This relationship is not apparent in controls (p=0.82 and p=0.73).  
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Figure 94 Relationship of basal release of leptin f rom SAT and maternal plasma levels of 

adiponectin in PE.  

There is a negative correlation between basal relea se of leptin from SAT and maternal 

plasma adiponectin independent of BMI (p=0.007) (n= 14). 

In PE, both basal and stimulated release of leptin from SAT positively correlates 

with direct measures of adipocyte lipolytic function in this adipose depot (Figure 

95 and Table 17).  

PE (SAT) SBA  SISO SINS SISO+INS 

Leptin basal  r=0.85, 
p<0.001 

r=0.60, 
p=0.024 

r=0.73, 
p=0.003 

r=0.74, 
p=0.002 

Leptin 
stimulated 

r=0.79, 
p=0.001 

r=0.55, 
p=0.042 

r=0.71, 
p=0.004 

r=0.69, 
p=0.006 

Table 17 Table of correlations between basal and LP S stimulated release of leptin and 

measures of lipolytic function (release of NEFA ug/ ml/udDNA) in SAT in PE.  

SBA= basal lipolysis, SISO=lipolysis in presence of  isoproterenol, SINS= lipolysis in 

presence of insulin, SISO+SINS= lipolysis in presen ce of isoproterenol and insulin.  
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Figure 95 Relationship between basal release of lep tin and basal lipolysis in SAT in PE.  

There is a positive relationship between the basal release of leptin and basal lipolysis in 

SAT (p<0.001) (n=14).  

Release of leptin from VAT is also correlated with direct measures of adipocyte 

lipolytic function in this adipose depot (Table 18).  

PE (VAT) VBA VISO VINS VISO+INS 

Leptin basal r=0.57, 
p=0.05 

r=0.70, p=0.01 NS r=0.66, p=0.02 

Leptin 
stimulated 

r=0.62, 
p=0.03 

r=0.65, p=0.02 r=0.62, p=0.03 r=0.62, p=0.03 

Table 18 Table of correlations between basal and LP S stimulated release of leptin and 

measures of lipolytic fuction (release of NEFA ug/m l/ugDNA) in VAT in PE.  

VBA= basal lipolysis, VISO=lipolysis in presence of  isoproterenol, VINS= lipolysis in 

presence of insulin, VISO+INS= lipolysis in presenc e of isoproterenol and insulin.  

In contrast, in controls, SAT release of leptin is not a significant correlate of 

lipolytic function (data not shown). However VAT release of leptin does relate to 

measures of lipolysis (Table 19). 
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Controls (VAT VBA VISO VINS VISO+INS 

Leptin basal NS r=0.89, p<0.001 r=0.68, p=0.02 r=0.80, p=0.002 
Leptin stimulated NS r=0.79, p=0.002 r=0.59, p=0.04 r=0.72, p=0.009 

Table 19 Table of correlations between basal and LP S stimulated release of leptin and 

measures of lipolytic fuction (release of NEFA ug/m l/ugDNA) in VAT in controls.  

VBA= basal lipolysis, VISO=lipolysis in presence of  isoproterenol, VINS= lipolysis in 

presence of insulin, VISO+INS= lipolysis in presenc e of isoproterenol and insulin.  

No other significant differences in PE and controls were found, nor were there 

any other significant correlations. 

5.4.2.6 IL-10 

In PE, basal and stimulated release of IL-10 from SAT is closely correlated with 

BMI (r=0.81, R2= 65.6%, p<0.001 and r=0.73, R2=53.1%, p=0.003), a relationship 

which is not seen in controls.  
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Figure 96 Correlation between BMI and basal release  of IL-10 from SAT in PE.  

There is a positive correlation between BMI and bas al release of IL-10 from SAT in PE 

(p<0.001) (n=14). 

Indeed in PE, IL-10 release from SAT correlates with SAT cell size (p=0.008) but 

this is not independent of BMI (p=0.33).IL-10 release from SAT negatively 
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correlates with the insulin sensitivity of the tissue as calculated by FCISI (r=-

0.58, p=0.03), but again not independent of BMI (p=0.36).  

No other significant differences between controls and PE, nor any other 

significant correlations were found (data not shown).  

5.4.2.7 CRP 

Release of CRP from SAT is a significant determinant of maternal plasma CRP in 

both controls (r=0.66, R2=43.0%, p=0.006) and PE (r=0.89, R2=78.9%, p<0.001) 

independent of BMI (p=0.015 and p<0.001 respectively)(Figure 97). 
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Figure 97 Correlation between basal release of CRP and maternal plasma CRP from SAT in 

controls and PE.  

There is a positive correlation between basal relea se of CRP from SAT and maternal plasma 

levels of CRP in controls (p=0.006) (n=14) and PET (p<0.001)(n=14) . 

Both basal and stimulated release of CRP from VAT is correlated with measures 

of VAT lipolysis in controls. This effect is not seen in PE (data not shown).  
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Controls (VAT) VBA VISO VINS VISO+INS 

CRP basal r=0.60, 
p=0.02 

r=0.66, p=0.01 r=0.65, p=0.01 r=0.75, 
p=0.002 

CRP stimulated r=0.61, 
p=0.02 

r=0.63, p=0.02 r=0.63, p=0.02 r=0.76, 
p=0.001 

Table 20 Table of correlations between basal and LP S stimulated release of CRP and 

measures of lipolytic function (release of NEFA ug/ ml/ugDNA) in VAT in controls.  

VBA= basal lipolysis, VISO=lipolysis in presence of  isoproterenol, VINS= lipolysis in 

presence of insulin, VISO+INS= lipolysis in presenc e of isoproterenol and insulin.  

No other significant differences between controls and PE, nor any further 

significant correlations were found (data not shown).  

5.4.2.8 MCP-1 

Stimulated release of MCP-1 was higher in VAT than SAT in PE (44.3[11.8] vs 

248.5[73.8] pg/ml/ugDNA, p=0.004). There was also a trend for basal release of 

MCP to be greater in VAT than SAT but did not reach significance (68.6[15.9] VS 

195.2[57.0] pg/ml/ugDNA, p=0.07)(Figure 98). There was no significant 

difference in basal or stimulated MCP-1 release between SAT and VAT in controls 

(Figure 99).  
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Figure 98 Comparison of SAT and VAT basal and stimu lated release of MCP-1 in PE.  
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Stimulated release of MCP-1 is greater from VAT tha n SAT (p=0.004) (n=14). Comparisons 

made using student t-test and data displayed as mea n and SEM. **=p ≤0.01. 
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Figure 99 Comparison of SAT and VAT basal and stimu lated release of MCP-1 in controls.  

There is no significant difference between SAT and VAT (p=0.18 and p=0.15) (n=14). 

Comparisons made using student t-test and data disp layed as mean and SEM. 

In controls, there was a positive correlation between release of MCP-1 in SAT 

and BMI (r=0.68, R2=46.2%, p=0.004). No such association was apparent in PE. 

No other significant differences between PE or controls, nor any other significant 

correlations were found (data not shown).  

5.4.3 Relationship of adipocyte cell size and relea se of adipokines 

5.4.3.1 Subcutaneous Adipose Tissue 

In controls, no correlation with SAT cell size and release of adipokines was found 

(data not shown). However in PE several associations were apparent. CRP basal 

release was positively correlated with SAT cell size (r=0.60, R2=36.4%, p=0.02) 

although not independent of BMI (p=0.10). Leptin basal release was also 

positively correlated with SAT cell size (r=0.53, R2=28.1%, p=0.05) again not 

independent of BMI (p=0.28). PAI-1 basal release was also positively correlated 

with SAT cell size (r=0.53, R2=27.7%, p=0.05) not independent of BMI (p=0.59). 
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Furthermore the release of IL-10 was also positively correlated with cell size in 

this depot in PE only (r=0.68, R2=46.2%, p=0.008) not independent of BMI 

(p=0.34). No other associations were found.  

5.4.3.2  Visceral adipose tissue 

No significant correlations with VAT cell size and release of adipokines were 

apparent (data not shown). VAT cell size negatively correlated with the release 

of adiponectin in PE (r=-0.56, R2=30.9%, p=0.04) independent of BMI (p=0.045). 

5.4.4 Messenger RNA expression 

5.4.4.1  TNF-alpha 

All comparisons were made using Mann-Whitney test for non-parametric data. 

Median TNF-alpha mRNA expression in VAT was higher in PE relative to controls 

(2.2 vs 0.9 TNF-alpha to PPIA ratio, p=0.039)(Figure 100). There was no 

difference in TNF-alpha mRNA expression in SAT between PE and controls 

(p=0.94).  
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Figure 100 TNF-alpha gene expression in VAT in cont rols and PE.  
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Median TNF- alpha gene to PPIA ratio is greater in PE relative to controls (p=0.039) (n=14). 

Data expressed as median and interquartile range an d analysis by Mann-Whitney.*=p ≤0.05 

5.4.4.2  IL-6 

Median IL-6 mRNA expression in VAT appeared higher in PE relative to controls 

but did not reach significance (11.8 vs 4.0 target gene to PPIA ratio, 

p=0.11)(Figure 101). There was no difference in IL-6 mRNA expression in SAT 

between PE and controls (p=0.72). 
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Figure 101 IL-6 gene expression in VAT in controls and PE.  

Median Il-6 to PPIA ratio appears greater in PE (n= 14) relative to controls (p=0.11) (n=14). 

Data expressed as median and interquartile range an d analysis by Mann-Whitney. 

5.4.4.3 MCP-1 

Comparisons made on log transformed data by unpaired t-test (control vs PE) 

and paired t-test (SAT vs VAT). Data expressed as absolute values. There was no 

statistical difference between MCP-1 mRNA expression relative to PPIA in VAT 

(40.5 vs 67.4 MCP1to PPIA ratio, p=0.15) or SAT (55.8 vs 52.2 MCP1 to PPIA ratio, 

p=0.42) between controls and PE. However MCP1 mRNA expression appeared 

higher in VAT compared to SAT in PE (67.4 vs 52.2 MCP1 to PPIA ratio, p=0.049) 

but not in controls (40.5 vs 55.8 MCP1 to PPIA ratio, p=0.55), although caution 
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needs to used when comparing gene expression between the different adipose 

depots.  
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Figure 102 Expression of MCP1 in SAT and VAT.  

There is a greater expression of MCP1 from VAT rela tive to SAT in PE (p=0.049) (n=14) but 

not in controls (p=0.55) (n=14). Comparisons made u sing paired t-test and data displayed as 

mean and SEM. *=p ≤0.05. 

5.4.5 Adipose Tissue Macrophage Infiltration 

5.4.5.1 Messenger RNA expression 

The mean cfms mRNA expression in VAT was higher in PE relative to controls 

matched for BMI (28.1[3.9] vs 57.2[10.1], p=0.033)(Figure 103). No other 

differences between CD68 expression in VAT or SAT or cfms expression in SAT 

was seen (Table 21). All data is expressed and displayed as absolute values but 

analysis was performed using unpaired t-test on log transformed data.  
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Figure 103 VAT cfms gene expression in controls and  PE.  

The cfms to PPIA ratio was greater in PE (n=14) tha n in controls (p=0.033)(n=14)in VAT. 

Comparisons made using student t test and expressed  as mean and SEM. *=p ≤0.05. 

 Control 
(n=14) 

PE 
(n=14) 

P 

VAT CD68/PPIA mRNA ratio 57.6(9.2) 67.9(5.2) 0.342 
SAT CD68/PPIA mRNA ratio 73.4(11.2) 76.8(11.8) 0.494 
VAT cfms/PPIA mRNA ratio 28.1(3.9) 57.2(10.1) 0.033 
SAT cfms/PPIA mRNA ratio 70.0(25.2) 57.4(12.1) 0.855 
 n=9 n=9  
VAT CD68+/adipocyte(%) 19.6(1.7) 23.1(4.5) 0.491 
SAT CD68+/adipocyte(%) 22.3(3.2) 18.8(6.1) 0.379 
VAT cfms+/adipocyte(%) 8.2(1.5) 16.4(3.0) 0.032 
SAT cfms+/adipocyte (%) 8.2(1.3) 18.2(5.5) 0.118 

Table 21 Table summarising differences between VAT and SAT mRNA expression and cell 

density of cfms and CD68 between PE and controls ma tched for BMI. 

5.4.5.2 Adipose tissue macrophage density 

Adipose tissue macrophage densities were quantified as outlined in methods 

section 2.11, and expressed as mean cell count per adipocyte. PE (n=9) were 

matched with controls for BMI (p=0.66). 

The mean percentage of cfms+/adipocyte in VAT was higher in PE relative to 

controls (8.2[1.5] vs 16.4[3.0] %, p=0.032). No other differences between cfms 

counts in SAT or CD68 in SAT or VAT were found.  
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Figure 104 Mean cfms +/adipocyte counts in VAT in PE and controls.  

There is a higher percentage of cfms +/adipocyte in PE (n=14)  than in controls 

(p=0.032)(n=14). Comparisons made using student t t est and expressed as mean and SEM. 

*=p≤0.05. 

 

There was no correlation between basal or stimulated MCP1 release and 

macrophage counts in VAT or SAT in controls or PE. 



 

Shahzya S Huda, 2010  Chapter 5  176 

 

 
 
 
  
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

Figure 105 CD68 staining of adipose tissue (at x 40 0). 

A-SAT of control, B- SAT of PE, C- VAT of control, D-  VAT of PE. Arrow highlights CD68 positive staining  of macrophage. Tissue macrophage densities were 

expressed as cell count per adipocyte. 
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Figure 106 Cfms staining of adipose tissue (at x400 ).  

A-SAT of control, B- SAT of PE, C- VAT of control, D- VAT of PE. Arrow highlights cfms positive staini ng of cell (activated macrophage). Tissue macrophag e 

densities were expressed as cell count per adipocyt e. 
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5.5 Discussion 

We have demonstrated clear differences in adipose tissue function between PE 

and controls including important regional differences.  

There is an increased tendency to secrete the inflammatory adipokines of TNF 

alpha and IL-6 from visceral fat in PE, with increased gene expression in this fat 

depot. TNF alpha is an important determinant of insulin sensitivity in pregnancy 

and can lead directly to insulin resistance by inhibiting insulin signaling through 

several mechanisms including inducing serine phosphorylation of the insulin 

receptor IRS1.155 Correspondingly, we have also shown that TNF-alpha release 

from VAT is negatively correlated with the fat-cell insulin sensitivity of this 

depot in PE providing evidence of a potentially more pathogenic role of VAT in 

PE. IL-6, a stimulator of whole body lipolysis with anti-insulin effects,162 163 has 

been related to pregnancy-associated insulin resistance, although we did not 

determine a relationship between IL-6 and direct measures of insulin sensitivity 

in adipose tissue in our cohort. 167 Important regional difference in the release of 

these inflammatory adipokines are also apparent between controls and PE. In 

healthy pregnancy, BMI is an important determinant of both TNF alpha and IL-6 

release from SAT, a relationship not seen in PE pregnancies, implicating 

disordered release from this depot. In PE, TNF alpha release from SAT, although 

not determined by BMI, does relate to lipolytic function of this adipose depot. 

TNF alpha itself is a potent stimulator of lipolysis through down regulation of 

perilipin and suppression of the anti-lipolytic GTP-binding membrane proteins 

GAi.
238 It may therefore be a more important determinant of lipolysis in SAT in 

PE compared to controls. TNF alpha release and IL-6 release are closely 

correlated in both PE and controls in both SAT and VAT. TNF alpha has been 

found to  induce other pro-inflammatory adipokines including IL-6, and both are 

produced by activated macrophages present in adipose tissue which may explain 

their close association.239 

The source of excess release of TNF-alpha and IL-6 form VAT is still to be 

determined as both adipocytes and macrophages produce these cytokines. We 

have demonstrated both an increase in the mRNA expression of cfms relative to 

control gene and an increased density of cfms+ macrophages/adipocyte in the 
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visceral fat of PE women implicating adipose tissue macrophages as the potential 

source of increased release of pro-inflammatory adipokines. Moreover, MCP-1 

release from VAT is higher relative to SAT in PE only with a similar pattern of 

gene expression of MCP-1 in VAT. Our data suggests that PE women have more 

pro-inflammatory/activated macrophages in VAT than controls potentially 

implicating this group of cells as the source of excess TNF alpha and IL-6 

production from this depot. Higher maternal concentrations of TNF-alpha and IL-

6 have been demonstrated in PE 240 241. In addition to potential paracrine and 

autocrine effects on lipid and glucose metabolism, TNF-alpha in particular is 

implicated in endothelial dysfunction, leukocyte activation, and alterations in 

coagulation – all characteristic of PE. 156 157 242 Furthermore, the chronic infusion 

of TNF-alpha or Il-6 into normal pregnant rodents significantly increases arterial 

pressure and impairs renal haemodynamics.243  Although TNF alpha and IL-6 may 

be overproduced by the placenta secondary to hypoxia, their expression has not 

consistently been seen to by higher in the placentae of women with PE thereby 

implicating another source for the elevated concentrations found  in peripheral 

blood.160 244  

PAI-1 is a regulatory serine-protease inhibitor that decreases fibrinolysis and 

correlates well with visceral adiposity, hyperinsulinaemia and the expression of 

which is increased in the SAT of obese individuals.174 175 In keeping with this we 

found a positive correlation with basal PAI-release from SAT and BMI in both PE 

and controls, with increased release from VAT than SAT. Interestingly PAI-1 is 

known to be an independent risk factor for the metabolic syndrome and 

correlates closely with features such as waist circumferences, plasma fasting 

glucose, TG and negatively with HDL.245  In women with PE we determined 

further parallels with the metabolic syndrome, namely increasing PAI-1 release 

from SAT is negatively correlated with HDL. Low levels of HDL are an 

independent risk factor for atherosclerosis. HDL particles are believed to be 

anti-atherogenic secondary to their capacity to drive reverse cholesterol 

transport and antagonize pathways of inflammation, thrombosis, and oxidation 

246. HDL increases in normal pregnancy which may impart a protective role on 

the endothelium and this rise is attenuated in pre-eclampsia. We have shown a 

negative correlation with IL-6 release from SAT and maternal plasma HDL in 

controls, which could represent an appropriate anti-inflammatory effect of HDL 

on SAT.   
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Leptin correlates with VAT lipolytic function not only in healthy pregnant women 

as shown in Chapter 3 but also is an important determinant of VAT lipolysis in 

women with PE. We found no influence of leptin of SAT lipolytic function in 

healthy controls in spite of its release being higher from this depot than VAT. 

However leptin release does correlate closely with lipolytic function in SAT in 

PE, particularly basal lipolysis. This is perhaps surprising as previous studies have 

shown that despite hyperleptinaemia in pregnancies complicated by PE, there 

was no increased expression of leptin in SAT.134 However the function or 

expression of leptin receptors in adipose tissue has not been studied in normal or 

complicated human pregnancy. Human adipocytes express the long form of the 

leptin receptor (OB-R) and two of the short forms (OB-R 219.1 and 219.3).247 

Leptin is thought to have autocrine/paracrine actions on adipose tissue. In 

rodents leptin has been demonstrated to have lipolytic actions248 but this has not 

been reproduced in human primary adipocyte culture.249 Our data is suggestive 

of an autocrine/paracrine action of leptin on basal lipolysis in SAT in PE but 

further studies are required to determine this and potential underlying 

mechanisms.  

We hypothesised in Chapter 4 that a tendency for SAT in PE to adapt to 

increasing fat mass by adipocyte hypertrophy rather than hyperplasia and 

hypertrophy may in part contribute to disordered metabolism of this adipose 

depot. Our data does show some relationships between fat cell size and 

adipokine release which is more apparent in PE. We have demonstrated that 

leptin release in SAT in PE is correlated with cell size but not in controls. Basal 

release of leptin from VAT also appears to be positively related to fat cell size, 

although not independent of BMI. In addition other pro-inflammatory adipokines 

including PAI-1 and CRP release from SAT are closely related to cell size in PE 

and not controls, again not independent of BMI. There appears to be no 

correlation between TNF alpha and IL-6 release and fat cell size in SAT in either 

controls of PE. The anti-inflammatory IL-10 release is related to increasing fat 

cell-size in SAT in PE, not independent of BMI, and this paradoxical increase may 

represent a compensatory mechanism in this tissue.  

In summary, we have identified a more pathogenic role of VAT in PE with 

increased infiltration of activated macrophages and corresponding increased 

release of inflammatory adipokines which could contribute to the disturbances in 
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lipid and glucose metabolism and vascular dysfunction apparent in this maternal 

syndrome.  



 

   

6 Adverse Pregnancy Outcomes and Maternal 

Cardiovascular Risk: A pilot study of carotid 

ultrasound assessment in women with a history 

of pre-eclampsia. 
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6.1 Introduction 

6.1.1 Coronary heart disease in women: the extent o f the problem 

Coronary heart disease (CHD) is the commonest single cause of death among 

women in Britain, with 41,796 British women dying of CHD in 2006.250 There is 

growing evidence of some unique sex-specific features of CHD.251 Women with 

CHD more often present atypically with a greater frequency of non-exertional 

chest pain, and this preponderance of atypical presentation may have 

scontributed to findings of poorer uptake of primary and secondary prevention 

initiatives among women compared to men.252-254 Furthermore women with 

established CVD are twice as likely to have associated metabolic syndrome than 

men, and when present the risk of death is over 10-fold compared to two to 

threefold in men.255 Thus more proactive approaches to identifying those at high 

risk at an early stage in their life course are particularly important for women. 

The US Institute of Medicine report Exploring the Biological contributions to 

Human Health: Does Sex Matter? called for increased research into the aetiology, 

diagnosis and management of CHD in women.256  

6.1.2 Pregnancy, Preeclampsia and cardiovascular di sease 

There is increasing epidemiological evidence to suggest that adverse pregnancy 

outcomes such as pre-eclampsia (PE), preterm delivery and low birth weight are 

associated with increased risk in later life of cardiovascular disease (CVD) in the 

mother. 183-186 Jonsdottier et al, in a population based study investigated the 

association between hypertensive complications in pregnancy and death rates 

from ischemic heart disease (IHD). They found that the relative risk (RR) of dying 

from IHD was significantly higher among eclamptic women (RR=2.61; 1.11-6.123) 

and those with pre-eclampsia (RR=1.90; 1.02-3.52) than those with hypertension 

alone.184 In a retrospective cohort study in Scotland using discharge data of 

almost 130,000 women, PE was associated with a two-fold increased risk of 

subsequent IHD (RR2.0;1.5-2.5).185 More alarmingly if a woman had a 

combination of PE, preterm delivery and a baby of low birth weight she had a 

risk of IHD admission or death seven times that of controls (95% CI 3.3-14.5). A 

recent meta-analysis combining eight studies (2 346 997 women) with a mean 

follow up of 11.7 years demonstrated a relative risk of 2.16 (1.86-2.52) of IHD in 

women with PE substantiating previous evidence.187 This doubling of risk remains 
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robust even after adjusting for pre-pregnancy hypertension, diabetes mellitus, 

obesity, dyslipidaemia, the metabolic syndrome and smoking.186 Gestation of 

onset also appears to influence the risk - if PE occurred prior to 37 weeks’ 

gestation the risk of IHD was almost eight-fold (7.71,4.4-13.5).187 Indeed parity 

itself is associated with increased risk of CVD with prospective studies finding a 

positive association.188 189  A study by Lawlor and colleagues found a “J” shaped 

association between number of children and CHD, with the lowest prevalence 

among those with two children and a linear increase with subsequent children.190  

Although the association was attenuated by adjustment for obesity and 

metabolic risk factors it was not completely obliterated. The authors suggest 

that normal pregnancy is a state of insulin resistance and dyslipidaemia and 

repeated pregnancies may have adverse long-term effects. Hypertensive 

disorders of pregnancy have also been shown to predispose to diabetes in later 

life.257 A genetic predisposition to hypertensive disorders of pregnancy is also 

suggested by family-linkage studies with Inheritance followed both through sons 

and daughters, potentially through a single gene.258-260Greer and Sattar proposed 

a model whereby pregnancy with its concomitant digression into a metabolic 

syndrome is a “stress test” of maternal metabolic response.191 Women who 

develop adverse pregnancy outcomes such as PE make greater excursions into 

metabolic disturbances during pregnancy and are predisposed to metabolic and 

vascular disease in later life.  

Furthermore there is evidence of impaired vascular function in women with a 

history of PE potentially predisposing to an increased risk of CVD. Laser Doppler 

imaging in vivo has confirmed impaired microvascular function in women with 

PE90 and these differences are maintained 15-25 years after pregnancies 

complicated by PE261. In addition, there is evidence of impaired vascular 

dilatation in women several years after a pre-eclamptic pregnancy.262 

6.1.3 Carotid ultrasound: a predictor of cardiovasc ular disease 

Epidemiological evidence for the increase risk of CVD in women with pregnancies 

complicated by PE is not able to adjust for all potential confounders and there is 

very little direct evidence for this increased risk. Furthermore there is minimal 

data on the underlying mechanisms for this apparent increase in risk of CVD. 

Carotid intima media thickness (IMT) is a validated non-invasive surrogate 
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marker for the presence and progression of atherosclerosis. Carotid IMT 

correlates well with traditional cardiovascular risk factors and is relatively easy 

to perform. A recent meta-analysis showed that the age and sex adjusted 

relative risk for myocardial infarction increases by 1.15% (95% CI 1.16-1.21) for 

every 0.10 mm increase in carotid IMT.263 The adjusted relative risk for stroke 

increases by 1.18 (95% CI 1.16 to 1.21). The detection of carotid plaques by 

ultrasound is also extremely informative.264 Plaque score has been show to be 

associated with risk of myocardial infarction 265 266 and stroke267. In the 

Rotterdam study, the hazard ratio for myocardial infarction for a plaque score of 

three or more compared with one of zero was 1.83 (95% CI 1.27-2.62), and 

relative risk for stroke was 1.61 (95% CI 1.16 to 2.23) when comparing the 

highest tertile of plaque score to the lowest tertile.265 267 

6.2 Objectives 

6.2.1 Primary Objective 

 To determine whether carotid IMT and plaque counts, as accepted surrogate 

markers for atherosclerosis, are increased in women with a history of PE 

compared to age-matched women with history of normal pregnancies.  As such 

our work would help corroborate data from epidemiological and observations 

studies, which although consistent, can on occasions be misleading.  

6.2.2 Secondary Objectives 

To determine which risk factors best correlate with carotid IMT and plaque 

counts in cases and controls and in particular whether any established or novel 

risk factors can account for any observed difference in carotid IMT or plaque 

counts. 

6.3 Materials and Methods 

6.3.1 Study Population  

We initially recruited primigravid women who delivered between 1975 and 1985 

with PE and matched controls for time of index pregnancy, age and smoking. 

The diagnosis of PE was in line with International Society for the Study of 
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Hypertension in Pregnancy (ISSHP) criteria. These women had previously been 

identified and recruited for a study by our group.  The relevant data was 

originally taken from the maternity records which were recorded at the time of 

the index pregnancy available from 1975. Thus all women with PE were 

primigravid, had a diastolic blood pressure ≥90 mmHg on 2 occasions more than 

4 hours apart (but normal blood pressure at booking) and had ≥ 2+ proteinuria on 

dipstick in the absence of renal disease or infection. Due to lack of initial 

response to recruit these women we also extended recruitment to include 

women from the GOAL 268 database which prospectively examined the impact of 

the Factor V Leiden mutation on the vascular complication of pregnancy. 4250 

unselected subjects who consecutively attended for routine antenatal care at 

the Glasgow Royal Maternity Hospital between May 1997 and May1999 were 

recruited to the study. Case records were examined 6 weeks after delivery to 

determine outcomes of the index pregnancy and 70 subjects with a diagnosis of 

PE were identified using the criteria outlined above. Controls were matched as 

above for time of index pregnancy, age and smoking.  

6.3.2 Study Protocol 

The women were approached initially by letter requesting if they would 

participate in the study. One visit was required which lasted between 30 -45 

minutes. Standardised measures of height, weight, waist circumference and 

blood pressure were taken. Subjects then completed a brief questionnaire 

regarding history of cardiovascular disease, lifestyle and family history.  

 Venous blood was taken for analysis of lipids and lipoproteins, glucose, and CRP. 

These samples were non-fasting as patients were required to attend in the 

afternoon due to limitations of use of the equipment. This was justifiable as 

non-fasting measurements do not alter cholesterol, HDL-C, CRP or glycosylated 

haemoglobin and both non-fasting triglyceride269 and non-fasting insulin270 

predict CHD in large studies in the non-pregnant populations, with magnitudes of 

effect that are similar to those found for associations with fasting levels. 

The Carstairs Indicator is a measure of deprivation, produced decennially using 

data collected by the UK Censuses on the basis of four components: car 

ownership, low social class, male unemployment and overcrowding. The 1991 
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and 2001 Carstairs Indicators, calculated from the 1991 and 2001 Censuses were 

both included in this analysis, in categorical form, ranging from most affluent 

(DepCat 1) to most deprived (DepCat 7). 271 

All ultrasound scans were performed on a Siemens Acuson Sequoia 512 scanner 

with an L7 5-12MHz linear array broadband transducer (Siemens Medical 

Solutions, Erlangen, Germany). The scans were performed by myself (SSH) in the 

unit following a protocol developed by colleagues in Amsterdam. Before the 

study commenced scanning reproducibility was assessed by repeat scanning of 

staff volunteers. The sonographer (SSH) mean absolute difference  per subject 

for mean common carotid artery IMT was 0.036mm based on the quality control 

scans which is less than the minimum standard of <0.15mm required. 

The scanning protocol involved initially measuring the Doppler velocity in the 

internal carotid artery in order to exclude significant internal carotid artery 

stenosis. Thereafter, still B-mode images and video clips were recorded of the 

distal 1cm of the common carotid artery, the carotid bulb and the proximal 

internal carotid artery. The same series of images and clips was recorded on 

both right and left sides. All images were saved in Digital Imaging and 

Communications in Medicine (DICOM) format for later off-line analysis. 

Scans were read using the eTrack software provided by the Department of 

Physiology, Academic Medical Centre, Amsterdam. All scans were read by the 

same independent reader (KD), who was blinded to the identities of the 

participants. 

6.3.3 Outcome measures 

The pre-specified primary outcome was mean common carotid intima-media 

thickness and plaque counts. Intima-media thickness was measured on the far 

wall of each arterial segment, averaged along a 1cm length of the segment, or 

as much of this as was able to be read265. Number of plaques per subject was 

counted, with plaque being defined as a focal structure encroaching into the 

arterial lumen of at least 0.5 mm or 50% of the surrounding IMT value, or 

demonstrating a thickness >1.5 mm as measured from the media-adventitia 

interface to the intima-lumen interface264. In order to adjust for images which 

could not be read, the total plaque count for each subject was divided by the 
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number of readable images present and multiplied by 6 (the maximum possible 

number of images per subject) giving a plaque score265.  

 

6.3.4 Biochemical analysis 

All blood samples were centrifuged, separated and frozen at -80oC within 1 hour 

of venepuncture. Cholesterol and triglyceride were determined by enzymatic 

colorimetric assays on a Roche 917 analyser (Roche Diagnostics Ltd., Burgess 

Hill, United Kingdom). LDL and HDL were measured after ultracentrifugation at 

105,000g at 4 oC for 16 hours, followed by precipitation of the LDL fraction using 

a solution of heparin and manganous chloride. Glucose was measured by 

hexokinase/glucose-6-phosphate dehydrogenase assay on an Abbott c8000 

analyser (Abbott Diagnostics, Maidenhead, United Kingdom). High sensitivity C-

reactive protein (CRP) was measured by an immunoturbidimetric assay (Roche 

Diagnostics Ltd., Burgess Hill, United Kingdom).  

6.3.5 Statistical Power 

At the time of commencement of the study there were no prior published data 

on IMT and plaque counts in women with a history of PE.  Hence, we 

extrapolated from carotid IMT data on women of similar age with PCOS272 273 (a 

group with perhaps slightly lower CHD risk [HR ~ 1.5 based on the best 

epidemiological findings274]), and we anticipated a minimum difference in 

carotid IMT of 0.05mm between PE and normal women.  Therefore, we would 

require 25 subjects in each group to provide greater than 90% power to detect 

this difference with α=0.05. Despite using data from pathology with lower CHD 

risk, given the potential for overestimation of any difference in IMT between 

cases and controls, we selected to recruit 40 women from each group in order to 

be confident that the study was of sufficient size to detect meaningful 

difference in carotid IMT. 

The data in two groups was compared by unpaired t-test using where necessary 

normalised data, Mann-Whitney or Chi-squared test where appropriate.  

Adjustment for potential explanatory factors or confounders was made using 

general linear model. Values were expressed as mean and SEM unless otherwise 

stated. 
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6.4 Results 

6.4.1 Subjects 

A total of 60 subjects who delivered between 1975 and 1998 with PE (n=31) and 

matched controls (n=29). The characteristics of the two groups are shown in 

Table 22. There was no difference in risk factors for CVD including age, BMI, 

smoking, deprivation scores, systolic or diastolic blood pressure. The gestational 

age at index pregnancy was significantly different with PE delivering around 4 

weeks earlier.  

Characteristics PE  
(n=31) 

Control  
(n=29) 

p 

Index Pregnancy data    
Age, y 25.4(1.10) 27.3(0.89) 0.17 
BMI, kg/m2 23.4(0.81) 22.3(0.55) 0.18 
Smokers (non,current)* 22,9 22,7 0.67 
DEPCAT** 4(3-6) 4(2-5) 0.30 
Gestation at delivery, wk       35.1(0.74) 39.4(0.35) P<0.0001 
Time since index pregnancy 23.4(1.50) 22.6(1.60) 0.70 

Data at recall    
Age, y 48.6(1.12) 49.6(1.24) 0.44 
BMI, kg/m2 28.8(1.24) 27.7(1.01) 0.81 
Waist circumference, cm 91.5(2.61) 90.1(2.55) 0.69 
Parity (1,2, ≥2)* 7,13,10 9,11,6 0.57 
Systolic pressure, mmHg 127.0(2.81) 125.1(2.23) 0.55 
Diastolic pressure, mmHg 79.5(2.05) 75.7(1.88) 0.17 
Smokers (non,current) 6,25 5,24 0.83 
Antihypertensive Rx (no,yes)* 19,12 23,6 0.13 
Lipid lowering Rx (no,yes)* 24,7 26,3 0.20 
Hormone replacement therapy 0 0 NS 

Table 22 Characteristics of PE and controls.  

All values expressed as mean and SEM except DEPCAT expressed as median and 

interquartile range. Comparisons made using unpaire d t test except * Chi-squared test and 

** Mann-Whitney. 

6.4.2 Biochemical Analysis 

There was no significant difference in traditional biochemical risk factors for 

cardiovascular disease including cholesterol, triglycerides, HDL and glucose and 

CRP (Table 23).  
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Plasma markers (non-fasting) PE  
(n=31) 

Control  
(n=29) 

p 

Cholesterol 5.00 (0.18) 5.32 (0.21) 0.25 
Triglycerides 1.57 (0.15) 1.31(0.11) 0.71 
HDL 1.40(0.06) 1.55(0.09) 0.20 
Glucose* 5.50(5.10-5.80) 5.70(5.20-6.25) 0.30 
CRP 3.89(0.80) 2.78(0.60) 0.46 

Table 23 Biochemical plasma markers in PE and contr ols.  

All values expressed as mean and SEM and statistica l analysis using paired t-test except 

*glucose which is expressed as median and interquar tile range and analysis by Mann-

Whitney.  

6.4.3 Carotid Ultrasound 

Although the carotid IMT was greater in PE than controls (0.66[0.02] vs 

0.63[0.02]), there was no statistical difference (p=0.17). 
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Figure 107 Difference in carotid IMT between contro ls and PE. 

Carotid IMT is not significantly greater in PE comp ared to controls (p=0.17). 

Of those women in whom plaque counts could be assessed, 50% of women with a 

history of PE (14 out of 28) had one or more plaques compared to only 25% of 

normal controls (6 out of 24) ( p=0.065, chi squared test).(Figure 108) 
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Figure 108 Dotplot of the presence of plaques in co ntrols and PE. 

Dotplot of the presence of plaques in controls (6 o ut of 24) and PE (14 out of 28), p=0.065, 

chi-squared test. 
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The mean number of plaques per subject (plaque score) was greater in PE than 

in controls (0.81[0.19] vs 0.34[0.13], p=0.043 unpaired t-test). 
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Figure 109 A comparison of plaque scores between co ntrols and PE. 

The plaque score (mean number of plaques per subjec t) was higher in PE than in controls 

(p=0.043). 

When adjusted for classical risk factors including age, triglycerides, cholesterol, 

HDL cholesterol, systolic blood pressure, diastolic blood pressure, smoking and 

history of hypertension there was no attenuation of this effect (p=0.042)(Table 

24). However the addition of BMI to classical risk factors (p=0.076) did partially 

attenuate the difference between PE and controls.   

Model P value 

Unadjusted 0.043 

Model 1 (classic) 0.042 

Model 2 (classic + BMI) 0.076 

Table 24 Multivariate analysis by general linear mo del for difference in plaque score 

between PE and controls.  

Model 1 (classic): adjusted for age, triglycerides,  cholesterol, HDL,systolic BP, diastolic BP, 

smoking and history of hypertension.: Model 2 = Mod el 1 +BMI.  
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In the group as a whole age (r=0.37, R2=13.4%, p=0.004), systolic BP (r=0.43, 

R2=18.9%, p=0.001), cholesterol(r=0.25,R2=6.38%, p=0.051), triglycerides 

(r=0.38,R2=14.7%, p=0.003), CRP (r=0.34,R2=13.5%, p=0.012) and family history 

of CVD (r=0.40, R2=15.93%, p=0.002) were predictive of carotid IMT whereas 

smoking (r=0.33,R2=11.1%, p=0.016), HDL (r=-0.31,R2=9.7%, p=0.025), 

triglycerides (r=0.30, R2=8.4%, p=0.037) and glucose (r=0.29, R2=8.1%, p=0.040)  

were predictive of total plaque numbers.  

6.5 Discussion 

CHD is an important cause of morbidity and mortality among women. Due to the 

atypical presentation of CHD in women and the perception that CHD is 

predominantly a male disease rates of primary and secondary prevention in 

women is lower compared to men. Identifying additional risk factors such as PE 

which is an independent risk factor for coronary artery disease may help target 

and improve primary prevention strategies.275  It is important to corroborate 

epidemiological evidence of this increased associated risk.  

Our study has demonstrated direct evidence that atherosclerosis is increased in 

women with a history of PE compared to women with healthy pregnancies. We 

have shown that the mean plaque score is higher in women with a history of PE 

compared to controls. Although carotid IMT was higher in PE, this was not 

statistically significant.  

Plaque counts appear to be a better discriminator and predictor of CVD than 

carotid IMT in women with a history of PE. This may be due to several factors. 

The median age of the women undergoing carotid artery ultrasound in our study 

was around 50.  Carotid IMT is age related, with an estimated increase in 

thickness of around 6.5–10.1 µm/year.276 In healthy individuals the average IMT 

is 0.4mm at birth and 0.8mm by age 80 if no risk factors are present. Women 

have thinner IMT compared to men (and atherosclerosis tends to develop about 

10 years later in women) and it may not be until later in life that we would see a 

significant divergence of IMT in these two groups.  

The pathological processes resulting in increased intima media thickening in the 

common carotid and plaque formation may differ significantly and reflect 

distinct aspects of atherogenesis and therefore clinical manifestations of 
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disease. Carotid plaque presence is more strongly predictive of future 

cardiovascular events and in particular acute myocardial infarction277 and is 

more biologically and mechanistically similar to the development of 

atherosclerosis.278  Similar to previous data we have shown that different risk 

factors are predictive of either carotid IMT or plaque counts. 

Previous studies have suggested that plaque scores may be a better 

discriminator of future CVD than carotid IMT in women compared to men, and at 

an earlier age. A recent study by Deans et al which compared the prevalence of 

carotid atherosclerosis in participants at extremes of the socioeconomic gradient 

in Glasgow (the incidence of CVD is higher in areas of socioeconomic 

deprivation) demonstrated that differences in plaque scores appeared at an 

earlier age than a difference in carotid IMT.279 In this study, the population was 

subdivided into three age groups – 35-44years, 45-54 years, and 55-64years. 

Furthermore differences in IMT between the study groups did not reach 

statistical significance in women at any age tertile, and only in the highest age 

tertile in men. In contrast differences in plaque scores were highly statistically 

significant in the two highest age tertiles in men and the highest age tertile in 

women. Another population based study of 6226 men and women aged 25 to 84 

demonstrated that carotid plaque was a stronger predictor of first ever MI than 

was carotid IMT, and this was more striking in women than in men, with a 

relative risk for MI of 2.92(95% CI 2.04-4.17) in men and 7.8(95% CI 4.46-13.34) in 

women when comparing the top tertile of plaque area to those without 

plaques.266 

In a similar cohort, our group have previously shown a long term differences in 

inflammatory markers including significantly higher IL-6/IL-10 ratio, an index of 

proinflammatory cytokine (IL-6) status to anti-inflammatory cytokine (IL-10) 

status, in PE women compared with matched controls (PE 3.96 [6.07] versus 

control 2.12 [1.89]; P=0.034), independent of smoking, current BMI, and 

menopause status (P=0.03)240, with higher concentrations of vascular cell 

adhesion molecule-1 and intercellular adhesion molecule-1 (ICAM-1), by 14% 

(P=0.038) and 44% (P=0.002), respectively. The differences in ICAM-1 

concentration persisted (P=0.010) after adjustment for potential confounders, 

including hormonal use/menopausal status, antihypertensive or lipid-lowering 

therapy, and social class.280 Interestingly there were no significant differences in 
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fasting lipoprotein concentrations (P>0.20). The cases also demonstrated a 

tendency toward higher fasting insulin (P=0.08) concentrations and had higher 

glycosylated hemoglobin levels (P=0.004). Leptin concentrations were not 

significantly elevated. These data are suggestive that classic risk factors alone 

cannot fully explain the elevated CHD risk in women with a history of PE, with 

long –term changes in inflammation, endothelial dysfunction and subtle features 

of insulin resistance perhaps underpinning this apparent relationship. Our data 

are in-keeping with this, as adjustment for classical risk factors did not 

obliterate the difference in plaque scores between PE and controls. Disturbance 

in inflammation are important contributors to the pathogenesis of both PE and 

atherosclerosis and may provide one of the key links between these two 

conditions216 281. Although CRP, an inflammatory biomarker is an important 

predictor of CVD, the contribution of other emerging novel inflammatory factors 

including TNF-alpha and IL-6 have not been explored in this study. In addition, 

further investigation of markers of insulin resistance (which potentially links PE, 

obesity and CVD) and vascular dysfunction and their relationship to plaque 

counts would be valuable. Although increasing obesity is risk factor for both PE 

and CVD, adjusting for BMI only partially attenuated the effect on plaque 

numbers and therefore only partly explains the discrepancy in risk.  

A limitation of our study was that despite endeavouring to recruit 80 individuals 

we only recruited 60.  It is therefore possible that the study is underpowered to 

show a difference in carotid IMT between the groups, one of our primary 

outcomes measures. A post hoc power calculation estimated that a sample size 

of 64 in each group would have been required to detect a difference in IMT of 

0.05 with a power of 80%.  However as we have previously described this lack of 

significant difference may also be due to the mean age of the cohort, and 

therefore studying older women may also have been of benefit.  In addition due 

to limitations on the use of the equipment, plasma samples were non-fasting 

which may explain the lack of difference seen in plasma lipids and glucose.  

There are several particular strengths of the study. The methodology of CIMT 

and plaque assessment is robust with close following of established protocols 

with excellent reproducibility. In addition, both the sonographer and the 

independent reader of scans were blinded to the category of the subjects. In 

addition the identification of subjects in the control and cases groups was 
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rigorous as data was either collected prospectively or medical records 

retrospectively checked to confirm the diagnosis of PE.  

In summary we have shown direct evidence that a prior history of PE is 

associated with increased atherosclerosis, which cannot be fully explained by 

classic cardiovascular risk factors. Further analysis is required to help determine 

the mechanisms for this difference. Future studies on women with adverse 

pregnancy complications with even higher risk of CVD (PE, preterm delivery and 

small for gestational age) is warranted. Carotid ultrasound may provide a 

valuable screening tool in this high risk group of women in addition to more 

traditional risk assessment.  
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7.1 Discussion 

Maternal metabolism undergoes dramatic changes in pregnancy in order to 

sustain and nourish the developing fetus. During healthy pregnancy the mother 

goes from an anabolic state in early pregnancy to a state of catabolism in late 

pregnancy with increased lipolysis together with a significant reduction in insulin 

sensitivity. The mother accumulates fat in the first and second trimester of 

pregnancy in preparation for the increased energy demands of the fetus in the 

third trimester and for lactation.  Increased FFA use in the mother increases the 

availability of glucose and other substrates for the fetus. Pregnancy is 

characterised by hyperlipidaemia with a pronounced rise in TG and lesser rise in 

cholesterol and LDL-cholesterol. However this is combined with an increase in 

HDL-cholesterol which may have a protective role on the endothelium. 

Adipose tissue has increasingly been recognised as an important endocrine 

organ. It releases a wide array of cytokines and proteins with corresponding 

autocrine, paracrine and endocrine functions. Metabolism in pregnancy has been 

extensively studied but much of the work has focused on carbohydrate 

metabolism with lesser knowledge regarding lipid metabolism and in particular 

adipose tissue function in both normal and complicated human pregnancy. I have 

therefore endeavoured in this thesis to acquire a better understanding of 

adipocyte lipid metabolism and function in normal pregnancy as a basis for 

further understanding metabolic complications of pregnancy and in particular 

PE. 

In this thesis I have focussed on the hypothesis that PE is “metabolic syndrome” 

that develops in pregnancy. PE shares many risk factors with CVD and similarities 

between the metabolic syndrome – namely dyslipidaemia, insulin resistance, 

inflammation and endothelial dysfunction – are striking. Important predisposing 

factors for PE include obesity and dyslipidaemia. The pathogenesis of PE is still 

not fully understood and it is likely the disorder is multifactorial with several 

underlying contributing mechanisms manifesting as this maternal syndrome. I 

have concentrated on the “lipid-centric” view that the development of PE is in 

part related to alterations in lipid and adipocyte metabolism. These 

perturbances in lipid and glucose metabolism not only may predispose these 

women to PE but also to CVD in later life.  
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In chapter 1 I examined lipolytic function of adipocytes in normal pregnancy. 

The most surprising finding is the lack of association between maternal booking 

BMI and lipolytic function of adipocytes. This may be accounted for by several 

factors. Firstly booking BMI, although a reflection of pre-gravid status, may not 

accurately reflect BMI in late pregnancy. Sattar et al has shown that waist 

circumference may be a better indicator of risk of development of hypertensive 

disorders of pregnancy than BMI and indeed it may be the distribution of fat 

rather than total fat mass which is relevant.51 Visceral adiposity is linked to 

adverse metabolic outcomes both in the non-pregnant and pregnant including 

gestational diabetes mellitus, gestational hypertension and pre-eclampsia.49-51 

Visceral adiposity in early pregnancy appears to correlate better than 

subcutaneous fat or body mass index (BMI) with metabolic risk factors such as 

blood pressure, insulin resistance and lipids.52Furthermore it may be the total 

amount of fat mass gained during pregnancy that critically determines the 

lipolytic function in pregnancy which would not be reflected by a booking BMI. 

I have shown that adipose tissue in pregnancy is very metabolically flexible, 

particularly that stored in the subcutaneous compartment. This is of particular 

benefit to the fetus in that those mothers with lower basal lipolysis respond 

quickly to times of ‘stress’ facilitating increased utilisation of FFA in the mother, 

and thereby increasing the availability of glucose and amino acids for the fetus. 

The subcutaneous compartment is the largest maternal store of adipose tissue. 

In addition, the rate of whole body lipolysis is still insulin sensitive in fasting 

conditions in normal pregnancy. This might be a reflection of the distribution of 

fat mass accumulation in women with normal pregnancy, with a greater 

propensity to store fat in the lower body, which is much more insulin 

sensitive.282 Lower body fat is independently associated with a lower risk of lipid 

and carbohydrate metabolic dysregulation283 and larger depots of lower body 

adipose tissue are associated with a more efficient storage of dietary fat. All 

women accrue fat mass during pregnancy of similar amounts, whether lean or 

obese, and location of fat storage may be one mechanism through which 

“metabolically healthy” women can adapt efficiently to pregnancy. 

Furthermore I have demonstrated some important regional differences in 

lipolytic function in normal pregnancy with potential relevance to metabolic 

complications of pregnancy. Similar to previous literature I have shown that 
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visceral adiposity is more closely related to measures of maternal insulin 

resistance. In visceral fat there is a higher turnover of lipids due to its greater 

sensitivity to catecholamine-induced lipolysis and decreased sensitivity to 

insulin, both demonstrated by the data presented here. Visceral fat is in direct 

contact with the liver via the portal venous system. The liver is therefore 

exposed to chronic elevation of NEFA (non-esterified fatty acids) which can 

produce alteration in liver metabolism and promotes hepatic IR – the basis for 

the ‘portal paradigm’. This is illustrated by the inverse correlation seen between 

visceral fat insulin sensitivity and maternal TG in this cohort. In later stages of 

pregnancy there is an increase in both the thickness of pre-peritoneal fat 

(visceral) and the ratio  of  pre-peritoneal to subcutaneous fat as measured by 

ultrasound.47 This may be relevant to increasing insulin resistance and lipid 

changes that occur as pregnancy progresses. Indeed accumulation of hepatic fat 

has been shown to be an important mediator of insulin resistance during 

pregnancy in the rat model.48 I have also shown that increasing BMI is associated 

with an increase in visceral fat cell size, with increased lipolysis and an increase 

in plasma levels of the pro-inflammatory adipokines leptin, IL-6 and CRP and a 

reduction in the anti-inflammatory adiponectin. This may be one potential 

mechanism through which increasing obesity predisposes to metabolic 

complications of pregnancy through increased inflammation and insulin 

resistance.  

In contrast, the subcutaneous depot appears to work independently to visceral 

fat.  Fat cell size is not a closely related to BMI and this may reflect the 

propensity of this fat depot to increase by both adipose cell hyperplasia and 

hypertrophy, a metabolically advantageous response. Fat cell size in SAT does 

however correlate with the insulin sensitivity of the cell. It appears that 

maternal TNF-alpha is a significant correlate of adipocyte lipolytic function in 

this depot and in particular basal lipolysis. TNF alpha has been shown to 

stimulate lipolysis through several mechanisms including inhibition of insulin 

receptor signalling, interaction with adenosine, and direct stimulation of basal 

lipolysis through phosphorylation and decreased expression of perilipin. Although 

we failed to demonstrate any relationship between TNF-alpha and maternal 

markers of insulin resistance in our cohort, Kirwan et al demonstrated that TNF-

alpha was the most significant independent predictor of insulin sensitivity in 
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human pregnancy.159 TNF-alpha not only exerts its effects on the adipocyte but 

also influences insulin signalling in skeletal muscle and the liver.  

Pre-eclampsia is a multi-system disorder with complex underlying mechanisms. 

We know that both the rise in maternal TG and FFA is exaggerated in PE and 

occurs well in advance manifestation of the disease suggesting disordered 

adipocyte metabolism. In chapter 4 I attempted to explore this hypothesis and 

to determine if there were any significant underlying differences in adipocyte 

lipolytic function between PE and control women. Interestingly we found that 

there was no inherent difference in the effect of catecholamines or insulin in 

either adipose depot in vitro. However the insulin sensitivity as calculated by 

the FCISI (or responsiveness to insulin once the tissue is stimulated by 

isoproterenol) of SAT and probably VAT was lower in women with PE than 

controls. This is likely to be more relevant in vivo as this is a functional test of 

adipose tissue function. Almost 60% of circulating NEFA is from upper body fat ie 

abdominal subcutaneous and visceral fat.282 I have shown that both these depots 

are insulin resistant and this potentially would make a significant impact on total 

circulating FFA. The rise of FFA in PE occurs early in pregnancy and contributes 

significantly to IR in pregnancy.106 Therefore the IR of adipose tissue could lead 

to a vicious cycle of increased lipolysis and release of FFA with further 

exacerbation of IR. 

In addition to increasing IR of adipose tissue we have shown a difference in SAT 

response to increasing BMI. I have previously highlighted that SAT cell size does 

not closely correlate with BMI in controls and theorised that this is potentially a 

healthy adaptive response by increasing fat mass by both hypertrophy and 

hyperplasia. However in PE, SAT cell size is intimately related to BMI suggesting 

that they increase fat mass predominantly by adipocyte hypertrophy. This is a 

maladaptive response and can result in increased ER stress, increased IR, 

increased release of inflammatory cytokines and increased macrophage 

recruitment. SAT cell size is closely related to lipolytic function of the tissue in 

PE but not in controls. 

I also hypothesised that in addition to an inherent defect in adipocyte function, 

there was an additional factor present in maternal serum of women with PE 
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released from the placenta which excessively stimulates lipolysis. I failed to 

demonstrate any effect of serum on adipocyte lipolysis in either controls or PE.  

An alternative mechanism through which adipose tissue could affect maternal 

metabolism resulting in PE would be through dysregulated release of adipokines 

and increased tissue inflammation similar to process of chronic inflammation in 

obesity. In Chapter 5 I examined differences in adipokine release from SAT and 

VAT between controls and PE. I found that there was an increased tendency for 

the pro-inflammatory adipokines TNF-alpha and IL-6 to be released after 

stimulation of VAT, with increased gene expression in this fat depot. TNF-alpha 

release also correlated negatively with the fat cell insulin sensitivity of VAT 

implicating a paracrine effect in this tissue potentially due to its known effect 

on insulin signalling. TNF-alpha also appears to influence SAT lipolytic function 

in PE. Both TNF alpha and IL-6 are released from adipocytes and macrophages 

and the actual source of excess release is still to be identified. However I have 

demonstrated increased release of MCP-1 from VAT relative to SAT in PE only. 

Furthermore there is both an increase in gene expression of cfms and increased 

density of cfms+ macrophages/adipocytes in the VAT of PE women implicating 

activated adipose tissue macrophages as a potential source of increased release 

of these pro-inflammatory adipokines. TNF-alpha and IL-6 have been shown to 

be elevated in women with PE and their effects of metabolism, endothelial 

dysfunction and inflammation may provide one of the mechanisms through which 

the maternal syndrome develops.  

Following on from data in Chapter 4 which showed that SAT cell size was closely 

related to BMI in PE but not in controls, I have shown that SAT cell size does 

relate to adipokine release in PE. The basal release of leptin, PAI-1 and CRP are 

closely related to SAT cell size in PE but not in controls. In addition the anti-

inflammatory IL-10 release paradoxically increases with increasing SAT cell size 

in PE only suggesting a possible compensatory mechanism.  

Leptin also appears to have disparate roles on lipid metabolism in PE and healthy 

pregnancy. Leptin, secreted from adipose tissue, decreases lipid accumulation in 

the liver by promoting FA oxidation and in adipose tissue via a direct autocrine 

effect 284 285.  I previously identified that leptin is an important correlate of VAT 

and not SAT lipolytic function in normal pregnancy. However in PE women it is 
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closely related to basal lipolysis in SAT. Although previous studies have shown no 

increased expression of leptin in SAT complicated by PE, the expression or 

function of leptin receptors in adipose tissue in normal or complicated 

pregnancy has yet to be determined. My data is suggestive of an 

autocrine/paracrine effect of leptin not only in VAT in PE but also in SAT, but 

further studies are required define the role of leptin in pregnancy adipocyte 

function.  

There is increasing epidemiological evidence that PE is associated with an 

increase risk of CVD in later life. Greer and Sattar proposed a model whereby 

pregnancy with its concomitant digression into a metabolic syndrome is a “stress 

test” of maternal metabolic response.191 Women who develop adverse pregnancy 

outcomes such as PE make greater excursions into metabolic disturbances during 

pregnancy and are predisposed to metabolic and vascular disease in later life. 

There are some unique sex-specific characteristics of CVD. Women with 

established CVD are twice as likely to have associated metabolic syndrome than 

men, and when this cluster of features is present the risk of death is over 10-fold 

compared to two to threefold in men.255 The purpose of Chapter 6 was to 

corroborate the increasing epidemiological evidence and to determine which risk 

factors could account for any observed differences. Two surrogate markers of 

atherosclerosis in the carotid artery were assessed- namely carotid IMT and 

plaque scores.  Both were found to be increased in women with a history of PE, 

with plaque scores significantly so, corroborating evidence of increased 

atherosclerotic burden in these women. Classic risk factors such as age, lipids, 

BP and smoking did not attenuate this effect. Interestingly BMI only marginally 

attenuated this relationship, therefore only partially explaining this increased 

risk. Women who develop early onset pre-eclampsia with associated IUGR and 

preterm delivery are epidemiologically at much higher risk of CVD than those 

with late onset disease  suggestive of differing underlying pathological 

processes. It is possible that long-term changes in inflammation, endothelial and 

vascular dysfunction and features of insulin resistance which have previously 

been identified in women with a history of PE underlie the increased risk of CVD 

in later life. 
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7.2 Future Research 

This thesis has determined some important aspects of adipocyte and lipid 

metabolism in normal pregnancy and PE, and established direct evidence for an 

increased risk of CVD in women with a history of PE. However the data from this 

thesis has clearly stimulated further avenues for future research. 

Maternal obesity has far reaching consequences for both mother and offspring 

and predisposes to metabolic complications of pregnancy including GDM and 

PE.286 Independent of maternal pregnancy BMI, gestational weight gain (GWG) 

has also been associated with adverse outcomes. However the evidence for the 

association of GWG with adverse pregnancy outcome is somewhat weaker than 

the evidence for pre-pregnancy BMI.287 In addition, although obese women have 

and exaggerated metabolic response in pregnancy, lean and obese women put on 

similar fat mass, although obese women tend to accumulate fat more centrally 

than lean women, which may reflect their more insulin-resistant state. 70 71 288  

Clearly there is a gap in our knowledge to explain these apparently contradictory 

facts.  

Human fat can be subdivided into lower body subcutaneous fat, upper body 

subcutaneous fat and intra-abdominal/visceral fat as previously detailed. In 

general visceral fat is thought to be more pathogenic and associated with an 

abnormal metabolic and adipokine profile with is supported by data in this 

thesis. However upper body subcutaneous fat, as studied here, and visceral fat 

stores are often not differentiated and both are relatively resistant to insulin 

suppression of lipolysis282. Conversely lower body fat subcutaneous fat (eg 

gluteal-femoral fat) is much more insulin sensitive and is independently 

associated with a reduced risk of lipid and carbohydrate metabolic 

dysregulation.283 289 Thus the compartment in which fat is stored during 

pregnancy may impact on the metabolic response to pregnancy.  

Important avenues for further research therefore would include determining the 

relationships between the pattern and mass of adipose tissue as it accumulates 

in pregnancy in both lean and obese women and determine the relationships 

between maternal energy metabolism and markers of “lipotoxicity” or disorderd 

lipid metabolism. Similar studies on comparing adipocyte function of 

subcutaneous abdominal AT and visceral AT with biopsies of femoral fat would 



   

Shahzya S Huda, 2010 Chapter 7   205 

be of particular value. Other areas of interest would be to further examine the 

relationships between fat cell size and maternal metabolism. In particular 

further examination of the differences in adipose tissue adaptation to the 

normal increase in fat mass in pregnancy in lean and obese women would be of 

value. Furthermore, it is not known whether the nature of AT in obese pregnant 

women, which was mostly pre-existing before pregnancy, is different to AT in 

lean pregnant women which has been accumulated in the gestational period.  

Adipose tissue from lean women not only may be deposited in different 

subcutaneous compartments than obese women, but the composition of the AT 

may also differ significantly. One component of the insulin resistant state 

apparent in obesity is disordered fatty acid (FA) metabolism whereby fewer FA 

are diverted down the elongation and desaturation pathways to form LC-PUFA 

(long chain polyunsaturated fatty acids). Desaturases are key enzymes in the 

remodelling of FA by introducing a double-bond in the FA chain. Therefore it 

would be of important to determine the fatty acid composition and desaturase 

activity of AT in lean and obese women, and women with metabolic 

complications of pregnancy and relate them to measures of adipocyte lipolysis 

and insulin sensitivity. 

I have also identified that leptin appears to play an important regulatory role in 

VAT lipolysis in normal pregnancy and both SAT and VAT lipolysis in PE. The 

mechanism through which this occurs is still to be determined. There is evidence 

in humans that adipose tissue leptin and leptin receptor mRNA expression is 

related to changes in insulin sensitivity in a physiologically dynamic situation – 

exercise. Barwell et al have shown that daughters of women with type 2 

diabetes have a significantly greater improvement in insulin sensitivity in 

response to an exercise training programme than controls and that this is 

accompanied by a significant decrease in plasma leptin, whereas leptin was 

unchanged in controls.290 Adipose tissue leptin expression was not different 

between controls and offspring of type 2 diabetics but the offspring had 

increased levels of both long and short forms of the leptin receptor291. In a 

multivariate analysis leptin and leptin receptor mRNA expression contributed 

significantly to insulin sensitivity index at baseline and change in insulin 

sensitivity index in response to exercise. Parallels with the dynamic situation of 

pregnancy may occur with adipocyte first trimester accumulation of fat and 

third trimester depletion of fat being regulated by leptin in an 
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autocrine/paracrine manner. It would therefore be valuable to measure leptin 

and leptin receptor mRNA levels in subcutaneous and visceral fat in normal (lean 

and obese) pregnancy and PE and relate this to adipocyte lipolysis and maternal 

insulin resistance.  

Furthermore although I have determined that SAT and probably VAT is less 

insulin sensitive in PE than controls perhaps contributing to the early 

exaggerated rise in FFA, further investigation to determine the mechanism for 

this would be of great importance. This would help establish whether this 

“defect” would be amenable to interventions such as pharmacological or 

lifestyle.  

Lastly, using carotid ultrasound assessment, and in particular plaque counts in 

other groups of women with a history of adverse pregnancy outcome would be of 

interest. It would also be useful to distinguish between early (with its 

particularly high risk of CVD) and late onset PE to determine which risk factors 

(traditional or novel) best account for any observed difference to help 

corroborate increasing support that these two conditions are distinct 

pathological processes.   

In conclusion the data in this thesis provides further evidence that PE is 

“metabolic syndrome of pregnancy” with disordered adipocyte function and 

metabolism. Further studies on adipose accumulation, function, and composition 

in normal and complicated human pregnancy are warranted.  
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