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Abstract

This thesis focuses on constraining the linear redshift distortion parameter β, which

is a critical variable in reconstructing the peculiar velocity field of the Local Universe

and probing information of the distribution on dark matter. We used mock data

samples of peculiar velocity fields that aim to mimic the next generation of galaxy

peculiar velocity surveys such may become feasible for SKA and its precursors. The

smoothed IRAS PSCz peculiar velocity field [Branchini et al., 1999] was used to

generate the mock data samples, where the true value of β was considered to be

0.5 throughout this work (i.e. βtrue = 0.5). The study was carried out considering

two methods. First, we applied the χ2 hypothesis test by comparing the observed

and predicted peculiar velocity fields to constrain β from the mock peculiar velocity

fields. In this case, the traditional distance indicators such as SNIa, TF and recently

introduced gravitational wave standard sirens were considered. The distance scatter

of each indicator was taken from literature and scatter in the predicted peculiar

velocity (σv) was considered to be a variable. The best-fit value of β for the peculiar

velocity models show a good agreement with βtrue when σv < 150 km s−1. Our

calculations implied that, in order to fully exploit the potential of future improvement

in the precision of β estimates, it is important also to improve the accuracy of the

reconstructed peculiar velocity field predicted from all-sky redshift surveys. The

second method is the ROBUST method originally introduced by Rauzy & Hendry for

fitting peculiar velocity fields. The ROBUST method use the luminosity functions of

the mock galaxies as the distance indicators, where the LF assumed to be independent

of the spatial position of the galaxies. Our results are in a good agreement with βtrue

= 0.5, where the best fit values of the peculiar velocity models always centered around

0.5. Our results demonstrate the potential of the method, even in cases where the

luminosity function is rather broad, provided it can be applied to sufficiently large

peculiar velocity surveys - such as those which may be anticipated from e.g. the 6dF

and WALLABY surveys in the relatively near future.

3



All things appear and disappear because of the concurrence of causes and

conditions. Nothing ever exists entirely alone; everything is in relation to

everything else. . . .

Lord Buddha



To my husband Sameera... . . .
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Preface

Cosmology is one of the most exciting fields in modern Physics because of the contro-

versial concept of dark matter and dark energy - the origin and nature of which has

not been completely established to date. The recent evidence explains that the dark

energy accounts 3/4 of the matter and energy in the Universe. In 1998, the studies in

type Ia Supernovae (SNIa) confirmed that the dark energy acts as anti-gravity that

accelerates the expansion of the Universe (i.e. Λ CDM model) [Perlmutter et al.,

1999]. The Infrared Astronomical Satellite (IRAS) Point Source catalogue redshift

survey (PSCz) became a key role by providing information about 15,500 galaxies in

nearby Universe. The future redshift surveys such as SKA and WALLABY would

observe thousands of millions of objects, nourishing the analysis with a huge amount

of data.

It is very important to use the large amount of available data to obtain well defined

constraints on the constituent of the Universe, the evolution of growth perturbations,

the expansion, whether it will expand forever, contract and collapse, or oscillate be-

tween expansion and contraction, and also the modification of gravity at large scales.

The distribution of dark matter and dark energy plays a critical role in constructing

cosmological models, and the development of such models is very important in un-

derstanding the fate of the Universe. The galaxy density and peculiar velocity field

is a powerful probe of the distribution of dark matter in the Local Supercluster. This

thesis basically aims to improve the present understanding about the distribution

of dark matter via reconstructing the peculiar velocity field. Our main goal is to

explore methods for constraining β, the linear redshift distortion parameter, which is

one of the key aspects that needs a careful attention when reconstructing the galaxy

x



peculiar velocity field.

The outline of this thesis is organized as follows: Chapter 1 describes the basic theo-

retical aspects, which we need for our study. We describe the Freidmann equations,

Gravitational instability, CMBR, redshift surveys and other important aspects along

with the statistical applications we used for this study. Then the first part of Chapter

2 consists of a review for the linear redshift distortion parameter β. The studies in

constraining β are accelerated in 1990s after the approach of the IRAS PSCz cata-

logue. The reconstruction methods for β are discussed and the differences between

a density-density comparison (POTENT) and a velocity-velocity (VELMOD, ITF)

comparison are explored. The application of POTENT favours a value of βI = 1.0 ,

while the VELMOD and ITF methods lead to a value of βI = 0.5, which appeared

to be more accurate.

In the later part of Chapter 2, we present our attempt of constraining βI using a

velocity-velocity comparison, where we apply the χ2 hypothesis test for the calcu-

lations. We used the mock peculiar velocity field models that mimic the next gen-

eration of galaxy peculiar velocity surveys. With completeness and all-sky coverage

the smoothed IRAS PSCz velocity field [Branchini et al., 1999] was used to gener-

ate the mock data and to provide a β-dependent predicted peculiar velocity field to

compare with the observed radial peculiar velocities derived from combining observed

red-shifts and redshift-independent estimates. We assumed that each mock galaxy

position was coincident with one of the PSCz galaxies for simplicity. The traditional

distance indicators SNIa, TF and the gravitational wave standard sirens have been

considered for the distance and velocity measurements. We discuss about the infor-

mation that would be essential to improve the accuracy of methods for reconstructing

the peculiar velocity field, and our findings will be very useful in designing future red-

shift surveys such as those carried out by the SKA radio telescope and its precursors.

In Chapter 3, we present our work with the ROBUST method for fitting peculiar

velocity models [Rauzy and Hendry, 2000]. Powerful statistical methods are very

KWPBS xi



important for the analysis of sparse and noisy distance and peculiar velocity surveys.

Moreover, robust methods that require fewer prior assumptions concerning the dis-

tance indicator samples are very useful. Following this approach we present a new

robust method for probing peculiar velocity field models based on a non-parametric

treatment of the galaxy luminosity function. The basis of the method is to infer the

correct peculiar velocity field as that which renders the corrected galaxy redshifts

and luminosities as uncorrelated. We describe the application of this method for con-

straining the linear redshift-distortion parameter β, using a series of mock peculiar

velocity surveys and assuming (as a proof-of-concept) a Gaussian luminosity function.

The luminosity functions of the mock galaxies were considered as the distance in-

dicators, where we assumed the luminosity function is independent of the spatial

position of the galaxies. We used the IRAS PSCz peculiar velocity field (the same

data sample used in Chapter 2) to generate the mock catalogues, assuming that each

mock galaxy position was coincident with one of the PSCz galaxies. Our main goals

of applying ROBUST method are as follows;

1. Analyse the potential of ROBUST method with the future redshift surveys.

2. Explore the influence for the accuracy of the method if there is a high scatter

in the luminosity function.

3. Compare the state of accuracy of the χ2 hypothesis test and the ROBUST

method in constraining β.

Finally, in the last chapter we discuss about the future approach of constraining

β with a larger sample of galaxies than the PSCz galaxies, but nonetheless have

the mocks mimicking the PSCz spatial distribution (or indeed any other desired

spatial distribution function. In this case we propose to use the Probability Integral

Transform (PIT) to generate the above sample.

KWPBS xii



Chapter 1

Introduction

The Big bang not only created the Universe but also creates numerous mysteries which

make Cosmology a very challenging field of scientific research. In the early decades

of the 20th Century Edwin Hubble’s observations revealed the mysterious expansion

of the Universe and Albert Einstein’s General Theory of Relativity provided the

theoretical framework to unravel that mystery. The discovery of the cosmic microwave

background radiation (CMBR) provided strong evidence in support of the Big Bang

model and its analysis has ultimately led to the standard concordance cosmological

model, also known as the ΛCDM model. We dedicated this chapter to give the basic

theoretical aspects in Cosmology, including the concepts we use in this thesis work.

1.1 Hubble’s Law

Edwin Hubble discovered that the Universe is expanding [Hubble, 1929], and this

discovery opened a new era in modern cosmology. Analysis of the line spectra of

galaxies revealed a shift of the standard lines toward the red end for very distant

galaxies. Furthermore, the relative shift in wavelength (∆λ/λ) appeared to be pro-

portional to the distance of the galaxy. This implies that the recession velocity (cz)

of a galaxy, due to the expansion of the Universe, is proportional to its distance (d),

the proper distance that the light had traveled from the galaxy in the rest frame of

the observer (Figure 1.1). This is called Hubble’s law ;

cz = H0 d, (1.1)
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1.1. Hubble’s Law

where c is the velocity of light and z is the corresponding redshift and H0 is the

Hubble constant, which tells about the present expansion rate of the Universe. The

subscript ‘0’ represents the present time, and in general H is a function of time [i.e.

H = H(t) ]. The first estimate of H0 was published by Hubble in 1936, where he

used the luminosity of Cepheid variable stars, inferred from their Period-luminosity

relation [Hubble, 1929] to obtain a value of H0 ≈ 500 km s−1Mpc−1. In 1958, how-

ever, Sandage emphasized some errors incorporated in Hubble’s calibrations [Adler

et al., 1965]. Over the next few decades numerous studies were carried out searching

a promising value for H0. Freedman et al. [2001] suggested that the best-fit value

should be H0 = 72± 8 km s−1 publishing their final results of the Hubble Space tele-

scope (HST) Key Project to measure the Hubble constant. Riess et al. [2009] carried

out a study as a redetermination of the Hubble constant, using the observations of

240 Cepheid variables obtained from the Near Infrared Camera and Multi-Object

Spectrometer (NICMOS) Camera 2 through the F160W filter on the Hubble Space

Telescope (HST). They obtained H0 = 74.2± 3.6 km s−1 Mpc−1. Most of the studies

refer these values as their prior for the Hubble constant (see for example Sekiguchi

et al. [2009]; Reid et al. [2010]). However it remains common for studies of galaxy

surveys ( Kovač et al. [2010]; Tonry et al. [2003]; Rauzy and Hendry [2000]) to

set the present-day value as H0 = 100h km s−1 Mpc −1, where h is a dimensionless

parameter. In the case of measuring distances with km s−1, the uncertainty of h can

be neglected as the Hubble parameter becomes H0 = 1. The inverse of the Hubble

constant is called the Hubble time;

tH ≡ 1

H0

= 9.78× 109h−1 yr = 3.09× 1017h−1 s. (1.2)

The Hubble distance DH can be estimated by considering the multiplication of speed

of light (c) and the Hubble time, (tH) as follows;

DH ≡ c tH ≡ c

H0

= 3000 h−1Mpc. (1.3)

There are some specific conditions which have to be considered in the case of apply-

KWPBS 2



1.2. The Friedmann equation

Figure 1.1: The original Hubble diagram constructed by Edwin Hubble to illustrate the
expansion of the Universe. This diagram shows the proportionality between the recession
velocity with the radial distance of galaxies. Figure 1, Hubble [1929].

ing the Hubble law for the nearby Universe, because the cosmological principle (i.e.

homogeneous and isotropic universe) is invalid for the nearby galaxies. To consider

these conditions further we need to develop the appropriate mathematical framework

to describe space-time. When we discuss a Universe which is isotropic and homoge-

neous we work with a description of space-time discovered by Alexander Friedmann

with Georges Lemâitre, and again by Howard Percy Robertson as a collaboration

with Arthur Geoffrey Walker [Robertson, 1935]. This is an exact solution of the Ein-

stein field equations of the general relativity. As an honour of these four scientists,

the space-time is named as the Friedmann- Lemâitre- Robertson- Walker space-time.

1.2 The Friedmann equation

The Friedmann- Lemâitre- Robertson-Walker space-time can be expressed in spher-

ical polar coordinates (r, θ, ϕ);

ds2 = c2 dt2 − a(t)2[
d r2

1− kr2
+ r2(dθ2 + sin2 θ dϕ2)], (1.4)
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1.2. The Friedmann equation

where a(t) is the scale factor and k is the space curvature constant, c is the velocity of

light and r, θ and ϕ are the co-moving spatial coordinates. Here, ds2 is the space-time

interval of the FLRW metric. The Einstein’s equation is given by

Rµ
ν −

1

2
gµν R =

8π G

c2
T µ
ν , (1.5)

where T µ
ν is the energy-momentum tensor, Rµ

ν is the Ricci tensor and G is the grav-

itational constant. By assuming that the Universe is a perfect fluid, the energy-

momentum tensor can be expressed as;

T µ
ν = (−ρ c2, p, p, p), (1.6)

where ρ is the mass density and p is the pressure. A dynamical solution for the scale

factor a(t) can be obtained from the time-time solution of Einstein’s equation and

considering the mass-energy content of the Universe as a perfect fluid.

ä

a
= −4

3
π G (ρ+

3P

c2
) +

Λ c2

3
. (1.7)

(
ȧ

a
)2 =

8π G

3
ρ+

Λ c2

3
− k c2

a2
, (1.8)

where Λ is the cosmological constant originally introduced by Einstein to allow a

static solution for a(t). These expressions are called the Friedmann equations which

describe the expansion of a homogeneous and isotropic Universe. Hubble’s law can

be explained using the Friedmann equation. The recession velocity v ( i.e. cz) can

be given as;

v =
dR

dt
, (1.9)

v and R have the same direction and therefore;

v =

∣∣∣Ṙ∣∣∣
|R|

R =
ȧ

a
R. (1.10)
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1.2. The Friedmann equation

Figure 1.2: Models of the Universe. Here the zero curvature (k = 0) gives the flat Universe
and the positive (k = +1) and negative (k = −1) curvatures are giving the closed and open
models of the Universe.

The expression R = a(t)x implies that the comoving position x⃗ is a constant, by defi-

nition. Consequently, the Hubble’s law v = HR indicates that the Hubble parameter

H = H(t) should be identified as;

H =
ȧ

a
. (1.11)

Then the Friedmann equation can be modified in terms of the Hubble parameter as

follows,

H2 =
8 π G

3
ρ− kc2

a2
. (1.12)

Another important property of Friedmann equation is the behaviour of k, the curva-

ture of space-time, which holds three principal values -1, 0 and 1. The curvature for

the model of the Universe with Λ = 0, can be defined as open, flat or closed according

to these values. These three models are shown in the figure 1.2 and summarized in

Table 1.1.

Table 1.1: Models of the Universe, Λ = 0

Curvature Geometry Model fate of the Universe

k = −1 Hyperbolic Open Expands forever
k = 0 Euclidian Flat Expands forever
k = +1 Elliptical Closed Big crunch
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1.2. The Friedmann equation

When k = 0, the Universe is considered to be flat and under this condition, the

equation (1.12) can be modified as follow;

H2 =
8π G

3
ρ. (1.13)

Then ρ can be interpreted from the above equation by defining the critical density

(i.e. ρc);

ρc =
3H2

8π G
. (1.14)

The critical density conveys information about the ultimate expansion or recollapse of

the Universe (i.e. fate of the Universe). The dimensionless matter density parameter

(Ωm) can be expressed as;

Ωm =
ρ

ρc
=

8 π Gρ

3H2
. (1.15)

The dimensionless energy density parameter ΩΛ is,

ΩΛ =
Λ c2

3H2
(1.16)

A third density parameter ( Ωk) measures the curvature of space, and can be defined

by the following relationship,

Ωm + ΩΛ + Ωk = 1. (1.17)

When the Universe is homogeneous, isotropic and matter-dominated, these parame-

ters completely determine the geometry of the Universe [Hogg, 1999].

Talking about the formation of the Universe is also important as well as the models

of the Universe. In the next section we discuss about the formation of structures in

the Universe. In a situation where an object’s self-gravity exceeds opposing forces

such as internal gas pressure or material rigidity, the object collapses. For a gas,
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1.3. Gravitational Instability

gravitational instability sets in when the mass is greater than a certain critical value

known as the Jean’s mass (i.e. the critical mass a volume of space must contain before

it will collapse under the force of its own gravity). In the early universe, instabilities

were large enough to produce galaxies and clusters of galaxies.

1.3 Gravitational Instability

The Gravitational Instability is a universally accepted concept, which describes the

formation of structures in the Universe. In the early Universe, there are small irregu-

larities in the distribution of matter [Liddle, 2003]. These regions with more matter

will make gravitational attraction on their neighbouring regions, bringing materials

together, which cause more irregularities on density. When explaining the distribu-

tion and motion of the matter in the Universe, information about the gravity is very

important because of the above phenomenon. The theory of gravitational instability

can be discussed using the equation of mass continuity (1.18), equation of motion

(1.19) and the Poisson equation for a fluid (1.20);

∂ρ

∂t
+∇r.(ρV) = 0 (1.18)

∂V

∂t
+ (V · ∇r)V+∇rϕ = 0 (1.19)

∇2
rϕ = 4πGρ. (1.20)

The ρ = ρ(r, t) of the above equations defines a scalar mass density field. The velocity

field is given by V = V(r, t). ϕ = ϕ(r, t) denotes the gravitational potential and ∇r

represents the gradient operator in proper coordinates.

The dimensionless density contrast can be defined as follows;

δ(r, t) =
ρ(r, t)− ρ̄ (t)

ρ̄(t)
, (1.21)

where ρ̄(t) is the mean mass density .
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1.3. Gravitational Instability

Consider the linear terms of δ and V from the expanded expressions of the equations

(1.18) and (1.19), then converting the gradient operator ∇r to co-moving coordi-

nates (coordinates fixed with respect to the overall Hubble flow of the Universe) and

subtracting the zeroth order solution for the background solution;

∂δ

∂t
+

1

a
∇V = 0, (1.22)

∂V

∂t
+

ȧa

V
+

1

a
∇ϕ = 0, (1.23)

where a = a(t) is the scalar factor. The substitution of the time derivative of equation

(1.22) and the divergence of the equation (1.23) into the equation (1.20) yields;

∂2δ

∂t2
+ 2

ȧ

a

∂δ

∂t
= 4πGρ̄δ. (1.24)

The equation (1.24) is a second-order partial differential equation, which depends

on time only. Therefore, a solution with the separate terms for spatial and time

dependence can be obtained;

δ = A(r)D1(t) + B(r)D2(t), (1.25)

where D1(t) and D2(t) are the growing and decaying modes, respectively. D1 in-

creases with the increasing of a, the scale factor, whereas D2 decreases with a.

For cosmological models with ΩΛ = 0, an analytic solution for δ can be found. In

the case of the Einstein de Sitter model, with Ωm = 0 and Λ = 0, a(t) ∝ t2/3 and

ρ̄ ∝ a(t)−3. Hence, the equation (1.24) becomes;

∂2δ

∂t2
+

4

3t

∂δ

∂t
=

2

3t2
δ. (1.26)

This has an analytic solution;

δ(r, t) = A(r)t
2
3 + B(r)t−1. (1.27)
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1.3. Gravitational Instability

For more general cosmological models, the solution for δ depends on the value of

Ωm and ΩΛ. For Ωm < 1, the expansion of the universe dominates the gravitational

attraction of the matter. At late times, the second term of the analytic solution

becomes negligible, and the equation (1.22) reduces to;

∇.V = −a δ
Ḋ1

D1

= −a0 H0 f δ, (1.28)

where the growth factor, f can be written as;

f =
1

H0D1

dD1

dt
=

d log D1

d log a
. (1.29)

D1 is a function of Ωm and ΩΛ. Therefore, f is also a function of Ωm and ΩΛ. Lahav

et al. [1991] provide an approximation to f as shown below;

f(Ωm,ΩΛ) = Ω0.6
m +

ΩΛ

70
(1 +

1

2
Ωm). (1.30)

The influence of ΩΛ on dynamics at low redshift is negligible [Lahav et al., 1991].

Hence, the equation (1.30) becomes;

f = Ω0.6
m . (1.31)

Then the equation (1.28) can be modified as;

∇.V = −a0H0Ω
0.6
m δ(r). (1.32)

Following the theorems of electrostatics, a solution for equation (1.32) can be ob-

tained;

V(r) =
H0Ω

0.6
m

4π

∫
d3r

′
δ(r

′
)(r

′ − r)

|r′ − r|3
, (1.33)

where r is the position of galaxies, r
′
is a considered position in the space, V(r)

denotes the peculiar velocity at position r and δ(r
′
) represents the galaxy number

density at position r′. This prediction has been widely used in studies of peculiar

velocity fields.
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1.4. Linear bias model

1.4 Linear bias model

Even though the Universe mostly consists of dark matter (we discuss about dark

matter in detail in Section 1.6), nobody has been observed this directly. Only the

luminous matter, like galaxies can be observed. Therefore, a relationship between the

density field of galaxies (i.e. luminous matter) and dark matter is very important.

The most simplest argument is that the distribution of galaxies also contain the

information about the dark matter distribution;

δg(r) = δ(r). (1.34)

In relatively larger scales the distribution of galaxies is very uneven and this assump-

tion is no longer valid. Kaiser [1984], proposed a method to address this behaviour,

where he suggested that the galaxies form only at the high-density peaks of the mass

density field. The galaxy clusters are then said to be biased with respect to the mass

distribution. Bardeen et al. [1986], Peacock and Heavens [1985] and Davis and

Djorgovski [1985] also proposed a similar effect between the galaxies and the dark

matter allowing to use the peaks biasing model to obtain even more specific models.

This model is called the linear bias model, which relates galaxy distribution and dark

matter distribution;

δgalaxies(r) = b δdarkmatter(r), (1.35)

where b is the biasing parameter, which is related to the threshold described above.

For b > 1, this model is deviated as δgalaxies and δdarkmatter are bounded under −1,

and therefore a modified version of the above equation has been considered;

1 + δgalaxies(r) = [1 + δdark matter(r)]
b. (1.36)

A local relation between the galaxy and mass density fields provided a more general

and less complex assumption [Weinberg, 1995];

δg(r, Rs) = F [δ(r, Rs)], (1.37)
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1.4. Linear bias model

where F is an arbitrary function and Rs is some scale. The Taylor expansion for

small fluctuation amplitude can be given by;

δg = a+ b1δ +
b2δ

2

2
+
b3δ

3

6
+ · · · (1.38)

b1 = F ′(0), b2 = F ′′(0), b3 = F ′′′(0), · · · (1.39)

The constant a is fixed at any order by the requirement ⟨δg⟩ = 0. The linear bias

model emerges as the first order expansion of this local model, with b = b1 (i.e.

Equation 1.35 ), suggesting that linear bias may often be an adequate description on

scales where linear perturbation theory applies. The ratio of the fluctuations σ(Rs)

in the galaxies and dark matter is independent of scale Rs when the scales larger than

5 h−1 Mpc. This doesn’t hold for non-biasing models, in which galaxy formation is

influenced by events in far away distances ( Babul and White [1991]; Bower et al.

[1993] ). Under these schemes, the ratio between the amplitude of dark matter and

galaxy fluctuation become a function of scale.

The suggestion to relate δgalaxies with δdark matter holds only in the mean density

ρ̄; at any given point in space there can be seen fluctuations around this mean den-

sity in the relation between the densities. A complete model of biasing should be

able to describe these fluctuations. In the region that the linear bias model holds,

the equation (1.28) is unable to restrict the quantity f via comparing the peculiar

velocities and gravity. In this situation, the expression given below can be applied;

β =
f(Ωm,ΩΛ)

b
. (1.40)

According to the prediction of f(Ωm,ΩΛ), we can write f = Ω0.6
m (i.e. equation 1.31 ).

Therefore equation 1.40 can be rearranged as follows;

β =
Ω0.6

m

b
, (1.41)

where β is known as the redshift distortion parameter.
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1.5. Cosmic Microwave Background Radiation

Equation 1.32 can be rearranged with the substitution of β;

∇.V = −a0 H0 βδg (r). (1.42)

By applying the techniques of electrostatics, a relationship between peculiar velocity

field and β, can be obtained;

V(r) =
H0β

4π

∫
δ(r

′
)(r

′ − r)

|r′ − r|3
d 3r

′
. (1.43)

Obtaining a better estimate of β could significantly improve the accuracy of recon-

structed peculiar velocity fields, which is the subject of this thesis.

1.5 Cosmic Microwave Background Radiation

The early Universe was filled with ionized matter like electrons, protons and emit-

ted radiation. As the Universe expanded and cooled down, the reactions between

electrons and protons formed neutral atoms, and then eventually stars, galaxies etc

(Figure 1.3). The radiations that were generated in the early stages of the evolution

of the Universe form the Cosmic Microwave Background (CMB). The CMB radiation

appears to have very similar temperature in all directions, which leads it to be called

isotropic. The isotropy of the CMBR provides strong support for the cosmological

principle, which states that large-scale of the Universe is homogeneous (same density

at all points at a given time) and isotropic (same in all directions). However, the

nearby Universe is not homogeneous and isotropic as it is a complex mixture of stars,

planets, galaxies, clusters and super-clusters. Therefore, the cosmological principle is

not valid for the nearby Universe (Figure 1.4).

Arno Penzias and Robert Wilson of AT&T Bell Laboratories detected the CMB

radiation in 1965 while trying to find the source of a mysterious background noise in

their radio antenna [Penzias and Wilson, 1965]. The CMB provides most promising

result to support the big bang theory, which states that the early universe was a hot,

dense plasma of charged particles and photons. The CMB has been cooled by the
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Figure 1.3: Time line of the Universe. NASA/WMAP Science Team

expansion of the universe, and it is extremely cold today-comparable to the radiation

released by a body at a temperature of about 2.7 K. But at the time that the CMB

was released, its temperature was nearly 3,000 K. In 1970’s, the astronomers learnt

about a dipole anisotropy in the CMB spatial temperature distribution ( Corey and

Wilkinson [1976], Fabbri et al. [1980]). In 1990, the COBE satellite (Cosmic Back-

ground Explorer) measured the spectrum of the CMB radiation and the COBE DMR

experiment reported the first detection of cosmological anisotropy (apart from the

previously detected dipole) in the temperature of the CMB ( Smoot et al. [1992];

Bennett et al. [1992], Wright et al. [1992]). These small variations in the inten-

sity of the CMB over the sky show how matter and energy was distributed in the

early Universe. Depending on this key issue, astronomers focussed their attention

on the temperature variations of the CMB with more sophisticated instruments and

launched the Wilkinson Microwave Anisotropy Probe (WMAP) in 2001. The aim

was to map the Cosmic Microwave Background (CMB) radiation over the entire sky

in five frequency bands centered at 23 GHz (K band), 33 GHz (Ka band), 41 GHz (Q
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1.5. Cosmic Microwave Background Radiation

Figure 1.4: The variation of the temperature of CMBR at different scales of the Universe.
The variations of lower amplitude at large scales corresponding to regions that stretch about
30 degrees across the sky (left) and at small scales corresponding to regions about a tenth of
a degree across (right). But the temperature differences are quite distinct for regions about
one degree across (middle). http://background.uchicago.edu / whu/Papers/HuWhi04.pdf
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band), 61 GHz (V band) and 94 GHz (W band) (Bennett et al. [2003]; Jarosik et al.

[2010]). It was launched in June 2001 (and still in operation) from Kennedy Space

Flight Centre and began surveying the sky from its orbit around the Earth-Sun L2

point in August 2001 and recently published the seven-year observations ( Jarosik

et al. [2010]; Komatsu et al. [2010]). Results from the one-year, three-year and

five-year results are summarized in , Bennett et al. [2003]; Jarosik et al. [2007] and

Hinshaw et al. [2009], respectively.

The results from WMAP reveal that the CMB temperature variations follow a dis-

tinctive pattern predicted by cosmological theory: the hot and cold spots in the

radiation fall into characteristic sizes. The origin of the dipole anisotropy is now

widely accepted as a Doppler effect arising from the motion of the Sun with respect

to the CMB rest frame. Measurements by the COBE, and WMAP, imply a Solar

System velocity with respect to the CMB of 369.0 ± 0.9 km s−1 [Hinshaw et al.,

2009]. Further the studies imply that the Local Group has a net peculiar velocity in

excess of 600 km s−1 with respect to the rest frame of the CMB (Figure 1.5), in the

direction (l, b) ∼ (276o, 30o) ( Maller et al. [2003]; Erdoğdu et al. [2006]).

Figure 1.5: The CMB dipole. Radiation in the Earth’s direction of motion appears
blueshifted and hence hotter, while radiation on the opposite side of the sky is redshifted
and colder. The map indicates that the Local Group moves at about 600 km s−1 relative
to the CMB frame.

Astronomers plot the magnitude of the temperature variations against the sizes of

KWPBS 15
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the hot and cold spots in a graph called a power spectrum. The first acoustic peak of

the anisotropy power spectrum has been detected from COBE data ( Mauskopf et al.

[2000]; Miller et al. [1999]) and the power spectrum has been modified with the each

data release of WMAP ( Bennett et al. [2003]; Hinshaw et al. [2009]). The power

spectrum drawn for the seven-year WMAP data [Komatsu et al., 2010] is shown

in the figure 1.6. The temperature-polarization power spectra, drawn from CMB

data, offer unique tests of the standard cosmological model providing evidence that

the universe is close to spatially flat and indicate the existence of dark energy [Hu

et al., 1999], the model that describes the evolution of the Universe. In this model

the Universe is spatially flat, homogeneous and isotropic on large scales, composed of

radiation, ordinary matter (electrons, protons, neutrons and neutrinos), non-baryonic

cold dark matter, and dark energy.

Figure 1.6: The temperature (TT) and temperature-polarization(TE) power spectra for
the seven-year WMAP data set. The solid lines show the predicted spectrum for the best-fit
flat ΛCDM model. Figure 9, Komatsu et al. [2010]
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1.6 Dark matter and dark energy

Based on the latest observations, we can only observe 4 % of the total energy density

which is called normal matter made up of stars, planets, galaxies and super clusters.

About 22 % is assumed to be dark matter and the remaining 74 % is considered to

be dark energy. In 1932, Oort found evidences for dark matter in the Milky Way

galaxy and then in 1933 Fritz Zwicky inferred large density of matter within clusters

of galaxies [Liddle, 2003]. These evidences implied that dark matter may explain the

rotational speeds of galaxies, orbital velocities of galaxies in clusters, gravitational

lensing of background objects of galaxy clusters, and the temperature distribution

of hot gas in galaxies and clusters of galaxies. Figure 1.7 is an illustration of the

content in the Universe, obtained from the WMAP data. The constraints on Ωb (the

baryonic matter) from nucleosynthesis indicate that the considerable amount of dark

matter in the Universe is non-baryonic. There are three types of non-baryonic dark

matter, namely hot dark matter (HDM), warm dark matter (WDM) and cold dark

matter (CDM).

• HDM - Particles that decouple when ultra relativistic (i.e. move with a velocity

v ∼= c), and they have a number density roughly equal to that of photons.

• WDM - The particle decouples sufficiently early, which means relativistically.

• CDM - The particles decouple when they are nonrelativistic (i.e. v << c).

The cosmic microwave background (CMB) contains information about the dark com-

ponents present in the early universe, specifically the ratio of non-relativistic or cold

dark matter (CDM) to relativistic species such as the neutrino background radiation

(NBR) and the ratio of the baryonic dark matter to the CMB itself [Hu et al., 1999].

The expansion is currently accelerating under the influence of the dark energy giving

a non-zero cosmological parameter Λ [Perlmutter et al., 1999]. Komatsu et al. [2010]

use seven-year WMAP data and obtained the matter density Ωmh
2 = 0.1334+0.0056

−0.0055,

dark matter density, Ωc = 0.222±0.026 and dark energy density, ΩΛ = 0.734±0.029.
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The knowledge of dark matter is critical for explaining the structure formation and

galaxy evolution. The peculiar velocities of galaxies are affected by the gravitational

pull of the dark matter, and therefore the study of peculiar velocity field is very im-

portant in understanding the behaviour of dark matter.

Figure 1.7: The content of the Universe. NASA / WMAP Science Team

1.7 Peculiar velocity field

Some regions of the Universe have more matter density (> ρc) compared to the other

regions. As being carried along by the cosmic expansion with a recession velocity cz,

galaxies are moving through the space towards more denser regions, due to their grav-

itational attraction. Further, these special motions are known as the galaxy peculiar

motions. Hubble’s law is unable to describe these motions as this law breaks down

for nearby galaxies. Therefore, a modified expression of Hubble’s law is necessary to

describe peculiar velocities.
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For a given galaxy, it is difficult to measure the recession velocity cz and the pe-

culiar velocity u(r), separately. However, the cosmological principle emphasis the

typical size of the peculiar velocity would not depend on the position of the galaxy

in the Universe [Liddle, 2003]. Consequently, the peculiar velocities are independent

of the distance, and the Hubble velocity is proportional to distance (i.e.H0r ).

Then, the peculiar velocity u(r) can be expressed in the scalar form (1.44) and vector

form (1.45) as,

u(r) = cz− H0 r. (1.44)

u(r) = r̂ · [v(r)− v(O)] , (1.45)

where r̂ is the unit vector towards the considered galaxy, v(r) is the peculiar velocity

at position r, and v(O) is the peculiar velocity of the observer (i.e. Local Group

velocity- vpec = 600 kms−1, CMB dipole). Then the modified expression of the

Hubble’s law can be obtained by rearranging the terms in the equation (1.44), which

explains peculiar velocities;

cz = H0 r+ u(r), (1.46)

cz = H0 r+ r̂ · [v(r)− v(O)] . (1.47)

The strength and the direction of peculiar velocities are related to the matter distri-

bution around them. Therefore, the study of galaxy peculiar motion is very useful

in understanding the distribution of dark matter in the Universe. Astronomers mea-

sure redshift cz from the redshift surveys. However, these surveys are unable to

separate the peculiar velocity component from cz. As discussed earlier, peculiar ve-

locities are independent of the distance, and therefore, in order to study the peculiar

velocity field, redshift-independent distance measurements are critical. Hence, the

peculiar velocity studies are based on the data sets obtained from the redshift and

redshift-independent distance measurements. All these redshift surveys are only able

to measure the radial component of the peculiar velocity. Astronomers use the ex-

pression of distance modulus to represent the distance measurements, which is the
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subject of the next section.

1.8 Distance modulus

The distance modulus basically depends on magnitude, which can be considered as

the apparent magnitude and the absolute magnitude. The apparent magnitude, m,

is the brightness of the object (i.e. galaxies, stars, planets, clusters) as seen by the

observer on the earth. Further, the apparent magnitude depends on two factors, the

luminosity of the object and the distance of the object from the Earth. The absolute

magnitude, M only depends on the luminosity of the object, which can be considered

as an intrinsic property of the object. Moreover, the absolute magnitude is defined

as the apparent magnitude of an object if it were at a distance of 10 parsecs from

the Earth. A galaxy’s luminosity, L, is the total amount of energy radiated per unit

time. The absolute magnitude, M, of a galaxy is related to its luminosity in the same

way as apparent magnitude, m, is related to flux F . A relation for the difference of

absolute magnitudes M1 and M2 of two galaxies can be obtained by comparing the

ratio of their luminosities;

M1 −M2 = −2.5 log
L1

L2

. (1.48)

Distance Modulus, µ, is the difference between apparent (m) and absolute magnitudes

(M). A relationship between M and m, and distance, d, can be expressed using µ.

The inverse square law tells that the flux is inversely proportional to the square of d.

Consider a galaxy at distance d (parsecs), with observed flux Fm. Then its flux FM

at 10 parsecs would be given by following the inverse square law;

FM

Fm

=
d2

102
. (1.49)

This equation can be combined with equation (1.48), which gives the distance modulus

equation;

µ ≡ m−M = 5 log d− 5. (1.50)
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We can obtain the luminosity-distance relation through the equation (1.50);

m =M + 5 log d− 5. (1.51)

If the absolute and apparent magnitudes of the galaxy are known, then the distance

to the galaxy can be calculated using the distance modulus;

d = 100.2(µ+5) (1.52)

If we consider the distance in units of Mpc, the equation (1.50) has to be rearranged

as follows;

µ ≡ m−M = 5 log d+ 25. (1.53)

The required measurements for the distances can be estimated using redshift, which

is the theme of the next section.

1.9 Redshift

Relative motion of a light source and an observer is subjected to the Doppler Effect.

Further, the wavelength of light increases as it passes through the expanding universe

between the points of emission and the observation, resulting a shift towards the red

end of the electromagnetic spectrum. The increment of the wavelength is propor-

tional to the expansion of the universe. This phenomenon is called the cosmological

redshift. Almost all the galaxies are receding from the earth [Liddle, 2003], and the

cosmological redshift explains this motion clearly, as;

z ≡ νe − νo
νo

=
λo − λe
λe

, (1.54)

where νe and λe are the emitted frequency and wavelength, and νo and λo are the

observed frequency and wavelength, respectively. In special relativity, redshift is

related to the radial velocity v by;

1 + z =

√
1 + v/c

1− v/c
. (1.55)
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There is a difference between the measured redshift zobs, and the cosmological redshift,

zcos, of an object. This deviation occurs due to the influence of the radial peculiar

velocity of the object (Section 1.7). The relation between the peculiar velocity and

the redshift difference can be expressed as [Hogg, 1999],

vpec = c
(zobs − zcos)

(1 + z)
. (1.56)

Applying the binomial expansion to the equation (1.55), the following expression

can be obtained for small redshifts (in the case of small v/c);

z ≈ v

c
. (1.57)

For small distance d, the recession velocity is linearly proportional to the distance;

v = H0d = cz. (1.58)

Therefore,

z ≈ v

c
=

d

DH

. (1.59)

Many galaxy redshift surveys use the non-relativistic approximation v = cz, when

presenting redshifts as radial velocities.

1.10 Redshift-independent distance indicators

Accurate measurement of distance is critical in predicting peculiar velocities. More-

over, the uncertainty of the distance of a galaxy is highly influential on the accuracy

of the galaxy peculiar velocity. Standard candle distance indicators are the most

prominent methods of obtaining the distances of galaxies with high level of accuracy.

An astrophysical object, such as a supernova or variable star with known absolute

magnitude, is referred to as a standard candle. This absolute magnitude is assumed

to be a constant for a corresponding standard candle. If an object can be identified

as a standard candle, then the distance of the object can be obtained using the lumi-
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nosity distance relationship (i.e. equation 1.51), which involves the known absolute

magnitude M and the measured apparent magnitude m. A sequence of techniques

has been used to estimate the distance of remote objects, the so-called distance lad-

der. Each technique in the sequence is calibrated by the previous techniques, and

extends the range of measurement to greater distances.

The distance indicators in the distance ladder can be divided into two groups, the

primary and secondary distance indicators. The primary distance indicators (PDI )

measure distances calibrated from the observations taken from the Local Group or

from the theoretical considerations. When we have established the distances to nearby

galaxies with primary methods, we use them to calibrate the less secure secondary

methods, which have to be used to find the distances to distant galaxies. The major

PDI used in distance measurements are the Cepheid variable stars and RR Lyrae

variable stars.

1.10.1 RR Lyrae variable stars (< 1 Mpc)

RR lyrae variable stars (RRL) are important mostly for measuring distances of the

old, low-mass stars [Smith et al., 2003]. The most popular approach to estimate the

RR Lyrae distances is theMV -[Fe/H] relation and this only requires two observables,

the apparent visual magnitude and the metallicity (i.e. the proportion of matter of

an object made up of chemical elements other than hydrogen and helium). According

to the evidences from several recent theoretical and empirical studies the RR Lyrae

stars are considered to be excellent standard candles in the near-infrared spectral

range [Bono, 2003].

Longmore et al. [1986] discovered that the RRL variable stars obey a period-luminosity

(P-L) relation in the near-infrared K-band. This finding allowed to apply infrared

versions of the Baade-Wesselink method to calibrate the luminosities and distances of

RRL stars ( Liu and Janes [1990]; Skillen et al. [1993]; Jones et al. [1996]). The first

theoretical constraints on the K-band P-L relation of RRL stars are based on non-

linear convective pulsation models that were presented by Bono et al. [2001]. Further,
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theoretical explorations of the RRL period-mean magnitude-metallicity relations in

near-infrared pass bands were carried out by Bono et al. [2003]. They found the

distance modulus of the LMC cluster Reticulum, a sizable sample of RR Lyrae, to be

18.45, using the K-band Period-Luminosity-Metallicity relation for RR Lyrae stars.

With the approach of the Hubble space telescope, the RRL variable stars within a

region up to a distance of 1 Mpc can be considered for distance measurements.

1.10.2 Cepheid variable stars (≤ 20 Mpc)

One of the significant features of Cepheids is that they are readily observable in

nearby galaxies and the Local Group. Further, Cepheids play a key role in distance

determinations because of the correlation between their mean absolute magnitude

and the period. This Cepheid variable period-luminosity (P-L) relation was discov-

ered in 1907 by Henrietta Leavitt. Sandage [1958] found that the displacement of

the points in the period-luminosity diagram from the average line is correlated with

the mean colour of the star, measured by the blue-visual colour index B-V. This

period-luminosity-colour (P-L-C) relation appeared to be the most accurate way to

measure distances with Cepheids.

The cosmic distance scale was usually established by defining the P-L relations for

Cepheids in the Large Magellanic Cloud (LMC) and many of which have been discov-

ered as a result of microlensing campaigns [Udalski et al., 1999]. The Cepheid P-L

and P-L-C relations in the LMC were carefully analyzed by Martin and co-workers,

where they obtained a distance modulus of 18.7 [Schommer et al., 1984], and roughly

consistent results were obtained from several recalibrations done in the same period

( Caldwell [1983] and Stothers [1983]). Schommer et al. [1984] found a distance

modulus of 18.2 for LMC with a galactic Cepheid zero-point calibration. Sandage

and Tammann obtained observations for NGC 2403 in the M81 group obtaining a

distance 3.225 Mpc, and they calibrated this value using the stars of the Magellanic

Clouds and the Milky Way [Rowan-Robinson, 1985].

Benedict used Wesenheit index [Madore and Freedman, 1991] with P-L relation
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Figure 1.8: Magellenic Cloud Cepheid period-luminosity relationship at seven wave-
lengths, from the blue to near infrared. (Figure 4 of Madore and Freedman [1991])
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[Benedict et al., 2007] and yielded a distance modulus 18.40, somewhat smaller than

the value adopted by the Hubble Space Telescope Key Project (18.54) for LMC

[Freedman et al., 2001]. An et al. [2007] derived distances to NGC 4258, in the

LMC, and M33 of distance modulus = 29.28 ± 0.10, 18.34 ± 0.06, and 24.55 ± 0.28,

respectively. While Cepheids are determining the distances within the Local Group,

they are also involve in calibrating the secondary distance indicators which have been

used to determine the Hubble constant, for example the projects like Hubble Space

Telescope (HST) Key Project on the extragalactic distance scale [Freedman et al.,

2001]. In the early stage of applying the primary distance indicators, Cepheids were

only able to measure a distance up to 4 Mpc of the space. However, with the launch

of the HST, this range can be extended to 20 Mpc.

1.11 Secondary distance indicators

Secondary distance indicators (SDI ) are calibrated from the distances measured to

nearby galaxies using primary distance indicators. Most of the SDI are calibrated

against the distance to the LMC, M31 and M33 [Bothun, 1998]. Further, these SDI

are used to measure the distances to more remote galaxies beyond the Local Group.

This in turn extends the ability of distance measurements from 20 Mpc (boundary of

PDI) to more than 1000 Mpc. Some of the reliable and well-known SDI are the type

Ia supernovae (SNIa), the Tully Fisher (TF) relation and the luminosity functions of

some astronomical objects.

1.11.1 Type Ia supernovae (≤ 1000 Mpc)

SNIa are the thermonuclear explosions of degenerate white dwarfs (Figure 1.9(a))near

the Chandrasekhar limit, i.e. 1.4 M⊙ [Wheeler et al., 1990], or possibly mergers of

white dwarfs in a binary system (Figure 1.9(b)) [Paczynski, 1985]. With their high

intrinsic luminosity, SNIe have demonstrated their enormous potential as distance

indicators (Riess et al. [1996]; Hamuy et al. [1995]). Astronomers believe that the

SNIe can provide among the most accurate values of H0, q0 (the deceleration param-

eter), Ωm (the matter density), and Λ (the cosmological constant, Λc2/(3H2
0 )).
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(a)

(b)

Figure 1.9: (a) A supernova occurred due to the thermonuclear explosions of degener-
ated white dwarfs. jumk.de/astronomie/sterne-a/novae.shtml (b) SNIe will result when a
white dwarf star in a binary system accumulates enough matter from its larger companion.
www.lbl.gov/.../sabl/2007/Nov /darkenergy2.html

Until the mid-1990s, the SNIa were considered in determining the cosmological dis-

tance under the assumption that they are perfect standard candles. The observed

peak brightness of SNIa were considered for the measurements. It is assumed that the

scatter in the peak blue luminosity is relatively small for SNIa (σB ≈ 0.4− 0.5 mag;

Branch and Miller [1993]) and also that peculiar objects have been eliminated when

taking the measurements. SNIa are not precisely standard candles, the variability

in SNIa observables however introduces uncertainties that limit their effectiveness as

distance indicators. The intrinsic dispersion in the peak brightness of SNIa events
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can be constrained to about 0.2 magnitudes by calibrating the measured luminosity

with corrections determined by the shape of the light curve [Phillips, 1993].

Phillips [1993] found that the rates of decline of the brightness of the SNIa are corre-

lated with their peak luminosities, allowing new ways to measure the distances. The

Phillips correlation between peak luminosity and ∆m15(B) (a parameter that mea-

sures the total decline from B-band maximum in 15 days) has refined by Hamuy and

co-workers. They used the SNIa discovered during the Calán/Tololo survey (z ≤ 0.1)

[Hamuy et al., 1995]. The scatter in the Hubble diagram of normal supernovae has

reduced only to 0.17 in B band from this method.

Figure 1.10: Hubble diagram of Type Ia supernovae. Figure 2, [Hamuy et al., 1995]

A correlation between the luminosity of SNIa with the shape of the overall light

curve, the Multi-colour Light-Curve Shape (MLCS), has been discovered by Riess

and co-workers [Riess et al., 1996]. Applying this method to 20 SNIa, Riess and
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co-workers found out a decrease in the scatter from 0.52 mag to 0.12 mag [Riess

et al., 1996]. Moreover, Jha et al. [2007] presented an updated version for MLCS,

known as MLCS2k2 . They applied this method to 133 nearby SNIa, including 95

objects in the Hubble flow (cz = 2500 km s−1), and found out an intrinsic dispersion

of less than 7% in distance. SNIa light curves obtained by the Calan/Tololo survey

indicated that it is possible to measure distances with SNIa light curves to a precision

approaching 5% [Hamuy et al., 1995].

In the past few years, many nearby SNIa have been found by the industrious amateur

astronomers including R. Arbour, M. Armstrong, T. Boles,T. Puckett, M. Schwartz,

and others. The Lick Observatory Supernova Search (LOSS) got the credit of detect-

ing SNIa [Filippenko, 2005] discovering 20 SNIa in 1998, 40 in 1999, 38 in 2000, 68 in

2001, 82 in 2002, and 95 in 2003. There are 250 high redshift SNIa (z > 0.2) and 57

low redshift SNIa (z ≤ 0.2) in the Union data set [Kowalski et al., 2008]. The most re-

cent Constitution data set is the largest sample, which have 147 nearby SNIa [Hicken

et al., 2009]. The advantage of having a considerable amount of well-observed SNIa

is calibrating the distance determinations more precisely. The near-infrared Hubble

diagrams of SNIa constructed by [Krisciunas et al., 2004], using JHK light curves

of nearby SNIa [Krisciunas et al., 2003], suggested that SNIa are better-behaved as

standard candles in the near-infrared than in the optical.

Filippenko [2005] found that H0t0= 0.96± 0.04 using about 200 SNIa and combining

their results with large-scale structure surveys, they found a best fit for Ωm and ΩΛ

of 0.28 and 0.72, respectively . Apart from the methods discussed above, there are

a number of other methods that have been developed to model SNIa light curves.

Some of them are stretch (stretch of the time axis of a fixed template to approximate

different SN light curves) (Perlmutter et al. [1997]; Goldhaber et al. [2001], super

stretch [Wang et al., 2006], ∆m15 (an empirical method for fitting multicolour light

curves of Type Ia supernovae) [Prieto et al., 2006], BATM (The Bayesian Adapted

Template Match) [Tonry et al., 2003], CMAGIC (a color-magnitude intercept calibra-

tion (CMAGIC) method) [Wang et al., 2003], SALT (a spectral adaptive light curve
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template for type Ia supernovae) [Guy et al., 2005], and SALT2 [Jennings et al.,

2007]. In addition Conley and co-workers (2008) present a new empirical method

for modelling SNIa light curves by manipulating a spectral template, namely SiFTO.

This increases the ability of using more of the available data. Most of these current

methods give relative distances to a precision of ∼ 7− 10% [Conley et al., 2008].

1.11.2 Tully Fisher Relation (≤ 300 Mpc)

Tully and Fisher [1977] discovered a correlation between the absolute magnitude of

a spiral galaxy and the width of the 21-cm emission line of neutral atomic hydrogen

(HI 21 cm) . The width of the HI 21 cm line is a distance-independent observable

which gives the rotational velocity of the spiral galaxy. This empirical relationship

between the absolute magnitude and the maximum rotation velocity of spiral galaxies

is well-known as the Tully - Fisher relation (TF). Specifically;

L ∝ vαrot, (1.60)

or, in the logarithmic formulation;

M = A− bη, (1.61)

where M = −2.5 log(L)+constant is the absolute magnitude, and the velocity width

parameter η = log(2vrot)− 2.5. The vrot is a useful dimensionless measure of rotation

velocity. It is important to note that the power law exponent α does not contain a

unique value. The details of both the photometric and spectroscopic measurements

affect on it. A typical result found in contemporary studies is α = 3 [Willick, 1996].

Observers use different techniques to measure the relevant quantities like apparent

magnitudes, diameters and internal velocity width. Further, they apply different cor-

rections to the raw observables. As a result, there are various type of TF, K-band,

B-band and R-band, for instance. Soon after the discovery of TF, it plays a vital role

as a distance indicator, eventhough the physical origin of this relationship doesn’t
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understood clearly. Using TF, Sandage and Tammann recalibrated the previously

determined distances to the M81-NGC and the Virgo cluster. The recalibrations

results showed a similarity with previous results [Sandage and Tammann, 1976],

proving that TF is a potential distance indicator. Another attempt carried out by

Aaronson et al. [1979], an investigation performed with infrared photometry and TF,

revealed that the dynamical origin of TF has a similar behaviour like L = v4 power

law for elliptical galaxies. Further, their studies confirmed TF as a powerful tool for

determining the redshift-independent distances to the adjacent great clusters. The

results from analyzes of 1,355 spirals using the Tully-Fisher relation to determine

distances [Mathewson et al., 1992] lead to an appreciated coherence length and an

amplitude of the local peculiar velocity coherence field. Numerous studies ( Gio-

vanelli et al. [1998]; Freudling et al. [1999]) emphasized the importance of TF as a

secondary distance indicator in the study of the local peculiar velocity field.

Galaxy distance indicators are subjected to different uncertainties and biases, which

may be reflected in the peculiar velocity field. Radial velocities used to infer the pecu-

liar velocity of the galaxies, are often referred to the Cosmic Microwave Background

frame. It should be remarked that galaxy distance estimates are subject to errors

due to the scatter in the TF relation ( Mo et al. [1998], Mathewson et al. [1992])

and uncertainties of the TF zero-point [Willick, 1991]. The possible presence of a

small fraction of false velocities in the data induced by either galaxy peculiarities or

observational errors in distance estimates should be taken into account. The scatter

in Tully Fisher (σTF ) can be discussed in three forms, magnitude and velocity width

measurement errors, and intrinsic or cosmic scatter. Recent studies have suggested

that the velocity width measurements errors and cosmic scatter are about equally im-

portant, contributing 0.25− 0.3 each [Willick, 1996]. The magnitude measurement

errors are quite small compared to the others giving an overall σTF in about 0.4mag

[Willick, 1996]. There is one galaxian property, where the TF scatter appears to vary,

and that is the luminosity (velocity width) and brighter galaxies exhibit a smaller

TF scatter than fainter ones ( Federspiel et al. [1994]; Willick [1996]).
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In 2008, Meyer and co-workers examined the optical and near-infrared Tully-Fisher

relations for an HI-selected sample of galaxies. The intrinsic scatter and slope of

the Tully-Fisher relation are measured by applying galaxy selection cuts to minimize

observational errors [Meyer et al., 2008]. For the B-band relation, a slope of 3.40

± 0.09 was obtained with an observed scatter of 0.40mag (intrinsic 0.33mag), and

for the K-band relation a slope of 3.75 ± 0.08 was found with an observed scatter of

0.33mag (intrinsic 0.25mag). Including the observed HI masses to calculate baryonic

relations, a slope of 3.91 ± 0.13 was obtained in B and 4.35 ± 0.14 in K. The bary-

onic Tully-Fisher relation (BTF) is a fundamental relation between baryonic mass

and maximum rotation velocity. Trachternach and co-workers [Trachternach et al.,

2009] found a scatter of 0.33 mag for the BTF relation using the data from the larger

sample of Schombert et al. [1997], which is one of the largest samples of extreme

field dwarf galaxies.

1.12 Malmquist bias

With the development of better observational methods, particularly resulting from

the use of HST, the construction of the cosmological distance ladder is steadily im-

proving. However, some fundamental difficulties occurred because of the noisiness

of the distance indicators. For example, Tully-Fisher has a typical distance error

dispersions of about 20% for an individual galaxy. When applying the distance in-

dicators to estimate peculiar velocities these scatters would cause systematic errors

for the results, and this effect is known generically in the literature as Malmquist bias.

According to Karl Gunnar Malmquist (1920), the Malmquist bias can be described

as the bias occurs in a luminosity distribution of observable galaxies in a flux-limited

sample. The mean luminosity of observable galaxies is brighter than the underlying

population of galaxies because the intrinsically fainter galaxies would be missing from

the sample at large distances. Nearer the observer, galaxies with average or below-

average luminosity can also be seen. Hence, this bias depends on the distance from

the observer. Malmquist bias is a statistical effect and formally can be evaluated
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using probability theory.

Figure 1.11: An example of the influence of the Malmquist bias in distance determination.
This figure shows the bias as a function of distance for POTENT velocity recoveries of quiet
Hubble flow with galaxies drawn from a homogeneous universe. Solid line referred to the
inverse Tully-Fisher estimator in the raw form (ITF estimator). The dashed and the dotted
lines referred to the homogeneous Malmquist correction (HMC) and the inhomogeneous
Malmquist correction (IMC). Figure 4, Newsam et al. [1995].

Developing a method for correcting Malmquist bias is a widely discussed topic and

numerous attempts have been reported ( Willick [1994]; Hendry and Simmons [1995];

Teerikorpi [1998]; Gonzalez and Faber [1997]). Most of these studies were carried

out by considering the Malmquist bias in two categories [Teerikorpi, 1998].

• The systematic average error in the distance modulus µ for a class of galaxies

with derived µ = µder = constant.

• The systematic error in the average derived distance modulus [µder] for the class

of galaxies with true µ = µtrue = constant.

Teerikorpi [1997] named these two as the Malmquist bias of the first kind and the

Malmquist bias of the second kind. The bias of the first kind is the classical Malmquist
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bias introduced by Malmquist (1920). In literature these two biases have appeared

under different names (Table 1.2). Teerikorpi [1990a] separated the study of the Hub-

ble diagram into distance against velocity and velocity against distance. Hendry and

Simmons [1995] considered Bayesian and frequentist approaches in terms of math-

ematical statistics. Strauss and Willick [1995] used the terms Malmquist bias and

selection bias, where they emphasized by selection the availability of galaxies re-

stricted by some limit (flux, magnitude, angular diameter).

Table 1.2: Different names of the Malmquist bias

Author Nomenclature

Kapteyn [1914] Problem II Problem I
Landy and Szalay [1992] General Malmquist bias –
Han [1992] Geometry bias Selection effect
Teerikorpi [1990b] V against r r against V
Sandage [1988] Classical Distance-dependent
Hendry and Simmons [1995] Bayesian Frequentist
Willick [1994] Inferred-distance problem Calibration problem
Strauss and Willick [1995] Malmquist bias Selection bias
Teerikorpi [1995] M-bias of the first kind M-bias of the second kind

Gonzalez and co-workers found that the Malmquist bias associated with the H0 Key

Project, where determination of the distance to the Virgo cluster is of order 6-8%

[Gonzalez and Faber, 1997]. While numerous studies are involved in methods of

correcting the Malmquist bias, some are focused their studies to find methods to

calibrate the distance indicators without using the Malmquist bias corrections.

According to a technique developed by Theureau et al. [1998], the normalized dis-

tance method (NDM) does not require any explicit bias correction for the calibration

steps. This was introduced as a reliable method for correcting Tully-Fisher distances.

Hendry & Rauzy introduced a ROBUST method for measuring the Hubble parameter

and also for fitting peculiar velocity field models, which address selection effects but

are completely independent of explicit Malmquist bias corrections (we discuss about

this method in detail in Chapter 3). The value they obtained is H0 = 66 km s−1

[Hendry et al., 2001] and β = 0.6 ± 0.125 [Rauzy and Hendry, 2000] . A third bias

has been introduced by Butkevich et al. [2005] the integral bias, an extension for the

first kind and the second kind of bias, while developing a method for determination

KWPBS 34



1.13. Redshift surveys

of regions unaffected by the bias. With the development and approach of various

techniques, the calibrations of the distance ladder with redshift-distance indicators

would gain more accuracy, minimizing the influence of Malmquist bias. This will

be a significant advantage for the galaxy distance determinations and studies on the

peculiar velocity fields.

1.13 Redshift surveys

Redshift surveys of galaxies are useful tools in understanding the large scale structure

of the Universe. The data gathered from these surveys can be used to measure the

cosmological parameters. Specifically, these data are essential in obtaining data for

the peculiar velocity field of galaxies, and compare the galaxy distribution to the mass

distribution. These surveys provide important information to improve the statistical

knowledge of the galaxy distribution. The data obtained from pencil-beam surveys

(one-dimensional) of nearby clusters suggested that the galaxy distribution in the

Universe was very uneven [da Costa et al., 1996]. Such a survey was carried out by

Sandage in 1978 with a median redshift of 1500 km s−1. Although, the pencil- beam

surveys are able to cover very small region of the space, and they are too narrow to

provide enough information about the large scale structure.

The Centre for Astrophysical Redshift Survey (CfA, 1977), opened up a new era for

the large scale sky surveys. The first CfA Survey considered measurements of radial

velocities for all galaxies brighter than 14.5 [Geller and Huchra, 1983]. This survey

produces the first large area and reasonably deep maps of large scale structure in the

nearby Universe. Soon after, there were several similar attempts went on surveying

the large scale structure. The second CfA survey (CfA2) was started by John Huchra

and Margaret Geller and provided data about 18,000 bright galaxies in the northern

sky. There were number of efforts carried out by several groups, performing even

larger surveys appeared to be critical with the aim of gaining in-depth knowledge of

more complex problems in the Universe.
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Figure 1.12: 3D distribution of approximately 30,000 galaxies from the CfA Catalog. The
Milky Way is in the center of the plot. The dark empty horizontal cones are the areas in
the zone of avoidance. The vertical scale of the plot is 160 Mpc (qo = 0.5, Ho = 100).

1.13.1 IRAS

Zone of Avoidance: The dust and gas in the Milky Way absorbed the light from

galaxies causing extinction at optical wavelengths, and therefore foreground stars

can be confused with background galaxies. This band in the sky is well-known as

the Zone of Avoidance (ZoA). Most of the redshift surveys encounter difficulties in

detecting the objects in ZoA.

However, in the case of longer wavelengths like infrared, the extinction becomes mi-

nor. The Infrared Astronomical Satellite (IRAS) and 2MASS were designed using

the above phenomenon. These surveys improved the sensitivity of the measurements

allowing the astronomers to observe the unbiased all-sky at the infrared wavelengths

[Neugebauer et al., 1984]. The IRAS, the first space-based observatory, was able to

survey the 95% of all-sky in four wavelengths 12, 25, 60 and 100 µm. The point

source catalogue (IRAS PSC) produced from this survey intended to be highly reli-

able (> 99.8%). The survey reasonably cover over the unconfused portion of the sky
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98% away from the galactic plane and other regions such as the Magellanic Clouds

and the Gould belt [Rowan-Robinson et al., 1984]. Strauss et al. [1992] presented a

redshift data for 2658 galaxies, from the IRAS database, and the sample is restricted

to a flux of 1.936 Jy. A redshift survey with 2663 galaxies was given by Fisher in

1995. The galaxies are in the flux interval 1.2 - 1.936 Jy and considered to be an

extension for the 1.936 Jy sample [Fisher et al., 1995a].

The IRAS Bright Galaxy Survey - Part I and Part II or BGS1 [Soifer et al., 1989]

and BGS2 [Sanders et al., 1995] covers 83% of the sky. The BGS2, the extension

of the original survey BGS1, use the optical telescopes in Mauna Kea and in Ar-

gentina, and extended the search for IRAS bright galaxies to southern declination (δ

≤ -30◦) and closer to the galactic plane (5◦ < |b| ≤ 30◦). These BGS1 and BGS2

surveys contain all extragalactic sources brighter than 5.24 Jy at 60 µm, and this was

believed to be the best sample available in 1995, defining the infrared properties of

galaxies in the local (z ≤ 0.1) Universe [Sanders et al., 1995]. In 2003, Sanders and

co-workers provided a new galaxy sample, namely the IRAS Revised Bright Galaxy

Sample (RBGS) with 629 galaxies. This was a complete flux-limited survey of all

extragalactic objects with total 60 µm flux density greater than 5.24 Jy [Sanders

et al., 2003], which covered the entire sky surveyed by IRAS at Galactic latitudes

|b| > 50 and a maximum redshift of 0.0876.

1.13.2 The IRAS PSCz survey

The IRAS Point Source Catalogue redshift (PSCz) survey is one of the surveys that

involve in numerous studies in peculiar velocity field because of its completeness and

the large sky coverage. The survey detected 15, 500 galaxies with a coverage of 84%

of the sky and consists of redshifts for (almost) every galaxy in the IRAS PSC with 60

micron flux above 0.6 Jy ( Saunders et al. [1999]; Saunders et al. [2000]). The redshift

for 10,500 galaxies are taken form the literature and some other sources. Saunders

and co-workers have observed the redshift for the other 4500 galaxies from January,

1992 to July, 1995. They used the Isaac Newton Telescope at La Palma Observatory,

the Cerro Tololo Interamerican Observatory, and the Anglo-Australian Telescope for
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their observations. The data catalogues we used for our study are obtained from this

IRAS PSCz main catalogue.

Figure 1.13: Isodensity contours of the galaxy distribution of PSCz galaxies within a
sphere of radius 180 Mpc h−1. icc.dur.ac.uk/Links/PSCz/psczM2-small.gif

1.13.3 SDSS

The Sloan Digital Sky Survey (SDSS), a digital photometric and spectroscopic sur-

vey, is one of the most significant low-redshift surveys. The SDSS covered 1/4 of

the Celestial Sphere in the North Galactic cap and a sparser and deeper region in

the Southern hemisphere [Abazajian et al., 2003], using a 2.5 meter telescope at

Apache Point Observatory, in New Mexico. The flux densities of detected objects are

measured almost simultaneously in five bands, which are u, g, r, i, and z [Lupton

et al., 2001].

The SDSS-I (2000 - 2005) and SDSS-II (2005 - 2008) covered more than 8,000 square

degrees of the sky and produced 3-D maps of 930,000 galaxies and more than 120,000
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quasars. The main galaxy sample has a median redshift of 0.1, and there are redshifts

for luminous red galaxies as far as z = 0.4. The third step of the survey, SDSS- III,

is currently underway from 2008.

1.13.4 2dFGRS

The 2dF Galaxy Redshift Survey (2dFGRS), a major spectroscopic survey with high

two degree field facilities, is designed to measure redshifts approximately for 250,000

galaxies. The 2dF multi-fibre spectrograph on the Anglo-Australian Telescope, which

can observe 400 objects simultaneously over a 2◦ diameter field, was used for taking

the observations [Colless et al., 2001]. A region spanning 80◦× 15◦ around the south

galactic pole, another in the northern hemisphere spanning 75◦× 10◦ along the celes-

tial equator, and also random fields scattered around the SGP strip were considered

as the main survey regions. This survey covers 2,000 deg2 and has a median depth

of z = 0.11.

The 2dFGRS obtained spectra of 245,591 objects, in particular galaxies, brighter

than a nominal extinction-corrected magnitude limit of bJ = 19.45 [Colless et al.,

2001]. Reliable redshifts were obtained for 221,414 galaxies. Some of the main goals

of 2dFGRS were to measure the galaxy power spectrum P (k) on scales up to a few

hundred Mpc, to measure the redshift-space distortion of the large-scale clustering

that results from the peculiar velocity field, produced by the mass distribution and

higher-order clustering statistics of the galaxy distribution to determine the bias pa-

rameter b [Colless et al., 2001].

1.13.5 2MASS

The Two Micron All Sky Survey (2MASS) is the large-area near-infrared survey

which was carried out after the last near-infrared survey, the so-called Two Micron

Sky Survey (TMSS; Neugebauer & Leighton 1969). TMSS covered 70% of the sky and

detected about 5,700 celestial sources of infrared radiation. With the development of

infrared detector technology, new sensitive array detectors can now detect astronom-
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ical objects over 100 million times fainter than that of detected in the TMSS.

Figure 1.14: Full-sky distribution of point (2MASS PSC) (top) and extended (2MASS
XSC) (bottom) sources. Point sources are presented in Galactic coordinates centered on
b = 0◦ and l = 0◦. The extended source map is presented in equatorial coordinates and
centered at α = 180◦ and δ = 0◦. The faint blue band in the extended source map traces
the Galactic plane as represented by the Point Source Catalog. Intensity is proportional
to source density. The images are a colour composite of source density in the J (blue),H
(green), and Ks (red ) bands. Figure 13 of Obrić et al. [2006]

The Two Micron All Sky Survey (2MASS) project is designed to close the gap be-

tween our current technical capability and knowledge of the near-infrared sky. This

survey provided important information about the large-scale structure of the Milky

Way and the Local Universe. Between 1997 June and 2001 February, 2MASS ob-

served 99.998% of the celestial sphere in three near-infrared bands, using two 1.3 m

diameter telescopes, one at Mount Hopkins, Arizona, and the other at Cerro Tololo,

Chile [Skrutskie et al., 2006]. Each telescope was equipped with detectors which

simultaneously observed in the J (1.25 µm), H (1.65 µm), and Ks (2.17 µm) bands.
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The magnitude limits of the 2MASS, with respect to Vega, were 15.8, 15.1 and 14.3

respectively. The detectors were sensitive to point sources brighter than 1 mJy at the

10σ level, corresponding to these magnitude limiting. The point-source photometry is

considerably better than 10% precision at this level, and the astrometric uncertainty

for these sources is less than 0.2 arcsec. The 2MASS catalogs contain positional and

photometric information for 470,992,970 point sources (2MASS PSC) and 1,647,599

extended sources (2MASS XSC) [Obrić et al., 2006]. Figure (1.14) illustrates the

full-sky distribution of both these sources.

2MASS has achieved an 80,000-fold improvement in sensitivity relative to earlier

surveys. This is a very important advantage for the next generation of infrared space

missions, such as HST/NICMOS, the space Infrared Telescope Facility (SIRTF), and

the James Webb Space Telescope. Further, this will be benefitted from for the pow-

erful ground-based facilities, such as Keck I, Keck II, and Gemini, which require a

new census with vastly improved sensitivity and astrometric accuracy.

1.13.6 6dF survey

The approach of the wide-field spectrographs is one of the major issues on the im-

provements of present knowledge of the structure and constituents of the low-redshift

Universe. The 2dF Galaxy Redshift Survey (2dFGRS; [Colless et al., 2001]) and

the Sloan Digital Sky Survey (SDSS; Abazajian et al. [2009]) provided data of lumi-

nosity and clustering properties of galaxies and the amount and spatial distribution

of dark matter, with high precision [Jones et al., 2009]. Other advantages of such

surveys are providing considerable constraints on ΛCDM models of the Universe.

With these important applications it is understood that, a combined redshift and

peculiar velocity survey has impressive ability to offer better constraints on param-

eters of cosmological interest than survey of redshift alone [Burkey and Taylor, 2004].

The 6dF Galaxy Survey (6dFGS) is a spectroscopic survey of the entire southern

sky (83 %) with |b| > 10. This is a multi-fiber spectrograph attached to the UK

Schmidt Telescope (UKST) and named after telescope’s field of view, which is 6 de-
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grees in diameter. 6dF is the third generation of multi-fiber spectrograph (Figure

1.15) on the UKST. The near-infrared total magnitudes are taken from the Two

Micron All-sky Survey (2MASS) Extended Source Catalogue (XSC; Jarrett et al.

[2000]) and the limits were (K,H,J) = (12.65, 12.95, 13.75) [Jones et al., 2009].

The measurements taken in between January 2002 and July 2003, for 52,048 spectra

Figure 1.15: 6DF, an automated fiber positioner, configures magnetic fibre buttons on
the curved focus of the field assembly under precise robotic control (5µ m) at the exact
co-ordinates of celestial objects. Figure 1 of [Wakamatsu et al., 2003].

from 46,474 unique galaxy redshifts were published as the first data released (DR1),

[Jones et al., 2004] The median survey redshift is z = 0.055, which is less than that of

the 2dfGRS or SDSS surveys. The Second Incremental Data Release (DR2), also an

extension for DR1, was contained observations from January 2002 to October 2004,

with 89,211 spectra from 83041 unique galaxy redshifts over roughly two-third of the

southern sky [Jones et al., 2005].

The final data release of the 6DF Galaxy Survey [Jones et al., 2009] contains

136,304 spectra which yields 110,256 new extragalactic redshifts and a new cata-

logue of 125,071 galaxies with a median redshift z = 0.05. A database including

velocity dispersions, distances and peculiar velocity of more than 10,000 bright, early

type galaxies will be released in the future. This will contain redshift maps of the

southern local Universe (z <= 0.1), showing nearby large-scale structures unseen to

date. Future surveys with next generation radio telescopes such as ASKAP and the

SKA will also benefit from the legacy of 6dFGS, as they probe comparable volumes
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Figure 1.16: Comparison of 6dF with SDSS and 2dFGRS

in HI with the benefit of prior redshift information across most of the southern sky.

Figure 1.17: Full 6dFGRS field coverage (filled circles) and unobserved target fields (open
circles). Figure 1 of Jones et al. [2009].

1.13.7 SKA

The Square Kilometre Array (SKA) is a global project to plan and construct the

next-generation international radio telescope operating at metre to centimetre wave-

lengths with a total approximate collecting area of 1 km2 [Schilizzi et al., 2008].

The concept of the SKA is based on develop a telescope to provide two orders of

magnitude increase in sensitivity at metre to centimetre wavelengths.

There are five main goals in SKA;

1. Cradle of Life.
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2. Probing the Dark Ages.

3. The origin and evolution of Cosmic Magnetism.

4. Strong field tests of gravity using pulsars and black holes.

5. Galaxy evolution, cosmology and dark energy.

As a global effort, SKA is currently governed by an international association of 15

countries. The two potential sites currently proposed for the SKA are, near Boolardy

station in Western Australia, and in the Karoo region of South Africa [Gaensler,

2009]. With high flexibility of the instruments, SKA will cover large-area of the Uni-

verse in a broad range of frequencies from 0.07-0.25 GHz in many different operating

modes. At an observing frequency of 1.4 GHz, the SKA will have a maximum an-

gular resolution of 0.02′′ and a field of view of 20 square degrees. These qualities

allow SKA to become the most sensitive (50 times more sensitivity than VLA - Very

Large Array) radio telescope with outstanding survey capability compared to any

other existing radio facility. A unique capability of radio arrays is that they can

begin taking data long before the full facility is complete. Under these abilities SKA

going to begin its operations in around 2016 [Gaensler, 2009].

1.13.7.1 SKA Polarization Pathfinders

Although the complete construction of the array takes most of the next decade, a

large number of pathfinder facilities are already taking data or under construction

[Gaensler, 2009]. Many of these will conduct experiments on polarimetry, Faraday

rotation and magnetic fields.

New telescopes with such capabilities include:

• The Galactic Arecibo L-Band Feed Array Continuum Transit Survey (GAL-

FACTS), a 1.4-GHz survey [2008 - 2012], which will map the entire polarized

sky visible to Arecibo.

• The Low Frequency Array (LOFAR) is situated in the Netherlands and Ger-

many, which explores polarization over the whole northern sky at very low
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Figure 1.18: The timeline of SKA. From www.skatelescope.org

frequencies (ν = 30 − 80, 110 − 240 MHz). The LOFAR has taken its first

observation in July, 2009.

• The Allen Telescope Array (ATA) in northern California, a newly operational

facility that holds a wide field of view (5 deg2 at 1.4 GHz) and can carry out

very large continuum surveys.

• The Square Kilometre Array Molonglo Prototype (SKAMP), a refurbishment

of the Molonglo Observatory Synthesis Telescope in south-eastern Australia,

which will provide 18,000 m2 of collecting area for studying diffuse polarization

at an observing frequency ≈ 1 GHz over the wide fields.

• The Murchison Widefield Array (MWA), an interferometer being built in West-

ern Australia. This will study polarized emission over wide fields in the fre-

quency range 80-300 MHz.

• The Expanded Very Large Array (EVLA), a substantial upgrade to the VLA
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in New Mexico, providing greatly improved continuum sensitivity, frequency

coverage and correlator capability.

• The Karoo Array Telescope (MeerKAT), an array of 80 12-metre dishes, each

equipped with a wideband feed covering the frequency range 0.7-10 GHz.

• The Australian SKA Pathfinder (ASKAP), an array of 36 12-metre antennas to

be built on the Western Australian SKA site. ASKAP will be a very wide-field

survey instrument (30 deg2 at 1.4 GHz), and will be able to study polarization

at a range of spatial scales in the frequency range 700-1800 MHz [Johnston

et al., 2008]. The main goal of ASKAP is to detect one million galaxies in

atomic hydrogen emission across 75% of the sky out to a redshift of 0.2 to

understand galaxy formation and gas evolution in the nearby Universe.

The interesting details about the polarized sky are exposed by GALFACTS and

the ATA, with even more powerful facilities such as the EVLA and ASKAP now

under construction. In particular, the new wide-field sensitive surveys that will be

carried out by ASKAP and the EVLA will allow us to derive catalogues of polarized

extragalactic source counts down to fluxes of a microjansky or lower. These activities

will culminate in the next decade with the arrival of the SKA, and a consequent

exploration of the full magnetic Universe.

Figure 1.19: ASKAP antennas. www.ska.gov.au
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1.13.8 Widefield ASKAP L-band Legacy All-sky Blind sur-

vey: WALLABY

WALLABY is one of the pathfinder of ASKAP. Some other HI surveys related to

ASKAP are in operation, for example DINGO (Deep Investigation of Neutral Gas

Origins, [Meyer, 2009]), GAMA survey (Galaxy And Mass Assembly, [Driver et al.,

2009]). This thesis focuses on WALLABY survey. WALLABY is an extragalactic

neutral hydrogen survey over 75% of the entire sky (-90◦ < δ < +30◦) and will detect

up to 500,000 galaxies to a redshift of 0.26. This will produce the largest sample of

galaxies that is possible to observe in a given observing time with ASKAP (Australian

Square Kilometre Array Pathfinder). In addition, WALLABY is a very important

survey because of its completeness and will provide the most homogeneous HI sur-

vey with multi- wavelength sample of galaxies yet made, and will be an important

pathfinder for the key SKA HI science project.

The primary objectives of WALLABY are to examine the HI properties and large-

scale distribution of these galaxies in order to study:

1. Galaxy information and the missing satellite problems in the Local Group. In a

pair of orbiting galaxies, if one is considerable larger than the other, the larger

one is called the primary and the smaller one is defined as the satellite.

2. Evolution and star-formation in galaxies.

3. Mergers and interactions in galaxies.

4. The HI mass function (HIMF) and its variation with galaxy density. The HIMF

is the number of galaxies observed binned by particular hydrogen masses. HI

mass is the mass of cold neutral hydrogen found abundant (rich) in close, non-

metallic galaxies. The MF reveals that the gas mass in these galaxies is much

greater than the stellar mass (i.e. mgas >> mstar ). The HIMF can be used

to describe the formation and evolution of galaxies, and identifying the local

counterparts of high-redshift Lyman-α absorption lines seen in quasar [energetic

and distant galaxy with a high luminosity centre (AGN)] spectra.
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5. Cosmological parameters related to the gas-rich galaxies.

6. The nature of the cosmic web.

To achieve the above goals , WALLABY has to observe each 30 deg2 ASKAP field

for a single period of 8 hrs in the frequency range 1.13 to 1.43 GHz (i.e. -2000

< cz <77,000 km/s). The WALLABY survey parameters are well-aligned with the

other all-sky surveys such as SSP’s (Survey Science Projects to be conducted by

ASKAP), for example EMU (Evolutionary Map of the Universe). WALLABY will

have a flux sensitivity some 20 times better than HIPASS, and will detect dwarf

galaxies out to a distance of ∼60 Mpc, massive galaxies to ∼500 Mpc, and super-

massive galaxies to the survey edge of 1 Gpc. HIPASS (HI Parkes All Sky Survey)

is a survey for neutral atomic hydrogen (HI), which was in operation in 1997 to 2002

and used the radio telescope in Parkes Observatory, Australia. This is the first blind

survey, which covered the entire southern sky with sky coverage of 71% and identified

5,317 sources emitting HI’s signature wavelength.

WALLABY science includes :

• Continuum emission from gas-rich galaxies: a measure of the star-formation

rate.

• Damped Lyman - α absorption analogs: a measure of disk cross-section and

gas temperature.

• Use of gas dynamics to assist in the interpretation of the magnetic field prop-

erties of the nearby extended galaxy population.

For each detected galaxy, WALLABY will deliver the following data products:

1. 3D data cubelet.

2. Integrated HI spectrum.

3. HI column density image.

4. Velocity field.
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5. Dispersion field.

6. Radio continuum image.

7. Full parametrization of galaxy properties.

Also WALLABY will search for faint HI emission in well-selected optical/IR galaxy

sample by co-adding (stacking) the HI data at the position and redshift of the op-

tical/IR galaxy. The redshift data will be taken from the 2MASS-selected galaxy

surveys such as 6dFGS, and Deeper 2MASS, SkyMapper, VST and VISTA. WAL-

LABY will play a key role as an accurate zero-redshift anchor for later SKA HI

surveys of the Universe and will inform SKA HI survey designers to identify param-

eters which are presently poorly known.

Up to this point we have discussed about the important aspects in Cosmology. In

the next section we discuss about the data analysis techniques we used throughout

our work.

1.14 Data Analysis techniques

1.14.1 Smoothing and shot noise

Redshift surveys examine only a portion of the density field of the Universe. Gener-

ally, the galaxy surveys include the galaxies brighter than some flux limit in a specific

region in the space (i.e. incomplete sky coverage and limited depth). With the ap-

proach of infrared-selected surveys, the problem of sky coverage has been solved to

some extent (only >10% of sky unobserved). In addition, the redshift catalogues

based on the IRAS database are flux limited, and consequently the number density

of galaxies declines sharply with distance. Inevitably, the estimate of the density field

becomes subject to large statistical uncertainties in large distances. The uncertainty

raised by this fact in the density fields is known as the shot-noise or Poisson sampling

noise. The obvious solution for this effect is filtering of the smoothed galaxy density

field -for example using the Wiener filter, which minimises the variance between the

reconstructed and true density fields (Weiner 1949).
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1.14.2 Cumulative distribution function & the Probability

Integral Transform

The cumulative distribution function (CDF) completely describes the probability dis-

tribution of a real-valued random variable X. CDF of a random variable X evaluated

at a number x, is the probability of the event that X is less than or equal to x, and

this is a monotonically increasing function from 0 to 1. These are also used to specify

the distribution of multivariate random variables.

For every real number x, the CDF of a real-valued random variable X is defined

by;

x 7→ FX(x) = P (X ≤ x) (1.62)

where the right-hand side represents the probability that the random variableX takes

on a value less than or equal to x. Then the probability that X lies in the interval

(a, b] is therefore FX(b)− FX(a) if a < b.

It is conventional to use a capital F for a cumulative distribution function, in con-

trast to the lower-case f used for probability density functions and probability mass

functions. The CDF of X can be defined in terms of the probability density function

f,

F (x) =

∫ x

−∞
f(t)dt (1.63)

The CDF is very important when discussing the probability integral transform (PIT).

If X is a continues random variable with a probability density p(x) and CDF P (x) ,

then X can be transformed into a new random variable Y by applying the probability

integral transformation theorem,

Y = P (x) ∼ U [0, 1]. (1.64)

This is a very useful application in statistical data analysis which can be used to test

a set of observations, and see whether they are reasonable modelles arising from a

specified distribution. The PIT can be used to construct an equivalent set of values
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that mimic the distribution of the original data set. We used the PIT theorem to

sample the distance distribution of the mock objects to mimic the PSCz velocity field

published by Branchini et al. [1999].

Figure 1.20: The relationship between the probability density and the CDF.

1.14.3 χ2 hypothesis test

The χ2 hypothesis test plays a major role in constraining the value of the distortion

parameter β (e.g. Hudson [1994], Neill et al. [2007]). Hudson [1994] considered

the Dn - σ and infrared Tully Fisher galaxies and used Uppsala General Catalogue

of Galaxies (UGC) and the ESO-Uppsala Survey of the ESO(B) Atlas to predict

the peculiar velocity fields. Further, he used an expression similar to the equation

(1.65) with a velocity error of 150 km s−1 and obtained a best-fit value 0.5 ± 0.06

for β. Riess et al. [1997] considered the IRAS 1.2 Jy peculiar velocity and used

SNIa to compare the observed and peculiar velocity field and obtained 0.40 ± 0.15

from χ2 minimization. Using the IRAS PSCz peculiar velocity field with SNIa data,

Radburn-Smith et al. [2004] obtained β = 0.55 ± 0.06. There have been numerous

studies carried out using the χ2 hypothesis test. Table 1.3 summarizes the reported

best-fit values for β from some of the studies, applying the minimum χ2 statistic for

different redshift survey data samples.

We also applied the χ2 minimization to estimate the best-fit value of β for the mock
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Table 1.3: β values obtained from χ2 minimizing. SBF represent the surface brightness
fluctuation and PS denotes the power spectrum.

β Data Reference

0.50 ± 0.06 Dn-σ, IRTF, ESO, UGC Hudson [1994]
0.40 ± 0.15 SNIa, IRAS 1.2Jy Riess et al. [1997]
0.30 ± 0.10 SNIa, ORS Riess et al. [1997]
0.42+0.10

−0.06 SBF, IRAS 1.2Jy Blakeslee et al. [1999]
0.26 ± 0.08 SBF, ORS Blakeslee et al. [1999]
0.39 ± 0.17 SMAC, IRAS 1.2Jy Hudson et al. [2004]
0.55 ± 0.06 SNIa, IRAS PSCz Radburn-Smith et al. [2004]
0.49 ± 0.04 SNIa, SBF, TF, 2MASS Pike and Hudson [2005]
0.49 +0.08

−0.05 0.04 PS,SFI Park and Park [2006]
0.50 SNIa,IRAS PSCz Neill et al. [2007]

peculiar velocity fields. These velocity fields were designed to mimic the next gener-

ation of galaxy redshift surveys. We have applied the following expression,

χ2 =
n∑

i=1

[
(Vi,obs − Vi,pred)

2

σ2
i,cz + σ2

i,d

], (1.65)

where Vi,obs and Vi,pred are the observed and the predicted radial peculiar veloci-

ties, respectively. These values depend on β. σcz represents the scatter in redshift

determination as well as the errors in the PSCz predictions due to shot noise or non-

linear peculiar-velocity contributions and σd is the scatter in the radial distance of

the objects, (i.e. galaxies, distance indicators,etc.)
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Chapter 2

The fate of the galaxy peculiar

velocity field with the future

redshift surveys

In this chapter we discuss our attempt to reconstruct the peculiar velocity field by

smoothing the redshift distortion parameter β. The distance indicators have sig-

nificant influence on reconstructing the density and velocity fields. The imprecise

distance estimates to individual galaxies can make a huge impact when constrain

the value of β. Therefore, we aim to analyze the impact on estimating the value of

the redshift distortion parameter β with the development of the redshift surveys (e.g.

SKA, ASKAP, WALLABY). We will also investigate what improvements need to be

introduced in order to increase the accuracy of the current reconstruction methods

of the peculiar velocity field.

The flow of the chapter is as follows: Section 2.1 is about the redshift distortion. We

discuss about two types of redshift distortion, the Finger of God (§ 2.1.1) and Kaiser

Effect (§ 2.1.2). And the third part, §2.1.3, defines the meaning of β. Section 2.2

contains the information about the methods used to reconstruct the peculiar veloc-

ity field, via the iterative method (§ 2.2.1) and the non-iterative method (§ 2.2.2).

Then, following Section 2.2, Section 2.3 approaches to discuss the techniques used to

constrain β, under the density-density (§ 2.3.1) and velocity-velocity (§ 2.3.2) compar-
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isons. Section 2.4 describes the important information about the distance indicators

we used in this study under the first three parts. The fourth part, § 2.4.4, gives an

overview about the PSCz velocity field (§ 2.4.4). Section 2.5 introduces the method

we used to constrain β. Section (2.6) presents details about the mock data files we

generated to mimic the future redshift surveys. Finally, Section 2.7 and 2.8 compiles

the results, discussion and the conclusions.

2.1 The redshift distortion

Galaxies, that trace the matter density in the universe have different motions de-

pending on the cosmology. In a perfectly homogeneous Universe redshift surveys,

in principle, can measure the radial distance from the observer precisely, and the

mapping from real space (r-space) to redshift space (s-space) would be the identity

mapping. However, this relationship will be more complex in an inhomogeneous

Universe, because the existence of any inhomogeneous structure induces peculiar ve-

locities that cause a distortion in the mapping between r-space and s-space. The

peculiar velocities of galaxies cause the radial distance (i.e. true distance), r, to ap-

pear displaced along the line-of-sight in redshift space. Then, the redshift distance,

s, of a galaxy differs from the true distance r along the line of sight. In the Local

group frame, the redshift distance sLG of a galaxy with true distance r (relative to

the observer) can be expressed as (i.e. the mapping from r-space to s-space),

sLG = r + r̂.(−→v −−→v LG) (2.1)

where −→v LG denotes the peculiar velocity of the Local Group and r̂ is the unit vector

along the line of sight (i.e. the radial direction of the observer). −→v is the measured

peculiar velocity of the object. These displacements lead to redshift distortions (Fig-

ure 2.1) and they occur in a different manner on small and large scales due to the

different characteristic behaviour of peculiar velocities on the above scales. These are

known as Finger of God and Kaiser Effect, respectively.
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Figure 2.1: Redshift distortion. H0 is the Hubble constant, vpecr is the radial pe-
culiar velocity and vr is the recession velocity. http://moriond.in2p3.fr/J00 /mer-
credi/Ballinger/02.html

2.1.1 The Fingers of God

On small scales, the effect of peculiar velocities on galaxies causes a considerable

stretch of the redshift space distribution along the line of sight. This phenomenon

is known as the Fingers of God (FoG), as long thin stripes in redshift space point

directly back at the observer (Figure 2.2). This phenomena can mostly be seen in

the cores of clusters.

2.1.2 The Kaiser effect

The redshift distortion occurs in a different way on large scale. Galaxies, in outside

of the cluster, are moving towards the cluster due to their gravitational pull, with

peculiar velocities bound to a central mass. A galaxy on the far side of a cluster may

hold a negative peculiar velocity, and appear closer to us in redshift space than in

real space. On the other hand, a galaxy in between the observer and the cluster has a

positive peculiar velocity, and appears further away from its actual distance relative

to the observer. This differs from the Fingers of God in a way that the peculiar

velocities are coherent, not random, towards the central mass. The clustering of
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Figure 2.2: The Fingers of God: This figure is a slice through the SDSS 3-dimensional
map of the distribution of galaxies. The little stripes heading towards the center are the
Fingers of God effect. As shown in this figure, the Finger of God effect mostly occurs in
the cores of clusters. [http://astro.uchicago.edu/cosmus/projects/fog/]

galaxies in the real-space and in the redshift space shows a significant difference

because of this coherent peculiar velocity field which is associated with large scale

structure [Kaiser, 1987] and this redshift distortion is known as the Kaiser effect.

Because the separation between galaxies is much greater than the typical random

velocities, the effect of peculiar velocities in clustering, and in particular on the galaxy

two-point correlation function ξ(r), can be neglected [Shanks et al., 1983]. Figure

2.3 illustrates the way of distortion of a spherical overdensity by peculiar velocities

on large scales (left) and small scales (right).

2.1.3 Linear redshift distortion parameter β

The amplitude of the distortion on large, linear scales yields a measurement of the

linear redshift distortion parameter, βg = Ω0.6
m /bg where Ωm is the cosmological den-

sity and bg is the linear bias parameter, which is used to represent the linear bias

between the galaxy density fluctuation (i.e. luminous matter) and the total density

fluctuation. The subscript on β and b denotes the sample which is considered to map
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Figure 2.3: The distortion of a spherical overdensity due to peculiar velocities, in the
redshift space. Left: Kaiser effect, the appearance of the overdensity on large scales. The
overdensity is far from the observer (who is looking upward from somewhere way below the
bottom of the diagram), and the distortions are effectively plane-parallel. Right: Finger
of God, the distortion of the overdensity on small scale. The overdensity is closer to the
observer (large dot), and the large scale distortions appear kidney-shaped, while the finger
of god is sharpened on the end pointing at the observer. [ Hamilton [1998], Figure (1).]

the density field. In general, the bias and hence β depend on the sample, due to the

variation of clustering amplitudes.

2.2 Reconstructing the peculiar velocity field

Measurement of β is based on the relationships between the peculiar velocity and

density fields predicted by Gravitational Instability for the linear regime [Peebles,

1980].

∇.Vp(r) = −H0βδg (2.2)

Vp(r) =
H0β

4π

∫
d3r′

δg(r
′ − r)

|r′ − r|
(2.3)

The equation (2.2) is known as the linear velocity-density relation. In these equa-

tions, the galaxy number density fluctuation field δg is assumed to be related to
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the underlying mass density fluctuation field (δ) by the simple linear biasing model

δg = bδ. The accuracy of β is limited by the accuracy of the reconstruction method

and the estimated radial peculiar velocity field Vp(r). The peculiar velocity field can

be estimated iteratively or non-iteratively.

2.2.1 Iterative method

The iterative method is based on solving the equation (2.3) in real space, iteratively.

The initial data required for the calculation process are taken from the all-sky redshift

surveys. First, a smooth δg is estimated from the observed distribution of galaxies

in the redshift survey and without considering the redshift distortion of the galaxy

peculiar motion. The peculiar velocity field Vp(r) can be calculated from the equation

(2.3) for an assumed value of δg. Then the observed values of smoothed density field

at each position r, need to be corrected by using the predicted radial peculiar velocity

field. This step is performed iteratively until the convergence occurs. This iterative

method has become very popular and has been applied to varies types of surveys,

such as IRAS 1.9Jy/1.2Jy ( Strauss et al. [1992]; Fisher et al. [1995a]), the QDOT

survey [Kaiser et al., 1991] IRAS PSCz survey [Branchini et al., 1999] and 2MASS

[Pike and Hudson, 2005].

2.2.2 Non-iterative method

The iterative method described in the previous section is computationally expensive,

which reveals the usefulness of identifying a direct, non-iterative relation between

the dynamical fields in real space and redshift space. The most obvious fact of the

direct approach is to establish a unique one-to-one mapping between the initial and

final positions of galaxies, which is valid until shell crossing singularity occurs (i.e.

all Jacobi fields have finite limits in an orthonormal parallel propagated frame, as

they approach the singularity. A Jacobi field is a vector field along a geodesic (the

shortest path between points in the space), which describes the difference between

the geodesic and an infinitesimally close geodesic. This one-to-one mapping is known

as the Zel’dovich approximation.
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2.2.2.1 The Zel’dovich approximation

The evolution of cosmic structure in terms of a fluid description can be analyzed

using a Lagrangian or an Eulerian formulation. If the coordinate system of the fluid

elements defines to be attached to the fluid elements themselves, the Lagrangian

coordinates of the elements remain fixed with the growth of the fluid. If the coordinate

system is attached to points in space with respect to the fluid elements, this will move

as the fluid evolves in the Eulerian point of view. The co-moving coordinates of the

homogeneous background cosmology remain fixed as the Universe expands, and can

be described as a combination of the both Lagrangian and Eulerian. However the

fluid will grow with a perturbation on the background model causing changes in

the position and velocity of the fluid elements. This complicated behaviour can be

simplified by applying the linear theory with the assumption, that the changes in the

co-moving positions are negligible as the Universe expands. Based on this fact, it is

possible to consider that the structures grow simply according to the linear growth

factor, f (Section 1.3, equation 1.29). The Zeldovich approximation extends the

linear theory by assuming that the difference between the Lagrangian position (q)

and the Eulerian position (x) of a fluid element may be written as the product of a

time-dependent function and a purely spatially-dependent function;

x(q) = a(t)[q+D1(t)ψ(q)] (2.4)

where D1(t) is the growing mode and ψ(q) is the velocity component, which provides

the particle displacement with respect to the initial position. This is related to

the gradient of the gravitational potential Φo(q) originated by the initially linear

fluctuations, according to

ψ(q) = ∇Φo(q). (2.5)

Thus we see that the Eulerian position is simply the Hubble expansion with a sepa-

rable perturbation. The Zel’dovich approximation gives an excellent approximation

to the true evolution of the velocity and density field to the mildly non-linear regime,

Hendry [2001] and references therein. This is very useful when providing the non-

linear versions of equation (2.2) and equation (2.3), allowing the density and velocity
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fields to be related on smaller scales. For an irrotational peculiar velocity field, the

transformation of the galaxy distribution from the real space to redshift space can

be described from its Jacobian. The gradient of a scalar velocity potential, Φ of an

irrotational peculiar velocity field can be written as:

V (s) = −∇Φ(s) (2.6)

By expanding the density and velocity potential in terms of spherical harmonics (in

redshift space), a differential equation can be obtained as [Nusser and Davis, 1994];

1

s2
d

ds
(s2

dΦlm

ds
)− 1

1 + β

l(l + 1)

s2
Φlm =

β

1 + β
(δlm − 1

s

d log ϕ

d log s

dΦlm

ds
), (2.7)

where s is the redshift space radial coordinate and ϕ is the radial selection function

of the sample. Solutions of the above equation give rise to the spherical harmonic

coefficient, Φlm, on a given shell in redshift space. The differentiation of the velocity

potential provides the peculiar velocity field which depends on β. This is the inverse

Tully-Fisher method (ITF), which was originally introduced by Nusser and Davis

[1994]. This method can be applied only for small scales.

With the assumption of linear theory, Fisher et al. [1995b] proposed an alterna-

tive non-iterative method. In this approach the density field is expanded in angular

spherical harmonics and radial Bessel function. In the same way as ITF method, the

expansion coefficients in real space and redshift space can be obtained as a function

of β by considering the radial selection function and the angular mask of the redshift

survey. In this method, the Wiener filter is used for the correction of shot noise. The

accuracy of the reconstruction method was proved by using the mock redshift surveys

generated from N-body simulations. The ITF method and Fisher et al. method have

shown similar results [Hendry, 2001] and both were better than the iterative recon-

struction method. Peebles [1990] proposed another direct method considering the

real space density and velocity field, and this is based on the least action principle,

which can be applied to a discrete N-body system. The least action approach has

been developed further via the path Interchange Zeldovich Approximation (PIZA)
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method by Croft and Gaztanaga [1997] and Valentine et al. [2000]. The peculiar

velocity field can be obtained using the above methods. In the next section we discuss

about the techniques that have been used to constrain the value of β by using the

peculiar velocity fields predicted from these methods.

2.3 The methods of constraining β

There are two principle methods for the determination of β which is illustrated in

Figure 2.4. As shown in the Figure 2.4, the two methods are known as the density-

density comparison and the velocity-velocity comparison.

Figure 2.4: Reconstruction methods of β

2.3.1 Density-density comparison

The density-density comparison (δ-δ) is based on the velocity-density relation [i.e.

Equation (2.2)]. In this case, Vp(r) has to be reconstructed from the peculiar ve-

locity data and its divergence is compared with the directly observed density δg (the

velocity-density relation), which gives rise to β. However, the peculiar velocity data

must be converted into a three dimensional (3-D) velocity field. Typically the PO-

TENT method is applied to reconstruct these 3-D peculiar velocity fields [Masters,

2008].
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2.3.1.1 The POTENT reconstruction procedure

The aim of the POTENT analysis is to recover the minimal systematic errors of

velocity and density fields, where the true 3-D velocity field is sampled uniformly

with infinite density, and smoothed with a spherical Gaussian window of a fixed

radius [Bertschinger and Dekel, 1991]. The POTENT approach is applicable under

the assumption of the irrotational behaviour of the peculiar velocity field. This

was initially proposed by Bertschinger et al. [1990] where they recovered the 3-D

velocity field using the expected irrotationality of gravitational instability (GI). The

irrotational velocity v can be written as the gradient of a scalar velocity potential,

(Φ), at any position r,

Φ(r) =

∫
v.dl (2.8)

where the line integral is path independent. In the case of considering only the radial

path, we may write,

Φ(r) =

∫
u(r′)dr′, (2.9)

where u(r′) is the radial component of the peculiar velocity at distance, r′, along the

line of sight. Then v(r) can be obtained by taking the differentiation of the above

equation.

This whole procedure can be summarized for the following steps [Dekel et al., 1999] :

1. Prepare the radial velocities for POTENT analysis, in particular correcting for

Malmquist bias in different ways, including grouping.

2. Smooth the peculiar velocities into a continuous, uniformly smoothed radial

velocity field that has minimum bias.

3. Apply the Ansatz of gravitating potential flow to recover the potential and

three-dimensional velocity field.

4. Derive the underlying mass density field by an approximation to GI in the

mildly nonlinear regime.

5. Evaluate the remaining systematic and random errors using mock catalogs.
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The advantage of POTENT is that the 3-D peculiar velocity field can be obtained

directly from the radial components, which are directly obtained from the redshift-

independent galaxy distance indicators. The MAXFLOW algorithm developed by

Newsam et al. [1995] adapts the standard POTENT procedure to include non-radial

paths, which avoids a region where galaxy sampling is particularly poor. Even though

POTENT has some drawbacks, its measures the mass density field directly (without

any assumption of galaxy biasing), and therefore POTENT becomes a very useful

reconstruction method.

Measuring β by comparing peculiar velocity and redshift survey data became a real-

istic goal with the approach of full-sky redshift surveys Willick et al. [2000]. Partic-

ularly, the IRAS point source catalogue (IRAS PSCz) and large, homogeneous sets

of Tully-Fisher (TF) data were the major developments for the reconstructing meth-

ods. The POTIRAS comparison, a δ − δ comparison done by Dekel et al. [1993],

has estimated βI = 1.29, where subscript I is used when the galaxy density field is

obtained by IRAS. In this procedure, the velocity field was reconstructed using the

POTENT algorithm, and its divergence was compared with the galaxy density field

from IRAS. This method has been widely used with much improved velocity data,

obtaining a value βI = 0.89± 0.1 [Sigad et al., 1998].

2.3.2 Velocity-velocity comparison

The other method of estimating β is the velocity - velocity (v-v) comparison. One

measures δg and reconstructs Vp(r) from redshift survey data for a sample of galaxies

with redshift-independent distances. The expression used for this method is the inte-

gral form of linear-velocity density relation, [i.e. Equation (2.3)], with an assumed

value of β. Then these model values are compare with the observed radial peculiar

velocities to check the plausibility of the applied theoretical scenario and to obtain

the best-fit value of β.

The studies based on the v-v comparison gave rise to lower values of βI . One of

the attempts was considered the Least Action Principle to predict peculiar velocities,
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which gave βI = 0.35 [Shaya et al., 1995]. Willick [1996] have applied a maximum

likelihood method, the so-called VELMOD method, to 838 galaxy TF sample (czLG≤

3000 km s−1) obtained from the Mark III catalogue and obtained βI = 0.49 ± 0.07.

Increasing the redshift limit to czLG = 7500 km s−1, they have expanded the sample

to 1876 galaxies and considered the quadrupole velocity residuals with VELMOD,

obtaining βI = 0.50 ± 0.04 [Willick and Strauss, 1998]. Riess et al. [1997] were

compared the peculiar velocities of nearby SNIa with those predicted by the gravity

fields of IRAS and Optical Redshift Survey (ORS). Their best-fit values of β are 0.40

for IRAS and 0.30 for ORS.

In 1999, Branchini and co-workers applied a likelihood analysis to estimate β us-

ing the PSCz galaxy survey. They obtained βI = 0.6+0.22
−0.15 using the information

available on bulk velocities, cosmological dipoles and local shear [Branchini et al.,

1999]. Radburn -Smith and co-workers used the PSCz density field and SNIa, which

yield that the most consistent value for the linear redshift distortion parameter is

βI = 0.5 [Radburn-Smith et al., 2004]. The 2MASS catalogue and redshift data

were used by Pike and Hudson [2005] to reconstruct the local density field. Further,

they applied the VELMOD method with the assumption of gravitational instability

obtaining a best-fit of βk = 0.49±0.04 comparing the peculiar velocity field within 65

Mpc/h. Basilakos and Plionis [2006] have re-examined the PSCz dipole induced on

the Local Group of galaxies by the (IRAS) galaxy distribution and found βI = 0.44

and 0.49 in redshift and real space, respectively. In 2006, Park & co-workers have

measured the momentum and density power spectrum from the peculiar velocities of

galaxies in the SFI catalogue and obtained βS = 0.49+0.08
−0.05 [Park and Park, 2006]. A

v-v comparison done by Neill et al. [2007] confirmed that the best model is βI = 0.5.

2.3.3 The density-density versus the velocity-velocity com-

parison.

These results show that the δ-δ comparison produces β closer to unity; while the

v-v comparisons, several based on the same redshift and velocity samples as PSCz,
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yield β = 0.5. Neither the δ-δ nor the v-v comparison is essentially more valid as

both are strongly based on the linear gravitational instability theory. The δ-δ com-

parisons are highly dependent on the distance indicator data to estimate the full 3-D

velocity and its derivatives. These estimations are hugely dependent on the accu-

racy of the distance indicator data. However, in general, these distance data contain

considerable uncertainties with the influence of the bias, Malmquist bias for example.

On the other hand, in the v-v comparison, the distance indicator data is used essen-

tially in its raw form. In this case, only the redshift survey data, which is intrinsically

more accurate, is subject to complex, model-dependent manipulation. Under these

circumstances, the v-v analysis are more likely to be precise on constraining β and

the best-fit is favoured for the low values, βI = 0.4-0.5 [Willick et al., 2000]. The

next section presents important details about the distance indicators that we used

for our study.

2.4 The distance indicators and the future redshift

surveys

For the analysis, most commonly used distance indicators have been considered: Type

Ia supernovae and the Tully Fisher relation. We also consider the recently proposed

standard sirens.

2.4.1 Type Ia supernovae ≤ 1000 Mpc/h

Type Ia supernovae (a detailed description of SNIa can be found in Section 1.11.1),

the most popular distance indicators, provide an independent test of the gravitational

instability paradigm and constrain the mass density. Figure 2.5 shows how bright

and easily detectable a supernova is. With their high intrinsic luminosity and the

presence of all kind of galaxies from ellipticals to irregulars, type Ia supernovae have

demonstrated their enormous potential as distance indicators [Isern et al., 1989].

Light curves from the Calan/Tololo Survey [Maza et al., 1993] and the CfA survey
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[Riess et al., 1997] yield distances with 5% - 10% uncertainty over the redshift range

0 < cz < 36 000 km/s (i.e. z < 0.12 ). Although the sample of observed SNIa

is relatively small, the depth and precision of SNIa distances provide some advan-

tages for the reduction of random errors, one SNIa is worth 10 TF. Systematic bias,

Malmquist bias for instance, which rises with the square of the distance uncertainty,

is also 10 times smaller for SNIa distances. The future surveys are going to increase

the observable number of SNIa and also the number of samples observed if needed.

We simulate data for the future surveys as well as the current.

Figure 2.5: The type Ia supernovae have a enormous potential as distance indicators
with their high intrinsic luminosity. The supernova in the bottom left of the above pic-
ture shows how bright and visible the SNIe are, even when the entire galaxy is in view.
www.lancs.ac.uk/ug/hemmingl/

2.4.2 Tully Fisher relation ≤ 300 Mpc/h

Distance indicators based on empirical relationships between galaxy luminosity and

internal velocity, known as the Tully Fisher relation, yield individual distance uncer-

tainties of 20% - 25% [Riess et al., 1997]. We propose that, with datasets containing

large numbers of sampled galaxies, the TF relation will give considerably good re-

sults despite the fact that there is a larger distance scatter for each galaxy. Therefore
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we try to find the applicability of this concept for the future surveys, for example

the WALLABY, which may observe about 500,000 objects up to a redshift of 0.26

(i.e. cz = 78,000 km s−1). However, as the mock samples are needed to be consis-

tent with the IRAS PSCz galaxy distribution, for the consistency of our analysis, we

considered TF data for the 15,000 mock objects lying within cz ≤ 15,000 km s−1.

Apart from analyzing the traditional distance indicators, our study also focused on

a newly defined distance indicator, the so-called gravitational standard sirens. Hav-

ing previously discussed the role of a standard candle, the next section gives a brief

introduction to the concept of a standard siren.

2.4.3 The next era of the distance scale: the standard sirens

A gravitational wave (GW) can be described as a fluctuation in space-time curva-

ture, which propagates as a wave. According to the General Theory of Relativity

this phenomenon can occur due to accelerations of the mass distribution of objects

like neutron stars, white dwarfs or black holes (Figure 2.6).

Figure 2.6: An artistic impression of a compact binary white dwarf system. Gravitational
waves generated by the orbital motion, radiate energy out of the system. [NASA/Dana
Berry, Sky Worlds Digital]

According to the standard concordance cosmology, galaxies form via a hierarchi-

cal series of mergers of cold dark matter halos. The high-resolution cosmological

simulations suggest that the Milky Way resulted from the merger of more than 1000

proto-galaxies, which began forming at z > 20. Further, these proto-galaxies may

contain black hole seeds that merged with each other at high redshift, around z = 15

[Koushiappas et al., 2004]. If these seeds hold a mass of about 104 solar masses or
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more, they may produce gravitational waves during the merge that will be detected

by LISA very easily, even at z ∼ 15 [Hendry and Woan, 2007]. Laser Interferometer

Space Antenna (LISA) is the first step of the space-based gravitational astronomy,

which is supposed to launch in 2020. LISA will operate in an environment with

completely free low-frequency noise sources present on Earth and will be able to

see the universe in a band ( 0.1 mHz to 1 Hz) corresponding to the orbital peri-

ods of several important classes of binary compact objects. A detailed description

of LISA can be found in Hendry and Woan [2007], Tinto et al. [2002], Cutler [1998].

Highly sensitive detectors are crucial in terms of detecting the quadratically lower

flux sensitivity of a strain. The proposed gravitational wave observatory LISA will

have a strain (i.e. the geometrical measure of deformation, representing the relative

displacement between particles in the material body) sensitivity of 10−23 in 1 year

at a frequency of a few millihertz. This strain corresponds to a magnitude limit of

+18, which is comparable to an observer using a 1m telescope at a dark site, i.e. the

observable magnitude limit would be the same as above. LISA will give us a deep

view of the sky expanding our opportunities to explore the Universe, as the current

generation of ground-based observatories (LIGO, VIRGO) are limited to the bright-

est sources only. The expected total event rate and redshift distribution of massive

black hole(MBH) mergers is uncertain and LISA will play a key role of taking mea-

surements of these quantities. Further, the current knowledge of hierarchical galaxy

formation imply that LISA have the ability to observe a merger rate in the range 1

to 1000 yr−1 [Haehnelt, 1994]. These observations can be used to calibrate the ex-

tragalactic scale, which is one of the most important applications of GW. LISA may

improve the quality of the distance scale through the use of GW as high-precision

distance indicators. These new distance indicators have recently introduced to the

cosmological scales as standard sirens.

The reason why standard sirens can be used as cosmological distance indicators is

given below. The gravitational waveform emitted by a MBH merger is robustly de-

pendent on the chirp mass of the binary system (i.e. a quantity that is based on the

KWPBS 68



2.4. The distance indicators and the future redshift surveys

masses of both bodies in the system), where the amplitude of the waveform is in-

versely proportional to the distance. Under these conditions, the luminosity distance

of the binary system can be measured accurately [Schutz, 1986]. However, the gravi-

tational radiation from the MBH merger will be redshifted due to the expansion of the

universe, similarly as in the electromagnetic radiation. This phenomenon is known

as the mass-redshift degeneracy; analysis of the waveform in fact only constrains the

product of the mass parameters and the factor (1 + z), where z is the redshift of

the source. The crucial point of using the standard sirens as the distance indicators

is search for an electromagnetic counterpart of the MBH binary source in order to

compare the redshift with the distance. Once this has been approached, the z can

be revealed from the electromagnetic spectrum, and the mass-redshift degeneracy

broken. A careful analysis carried out by Holz and Hughes [2005] yielded the cosmo-

logical potential of standard sirens. They suggested that the characteristic distance

uncertainties would be about 1% for an MBH at z ∼ 1, (which is the uncertainty we

have used in our calculations). This is indeed an important fact as standard sirens

will show a high accuracy compared to the SNIa. Lang and Hughes [2006] developed

the Holz and Hughes analysis allowing to consider the precession of an MBH binary

induced by the spins of the black holes. This approach reduces the measurement un-

certainty on the luminosity distance by a factor of 2 or 3, to about 0.2 - 0.4 % at z ∼ 1.

One of the drawbacks of the standard sirens is that the gravitational radiation is

subjected to weak gravitational lensing by intervening matter. As a result the ampli-

tude of a MBH binary waveform may be magnified or de-magnified by the presence

of large scale structure along the line of sight towards the source. Therefore, correc-

tions needed to be considered for the weak gravitational lensing for the each source

in order to estimate the luminosity distance with high accuracy. If LISA can obtain

number of sirens closer to the upper limit of the expected rate (i.e. 1000 yr−1) then

the influence of the lensing would be strongly reduced. On the other hand, weak

lensing may be relatively negligible for standard siren observations at z < 1 [Dalal

et al., 2006]. A single MBH standard siren observed at z < 0.5 could measure the

Hubble parameter to better than 1%. We generated several mock data catalogues to
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represent these distance indicators. The next section give an overview of the main

real data catalogue we used in this study.

2.4.4 PSCz velocity field

The data catalogue used in this work is the smoothed PSCz density field published by

Branchini et al. [1999]. They used the completed PSCz redshift survey introduced by

Saunders et al. [1999] to predict the velocity field. The main PSCz catalogue contains

15,411 IRAS galaxies across 84% of the sky [Figure 2.7]. The large sky coverage is one

of the most important properties of the catalogue and the only excluded regions are

two thin strips in ecliptic longitude that were not observed by IRAS, the Magellanic

Clouds, and the area in the Galactic plane where the B-band extinction, AB, exceeds

2 mag. Branchini and co-workers used two methods to obtain the velocity field in

the local universe (i.e. 150 Mpc h−1), the iterative method and the non-iterative

method . They have applied the iterative technique (Section 2.2.1) introduced by

Yahil et al. [1991] with the Equation (2.3), and the non-iterative technique (Section

2.2.2), the ITF method developed by Nusser and Davis [1994] as the second method

[i.e. Equation (2.7)]. One of the drawbacks of the PSCz survey is that the lack of

data in the zone of avoidance. This problem was solved by applying a similar filling

method used by Yahil et al. [1991]. The region at galactic latitude, |b| ≤ 8◦, was

filled by replacing the synthetic objects with real PSCz galaxies at |b| ≤ 8◦ which are

in the same longitude-distance bin. Masked regions at larger galactic latitudes are

filled in with a random distribution of synthetic galaxies having the observed mean

number density. However, the PSCz velocity field is incomplete in larger distances (>

150 Mpc h−1) ( Figure 2.8) and becomes complete beyond 300 Mpc h−1 [Branchini

et al., 1999]. A Gaussian filter of 6 Mpc h−1 was used to smooth the velocity field.

With the assumption of a high normalization for the matter power spectrum (σ8 =

0.87, the dispersion of the mass field smoothed on a scale of 8 Mpc h−1), the best-fit

value obtained for β is 0.6+0.22
−0.15 (1 σ). This is consistent with the result obtained

for β from several studies using the v-v comparison. Branchini et al. [1999] have

generated peculiar velocity fields for β = 0.1 to 1.0. For our study, we have used the
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Figure 2.7: The Infrared Astronomical Satellite Point Source Catalog Redshift Survey
(IRAS PSCz). A redshift survey of IRAS galaxies to 0.6 Jy and contains 15,411 galaxies
over 84% of the sky. [www-ik.fzk.de]

Figure 2.8: The PSCz velocity is incomplete in larger distances (> 150 Mpc/h).

sample for β = 1.0, a sample of 15,795 galaxies, which hold information about the

recession velocity and redial peculiar velocity in the Local group frame and distance

coordinates in the super galactic coordinates (in Mpc) (here after we represent this

catalogue as B99). In the next section we discuss about the method we used to

constrain the value of β, presenting our attempt to constrain β.
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2.5 Constraining β using the χ2 hypothesis test

The value of β was estimated by seeking to minimise the value of χ2 in the equation;

χ2 =
(Vobs − Vpre)

2

σ2
vpec + σ2

d

, (2.10)

where Vobs and Vpre are the observed and predicted peculiar velocities, respectively.

The error in the peculiar velocities and the radial distance are denoted by σvpec and

σd. The corresponding fractional distance scatter is fixed for each distance indicator

[Table 2.1]. Predicted peculiar velocity fields were modelled for β = 0.001 to 1.0.

The value of β, where the value of chi-square becomes a minimum, was taken to be

the best-fit of β for the considered model.

The estimated velocity field was compared with the observed peculiar velocities from a

range of mock catalogues designed to mimic (in size and distance indicator precision)

the next generation of galaxy peculiar velocity surveys, SKA, ASKAP, WALLABY

for examples. The corresponding details about the distance indicators, the number

of objects and the fractional distance errors are summarized in Table 2.1. The cal-

culations were carried out for 10,000 mock samples for each distance indicator. We

discuss about the mock catalogues that designed to mimic the future redshift surveys

using B99 in the following section, describing how we obtained corresponding data

for Vobs and Vpre.

Table 2.1: Distance indicators

Distance indicator Fractional distance scatter Number of objects

Current SNIa 8% 100
Future SNIa 8% 1,000
Standard sirens 1% 100
Tully Fisher 25% 15,000
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2.6 The mock data files

As we discussed in Section 2.4.4 we used the data sample for β = 1.0 produced by

Branchini et al. [1999] to design the mock catalogues (i.e. B99). All of our mock

survey data were restricted to lie within 150 Mpc h−1, which is the distance within

which the predicted PSCz velocity field is considered reliable [Branchini et al., 1999].

As we stated previously, the value of β obtained from the IRAS PSCz survey by sev-

eral studies, with the v-v comparison, mostly favoured the value of βI = 0.5 [Neill

et al., 2007]. Based on this concept, we have considered our true value of β as 0.5,

for all the calculations. Therefore, we obtained our true peculiar velocity field (i.e.

Vpec,β=0.5(true)) by scaling the PSCz peculiar velocity field for β = 0.5

We assumed that each mock galaxy position was coincident with one of the PSCz

galaxies for simplicity. The data to generate the observed and the predicted pecu-

liar velocity field of the objects were taken from the smoothed PSCz density field

published by Branchini et al. [1999] (i.e. B99). The mock objects are positioned

randomly with the PSCz galaxies. Since the mock objects are coinciding with the

PSCz galaxies, the value of the observed recession velocities cz and the true radial

peculiar velocities of the PSCz galaxies are considered to be the corresponding czobs

and Vpec,β=0.5(true) of the mock objects. Then we obtained the corresponding data

as follows:

• The true radial distances (dtrue) of the mock objects were obtained as,

dtrue = czobs − Vpec,β=0.5(true). (2.11)

• The observed radial distance (dobs) and the radial peculiar velocities (Vobs) are

estimated from these available data, where

dobs = dtrue + σd (2.12)

Vobs = czobs − dobs. (2.13)

The errors in dobs,i.e. σd were modelled as Gaussian with a fixed-scatter.
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• The data for predicted peculiar velocity (Vpre) were originally taken from B99

with β = 1.0. A fixed Gaussian scatter (σvpec) is added to Vpre to account for

inaccuracies and model incompleteness in the PSCz reconstruction procedure.

Vpre, β=1.0 = Vpec,β=1.0(PSCz) + σvpec (2.14)

Then we used these data to constrain β by applying χ2 hypothesis test and the next

section focuses on the results we obtained from this method.

2.7 Results and discussion

Figures 2.9 and 2.10 illustrate the variation of the best-fit value of β with respect to

the error in the peculiar velocity field (σvpec, i.e. denoted by Vs in figures) obtained

for the distance indicators SNIa (current, future), TF and standard sirens (SS), re-

spectively. Each histogram contains data for 10,000 samples with 100 bins, where the

distributions are expected to be Gaussian. σvpec was varied from 50 km s−1 to 300

km s−1, depending on the practical issues. For the smaller values of σvpec, the distri-

bution of β-estimates centred around the value of true-β, (i.e. 0.5). This behaviour

can be seen for both the distance indicators with smaller scatter (SS, SNIa) as well

as with larger scatter (TF). These results confirms the high capability of B99 giving

a better constraint for β even with the future surveys with the χ2 hypothesis testing.

With the increment of σvpec, the distribution of β-estimates deviate gradually from

true-β, which implies that the value of β biased according to the value of σvpec. The

distributions are biased for the lower values of β-estimates as σvpec is increasing.

Tabel 2.2 contains the data for the variation of the mean value of β-estimates with

σvpec, of each distance indicators, where the gravitational wave standard sirens (GSS),

TF, current SNIa (CSN) and future SNIa(FSN). Figure 2.11 illustrates their be-

haviour. The mean value corresponding to the smaller σvpec having a value closer to

true β, where mean of the β-estimation showed a relatively good range in between

0.45-0.5, for the scatter range of σvpec = 0 - 150. Beyond this range the β-estimates
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(a) Current SNIa surveys

(b) Future SNIa surveys

Figure 2.9: The behaviour of β-estimates with the increment of the scatter of peculiar
velocity Vs. The distance indicators are coincide with the PSCz galaxies. The simulation
has carried out for 10,000 mock samples. (a) Current SNIa surveys: 100 objects with
fractional distance scatter of 0.08. (b) Future SNIa surveys: The fractional distance scatter
is the same (i.e. 0.08) for 1000 objects.
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(a) Standard sirens

(b) Tully Fisher relation

Figure 2.10: The behaviour of β-estimates with the increment of the scatter of peculiar
velocity Vs for the standard sirens and TF. The distance indicators are having the same
position as the PSCz galaxies. (a) Standard sirens: The results are obtained for 100 objects
with fractional distance scatter of 0.01. (b) Tully fisher relation: The fractional distance
scatter is 0.25 and 10,000 objects are taking into account.
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are significantly deviate from true β. Especially, the deviation occurred after of σvpec

= 150 km/s. This is a good agreement with the uncertainties used in peculiar veloc-

ity fields in the current studies. From a careful analysis of predicted and observed

peculiar velocities, Willick and Strauss [1998] estimated these uncertainties to be

100 km s−1. Radburn-Smith et al. [2004] found reasonable χ2 value if 150 km s−1

was assumed for the distance scatter. Neill et al. [2007] have considered 150 km

s−1 uncertainty to quantify the effect of SNIa peculiar velocities on the derivation of

cosmological parameters.

Table 2.2: The mean value of β-estimates with σvpec.

σvpec GSS TF CSN FSN

0 0.50±0.01 0.50±0.01 0.50±0.02 0.50±0.03
50 0.49±0.01 0.49±0.02 0.49±0.02 0.49±0.05
100 0.49±0.01 0.48±0.02 0.48±0.02 0.49±0.05
150 0.47±0.02 0.45±0.03 0.46±0.02 0.46±0.02
200 0.45±0.03 0.43±0.03 0.44±0.02 0.44±0.06
300 0.41±0.01 0.38±0.03 0.39±0.02 0.40±0.06
400 0.36±0.02 0.32±0.02 0.34±0.02 0.34±0.06
500 0.31±0.01 0.30±0.03 0.29±0.02 0.30±0.06

Figure 2.11: Mean of the β-estimates. The mean value of β for each distance indicators
show a good agreement with the considered true β (i.e. β = 0.5) for the lower scatter in
the predicted peculiar velocity.
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2.8 Conclusions

Future peculiar velocity surveys should offer considerable improvement in the ac-

curacy of β determinations - with a similar error on β of less than 1% achievable

from both smaller surveys of highly accurate distance indicators (e.g. future SNIa

and GW sirens) and larger surveys of less accurate distance indicators (e.g. 6dF,

ASKAP, WALLABY). Estimates of β are biased by errors in the predicted peculiar

velocity field reconstruction; this bias is approximately the same for all our mock

data sets, but - as expected - becomes more obvious when the standard deviation of

β estimates is smaller. In order to reduce this bias, improvements will be required in

the predicted velocity field reconstructions as well as the observed peculiar velocities.

This study implies that to improve the accuracy of β, it is not enough of having data

samples with large number of objects, as β value also biased according to the velocity

scatter. Hence, in order to smooth the value of β, accurate velocity reconstructions

are also crucial. If we manage to minimize the error in the peculiar velocity fields ≤

150 km/s, the best-fit value would be occurred between 0.45 - 0.55.
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Chapter 3

The ROBUST method and next

generation of redshift surveys

This chapter focuses on the ROBUST method for fitting peculiar velocity field mod-

els originally introduced by Rauzy and Hendry [2000] (hereafter RH00). We have

applied this method to a range of mock catalogues designed to mimic the next gen-

eration of redshift surveys. Our aim is to analyze the robustness of the luminosity

function as a distance indicator in reconstructing the peculiar velocity fields.

As we discussed in previous chapters, distance indicators have a significant influence

on methods for reconstructing the peculiar velocity field. The scatter in the distance

and velocity estimation is highly influential for the efficacy of velocity-velocity com-

parisons. We discussed this issue in Chapter 2 by applying χ2 hypothesis testing to

different types of distance indicators, with different intrinsic scatters. As we pointed

out, the Malmquist bias can have a major influence on distance measurement and

clear knowledge about statistical methods, which are used to correct the Malmquist

bias, become very important ( Hendry and Simmons [1995], Willick [1994]). The

necessity of applying an appropriate statistical method for the error correction is

very obvious in constraining β. Moreover we note that different values of β appear

to be favoured by different reconstruction methods. The density - density compari-

son (i.e. POTENT) lead to a value of β ≃ 1.0, while velocity-velocity comparisons

(e.g. VELMOD) appear to favour a value of β ≃ 0.5. [Willick et al., 2000]. The
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exact reason for this difference still remains a mystery. The prior assumptions of the

different statistical analyses may not all be represent faithfully the actual features

of the spatial and velocity distributions. The main concept of RH00 is to provide a

method that reduces as far as the possible number of a priori hypotheses concerning

the distance indicator sample, which led to the development of the ROBUST method.

The ROBUST method uses the luminosity function of the sources as a distance

indicator and this method is applicable for fitting peculiar velocity models to com-

plete flux limited catalogues. The characteristic of the ROBUST method is that no

assumptions need to be considered for the spatial distribution of sources and also

about their luminosity function, apart from the assumption that the luminosity func-

tion does not depend on position. Another important feature is the applicability of

the method even when there are selection effects in redshift. Explicit corrections for

Malmquist bias are unnecessary with the robustness of the method. Further, the

inclusion of additional observables correlated with the absolute magnitude - such as

for example rotation velocity information described by the Tully-Fisher relation, as

would be accessible e.g. to the proposed WALLABY surveys (see Section (1.13.8) -

is straightforward.

The layout of the present chapter is as follows: in sections 3.1 and 3.2 we present

the ROBUST method introduced by Rauzy and Hendry [2000], which we followed

for this study. Section 3.3 describes the techniques we used to model the peculiar

velocity field. Then we discuss about generating the mock catalogues by applying the

ROBUST method in section 3.4. The details of the techniques we used to constrain

β are included in section 3.5. In the following section, § 3.6, we present our results,

where we analyse the potential of the ROBUST method in constraining β for the

future redshift surveys. In Section 3.7.1 we compare the χ2 test with the ROBUST

method. Finally, the last section 3.8 gives the conclusions.
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3.1 Assumptions and statistical model

The fundamental assumption made in RH00 is that the luminosity function f(M),

i.e. the distribution function of the absolute magnitudes M of the population, does

not depend on the spatial position r = (r,l,b) of the galaxies, where l and b are the

object’s longitude and latitude. Under this assumption, the probability density of

the sample can be given as;

dP ∝ dPrdPM = ρ(r, l, b) r2 cosb dl db dr × f(M)dM, (3.1)

where ρ(r, l, b) is the spatial distribution function of the sources.

The samples which are considered to apply the ROBUST method, have a selection

function in apparent magnitude with a sharp cut-off, where ψ(m) = θ(mlim − m),

θ(x) the Heaviside function, i.e. the samples are complete up to a given apparent

magnitude mlim. With this condition for the selection effects, the probability density

of the sample may be written as;

dP =
1

A
h(µ, l, b) cosb dl db dµ f(M) dM θ(mlim −m), (3.2)

where µ is the distance modulus;

µ = m−M = 5 log10 r + 25, (3.3)

and A is the normalization factor which satisfies
∫
dP = 1. For convenience in

notation, the angular dependence in l and b is considered to be implicit. Under

these conditions the observational selection effects in apparent magnitude introduce

a correlation betweenM and µ. The key point of the method is based on the definition

given to the random variable ζ;

ζ =
F (M)

F (Mlim)
, (3.4)
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where F (M) =
∫M

−∞ f(x) dx represents the cumulative distribution function inM and

Mlim =Mlim(µ) = mlim − µ is the maximum absolute magnitude for which a galaxy

at distance µ would be visible in the sample. By definition, the random variable ζ

for a sampled galaxy is uniformly distributed on the interval [0,1]. The expression

shown below is the volume element of the sample

dµdζ =
f(M)

F [Mlim (µ)]
dµ dM. (3.5)

Hence,

dµf(M) dM = F [Mlim(µ)] dµ dζ. (3.6)

Replacing equation (3.6) with the equation (3.2), the probability density dP can be

related to ζ as follows;

dP =
1

A
h(µ) F [Mlim(µ)] dµ× θ(ζ) θ(1− ζ) dζ, (3.7)

A =

∫
h(µ) F [Mlim (µ)]dµ, (3.8)

where, dPµ = (1/A) × h(µ) F [Mlim(µ)] dµ describes the observed spatial distribution

function of the sources. The equation (3.7) implies two important properties about

ζ;

1. P1 : ζ is uniformly distributed between 0 and 1.

2. P2 : ζ and µ are statistically independent, i.e. the distribution of ζ does not

depend on the spatial position of the galaxies.

Hendry et al. [2001] construct a test to calculate the completeness of the sample in

apparent magnitude by using the property P1. This test is also presented in Rauzy

et al. [2001]. The method introduced for fitting peculiar velocity field models (i.e.

RH00) is based on the property P2, which we are using in this chapter for our analysis.
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3.2 Estimate of the random variable ζ

The random variable ζ can be estimated without any prior knowledge of the cumu-

lative luminosity function F (M). With each data point with coordinates (Mi, µi) is

associated the region Si = S1

∪
S2, defined as;

S1 =M ≤Mi and µ ≤ µi, (3.9)

S2 =Mi < M ≤M i
lim and µ ≤ µi. (3.10)

A survey limited by a sharp apparent magnitude limit will result in a diagonal trun-

cation boundary. This kind of truncation causes problems to the standard statistical

methods and a survey with a truncation of absolute magnitude (Figure 3.1) , rather

than apparent magnitude, would remove these statistical difficulties by defining a

sample that is volume limited [Efron and Petrosian, 1992]. Further, these influences

would be negligible if the luminosity distribution is independent of redshift [Efron

and Petrosian, 1992]. In this study, for each galaxy labelled i, RH00 applied a re-

striction M ≤ M i
lim and µ ≤ µi to the samples in order to overcome the difficulties

occurred due to the truncation of apparent magnitude limit. Therefore, the random

variable M and µ become independent in each subsample Si. Figure 3.1 illustrates

the distribution of galaxies with the cut-off.

Hence, the number of points ri belonging to S1 and the number of points ni in

Si = S1

∪
S2 (Figure 3.1) can be related to the cumulative luminosity function F (M)

as;

ri ∝
∫ Mi

−∞
f(M)dM = F (Mi), (3.11)

Si ∝ F (M i
lim). (3.12)

Then an unbiased estimate of the random variable ζ may be written as,

ζ̂i =
ri

ni + 1
. (3.13)
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Figure 3.1: The M − µ diagram of a sample with 15,795 objects which are having the
apparent magnitudes ≤ mlim = 14.3187 (see Section 3.4 for further discussion). A survey
with a truncation of absolute magnitude would remove the statistical difficulties occurred
due to the truncation of apparent magnitude limit. The data are generated from the method
given in Section 3.4.1. Each mock object is coincident with the position of a PSCz galaxy.

The estimator ζ̂i may be defined as the normalized rank of the point Mi, when

the absolute magnitudes (M) are sorted by increasing order within the subsample

Si [Efron and Petrosian, 1992].

3.3 Radial peculiar velocity field models

Rauzy & Hendry assumed that the radial peculiar velocity field v(r) can be described

by an one-parameter velocity model vβ(r), which means that there exists a specific

value of β∗ satisfying v∗β(r) = v(r). For a given value of the parameter β, the model-

dependent variables µβ and Mβ can be computed (modulo the value of the Hubble

constant H0) from the observed redshift z and apparent magnitude m, following

µβ = 5 log10
cz

H0

+ 25− uβ, (3.14)

Mβ = m− µβ, (3.15)
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where the quantity uβ is defined as

uβ = −5 log10(1−
vβ
cz

). (3.16)

The quantities µβ andMβ are related to the true absolute magnitudeM and distance

modulus µ via

µβ = µ+ uβ∗ − uβ, (3.17)

Mβ =M − uβ∗ + uβ. (3.18)

The quantity ζβ can be estimated from µβ and Mβ using equation (3.4). This may

give the corresponding probability density of equation (3.7)

dP =
1

A
h(µ) F [Mlim(µβ)] dµ Cβ θ(ζβ) θ(1− ζβ) dζβ, (3.19)

where Cβ takes the following form when (uβ∗ −uβ) ≪ 1 [ or equivalently (vβ∗ −vβ) ≪

cz]:

Cβ =
f(M)

f(Mβ)
≃ 1 + (uβ − uβ∗)(ln f)′(Mβ). (3.20)

The absolute magnitude Mβ has a correlation with the random variable ζβ. Hence,

(lnf)′(Mβ), a function of Mβ, has a correlation with ζβ. Under these circumstances,

Cβ can be represented as the correlation coefficient between ζβ and the proposed

velocity field model uβ when β ̸= β∗. This fact implies that these quantities become

statistically independent when β = β∗, which follows from the property P2, that

ζβ ≡ ζ does not depend on the spatial position of galaxies and therefore on any

function uβ(r). An important conclusion can be obtained from this relation, that any

statistical test of independence between ζβ and uβ provides an unbiased estimate of

the value of β∗, i.e.

β = β∗ ⇔ ρ(ζβ, uβ) = 0. (3.21)

Equation (3.20) indicates that the accuracy of this estimator is related to the ampli-

tude of the correlation between (ln f)′(Mβ) and ζβ. If the dispersion of the luminosity

function f(M) is very small (i.e. steeper (ln f)′), the estimation of the redshift param-
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eter β may be more accurate. The Monte Carlo simulations can be used to analyze

the influence of sampling fluctuations on the coefficient of correlation ρ(ζβ, uβ). If the

fluctuation of ρ(ζβ, uβ) shows a linear dependence on β over a small interval, then

the exact value of β which satisfies the condition (3.21), given two trial values of β

that display small negative and positive correlation respectively, as follows;

β = xiβ +
1

mgrad

(0− yiρ(ζβ ,uβ)
), (3.22)

where yiρ(ζβ ,uβ)
should be negative and y

(i+1)
ρ(ζβ ,uβ)

should be positive. xiβ is the corre-

sponding β value of the coordinate (xiβ, y
i
ρ(ζβ ,uβ)

) and mgrad is the gradient of the

linear curve.

A small-scale velocity dispersion (say amplitude σv) may cause a spurious correlation

between µβ and Mβ as shown in equations (3.17) and (3.18). Hence, a correlation

may occur between the variables µβ and ζβ. However, RH00 is only focused on the

correlation between the velocity model uβ and ζβ. Further, a correlation should not

exist between the random velocity noise and uβ. Therefore, the presence of a small-

scale velocity dispersion is not expected to bias the estimator proposed in equation

(3.21) considerably, at least as long as the variations of the quantity uβ (r) are smooth

at the scale σv.

The approach of the random variable ζ implies that an unbiased estimate of the

parameter β has indeed been obtained using a null-correlation technique. Null-

correlation approaches are characterized, in general, by their robustness, i.e. some

of the functions entering the statistical model are not required to be fully specified

( Bigot et al. [1991]; Triay et al. [1994]; Rauzy [1997] ). The method described in

RH00 does not require any priori assumptions about a specific shape of the luminos-

ity function and the spatial distribution of the sources like the maximum likelihood

methods. Also, homogeneous as well as inhomogeneous Malmquist biases are auto-

matically accounted for applying the method. In addition, according to the equation

(3.19) the selection effects in distance or redshift are allowed, in any extra terms
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of the form ψ(µ, uβ). The next section presents the details about generating mock

catalogues using the method we discussed above.

3.4 The mock data catalogues

We have applied this method to a range of mock catalogues designed to mimic the

next generation of redshift surveys. The mock data sets were generated using the

spatial distribution and the peculiar velocity field model defined by the IRAS PSCz

velocity field data published by Branchini et al. [1999] (i.e. B99). B99 is based on

the 0.6 Jy redshift survey of IRAS galaxies [Saunders et al., 1999] with a flux limit of

f60 = 60µ m. Following RH00, we adopt a sharp, faint apparent magnitude limit of

mlim = 14.3187, which those authors identified as the magnitude limit corresponding

to the flux limit at 60µ m of the IRAS 1.2 Jy redshift survey. One might argue that

a different limit would be more appropriate for the PSCz survey, given the larger

number of galaxies in the PSCz survey compared with the 1.2 Jy redshift survey

from which it was developed. However, for simplicity we do not compute an explicit

new apparent magnitude limit here since the choice of apparent magnitude limit has

no direct impact on our results (See Figure 3.2 for an example). The calculations

are carried out considering the value of the Hubble constant H0 = 100 Mpc h−1, and

the true value of β assumed to be 0.5. In the next section we present the details of

constructing the mock data catalogues that mimic the future redshift surveys.

3.4.1 Constructing the mock data catalogue

For simplicity, we assumed that each mock galaxy position was coincident with one of

the PSCz galaxies. The mock objects are randomly selected from B99. The observed

recession velocity, cz, and the radial peculiar velocity, V (r), which are required to

find the distance modulus of the mock objects (see Section 3.3 for the corresponding

equations), were taken directly from B99. The original data of the radial peculiar

velocities were scaled to V (r) = V (r)β=0.5, where the true value of β was consid-

ered to be 0.5 (i.e. βtrue = 0.5). The coefficient of correlation between the random

variable ζβ and the velocity modulus uβ for βtrue = 1.0 is illustrated in figure 3.3.
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Figure 3.2: This is an example to show that the choice of the apparent magnitude limit
(mlim) has no direct impact for the results. We generated 1000 mock data catalogues with
5000 objects, varying the mlim from 14.0 up to 20.0. An error of σ = 1 has been considered
for the luminosity function. All the distributions are centered around βtrue well, confirming
our argument.

The absolute magnitude was found by considering the luminosity function to be a

Gaussian distribution of mean, M = -20.0 and σM = 1.0 ( We have used M as the

mean, because µ denotes the distance modulus).

With the corresponding data in hand, we have generated the apparent magnitude

of the mock objects to be lie within the mlim (i.e. 14.3187). Figure 3.4 is an com-

parison of the distributions of the apparent magnitude of the mock objects before

(blue) and after (red) the cut-off and Figure 3.1 is the M − µ diagram of the mock

objects which lie within the cut-off. The mock objects are generated as satisfying the

condition cz ≤ 15,000 km s−1, where the PSCz velocity field is incomplete beyond

this boundary [Branchini et al., 1999]. The method was applied to sub samples

selected from the PSCz catalogue containing 5,000, 6,000 to 15,000 objects, repre-

senting the luminosity function of the mock objects as distance indicators, with an

error of σ = 1.0.
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Figure 3.3: The correlation between ζβ and uβ = −5 log10(1 −
vβ
cz ) for βtrue = 1.0. The

coefficient of correlation is ρ(ζβ , uβ) = −0.0005 in this case. The mock sample contains
15,000 objects.

3.5 Reconstructing β with ROBUST method

After generating the mock data samples forM , m and µ we have applied the equation

(3.13) to calculate the value of ζβ for each galaxy in the mock sample. The values

of uβ, µβ and Mβ are modelled from the equations (3.14), (3.15) and (3.16) for

the trial values of β from 0 to 1.0 with a increment of 0.1 in each step. Then, the

corresponding values of ζβ are calculated for the each mock object. The coefficient

of correlation, ρ(ζβ, uβ) was found from the equation given below.

ρ(ζβ, uβ) =
n
∑n

i=1 ζiui −
∑n

i=1 ζi
∑n

i=1 ui√
n
∑n

i=1 ζ
2
i − (

∑n
i=1 ζi)

2
√
n
∑n

i=1 u
2
i − (

∑n
i=1 ui)

2
. (3.23)

The crucial point is the determination of the corresponding β value, where ζβ and

uβ become independent each other. We have applied the linear interpolation method

with the Monte Carlo simulations to determine the exact value of β which satisfies the

condition in the equation (3.21). In order to apply the linear interpolation method,

the linearity of the graph of ρ(ζβ, uβ) versus β - trial is crucial, especially in small

intervals of β. We have analyzed the linearity property for each and every sample

and the condition is satisfied for all the mock samples. Figure 3.5 illustrates the
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Figure 3.4: Comparison of the distribution of the apparent magnitude (m) before (blue)
and after (red) applying the cut-off. The distribution without considering the mlim having
a gaussian distribution, while the distribution which represents the mock objects having
apparent magnitude (m) ≤ mlim displays a completely different statistical distribution.
The values of the apparent magnitude with the Gaussian distribution were generated by
considering a luminosity function with a Gaussian distribution of mean, M = -20.0 and σM
= 1.0.

behaviour of ρ(ζβ, uβ) versus β - trial for one example of each size of mock sample.

3.6 Results and discussion

3.6.1 Linear interpolation with ROBUST method

We have identified an important issue when applying the linear interpolation to de-

termine best-fit values of β. Whether the ρ(ζβ, uβ) versus β - trial curve is linear in

the small intervals of β-trials, we have to be more careful when considering the grid

point of β. For the very small fluctuations in β, ζ fluctuates very rapidly. Figure

3.6 shows the fluctuation of ρ(ζβ, uβ) corresponding to small changes in β parameter.

ρ(ζβ, uβ) shows a considerably high fluctuation as a result of the variations in ζ -

as very small numbers of galaxies move in and out of the S1 and S2 regions, while

changing β very slightly. The size of the variations in ρ(ζβ, uβ) are very small; par-

ticularly when ρ(ζβ, uβ) is very close to zero then even a tiny variation in ρ(ζβ, uβ)

can change it from being positive to negative. This suggested to us that using linear
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(a)

(b)

Figure 3.5: Coefficient of correlation as a function of β. The data are sampled assuming
βtrue= 0.5. (a) An illustration of all the mock samples. The best-fit value can be determined
considering the interchange of the curve with ρ(ζβ , uβ) = 0. (b) The zoomed image of (a),
which shows the linearity of the curve in small intervals of β.
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Figure 3.6: The fluctuation of ρ(ζβ , uβ) corresponding to small changes in β parameter.
The size of the variations in ρ(ζβ , uβ) are very small; particularly when ρ(ζβ , uβ) is very
close to zero then even a tiny variation in ρ(ζβ , uβ) can change it from being positive to
negative.(a) An illustration of the fluctuation of ρ(ζβ , uβ) for a sample with 5000 objects.
The value of β is in the range 0 to 1 with 1000 grid points (i.e. δβ = 0.001). The influence
for the sign of ρ(ζβ , uβ) due to tiny variation can be seen clearly in (b), the zoomed figure
of (a).
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interpolation to find where ρ(ζβ, uβ) equals zero is not only justified, and actually

better than using a very fine grid of β values. What one wants to do is to fit the

ρ(ζβ, uβ) = 0 value of β from the underlying smooth trend, not the ρ(ζβ, uβ) values

with the additional random noise added due to the impact of small fluctuations in

ζ and uβ. So by linearly interpolating between β values that give ρ(ζβ, uβ) not too

close to zero (and so less severely affected by the noise) we can get a more reliable

answer for the ρ(ζβ, uβ) = 0 value for the underlying trend curve. Therefore, we

have to restrict our analysis with small number of grid for β values in order to get

the accurate results. Based on this issue, we considered only 10 grid point for β -

parameters with δβ = 0.1.

3.6.2 Constraining β

As we discussed earlier, our aim is to identify the corresponding value of β - trial,

where ζβ and uβ become independent from each other (i.e. ρ(ζβ, uβ) = 0). This

value would be the best-fit for the peculiar velocity model. The best-fit values for

each sample, which are obtained from the linear interpolation, have a considerable

agreement with the true value of β (i.e. 0.5). Figure 3.7 illustrates the results of

β estimates for a luminosity function with σ = 1.0. The distribution of the best-fit

values of β are centered around 0.5, giving a good agreement with the true value of

β = 0.5. Further, the distribution become narrower with increasing of the number of

objects. From left to right, in each raw, number of objects are increasing from 5,000

to 15,000. These results confirm the potential of the ROBUST method as a method of

modeling peculiar velocity fields. More importantly, whether the luminosity function

of the objects have a considerably high scatter, ROBUST may provide more accurate

values in β determination.

3.6.3 Scatter in the luminosity function and the ROBUST

method

We have varied the scatter in the luminosity function from σ = 1.0, 1.5 and 2.0,

when generating the absolute magnitude of the mock objects. The distributions of
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Figure 3.7: The distribution of the best-fit value of β - trial. The ROBUST method was
applied for 1000 mock samples with 5,000, 6,000 to 15,000 mock objects, respectively. The
distributions are centered around 0.5 for the best estimates. The error in the luminosity
function considered to be σ = 1.0.
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the best-fit of β are shown in figures 3.8 and 3.9. The distribution of beta estimates

become wider with the increase of the luminosity function scatter. Note, however,

that all of the distributions are centred around the true value of β = 0.5.

Figure 3.8: The influence of the scatter in luminosity function in constraining β, using
the ROBUST method. The rows from top to bottom represent the samples with number
of objects 5,000, 6,000 to 10,000. The columns from right left denote the considered error
(σ) in the luminosity function.

3.7 A comparison of the χ2 techniques with the

ROBUST method

In this section we discuss about the potential of the above two methods in constraining

β under different circumstances given below;

• The usefulness of the χ2 hypothesis test with the ROBUST method, to TF-like

distance indicators.

• Type Ia supernovae versus the galaxy luminosity function.

• A luminosity function with a Uniform distribution.
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Figure 3.9: The influence of the scatter in luminosity function in constraining β, using
the ROBUST method, continued. The rows from top to bottom represent the samples
with number of objects 11,000, 12,000 to 15,000. The columns from right left denote the
considered error (σ) in the luminosity function.

3.7.1 The usefulness of the χ2 hypothesis test with the RO-

BUST method, to TF-like distance indicators

For this analysis we considered the TF-like distance indicators. Our aim was to com-

pare the usefulness of the χ2 hypothesis test with the TF-like distance indicators and

the ROBUST method with a LF of σ = 1.0, to analyse a sample with large number

of galaxies. The corresponding data for the χ2 test were obtained from the method

described in Section 2.6. The fixed fractional distance scatter of TF was taken to be

0.25, same as before. We considered only the samples with 50 km s−1 (the smallest

scatter considered for this study) and 150 km s−1 (a commonly used velocity scatter

in present day studies ) as the velocity scatters with a gaussian distribution. The

data for the ROBUST method were obtained by using the method explained in sec-

tions 3.4 and 3.5. The error in the LF was considered to be 1.0. Figure 3.10 is an

illustration of the results we obtained.

The top row (green, σ = 1.0) contains results obtained from the ROBUST method,

while the middle row (red, σV = 50 km s−1) and the bottom row (violet, σV = 150 km
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Figure 3.10: The β estimates obtained for TF-like indicators with the χ2 techniques and
for the ROBUST method are shown in this figure. The number of objects was varied from
11000, 12000 to 15000 and 1000 mock samples were considered. The error in the luminosity
function is 1.0. For the comparison, we considered the results obtained for the samples with
σV = 50 km s−1 (the smallest scatter considered for this study) and σV = 150 km s−1 (the
commonly used peculiar velocity scatter in present studies), using χ2 hypothesis test. The
fractional distance scatter of TF is σ = 0.25. Gaussian errors are added to the distances
and the peculiar velocities to represent the uncertainties.
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s−1) represent the results obtained from χ2 test for the TF. As shown in Figure 3.10,

for the results obtained from χ2 technique, the distributions of the β-estimates are

centered around βtrue = 0.5. Also, it can be seen that the β-estimates mostly occurred

in a range of about 0.4− 0.55. On the other, the distribution of the β-estimates ob-

tained from the ROBUST method are in a range of about 0.35 - 0.6, a considerably

wider range compared to the above range. Depending on these results we can say

that the χ2 results, with σd = 0.25, are better than using the ROBUST method (with

an error of LF σ = 1.0). This can be explained as follows.

One of the reasons is that the χ2 distribution describes the sum of the squares of

Gaussian distributed random variables, and if the peculiar velocity errors are Gaus-

sian then the χ2 value that construct for each mock data set is the sum of squared

Gaussians. The second reason is that the same number of galaxies and the same spa-

tial distribution have been considered for the ROBUST method and the χ2 test for

the calculations. This means that the question of whether the TF or galaxy LF data

give the more accurate β estimate will just depend on whether the LF data (with σ

= 1.0) effectively give distance errors with a smaller or larger scatter than the TF

data. We know that the error in the natural logarithm of distance is approximately

equal to the fractional error in the distance, i.e.

σ(lnDest) = σ(Dest)/Dest (3.24)

Also,

ln(Dest) = ln(10)× log10(Dest) = ln(10)× 0.2× (mobs −Mest − 25) (3.25)

it follows that σ(lnDest) = 0.2 × ln(10) × σ(M). Therefore, for the TF data

σ(Dest)/Dest = 0.25, while for the ROBUST data using the LF, the equivalent value

is σ(Dest/Dest) = 0.46. Hence, the TF data, using χ2 test, should provide a more

accurate estimate of β anyway because they are using a smaller effective value of σ

for the distance estimates by about a factor of two.
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3.7.2 Type Ia supernovae versus the galaxy luminosity func-

tion.

In this section we compare the β-estimates of SNIa obtained from χ2 test with that

of obtained from ROBUST method. We assigned a fractional distance scatter of 0.08

for SNIa and the luminosity function (LF) considered to be having σ = 1.0. The same

methods given in the above section were used to obtain the required data. For the

comparison, 1000 mock samples with 100 SNIa were considered. The Gaussian errors

were applied for the peculiar velocities with the scatter varied form 50 km s−1 up to

300 km s−1. The 1000 mock samples with 5,000 to 15,000 objects were considered

for the ROBUST method. The results can be seen in Figure 3.11.

Figure 3.11: The comparison of SNIa with the galaxy luminosity function. The top row
(red) denotes the results for SNIa obtained from χ2 test. The results obtained from the
ROBUST method are given in the bottom two rows with 5000, 6000 to 15000 objects. We
considered 1000 mock samples for each case. For 100 SNIa, the fractional distance scatter
considered to be 0.08. From left to right in the top row, the scatter in the peculiar velocity
is varied from 50 km s−1 to 300 km s−1. Gaussian errors are added to the distances and
the peculiar velocities to represent the uncertainties.

The top raw represents the results obtained for SNIa (red) with 100 objects in

each sample. The bottom two rows contain the results obtained form the ROBUST

method. The β-estimations are in a range of 0.20 - 0.65 for SNIa while the range for
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ROBUST method is 0.35 - 0.60, which is a good range compared to SNIa. Moreover,

the distriutions are gradually deviates from true β (i.e. 0.5) with the increment of σV

for SNIa. These results imply that even though the Supernovae are more accurate -

one can get equally good or even better estimates of β using the galaxy LF provided

one has enough galaxies. Further, we do not need to assume a specific parametric

form for the galaxy LF, whereas to apply the χ2 test with the larger data set we need

to assume a Gaussian distribution.

3.7.3 A luminosity function with a Uniform distribution

For this comparison we have taken a different statistical distribution for the galaxy lu-

minosity function, the Uniform distribution. To generate the absolute magnitude we

adopted a uniform distribution where, M = U(−23.0,−17.0), assuming that galaxies

have a mean absolute magnitude , Mo = −20.0. The true value of the β was consid-

ered to be 0.5.

The procedure of generating mock catalogues for the ROBUST method is the same,

as explained in Section 3.4. The only difference is that the LF has a Uniform distri-

bution instead of a Gaussian. The number of objects was varied from 5000, 6000 to

10000 and we considered 1000 mock samples for each case. The procedure of gen-

erating mock data catalogues for the calculations of χ2 test is some what different,

as described below. We considered 1000 samples of 100 SNIa, with a fractional dis-

tance scatter of 0.08. Similar to the method explained in Section 2.6, we have taken

the data for the observed cz and the true peculiar velocity field (scaled to β = 0.5),

directly from B99 and the true distances were found from these data. However, we

need to follow a different method to find the observed peculiar velocity as explained

below. The absolute magnitude (M) of each galaxy was generated from a Uniform

distribution as given below;

M = Uniform(Mo − 3,Mo + 3), (3.26)
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WhereMo is the mean absolute magnitude of the galaxy, which is assumed to be -20.0

same as for the ROBUST method. Then the observed apparent magnitude (mobs) of

a galaxy can be given as;

mobs =M + 5 log(dtrue) + 25. (3.27)

Now, we can obtain an estimate of the distance (which we denote dobs) of the galaxy

by considering the standard candle assumption as follows;

dobs = 10[0.2(mobs−Mo−25)]. (3.28)

In other words, we assume that the absolute magnitude of the galaxy is equal to the

mean absolute magnitude of the LF. Then the observed peculiar velocity (vpecobs) is

appeared to be;

vpecobs = czobs − dobs. (3.29)

The predicted peculiar velocity can be found as;

vpecpred(beta = 1.0) = vpec(PSCZ, beta = 1.0) + σV , (3.30)

where σV is a Gaussian error and representing the velocity scatter introduce by un-

certainties in the reconstructing procedure. The scatter in velocity was varied from

50 km s−1 to 300 km s−1. Then we applied the χ2 test to constrain β as explained in

Section (2.5). The results obtained from the ROBUST method as well as the χ2 test

is given in Figure 3.12.

The top panel of Figure 3.12 shows that the distributions of β-estimates(SNIa) are

all deviate from βtrue = 0.5 for all the velocity scatters, and centred around a value

in between 0.4-0.5. Note that as might expect, the deviation increases as the velocity

scatter increase (similar to the behaviour seen in Chapter 2). On the other hand all

the distributions of β-estimates(ROBUST) centred around 0.5. These results imply

that the χ2 test wouldn’t work for distance and peculiar velocity estimates derived

from the galaxy LF since it is no longer Gaussian. Also, we can say that even if the
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Figure 3.12: β - estimates of objects obtained for a galaxy luminosity function with a
Uniform distribution. The top panel denotes the results for SNIa, while the lower panel
contains results obtained from the ROBUST method. There are 100 SNIa with a fixed
fractional distance scatter of 0.08. The scatter in velocity is varied by 50 km s−1 up to 300
km s−1 from left to right in the top panel. The number of objects is varied from 5000 to
10000 from left to right in the lower panel, i.e. the number of objects considered for the
ROBUST method. The distributions of β-estimates(ROBUST) are centred around βtrue =
0.5. However, the distributions of SNIa are deviate from 0.5 and mostly centred around a
value in between 0.4-0.5.

LF is very different from a Gaussian the ROBUST method have the ability to give

correct β-estimates.

3.8 Conclusion

In this chapter we have reviewed the ROBUST method for fitting peculiar velocity

models, originally proposed by Rauzy and Hendry [2000] to analyze the potential

of the method with the approach of the next generation of redshift surveys. Also,

we did a comparison of χ2 test with the ROBUST method considering different cir-

cumstances. We carried out our analysis considering the IRAS - PSCz catalogue

published by Branchini et al. [1999]. The position of each mock object considered

to be coincided with one of the PSCz galaxies. The radial distance was considered

to be lie within cz < 15,000 km s−1
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The determination of the best-fit value of β depends on the null-correlation of ζβ

and uβ (i.e. ρ(ζβ, uβ) = 0). A monotonically increasing function from negative to

positive, of ρ(ζβ, uβ) vs β, is crucial in determining the best-fit value. ζβ varies rapidly

with the small changes in β causing a considerable fluctuation in ρ(ζβ, uβ). Under

this circumstance, a tiny variation in ρ(ζβ, uβ) can change it from being positive to

negative or vice versa, when the correlation coefficient is very small. Therefore, it

is important not to consider a fine grid points for β, and by linearly interpolating

between values that give ρ(ζβ, uβ) not too close to zero, and so less severely affected

by the noise, we can get a more reliable answer for the ρ(ζβ, uβ) = 0 value for the

underlying trend curve.

We have assumed the true value of β to be 0.5 in modelling the mock samples.

The best-fit values of β obtained for each sample show a good agreement with the

assumed true value. These results suggested the robustness of the ROBUST method

for fitting the peculiar velocity models of the next generation of redshift surveys.

Specifically, if the luminosity function of the objects considered as a distance indi-

cator, whether there is a large scatter, ROBUST method have the ability to remove

the statistical bias and to give promising results in constraining β.

The comparison between χ2 test and the ROBUST method revealed us important

aspects where in some cases χ2 test shows a good potential in constraining β while

ROBUST method become strong in other cases. When constraining β with TF-like

distance indicators, χ2 test become strong than ROBUST. However, when considering

SNIa, ROBUST method has shown a relatively good potential compared to χ2 test.

The results obtained from a galaxy luminosity function with a Uniform distribution

revealed that the ROBUST method is able to provide correct β-estimates indepen-

dent of the parametric form of the LF, exactly as the method should do. However,

we found that the χ2 test was less successful when the LF is non-Gaussian.
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Chapter 4

Future work

This chapter describes the possible avenues for future development of the research

carried out in this thesis. We propose a method that can be applied to constrain β,

using χ2 hypothesis test or ROBUST method, that can be applied to much larger

samples of galaxies than the number of PSCz galaxies. If one needs a larger sample

of galaxies than the PSCz galaxies, but nonetheless have the mocks mimicking the

PSCz spatial distribution, we can use the Probability Integral Transform (PIT) (Sec-

tion 1.14.2) to generate the above sample as follows.

We used PIT to sample the distance of the mock objects that mimics the PSCz

redshift distance distribution in the Local Group frame. As we discussed in Sec-

tion 1.14.2, the cumulative distribution function of the redshift distance, P (d) =∫ d

−∞ p(x)d(x) of PSCz galaxies (cdfPSCz) (Figure 4.1), was found from B99. The

mock objects are randomly positioned in a 3-D map of the entirely smoothed velocity

field of the PSCz galaxies (Figure 4.2). The 3-D map is a box of comoving size of 360.0

Mpc h−1. Again, the larger cube was divided to small cubes, where the dimension of

each side is 2.8125 Mpc h−1 making 1283 grid points. Each grid point represents the

3-D distance components in super galactic coordinates and radial peculiar velocity

components in kms−1, in the LG frame. The peculiar velocities are scaled for β = 0.5

on this grid.

The unit vector for the random direction of a galaxy was defined by generating the
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Figure 4.1: The cumulative distribution function of the redshift distance of the PSCz
galaxies.

distance coordinates from a uniform distribution, i.e. (x, y, z) = Uniform(-150,150)

in Mpc. Then the true radial distance (dtrue) of the sampled galaxies was obtained by

multiplying the corresponding unit vector with the required value obtained from the

PIT method (the value taken from the cdf PSCz ). The distribution of the simulated

radial distances (km s−1) is shown in Figure 4.3 as a comparison of the distribution

of the redshift distance of the PSCz galaxies. It is important to notice that the distri-

bution of the simulated radial distances (km s−1), mimic the distributions of redshift

distances of PSCz galaxies with a considerably good agreement up to 15,000 km s−1.

As we stated earlier, for the calculations we truncated the distance up to 15,000 km

s−1, depending on the completeness of the PSCz peculiar velocity field. Therefore,

whether the mock distance distribution dosen’t mimic the PSCz distance distribution

beyond 15,000 km s( − 1) that wouldn’t cause any influence on our results.

4.1 Generating data for χ2 hypothesis test

The true peculiar velocities of the objects (vpecβ=0.5) were predicted by applying a

linear interpolation for the peculiar velocity components of the PSCz galaxies, given

in the 3-D map. Then the observational data for the recession velocity (czobs), radial
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Figure 4.2: (a) An example of a 3-D map of the galaxies.(b) An illustration of a mock
object (red) positioned in a small cube with galaxies (yellow).
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Figure 4.3: Comparison of the PSCz galaxies and mock objects. The diagram shows the
distance distribution of both the PSCz galaxies and the mock objects. 15,795 mock objects
lie within cz < 15,000 km s−1 were considered for the comparison of the distance distri-
bution, as B99 also having the same number of PSCz galaxies. The distance distribution
mimic that of PSCz galaxies with a reasonable level of accuracy.
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distance (dobsII) and the peculiar velocities (vpecobsII) and the predicted peculiar

velocities are taken from the simulated data as follows:

• The true recession velocity czII (< 15,000 km s−1) was found by adding the

true peculiar velocity vpecβ=0.5 and the true radial distance dtrue obtained from

PIT method.

czII = vpecβ=0.5 +Ho dtrue (4.1)

• Then the observed recession velocity czobs was found by adding a Gaussian

errors (σv, σd) to vpecβ=0.5 along with Hodtrue.

czobs = vpecβ=0.5 + σv +Ho dtrue + σd (4.2)

• The observed radial distance (dobsII) was found by adding a Gaussian error with

a fixed fractional distance scatter σd (as given in Chapter 2, Tabel 2.1) to the

true radial distance dtrue.

dobsII = dtrue + σd (4.3)

• The observed peculiar velocity vpecobsII was obtained from czobs and dobsII .

vpecobsII = czobs − dobsII (4.4)

• To obtain the predicted peculiar velocity, vpecβ=0.5 was scaled to β = 1.0, i.e.

vpecβ=1.0. Here a Gaussian error (i.e. σv) was added to vpecβ=1.0. Then the

predicted peculiar velocity was calculated for each β value, correspondingly.

4.2 Generating data for ROBUST method

In order to apply the ROBUST method the observed recession velocity (czobs) and

the true radial peculiar velocity (vpecβ=1.0) of the mock objects are required. The

method we followed to generate czobs and vpecβ=1.0 is broadly discussed in the above

section (i.e.§ 4.1). Further, we need to know the distance modulus (µ) and the

absolute magnitudes (M) of the mock objects and these values have been found as
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follows. The radial distances of the mock objects are taken from the simulated data,

in megaparsec (i.e (i.e. dtrue), which mimic the redshift distance distribution of the

PSCz galaxies. We didn’t apply a correction for the radial distance in this case as we

are trying to specify the luminosity function as a distance indicator. Then, the true

value of the distance modulus µ can be found by;

µ = 5 log10(d) + 25. (4.5)

With these data in hand, we can generate M by considering a luminosity function,

which does not depend on the spatial distribution of the galaxies, as describe in

Chapter 3. Then, following the same procedure in Chapter 3, we can constrain β for

a sample with number of galaxies larger than PSCz velocity field, which mimics the

PSCz spatial distribution. The advantage of this method is that we are not restricted

in determining the number of objects. Therefore this method can be applied for the

analysis of the samples with large number of objects to represents the next genera-

tion galaxy surveys with huge number of objects -for example, WALLABY. As we

discussed in Chapter 1, WALLABY may detect up to 500,000 galaxies to a redshift

of 0.26 (i.e. cz = 78,000 km s−1).

Suggestions for further analysis of the ROBUST method:

• To consider other LF models (e.g. Schechter function LF) and so demonstrating

that the estimates of β are indeed robust to the choice of LF provided it is

independent of position.

• To explore generalised models for galaxy biasing, i.e. to investigate whether

-with a sufficiently large survey - one might be able to extend biasing models

beyond simple linear biasing and constrain models in which the bias parameter

also depends on scale.

• To explore how robust methods are affected by evolutionary and environmental

effects - i.e. when the LF does depend (slightly) on distance and redshift. Would

the robust method still provide a reliable estimate of beta in these cases?
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Frenk, C. S., Carramiñana, A., and Hawkins, M. R. S.: 2000, MNRAS 317, 55

Schilizzi, R. T., Dewdney, P. E. F., and Lazio, T. J. W.: 2008, in Society of Photo-

Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7012 of Pre-

sented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Confer-

ence

Schombert, J. M., Pildis, R. A., and Eder, J. A.: 1997, ApJS 111, 233

Schommer, R. A., Olszewski, E. W., and Aaronson, M.: 1984, ApJl 285, L53

Schutz, B. F.: 1986, Nature 323, 310

Sekiguchi, T., Ichikawa, K., Takahashi, T., and Greenhill, L.: 2009, ArXiv e-prints

Shanks, T., Bean, A. J., Ellis, R. S., Fong, R., Efstathiou, G., and Peterson, B. A.:

1983, ApJ 274, 529

Shaya, E. J., Peebles, P. J. E., and Tully, R. B.: 1995, ApJ 454, 15

Sigad, Y., Eldar, A., Dekel, A., Strauss, M. A., and Yahil, A.: 1998, ApJ 495, 516

Skillen, I., Fernley, J. A., Stobie, R. S., and Jameson, R. F.: 1993, MNRAS 265, 301

Skrutskie, M. F., Cutri, R. M., Stiening, R., Weinberg, M. D., Schneider, S., Carpen-

ter, J. M., Beichman, C., Capps, R., Chester, T., Elias, J., Huchra, J., Liebert, J.,

Lonsdale, C., Monet, D. G., Price, S., Seitzer, P., Jarrett, T., Kirkpatrick, J. D.,

Gizis, J. E., Howard, E., Evans, T., Fowler, J., Fullmer, L., Hurt, R., Light, R.,

Kopan, E. L., Marsh, K. A., McCallon, H. L., Tam, R., Van Dyk, S., and Wheelock,

S.: 2006, AJ 131, 1163

Smith, H. A., Church, J. A., Fournier, J., Lisle, J., Gay, P., Kolenberg, K., Carney,

B. W., Dick, I., Peterson, R. C., and Hakes, B.: 2003, PASP 115, 43

Smoot, G. F., Bennett, C. L., Kogut, A., Wright, E. L., Aymon, J., Boggess, N. W.,

Cheng, E. S., de Amici, G., Gulkis, S., Hauser, M. G., Hinshaw, G., Jackson, P. D.,

KWPBS 124



Bibliography

Janssen, M., Kaita, E., Kelsall, T., Keegstra, P., Lineweaver, C., Loewenstein, K.,

Lubin, P., Mather, J., Meyer, S. S., Moseley, S. H., Murdock, T., Rokke, L.,

Silverberg, R. F., Tenorio, L., Weiss, R., and Wilkinson, D. T.: 1992, ApJl 396,

L1

Soifer, B. T., Boehmer, L., Neugebauer, G., and Sanders, D. B.: 1989, AJ 98, 766

Stothers, R. B.: 1983, ApJ 274, 20

Strauss, M. A., Huchra, J. P., Davis, M., Yahil, A., Fisher, K. B., and Tonry, J.:

1992, ApJS 83, 29

Strauss, M. A. and Willick, J. A.: 1995, PhR 261, 271

Teerikorpi, P.: 1990a, AAP 234, 1

Teerikorpi, P.: 1990b, A&A 234, 1

Teerikorpi, P.: 1995, Astrophysical Letters Communications 31, 263

Teerikorpi, P.: 1997, ARAA 35, 101

Teerikorpi, P.: 1998, AAP 339, 647

Theureau, G., Rauzy, S., Bottinelli, L., and Gouguenheim, L.: 1998, AAP 340, 21

Tinto, M., Estabrook, F. B., and Armstrong, J. W.: 2002, PhRvD 65(8), 082003

Tonry, J. L., Schmidt, B. P., Barris, B., Candia, P., Challis, P., Clocchiatti, A.,

Coil, A. L., Filippenko, A. V., Garnavich, P., Hogan, C., Holland, S. T., Jha, S.,

Kirshner, R. P., Krisciunas, K., Leibundgut, B., Li, W., Matheson, T., Phillips,

M. M., Riess, A. G., Schommer, R., Smith, R. C., Sollerman, J., Spyromilio, J.,

Stubbs, C. W., and Suntzeff, N. B.: 2003, ApJ 594, 1

Trachternach, C., de Blok, W. J. G., McGaugh, S. S., van der Hulst, J. M., and

Dettmar, R. .: 2009, ArXiv e-prints

Triay, R., Lachieze-Rey, M., and Rauzy, S.: 1994, A&A 289, 19

Tully, R. B. and Fisher, J. R.: 1977, AAP 54, 661

KWPBS 125



Bibliography

Udalski, A., Soszynski, I., Szymanski, M., Kubiak, M., Pietrzynski, G., Wozniak, P.,

and Zebrun, K.: 1999, Acta Astronomica

Valentine, H., Saunders, W., and Taylor, A.: 2000, MNRAS 319, L13

Wakamatsu, K., Colless, M., Jarrett, T., Parker, Q., Saunders, W., and Watson,

F.: 2003, in S. Ikeuchi, J. Hearnshaw, and T. Hanawa (eds.), The Proceedings of

the IAU 8th Asian-Pacific Regional Meeting, Volume I, Vol. 289 of Astronomical

Society of the Pacific Conference Series, pp 97–104

Wang, L., Goldhaber, G., Aldering, G., and Perlmutter, S.: 2003, ApJ 590, 944

Wang, L., Strovink, M., Conley, A., Goldhaber, G., Kowalski, M., Perlmutter, S.,

and Siegrist, J.: 2006, ApJ 641, 50

Weinberg, D.: 1995, in S. J. Maddox & A. Aragon-Salamanca (ed.), Wide Field

Spectroscopy and the Distant Universe, pp 129–+

Wheeler, J. C., Piran, T., and Weinberg, S. (eds.): 1990, Jerusalem Winter School

for Theoretical Physics. Supernovae. Volume 6, Jerusalem, Dec. 28, 1988- Jan. 5,

1989.

Willick, J. A.: 1991, Ph.D. thesis, California Univ., Berkeley.

Willick, J. A.: 1994, ApJS 92, 1

Willick, J. A.: 1996, ArXiv Astrophysics e-prints

Willick, J. A., Davis, M., Dekel, A., and Shaya, E.: 2000, in S. Courteau & J. Willick

(ed.), Cosmic Flows Workshop, Vol. 201 of Astronomical Society of the Pacific

Conference Series, pp 321–+

Willick, J. A. and Strauss, M. A.: 1998, ApJ 507, 64

Wright, E. L., Meyer, S. S., Bennett, C. L., Boggess, N. W., Cheng, E. S., Hauser,

M. G., Kogut, A., Lineweaver, C., Mather, J. C., Smoot, G. F., Weiss, R., Gulkis,

S., Hinshaw, G., Janssen, M., Kelsall, T., Lubin, P. M., Moseley, Jr., S. H., Mur-

dock, T. L., Shafer, R. A., Silverberg, R. F., and Wilkinson, D. T.: 1992, ApJ1

396, L13

KWPBS 126



Bibliography

Yahil, A., Strauss, M. A., Davis, M., and Huchra, J. P.: 1991, ApJ 372, 380

KWPBS 127


