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Abstract

Colliding high energy hadrons either produce new particles or scat-
ter elastically with their quantum numbers conserved and no other
particles produced. We consider the latter case here. Although inelas-
tic processes dominate at high energies, elastic scattering contributes
considerably (18-25%) to the total cross section. Its share first de-
creases and then increases at higher energies. Small-angle scattering
prevails at all energies. Some characteristic features are seen that pro-
vide informationon the geometrical structure of the colliding particles
and the relevant dynamical mechanisms. The steep Gaussian peak at
small angles is followed by the exponential (Orear) regime with some
shoulders and dips, and then by a power-law drop.

Results from various theoretical approaches are compared with ex-
perimental data. Phenomenological models claiming to describe this
process are reviewed. The unitarity condition predicts an exponential
fall for the differential cross section with an additional substructure
to occur exactly between the low momentum transfer diffraction cone
and a power-law, hard parton scattering regime under high momen-
tum transfer. Data on the interference of the Coulomb and nuclear
parts of amplitudes at extremely small angles provide the value of the
real part of the forward scattering nuclear amplitude.

The real part of the elastic scattering amplitude and the contri-
bution of inelastic processes to the imaginary part of this amplitude
(the so-called overlap function) at nonforward transferred momenta
are also discussed. Problems related to the scaling behavior of the dif-
ferential cross section are considered. The power-law regime at highest
momentum transfer is briefly described.

1 Introduction

Hadron interactions are strong and, in principle, should be described by
quantum chromodynamics (QCD). However, experimental data show that
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their main features originate from the non-perturbative sector of QCD. Only
comparatively rare processes with large transferred momenta can be treated
theoretically rather successfully by perturbative methods due to the well-
known property of the asymptotical freedom of QCD. Hence, in the absence
of methods for a rigorous solution of QCD equations, our understanding of
the dynamics of the main bulk of strong interactions is severely limited by
model building or some rare rigorous relations. In fact, our approach to
high-energy hadronic processes at present is at best still in its infancy.

As has been learned from experiment, strong interactions of colliding
high-energy particles give rise to inelastic and elastic processes. Some new
particles (mostly pions) are produced in inelastic processes, which are the
most probable ones, comprising 75% to 80% of all processes at high energies.
Most created particles have comparatively small transverse momenta.

At the same time, in 25% to 20% of events, the colliding particles do not
change their nature and scatter elastically, declining at some angle from their
initial trajectories. The only information about this process available from
experiment is obtained by the measurement of the differential cross section
(proportional to the probability) of elastic scattering at some angle at a given
energy.

In a very tiny range of extremely small angles, the charged particles scat-
ter due to electromagnetic forces. But the dominant process of elastic scat-
tering due to strong interactions proceeds at somewhat larger angles in the
so-called diffraction cone. The differential cross sections are heavily weighted
toward small transferred momenta exhibiting a huge peak. The scattering
angle is still rather small there and becomes smaller and smaller as the en-
ergy increases. The probability of scattering at a given angle in this region
decreases steeply, similarly to a Gaussian exponential. Noticeably less than
one percent of particles are elastically scattered to larger angles outside this
diffraction cone. The Gaussian behavior is replaced there by a simple ex-
ponential one with some shoulders and (or) dips. At ever larger angles (or
transferred momenta), a power-like decrease has been observed. At angles
close to π/2, some additional flattening is seen.

The elastic cross section (the integral of the differential distribution over
angles or transverse momentum) depends on the energy of the colliding part-
ners. At high energies, it shows a steady tendency to become larger with an
increase in energy. We note that the inelastic cross section also increases,
such that their sum (the total cross section) increases as well.

The process of elastic scattering of hadrons has been studied experimen-
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tally in a wide energy region with different initial particles. At high energies
of colliding partners, the most detailed results are available for the scattering
of protons (pp) and antiprotons (pp̄) on protons. We mainly discuss these
data, sometimes referring to other colliding partners of protons such as pions
and kaons.

Some surprises in the behavior of the differential cross sections appeared
in the 1960s when the very first experimental data on elastic pp and πp scat-
tering were obtained at energies between 6.8 and 19.2 GeV in the laboratory
system [1, 2, 3, 4, 5, 6, 7, 8, 9] (the total energy in the center-of-mass system
(cms) is only

√
s ≈ 4 - 6 GeV !). The diffraction cone behavior changed at

larger transferred momenta |t| to a slower t-dependence. Somewhat later,
the energy range was extended to 50 GeV [10, 11, 12]. With the advent of
new accelerators, the data for pp scattering at energies

√
s ≈ 19, 20, 23, 28,

31, 45, 53, 62 GeV were published [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28] and the data for pp̄ at 31, 53, 62, 546, 630, 1800, 1980
GeV [29, 30, 31, 32, 33, 34, 35, 36, 37, 38] appeared. The early results are
reviewed in Refs [39, 40]. The compilation of the data can be found in [41].
Only recently, the results of the TOTEM collaboration at the LHC on elastic
pp scattering processes at

√
s = 7 TeV were published [42, 43].

Surely, these results asked for their understanding and theoretical inter-
pretation. The most important task is to acquire some knowledge about
the internal structure of colliding particles by deciphering the information
supplied by experimental data about the dependence on energy and trans-
ferred momentum. The transferred momentum is directly related to the size
and the structure of those regions inside the hadron that participate in the
interaction.

Many phenomenological models have been proposed. Most of them as-
pire to be ”a phenomenology of everything” related to elastic scattering of
hadrons in a wide energy range. Doing so in the absence of applicable laws
and methods of the fundamental theory, they have to use a large number
of adjustable parameters. The free parameters have been determined by fit-
ting the model results to the available experimental data. Even then, their
predictions often fail when a new energy domain becomes available. And
”the verse” does not grow anymore! (If not recultivated.) Independent of
their success and failure, we are sure that, ”in the long run, the physical pic-
ture may be expected to be much more important than most of the detailed
computations” [44]. In what follows, we mention and discuss many of them.

The scattering of charged particles at extremely small angles is completely
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dominated by the Coulomb amplitude. The absolute value of the Born am-
plitude is well known. The phase of the Coulomb amplitude varies depending
on the model chosen. However, this variation is rather mild in the consid-
ered tiny region of extremely small angles. The interference of the Coulomb
amplitude with the strong-interaction (nuclear) amplitude in the transition
region where they are almost equal has been used for the experimental de-
termination of the ratio of the real to imaginary parts of the latter. This
interference also depends on the chosen form of the nuclear amplitude. The-
oretically, this ratio can be estimated with the help of dispersion relations.
We briefly discuss this problem and show how the obtained results influence
our analysis of scattering at somewhat larger angles.

The most numerous group of models deals with phenomenological at-
tempts to describe the main bulk of elastic scattering at small angles in the
diffraction cone. In general, they are based on some geometrical models of
particle substructure, with peripheral regions playing the decisive role. The
approach using the Reggeon (Pomeron) exchanges is the most popular among
them. The approximately Gaussian (in angles) shape of the experimentally
measured differential cross section in this region has been fitted just in this
way. In addition to it, the simplest classical expressions for diffractive pro-
cesses and results on the electromagnetic form factors are also used. However,
the bold extension of the obtained results to larger angles is usually not very
successful, even though some new parameters are introduced.

Particles scattered at larger angles give insight into the deeper internal
regions of particle structure. The multiple iteration (rescattering) of diffrac-
tive processes may explain the region of angles that are somewhat larger
than the diffractive ones. Without any additional model building, it can be
described as a consequence of the unitarity condition. The only necessary
input is the experimentally known energy behavior of the diffraction cone
slope and the total cross section. It predicts the observed exponential fall-
off with angles and damped oscillations imposed on it, which, depending on
their amplitudes, lead to shoulders or dips of the differential cross sections.

At somewhat larger angles, the elastic processes may be considered to
be dominated by the innermost constituents of the colliding particles. The
perturbative QCD approach to hard parton scattering convoluted with some
results on the parton structure of colliding particles is then used to describe
experimental data. This approach predicts the power-like angular depen-
dence of the differential cross sections. It has been seen in experiment. The
dimensional (or quark) counting of the number of participating partons has
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been successful. The convolution with the internal structure of particles im-
plies some coherence in the behavior of its constituents: all of them should
coherently turn at the same angle. A particle should not be destroyed during
the collision, and its internal wave function must be left intact. Therefore
we can call such processes coherent large-angle scattering.

At angles close to π/2, the effects of symmetrization of the correspond-
ing amplitudes may become important and lead to some flattening of the
differential distribution.

There are no strict definitions of the lower and upper bounds of these
regions. The diffraction peak shrinks with energy, such that the exponential
fall-off with squared transferred momenta t terminates at ever smaller values.
Correspondingly, the dip after it shifts to smaller values of |t| as does the√
|t|-exponential. At low energies, this regime approximately occupies the

interval between 0.8 and 2 GeV2, while in the LHC, it has moved to 0.4 -
1.5 GeV2. According to the QCD prejudice, the scale for parton scattering
should be set above 1 GeV2. This is actually observed with a power-like
decrease starting somewhere around |t| >1.5 - 2 GeV2 at the LHC.

Hence, we can speak, at least, about five subregions of elastic scattering.
We mainly discuss three of them: the diffraction cone, the Orear regime
and coherent hard parton scattering. The diffraction cone is well known
to us from semiclassical effects. The regions beyond it became noticeable
only at energies of colliding particles above several GeV, where processes of
scattering at sufficiently large angles or transferred momenta are observable.
They persist up to the present LHC energy of 7 TeV. Who ordered them and
whether they will they survive at ever higher energies are also the questions
to be discussed in this review.

Its structure of this paper is as follows. The main relations between
different characteristics of elastic scattering are presented in Section 2. Then,
in Section 3, their global dependences on energy and transferred momenta
are discussed, together with our attempts to understand their implications
within the simplest approaches. A more detailed analysis of experimental
data in the framework of different theoretical ideas and approximations is
the content of Section 4. Finally, the general picture is briefly discussed in
Section 5.

We do not consider the scattering of polarized particles, and the spin
structure of the amplitude is ignored.
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2 The main relations

As discussed above, the measurement of the differential cross section is the
only source of experimental information about a process. Hence, the main
characteristics of hadron interactions directly related to the elastic scattering
amplitude, such as the total cross section, the elastic scattering cross section,
the ratio of the real to the imaginary part of the amplitude, and the slope
of the diffraction cone, are obtained. The first two are functions of the total
energy only, while the others depend on two variables: the total energy and
the transferred momentum (or the scattering angle).

The dimensionless elastic scattering amplitude A defines the differential
cross section as

dσ(s)

dt
=

1

16πs2
|A|2 =

1

16πs2
(ImA(s, t))2(1 + ρ2(s, t)), (1)

where the ratio of the real to imaginary parts of the amplitude is defined:

ρ(s, t) =
ReA(s, t)

ImA(s, t)
. (2)

In what follows, we consider very high energy processes. Therefore, the
masses of the colliding particles can be neglected, and we use the expression
s = 4E2 ≈ 4p2, where E and p are the energy and the momentum in the
center-of-mass system. The four-momentum transfer squared is

− t = 2p2(1− cos θ) ≈ p2θ2 ≈ p2
t (θ � 1) (3)

with θ denoting the scattering angle in the center-of-mass system and pt
being the transverse momentum.

The elastic scattering cross section is given by the integral of the differ-
ential cross section (1) over all transferred momenta:

σel(s) =

∫ 0

tmin

dt
dσ(s)

dt
. (4)

The total cross section σt is related by the optical theorem to the imagi-
nary part of the forward scattering amplitude as

σt(s) =
ImA(p, θ = 0)

s
. (5)
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Elastically scattered hadrons escape from the interaction region declining
mostly at quite small angles within the so-called diffraction cone2. Therefore
the main focus has been on this region. As known from experiment, the
diffraction peak has a Gaussian shape in the scattering angles or exponen-
tially decreases as a function of the transferred momentum squared:

dσ

dt
/

(
dσ

dt

)
t=0

= eBt ≈ e−Bp
2θ2 . (6)

In view of relations (4), (5), (6), any successful theoretical description of the
differential distribution must also work in fitting the energy dependences of
the total and elastic cross sections.

The diffraction cone slope B is given by

B(s, t) ≈ d

dt

[
ln
dσ(s, t)

dt

]
. (7)

Actually, the slope B depends slightly on t at the given energy s, e.g., at the
LHC, its value changes by about 10% within the cone for |∆t| ≈ 0.3 GeV2.
We neglect this in the first approximation.

The normalization factor in Eq. (6) is(
dσ

dt

)
t=0

=
σ2
t (s)(1 + ρ2

0(s))

16π
, (8)

where ρ0 is defined as the value of the ratio of the real and imaginary parts
of the amplitude in the forward direction at θ = t = 0. Eq. (8) follows from
formula (1) and optical theorem (5) at t = 0.

According to the dispersion relations, which connect the real and imagi-
nary parts of the amplitude, and optical theorem Eq. (5), the value ρ0 can
be expressed as an integral of the total cross section over the whole energy
range. In practice, ρ0 is mainly sensitive to the local derivative of the total
cross section. In the first approximation, the result of the dispersion relation
can then be written in the form [45, 46, 47]

ρ0(s) ≈ 1

σt

[
tan

(
π

2

d

d ln s

)]
σt =

1

σt

[
π

2

d

d ln s
+

1

3

(π
2

)3 d3

d ln s3
+ ...

]
σt.

(9)

2In practice, the tiny region of the interference of the Coulomb and nuclear amplitudes
at extremely small angles does not contribute to the total cross section of elastic scattering.
Its role in obtaining some estimates of ρ(s, t = 0) is described below.
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It follows that at high energies ρ0(s) is mainly determined by the derivative
of the logarithm of the total cross section with respect to the logarithm of
energy.

The bold extension of the first term in this series to nonzero transferred
momenta would look like

ρ(s, t) ≈ π

2

[
d ln ImA(s, t)

d ln s
− 1

]
. (10)

If we neglect the high-|t| tail of the differential cross section, which is
several orders of magnitude lower than the optical point, and integrate in
Eq. (4) using expression (6) with constant B, we obtain the approximate
relation between the total cross section, the elastic cross section, and the
slope:

σ2
t (1 + ρ2

0)

16πBσel
≈ 1. (11)

We can compare this formula with the upper bound obtained in Ref. [48]:

σ2
t

18πBσel
≤ 1. (12)

The phase ζ of the hadronic amplitude is often defined as

A(s, t) = i|A(s, t)|e−iζ(s,t); (13)

then
ρ(s, t) = tan ζ(s, t). (14)

These formulas are used for measuring the luminosity, which relates the
cross section σi of a given process i to the corresponding number of events
Ni by

L =
Ni

σi
. (15)

A simultaneous measurement of the total number of events Nt and the num-
ber of elastic events Nel is used to define the luminosity as

L =
1 + ρ2

0

16π

N2
t

dNel/dt|t=0

. (16)

The measured total cross section is independent of luminosity:

σt =
16π

1 + ρ2
0

dNel/dt|t=0

Nt

. (17)
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The elastic scattering amplitude must satisfy the general properties of
analiticity, crossing symmetry, and unitarity. The unitarity of the S-matrix,
SS+=1, imposes certain requirements on it. In the s-channel, we have

ImA(p, θ) = I2(p, θ) + F (p, θ) =

1

32π2

∫ ∫
dθ1dθ2

sin θ1 sin θ2A(p, θ1)A∗(p, θ2)√
[cos θ − cos(θ1 + θ2)][cos(θ1 − θ2)− cos θ]

+ F (p, θ). (18)

The region of integration in (18) is given by the conditions

|θ1 − θ2| ≤ θ, θ ≤ θ1 + θ2 ≤ 2π − θ. (19)

The integral term represents the two-particle intermediate states of the in-
coming particles. The function F (p, θ) represents the shadowing contribution
of the inelastic processes to the elastic scattering amplitude. Following [49],
we call it the overlap function. It determines the shape of the diffraction peak
and is completely non-perturbative. Only some phenomenological models can
claim to describe it.

In the forward direction θ=0, this relation, in combination with optical
theorem (5), reduces to the general statement that the total cross section is
the sum of cross sections of elastic and inelastic processes:

σt = σel + σinel. (20)

Unitarity relation (18) has been successfully used [50, 51, 52, 53] for the
model-independent description of the Orear region between the diffraction
cone and hard parton scattering, which became the crucial test for phe-
nomenological models.

Experimentally, all characteristics of elastic scattering are measured as
functions of the energy s and transferred momentum t. However, it is ap-
pealing to have concrete information on the geometric structure of scattered
particles and the role of different space regions in the scattering process.
We should use the Fourier-Bessel transform to obtain the correspondence
between the transferred momenta and these space regions. The transverse
distance between the centers of colliding particles, called the impact param-
eter b, determines the effective transferred momenta t. The amplitudes in
the corresponding representations are related as

h(s, b) =
1

16πs

∫ 0

tmin=−s
dtA(s, t)J0(b

√
−t). (21)
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More peripheral collisions with large b lead to smaller transferred momenta
|t|.

The amplitude A(s, t) can be connected to the eikonal phase δ(s,b) and
to the opaqueness (or blackness) Ω(s,b) at the impact parameter b by the
Fourier-Bessel transformation

A(s, t = −q2) =
2s

i

∫
d2beiqb(e2iδ(s,b)−1) = 2is

∫
d2beiqb(1−e−Ω(s,b)). (22)

The integration is over the two-dimensional space of the impact parameter
b.

Assuming Ω(s,b) to be real and using Eq. (5), we obtain

σt = 4π

∫ ∞
0

(1− e−Ω(s,b))bdb. (23)

Also,

σel = 2π

∫ ∞
0

(1− e−Ω(s,b))2bdb, (24)

and

B =

∫∞
0

(1− e−Ω(s,b))b3db

2
∫∞

0
(1− e−Ω(s,b))bdb

. (25)

To apply the inverse transformation, we must know the amplitude A(s, t)
at all transferred momenta. Therefore, it is necessary to continue it analyti-
cally to the unphysical region of t [54]. This can be done [55]. Correspond-
ingly, the mathematically consistent inverse formulae generally contain the
sum of contributions from the physical and nonphysical parts of the am-
plitude A(s, t). Unitarity condition (18) involves only the amplitude in the
physical region; only this part of its Fourier-Bessel transform is also impor-
tant in the unitarity relation for the impact parameter representation. It is
written as

Imh(s, b) = |h(s, b)|2 + F (s, b), (26)

where h(s, b) and F (s, b) are obtained by the direct transformation of A(s, t)
and F (s, t) integrated only over the physical transferred momenta from tmin
to 0. They show the dependence of the intensity of elastic and inelastic in-
teractions on the mutual impact parameter of the colliding particles. Analo-
gously to relation (20), the integrals over all impact parameter values in this
relation respectively represent the total, elastic, and inelastic cross sections.
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It is especially simple to calculate the overlap function from algebraic Eq.
(26) if the real part is small in some subregion, i.e. |h(s, b)| ≈ Imh(s, b).
Then

Imh(s, b) ≈ 1

2
(1−

√
1− 4F (s, b)). (27)

In the region where the transformed overlap function is small, F (s, b) � 1,
the imaginary part is also small: Imh(s, b) ≈ F (s, b).

However, the accuracy of the unitarity condition in b-representation (26)
is still under discussion [54, 55, 56, 57], because some corrections due to
the unphysical region enter there, even though their role may be negligible.
Moreover, the further use of the approximate formulas of the quasi-eikonal
unitarization often leads to failure in describing the differential cross section
outside the diffraction cone.

The average values of the impact parameters for all – elastic and inelastic
– processes can be estimated from the amplitude A(s, t) if we assume that
dρ/dt = 0 at t = 0 [56]:

< b2(s) >tot=
σel
σt

< b2(s) >el +
σin
σt

< b2(s) >in= 2B(s, 0), (28)

where, e.g.,

< b2(s) >el= 4

∫ 0

tmin

dt|t|
∣∣∣∣ ddtA(s, t)

∣∣∣∣2 /∫ 0

tmin

dt|A(s, t)|2. (29)

Nevertheless, the problem of the relative contributions of the central
(small b) and peripheral (large b) regions under elastic hadron collisions is still
widely disputed. We must be especially careful when considering unitarity
condition (26) with small impact parameters for certain models. Slight vari-
ations of h(s, b) in this region may lead to strong variations of the amplitude
A(s, t) at large |t|.

The elastic scattering at extremely small angles allows estimating the
forward ratio of the real part of the amplitude to its imaginary part ρ0 in
experiment. For completeness, we show an approximate expression for the
amplitude A(s, t) in the region dominated by the Coulomb amplitude and its
interference with the nuclear amplitude:

ACN(s, t) = ∓8πα

|t|
sf1(|t|)f2(|t|)eiαΦ + (i+ ρ0(s))sσte

Bt/2, (30)
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where the upper (lower) sign corresponds to the scattering of particles with
the same (opposite) electric charges, the form factors of two colliding parti-
cles fj(|t|) added by hand in Eq. (30) take their internal composition into
account, Φ is the Coulomb phase, and α = 1/137 is the fine structure con-
stant. The expressions for fj(|t|) and Φ depend on various prescriptions for
them obtained with different assumptions concerning the internal structure
of a hadron. The most popular shapes of the form factors are either the Gaus-
sian fall-off with an increasing angle, like exp(2t/Λ2), similar to that in (6),
or the dipole (power-like) approximation, like (1− t/Λ2)−2, with some more
complicated subleading factors. The phase Φ usually contains a term with
the typical logarithmic dependence on the angle θ, which becomes large at
very small angles, and some subleading terms. In both cases, the subleading
terms have to contain additional free parameters for a more accurate descrip-
tion of experimental data. As we see, the ratio ρ(s, t) in (2) is approximated
by ρ(s, 0) = ρ0 in the fit (30). This implies that both real and imaginary parts
of the nuclear amplitude exhibit the same purely exponential t-dependence in
the interference region (with the dominance of the imaginary part for small
ρ0). More details can be found in [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69].

3 Where do we stand now?

We first discuss the asymptotic properties of fundamental characteristics such
as the total cross section σt, the elastic cross section σel, the ratio of the real
part to the imaginary part of the elastic amplitude ρ, and the width of the
diffraction peak B at infinite energies. Then we compare this with some
trends in present experimental data.

More than half a century ago, it was claimed [70, 71] that according to
the general principles of field theory and ideas about hadron interactions,
the total cross section cannot increase with energy faster than ln2 s. The
upper bound was recently improved [72], with the coefficient in front of the
logarithm shown to be half that in the earlier limit,

σt ≤
π

2m2
π

ln2(s/s0), (31)

where mπ is a pion mass.
If estimated at present energies, this bound is still much higher than the

experimentally measured values of the cross sections, with s0=1 GeV2 chosen
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as a ”natural” scale. Therefore, this is only a functional constraint; it forbids
extremely fast growth of the total cross section, asymptotically exceeding the
above limits. Both the coefficient in front of the logarithm in (31) and the
constancy of s0 are often questioned. In particular, some possible dependence
of s0 on the energy s has been pointed out (see, e.g., [73]).

The Heisenberg uncertainty relation shows that such a regime favors an
exponentially bounded spatial profile of the matter density distribution D(r)
in colliding particles, such as D(r) ∝ exp(−mr). Because the energy density
is ED(r) and there should be at least one created particle with mass m in
the overlap region, the condition ED(r) = m leads to r ≤ 1

m
ln(s/m2) and,

consequently, to the functional dependence in (31).
It was namely Heisenberg who first proposed such a behavior of total cross

sections [74]. He considered the pion production processes in proton-proton
collisions as a shock wave problem governed by some nonlinear field-theory
equations.

To study the asymptotic regime, some theoretical arguments based on
the general principles of field theory and the analogy of strong interactions
to massive quantum electrodynamics [75] were promoted. The property that
the limits as s→∞ and M → 0 (where M is the photon mass) commute has
been used [76], implying that the asymptotic domain of strong interactions
coincides with the massless limit of quantum electrodynamics. These studies
led to the general geometric picture of two hadrons colliding with asymptoti-
cally high energies and interacting as Lorentz-contracted black disks (see also
review paper [77]). In what follows, we discuss some other possibilities as
well. But as a starting point for further reference, we describe the predictions
of this proposal.

The main conclusions are:
1. For black (Ω(s,b) → ∞) and logarithmically expanding disks with

finite radii R (R = R0 ln s, R0=const), it follows from (23) that σt asymp-
totically approaches infinity as

σt(s) = 2πR2 +O(ln s); R = R0 ln s; R0 = const. (32)

2. The elastic and inelastic processes give equal contributions to the total
cross section:

σel(s)

σt(s)
=
σin(s)

σt(s)
=

1

2
∓O(ln−1 s). (33)

This quantum mechanical result differs from ”intuitive” classical predictions.
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3. The width of the diffraction peak B−1(s) must shrink because its slope
increases as (see also [78])

B(s) =
R2

4
+O(ln s). (34)

4. The forward ratio of the real part to the imaginary part of the ampli-
tude ρ0 must vanish asymptotically as

ρ0 =
π

ln s
+O(ln−2 s). (35)

This result follows directly from Eq. (9) for σt ∝ ln2 s.
5. The differential cross section has a shape resembling the classical

diffraction of light on a disk:

dσ

dt
= πR4

[
J1(qR)

qR

]2

, (36)

where q2 = −t.
6. The product of σt with the value γ of |t| at which the first dip in

the differential elastic cross section occurs is a constant independent of the
energy:

γσt = 2π3β2
1 +O(ln−1 s) = 35.92 mb ·GeV2, (37)

where β1 = 1.2197 is the first zero of J1(βπ).
These are merely a few conclusions among many others, albeit model-

dependent ones.
None of these asymptotic predictions have been observed yet in experi-

ment.
Surely, there is another possibility – more realistic at present energies –

that the black disk model is too extreme and the gray fringe always exists. It
opens the way to much speculation, with many new parameters concerning
particle shape and opacity (see, e.g., [79, 80, 81, 82, 83, 84, 85, 86, 87, 88,
89, 67, 69]).

The black disk limit might be unrealistic. Therefore, in Table 1 we show
the predictions of the gray disk model with the steep rigid edge described
by the Heaviside step-function and the Gaussian disk model. The total cross
section, the slope B, the ratio of the elastic to total cross section X = σel/σt,
the ratios Z = 4πB/σt and X/Z, and the product XZ are displayed there;
Γ(s, b) is the diffraction profile function.
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Table 1. The gray and Gaussian disks models (X = σel/σt, Z = 4πB/σt)

Model 1− e−Ω = Γ(s, b) σt B X Z X/Z XZ
Gray αθ(R− b); 0 ≤ α < 1 2παR2 R2/4 α/2 1/2α α2 1/4

Gauss αe−b
2/R2

; 0 ≤ α ≤ 1 2παR2 R2/2 α/4 1/α α2/4 1/4

Table 2. The energy behavior of various characteristics of elastic scattering.

√
s, GeV 2.70 4.11 4.74 6.27 7.62 13.8 62.5 546 1800 7000

X 0.42 0.28 0.27 0.24 0.22 0.18 0.17 0.21 0.23 0.25
Z 0.64 1.02 1.09 1.26 1.34 1.45 1.50 1.20 1.08 1.00
X/Z 0.66 0.27 0.25 0.21 0.17 0.16 0.11 0.18 0.21 0.25
XZ 0.27 0.28 0.29 0.30 0.30 0.26 0.25 0.26 0.25 0.25

The slope B is completely determined by the size of the interaction re-
gion R. Other characteristics are sensitive to the blackness of disks α. In
particular, the ratio X is proportional to α.

The ratio Z plays an important role for fits at larger angles, as explained
in Section 4.2. It is inversely proportional to α. The corresponding formulas
are given by (23), (24) and (25). The black disk limit follows from the gray
disk model at α = 1. For a Gaussian distribution of matter, the disk becomes
nontransparent at its center in this limit.

The parameter XZ is constant in these models and does not depend
on the nucleon transparency. On the contrary, the parameter X/Z is very
sensitive to it, being proportional to α2. Therefore, it would be extremely
instructive to obtain knowledge about them from experimental data.

In Table 2 we show how the above ratios evolve with energy according
to experimental data. Most primary entries there, except the last two, are
taken from Refs [79, 90] with the simple recalculation Z = 1/4Y . The data
at Tevatron and LHC energies are taken from Refs [91, 42, 43]. All results are
for pp-scattering, except those at 546 and 1800 GeV for pp̄ processes which
should be close to pp at these energies. The accuracy of the numbers listed in
Table 2 can be very approximately estimated to be better than ±10% from
known error bars for the cross sections and the slopes.

The most interesting feature of the experimental results is the minimum
of the blackness parameter α at ISR energies. It can be clearly seen in
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the minima of X and X/Z and in the maximum of Z at
√
s=62.5 GeV. The

steady decrease of ratios X proportional to α and X/Z proportional to α2 up
to the ISR energies and their increase at Spp̄S, Tevatron, and LHC energies
means that the nucleons become more transparent up to the ISR energies and
more black toward 7 TeV. The same conclusion follows from the behavior of
Z, which is inversely proportional to α. The value of Z rapidly approaches
its limit for the Gaussian distribution of matter in the disk. For the Gaussian
shape, the parameterX/Z cannot exceed 0.25. This model is excluded only at
low energies. According to Eq. (11) XZ ≈ 0.25(1+ρ2

0), which is indeed close
to 0.25 within the limits of experimental errors, the estimate of ρ2

0 ≤ 0.02,
and slight variations of B inside the cone in the framework of our crude
model as predicted in Table 1. This shows that our models are not bad for
qualitative estimates in a first approximation.

Before dwelling on various fits, we briefly comment on some important
general trends in high-energy data observed in experiment.

1. Total cross sections increase with energy. At present energies, the
power-like approximation is the most preferable one. The preasymptotic
behavior of σt proposed in earlier papers [75, 76] was

σt ∝ sa ln−2 s, (38)

where the numerical value of a was estimated to be of the order of unity
in strong interactions. It was shown in [92] to lie in the range between
0.08 and 0.2, which is close to values obtained in recent phenomenological
fits. The power growth persists in a wide interval of energies (see Ref. [93]
for the recent analysis of experimental data). Consequently, the density
distribution in colliding particles is closer to a power-like dependence than
to an exponential one in that energy range.

2. The ratio σel/σt decreases from low energies to those of ISR, where
it becomes approximately 0.17 and then strongly increases up to 0.25 at
LHC energies. However, it is still quite far from the asymptotic value 0.5,
corresponding to the black disk limit.

The only higher-energy data came from the Pierre Auger collaboration,
which recently reported [94] a measurement of the inelastic p-air cross section
σp−airin at

√
s = 57 ± 6 TeV. After some corrections and Glauber model

calculations, it results in the pp inelastic cross section σppin ≈ 90 mb. Some
models [95, 96] extrapolate their predictions for the total cross section to this
energy and obtain a value of about 135 mb. Hence, the ratio of the inelastic
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to the total cross section could become equal to 0.67, which is smaller than
0.75 at 7 TeV. However, it is premature to reach any definite conclusions
because of large errors in the cosmic ray data and the underestimated value
of the total cross section predicted at 7 TeV by the model [95, 96]. The
extrapolation to infinite energies done in the same model leads to this ratio
estimated as 0.509, which is compatible with the black-disk predictions. Still,
asymptopia is but an elusive concept!

Sometimes, the modified black disk limit is attributed to the sum of elastic
and diffractive processes [97]. It may then be that

σel + σdiff
σt

→ 1

2
, (39)

where σdiff is the sum of cross sections of single and double inelastic diffrac-
tion. The fits in Ref. [93] suggest separately the relations

σel
σt
→ 1

3
and

σdiff

σt

→ 1

6
. (40)

3. The diffraction peak shrinks about twice from energies about
√
s ≈ 6

GeV, where B ≈ 10 GeV−2, to the LHC energy, where B ≈ 20 GeV−2. At
ISR energies, the slope B(s) increases logarithmically. Accounting for LHC
data requires a stronger dependence than a simple logarithmic one. The
terms proportional to ln2 s are usually added in phenomenological fits. Even
then, predictions [98, 99] are not completely satisfactory. At present energies,
in connection with the power-like preasymptotic behavior of σt, we could also
expect a faster-than-logarithmic shrinkage of the diffraction peak.

The tendency in peak behavior at larger |t| also changes with an energy
increase. In the energy region up to ISR, it becomes less steep near its end
(see Figs 4, 5 in Ref. [39]), but its slope increases at the LHC energies. Both
the minimum and maximum following the peak shift to smaller |t|.

As regardss the behavior of the differential cross section in the function
of the transverse momentum behind the maximum, the t-exponential of the
diffraction peak is replaced, according to experimental data, by the −

√
|t| ≈

−pt-exponential at the intermediate angles:

dσ/dt ∝ e−2a
√
|t|, a ≈

√
B. (41)

The slope 2a in this region also increases with energy, and the whole Orear
region shifts to the ever lower transferred momenta.
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In this connection, we also note an intriguing property of the ratio Z =
4πB/σt, which is closely related to the value of the slope B. From Table 2,
we see that it is about 1 at

√
s = 4 GeV, increases to 1.5 at ISR energies

and then again drops to around 1 at 7 TeV. This ratio, in combination
with values of ρ at different angles, determines the slope in the |t|-region
beyond the diffraction peak at any s (see Ref. [51] and the discussion in the
subsection 4.2.2). According to Eqs (32), (34), Z should decrease and be
asymptotically equal to 1/2 for the black disk limit, such that the relation

σt = 8πB (42)

be asymptotically fulfilled. At the LHC energy 7 TeV, the coefficient in the
right-hand side is still half as much. However, if the preasymptotic power-like
increase in the total cross section accompanied by a slower increase in the
slope persists, the tendency to this limit looks quite promising.

The relation between σt and B is also discussed in Refs [93, 100]. In
particular, the fits in [93] correspond to the value Z ≈ 0.93 at Auger energies
57±6 TeV, i.e. lower than 1 at 7 TeV.

4. As a function of energy, the ratio ρ0 increases from negative values
at comparatively low energies, crosses zero in the region of hundreds GeV
and becomes positive at higher energies. This is a general tendency for
collisions of any initial particles. For pp scattering, the prediction of (35)
with values of s scaled by 1 GeV is still somewhat higher (about 0.177) than
the estimates from dispersion relations (≈0.14 in Refs [96, 101]), even at 7
TeV, while strongly overshooting them at ISR, where π/ ln s ≈ 0.37. No
logarithmic decrease is seen in these predictions, which, however, depend on
the behavior of the total cross section at higher energies. Moreover, the value
0.14 can only be reached according to (35) at the energy of 75 TeV. Probably,
at energies higher than 75 TeV, the first signs of approach to the asymptotic
regime will become visible. No data about ρ0 at the LHC energies exist yet.
The local value of ρ0 estimated from Eq. (9) with a power-like fit of the total
cross section, proportional to s∆, is ρ0 ≈ π∆/2. That agrees quite well with
the soft Pomeron intercept ∆ ≈ 0.08.

5. To describe the shape of the differential cross section in the diffraction
cone, significant corrections to Eq. (36) must be added at present energies.
This is discussed in subsection 4.1.

6. The product γσt changes from 39.5 mb·GeV2 at
√
s = 6.2 GeV to 51.9

mb·GeV2 at
√
s = 7 TeV and strongly deviates from the predicted asymptotic

value (37). The total cross section σt increases faster than γ decreases.
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From the geometrical point of view, the general picture is one of protons
becoming blacker, edgier and larger (BEL) [102]. We conclude that even
though the qualitative trends may be considered rather satisfactory, we are
still quite far from the asymptotic regime, even at LHC energies. This feature
may be connected [103] with the strong evolution of the parton content of
strong interactions at present energies, revealing itself in an increase in the
number of active parton pairs inside each proton with energy increase (higher
density) and a softening of the structure functions, which leads to lower
energy shares x for each parton pair (larger radii).

4 Experimental data and phenomenological

models

As always, our knowledge about particular physical processes is limited by
the practical possibility of measuring their characteristics. As mentioned
above, numerous experimental data on the elastic scattering of hadrons at
various angles and at different energies have been obtained. Unfortunately,
in some of them the available region of angles is strongly limited by the
experimental setup. Therefore, a comparison with theoretical proposals is
possible only in the corresponding range of angles and energies.

The data and their fits at various energies and in different intervals of
transferred momenta for different participating particles are so numerous that
it is impossible to show all of them in a single review paper. Therefore, from
the very beginning, we use the latest results of the TOTEM collaboration at
the highest LHC energy, 7 TeV, as a reference point [42, 43]. The discussion
of theoretical models is also concentrated near these data.

The total and elastic cross sections at 7 TeV are respectively estimated
as 98.3 mb and 24.8 mb.3. The figures from published papers [42, 43] demon-
strating the behavior of the differential cross section as function of the trans-
ferred momentum are displayed below. They clearly confirm the existence of
the three regions discussed above.

The cross section shape in the region of the diffraction cone [42] is shown
in Fig. 1. The t-exponential behavior with B ≈20.1 GeV−2 is clearly seen
at |t| < 0.3 GeV2. The peak steepens at the end of the diffraction cone,

3Here, we do not reproduce the statistical and systematic errors. They are shown in
the original papers.
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and its slope becomes approximately equal to 23.6 GeV−2 in the |t| interval
of (0.36 – 0.47) GeV2. The results at somewhat larger angles [43] in the
Orear region are presented in Fig. 2. The dip at |t| ≈ 0.53 GeV2 with a
subsequent maximum at |t| ≈ 0.7 GeV2 and the

√
|t|-exponential behavior

are demonstrated. Some curves, corresponding to different model predictions,
are also drawn here. The same data as in Fig. 2 are shown in Fig. 3, but with
more details, including the steepend slope, the dip position, and the region
of |t|−8-behavior. The last one is ascribed to the hard parton scattering
processes.

We congratulate all members of the TOTEM collaboration with this fan-
tastic achievement! Their efforts are truly appreciated when estimating the
values of angles at which the measurements had to be done. They were even
smaller than 10−4! Detectors had to be installed at very long distances from
the collision point to obtain results at low transferred momenta. These data
revived interest to elastic scattering.

Theoretical models usually describe the diffraction cone and values of
total and elastic cross sections related to it more or less precisely (therefore,
their fits, that are almost indistinguishable in that region, are not drawn in
Fig. 1). However, all of them fail to quantitatively predict the behavior of
the differential cross section outside the diffraction cone as can be seen in Fig.
2. The predictions of five models [96, 80, 104, 105, 68] are drawn here. They
are very widely spread around the experimental line. We can conclude that
just this region becomes the Occam razor for all models. In what follows, we
consider these models, as well as some others, in more detail.

The three intervals of |t| (the diffraction cone, the Orear regime, and the
region of hard parton scattering) are characterized by different dynamical
content, as we understand it now. They require separate approaches to their
descriptions. It seems reasonable that these regions are regulated by dif-
ferent but interrelated physical mechanisms. In particular, different spatial
regions of overlapping colliding objects are responsible for corresponding ef-
fects. Three subsections 4.1, 4.2 and 4.3 are devoted to theoretical approaches
to their explanation.

4.1 Diffraction cone and geometrical approach

The internal structure of colliding, strongly interacting particles plays a cru-
cial role in the outcome of their collisions. In high-energy hadron-hadron
scattering, each hadron behaves as an extended object. They can be de-
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Fig. 1. The differential cross section of elastic proton-proton scattering at√
s=7 TeV measured by the TOTEM collaboration (Fig. 4 in [43]).

The region of the diffraction cone with the |t|-exponential decrease is shown.

scribed by their size and the density of their constituents. The simplest
models are demonstrated in Table 1.

Since long ago, it has been believed that hadrons contain some denser core
surrounded by a meson (pion) cloud at their periphery. This idea was a cor-
nerstone of the one-pion exchange model, which was first proposed in Ref.
[106] to describe particle production in peripheral interactions. It evolved
into the well-known multiperipheral and (multi)Reggeon exchange models (
see, e.g., [107, 108, 109] for early review papers). They are rather success-
ful in describing many features of multiparticle production processes. The
multiperipheral approach developed, for instance, in the framework of the
Bethe-Salpeter equation (see Ref. [109]) can be considered an attempt to
account for the t-channel unitarity.

Nowadays, it is commonly believed that, at very high energies, the total
cross section is dominated by peripheral events. In modern parlance, this
is related to the long-range nature of the field of ”perturbatively massless”
gluons. The exchanged boson mass may mimic a nonperturbative mass gap in
QCD with the ”effective” gluon mass of the order of 1 GeV and a gluon-gluon
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Fig. 2. The differential cross section of elastic proton-proton scattering at√
s=7 TeV measured by the TOTEM collaboration (Fig. 4 in [42]).

The region beyond the diffraction peak is shown. The predictions of five
models are demonstrated.
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Fig. 3. The differential cross section of elastic proton-proton scattering at√
s=7 TeV measured by the TOTEM collaboration (Fig. 3 in [42]).

The same regions as in Fig. 2 are shown with the values of the steepened
slope at the outskirts of the diffraction peak, the position of the dip and the
power-like behavior at the largest transferred momenta.
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correlation length about 0.3 fm. The pion mass scale is rather small, and
more general ”boson” exchange is preferred. The weight factors of different
mass scales take the impact parameter distribution of the particle opacity
into account.

The role of inelastic channels in describing elastic scattering can be re-
vealed by understanding the origin and prescribing a definite shape to the
overlap function F (p, θ) in the s-channel unitarity condition (18) or, equiv-
alently, to its Fourier transform in the impact parameter picture. The scat-
tering is mainly diffractive, i.e., it is due to the absorption of incoming waves
in many open inelastic channels. Its quantitative field-theory treatment
presents a serious unsolved problem.

The overlap function contains the sum of products of a matrix element of
the inelastic process with a particular final state and the complex conjugate
matrix element with the same final particles content. However, their kine-
matical difference must be taken into account, due to the fact that the two
final protons are scattered at an angle θ relative to the initial ones. Corre-
spondingly, the overlap of the momentum distributions of the intermediate
inelastic n-particle states is nontrivial kinematically and, what is especially
important, the phases of these matrix elements become crucial. The phases
are related to the position in space where particles are produced. It has been
pointed out in many papers [110, 111, 112, 113] that only the phase can-
cellation effect, which is closely related to particle correlations in inelastic
processes, can lead to a realistic shape of the diffraction cone. The problem
of properly accounting for them has not yet been solved.

At the same time, elastic scattering should be less peripheral because of
a larger number of exchanged objects if regarded as an s-channel iteration
of the overlap function. The great difficulty in transferring large momenta
reveals itself already in the sharp shape of the forward diffraction peak. There
have been numerous attempts to understand it in terms of the peripheral
approach (see, e.g., [114, 115, 116, 117, 118]). Unfortunately, no framework
for commonly accounting both the s- and t-channel unitarity conditions has
been developed.

In general, there have been many ideas proposed for describing elastic
scattering processes, but no cogent theoretical arguments to justify the par-
ticular forms relying mainly on ”intuition” have been offered. The fact that
they are very simple is usually the only advantage. Any strict interpretation
is an idealization and as such it should not be expected to be exactly true.

25



4.1.1 Geometry of the internal hadron structure

The key elements of the geometric approach are: the use 1) of the impact
parameter picture with Fourier-Bessel transformation (22), (21) from the
transferred momenta amplitude to the spatial description, 2) of eikonal ap-
proximation (22), and 3) of unitarity condition (26). The S-matrix in the
impact parameter picture is chosen in the exponential form

S(s, b) = e−Ω(s,b) (43)

and the convolution approximation for the real opacity Ω for elastic AB
scattering is used:

Ω(s, b) = KDA ⊗DB. (44)

Here, ⊗ denotes the convolution of hadronic matter density distributions D
for A and B. K is an energy-dependent factor. The assumptions about
the validity of the eikonal approximation, the nearly imaginary character of
the scattering amplitudes at low transferred momenta, the proportionality
between the hadronic matter distribution and the electric charge distribution,
the exponentiation of the S-matrix in b-space, and the validity of unitarity
condition (26) are widely used.

The droplet model [119, 120] for elastic collisions was the first to fully
exploit all the above elements. Particles were pictured as very much similar
to nuclei. Correspondingly, the notion of the density distribution D inside a
particle was introduced such that

Ω(s, b) = const

∫ +∞

−∞
D((b2 + x2)1/2)dx. (45)

In potential models it corresponds to the WKB approximation. For the
Gaussian shape of h(s, b), it is possible to solve for D from (45), obtaining the
function familiar in the theory of Bose-Einstein condensation of free particles
[120]. In the droplet model, the properties of the disk are independent of
the energy at sufficiently high energies. Many diffractive minima in the
differential cross section have been predicted. The dipole form factors in the
t-representation led to Ω(s, b) with a shape of the modified Bessel functions,
which allowed fitting differential cross sections at ISR energies [121]. The
intuitive picture of high-energy hadron collisions as two extended objects
breaking in fragments (and thus defining the overlap function!) has promoted
the hypothesis of limiting fragmentation [122] inspired by the droplet model.
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Models based on consideration of tower diagrams [75, 44] predict that the
disk becomes larger and more absorptive as energy increases. Both the black
core and gray fringe expand with energy and become more absorptive.

The first estimates of the radii of protons, pions, and kaons from their
form factors [123, 124, 125] showed that protons are larger than pions and
kaons. This is not surprising in view of the smaller cross sections of πp and
Kp interactions than those of pp. The typical size is somewhat smaller than
1 fm. The proton hadronic matter distribution was fitted by a dipole form
similar to the electric form factor but with the energy-dependent radius.

Other early attempts to consider elastic scattering of hadrons also stemmed
from the analogous simple geometrical treatment of their internal structure
[126, 121, 127, 128]. Later, more complicated models were used. The main
focus is, surely, on processes at small angles within the diffraction cone. They
define the bulk contribution to the elastic scattering cross section due to the
steep fall-off of the distribution with increasing angles. Different models hap-
pen to fit experimental data in the cone quite well in a wide energy range.
But they fail outside the diffraction peak, as mentioned above. Large-angle
scattering requires more central collisions with a lower impact parameter to
probe the internal content of particles. Therefore, these regions of transferred
momenta are discussed separately below.

Some ideas stemmed from regularities in inelastic processes. The mul-
tiplicity distributions of created particle are closely related to the purely
geometric notion of the centrality of collisions. When the scaling of multi-
plicity distributions [130] was supported by experimental data, the proposal
of the geometric scaling [129] for the elastic amplitude was promoted. The
difficulties in accelerating the various parts of a nucleon without breaking it
up had to be accounted for.

The basic idea of the geometric scaling is that, at sufficiently high energies,
the amplitude A(s, t) depends on a single variable, the scaling parameter τ :

τ = − t

t0
ln2 s

s0

. (46)

This idea has led to several predictions at asymptotically high energies and is
still actively being debated now. Such scaling was proved [131, 132] for cross
sections increasing as ln2 s/s0 and for an infinitesimally small ratio of the
real to imaginary part of the amplitude ρ→ 0 at s→∞. The latest results
on ρ(s, t) discussed in subsection 4.2.5 do not support this assumption.
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Fig. 4. The nucleon structure according to the model [55, 81, 104].
The three regions of the internal structure are supposed to be directly respon-
sible for the three regimes in the behavior of the differential cross section.

The purely geometrical standpoint is adopted in Refs [55, 81, 104]. The
three regions in the behavior of the differential cross section are clearly re-
flected in the three spatial scales of the internal hadronic structure considered
in [81, 104]. The authors of this three-scale model claim that the nucleon
has an outer cloud of the quark-antiquark condensate, an inner shell of the
baryonic charge density, and a still smaller internal core of massless color-
singlet valence ”quarks” surrounded by low-x gluon clouds about 0.3 fm in
size. This picture is shown in Fig. 4.

The diffraction cone is described as a result of cloud-cloud interaction,
represented by a class of potentials containing the sum of the modified Bessel
functions. The least massive exchanged quanta are the most important ones.
At larger momentum transfers, the baryonic charge at intermediate distances
is probed by the ω-exchange. The internal region filled in by the valence
quarks starts playing its role in the presence of even larger transferred mo-
menta.

The diffraction profile function, which defines the range of different den-
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sities and, correspondingly, different forces, is taken to be

Γ(s, b) = 1− Ω(s, b) = g(s)

[
1

1 + e(b−r)/a +
1

1 + e(−b+r)/a − 1

]
. (47)

The parameters r and a are energy dependent,

r = r0 + r1(ln(s/s0)− iπ/2); a = a0 + a1(ln(s/s0)− iπ/2), (48)

and g(s) is a coupling strength; s0=1 GeV2.
These functions render the shape of the differential cross section, similar

to the Fraunhofer diffraction (see subsection 4.1.2), with the form factor pro-
portional to πdq/ sinhπdq (q2 = −t, d is an adjustable parameter) proposed
a long time ago [133, 134, 135]. This form factor also extends somewhat to
transferred momenta outside the diffraction cone. Unfortunately, the con-
temporary phenomenological analysis of experimental data is not able to
determine the impact parameter profiles unambigously.

The scattering due to ω-exchange is parameterized by the product of the
ω-propagator and two form factors F directly in the (s, t)-representation:

Aω(s, t) ∝ seiχ(s,0) F
2(t)

m2
ω − t

. (49)

The amplitude due to quark-quark scattering has two ”structure factors”
G of valence quarks (different from the above form factors!), the propagator
with the black disc radius rB of qq asymptotic scattering and s-dependent
factors with the hard Pomeron intercept equal to 1 + αh:

Aqq(s, t) ∝ iseiχ(s,0)(se−iπ/2)αh
G2(t)

r−2
B + |t|

. (50)

In total, there are seventeen adjustable parameters in the model.
As mentioned in [43], the fits according to this model predict too low

value of the slope B at |t|=0.4 GeV2 and strongly disagree with experiment
at 7 TeV outside the diffraction peak (see Fig. 2). Formulas (49), (50) are
aimed to improve the fit just in this region, but they do not help.

In general, an internal region of the nucleon where the gluons cluster
around the original valence quarks resembles the valon model [136, 137].
Similar pictures arise in the QCD-inspired models discussed below.

Surely, some care should be taken for any such model to be accepted
and the geometric picture to be considered seriously, especially in view of
its success or failure to describe experimental data in the whole range of
transferred momenta at various energies.
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4.1.2 The modified Fraunhofer diffraction

For a long time (see, e.g., Ref. [138]), the formulas of classical diffraction
of light on a (black or grey) disk with the traditional Bessel functions have
been used for hadronic reactions. Recently, an analogous expression for the
elastic amplitude was considered in Ref. [139]:

A(s, |t| = q2) = C
dq

sinh(πdq)

[
i
J1(Rq)

Rq
+
ρ

2
J0(Rq)

]
. (51)

The free parameters in arbitrarily chosen analytic expression (51) are C, R, d, ρ.
The first term resembles the expression for the black disk (36). The suppres-
sion at large transferred momenta is assumed to be approximated by the
form factor in front of the Bessel functions. In the impact parameter repre-
sentation this shape corresponds to the ordinary Fermi profile used, e.g., in
Refs [140, 81, 104] and shown in Eq. (47):

h(b) ∝ 1

1 + e(b−R)/d
. (52)

The second term in (51) in brackets takes the contribution due to the real
part of the amplitude into account. It should smooth the behavior of the
differential cross section near zeros of the first term. This seems to be the
only difference from the first component of the previously discussed model
[81, 104].

And, again, comparison with experimental data shows that the results
of fits are satisfactory in the diffraction cone, but not outside it. The form
factor in front of common Bessel functions does not fit the large |t| trends of
experimental distributions.

Throughout these developments, modifications of early guesses have been
found necessary, but the general spirit of the geometrical description remains
immutable and viable.

4.1.3 Electromagnetic analogies

The strongly interacting content of hadrons is often considered to be similar
to their electromagnetic substructure [121]. Similarly to the droplet model,
the assumption of the proportionality between the hadronic matter distribu-
tion and the electric charge distribution is used in many models. However, in
most of them, the electromagnetic form factors are used in combination with
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Reggeon exchanges because, considered alone, they do not reproduce the en-
ergy dependence of the main characteristics. However, the assumption about
the full congruence of these distributions is not necessarily valid, since gluons
do not carry an electric charge even though they play an important (if not
decisive) role in high-energy strong interactions. That is why the charge and
matter distributions in some models are parameterized separately or some
corrections are added.

Using the experience from calculation of tower diagrams in electrodynam-
ics and the impact-parameter representation, it was proposed [80, 141, 142,
143] that the possibility of choosing the opacity Ω(s,b) in a factorized form
be considered:

Ω(s,b) = R(s)F (b2) + (non− leading terms), (53)

where R(s) is chosen to be crossing symmetric under s↔ u and to reproduce
the energy dependence of the Pomeron, considered as a fixed Regge cut,

R(s) =
sc

(ln s)c′
+

uc

(lnu)c′
, (54)

while F (b2) is taken as the Bessel transform of

F (t) = f |G(t)|2a
2 + t

a2 − t
. (55)

Here, G(t) stands for the proton ”nuclear form factor”, parameterized like
the electromagnetic form factor with two poles:

G(t) =
1

(1− t/m2
1)(1− t/m2

2)
. (56)

Other factors with the parameter a are introduced ”by hand”. They can be
treated just as a correction due to the different shapes of distributions of
charge and matter. There are six adjustable parameters in total used at high
energies if the Regge background is neglected. The noticeable t-dependence
of the slope B(t) in the diffraction cone is predicted. However, its values at
7 TeV are lower than experimental ones (about 18 GeV−2 instead of 20.1
GeV−2) at 10−2 < |t| < 0.3 GeV2, slightly exceed them in the tiny interval
near 0.35 GeV2 and do not reach the value 23.6 GeV−2 mentioned above.

This model is close to the TOTEM data [42, 43] for the dip position and
the exponential at very large |t|, but predicts values of the differential cross
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section in the Orear range, |t| ≥ 0.36 GeV2, about twice as large (see Fig.
2). In addition to the dip, some ”oscillations” at the transferred momenta of
several GeV2 are predicted (up to the energy 6000 TeV) but not yet observed.
In general, such structures appear as a byproduct of the eikonal approach
and unitarization procedure (see, e.g., Ref. [82]). Their energy dependence
is strongly determined by the parameters used in formula (54) to account for
the crossing symmetry property of the amplitude.

The same parameters are crucial for the behavior of the real part of the
amplitude. It is interesting that the model predicts the dominance of the
imaginary part of the amplitude even at large transferred momenta. The
real part becomes important only at zeros of the imaginary part. The dip
and oscillations are noticeable precisely there. Near the cone, the model
predicts two zeros of the real part of the full (Coulomb + nuclear) amplitude
at |t| =0.0064 GeV2 and the nuclear amplitude alone at |t| ≥ 0.18 GeV2,
as well as one zero of the nuclear imaginary part at |t| =0.5 GeV2. In the
differential cross section, the last zero is partly filled in by the real part.

We note the difference between the power-like expression for F (t) and its
exponential behavior in the traditional Regge models. The exponentiation
of this form of F (t) leads to additional oscillations.

The similar but more complicated combination of the form factors has
been used in Refs [64, 144, 145, 146]. The authors consider the t-dependent
Mellin transforms of parton distributions and claim that the first moment
defines the form factor of the standard Pomeron G, while the second moment
H corresponds to interaction attributed to three nonperturbative gluons.
Thus, the behavior of the differential cross section at small t is determined
by the elactromagnetic form factors and by matter distribution at large t.
The Born term of the elastic scattering amplitude is written as

ABorn(s, t) = h1G
2(t)Fa(s, t)(1+r1/ŝ

0.5)+h2H
2(t)Fb(s, t)(1+r2/ŝ

0.5), (57)

where
Fa(s, t) = ŝε1eB(s)t; Fb(s, t) = ŝε1eB(s)t/4, (58)

G(t) =
L4

1

(L2
1 − t)2

4m2
p − 2.793t

4m2
p − t

; H(t) =
L4

2

(L2
2 − t)2

. (59)

L2
1 = 0.71 GeV2, L2

2 = 2 GeV2, ŝ = se−iπ/2/s0, s0 = 1 GeV2, B(s) =
α′ ln s/s0, α

′ = 0.24 GeV−2. We note that the slope of the second term is
chosen as one fourth of the first term. The final form of the amplitude is
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obtained after eikonalization of the Born contribution using the opacity

Ω(s, b) =
1

2π

∫
d2qeiqbABorn(s, q2 = −t). (60)

The total cross section at 7 TeV was predicted to be equal to 95 mb. Authors
demonstrate good fits of pp and pp̄ differential cross sections, as well as
of ρ0(s), in a wide energy range, including the TOTEM data. Only five
(three for high energies and two for low energies) adjustable parameters are
claimed to be used if all above values are regarded as fixed. In fact, there
are 10 such additional ”hidden” parameters in total if the hard Pomeron is
also considered. Surely, the contribution from secondary Reggeons at LHC
energies is negligible, i.e., smaller than the experimental errors.

The real part of the hadron amplitude is completely determined by the
complex expression for ŝ. Its t-dependence appears just as a byproduct of the
eikonalization procedure. As a function of t, it tends to zero at |t| ≈0.16 GeV2

at the energy of 7 TeV. The interesting predictions of the t-behavior of ρ(s, t)
at nonforward transferred momenta for different energies are presented. They
are discussed in more details in subsection 4.2.4.

4.1.4 Reggeon exchanges

The Regge-pole model is beyond dispute one of the most explored. It has al-
ready been noticed that the notion of Regge trajectories has been used in the
preceding subsections as well. The only reason to discuss these models there
separately was their stronger inclination to the use of nonexponential elec-
tromagnetic form factors and geometric pictures in the s-channel approach.
At the same time, Reggeon models appeal mostly to the t-channel approach.

The amplidutes with Reggeon exchanges in the t-channel are the natural
candidates for explaining the exponential decrease of the differential cross
section (6) with the squared transferred momentum |t| inside the diffraction
cone. Just this shape is typical for them, because it follows from the linearity
of Regge trajectories. Moreover, they predict the logarithmical increase of the
hadronic radii as the energy increases, i.e., the logarithmical increase in the
cone slope B or the corresponding shrinkage of the width of the diffraction
cone. This prediction is also supported by experiment. In the common
Regge-pole models, the disk becomes larger and slightly more transparent as
energy increases.
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The standard Regge-type models [147, 84, 64, 148] use the combination of
contributions due to the exchange by the (multicomponent) Pomeron, Odd-
eron, and secondary Reggeon trajectories corresponding to f and ω mesons
with or without the form factors chosen in a simple exponential form or as
power-like expressions resembling the electromagnetic structure of colliding
partners discussed in the preceding subsection. The price to be paid is the
increased number of adjustable parameters at each step of sophistication. To
be more or less realistic, one has to use the knowledge about some of them
from other (independent?) experimental results. But even under this condi-
tion, the ambiguity of their choice and sensitivity to fitted parameters leave
some freedom in the conclusions.

The amplitudes of pp and pp̄ scattering are approximated by the sum of
terms corresponding to the leading (Pomeron and Odderon) and nonleading
(f and ω meson) Regge trajectories:

A(s, t)pppp̄ = AP (s, t) + Af (s, t)∓ [Aω + AO(s, t)], (61)

where the labels P, f, O, ω stand for the relevant contributions. The sign
in the pp and pp̄ amplitudes differs for C-even and C-odd terms.

The contributions of the nonleading Regge poles are written as

AR(s, t) = aRe
−iπαR(t)/2ebRt(s/s0)αR(t)) (62)

with αR(t) = aR + bRt.
While the secondary trajectories are usually chosen in a standard linear

way, the Pomeron and Odderon contributions can be regarded, for example,
as dipoles with nonlinear trajectories [149, 150, 151, 147, 152]

AP (s, t) = i
aP s

bP s0

[r2
1(s)er

2
1(s)(αP−1) − εP r2

2(s)er
2
2(s)(αP−1)], (63)

where r2
1(s) = bP +L− iπ/2, r2

2(s) = L− iπ/2, L = ln(s/s0). The unknown
Odderon contribution is assumed to be of the same form as that of the
Pomeron. The parameters of the trajectories and of the absorption εP need
to be adjusted. Their nonlinearity may be connected with the two-pion
threshold following from the t-channel unitarity [149, 151, 153]. However,
there could be double counting of the graphs with Pomerons attached on
both sides to the pion loop. This is well known from old peripheral models
of inelastic processes, where the self-consistent Bethe-Salpeter equation had
to be used for the proper account of the pion-nucleon vertices. Different forms
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of nonlinear trajectories are in use. For instance, the Pomeron trajectory is
chosen in [154] with four free parameters as

α(t) = α0 − γ ln(1 + β
√
t0 − t). (64)

The more complicated nonlinearity was used in [153]. However, the use of
the pion mass as a scale there is questionable in view of the above discussion.

The origin of the Pomeron and the parameterization of its trajectory are
still being debated. There is no strict rule for choosing its shape. The dipole
and even tripole forms of unitarized Pomeron have been attempted. They
mimic cut contributions [155, 156, 157, 158].

Moreover, there are arguments in favor of two Pomerons with different
intercepts. Even the fits with three Pomerons are sometimes used [68, 84].
The soft Pomeron contributes a term with the energy dependence sas , as ≈
0.08 to hadron-hadron total cross sections, and the hard Pomeron makes a
small (at present energies) contribution with a stronger energy dependence
sah , ah ≈ 0.4. These values of the intercepts stem from the discussions
of HERA data (see, e.g., [159]). Although the hard-Pomeron exchange was
unnecessary for describing hadron-hadron total cross sections up to energies√
s below 1 TeV, it may reveal itself at LHC energies, as argued in [160].

The model in [160] uses only two terms in the expansion for opacity:

Ω(s, b) = ΩS(s, b)− λ

2
Ω2
S(s, b), (65)

where ΩS stands for the contribution from single exchanges of Reggeons (two
Pomerons, f , and ω) with the adjustable parameter λ as well as for the triple-
gluon exchange of the form Cst−4 needed at larger values of |t| and matched
at some t = t0 to exponential shapes of the diffraction peak and to the dip
region. Certainly, adding such a term allows fitting the total cross section
value at 7 TeV, but there is a suspicion that the sharp increase of the hard-
Pomeron contribution will overpredict the cross sections at higher energies.
The unitarization will become mandatory once again. The quality of the fit
of the differential cross section beyond the diffraction peak is no better than
of those fits shown in Fig. 2.

Several variant forms of Born amplitudes and different kinds of eikonal-
ization have been attempted. There is no consensus on their choice.

The form of the eikonal similar to (65) is chosen in [161] with the expo-
nential suppression

ΩS(s, b) = A0 exp[−m(s)(r2
0 + b2)1/2] (66)

35



for central interactions. The peripheral part of the Pomeron interaction
with the meson cloud is parameterized [161] by a small term increasing with
the energy and resulting in a

√
|t| exponential fall-off of the differential cross

section. The geometric picture corresponds to a black disk with a grey fringe,
similarly to the above-described model [80].

In general, it is not easy to estimate the total number of the adjustable
parameters in different models. There are parameters related either to t- (b-)
or s-dependence. In some papers, it is often assumed that part of them are
known from fits of other characteristics of hadron or electromagnetic interac-
tions at various energies and can therefore be considered known beforehand.

For example, it is claimed that the model in [147] contains about 15
parameters. In this case, it is quite difficult to find the proper minima for
the matrix of χ2 values. It is well known how unstable the final results can
be: one has to choose the step-by-step procedure for doing this and use some
special computer codes.

There are 25 adjustable parameters shown in Table 1 in papers [84, 68].
However, they include some values assumed to be a’priori fixed in [147]. At
the same time, additional form factors were inserted in the formulas, albeit
with preliminary ”fixed” parameters. They were used to fit 982 pp and pp̄
data points in a wide energy range. Besides the elastic differential cross
sections, the total cross sections and the ratios ρ0 were considered. The fit in
the interference region of Coulomb and hadronic amplitudes with the same
parameters helped in choosing among the different Coulomb phases proposed
previously.

A similar situation is seen in the fits in Ref. [64], where it is claimed that
the number of parameters is much less (5 only!). However, there are many
others (in particular, concerning the energy behavior and form factors) that
are hidden parameters. They are held fixed from the very beginning, as was
discussed in subsection 4.1.3.

As mentioned before, the simple exponential form of the differential cross
section in the diffraction cone is quite well described. This becomes pos-
sible mainly due to the t-shape of the Pomeron trajectory (63) and other
Reggeons contributions in (62). The fits in this region at the different ener-
gies shown, e.g., in [147, 84, 64], are quite impressive. The evolution of the
diffraction cone slope with energy is reproduced (as described by L in (63)).
Unfortunately, the variety of forms of Pomeron trajectories with different
intercepts, slopes, and shapes of residues unitarized in different ways and/or
substituted by Regge-cuts is so large that it is impossible to show all of them
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in this review due to the limited space.
The cuts with nonlinear trajectories mimic hard scattering [85]. A com-

mon problem appears in predicting them at larger angles. The fit according
to the model in [84, 68] seems to be most successful in predicting the po-
sition of the dip and the shape at large |t| but exceeds the absolute value
approximately twofold. The model in [147] strongly underestimates it, with
the wrong position of the dip and much slower decrease at |t| > 1.5 GeV2.
This is well demonstrated in Fig. 2 and is also discussed below.

We mention that all these papers follow the general approach proposed
much earlier [151, 162]. They just deal with more detailed fits of newly
available experimental data.

4.1.5 QCD-inspired models

Each incident particle consists of a superposition of Fock states with n par-
tons [163], which are scattered instantaneously and simultaneously by the
other particle. Some QCD-inspired models using this statement have been
developed. The role of partons is played by quarks and gluons.

The two competing mechanisms of hadron interactions, the increase in
the density (α in Table 1) and in the radius R, determine their specific
features. In QCD, they can be respectively ascribed to the leading order
solution of the BFKL equation [164] and to the long range (Weizsäcker-
Williams) nature of the field of massless gluons. The density increase due to
the BFKL-evolution leads to a power-like increase of the total cross section,
which is nonunitary and violates Froissart bound (31). Therefore, at the
critical density of the order 1/αS, the density saturation must be taken into
account [165]. The QCD evolution in all orders in the gluon density but in
the leading logarithmic approximations is treated by the JIMWLK equations
[166]. With account of multiple scattering effects, they can be simplified in
the large Nc limit to a single nonlinear BK equation for the gluon density
[167] when the induced field density is small.

The density growth effects are preasymptotic. According to [87], they are
described by a hard Pomeron, while the growth of the size of the black satu-
rated regions (the radius) is attributed to a soft Pomeron. The hard Pomeron
manifests itself in small systems or in small subregions inside hadrons. The
soft Pomeron appears in hadronic systems of the typical size and is related
to an increased size in the impact parameter space. Only the increase due
to the perturbative expansion in the transverse plane remains effective.
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There is no common consensus about this scenario proposed in Ref. [87].
The soft Pomeron is often used [69, 168, 169] in attempts to explain the
preasymptotic power growth of cross sections by an additional nonperturba-
tive mechanism superimposed on the BFKL scenario of hard Pomeron. It
is ascribed mainly to the density growth of gluon clouds around quarks and
not to the spatial scale of the interaction. Even though the size of gluon
clouds increases, it is still limited by a short separation from their source.
The proton looks like three valence quarks surrounded by gluon clouds or
spots with mean sizes about 0.3 fm, smaller than the proton radius, of the
order of 1 fm. Radiation of any additional gluon from the cloud adds the
factor ln s/s0 to the interaction cross section, and hence their sum gives a
power-like term of the form

σt = σ0 + σ∆(s/s0)∆; ∆ = 4αS/3π ≈ 0.17 (67)

with a large constant term σ0 and small σ∆. Using the standard dipole form
factors of protons and quasieikonal unitarization in the impact parameter
space, the authors of this two-scale model [69, 169] fit many distributions
with 10 parameters for t-dependence (subject to 2 additional constraints)
and some parameters for the s-dependence. Such fits are, of course, aimed
at high energies of colliding protons where the effects of secondary Regge-
trajectories die out. They are mainly successful in the diffraction cone and,
consequently, in describing the energy dependence of the total and elastic
cross sections.

Such a form of the total cross section with an energy-independent term
σ0 was proposed a long time ago [170, 171, 172] and actively developed later
[173, 174] in the framework of the parton model and semihard QCD, with
the gluon-gluon interaction playing the main role.

The main role of gluons is also incorporated in [86, 96]. The profile is
chosen in a form containing the gg, qq, qg-terms:

Ω = σggW (b;µgg)+Σgg(C+CR
m0

s1/2
)W (b;µqq)+ΣggCqg ln

s

s0

W (b; (µqqµgg)
1/2),

(68)
where the impact parameter distribution functions are

W (b;µ) = µ2(µb)3K3(µb)/96π, (69)

and the gluon-gluon interaction cross section is

σgg = Cgg

∫
ΣggΘ(τs−m2

0)Fgg(x1, x2)dτ (70)
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with Σgg = 9πα2
S/m

2
0; Fgg =

∫
fg(x1)fg(x2)δ(τ − x1x2)dx1dx2; fg(x) =

Ng(1− x)5/x1+ε.
The Froissart bound for the total cross section is reproduced with

σt = 2π(ε/µgg)
2 ln2(s/s0). (71)

The parameter µgg describes the area occupied by gluons in the colliding
protons (the size effect), and ε is defined via their gluonic structure functions
and, therefore, controls their soft gluon content (the density effect).

Again, being successful in the diffraction peak with its shape and nor-
malization, the model in [86, 96] fails to predict the correct behavior of the
differential spectrum outside it [42, 43]. Its prediction is more than three
times larger than the experimental value at the dip and subsequent maxi-
mum, while falling too steeply at ever higher |t| above 1.5 GeV2 (see Fig.
2).

Attempts to consider the semihard scattering of quarks and gluons can
be found in Refs [174, 175, 176, 177].

The traditional partonic description of the process is considered in a series
of papers [153, 178, 179, 180]. The partonic approach with a hard BFKL
Pomeron can be merged into the domain regulated by the soft Pomeron. The
transition from hard to soft is induced by absorptive multi-Pomeron effects in
a limited energy range. The evolution produces parton cascades, not strongly
ordered in transverse momenta, with hot spots of a relatively small size in
b-space. The saturation is driven by the enhanced multi-Pomeron graphs,
also regulating the high-mass dissociation. The calculations are done with
a 3-channel quasi-eikonal unitarization using the opacity formalism. They
reproduce the shapes of the differential cross sections from ISR to LHC within
the diffraction cone.

Another picture was considered in the framework of the functional inte-
gral approach in Refs [181, 182, 183, 184] using the model of the stochastic
vacuum and making the assumption that the proton has a quark-diquark
structure of the color dipole i.e. two quarks out of three are close together in
the transverse directions. A matrix cumulant expansion is used for vacuum
expectation values of Wegner-Wilson loops [181] related to hadronic ampli-
tudes. The QCD vacuum parameters (the gluon condensate or the string
tension, the vacuum correlation length, and the parameter due to the non-
Abelian tensor structure), as well as the hadron size, have been used. The
imaginary part of the amplitude in the b-representation was calculated. Its
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contribution to experimentally measured quantities was shown to describe
the ISR and Tevatron data in the diffraction peak reasonably well.

A more phenomenological approach to the quark-diquark model was at-
tempted in Refs [185]. As above, the correlated quark and diquark con-
stituents are considered. According to the detailed analysis performed in
[186] from ISR to LHC energies in the region 0.36 < |t| < 2.5 GeV2, the
model is able to describe the data quite well, even outside the diffraction
peak, except the narrow strip around the dip. But it shows a much stronger
dip (by several orders of magnitude) there than the experimentally observed
one. Moreover, similarly to the abovementioned calculations, the model ig-
nores the contributions to the real part of the elastic scattering amplitude.
As we saw previously, such contributions can smooth this dip. If so, their
shape should drastically differ from that of the imaginary part, at least in
this strip, as happened, for example, in the models with electromagnetic form
factors [80, 146].

4.2 Intermediate angles: the dip and the Orear regime

As long ago as the 1960s, experiments on elastic pp- and πp-scattering at
comparatively low energies between 6.8 and 19.2 GeV in the laboratory sys-
tem [2, 8, 9] showed that the steep exponential fall-off of the differential cross
section as a function of the squared transferred momentum |t| is replaced by
a slower dependence at larger |t|. They showed that just after the diffrac-
tion cone a shoulder was observed and, even more surprising, a behavior
exponentially decreasing with the angle or with

√
|t|, which was called the

Orear regime after its investigator [5, 8]. The special session was devoted
to these findings at the 1968 Rochester conference in Vienna. The shoulder
evolved later into the minimum or dip at higher ISR energies. It has also
been observed at the LHC, as seen in Figs 2 and 3.

It is interesting that at FNAL-ISR energies,
√
s=6 - 60 GeV, the expo-

nential fall-off with an increase of
√
|t| ≈ pt was observed up to quite large

values of |t| ≈ 10 GeV2 [18, 26, 39], with the exponent in the range from 6.2
to 7 GeV−1 (see Table 7 in Ref. [39]). It is even larger at the LHC (about 8
- 9 GeV−1). The region becomes more narrow and shifts to lower values of
|t| from 0.5 to 1.5 GeV2. The power-like regime already shows up at about
|t| ≈2 - 2.5 GeV2 (see Fig. 3).
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4.2.1 Gaussian fits

From the very beginning, it was noticed [5] that it is possible to fit the dif-
ferential cross sections at intermediate values of the momentum transfer by
the dependence exponential in

√
|t| (or θ) except the relatively small shoul-

der region. To take that into account as well, it was primarely proposed [3]
to use fits with Gaussian functions with alternating signs of the coefficients
directly in the expression for the amplitude. The similar approach was later
advocated in [102, 205, 206, 207, 208]. In this way, both the diffraction peak
and larger |t|-behavior could be described. No reference to any phenomeno-
logical model is given. From the geometrical point of view, one can imagine
an internal structure with envelopes of alternating density.

Such an empirical approach has been recently used [187, 188, 189] for fits
of experimental data at ISR energies. The following parameterization of the
amplitude is proposed in Ref. [189]:

A(s, t) = s

[
(ρσt −

m∑
i=2

4πai)e
b1t +

m∑
i=2

4πaie
bit + i(σt −

n∑
j=2

4πcj)e
d1t + i

n∑
j=2

4πcje
djt

]
,

(72)
where m < n. The fits at different energies give information about the ratio
of the real to imaginary part of the amplitude ρ(t), besides the values of ad-
justable parameters ai, bi, cj, dj. Two different methods were used. In total,
there are 14 to 16 free parameters. The results of nonlinear fits are rather
unstable, and the conclusions are somewhat controversial. In particular, the
numbers of zeros in ImA(s, t) and ReA(s, t) differ in these methods. The
dominance of the real part of the amplitude at intermediate values of the
momentum transfer in one of the methods is not confirmed when the other
method is used.

A similar fit was recently attempted and applied to TOTEM data in
Refs [190, 97]. The earlier proposal in Ref. [191] with phenomenologically
chosen two t-exponentials and the relative interference phase responsible for
the dip was applied to TOTEM data. Using five parameters, it is possible to
describe these data in the whole interval of transferred momenta. We note
that, similarly to the model in [146], the slope of the second exponential term
is chosen several times smaller than that of the main term. Moreover, when
the electromagnetic form factors were tried in place of simple exponentials,
the fit became worse.

Two exponentials without the interference term inside the diffraction peak
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and a Tsallis-type distribution outside it were used in [192]. It was possible,
with the help of nine free parameters, to fit the data at energies from 19.4
GeV to 7 TeV.

In some way, this fit business with no reference to any theoretical model
looks more like art than science, especially if no conclusions about the hadron
structure are obtained. Such an approach will hardly be conclusive in the
future.

4.2.2 Phenomenological models

Theoretical indications of the possibility of a new regime with an increase
in transferred momenta were obtained even earlier [49, 107, 193]. It was
treated as a consequence of the simple iteration of processes approximated
by a Gaussian within the diffraction cone. The term I2 in unitarity condition
with Gaussians inserted into the integrand gives rise to a Gaussian with a
width, that is twice as big, i.e. to a shape twice as wide as the diffraction cone.
Further iterations lead to further widening. Therefore, multiple exchanges
were considered. However, the results did not fit new experimental findings.
This failure was explained as resulting from the improper treatment of the
unitarity requirements and incorrect choice of the overlap function.

The droplet model relations between form factors and the elastic ampli-
tude for hadronic scattering at infinite energy (see Eqs (1) and (2) in Ref.
[194]) predict a series of kinks (or zeros) in the differential cross section, which
could be related to dips. Dip position movement to lower |t| with a growth of
the total cross section was predicted in Ref. [195]. There is also an indication
of several dips (or shoulders) at larger |t| in the models [80, 174, 146] using
the electromagnetic form factors with subsequent eikonalization (cf. Figs 2
and 11).

In accordance with the experimental data shown in Fig. 2, only one dip
is predicted by others. For example, it was described in Ref. [196] on the
basis of a modified optical model [195]. In the framework of the geometric
scaling approach [197] the numerical integration of the relation

dσ

dt
(s, t)/

dσ

dt
(s, 0) = [φ2(τ) + ρ2

0(d(τφ(τ)/dτ)2]/(1 + ρ2
0), (73)

where
ImA(s, t) = sσtφ(τ) φ(0) = 1 (74)

was performed with τ defined by Eq. (46).
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It was predicted that the dip should even disappear at energies higher
than

√
s ≈ 300 GeV but, probably, can reappear again at ever higher en-

ergies. As we know now, it is clearly seen at 7 TeV. The imaginary part
has been chosen in such a way that it has a zero at the dip. The absence
of additional dips is explained as the deviation of the eikonal from a simple
Gaussian with some flattening at small impact parameters (see subsection
4.2.3). That shows strong sensitivity to the choice of tiny details of the
phenomenological eikonal and also agrees with the properties of the overlap
function to be discussed in more detail below. These results were confirmed
and extended to pp̄ collisions in Ref. [198].

Processes described by diagrams with multiple exchange by Pomerons
are claimed to be responsible for the Orear regime at intermediate angles
according to Ref. [199]. The differential cross section is predicted to have
the form

dσ

Cdt
= exp[−2

√
2πα′(0)|t|ξ cot(φ/2)ϕ1(ξ)]·[1+λ cos(2

√
2πα′(0)|t|ξ tan(φ/2)+ϕ0)],

(75)
where ξ = ln(s/4m2), and C, φ, ϕ0, ϕ1, λ, α

′(0) are adjustable parameters.
There are oscillations directly imposed on the exponential fall-off with the
same exponent. They should be well pronounced. So far, no such oscillations
have been observed.

A less strong statement about some saturation of the diffraction cone due
to multiple Pomeron exchanges is made in Refs [200, 201].

4.2.3 Unitarity condition

A theoretical explanation based on the consequences of the unitarity con-
dition in the s-channel has been proposed in Refs [50, 51]. The careful fit
to experimental data showed good quantitative agreement with experiment
[52]. Nowadays, the same approach helps explain the TOTEM findings [53]
(see Fig. 5 below).

We consider the left-hand side and the integral term I2 in unitarity con-
dition (18) at the angles θ outside the diffraction peak. Because of the sharp
fall-off of the amplitude with the angle, the leading contribution to the in-
tegral arises from a narrow region around the line θ1 + θ2 ≈ θ. Therefore,
one of the amplitudes should be inserted at small angles within the cone as
a Gaussian, while the other is kept at angles outside it. Integrating over one
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of the angles yields the linear integral equation:

ImA(p, θ) =
pσt

4π
√

2πB

∫ +∞

−∞
dθ1e

−Bp2(θ−θ1)2/2fρImA(p, θ1) + F (p, θ), (76)

where fρ = 1 + ρ0ρ(θ1).
It can be solved analytically (see [50, 51] for more details) with two as-

sumptions: that the role of the overlap function F (p, θ) is negligible outside
the diffraction cone and the function fρ can be approximated by a constant,
i.e., ρ(θ1) = ρl=const. Both assumptions are discussed in the next subsec-
tions.

It is esay to check that the eigensolution of this equation is

ImA(p, θ) = C0 exp

(
−

√
2B ln

Z

fρ
pθ

)
+
∞∑
n=1

Cne
−(Rebn)pθ cos(|Imbn|pθ − φn)

(77)
with

bn ≈
√

2πB|n|(1 + isignn) n = ±1,±2, ... (78)

This expression contains the term exponentially decreasing with θ (or
√
|t|)

(Orear regime!) with oscillations strongly damped by their own exponential
factors imposed on it. These oscillating terms are responsible for the dip.
Just this formula was used in Refs [52, 53] for fits of experimental data in
a wide energy range. The ratio ρ was approximated by its average values
in and outside the diffraction cone, with fρ = 1 + ρ0ρl, where ρl is treated
as the average value of ρ in the Orear region. The fits at comparatively low
energies [52] are consistent with fρ ≈ 1, i.e., with small values of ρl close to
zero. The great surprise of the fit in [53] of TOTEM data shown in Fig. 5
was the necessity of using the negative value of ρl ≈ −2.1 large in modulus.

Being model-independent, this solution suffers from some limitations that
are inherent for the unitarity relation, in general, and for the unitarity equa-
tion (76), in particular. First, it predicts the dependence on transferred
momenta pθ ≈

√
|t| but not the dependence on the collision energy. Second,

it is applicable in a restricted (and not rigorously defined) range of angles in
the Orear region.

The elastic scattering differential cross section outside the diffraction cone
(in the Orear regime region) is

dσ

p1dt
=

(
e
−
√

2B|t| ln 4πB
σtfρ
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Fig. 5. The fit of the differential cross section of elastic proton-proton scat-
tering at

√
s=7 TeV in the region beyond the diffraction peak according to

the predictions of the unitarity condition [53]. Dots - experimental data, line
- theoretical approximation.

+ p2e
−
√

2πB|t| cos(
√

2πB|t| − φ)
)2

. (79)

It has been used for the fit in Fig. 5. Only the very first oscillating term in
(77) is taken into account in this expression, because other terms are more
strongly damped with |t|. It is important that the experimentally measured
values of the diffraction cone slope B and the total cross section σt of the
same experiment mostly determine the shape of the elastic differential cross
section in the Orear region of transition from the diffraction peak to large-
angle parton scattering. The value Z = 4πB/σt is so close to 1 at 7 TeV
that the fit is extremely sensitive to fρ because ln(Z/fρ) in the first term
determines the slope in this region. Therefore, it becomes possible for the
first time to estimate the ratio ρl outside the diffraction cone directly from
fits of experimental data.

Moreover, in footnote 2 in Ref. [51] it was mentioned that Eq. (76) is
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in fact an equation for θ1/2ImA(p, θ). The factor θ1/2 was omitted in this
review and all previous papers because it was assumed that ”retaining it
would exceed the accuracy of the derivation” of the equation. However, it
will be worthwhile to take it into account in the future as well, multiplying
the right-hand side of (79) by |t|−1/4. This would slightly improve the fit in
Fig. 5.

We note that this shape of differential cross section (79) differs from
formula (75), first of all, because of the suppression of oscillations by the
exponential factors in front of them, which decrease much more strongly
than the leading exponent. In (75), the exponent is common for main and
oscillating terms, while in (79), the oscillations are strongly damped. They
may give rise to the dip adjusted to the diffraction cone if their amplitude is
sufficiently large. The small secondary damped oscillations at larger values
of |t| have been seen at comparatively low energies (see Ref. [52]) but have
not yet been noticed at the LHC. We stress that the fit (79) contains only
three adjustable parameters: the overall normalization p1, the amplitude of
oscillations p2, which determines the depth of the dip, and fρ, which helps
find the ratio ρl outside the diffraction peak from the slope of the differential
cross section there.

4.2.4 Overlap function and the eikonal

Both the overlap function and the eikonal are subject to the unitarization
procedure, albeit in somewhat different approaches. Therefore, it is instruc-
tive to compare their different forms.

We discuss what shapes of the overlap function can be considered as
suitable for further use. One of the assumptions used in solving the unitarity
equation was the smallness of F (p, θ) in the Orear region. The results in
[53, 202] give strong support to the validity of this assumption. The overlap
function was calculated there directly from experimental data, by subtracting
the elastic contribution I2 from the left-hand side of the unitarity equation
without appeal to any model. It is described by the formula:

F (p, θ) = 16p2

(
π
dσ

dt
/(1 + ρ2)

)1/2

−

8p4fρ
π

∫ 1

−1

dz2

∫ z+1

z−1

dz1

[
dσ

dt1
· dσ
dt2

]1/2

K−1/2(z, z1, z2). (80)
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Fig. 6. The overlap function at
√
s=7 TeV obtained from the unitarity

condition with substitution of experimental data about the differential cross
section [53].
It is large in the diffraction cone and negligibly small outside it. The line
nearest to the abscissa axis takes into account the real part of the amplitude.
The farthest one is computed with ρ = 0.

Here, zi = cos θi; K(z, z1, z2) = 1 − z2 − z2
1 − z2

2 + 2zz1z2; z±1 =
zz2 ± [(1− z2)(1− z2

2)]1/2.
The result at 7 TeV is shown in Fig. 6.
Certainly, the shadow of inelastic processes represented by the overlap

function dominates within the diffraction peak. But it is extremely small
outside. It is even smaller at the LHC energies [53] than at lower ones [202],
where a similar behavior of the overlap function at large |t| was observed
previously. Hence, this assumption is well founded.

Moreover, it is quite understandable that F (s, t) is very small at large |t|
in Fig. 6. This shows that its fit by the solution of the unitarity relation has
been done by the proper eigenfunction (77) with the correct eigenvalues of
the integral equation.

It is tempting to solve the nonlinear inhomogeneous unitarity equation
(18) by iterations. That has been attempted several times [49, 107, 193, 51].

47



The main problem is the choice of the overlap function. The simplest ansatz
is the Gaussian form at all transferred momenta. The argument in favor of
it is just that it plays the decisive role in the diffraction cone, where the
elastic amplitude has a Gaussian shape. BBut the results fail to describe
the Orear regime. This may be ascribed to the role of phases of inelastic
processes, that determine the genuine shape of the overlap function, or/and
to the improper approximation of ρ by a constant outside the diffraction cone.
Again, similarly to the situation in the b-representation, the tiny details of the
shape prevent from the proper outcome. No approximations for the overlap
function demonstrated in Fig. 6 have yet been proposed.

It is instructive to confront the shape of the overlap function F (s, t) with
results obtained in the impact parameter interpretation of proton-proton
scattering. They were presented in Refs [203, 204] for ISR data and are
demonstrated in Figs 7, 8. The b-transformed amplitude h(s, b), the overlap
function F (s, b) and the eikonal Ω(s, b) are shown in Fig. 7 at the energy√
s = 52.8 GeV [203]. The transformed amplitude is almost Gaussian from

the center to 2 fm with little flattening near the center. There is a tail beyond
2 fm with a much flatter slope. The flattening of the overlap function at the
center is much stronger, while the eikonal is steeper there. Hence, one should
not identify these three curves at small b, even though they almost coincide
beyond 2 fm.

Similar features are seen in Fig. 8, taken from [204], where F (s, b) at the
same energy is displayed. The solid line on the logarithmic scale is a Gaussian
adjusted to fit at b = 0 and b = 1.6 fm. A Gaussian adjusted between 0.6
and 1.6 fm would be higher at b = 0 and would require additional flattening.
This flattening at small b corresponds directly to negative values of F (s, t) at
large |t| seen in Fig. 5. In the same way, slight variations of eikonal Ω(s, b) at
small bmay lead to drastic disagreement of model fits with experimental data.
Therefore, their success or failure at large |t| depends on the accuracy of the
chosen form of the eikonal at low b. A long tail above the solid line for large
impact parameters is clearly seen in Fig. 8f. These Figures demonstrate how
accurate model formulas must be to correctly reproduce either the overlap
function or the eikonal if the final goal is to describe the differential cross
sections outside the diffraction peak.

A small ”edge” correction to the Gaussian shape of the eikonal has been
claimed to be necessary for fits of experimental data at ISR energies on
increasing total cross sections and structures of the differential cross sections
in Refs [205, 206, 207]. For example, the correction factor k with some specific

48



Fig. 7. The shapes of the amplitude, overlap function and eikonal extracted
from experimental data at

√
s = 52.8 GeV as functions of impact parameter

squared (borrowed from [203]). In the notations of this review, the ampli-
tude h(b) = M̃(b)/8π, the overlap function F (s, b) = Õ(b)/8π, the eikonal
Ω(s, b) = Ẽ(b)/8π. The corresponding space scales are shown in the abscissa
axis.
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Fig. 8. The overlap functions at ISR energies as functions of the impact
parameter look similar (borrowed from [204]). The solid line at

√
s = 52.8

GeV is explained in the text.

dependence on the impact parameter was introduced [207] into the overlap
function F (s, b). It changes the shape at small b and makes it similar to that
shown in Fig. 7:

F (s, b) = P exp(−b2/4B)k(s, b exp[−γ2b2/4B]). (81)

It turns out that, in the t-representation, the corresponding overlap function
F (s, t) has two zeros at |t|=0.645 and 3.83 GeV2 and becomes practically
indistinguishable from zero already at |t| >3.5 GeV2. The last statement is
in full agreement with the conclusions in Refs [52, 53].

Although the overlap functions in Fig. 8 look quite similar to each other,
there is a slight difference, which was analyzed in [207, 204]. This difference
reveals itself in a small increase at the level of 4% of the overlap function,
with an energy increase at the impact parameters (radii) about 1 fm, which
implies the peripheral origin of this phenomenon. That was also discussed
earlier [208]. Moreover, in Ref. [204] which deals with the direct analysis of
experimental data at ISR, a shoulder of the overlap function at 2.3 fm was
noticed. Its origin is unknown.
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The increase in the peripheral region about 16% for Spp̄S data is reported
in the latest review [40]. Our recent results (to be published) indicate that
it is twice larger at LHC.

The overlap function in the b-representation is used in Ref. [209] to
distinguish between the mechanisms of absorption and reflection with the
help of the unitarity equation. In the latter case, the differential cross section
at large momentum transfers is predicted to be 4 times larger.

The impact parameter picture used in almost all phenomenological mod-
els is very helpful for a qualitative description of the process. However, the
forms of the eikonal in the b-representation turned out to be very approxi-
mate. In our opinion, their wide use in most papers dealing with extension
to larger angles suffers from this deficiency. There are some arguments [76]
that the eikonal approximation is only valid for sums of leading terms of
the tower diagrams, but it is not correct in general. It is applicable to al-
most collinear processes only and does not properly take the separation due
to transverse momenta into account. That is why the quasi-eikonal models
were developed where the intermediate states take inelastic diffraction pro-
cesses into account, in addition to elastic ones. As a result, formulas like
(39), (40) were proposed. The eikonal does not properly reproduce the s-
channel cuts of the scattering amplitude due to multiple scattering [210]. By
itself, it does not guarantee precise unitarization. Moreover, the procedure
of unitarity corrections is not well defined, because it can be implemented
differently. The accuracy of unitarity relation (26) in the b-representation
is also not absolutely clear, as discussed above, while its use is mandatory
for interpretation of experimental data. That is why the model predictions
shown in Fig. 2 fail to explain the data.

There is a drastic difference between the use of the Gaussian shape for
the amplitude in the s-channel unitarity condition and the same shape for
the overlap function, as well as its use directly in the b-representation. The
exponential decrease (see Eq. (6)) of the differential cross section in the
diffraction cone as a function of |t| (or Gaussian for angles) is an experimental
observation. It can be used anywhere within the its applicability range, as
it was done, for example, in solving Eq. (18). Hence, this solution is quite
successful in fits of experimental data in the Orear region. The same shape
cannot be used for the t-dependence of the overlap function, although it plays
an important role in the formation of cone behavior.

It is often argued that the Fourier transform of the Gaussian is a Gaussian
and therefore this shape can also be used in the b-representation. While the
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first part of the statement is correct, the second is wrong. The tails of the
differential cross sections are very sensitive to small b. Slight variations of
this shape at small impact parameters lead to crucial changes in the behavior
of the amplitude at large transferred momenta. Therefore, the predictions
shown in Fig. 2, which use the impact parameter profiles close to Gaussian
ones even in the vicinity of b=0, are still successful inside the diffraction cone
but completely fail outside it, where central collisions play an important role.
It is very difficult in a particular model to guess the proper decline from the
Gaussian shape at small impact parameters, which drastically influences the
differential cross section at large transferred momenta.

Therefore, attempts to use the non-Gaussian electromagnetic form factors
were of some help in improving the situation, because they are closer in shape
to the eikonal demonstrated in Figs 7 and 8. Further progress in this direction
is necessary in order to understand the geometric content of the interaction
region in ordinary space and time.

Nevertheless, it is hardly justified to blame the phenomenological model
builders for their failure to predict the behavior of the differential cross sec-
tions at large transferred momenta, where it is many orders of magnitude
lower than in the diffraction peak. The great and important task of fits of
the energy behavior of total and elastic cross sections, (s, t)-dependence of
the differential cross section, and the ratio ρ in a wide interval of energies
and transferred momenta cannot be accomplished without free parameters
and the physical intuition of model builders. The switch to higher energies
allows eliminating corrections due to secondary Reggeons and improving the
fits. There is hope of gaining clearer insight into the geometrical picture of
hadron interactions.

4.2.5 Real part of the elastic scattering amplitude at nonzero
transferred momenta

There are no reasonable arguments to neglect the t-dependence of the ratio
ρ(s, t) in (2) or of the phase ζ in (13). This dependence seems to be impor-
tant, even inside the diffraction cone, albeit the values of ρ are small there.
Using formula (10) and assuming that ImA(s, t) determines mainly the shape
of the differential cross section in this region, we find that the real part must
vanish at

t0 = −2
d lnσt(s)/d ln s

dB(s)/d ln s
. (82)
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With the ln2 s-dependence of σt (32) and B(s) (34) and using relation (42),
we have

|t| = 2/B = 16π/σt, (83)

and hence t0 → 0 at σt →∞. The estimates at LHC energies are 0.1 < |t| <
0.3 GeV2. Notably, they agree with the results obtained in the models in
[146, 169].

There were several attempts to consider the behavior of ρ(s, t) at larger
transferred momenta in Refs. [204, 211, 212, 146, 213]. The main efforts were
spent on preventing differential cross sections from vanishing at those values
of t where the imaginary part of the amplitude is zero in a particular model.
The ratio ρ(t) should be infinite, e.g., as in the models in Refs [204, 146]. The
number of zeros of the imaginary part is sometimes greater than one. This is
typical in the Fraunhofer diffraction or in models with electromagnetic form
factors. Therefore, the singularities of ρ(t) appear at different t in different
models. The real part of the amplitude fills in these kinks leaving some
traces like shoulders or dips in the differential cross sections. For example, it
is predicted in Ref [146] that for pp-scattering at 8 TeV such traces appear
at |t| ≈ 0.35 GeV2 and at 1.5 GeV2.

In Refs [211, 212], the dispersion relation between the phase and the
modulus of the elastic amplitude considered in Refs [215, 216] was used with
some input for the modulus fitted to the experimental data at laboratory
energies above 100 GeV. The conclusion was that the real part exhibits a
zero in the t-distribution above 200 GeV, which moves away from the forward
direction as the energy increases.

In Ref. [213], the eikonal approximation was used following the proposal
in Ref. [217]. Information about the interference region with a Coulomb
amplitude similar to that in Eq. (30) was inserted into the total amplitude,
with the result

A(s, t) = −8πα

|t|
sf1(|t|)f2(|t|)eiαΦ +

isσte
Bt/2−iζ(s,t)

[
1− iα

∫ 0

−∞
dt′ ln

t′

t

d

dt′

(
f1(|t′|)f2(|t′|)eBt′/2−i(ζ(s,t′)−ζ(s,0))

)]
.(84)

The t-dependence of the phase was parameterized with the help of 5 param-
eters as

ζ(t) = ζ0 + ζ1(t/t0)κeν|t| + ζ2(t/t0)λ, t0 = −1GeV2. (85)
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The results showed that the phase (related to ρ by (14)) increases from
values close to zero at t=0 to about 0.5 in the interval 0.5 < |t| < 1 GeV2.
This conclusion disagrees with results in Refs [64, 146], as well as with the
arguments presented below.

A more general approach using the s-channel unitarity condition was
developed in Ref [214]. As explained above, the integral equation for the
elastic amplitude is valid in the Orear region. Its analytic solution (77) was
first obtained in the approximation where the values of ρ in fρ were replaced
by their average values in the diffraction cone and in the Orear region. No
zeros of the imaginary part of the amplitude were obtained. The dips at 7
TeV and lower energies were explained as resulting from damped oscillations.
The necessity to introduce large negative values of ρ into the Orear region
is the main outcome and surprise of the fit in Ref. [53]. In principle, this
could happen if there were zeros of the imaginary part of the amplitude in
this region, which would require very large values of |ρ| near them. But there
seem to be no such zeros there. We discuss this problem in more detail.

We first recall asymptotic predictions. It was shown in [218] that the
ratio of the real and imaginary parts of the amplitude can be calculated
asymptotically at nonzero transferred momenta t as

ρ = ρ0

[
1 +

τ(df(τ)/dτ)

f(τ)

]
. (86)

We consider the leading term of solution (77). With the imaginary part of
the amplitude in the Orear region represented as

ImAo(s, t) = C0(s)f(τ) (87)

it is possible to calculate ρ.
The very first approximation was to use the first term of the solution (77)

with average values of ρ both in the diffraction peak (ρd ≈ ρ0) and in the
Orear region (ρl) [214]. Then the following behavior of ρ was obtained

ρ(s, t) = ρ0

[
1−

a
√
|t|

2

]
(88)

where

a =

√
2B ln

Z

1 + ρ0ρl
. (89)
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We note that ρ passes through zero and changes sign at |t| = 4/a2 ≈ 0.1
GeV2. This agrees with the general theorem on the change of sign of the real
part of the high-energy scattering amplitude, which was first proved in Ref.
[72]. A similar effect is discussed in Ref. [146]. But it is difficult to obtain
ρl = −2.1 as an average of (88) over the Orear region.

Moreover, this behavior of an unlimited decrease in ρ with |t| does not
look satisfactory. It can in fact be damped if instead of replacing ρ by ρl in
the solution, we differentiate f according to (86), inserting there Eq. (87),
i.e., the first term in (77). The following differential equation is then obtained

dv

dx
= −v

x
− 2

x2

(
Ze−v

2 − 1

ρ2
0

− 1

)
. (90)

Here, x =
√

2B|t|, v =
√

ln(Z/fρ). The dependence of ρ(t) = (Ze−v
2−1)/ρ0

can be obtained from Fig. 9. However, one should read (1 − Z)ρ(t) on the
ordinate axis in place of ρ(t). I am sorry for this omission. Unfortunately, the
conclusions at the LHC energies become very indefinite, because Z is very
close to zero there. The only conclusion is that ρ(t) has a single zero at |t| ≈
0.3 GeV2, and it steeply changes in the Orear region of 0.3 < |t| < 1.4 GeV2.
The result shown in Fig. 9 is another extreme approximation compared to
Eq.(88).

The bold use of this procedure for derivation of Eq. (90) with ρ(t) inserted
directly in the solution is, nevertheless, not satisfactory, either. The two
possibilities above should be considered as two extremes for the shapes of
ρ(t).

Strictly speaking, the behavior of ρ(t) should be taken into account pri-
marely in the integrand. Then, inserting expression (86) in place of ρl in Eq.
(76) and integrating by parts, we derive the linear integral equation

ImA(x) =
1

Z
√
π

∫ +∞

−∞
dye−(x−y)2 [1 + 0.5ρ2

0 + ρ2
0(y − x)y]ImA(y) (91)

with F (p, θ) = 0 and new variables x =
√
B/2pθ; y =

√
B/2pθ1.

The kernel of this equation is not symmetric. Its solution has not yet been
obtained, even numerically. However, some preliminary asymptotic estimates
can be obtained from it [214].

In the preasymptotic energy region, we obtained [51] the Orear regime
ImA ∝ exp(−apθ) ≈ exp(−apt) with the exponential fall-off of the amplitude
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Fig. 9. The ratio of the real to imaginary part of the amplitude obtained
from the solution of Eq. (90) that follows from the unitarity condition [214].
The ordinate should be read as (1 − Z)ρ(t) in place of ρ(t). I am sorry for
this omission.
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as a function of angles. We, therefore, seek a solution of Eq. (91) in the
form ImA(x) = exp(−ax

√
2/B)φ(x). The Gaussian exponential shifts to

x−y−a/
√

2B. Replacing it with the δ-function of this argument, we obtain
the equation in finite differences:

φ(x) = Z−1ea
2/2B[1 + 0.5ρ2

0(1 +
a2

B
− apt)]φ(x− a√

2B
). (92)

Again, we can not solve it directly, but reach an important conclusion about
the zeros of the imaginary part of the amplitude. The expression in the
square brackets is equal to zero at

pt0 =
2

aρ2
0

[1 + 0.5ρ2
0(1 + a2/B)] ≈ 2

aρ2
0

. (93)

With the present-day values of B, a, ρ2
0, this zero would appear at extremely

large pt0 ≈ 20 GeV. However, zeros of the imaginary part of the amplitude
in the Orear region just above the diffraction cone might appear as zeros of
φ(x) itself. This result does not contradict the above statement about the
absence of zeros in the case of small oscillatory terms in the solution of a
homogeneous linear integral equation.

Moreover, the equation tells us that φ(x) and, consequently, the imaginary
part of the amplitude can have zeros at xn = x0 + a√

2B
. On the pt-axis, these

zeros would be placed at rather short distances from one another.
In the black disk limit Z tends to 0.5. If ρ loses in the competition with

Z within ln(Z/fρ) and the argument of the logarithm becomes extremely
close to 1 or even less, that would mean the drastic change of the regime
in the Orear region [219]. What the outcome of the competition between
decreasing Z and negative values of ρ will be, poses an interesting problem.
Experimental data at higher energies will be able to give the answer.

As we see, the real part of the amplitude can dominate at large transferred
momenta according to the unitarity condition. Compared to the imaginary
part, it can be large and negative there. This conclusion contradicts, for
example, the results of the models in [80, 146] with electromagnetic form fac-
tors, where the dominance of the imaginary part, on the contrary, is claimed
everywhere except the tiny regions near its zeros placed in the Orear region,
in particular. This disagrees with the above results. We must remember,
however, that ρ is infinite at these zeros (see Fig. 10). An analogous behav-
ior of ρ in the case of a single zero has been predicted in Ref. [204] at ISR
energies, as shown in Fig. 10.
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Fig. 10. The dependence of the ratio of the real part to imaginary part of
the amplitude (depicted here as R/A) on transferred momenta obtained in a
definite phenomenological fit [204] of experimental data at

√
s = 52.8 GeV.

The singularity points out the position where the imaginary part is equal to
zero.

A similar shape of ρ is obtained in Ref. [146] at |t| ≈1.5 GeV2, but
for the energy

√
s=8 TeV. The real part decreases with |t|. Therefore, the

conclusions in different papers about the behavior of the real and imaginary
parts of the elastic scattering amplitude are contradictory and require further
theoretical studies and new experimental data.

4.3 Scaling laws.

We have written two formulae (10) and (86) for the same function ρ(s, t).
Therefore, these two expressions must be identical. Equating them, we obtain
[220] the partial differential equation

p− f(x)q = 1 + f(x), (94)

where p = ∂u/∂x; q = ∂u/∂y; u = ln ImA(s, t); f(x) = 2ρ(s, 0)/π; x =
ln s; y = ln |t|. As usual, the variables s and |t| should be regarded as scaled
by the corresponding constant factors s−1

0 and |t0|−1.
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Eq. (94) can be rewritten as

∂u

∂ lnσt
− ∂u

∂ ln t
= 1 +

d ln s

d lnσt
. (95)

The general solution of Eq. (95) reveals the scaling law

t

s
ImA(s, t) = φ(tσt). (96)

In the asymptotic black-disk limit σt ∝ ln2 s; ρ(s, 0) = π/ ln s, we obtain

xp− 2q = x+ 2, (97)

and the solution is
u = ϕ1(xey/2) + x− y. (98)

This yields the scaling law for

|t|
s

ImA(s, t) = eϕ1(
√
|t| ln s) = φ(z1), (99)

which implies a universal scaling dependence on a single variable z1 =
√
|t| ln s.

We temporarily neglect the contribution of the real part of the amplitude
to the differential cross section. Then the asymptotic scaling law for the
differential cross section times t2 should be

t2dσ/dt = φ2
1(
√
|t| ln s). (100)

We note that the additional t2-factor can be replaced by an s-dependence
if absorbed in the argument of the scaling function φ. Then this formula
coincides with that obtained in the geometric scaling approach [129, 222].
Thus we have proved that the solution of partial differential equation (94)
with properly chosen f(x) leads to the results known previously about the
geometric scaling.

At the same time, Eq. (94) is more general and can be used for different
assumptions about f(x). In particular, the behavior of the total cross section
at present energies is often approximated by formula (67) as a sum of a large
constant term and another term that increases as some power of energy (see
[169] for a recent reference). In this case, ρ(s, 0) = π∆/2, and the equation
is

p−∆q = 1 + ∆. (101)
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Its solution is
u = ϕ2(∆x+ y) + x− y. (102)

From here, we obtain another universal scaling dependence of the differential
cross section on a single variable z2 = |t|s∆

t2dσ/dt = φ2
2(|t|s∆) (103)

which could be valid at preasymptotic energies.
It follows from the expressions described above that the energy depen-

dence of the scaling variable is determined by the behavior of the total cross
section. |t|σt if only the first term in Eq. (9) is used. Were this scaling valid,
one would be able to predict the shape of the differential cross section at a
higher energy once the total cross section is known there. The preliminary
results of work with experimental data at energies from ISR to LHC have
shown that just this dependence best reproduces the similarity of the shapes
of the corresponding lines, even though their normalization differs somewhat.
Further studies are necessary.

The above scaling laws must be satisfied for the imaginary part of the
amplitude times the factor |t|/s (see (99)). It follows from Eq. (10) that the
real part satisfies an analogous scaling law albeit with another factor, which
differs in the two cases considered above. This would lead to the scaling
violating terms when the contribution of the real part of the amplitude to the
differential cross section is taken into account. The above scaling dependences
of the differential cross section are modified as

t2dσ/dt = φ2
1(z1) + 0.25π2|t|φ′21 (z1) (104)

and
t2dσ/dt = φ2

2(z2) + 0.25π2∆2s2∆t2φ
′2
2 (z2). (105)

The violation of scaling laws is different in these cases. The first law acquires
a term with the coefficient depending only on the transferred momentum,
while the second law aquires a term with the coefficient that depends both
on energy and on the transferred momentum.

This violation of scaling laws must be negligible in the diffraction cone
because the squared ratio of the real part to imaginary part – which is crucial
for the differential cross section – is extremely small there. It would be
interesting to learn about the effect of these terms outside the cone, especially
in the Orear region of transferred momenta.
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We note that at small values of their arguments zi, the scaling functions
φi(zi) must be respectively proportional to z2

1 and to z2, for the differential
cross section to be equal to a constant at t = 0.

Recent fits of TOTEM data have shown [221] that the geometric tσt-
scaling is violated even within the diffraction cone and must be replaced at
present energies by approximate t1.2σt-scaling.

4.4 Hard scattering at large angles

4.4.1 Dimensional counting

The energy dependence of high-energy scattering processes at a fixed center-
of-mass angle is of special interest. Dimensional scaling laws have been de-
veloped as an approach to understanding it. The large angle scattering is
determined by contributions due to central interactions of internal domains
inside the colliding particles. The estimates according to the perturbative
QCD become justified due to its asymptotic freedom property. They depend
on the number of constituent fields of the hadrons [223, 224]. At large s and
t and a fixed ratio s/t, we have

dσ/dt|AB→CD ∝ s−n+2f(t/s), (106)

where n is the total number of fields in A,B,C,D that carry a finite fraction
of the momentum.

Assuming the existence of quark constituents, the s→∞, fixed-t/s pre-
diction for pp-scattering [224] is dσ/dt ∝ s−10.

For the elastic amplitude, it is

A1(s, t) ∝
(s0

s

)n
2
−2

f1(s/t). (107)

This form can become more complicated for multiple scatterings. For exam-
ple, the lowest order graphs for m rescatterings [225] behave as

Am(s, t) ∝
(s0

s

)n−m+1
2
−2

fm(s/t) (108)

and could become the leading ones. However, due to higher-order corrections,
the resulting behavior could change not so drastically, and the result would
be close to the initial estimate (107) as shown in Ref. [226]. Further progress
beyond the simple quark counting rules was slowed down by complications
in calculating the enormous number of Feynman diagrams.

61



4.4.2 Coherent scattering

In parallel, there were attempts to explain the |t|−8-regime in pp scattering
by dynamical mechanisms with the help of simple Feynman graphs. For pro-
tons (or their subregions) consisting of three valence quarks, we can assume
coherent exchange by gluons [227, 228, 229] or by the color-neutral pairs of
gluons [230] between them. The propagators of three gluons and their cou-
plings produce an α6

S|t|−6-dependence, and two powers in the denominator
are added by kinematical factors. The general problem of these approaches is
the necessity to introduce additional factors in order to preserve both protons
in their initial states in large-angle scattering. The corresponding powers of
the QCD coupling constant should be included, of course, which leads to pos-
sible (strong ?) modifications of the simple power law. Also, the exchange by
three Pomerons instead of the three pairs of gluons is possible. Because three
colliding quarks share the total energy of the proton equally (?), their shares
are smaller, and the whole process is farther from the asymptotic regime if
treated at the parton level. None of these questions have been quantitatively
resolved yet.

We note that the large-|t| behavior of Reggeons composed of two Reggeized
partons (quarks, gluons) can be calculated from the BFKL equation [231,
232].

The multi-Pomeron exchange for hadrons in a state with a minimum
number of partons was considered in [233]. It was concluded that the dif-
ferential cross section factores as a product of two |S0(s)|2 representing the
probability of finding the initial and final particles in a ”bare” state and the
dσ̂(s, t)/dt describing the hard exchange interaction:

dσ

dt
= |S0(s)|2dσ̂(s, t)

dt
. (109)

The first factor describes the contribution of large transverse distances, and
the second factor represents the contribution of small ones. The hard ex-
change is determined by the Pomeron vertices, which are known semiclassi-
cally:

dσ̂(s, t)

dt
∝ g2

1(t)g2
2(t) ∝ (αS(t))ν/|t|N (110)

with

ν = n1 + n2 + |n1 − n2|, N = 0.5[3(n1 + n2) + |n1 − n2|)− 1], (111)
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where ni are the numbers of valence quarks in colliding hadrons. This leads
to a |t|−8-behavior for pp and |t|−7 for πp. The quantitative comparison
with experimental data is more difficult because of much smaller values of
the differential cross sections in this region and, correspondingly, larger error
bars.

5 Discussion and conclusions

The new experimental data of the TOTEM collaboration at the LHC about
elastic scattering of protons at an energy of 7 TeV have revived interest
to these processes. The picture of very short-wavelength hadron collisions
has become available, adding to our insight into the spatial structure of
colliding particles and providing new intrinsic information pertaining to very
short-distance interactions. The total and elastic cross sections show a stable
increase with energy. The share of elastic processes increases. The differential
cross section has very intriguing properties. The exponential |t|-decrease
persists at small transferred momenta, analogously to lower-energy data. But
the diffraction cone slope is larger compared with low energies; it is stable
up to transferred momenta |t| ≈ 0.3 GeV2, then this peak steepens and a
dip appears at |t| ≈ 0.53 GeV2, with a subsequent maximum at |t| ≈ 0.7
GeV2. At somewhat larger angles, the exponential in

√
|t|-regime prevails.

It is replaced by the |t|−8-behavior at ever larger transferred momenta |t| > 2
GeV2. At the same time, we are waiting for measurements at extremely small
angles in the interference region of Coulomb and nuclear amplitudes to gain
some knowledge about the real part of the forward scattering amplitude. It
would be extremely interesting to learn its energy behavior and check our
predictions from the dispersion relations.

The steeper slopes of the diffraction peak and of the Orear region at higher
energies, and, correspondingly, their smaller extensions clearly demonstrate
that it becomes more and more difficult for a high-energy particle to preserve
its identity when scattering at larger transverse momenta.

This increase in the total cross section and, especially, in the share of
the elastic cross section, as well as the peculiar change of regimes in the |t|-
behavior of the differential cross section, require a theoretical interpretation.
Short of a complete theory of hadron dynamics, we have to turn our attention
to phenomenological models and some rare rigorous theoretical relations.
The region of large transferred momenta became an Occam razor for them,

63



as explained above.
The geometric picture of the internal structure of protons and their col-

lisions requires larger disk radii increasing with energy. Their blackness in-
creases as well. Some separate subregions of different sizes and opacity are
considered. The impact parameter approach is decisive in deciphering this
structure. At ISR energies, the increase of the total cross section was at-
tributed to some peripheral regions of nucleons. It is important to juxtapose
these findings with the LHC data. The approach to the black-disk asymp-
totic limit has become very interesting. The proposal of geometrical scaling
reducing the number of independent variables is under investigation. At the
same time, the scaling law may happen to be different from the geometrical
scaling.

There are many phenomenological models, at our disposal, but it is still
difficult to choose any particular one among them. Most of them are quite
successful, albeit with many adjustable parameters, in describing the energy
behavior of the cross sections and the main bulk of the elastic processes in
the diffraction cone, but fail in their predictions outside it. The dynamical
origin of many assumptions is still missing. The small details of the suspected
break at small t, of the steepened slope and of possible weak oscillations over
a smooth exponential behavior of the diffraction peak are under investigation.

There are predictions of several dips and/or visible oscillatory behavior
imposed on the trend of a generally decreasing dependence on |t|, which
appear at larger transferred momenta. As an example, in Fig. 11 borrowed
from [104] the results of some model predictions for the differential cross
section of proton-proton scattering at

√
s = 14 TeV are shown up to quite

high values of |t| = 10 GeV2. They differ significantly, and further accurate
experimental data expected to be obtained in 2015 – 2016 will surely be
decisive in the choice of a model (if any!). The experience with unsuccessful
predictions at 7 TeV in the region outside the diffraction cone is not very
encouraging.

The problem of the behavior of the real part of the elastic scattering
amplitude at nonforward transferred momenta is becoming very important.
While the imaginary part of the amplitude dominates at small angles in the
diffraction cone, there are indications that just the real part prevails at high
transferred momenta. The unitarity condition indicates some ways to solve
this problem. However, there are other approaches with different conclusions.

Another important unsolved problem is the behavior of the overlap func-
tion. It certainly dominates in the diffraction cone, but seems to become
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Fig. 11. Model predictions for the behavior of the differential cross section
of proton-proton scattering at

√
s = 14 TeV presented in Ref. [104].
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negligibly small outside it. The phases of matrix elements of inelastic pro-
cesses must play an important role in attempts to recover its shape. However,
this presents the extremely difficult theoretical task of modeling them.

Unfortunately, there is little progress in understanding the regime of
power counting for very hard constituent parton scattering, even though
some recent attempts are quite promising.

To conclude, the aforementioned list of problems is not at all complete.
Many other details should be clarified. Further experimental data will defi-
nitely shed light on ways to resolve them.
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