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Summary. 

 

Depression and rheumatoid arthritis have an estimated co-morbidity of 13-20%. 

However, the mechanisms whereby peripheral inflammation might alter brain 

function are unknown. We hypothesised that pro-inflammatory cytokines released 

in the periphery will result in neurochemical, structural and functional changes 

related to depression. Therefore, the aim of this thesis was to investigate altered 

central nervous system function in a rodent model of rheumatoid arthritis, the 

murine model of collagen induced arthritis (CIA). The CIA model is an established 

model used to investigate novel anti-inflammatory agents and resembles 

rheumatoid arthritis as the model is chronic and involves an autoimmune response 

to type II collagen. To our knowledge brain function in the CIA model has not 

previously been examined. Therefore, we began by identifying key neurochemical, 

cellular and functional changes associated with depression which had the greatest 

likelihood of being influenced by pro-inflammatory cytokines. 

 

Serotonin and dopamine transporter densities. 

 

The serotonergic system is implicated in the pathology of depression and there is 

evidence that pro-inflammatory cytokines may influence the serotonin transporter 

(SERT) in vitro. In vitro autoradiography binding of [125I]-β-carbomethoxy-3-β-(4 

iodophenyl)tropane ([125I]-β-CIT) in the presence of mazindol and [3H]-citalopram 

was used to determine SERT binding in mice with CIA and controls. Out of 15 

regions of interest investigated a significant change in SERT binding was identified 

by [125I]-β-CIT binding, in the nucleus accumbens (58%), thalamus (62%), and 

dentate gyrus (-60%) in CIA mice compared to controls. However, no significant 

difference in SERT density was detected in any region by [3H]-citalopram binding. 

Dopamine transporter (DAT) binding sites were also examined using [125I]-βCIT in 

the presence of displacer fluoxetine and [3H]-WIN 35,428. Out of 14 regions 

investigated a significant difference in DAT binding was only observed in the 

caudate putamen (95%) in the CIA group in comparison to the control group. 

However, no significant difference in DAT binding was detected in any region by 

[3H]-WIN 35,428 binding. A limitation of this study was the small group sizes and 
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the degree of clinical symptoms in the CIA group. The data suggest that SERT 

and DAT transporter densities are not altered by CIA. 

 

[14C]-2-Deoxyglucose autoradiographic study of local c erebral glucose 

utilisation.  

 

To investigate brain function the [14C]-2-deoxyglucose ([14C]-2-DG) 

autoradiographic technique and a challenge to the serotonergic system were 

employed to identify any abnormalities in regional cerebral glucose utilisation. 

Overall there was no significant difference in the index of cerebral glucose 

utilization (iLCMRglu) in mice with chronic clinical symptoms of CIA. To investigate 

altered serotonergic function in the CIA model fenfluramine, a drug which 

stimulates serotonin release and blocks serotonin re-uptake was employed. 

Fenfluramine challenge in the CIA group resulted in only 3 out of the 35 regions of 

interest examined being significantly different from fenfluramine challenged 

controls. The orbital cortex (-41%) and the molecular level of the hippocampus (-

26%) demonstrated a significant difference in iLCMRglu Overall the data suggest 

minimal influence of CIA on brain function.  

 

Cell proliferation and cell survival in the hippoca mpus. 

 

Hippocampal atrophy is implicated in the pathology of depression and there is 

evidence to suggest that pro-inflammatory cytokines reduce cell proliferation in 

vitro. To investigate hippocampal cell proliferation mice were administered 5’ –

bromo-2’-deoxyuridine (BrdU), a marker of proliferating cells, prior to and after 

developing chronic clinical symptoms of CIA. There was no significant difference in 

cell proliferation prior to the development of clinical symptoms. There was a 

statistically significant increase in cell proliferation after chronic clinical symptoms 

in the CIA model in one out of two separate experiments. The data has been 

interpreted cautiously due to the fact the significant increase in cell proliferation 

was not reproduced. Cell survival was also investigated during the onset of clinical 

symptoms and the data demonstrated no significant effect of CIA on cell survival. 
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Conclusion. 

 

The data indicate minimal influence of peripheral inflammation on the central 

nervous system, at least in the murine CIA model. Two possible explanations are 

that the CIA murine model is not a suitable model to detect changes in brain 

function associated with rheumatoid arthritis or that uninvestigated neurochemical 

systems play a role. This thesis highlights our limited understanding of the CIA 

model and whether or not it represents the features associated with rheumatoid 

arthritis other then peripheral inflammation. Further characterisation of the brain 

and development of the CIA model is required to establish if it is a suitable model 

to investigate the association between depression and rheumatoid arthritis. This is 

important as understanding the cause of depression and how the cause influences 

the brain will allow for the development of more specific treatments. 
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 1 

 
Chapter 1 

 

General introduction. 

 

1.1 Depression.  

 

Everyone in their lifetime will have periods of low mood, however depression is 

characterised as a persistently low mood or a loss of interest in pleasure for an 

extended period of time (aan het et al., 2009). Other possible symptoms include 

anorexia, loss of motivation, cognitive decline and neurovegetative symptoms. 

According to the World Health Organisation (WHO) depression affects 

approximately 121 million people worldwide and in 2001 was the 4th highest 

disease in relation to years lost through disability. The WHO also predicts that 

depression will be the 2nd most prevalent disease world wide by 2020 in all ages 

and both sexes. It is estimated that in 2000 the cost of depression was £9 billion 

including the value of lost productivity in society (Thomas and Morris, 2003). As the 

prevalence of depression is expected to escalate it will become increasingly 

important to develop effective treatments for depression, to improve patient’s 

welfare and decrease the economic cost. 

 

1.1.1 Serotonergic transmission. 

 

Depression is an extremely complex disorder and the involvement of the 

serotonergic system is well established in the pathology of depression. 

Most serotonergic neuronal pathways originate from the raphe nuclei. The caudal 

raphe nucleus innervates motorneurons in the ventral horn of the spinal cord and 

comprise the descending serotonergic pathway. The medial and dorsal raphe 

nuclei project to forebrain structures and comprise the ascending serotonergic 

pathways. The ascending serotonergic pathways innervate the sensory system 

which includes the somatosensory and entorhinal cortex and the limbic system 

which includes the amygdala and hippocampus, structures involved in emotional 

and cognitive behaviour (Jacobs and Azmitia, 1992). 
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Serotonergic neuronal pathways synthesise, store and release serotonin a 

monoamine neurotransmitter chemically defined as 5-hydroxytryptamine (5-HT, 

Figure 1.1.1). Serotonin biosynthesis is a two step reaction. The availability of the 

amino acid tryptophan is the rate limiting step within this reaction. Dietary 

tryptophan competes with other amino acids to be transported across the blood 

brain barrier (BBB). Once across the BBB tryptophan hydrogenase an enzyme 

specific for serotonin neurons metabolises tryptophan to the intermediate product 5-

hydroxytryptophan, which is further metabolised by amino-acid decarboxylase to 

serotonin (Fuller, 1980). Serotonin is then transported by an adenosine 

triphosphate (ATP) driven pump into vesicles in preparation for release.  

 

Depolarisation of the nerve terminal by an action potential opens voltage gated 

calcium channels. The influx of calcium induces calcium dependent exocytosis of 

serotonin containing vesicles. Following release of serotonin into the synaptic cleft it 

can be transported back into the pre-synaptic terminal. Once back in the nerve 

terminal the monoamine can be repackaged into vesicles or can be metabolically 

degraded. All the monoamines are degraded by the enzyme monoamine oxidase. 

Monoamine oxidase is located on the surface membrane of mitochondria and 

metabolises serotonin to 5-hydroxyindoleactic acid. Alternatively once released 

serotonin can diffuse across the synaptic cleft where it activates post-synaptic 

receptors. There are seven types of serotonin receptors (5-HT1-7) which are further 

subdivided (A-D). There are at least 14 serotonin receptor subtypes that have been 

differentiated on a genetic basis but the functional characteristics are still unknown 

(Alexander et al., 2008).  

 

5-HT1A receptors are located both pre- and post-synaptically. Post-synaptic 5-HT1A 

receptors are localised in limbic regions including the cerebral cortex, 

hippocampus, amygdala and septum. The majority of 5-HT1A receptors are 

somatodendritic 5-HT1A autoreceptors which are localised on pre-synaptic 

membranes of serotonergic neurones. When activated somatodendritic 5-HT1A 

autoreceptors reduce serotonin neuron firing and serotonin release (Ogren et al., 

2008). Chronic exposure to selective serotonin re-uptake inhibitors is believed to 

desensitise 5-HT1A receptors removing the inhibition on neuronal firing leading to 

an increase in serotonin in the synaptic cleft (Stahl, 1998). 
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Figure 1.1.1 The serotonin synapse. 

Tryptophan hydrogenase synthesises serotonin from the pre-cursor tryptophan. 

Serotonin is packaged into vesicles and released into the pre-synaptic cleft. 1. Following 

release,  serotonin can diffuse across the synaptic cleft where it activates post-synaptic 

receptors. 2. Alternatively serotonin can activate 5-HT1A autoreceptors on the neuron it 

was released from to provide neuronal feedback. 3. Serotonin can also be recycled and 

transported back into the pre-synaptic terminal and once back in the nerve terminal, 

serotonin can be repackaged into vesicles or can be metabolically degraded. 

From aan het et al. (aan het et al., 2009) 
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1.1.2 Monoamine hypothesis of depression.  

 

The monoamine hypothesis of depression began to take shape in the 1950s due to 

the understanding of the mechanism of action of two drugs reserpine and 

iproniazid. These drugs were only used for a short time as iproniazid was 

withdrawn due to a possible association with jaundice (Baumeister et al., 2003) and 

reserpine due to speculation that it did not alleviate the symptoms of depression, 

but produced them (HARRIS, 1957). Reserpine was shown to block monoamine 

transporters (Henry and Scherman, 1989) and iproniazid was shown to alleviate the 

symptoms of depression by inhibition of monoamine oxidase (Baumeister et al., 

2003). The problem was the tricyclic antidepressant, imipramine also alleviated the 

symptoms of depression, but through a different mechanism of action compared to 

iproniazid. The mechanism of impiramine was later shown using platelets to block 

serotonin re-uptake (MARSHALL et al., 1960). Joseph Schildkraut became the 

founder of the monoamine hypothesis of depression by demonstrating that drugs 

which decreased monoamine levels produced symptoms of depression and the 

reverse, that drugs which increased monoamine levels alleviated the symptoms of 

depression (Schildkraut JJ, 1965).  

 

1.1.3 Antidepressant treatment. 

 

To date the majority of medications developed for the treatment of depressive 

symptoms are monoamine based. At present the conventional treatment for 

depression are selective serotonin re-uptake inhibitors which have superseded 

tricyclic antidepressants (Philip et al., 2010). Tricyclic antidepressants and selective 

serotonin re-uptake inhibitors increase the availability of monoamines in the 

synapse by blocking the re-uptake of serotonin into the nerve terminal. 

Antidepressants do not always effectively treat depression and thirty percent of 

depressed patients are treatment resistant (Sackeim, 2001). There is growing 

awareness that our knowledge of depression is still very limited and that the 

monoamine hypothesis of depression is not the complete solution. Recently a 

meta-analysis study investigated the clinical effectiveness of antidepressant 

treatment in clinical trials. The study found that according to the National Institute of 

Clinical Excellence criteria, in moderately depressed patients the attenuation of 
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clinical symptoms by antidepressant treatment or placebo did not significantly differ. 

Only in severely depressed patients was there a significant difference between 

antidepressant treatment and placebo, which was attributed to a decreased 

response to placebo (Kirsch et al., 2008). This suggests that in clinical trials 

antidepressants are not always as effective as reported and that the results depend 

on the degree of the depressive symptoms. In addition depletion of serotonin in 

healthy volunteers by acute tryptophan depletion does not produce depression 

(Ruhe et al., 2007) and antidepressant treatment alters the concentration of 

tryptophan in the synapse within hours of administration. However, it can take 

weeks before a beneficial effect on depressive symptoms is observed 

(Baldessarini, 1989). The delay in the beneficial effect of antidepressants may not 

be due to the change in tryptophan but may be the time required to influence the 

serotonin transporter. Treatment with antidepressant paroxetine takes over 6 weeks 

to reduce the level of serotonin transporter binding in the amygdala and dorsal 

raphe nucleus (Gould et al., 2003). Similarly, radioligand binding assays have 

shown that fluoxetine, citalopram, or amitriptyline treatment take over 30 days to 

reduce the levels of serotonin transporter binding in the cortex and hippocampus 

(Nadgir and Malviya, 2008). The monoamine theory of depression does not 

completely explain the neurobiology of depression and it is now believed that 

depression is a heterogeneous disease in which multiple neurochemical systems 

are interacting.  

 

1.2 Cytokine theory of depression.  

 

During the 1980’s there was a gradual realisation that the brain and the immune 

system were not independent of each other and that there is bi-directional 

communication (Blalock, 1984; Dantzer R and Kelley KW, 1989). The cytokine 

theory of depression, also known as the macrophage theory of depression, 

suggests that systemic pro-inflammatory cytokines are involved in the development 

of depression (Smith, 1991; Maes et al., 1995). Cytokines are a heterogeneous 

group of messenger molecules released from immunocompetent cells including T-

cells, monocytes and macrophage/microglia in response to infection or tissue 

damage. There are two distinct classes of cytokines which modulate the immune 

response in a complementary manner. Pro-inflammatory cytokines including 
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interleukin (IL) -1β, IL-2, IL-6 tumour necrosis factor-α (TNF) and interferon-γ (IFN) 

are involved in the inflammatory process. In comparison anti-inflammatory 

cytokines including IL-4 and IL-10 neutralise the immune response by deactivating 

monocytes, macrophage/microglia and T-cells.  

 

In response to infection, pro-inflammatory cytokines IL-1β, IL-6 and TNF-α act on 

their corresponding brain receptors to produce sickness behaviour. Sickness 

behaviour is the term used to describe an immune response to conserve energy in 

both humans and a variety of animals and is characterised by fever, fatigue, 

depression/reduced motivation, anorexia and reduced grooming (Hart, 1988). 

Infection or endotoxin lipopolysaccharide (LPS) can activate the innate immune 

response involving the activation of macrophage and microglia, which express IL-1. 

IL-1β was the first cytokine discovered and has been the most extensively 

researched due to its role in the inflammatory process (Dinarello, 2005). IL-1β is 

important in the immune response to infection as microinjection of recombinant IL-

1β into the rat ventromedial hypothalamus has been shown to result in anorexia 

and weight loss (Kent et al., 1994). In comparison, pre-treatment with an IL-1 

receptor antagonist into the lateral ventricle prior to intraperitoneal injection of LPS 

resulted in reduced IL-1β mRNA expression as well as reduced TNF-α and IL-6 

mRNA expression within the hypothalamus (Laye et al., 2000). IL-1β is not the only 

cytokine involved in the immune response as in IL-1 receptor knock out mice, 

sickness behaviour was still produced in response to systemic administration of 

LPS and by injecting LPS directly into the lateral ventricle suggesting the 

involvement of other pro-inflammatory cytokines (Bluthe et al., 2000). 

 

1.2.1 Immune activation in depressed patients. 

 

Depression is believed to be both a psychiatric disease as well as an immune 

disorder (Miller et al., 2009). There have been consistent reports of increased pro-

inflammatory cytokines in depressed patients including elevated serum or plasma 

levels of TNF-α (Tuglu et al., 2003; Hestad et al., 2003; Suarez et al., 2003; Tsao et 

al., 2006), IL-1β (Suarez et al., 2003; Thomas et al., 2005; Tsao et al., 2006), IL-6 

(Sluzewska et al., 1996) and IFN-γ mRNA expression (Tsao et al., 2006). There is 

also evidence of increased numbers of cytokine receptors in the serum of 
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depressed patients including the soluble IL-6 receptor and soluble IL-2 receptor 

(Sluzewska et al., 1996).    

 

In depressed patients the increase in pro-inflammatory cytokines is believed to 

occur through cell-mediated immune activation. Cell-mediated immunity involves 

the interaction between monocytes and T-cells (Figure 1.2.1). Depression is 

characterised by increased number of leukocytes, a group of immune cells involved 

in the innate immune response including neutrophils, monocytes and macrophage 

(Maes et al., 1992; Kronfol and House, 1989). Monocytes secrete the pro-

inflammatory cytokines, IL-1β, IL-6 and neopterin. Increased neopterin 

concentrations (Duch et al., 1984; Dunbar et al., 1992) in depressed patients 

represent an increase in monocytes. Monocytes migrate from the blood stream to 

the tissue where they differentiate into macrophage or dendritic cells which act as 

antigen presenting cells to T-cells. Major histocompatibility complex class II 

molecules (MCH II) are expressed on the surface of antigen presenting cells which 

present the antigen to T-cells stimulating activation. The MHC II, HLA-DR is 

expressed only on mature activated peripheral T cells and is elevated in patients 

with depression (Maes et al., 1993). Once activated the T-cells produce pro-

inflammatory cytokines IFN-γ and IL-2, which can promote T-cell proliferation and 

activation or provide positive feedback to monocytes (Maes, 2010). In comparison a 

recent study in the literature found a reduced T regulatory (Treg) cell population, a 

subtype of T-cell responsible for suppressing the immune response, and reduced 

anti-inflammatory cytokine IL-10 expression (Li et al., 2010). The overall findings 

published in the literature provide considerable evidence to confirm an active 

immune system in patients with depressive symptoms.  
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Figure 1.2.1 Cell-mediated immune response. 

 

The innate immune response is characterised by the activation of monocytes/macrophage 

which increase the expression of pro-inflammatory cytokines IL-1 and IL-6. IL-1 and IL-6 

interact with the T-cell, stimulating IFN and IL-2 which can promote T-cell proliferation and 

activation of monocytes/macrophage. From Maes. (Maes, 2010) 

  

1.2.2 Immune activation causes symptoms of depressi on. 

 

The cytokine theory was based on evidence of an active immune system in patients 

with depression along with evidence in rodent behavioural studies which illustrated 

that immune activation produced symptoms of anhedonia, the key symptom of 

depression. Two rodent behavioural studies have demonstrated anhedonia. LPS 

and IL-1 treated rats demonstrated the inability to experience pleasure through 

decreased sexual behaviour (Yirmiya, 1996; Yirmiya et al., 1995). In addition LPS 

treated rats also demonstrated reduced saccharine preference in both fluid 

deprived and non-deprived rodents which was attenuated by chronic treatment with 

the antidepressant imipramine (Yirmiya, 1996). Animals do not get depressed in the 

same manner as humans and care is required to disassociate sickness behaviour 

from possible symptoms of depression or anxiety in rodents. This was highlighted in 

a study investigating the effect of peripheral IL-1 or LPS on mouse behaviour in the 

elevated plus maze and open field test. The paper concluded that the sickness 

behaviour of reduced locomotion made it impossible to determine if the results were 

due to elevated anxiety or reduced locomotion (Swiergiel and Dunn, 2007).  

 

It was only relatively recently that the first evidence emerged in humans suggesting 

cytokines are responsible for the development of depression after cancer patients 
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that received 5 days of IFN-α therapy produced symptoms of depression (Capuron 

et al., 2000). It has since been shown that patients receiving cytokine therapy 

develop depressive symptoms along side alterations in the central nervous system 

(CNS) related to the development of depression. For instance cancer patients 

undergoing IL-2 and/or IFN-α therapy had clinical symptoms of depression, the 

severity of which negatively correlated with serum tryptophan concentrations 

(Capuron et al., 2002). Similarly, IFN-α therapy induced depression which 

negatively correlated with reduced serum levels of brain-derived neurotrophic factor 

(BDNF). BDNF regulates neural survival and differentiation and is believed to be 

required for neurogenesis (Linnarsson et al., 2000). IFN-α therapy in cancer 

patients has also been shown to increase the cortisol response which correlated 

with the depressive score (Capuron et al., 2003b). This demonstrates that cytokine 

therapy may reduce serotonin, may decrease neurogenesis or may stimulate the 

hypothalamic-pituitary-adrenal axis (HPA-axis) to release glucocorticoids, all of 

which have been implicated in the pathology of depression. 

 

1.3 Cytokines, depression and the serotonergic system . 

 

1.3.1 Pro-inflammatory cytokines influence tryptoph an metabolism. 

 

Pro-inflammatory cytokines are believed to directly alter the serotonergic system by 

driving indoleamine 2,3- dioxygenase (IDO) activity to metabolise tryptophan to 

metabolite kynurenine. Kynurenine can then be further metabolised to kynurenic 

acid or 3-hydroxy kynurenine and quinolinic acid (Figure 1.4.1). This would deprive 

the serotonin pathway of tryptophan, consistent with the monoamine hypothesis of 

depression. Cytokine therapy has been shown to reduce tryptophan levels in 

cancer patients which was directly related to the development and intensity of 

depressive symptoms (Capuron et al., 2002). IDO is implicated in the mechanism of 

cytokine induced depression as patients receiving IFN-α therapy also have reduced 

tryptophan availability, increased plasma kynurenine and an increased 

kynurenine/tryptophan plasma ratio (Capuron et al., 2003a; Wichers et al., 2005). 

Similarly in rodents, blockade of IDO inhibits LPS-induced depression and 

normalised the kynurenine/tryptophan ratio in the brain  (O'Connor et al., 2008). 

There is also evidence of hippocampal atrophy in depressed patients (Sheline et 
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al., 1996) which may be due to the neurotoxic effects of 3-hydroxy kynurenine and 

quinolinic acid (discussed in detail in section 1.4).  

 

1.3.2 Pro-inflammatory cytokines influence the sero tonin transporter. 

 

There is some evidence that pro-inflammatory cytokines directly alter the 

serotonergic transporter (Rang et al., 2003).  Pro-inflammatory cytokines IL-1β 

(Ramamoorthy et al., 1995; Mossner et al., 1998) and TNF-α (Mossner et al., 1998) 

have been shown to increase serotonin uptake in vitro. This is consistent with 

another study which demonstrated increased serotonin uptake in response to TNF-

α and IL-1β exposure in vitro (Zhu et al., 2006). In a recent study by the same 

group it has been suggested that increased serotonin uptake by the serotonin 

transporter is controlled through the IL-1 receptor as this effect is absent in IL-1 

receptor deficient mice (Zhu et al., 2010). In comparison, the anti-inflammatory 

cytokine IL-4 has been shown to decrease serotonin uptake in vitro (Mossner et al., 

2001). Overall the evidence indicates that pro-inflammatory cytokines may increase 

the expression of the serotonin transporter, but the majority of these studies are 

based on serotonin uptake by the serotonin transporter and do not specifically 

examine the serotonin transporter density. There has been recent interest in the 

possibility that polymorphisms in the promoter region of the serotonin transporter 

may result in a pre-disposition to IFN-α induced depression. The evidence so far 

has been inconclusive with a study showing minimal differences (Bull et al., 2009) 

and another which suggests that the  polymorphism depends on ethnicity (Pierucci-

Lagha et al., 2010). 
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Inflammation

Figure 1.3.1 Mechanism whereby inflammation influen ces brain systems related to 

depression.

An inflammatory response releases cytokines which may directly or indirectly influence the 

serotonergic system. Directly cytokines activate indoleamine 2,3- dioxygenase (IDO) 

reducing tryptophan availability. Indirectly cytokines can activate the hypothalamic-pituitary-

adrenal axis (HPA-axis), which reduces serotonin (5-HT) function. Cytokines can also 

influence neuroplasticity through different pathways. Cytokines can metabolise tryptophan 

to neurotoxic metabolites 3-hydroxy kynurenine (3-OH KYN) and quinolinic acid, which 

alters neuroplasticity. Alternatively cytokines can stimulate the HPA-axis, which reduces 

hippocampal brain derived neurotrophic factor (BDNF), resulting in altered neuroplasticity. 

Adapted from Hayley et al (Hayley et al., 2005).

HPA-axis
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1.3.3 Association between the 5-HT 1A receptor and pro-inflammatory 

cytokines.  

 

There is limited information available about the direct influence of pro-inflammatory 

cytokines on the 5-HT1A receptor. In lymphatic cells lines IFN-α has been shown to 

reduce 5-HT1A expression which was attenuated by fluoxetine treatment (Cai et al., 

2005). There are also studies which investigated the possibility that the 5-HT1A 

receptor modulates the immune response. The 5-HT1A receptor is present on T-

cells and antagonism of 5-HT1A receptors inhibits the production of Th1 cytokines IL-

2 and IFN-γ after immune stimulus (Aune et al., 1994). Another study investigating 

TNF-α found blockade of the 5-HT1A receptor did not prevent the effect of an anti-

inflammatory drug on TNF-α expression (Laengle et al., 2006). All these studies 

investigated different possible roles of the 5-HT1A receptor during an immune 

response and in the future further investigation is still required to determine how 5-

HT1A receptors and pro-inflammatory cytokines interact.  

 

1.3.4 Pro-inflammatory cytokines, serotonergic syst em and the HPA-axis. 

 

Indirectly, pro-inflammatory cytokines may modulate their effect through the HPA-

axis to alter the serotonergic system. The HPA-axis which comprises the 

parventricular nucleus of the hypothalamus, the anterior lobe of the pituitary gland 

and the adrenal cortex, is highly responsive to stress. The hypothalamus secretes 

corticotrophin-releasing hormone and vasopressin that regulate the pituitary to 

secrete adrenocorticotrophin. Adrenocorticotrophin acts on the adrenal cortex to 

produce cortisol in humans and corticosterone in rodents. Corticosterone activates 

two types of receptors mineralcorticoid and glucocorticoid which produces negative 

feedback to the HPA-axis (Neeck et al., 2002). Under normal physiological 

conditions the neuroendocrine system restores homeostasis in response to stress. 

Impaired negative feedback is a characteristic of depression.  

 

Pro-inflammatory cytokines have been shown to activate the HPA-axis resulting in 

elevated levels of glucocorticoids as IL-1 administration increased secretion of 

adrenocorticotrophin and corticosterone both in vivo and in vitro (Besedovsky et al., 
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1986). In addition, cancer patients receiving IFN-α therapy had an increased 

cortisol response which correlated with the depressive score (Capuron et al., 

2003b). Glucocorticoids are released during stress and in stressed animals there is 

an increase in the enzyme tryptophan hydroxylase and an increase in 5-HT1A 

receptors. Adrenolectomy blocked the increases in tryptophan hydroxylase (Singh 

et al., 1990) and the increase in 5-HT1A (Mendelson and McEwen, 1992) receptor 

binding caused by stress. It is therefore possible that pro-inflammatory cytokines 

increase the secretion of glucocorticoids, increasing the 5-HT1A autoreceptors and 

thereby resulting in reduced serotonergic neuronal firing.  

 

1.3.5 Antidepressants have anti-inflammatory proper ties. 

 

Antidepressant treatment can also have anti-inflammatory properties as 

monoamine uptake-inhibitors have been shown to inhibit T-cell proliferation in a 

dose dependent manner (Berkeley et al., 1994). Selective serotonin re-uptake 

inhibitors have also been shown to inhibit the release of TNF-α from T-cells in vitro 

(Taler et al., 2007). Furthermore, 8 weeks of fluoxetine treatment has been shown 

to normalise serum IL-6  (Sluzewska et al., 1995) and in 3 months decreased IFN-γ 

mRNA expression in peripheral blood mononuclear cells of depressed patients 

(Tsao et al., 2006). Similarly, antidepressant treatment was found to reduce serum 

TNF-α (Tuglu et al., 2003) and serum  IL-1β (Himmerich et al., 2010) in depressed 

patients. Recently the effect of antidepressants on Treg cells was examined, 

revealing that antidepressant treatment increased Treg cells (Himmerich et al., 

2010), which are responsible for releasing anti-inflammatory cytokines.   

 

However, there is also evidence that antidepressants have no affect on the immune 

system (Kenis and Maes, 2002). Three months of fluoxetine treatment resulted in 

no significant difference in IL-1β, IL-6 and TNF-α mRNA expression in peripheral 

blood mononuclear cells compared to previous mRNA expression in the same 

patient (Tsao et al., 2006). This is possibly due to variations in the subtypes of 

depression, severity of the depressive symptoms and the different study designs. In 

the future, further study is still required to determine the difference between 

subtypes of depression and to examine the mechanisms whereby the immune 

system may alter the brain. 
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1.4 Cytokines, depression and neurogenesis. 

 

There is evidence for structural modifications in the hippocampus of depressed 

patients (Bremner et al, 2000; Frodl et al, 2002; Sheline et al., 1996, 2003). There 

is also evidence of reduced hippocampal volume in people suffering from 

depression which is exacerbated with repeated episodes and duration (Sheline et 

al., 1996, 2003). There are 3 possible explanations for reduced hippocampal 

volume increased cell death, reduced hippocampal neurogenesis or decreased 

dendritic branching (Stockmeier et al., 2004). 

 

It is possible reduced hippocampal volume results in a pre-disposition to 

depression. The possibility that reduced hippocampal volume may be a risk factor 

for psychiatric disorders has been highlighted in a post traumatic stress disorder 

study in identical twins, one twin with combat experience and an identical twin with 

no combat experience. The sets of twins were then separated into two study groups 

depending on whether or not the combat twin developed post traumatic stress 

disorder. The results ascertained that the sets of twins had similar hippocampal 

volumes. However, in the set of twins with a twin with post traumatic stress disorder 

both twins had a smaller hippocampal volume compared to the set of twin which did 

not have a twin which developed post traumatic stress disorder. This suggests 

reduced hippocampal volume may be a risk factor for psychiatric disorders 

including depression and not a result of the psychiatric disorder (Gilbertson et al., 

2002). Whether reduced hippocampal volume is a pre-disposition for depression or 

a result of depression the mechanisms through which neurogenesis may be 

reduced are still unknown but may include altered serotonin turnover, elevated 

levels of glucocorticoids, pro-inflammatory cytokines, altered BDNF or a 

combination of factors. 

 

1.4.1 Neurogenesis. 

 

Neurogenesis is the generation of new neurons from the differentiation of stem 

cells. Neurogenesis is prevalent during development but it is now established that 

under normal conditions the generation of new neurons also occurs throughout 
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adult life in the subgranular zone of the hippocampus and the subventricular zone 

of the lateral ventricles. Stem cells born in the subgranular zone of the dentate 

gyrus differentiate and migrate to the cellular level of the dentate gyrus. Stem cells 

born in the subventricular zone of the lateral ventricles migrate through the rostral 

migratory stream to the olfactory bulb (Ming and Song, 2005). It remains 

controversial whether or not adult neurogenesis occurs in brain regions other than 

the subventricular and subgranular zones.  

 

Neural stem cells by definition are cells with a capacity for self renewal and 

differentiation. Neural stem cells proliferate, either self renewing to produce two 

stem cells or progenitor cells which have the potential to differentiate and mature 

into a specific cell phenotype including neurons, microglia, oligodendrocytes or 

astrocytes. It takes approximately 3 weeks for progenitor cells to differentiate and 

mature (Schmidt and Duman, 2007). The developmental time course of progenitor 

cells labelled with 5-bromo-2-deoxyuridine (BrdU) has been investigated in the 

dentate gyrus of the adult mouse over a 30 day period. There was a significant 

decrease in the number of BrdU labelled cells at 30 days after BrdU administration 

compared to 15 hours after BrdU administration, giving an indication of cell survival 

(Mandyam et al., 2007). There is limited information about how the internal 

environment influences progenitor cells. However, it is believed that the internal 

environment is fundamental in determining the phenotype of the progenitor cell and 

survival. Progenitor cells which differentiate and mature into new neurons are 

believed to integrate into neuronal circuitry to both receive synaptic input (Van 

Praag et al., 2002) and transmit neuronal output to postsynaptic targets (Toni et al., 

2008). The function of these new connections is still unknown, although it is 

believed that hippocampal neurogenesis is required for working and spatial memory 

(Sahay and Hen, 2007) 

 

1.4.2 Pro-inflammatory cytokines influence neurogen esis. 

 

There is substantial evidence that pro-inflammatory cytokines reduce neurogenesis. 

Transgenic mice over expressing IL-6 demonstrate reduced neurogenesis 

(Vallieres et al., 2002). Similarly exposure to IL-6 (Monje et al., 2003) and TNF-α 

(Ben Hur et al., 2003; Monje et al., 2003) significantly reduces neurogenesis in 
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vitro. IL-6 has also been implicated in reduced cell survival (Monje et al., 2003). 

Deletion of the TNFα-R1 resulted in increased neurogenesis which suggests TNF-α 

mediates its effect through the TNFα-R1 to reduce neurogenesis (Iosif et al., 2006). 

Activation of the immune system by LPS reduces cell proliferation and microglia 

cells are found in close proximity to proliferating cells in the subgranular zone 

(Ekdahl et al., 2003). The effect of IFN-γ remains unclear as exposure of 

proliferating cells in vitro to IFN-γ showed no change in neurogenesis (Monje et al., 

2003). However, other research groups have shown that IFN-γ reduces cell 

proliferation and increases apoptosis in vitro (Ben Hur et al., 2003). Another group 

has suggested that IFN-γ decreases neurogenesis through IL-1β as antagonism of 

the IL-1 receptor attenuated the IFN-γ reduction in neurogenesis (Kaneko et al., 

2006).  

 

1.4.3 Pro-inflammatory cytokines, neurogenesis and serotonin system. 

 

There is evidence for an association between the serotonergic system and 

neurogenesis. For example destruction of serotonin neurons in rodents results in 

reduced neurogenesis in the subgranular zone of the hippocampus (Brezun and 

Daszuta, 1999). It has been suggested that pro-inflammatory cytokines reduce 

neurogenesis through the activation of IDO in microglia, which is believed to 

produce neurotoxins which inhibit neurogenesis (Figure 1.4.1). Evidence for the 

involvement of microglia in LPS induced inflammation has been demonstrated by 

minocycline administration which inhibited microglia activation and restored 

neurogenesis (Ekdahl et al., 2003). Pro-inflammatory cytokines released during the 

immune response drive IDO to metabolise tryptophan to kynurenine and quinolinic 

acid. Quinolinic acid is a selective N-methyl-D-aspartate (NMDA) receptor agonist 

and kynurenine is an NMDA receptor antagonist. The pro-inflammatory cytokine 

IFN-γ is a potent mediator of IDO activity (Chiarugi et al., 2001) and microglia cell 

cultures stimulated by IFN-γ produce quinolinic acid (Heyes et al., 1996). In vivo 

quinolinic acid concentrations and IDO activity are elevated in the cerebral cortex of 

macaque infected with a retrovirus infection (Heyes et al., 1998). In addition pro-

inflammatory cytokines stimulate the enzyme kynurenine-3-monooxygenase to 

metabolise kynurenine further into 3-hydroxy kynurine which also has neurotoxic 

properties (Zunszain et al., 2010). Therefore it is possible that pro-inflammatory 
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cytokines drive IDO, depriving the serotonin system of its precursor tryptophan, 

which IDO metabolises to neurotoxic metabolites leading to reduced neurogenesis.  

 

 

 

 

 

 

 

 

 

 

 

 

Antidepressants may influence neurogenesis through the 5-HT1A receptor.  

Antidepressants take weeks to alleviate the symptoms of depression suggesting 

that antidepressants possibly alter brain structures and neurochemistry over time. 

These changes may occur in the hippocampus as chronic antidepressant treatment 

has been shown to increase neurogenesis in the dentate gyrus (Malberg et al., 

2000). Hippocampal neurogenesis is further implicated in the mechanism of 

antidepressants as irradiation of the rodent hippocampus inhibited the 

antidepressant increase in neurogenesis. Selective serotonin re-uptake inhibitors 

block 5-HT1A autoreceptors increasing the availability of serotonin in the synapse. 
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Figure 1.4.1  Tryptophan metabolism.  

 

Under normal physiological conditions tryptophan (TRP) is metabolised by 

neurons to serotonin (5-HT). However, pro-inflammatory cytokines stimulate 

indoleamine 2,3- dioxygenase (IDO) activity in microglia to metabolise 

tryptophan to neurotoxic metabolites 3-hydroxy kynurine (3-OH KYN) and 

quinolinic acid (QUIN).  From Mauri et al. (Mauri et al., 1996) 
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The 5-HT1A receptor is present in high concentrations in the dentate gyrus of the 

hippocampus and may be a possible mechanism through which selective serotonin 

re-uptake inhibitors increase neurogenesis as fluoxetine induced increase in 

neurogenesis was absent in 5-HT1A receptor knock out mice. Similarly, 

administration of 5-HT1A receptor selective agonist  resulted in an increase in 

neurogenesis in wild type mice which was absent in 5-HT1A receptor knock out mice 

(Santarelli et al., 2003).  

 

1.4.4 Pro-inflammatory cytokines, neurogenesis and the HPA-axis. 

 

Indirectly pro-inflammatory cytokines may modulate their effect through the HPA-

axis to decrease neurogenesis. Pro-inflammatory cytokines stimulate the HPA-axis 

resulting in elevated levels of glucocorticoids. This has been illustrated in cancer 

patients receiving IFN-α therapy (Capuron et al., 2003b) and in both in vivo and in 

vitro studies involving administration of IL-1 (Besedovsky et al., 1986). 

Glucocorticoids have been shown to decrease neurogenesis. Evidence for this has 

been demonstrated in adrenalectomized rats which had increased neurogenesis 

which was attenuated by administration of glucocorticoids (Gould et al., 1992). It is 

still undetermined how glucocorticoids inhibit neurogenesis but a possible 

mechanism of action is by increasing NMDA receptors resulting in neuronal 

excitotoxicity. This is supported by the evidence that chronic glucocorticoid 

administration up-regulation NMDA receptor subunit mRNA expression in the 

hippocampus (Weiland et al., 1997). Furthermore blockade of NMDA receptors has 

been shown to attenuate glucocorticoid induced reduction of cell proliferation 

(Cameron et al., 1998).  

 

1.4.5 Brain-derived neurotrophic factor and neuroge nesis.  

 

There is growing interest in BDNF as it is influenced by a number of neurochemical 

systems and has a pivotal role in neurogenesis. Neurotrophins support 

neurogenesis and BDNF knock out mice do not survive past post natal day 8, have 

a smaller brain mass and neural deficits (Conover et al., 1995). In BDNF 

heterozygous knock out mice impaired neurogenesis has been observed (Lee et 
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al., 2002). In comparison BDNF administration into the dentate gyrus had a 

beneficial effect increasing neurogenesis (Scharfman et al., 2005). There have 

been a limited number of studies which have investigated the influence of the 

serotonergic system, HPA-axis and cytokines on BDNF function. Antidepressant 

treatment has been shown to increase the level of BDNF in the rat hippocampus, 

and this may be a potential mechanism through which antidepressants increase 

neurogenesis (Nibuya et al., 1995). Glucocorticoids suppress BDNF mRNA in the 

hippocampus because in adrenalectomized animals there is an increase in BDNF 

mRNA expression which is attenuated by administration of aldosterone (Chao et 

al., 1998). Finally, pro-inflammatory cytokines may also influence BDNF directly as 

IL-1β administration reduces BDNF mRNA which is attenuated by antagonism of 

the IL-1 receptor (Barrientos et al., 2003). Alternatively, pro-inflammatory cytokines 

may influence BDNF indirectly through the serotonergic system or HPA-axis. 

Overall BDNF appears to be a potential target through which the serotonergic 

system, HPA-axis and cytokines may modulate neurogenesis, possibly leading to 

the development of depression.  

 

1.5 Rheumatoid arthritis.  

 

Rheumatoid arthritis is an autoimmune disease where a compromised immune 

system can no longer differentiate between self and non-self molecules. According 

to WHO rheumatoid arthritis was the 31st leading cause of years lived with disability 

globally in 2000 and the prevalence of rheumatoid arthritis in industrialised 

countries is 0.3-1%. There is a greater prevalence of depression in the medically ill 

compared to the general population. A systemic review has reported a 13-17% co-

morbidity (Dickens et al., 2002) between rheumatoid arthritis and depression and a 

recent study in 62 rheumatoid arthritis patients reported a 52% co-morbidity (Mella 

et al., 2010). Depression in rheumatoid arthritis patients has been noted as far back 

as 1969 (Annon.,1969). There are two possible explanations for the co-morbidity 

between depression and rheumatoid arthritis. The first is the concept that a 

medically ill person would have a depressed mood as they are unwell, which in time 

may alter the brain to reflect the reduced mood. The second theory is that the 

systemic inflammatory response influences the CNS in neurological pathways 

which relate to the symptoms of depression. Recently a publication in the literature 
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compared two rheumatic diseases in order to draw a distinction between the 

prevalence of depression in a rheumatic disease with and without an inflammatory 

response. Both diseases displayed similar degrees of pain however, there was a 

higher prevalence of depressive mood in patients with rheumatoid arthritis which 

involved an inflammatory response compared to osteoarthritis which does not 

(Mella et al., 2010). This is data from only one study which had limitations. 

However, it contributes to the cytokine theory of depression by demonstrating 

clinically that that depression may not be just due to the emotional aspect of a 

disease associated with suffering and physical disability. 

 

There is in vivo evidence for an association between depression and immune 

activation (Capuron et al., 2000; Yirmiya, 1996). However, there is limited evidence 

as to how immune activation in these disorders trigger depression. Recently the 

effect of pro-inflammatory cytokines on the serotonin transporter was investigated 

in rheumatoid arthritis patients. Adalimumab, a TNF blocker was prescribed to 

patients with rheumatoid arthritis and [123I]- β-carbomethoxy-3-β-(4 

iodophenyl)tropane (βCIT) binding in the midbrain measured before and after 4 

weeks on adalimumab. The results found a significant decrease in serotonin 

transporter binding after 4 weeks on adalimumab (Cavanagh et al., 2010). This 

study suggests that the serotonin transporter is increased in the midbrain of 

rheumatoid arthritis patients and by inhibiting TNF, serotonin transporter binding is 

decreased. The limitation of the study was the small number of participants (6) and 

further study with a greater number of patients is required to make this finding more 

robust.  

 

There are also a limited number of studies which have investigated the effect of 

systemic inflammation on the CNS in rodent models of rheumatoid arthritis. The 

majority of studies employ LPS or individual cytokine administration to examine the 

influence of the immune response on the CNS in vitro (Monje et al., 2003; Ekdahl et 

al., 2003; Zhu et al., 2006). The limitation of these studies is that LPS 

administration results in transient activation of the innate immune system. Similarly, 

administration of only a single pro-inflammatory cytokine results in an acute 

immune response and may not represent the immune state observed in 

inflammatory disorders. It is for this reason that it is important to use animal models 
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of rheumatoid arthritis which has a priming stage and a chronic inflammatory 

response to investigate the effect of the peripheral immune response on the CNS. 

There are a limited number of studies which have investigated altered CNS function 

in a rodent model of rheumatoid arthritis. These studies have investigated altered 

cerebral metabolic function, the serotonergic system, HPA-axis and neurogenesis 

in different rodent models of rheumatoid arthritis (Wolf et al., 2009b; Holmes et al., 

1995; Sternberg et al., 1989; Neto et al., 1999).  

 

1.5.1 Collagen induced arthritic model. 

 

To date no studies have examined the CNS in the murine model of collagen 

induced arthritis (CIA). The murine model of CIA is frequently employed as a model 

of rheumatoid arthritis to investigate possible cellular mechanisms and anti-

inflammatory drug treatments. On day 0 of the murine CIA model, naïve mice are 

immunised with type II collagen and complete Freund’s adjuvant an endotoxin 

similar to LPS which activates the innate immune response. On day 21 mice are 

challenged with type II collagen and phosphate buffer saline after which clinical 

symptoms of swelling and eyrethma appear.  

 

No animal model will ever reflect all cellular and molecular aspects of the human 

form of the disease. However, there are a number of similarities between the CIA 

model and rheumatoid arthritis. Both the human and murine model are genetically 

susceptible (Rosloniec et al., 1998; Rosloniec et al., 1997; Wooley et al., 1981) and 

both CIA and rheumatoid arthritis produce an autoimmune response to type II 

collagen. This results in inflammatory cell infiltration of the joint and eventually 

destruction and erosion of the joint (Cho et al., 2007). The similarities between the 

CIA model and rheumatoid arthritis make this a possible model in which to further 

our understanding of the effect of the autoimmune response on systemic and 

central function.   

 

CIA is initiated in a genetically susceptible strain of mice (DBA/1) by a 

subcutaneous injection of type II collagen emulsification in complete Freund’s 

adjuvant. A booster is then given on day 21 post immunisation after which clinical 

symptoms of swelling and erythema may appear in all 4 limbs (Brand et al., 2004). 
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At the later stages of the CIA model 40-50 days post immunisation the disease 

begins to go into remission with the resolution of clinical symptoms and decrease in 

the pro-inflammatory cytokines IL-1β, TNF-α and IFN-γ. In CIA mice with severe 

limb swelling by day 40 post immunisation there may be neutrophil infiltration in the 

joint space and synovial tissue (Thornton et al., 1999).  

 

The CIA model is characterised by an active immune system involving 

monocytes/macrophage, T-cells and B- cells. Once activated these 

immunocompetent cells release pro-inflammatory cytokines IL-1β, IL-6, IL-17, IL-

23, TNF-α and IFN-γ at varying times during the temporal evolution of the murine 

CIA model (Figure 1.5.1). The CIA model is dependent on the activation of CD4+ T-

cells as antagonism reduces disease expression (Ranges et al., 1985). There are 

two subtypes of CD4+ T-cell, Th1-cells secrete IL-2 and IFN-γ and is involved in 

cell-mediated immunity and Th2-cells which secrete IL-4 and IL-10 and is involved in 

humoral immunity. The development and maintenance of CIA is dependent on the 

synergistic expression of cytokines to produce a biological effect. Both cell-

mediated immunity and humoral immunity are required for the establishment of 

clinical symptoms (Seki et al., 1988) as Th1-cells secrete IFN-γ and IL-2 during the 

early development of the disease and Th2-cells secrete anti-inflammatory cytokines 

IL-4 and IL-10 towards the end of the CIA experiment (Mauri et al., 1996).   

 

1.5.2 Interleukin-1 and the CIA model. 

 

IL-1 is implicated in the induction of clinical symptoms e.g swelling and erythema of 

the joints. This is demonstrated by increased IL-1 expression during the 

development of clinical symptoms which peaks after the development of the clinical 

symptoms then declines (Mauri et al., 1996; Thornton et al., 1999). Recombinant 

IL-1β has been shown to accelerate the onset of CIA and increased the incidence 

of disease in genetically susceptible rodent strains (Hom et al., 1992). In 

comparison there is reduced incidence of disease in CIA immunised IL-1α and IL-

1β knock out mice. However, IL-1α knock out mice had normal disease severity in 

comparison to IL-1β knock out mice which displayed disease suppression. This 

suggests that IL-1α and IL-1β have different roles in the development of arthritis 

and that IL-1β may have a role in the development of clinical symptoms (Saijo et 
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al., 2002). IL-1 is also implicated in the destruction of the joint (Pettipher et al., 

1986). Anti-IL-1 treatment has been shown to suppress the development of disease 

and reduce cartilage destruction (Joosten et al., 2008; van den Berg et al., 1994). 

IL-1 is an important mediator of CIA, however is not the only cytokine elevated 

during the inflammatory response. 

 

1.5.3 Tumour-necrosis-factor- α and the CIA model. 

 

There is increased TNF-α expression  throughout the evolution of CIA which 

declines during disease remission (Mauri et al., 1996). The expression of TNF- α is 

consistent with the belief that TNF- α is important in initiation, progression and 

maintenance of CIA. TNF-α is believed to be involved in the development of 

inflammation during the development of rheumatoid arthritis. TNF- α accelerates 

the incidence and severity of CIA (Thorbecke et al., 1992). In comparison anti-TNF-

α suppresses the development of CIA however, it does not have a beneficial effect 

on existing clinical symptoms (Thorbecke et al., 1992; Piguet et al., 1992). 

Blockade of TNF-R1, a TNF-α receptor suppresses the development of CIA 

(Shibata et al., 2009). TNF- α is also implicated in bone erosion and blockade of 

TNF-α has been shown to protect the joint (Williams et al., 2000).  

 

1.5.4 Interleukin-6 and the CIA model. 

 

There is increased IL-6 expression in the sera of CIA mice (Takai et al., 1989) and 

a rapid increase in IL-6 mRNA expression which peaks on day 26 post 

immunisation after which IL-6 mRNA expression declines (Thornton et al., 1999). 

IL-6 is believed to be important in the development of CIA as there is no 

inflammatory response to type II collagen in the limbs of IL-6 deficient mice (Alonzi 

et al., 1998). Similarly blockade of the IL-6 receptor on day 0 or 3 post 

immunisation inhibits the onset of disease. However, blockade of IL-6 at later time 

points had no effect on the disease expression (Takagi et al., 1998).  
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Figure 1.5.1 Cytokine expression during the tempora l evolution of CIA . 

 

The top panel represent the progression of disease which develops approximately 3-4 

weeks after initial CIA immunisation. The panels below illustrate the evolution individual 

cytokines examined in the lymph node, peritoneal cavity/spleen or in the joints. From 

Luross et al. (Luross and Williams, 2001) 

 

1.5.5 Interferon- γ and the CIA model. 

 

There is conflicting evidence for the role of IFN-γ in the development of clinical 

symptoms in the CIA model. IFN-γ is reported to only be present during the initial 

phase of CIA, with the greatest peak of IFN-γ on the day of immunisation, 

suggesting a role in the development of arthritic symptoms (Mauri et al., 1996; 

Thornton et al., 1999). Treatment with monoclonal antibodies to IFN-γ delayed the 

onset of the disease and reduced disease incidence and severity (Cooper et al., 

Day 0 Day 21 Day 50+ 
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1988; Boissier et al., 1995). However, in IFN-γ receptor knock out mice the disease 

is accelerated appearing earlier with greater severity and incidence (Vermeire et al., 

1997; Manoury-Schwartz et al., 1997). A possible explanation for the observed 

differences is that IFN-γ plays a role in the induction of CIA as well as modulating 

the inflammatory response once clinical symptoms begin to appear (Boissier et al., 

1995).  

 

1.5.6 Interleukin-10 and the CIA model.  

 

IL-10 is an anti-inflammatory cytokine released from Th2-cells. IL-10 has been 

shown to inhibit a number of pro-inflammatory cytokines including IL-1, IL-6 and 

TNF-α (Fiorentino et al., 1991). Increased expression of IL-10 has been noted at 

the later time points of the CIA model particularly during the remission of the 

disease (Kasama et al., 1995; Mauri et al., 1996). The inhibitory properties of IL-10 

have also been demonstrated during the  

evolution of the CIA model, as daily administration of IL-10 attenuated the clinical 

symptom of arthritis (Walmsley et al., 1996). Inversely, anti-IL-10 accelerated the 

development and intensified the severity of the clinical symptoms (Kasama et al., 

1995). 

 

1.5.7 Blood brain barrier. 

 

It is not disputed that cytokines influence the CNS as cytokine receptors are 

present throughout the brain (Ericsson et al., 1995) and are influenced by the 

systemic immune response. For instance, LPS or IL-1 administration induces fever 

which is regulated by the hypothalamus and  attenuated by IL-1 receptor antagonist 

(Opp and Krueger, 1991; Luheshi et al., 1996). Cytokines are large hydrophilic 

molecules and the mechanisms whereby cytokines cross the BBB are still debated. 

There are two possible pathways in which the immune system may communicate 

with the brain: the humoral and the neural pathways.  

 

The humoral pathway includes diffusion at the site of the circumventricular organs 

(CVO), carrier mediated transport or by secondary messengers such as 

prostaglandins. Cytokines may directly cross the BBB at the circumventricular 
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organs (CVO) which is less restricted but cytokines are too large to diffuse further 

than the structure organum vasculosum of the lamina terminalis (OVLT). It has 

been suggested that cytokines influence the CNS via prostaglandins within the 

OVLT. Evidence to support this has been demonstrated by directly injecting a 

prostaglandin antagonist into the OVLT which resulted in inhibition of the IL-1β 

induced increase in plasma adrenocorticotropic hormone (Katsuura et al., 1990).  

 

Prostaglandins are small lipophilic second messenger molecules which are 

activated by cytokines. Prostaglandins are part of a fundamental mechanism 

through which cytokines are believed to induce fever by diffusing to the 

hypothalamus. Evidence for this comes from genetically modified mice with altered 

prostaglandin E-synthase-1 which did not develop a fever after LPS or IL-1β 

administration (Engblom et al., 2003; Saha et al., 2005). This suggests cytokines 

bind directly to cerebral vascular endothelial cells to release prostaglandins or 

activate astrocytes within the OVLT to release prostaglandins. In either case they 

have an important role in mediating the biological effect of cytokines. In addition, 

another study has suggested that transport into the brain depends on the route of 

administration. An intracerebroventricular injection of [125I] IL-1α suggested 

transport via the CVO. However, intravenous injection suggested IL-1α crossed the 

BBB via carrier mediated transport (Plotkin et al., 1996). There is also evidence that 

IL-6 and TNF-α cross the BBB via carrier mediated transport (Banks et al., 1994; 

Gutierrez et al., 1993).  

 

Another way in which cytokines may influence the brain is via the neural pathway 

which involves the vagus nerve. The vagus nerve connects to the vagal nucleus in 

the brainstem and the nucleus tractus solitarius. This pathway is activated by LPS 

and IL-1 administration (Bluthe et al., 1996; Bluthe et al., 1994). From the nucleus 

tractus solitarius the signal is transmitted to regions of the brain involved in mood 

including amygdala, hippocampus and locus coeruleus (O'Keane et al., 2005).  

Signalling via the vagus nerve appears to be dose dependent as vagotomy 

attenuates LPS induced fever at low doses. However, at a higher dose of LPS fever 

is not inhibited in vagotomised rodents (Romanovsky et al., 1997). This suggests 

that at higher concentrations LPS possibly influences the brain via the CVO, 

prostaglandins or carrier mediated transport. 
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It is also possible that the BBB is compromised during the disease state and it has 

recently been suggested that this is the case during CIA. The sodium fluorescein 

content was measured at day 21-50 post immunisation and day 51-100 post 

immunisation. The results suggest that there is increased permeability of the BBB 

at day 21-50 post immunisation which improved at the later time point 51-100 post 

immunisation but was still permeable (Nishioku et al., 2010b). This increases the 

likelihood that elevated pro-inflammatory cytokines in the periphery may enter the 

brain via passive diffusion. The same group also investigated the influence of anti-

TNF-α on the increased permeability observed in cell cultures after LPS 

administration. The results suggested that TNF-α is responsible for increased BBB 

permeability (Nishioku et al., 2010a). However, this study only investigated the 

effect of anti- TNF-α on LPS induced permeability and other cytokines may also be 

involved. Further evidence is required in both clinical and non-clinical studies to 

confirm that cytokines can enter the brain.  
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1.6 Aims. 

 

There is evidence for an association between depression and rheumatoid arthritis. 

However there is no information available which has investigated how rheumatoid 

arthritis may influence the brain and what neurochemical systems rheumatoid 

arthritis affects to bring about symptoms of depression. Therefore the hypothesis of 

this thesis is that chemical mediators released during a chronic peripheral 

inflammatory response will alter the brain. The overall aim of this thesis was to 

investigate if there were alterations in brain function in a model of collagen induced 

arthritis. To achieve this neurochemical, structural and functional characteristics 

were investigated in the murine model of CIA as described in the aims below. 

 

I. To establish the CIA model during which the clinical symptoms and temporal 

evolution of the disease were characterised (chapter 3). 

 

II. Using the brain tissue derived from the animals in chapter 3, study 1, 

serotonin and dopamine transporter distribution was determined using in vitro 

autoradiography (chapter 4).  

 

III. Evidence for any change in brain function was investigated in the CIA model, 

after development of clinical symptoms, using [14C]-2-deoxyglucose (DG) 

autoradiography. To examine serotonergic function, CIA mice were challenged with 

fenfluramine, a serotonergic specific drug which depletes central stores. Changes 

in serotonergic transmission were detected by [14C]-2-DG autoradiography. Prior to 

this the effect of fenfluramine challenge on brain function in naïve mice was 

characterised (chapter 5). 

 

IV. Investigation of cell proliferation in the subgranular zone of the hippocampus 

during the temporal evolution of the CIA model. Cell survival during the 

development of the clinical symptoms was also examined to determine if peripheral 

inflammation decreases cell survival (chapter 6).  
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Chapter 2 

 

Materials and methods. 

 

2.1 In vivo murine models of arthritis. 

 
2.1.1 Induction of collagen induced arthritis (CIA) . 

 

The CIA model is established within the University of Glasgow and the schematic of 

the CIA experiment is illustrated in Figure 2.1.1 (Asquith et al., 2009a).  Male DBA/1 

mice (13-15g, Harlan) aged 7-8 weeks are more susceptible to the development of 

disease than female or older mice. All animals were housed in a controlled 

environment with free access to food and water. On day 0, all mice were lightly 

anesthetised with 4% isofluorane in a mixture of 30% oxygen/ 70% nitrogen and the 

fur at the base of the tail shaved. Under anaesthetic the CIA group were 

subcutaneously (s.c) injected with 0.1ml of collagen emulsification. The collagen 

emulsification was made fresh on day of immunisation consisting of 2mg/ml bovine 

type II collagen in dilute acetic acid, (MDbioscience cat 804001-sol) emulsified in an 

equal volume of complete Freund’s adjuvant (MDbioscience cat 501009) using a 

homogeniser.  

 

 

 

Figure 2.1.1 Schematic of the collagen induced arth ritic model. 

Day 0 Immunisation  
CIA group:  0.1ml s.c 
injection of 2mg/ml bovine 
type II collagen and 
complete Freund’s 
adjuvant. 
 
Control group:  No 
treatment. 

No clinical symptoms Clinical symptoms  

Day 21 Challenge  
CIA group:  0.2ml i.p 
injection of 2mg/ml 
bovine type II  
collagen and phosphate  
buffered saline. 
 
Control group:  
Phosphate  
buffered saline.  

Day 41/42  
Maximum duration 
of experiment. 
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To check the consistency of the emulsification, a droplet of emulsion was placed in 

a beaker of water. If it formed an iceberg within the water the collagen 

emulsification was determined to be correctly prepared however, if the droplet 

dispersed readily in the water then further homogenisation was required. The 

collagen emulsification was administered to the CIA group as two 0.05ml 

subcutaneous injections on either side of the tail base. Complete Freund’s adjuvant 

is an endotoxin which stimulates an immune response. It is for this reason on day 0 

no further treatment was administered to the control group after the base of the tail 

was shaved.  

 

On day 21 post immunisation, the CIA group were injected intraperitoneally (i.p) 

with 0.2ml bovine type II collagen (2mg/ml in dilute acetic acid in equal volume of 

sterile phosphate buffered saline). At this same time point the control group were 

injected intraperitoneally with 0.2ml sterile phosphate buffered saline.  

 

Brains were harvested in all experiments; in Chapter 3 brains were harvested on 

day 42 post immunisation; in Chapter 5 brains were harvested on day 41 or 42 post 

immunisation; and in Chapter 6 brains were harvested on day 6 and day 42 post 

immunisation.  

 

Hind legs were harvested for histological assessment of the joint in Chapter 3 from 

animals generated for study 2 as this was the first study that had a disease 

incidence greater than 75%.  

 

2.1.2 Termination criteria. 

 

For the first study using the CIA model (Chapter 3/4) in accordance with the Home 

Office project licence held at the time, any mouse with a decrease in body weight of 

20% or greater compared to their body weight pre-immunisation were terminated by 

a Schedule 1 method. Alternatively any mouse with a clinical score of twelve or 

over was also terminated by a Schedule 1 method. 

 

Due to a change in project licence after the initial study, in all subsequent 

experiments (Chapter 3, Study 2, Chapter 5 and Chapter 6), animals were assigned 
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a score of ill-health and any mouse with an ill-health score of 7 or greater was killed 

by a Schedule 1 method.  Animals were assigned an ill-health score of 1 for each of 

the following: reduced movement, decreased inquisitiveness, a hunched over 

appearance or encrusted eyes. A score of 4 was assigned if an animal was non-

responsive to touch and a score of 7 was assigned for a decrease in body weight of 

20% or greater compared to their starting body weight. 

 

2.1.3 Clinical score.  

 

From day 20 post immunisation, both CIA immunised mice and controls were 

monitored daily for clinical signs of the disease by scoring each of the 4 limbs.  

The sum score of the four limbs was calculated on each day for each animal and 

the median clinical score for each limb was calculated each day per group of 

animals.   

 

 

 

 

 

Figure 2.1.2 Image of a hind limb from a control an d CIA animal. 

 

In the control group there was no sign of clinical symptoms and the hock joints and 

digits were clearly defined. In the CIA group some limbs displayed clinical 

symptoms of swelling and erythema of the limb.  

 

In the CIA experiment used to establish the CIA model within the department 

(described in Chapter 3, study 1) the clinical scoring system described below was 

used (Table 2.1.1).   

 

 

 

 

 

Control group:  
no clinical symptoms.  

CIA group:  
clinical symptoms.  
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Clinical score Description 

0 No disease/ normal. 

1 Erythema of hock joint. 

2 Erythema from hock to the limb. 

3 Erythema and swelling of hock and limb. 

4 Loss of function in the limb. 

 

Table 2.1.1 Clinical scoring employed in Study 1 on ly (Chapter 3). 

 

After the first CIA experiment, a scoring system which included a more detailed 

description of the clinical symptoms was used. This scoring system in Table 2.1.2 

was used in all other experiments (Chapter 3 (study 2), chapter 5, and chapter 6). 

 

Clinical score Description 

0 No disease/ normal. 

1 Erythema and mild swelling of hock joint. 

2 Erythema and mild swelling from the hock to the 

metacarpal articulations or metatarsal articulations. 

3 Erythema and moderate swelling from the hock to 

phalangeal articulations.  

4 Erythema and severe swelling of the limb. 

 

Table 2.1.2 Clinical scoring system used in the maj ority of CIA experiments.  

 

2.1.4 Disease severity and hock/paw summary measure . 

 

The sum clinical score/ calliper measurement of the four limbs was calculated on 

each day per animal and plotted over time. From this graph the area under the 

curve was calculated and used as a summary measure of disease severity or 

hock/paw thickness for each animal.  
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2.1.5 Disease incidence. 

 

The incidence of disease was calculated as the percentage of all mice initially 

immunised which demonstrated clinical symptoms of swelling and erythema 

 

2.1.6 Calliper measurements. 

 

In the CIA model, from day 20 post immunisation calliper measurements of the 

hock or paw were recorded every second day. Manual callipers were used to 

measure hock thickness and were placed between the hock joint and the paw on 

each of the 4 limbs per mouse (Figure 2.1.3). Manual callipers were used in the first 

CIA experiment only (Chapter 3, study 1).  

 

Subsequent to the initial CIA experiment spring callipers were used to measure 

paw thickness and were placed above and below the paw. Spring callipers were 

used in the CIA experiments used in Chapter 3 (study 2), 5 and 6 (Figure 2.1.3). 

When released the spring callipers apply the same pressure to all paws within the 

same animal and within the group. In comparison manual callipers rely on the 

experimenter to judge the degree of pressure applied when measuring hock 

thickness. Spring callipers therefore allow consistent measurements between 

animals and for this reason were favoured over manual callipers.  

 

 

 

 

 

 

 

Figure 2.1.3 Image of manual and spring callipers. 

 

 

 

 

Manual callipers Spring callipers 
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2.1.7 Perfusion fixation and tissue processing.  

 
Animals were deeply anaesthetised in a perspex box containing 4% isofluorane in a 

mixture of 30% oxygen /70% nitrogen. Using a pair of forceps, the animal was 

given a reflex test to determine the depth of anaesthesia, if there was no reflex then 

the animal was deemed ready to be moved to a facemask where the flow was 

reduced to 2.5-3%. Again a pair of forceps was used to give a reflex test before an 

incision was made below the sternum, to reveal the diaphragm. An incision was 

then made carefully through the diaphragm and the ribs cut to expose the heart. To 

perfuse 10ml of heparinised saline followed by 10ml 4% formaldehyde in phosphate 

buffer (PAM) a needle attached to a syringe pump was inserted into the left 

ventricle and clamped in place. The right atrium was then incised to allow 

circulation of the solutions.  

 

Following fixation the head was removed and placed in PAM for 24 hours. The 

brain was then removed from the skull and post fixed for a further 48 hours before 

being transferred to 30% sucrose in phosphate buffer. Over a period of five days 

the brain sank and was then frozen in isopentane at -45 ºC, and stored at -50 ºC 

until ready to be cut. Sections (30µm thick) were cut on a cryostat at -20 ºC, and 

stored in individual cell wells containing cryoprotectant at -20 ºC (Appendix 1). 

Sections were mounted on poly-L-lysine coated slides 24 hours prior to 

immunohistochemical staining (Appendix 1). 

 
2.1.8 Histological assessment of joint pathology.  

 

On day 42 post immunisation, hind limbs were harvested and fixed in neutral-

buffered formalin (Appendix 1) for histological assessment of joint pathology 

(Appendix 1).  Both the right and left hind limbs from the control group (n=12) and 

the CIA group (n=12) were contracted out to the Pathology department to be 

decalcified, paraffin embedded and cut on a microtome before haematoxylin and 

eosin staining. One section from each hind limb was examined under a light 

microscope to determine if cell infiltration was present in either the hock or digit 

joints. 
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2.2 Ligand binding autoradiography.  

 

2.2.1 Theory. 

  

In vitro ligand binding autoradiography involves the interaction between 

radiolabelled ligands and target receptor sites which form reversible ligand-receptor 

complexes. The bound radiolabelled ligands then emit energy which creates an 

autoradiographic image when apposed to radiation sensitive film. The optical 

density can be quantified from autoradiograms using an image analyser. By co-

exposing the sections to film with calibrated radioactive standards a standard curve 

of optical density versus radioactivity can be plotted and used to calculate the 

amount of radioligand bound to receptors in the tissue section. The binding of the 

radiolabelled ligand to components in the tissue other then the receptor is termed 

non-specific binding and is determined by displacement of the radiolabelled ligand 

from the receptor. This technique allows anatomical mapping of the distribution of 

ligand binding with a high degree of spatial resolution in discrete anatomical 

locations. 

 

2.2.2 Tissue processing. 

 

On day 42 post immunisation, brains were removed from the skull and frozen in 

isopentane at -45ºC. Coronal sections (20µm thick) were cut on a cryostat set at -

20ºC, and mounted on poly-L-lysine coated slides (Appendix 1). Sections were 

stored at -20ºC prior to use. 

 

2.2.3 Autoradiographic protocol for [ 125I]-βCIT. 

 

[125I]-βCIT is a radioligand which binds to both the serotonin transporter (SERT) and 

the dopamine transporter (DAT). [125I]-βCIT was synthesised by Dr Sally Pimlott at 

the West of Scotland Radionuclide Dispensary as previously described (Baldwin et 

al., 1993). At any point during the experiment that [125I] -βCIT was handled the 

handler was double gloved and all steps were performed in a fume hood up until 

the slides had dried. 
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The protocol for [125I] -βCIT autoradiography was derived from that of (McGregor et 

al., 2003) with modification. Tris-buffer was substituted for phosphate buffer and 

instead of using two separate sections to define non-specific binding for SERT and 

DAT one section was incubated with both displacers for both transporters. 

 

Slides were removed from storage at -20ºC, brought to room temperature and 

tissue sections circled with a hydrophobic pen. Sections were pre-incubated in Tris 

HCl buffer (pH 7.4) containing 50mM Tris HCl, 120mM NaCl and 5mM KCl for 30 

minutes at room temperature, prior to incubation with 50pM [125I]-βCIT (specific 

activity 1.47-6.0 Ci/µmol) in the presence of appropriate displacers to determine 

SERT, DAT and non-specific binding (Table 2.2.1). To determine [125I]-βCIT binding 

to both SERT and DAT (defined as total binding) sections were incubated for 60 

minutes at room temperature, with 50pM [125I]-βCIT (West of Scotland Radionuclide 

Dispensary). To determine binding of [125I]-βCIT to SERT, sections were incubated 

for 60 minutes at room temperature with 50pM [125I]-βCIT in the presence of 1µM 

mazindol, which binds specifically to DAT (Tocris). To determine [125I]-βCIT binding 

to DAT, sections were incubated for 60 minutes at room temperature in 50pM [125I]-

βCIT in the presence of 50nM fluoxetine, which specifically binds to SERT (Tocris). 

Tissue sections were also incubated in both 10µM fluoxetine and 1µM mazindol to 

determine non-specific binding. At the end of the incubation the sections were 

washed in buffer at 4 ºC for 1 minute and then for two x 20 minute, followed by a 

dip in distilled water. Tissue sections were left to dry overnight before being 

mounted on a card along with a set of pre-calibrated [125I]-standards (Sigma-

Aldrich). The tissue sections and standards were apposed to Kodak Biomax MR 

film between 2-48 hours, depending on the magnitude of decay. At the end of the 

exposure time films were developed using an x-ray film processor.  
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1 µM 
mazindol 

and 
10 µM 

fluoxetine

50nM 
fluoxetine

or 
1 µM 

mazindol

83.6-85.9 
Ci/mmol

83-84 
Ci/mmol

1.47-6 Ci/µmolSpecific activity

Non -
Specific

Andersen et al., 
(2005)

Hébert et al., 
(2001)

McGregor et al., (2003)Reference

12 weeks6 weeks2-48 hoursFilm exposure 
time

3X 30 sec buffer
1 dip dH2O 
All at(4ºC)

4X 2min 
buffer

1 dip dH2O 
All at(4ºC)

1X 1min
2X20 min buffer 

1 dip dH2O 
All at (4ºC)

Wash

Sigma-AldrichTocrisTocrisDisplacer source

30 µM 
nomifensine

20 µM 
fluoxetine

N/ADisplacer final 
conc.

120 min (4ºC)120min 
(25ºC)

60 min (25ºC)Incubation Time

20min (25ºC)15 min 
(25ºC)

30min (25ºC)Pre-incubation

Phosphate-
buffer: 

25mM Na2HPO4

25mM NaH2PO4 

50mM NaCl
pH 7.7

Tris-buffer
50mM Tris

HCl
120mMNaCl

5mM KCl
pH 7.4

Tris-buffer
50mM Tris HCl
120mM NaCl

5mM KCl
pH 7.4

Assay Buffer

PerkinElmerAmershamWest of Scotland Radionuclide 
dispensary

Radioliagnd
source

10nM [3H]-WIN-
35,428

2nM [3H]-
citalopram

50pM [125I]-β-CITLigand

DATSERTSERT or 
DAT

SERT and 
DAT

Table 2.2.1 In vitro autoradiography protocol for [ 125I]-βCIT, [3H]-citalopram 

and [ 3H]-WIN-35,428.  
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2.2.4 Autoradiographic protocol for [ 3H]-citalopram and [ 3H]-WIN-35,428. 

 

[3H]-Citalopram is a radioligand which binds to SERT and [3H] WIN-35,428, is a 

radioligand which binds to DAT. For both radioligands slides were removed from 

storage at -20ºC, brought to room temperature and tissue sections circled with a 

hydrophobic pen.  

 

To quantify SERT binding, sections were pre-incubated in a Tris HCl buffer (pH 7.4) 

containing 50mM Tris HCl, 120mM NaCl and 5mM KCl for 15 minutes at room 

temperature (25°C). Sections were then incubated fo r 120 minutes at room 

temperature with 2nM [3H]-citalopram (specific activity 83-84 Ci/mmol; Amersham). 

Non-specific binding was determined by incubating adjacent sections with 2nM 

[3H]-citalopram in the presence of 20µM fluoxetine. At the end of the incubation 

sections were washed in buffer at 4 ºC for four x 2 minutes, followed by a dip in 

distilled water (Table 2.2.1). 

 

To quantify DAT binding, sections were pre-incubated in 25mM Na2HPO4, 

25mM NaH2PO4 and 50mM NaCl buffer (pH 7.7), for 20 minutes at room 

temperature. Sections were then incubated for 120 minutes at 4 ºC with 10nM [3H]-

WIN-35,428 (specific activity 83.6-85.9 Ci/mmol; PerkinElmer). Non-specific binding 

was determined by incubating adjacent sections with 10nM [3H]-WIN-35,428 in the 

presence of 30µM nomifensine (Sigma-Aldrich). At the end of the incubation 

sections were washed in buffer at 4 ºC for three x 30 seconds followed by a dip in 

distilled water (Table 2.2.1). 

 

For both [3H]-citalopram and [3H]-WIN-35,428 autoradiography tissue sections were 

left to dry overnight before being mounted on a card along with a set of pre-

calibrated [3H]-standards (Sigma-Aldrich) and then apposed to Kodak Biomax MR 

film for 6 or 12 weeks ([3H]-citalopram and [3H]-WIN-35,428 respectively; Table 

2.2.1). At the end of the exposure time films were developed using an x-ray film 

processor.  
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One alteration was made from the original [3H]-WIN-35,428 autoradiographic 

protocol (Andersen et al., 2005) which used cocaine to determine non-specific 

binding while I used nomifensine. 

 

2.2.5 Densitrometric analysis. 

 

Densitometric analysis of autoradiograms was performed using an MCID basic 

system (7.0 Rev 1.0, build 207; Imaging Research Inc) by converting measured 

grey level values (0-255) into optical density values. The MCID system was 

calibrated at the start of each session to standardise the film background. The 

optical densities of the pre-calibrated [3H]-standards or [125I]-standards were 

measured to produce a calibration curve. Decay correction was applied to [125I] and 

[3H]-standards. Optical densities measured in brain regions of interest were 

converted to fmol/mg using the standard curve. Optical density measures of pre-

determined brain structures were made by placing a measuring frame over defined 

regions. The size of the measuring frame was adjusted depending on the region of 

interest sampled and the same region was measured bilaterally in 3 tissue sections 

from the same animal. Structures were defined by reference to a stereotaxic atlas 

(Franklin K.B.J and Paxinos G., 2007) 
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2.3 In vivo [14C]-2-deoxyglucose autoradiography.  

 

2.3.1 Theory. 

 

The [14C]- 2-deoxyglucose autoradiographic technique ([14C]-2-DG) measures in 

vivo, the relationship between functional activity and energy metabolism at the 

synapses of discrete structural components of the nervous system (Sokoloff, 1977). 

Under normal physiological conditions oxidative catabolism of glucose 

predominantly provides the energy required for cerebral function. Therefore glucose 

phosphorylation is directly related to the level of functional activity in discrete neural 

subunits of cerebral tissue. Due to the biochemical properties of glucose it passes 

through the glycolytic pathway and is broken down into water and carbon dioxide 

which freely diffuse away. 2-Deoxyglucose is an analogue of glucose and 

structurally similar except for the replacement of the hydroxyl group on the second 

carbon by a hydrogen atom making it a suitable radioisotope to measure cerebral 

functional activity. [14C]-2-DG method has been designed so that the radiolabelled 

concentration of [14C]-2-DG is proportionate to rate of glucose utilisation. Both [14C]-

2-DG and glucose compete equally for the same carrier across the BBB and are 

metabolised by the enzyme hexokinase. Glucose-6-phosphate then continues 

through the glycolytic pathway and is further metabolised, however [14C]-2-

deoxyglucose-6-phosphate becomes trapped in the tissue as it is not a substrate 

for the next step in the glycolytic pathway. The trapped [14C]-2-deoxyglucose-6-

phosphate gives a measure of glucose utilisation and therefore in turn is a measure 

of functional activity.  
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 Plasma Cerebral tissue 

Blood brain barrier 

[14C]-2-Deoxyglucose 
(Cp*) 

K1* 

Precursor pool Metabolic products 

K1 

K2* 

K2 

Glucose 
   (Cp) 

[14C]-2-Deoxyglucose 
          (CE*) 

Glucose 
(CE) 

K3* 

K3 

[14C]-2-Deoxyglucose-6-phosphate 
(CM*) 

Glucose-6-phosphate 
(CM) 

CO2+H2O 

Tissue 14C concentration 
(Ci*)= (CE*)+(CM*) 

 

Figure 2.3.1 Schematic of theoretical model of  [14C]-2-deoxyglucose 

autoradiographic technique. 

 

Ci* represents the total [14C] in a single homogenous tissue of the brain. 

Cp and Cp* represents the concentration of glucose and [14C]-2-deoxyglucose 

in the arterial plasma respectively. 

CE and CE* represents the concentration of glucose and [14C]-2-deoxyglucose 

in the precursor tissue pool. 

CM and CM* represents the tissue concentration of glucose-6-phosphate and 

[14C]-2-deoxyglucose-6-phosphate respectively.   

K1*and K2* are the rate constant for carrier mediated transport of [14C]-2-

deoxyglucose from plasma to tissue and from tissue to plasma respectively. 

K3* is the rate constant for hexokinase phosphorylation.  

K1, K2 and K3 are the equivalent rate constants for glucose  

(Sokoloff, 1977) 
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2.3.2 Quantitative and semi-quantitative [ 14C]-2-deoxyglucose 

autoradiography. 

 

Based on the biochemical behaviour of glucose and deoxyglucose (Figure 2.3.1), 

Sokoloff et al. (1977) developed a mathematical model, the operational equation, 

that allows for the rate of local cerebral glucose utilisation (LCMRglu) to be 

calculated in discrete structural components of cerebral tissue. The operational 

equation describes LCMRglu by taking into account the relationship between the 

arterial plasma concentration of both glucose (Cp) and 2-DG (Cp*) and the total 

[14C] present in the cerebral tissue (Ci*). These are mathematically defined by the 

operational equation and depend on three assumptions: 

 

1. Steady state of glucose concentration and utilisation. 

2. Tracer concentrations of [14C]-2-DG and [14C]-2-deoxyglucose-6-phosphate. 

3. [14C]-2-DG and glucose are uniform in homogeneous tissue that exchanges 

directly with the plasma. 

 

The operational equation is used in the fully quantitative [14C]-2-DG 

autoradiographic technique to measure LCMRglu. This method requires multiple 

blood samples over a 45 minute time period. However, it is not possible in smaller 

animals such as mice to produce the plasma glucose and [14C] profiles required 

without the risk of hypoglycaemia. The semi- quantitative (SQ) [14C]-2-DG 

autoradiographic method has been derived from the fully quantitative 2-DG 

autoradiographic technique as a way of investigating LCMRglu in mice, which is 

performed in conscious unrestrained mice and requires only a terminal blood 

sample (Cuthill et al., 2006). The disadvantage of this method is there are no 

plasma profiles so it is not possible to use the operational equation to calculate 

LCMRglu.  Previously to estimate LCMRglu in the SQ 2-DG technique 

densitometric readings from a region of interest on an autoradiogram were 

measured and compared to a reference region (Jordan et al., 2005). However, the 

choice of reference region impacts on the accuracy of the result. Recently terminal 

plasma samples have been shown to provide an accurate plasma glucose and [14C] 

profile. This allowed for the simplification of the operational equation for use in the 

SQ 2-DG method (Dawson et al., 2008).  
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To simplify the operational equation the rate constants were removed as over a 

period of 45 minutes the [14C]-2-DG left in the plasma or in the unphosphorylated 

state in the cerebral tissue approaches zero and therefore so do the rate constants. 

A detailed plasma profile is not examined in the semi-quantitative 2-DG technique 

so removal of the plasma glucose and [14C]-2-deoxyglucose profiles simplified the 

equation further. Finally the lumped constant describes differences in glucose and 

[14C]-2-DG kinetics and volume distributions and is influenced by factors which alter 

glucose supply and utilisation. The lumped constant is the same between all brain 

regions and animals so can also be removed from the equation. The new equation 

(Equation 1, Figure 2.3.2) describes the relationship between the [14C]/[glucose] 

ratio of an individual animal and other experimental animals both within the same 

experimental group and between experimental groups. This equation can then be 

simplified further into the final equation (Equation 2, Figure 2.3.2) and was used in 

the current studies to provide an index of LCMRglu (iLCMRglu). 

 

 

 

 

 

 

 

 

 

 

mean(Cp*/Cp)group 

Ci*(T) 

(Cp*/Cp)individual 
) ( (Cp*/Cp)individual ) (  (    mean(Cp*/Cp)group 

   mean(Cp*/Cp)control group 

Equation 1 

Ri = 

Ri 

= 
(    mean(Cp*/Cp)control group 

) Ci*(T) 

Equation 2 

) 

Figure 2.3.2 Simplification of the operational equa tion in the semi-quantatative 

[14C]-2-deoxyglucose autoradiographic method.  

 

Ci* represents the total [14C] in a single homogenous tissue of the brain. 

Cp and Cp* represents the concentration of glucose and [14C]-2-deoxyglucose in the 

arterial plasma respectively. 

T represents time at the end of experiment. 

(Sokoloff, 1981) 
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2.3.3 Experimental protocol for semi-quantitative [ 14C]-2-deoxyglucose 

autoradiography. 

 

 [14C]-2-DG (5µCi in 0.4mls sterile saline; specific activity 50-57.7 mCi/mmol; 

Tocris) was injected intraperitoneally to mice at a steady rate over 10 seconds. 42.5 

minutes later after the [14C]-2-DG injection mice were anesthetised with 4% 

isofluorane in a mixture of 30% oxygen /70% nitrogen for 2.5 minutes. Then at 

exactly 45 minutes after the [14C]-2-DG injection mice were decapitated and a 

terminal blood sample taken by torso inversion and immediately centrifuged. 

Plasma glucose levels were analysed using a semi-automated glucose oxidase 

enzyme assay (Glucose analyser 2, Beckman) and plasma [14C] was measured 

using the liquid scintillation counter. Brains were rapidly dissected from the skull 

and frozen in isopentane at -45ºC. Brain coronal sections (20µm thick) were cut in a 

cryostat at -15 ºC. Three out of every six brain sections were collected on 

coverslips and dried quickly on a hotplate at 60 ºC. The sections were then 

exposed to Kodak Biomax MR film for 4 days along with a set of [14C]-standards 

and developed using an x-ray film processor. Densitometric analysis was used to 

determine the [14C] isotope concentration present in discrete regions of interest and 

the data was analysed using Equation 2 as described above.  

 

2.3.4 Intraperitoneal injections of fenfluramine. 

 

Naïve balb/c mice were injected intraperitoneally with 10mg/kg fenfluramine in 

sterile saline (Tocris) 30 minutes prior to [14C]-2-DG administration. The control 

group were injected intraperitoneally with saline. In a separate experiment on day 

41/42 post immunisation, both the CIA group and the control group were 

intraperitoneally injected with 10mg/kg fenfluramine 30 minutes prior to 

intraperitoneal injection of [14C]-2-DG.  
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2.4 Immunohistochemistry. 

 

2.4.1 Theory. 

 

Immunohistochemistry involves antigen-antibody interactions which can be labelled 

to allow anatomical mapping of the antigen in discrete anatomical locations. The 

antigen detection method used in this thesis is the Avidin-Biotin Complex (ABC) 

method involving multiple incubation steps which amplify the signal. The first 

incubation introduces an unlabelled primary antibody that reacts with the antigen. 

The second incubation involves biotinylated secondary antibody raised against the 

species of the primary antibody, which attaches itself to the primary antibody. This 

step introduces biotin into the section which is used to label nucleic acids and 

proteins that may be detected by avidin. After the tissue is repeatedly washed 

avidin biotinylated enzyme complex (ABC) is added to the tissue and binds to the 

biotinylated secondary antibody, during this step the biotin present on the 

secondary antibody interact with the free biotin binding sites on the ABC. The final 

stage is to incubate the tissue with Perixodase and diaminobenzidine (DAB) which 

reacts to form the brown chromagen colour on the tissue section after exposure.  

 

2.4.2 Intraperitoneal injections of BrdU. 

 

BrdU in sterile saline was made fresh on the day of administration. Mice were 

injected intraperitoneally with either 150 mg/kg BrdU once or 100mg/kg BrdU 

(Sigma-Aldrich) twice daily at 10am and then again at 4 pm for 3/5 days. After the 

final injection, mice were culled the following day. A schematic of BrdU 

administration is illustrated for each study in the results section in either Chapter 3 

or Chapter 6. A mouse embryonic brain from mouse line Fgfr3+/K644E  was a gift from 

Tomoko Iwata and was used as a positive control for BrdU staining. This was 

derived from a pregnant female mouse which was injected intraperitoneally with 

BrdU (50µg/g) 1 hour prior to termination.   
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Figure 2.4.1  Immunodhistochemistry protocol for Brd U staining and 

diagram explaining ABC detection method.
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2.4.3 Experimental protocol for BrdU immunohistoche mistry. 

 

5’ –Bromo-2’-deoxyuridine (BrdU) is a marker of proliferating cells which is 

integrated into DNA during synthesis and can be detected using 

immunohistochemistry. Sections were removed from storage at -20 °C in 

cryoprotectant.  Every 6th section through the full extent of the hippocampus 

(Bregma -0.82mm to-4.72; (Franklin K.B.J and Paxinos G., 2007) was mounted on 

a poly-L-lysine- coated slide and left to dry over night (Appendix 1). Sections were 

circled with a hydrophobic pen before being placed in two 5 minute phosphate 

buffer saline (PBS) washes. Sections were then placed in sodium citrate buffer 

(pH6) and incubated in a water bath at 98ºC for 40 minutes before being cooled by 

placing the containers in a sink of cold water for 20-30 minutes. Once cooled 

endogenous peroxidise activity was quenched by incubating sections with 3% 

hydrogen peroxide (H2O2) in PBS for 10 minutes. Sections were then incubated in 

0.025% trypsin (Sigma-Aldrich) solution for 10 minutes and then DNA was 

denatured with 2M hydrochloric acid (HCl) at 37 ºC for 30 minutes. Non-specific 

binding sites were blocked by incubating sections for 60 minutes in a blocking 

solution of 1% normal rabbit serum (NRS, Vector Laboratories) in PBS and 0.3% 

Triton X-100. Sections were incubated with primary antibody (rat-anti-BrdU; 1:200, 

Serotec) diluted in blocking solution at 4ºC overnight. Sections were then incubated 

in secondary antibody (biotinylated rabbit anti-rat; 1:200, Vector Laboratories) in 

blocking solution for 60 minutes. This was followed by incubation in ABC (Vector 

Laboratories) for 60 minutes and visualisation with DAB (Vector Laboratories, 

Figure 2.4.1). Between each step in the protocol described above sections were 

rinsed in two 5 minute washes in PBS on a shaker. The only exception was 

between the non-specific block and the primary antibody incubation, there was no 

rinse step. Following incubation with DAB sections were rinsed in distilled water for 

30 minutes prior to counterstaining with haematoxylin. Negative and positive 

controls were performed at the same time as the first run of BrdU 

immunohistochemistry to determine if the protocol was successful. Negative 

controls underwent the same procedure in the absence of primary antibody. No 

BrdU staining was detected in these sections.  Embryonic brain sections were used 

for a positive control which displayed a high level of BrdU staining (Figure 2.4.2).  
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Figure 2.4.2 BrdU positive staining in sections of embryonic brain. 

 

There is substantial cell proliferation throughout the embryonic brain and was used as a 

positive control. Scale bar =10µm. 

 

2.4.4 Quantification of BrdU positive cells.  

 

Prior to quantification sections were anonymised so that mouse identity was 

concealed until quantification was complete. The total number of BrdU-positive cells 

in the subgranular zone (SGZ), granule cell layer (GCL) and hilus of each section 

examined was determined using light microscopy (x400). In the SGZ a BrdU-

positive cell was counted if it was touching the GCL and in the hilus if it was more 

then one cell away from the GCL (Figure 2.4.3). BrdU labelled cells were counted in 

every 6 section through the hippocampus therefore the total number of BrdU cells 

in the whole hippocampus was estimated by multiplying the number of cells in each 

section by 6. 
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Figure 2.4.3 Diagram representing BrdU staining in the hippocampus.  

 

The granule cell layer is dark grey, the subgranular zone is light grey and the hilus is black. 

Reference point 1 represents a BrdU positive cell in the granule cell layer. Reference points 

2 and 3 represent a BrdU positive cell touching the granule cell layer and within one cell 

distance from the granule cell layer respectively. Reference point 4 represents a BrdU 

positive cell in the hilus. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 50 

Chapter 3 

 

Establishing the murine model of collagen induced a rthritis. 

 

 3.1 Introduction. 

 

There are various animal models of arthritis that have diverse etiologies and 

pathogenic mechanisms which result in a similar outcome of inflammation and bone 

erosion within the joint (Asquith et al., 2009b). The murine models of collagen 

induced arthritis (CIA) resemble the human form of rheumatoid arthritis as they both 

produce an autoimmune response to type II collagen, one of the main autoantigens 

found in human rheumatoid arthritis patients (Kim et al., 1999; Londei et al., 1989).  

 

The CIA model is a chronic arthritic model used to investigate the development of 

arthritis and is particularly useful in assessing the therapeutic potential of novel 

agents. In both human rheumatoid arthritis and the CIA model there are specific 

major histocompatibility complex class II (MHC II) antigens associated with the 

development of the disease. The human MHC II antigens are HLA-DR1 (Rosloniec 

et al., 1997) and HLA-DR4 (Rosloniec et al., 1998) and in the CIA model I-Aq 

haplotype mice are more susceptible to the disease (Wooley et al., 1981). In the 

murine CIA model, mice are immunised with type II collagen which binds to a 

stretch of amino acids in the MHC II which present the arthritogenic epitopes to T-

cells. The immune response in the CIA model is dependent on the activation of T-

cells as antagonism with anti-L3T4 reduced disease expression by specifically 

blocking MHC II binding by T-cells (Ranges et al., 1985). Furthermore T-cells 

generated in arthritic DBA/1 mice can induce arthritis when injected into naïve mice. 

These naïve mice immunised with T-cell generated from arthritic DBA/1 mice have 

less sever arthritis, possibly due to reduced B-cell activation (Holmdahl et al., 

1985).  B-cell deficient mice have an unaltered T-cell response to type II collagen 

but are resistant to the development of CIA (Svensson et al., 1998). This evidence 

suggests that both T and B-cells are important in the development of CIA. 
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3.1.1 Aims. 

 

The main aim of this thesis is to investigate the effect of arthritis and systemic 

inflammation on the brain at the cellular, molecular and functional levels. Therefore 

the objective of this first results chapter to establish the murine CIA model in our lab 

as this has previously not been done before. To achieve this, an initial CIA study 

was performed (study 1) followed by a second more successful CIA experiment 

(study 2).   
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3.2 Methods.  

 

Day “x” in the thesis refers to the number of days after the first immunisation on day 

0.  

 

3.2.1 Induction of CIA.  

 

The timeline of the CIA model is illustrated in Figure 3.2.1. On day 0, male DBA/1 

mice aged 7-8 weeks (13-15g, Harlan) were anaesthetised and the fur at the base 

of their tails shaved. Under anaesthetic the CIA group (n=9 or 12) were injected 

subcutaneously (s.c) with 0.1ml of collagen emulsification at 2 sites just above the 

base of the tail of 0.05ml each. The collagen emulsification was made up of equal 

volumes of bovine type II collagen and complete Freund’s adjuvant. At this time 

point the control group (n=7 or 12) received no treatment. On day 21 post 

immunisation, the CIA group were injected intraperitoneally with 0.2ml bovine type 

II collagen 2mg/ml in an equal volume of sterile phosphate buffered saline. At this 

time point the control group received an intraperitoneal (i.p) injection of 0.2ml sterile 

phosphate buffered saline. On day 42 post immunisation, all brains were harvested 

(Section 2.1.1).  

 

Study 1. 

An initial CIA experiment was performed in a CIA group (n= 9) and control group 

(n=7). During this study manual callipers were employed (Section 2.1.6).   

 

Study 2. 

The CIA experiment was repeated in a separate CIA group (n=12) and control 

group (n=12) during which improvements were made to the preparation of the 

emulsification of bovine type II collagen and complete Freund’s adjuvant. 

Improvements were also made to disease assessment including a change in 

termination criteria (Section 3.2.2), a more detailed scoring system was employed 

(Table 3.2.2) and the manual callipers were replaced with spring callipers (Section 

3.2.5). The mice generated in this experiment were employed in Chapter 6, study A 

to investigate cell proliferation. 
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Figure 3.2.1 Schematic of the murine model of CIA. 
 

3.2.2 Termination criteria.  

 

Study 1.    

In accordance with the Home Office project licence any mouse with a decrease in 

body weight of 20% or greater compared to their previous body weight 

measurement was terminated by a Schedule 1 method.  Any mouse with a clinical 

score of twelve or over was culled (Section 2.1.2).  

 

Study 2. 

In accordance with the Home Office project licence animals were assigned a score 

of ill-health where any mouse with an ill-health score of 7 or greater was killed by a 

Schedule 1 method (Section 2.1.2).   

 

3.2.3 Clinical score. 

 

In all CIA experiments animals were monitored for clinical signs of disease from day 

20 post immunisation, by scoring each of the 4 limbs using a clinical scoring system 

(Section 2.1.3). The sum score of the four limbs was calculated on each day per 

animal and the median clinical score for each limb was calculated each day per 

group of animals.  The clinical scoring system used for Study 1 is shown in Table 

3.2.1. The clinical scorning system in Table 3.2.2. was used to evaluate Study 2. 

 

Day 0 Immunisation  
CIA group:  0.1ml s.c 
injection of 2mg/ml bovine 
type II collagen and 
complete Freund’s adjuvant. 
 
Control group:   
No treatment. 

No clinical symptoms Clinical symptoms  

Day 21 Challenge  
CIA group:  0.2ml i.p injection  
2mg/ml bovine type II  
collagen and phosphate  
buffered saline. 
 
Control group: 0.2ml phosphate  
buffered saline. 

BrdU 
Day 42 
Maximum 
 duration of  
experiment. 
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Study 1. 

Clinical score Description 

0 No disease/ normal. 

1 Erythema of hock joint. 

2 Erythema from hock to the limb. 

3 Erythema and swelling of hock and limb. 

4 Loss of function in the limb. 

 

Table 3.2.1 Description of clinical scoring system used in study 1. 

 

Study 2. 

Clinical score Description 

0 No disease/ normal. 

1 Erythema and mild swelling of hock joint. 

2 Erythema and mild swelling from the hock to the 

metacarpal articulations or metatarsal articulations. 

3 Erythema and moderate swelling from the hock to 

phalangeal articulations.  

4 Erythema and severe swelling of the limb. 

 

Table 3.2.2 Description of clinical scoring system used to in study 2. 

 

3.2.4 Disease incidence. 

 

The incidence of disease was calculated as a percentage of all mice which 

demonstrated clinical symptoms of swelling and erythema. 

 

3.2.5 Calliper measurements. 

 

Study 1. 

In the initial CIA model mice were monitored for swelling of the hock using manual 

callipers which were placed between the hock joint and the paw on each of the 4 
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limbs per mouse. In the CIA model, from day 20 post immunisation calliper 

measurements were recorded every second day (Section 2.1.6).  

 

Study 2. 

In the next CIA experiment a set of spring callipers were used to record paw 

thickness. From day 20 post immunisation, calliper measurements were recorded 

every second day by holding the paw horizontal and placing the two heads of the 

callipers above and below the paw. The spring callipers were released clamping the 

paw and applying the same pressure to give a measurement of paw thickness 

(Section 2.1.6).  

 

3.2.6 Histological assessment of joint pathology. 

 

Study 2. 

On day 42 post immunisation, hind limbs were harvested and fixed in neutral-

buffered formalin for histological assessment of joint pathology. Both the right and 

left hind limbs from the control group (n=12) and the CIA group (n=12) were 

contracted out to the Pathology department to be decalcified, paraffin embedded 

and cut on a microtome before haematoxylin and eosin staining. One section from 

each hind limb was examined under a light microscope to determine if cell 

infiltration was present in either the digits or hock joint.  

 

3.2.7 Statistical analysis.  

 

All CIA immunised animals with a clinical score of 0 were excluded from the CIA 

group. Data for clinical scores are presented as the median and data for the calliper 

measurements and body weight are presented as mean ±SEM. Statistical 

significance was determined using a Mann Whitney test to investigate changes in 

the hock or paw thickness summary measurements. To examine the correlation 

between clinical score and calliper measurements a Pearson’s correlation test was 

used.  
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Results 3.3  

 

3.3.1 Study 1: Health status. 

 

Visual inspection of the animals in their home cages revealed that both the control 

group and CIA group remained inquisitive, continued to respond to touch, were not 

hunched over and maintained a healthy appearance of coat and eyes. Mice were 

able to move at a rapid pace around the cage and even those with swollen limbs 

were not impeded. No mice lost more than 20% of their original body weight. There 

was an increase in body weight over the majority of the experiment which levelled 

off at approximately day 35 post immunisation. There was no difference in body 

weight between the control and CIA groups (Figure 3.3.1).  

 

3.3.2 Study 1: Disease features and incidence. 

 

Visual inspection of the individual limbs for the key features of the disease were 

used to assign a graded objective clinical score (Table 3.2.1). In brief a clinical 

score of 0 represents a normal limb, in which the joints in the hock and digit are 

clearly visible. A clinical score of 1 represents swelling of the hock, which then 

extends into the limb representing a clinical score of 2. By comparison to a clinical 

score of 3/ 4 represents swelling and erythema of the hock extends into the limb 

and digits. A clinical score of 4 represents a limb with severe swelling and erythema 

from the hock which extends into the limb and 4-5 digest leading to loss of function 

(Figure 3.3.2). 

 

The presence of arthritis was defined as any mouse with a clinical score above 0 in 

any limb. In this study only 4 mice out of a possible 9 immunised developed clinical 

symptoms of arthritis representing a disease incidence of 44%, however as 2 mice 

were culled early the maximum disease incidence at any one time point was 37%.  
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Figure 3.3.1 Study 1: Mean body weight of CIA group  and control group.

The control group (n=7) and the CIA group (day 0-21 inclusive n=4; day 22-41 

inclusive n=3; and on day 42 n=2) were weighed at least once a week throughout the 

experiment. The graph above illustrates similar mean body weights of the CIA and the 

control groups which increased gradually over time. Data are presented mean ± SEM

Figure 3.3.2 Representative image of a normal and d iseased limb.

In the control limb there is no swelling and erythema and the joints are clearly visible 

in the digits and at the hock. This animal would score 0 for the limb. In the CIA limb 

there is erythema and swelling spanning from the hock and into the digits. The joints 

in the digit and at the hock are no longer clearly defined. This animal would be 

assigned a clinical score of 4 and would be described as having severe swelling and 

erythema.
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3.3.3 Study 1: Clinical score.  

 

Out of the 4 mice which demonstrated clinical symptoms of swelling and erythema, 

3 mice developed clinical symptoms at day 21 post immunisation as predicted in 

this model. The fourth mouse was assigned a clinical score of 12 prior to day 21 

post immunisation and was culled at this time in line with the conditions of the 

Home Office Licence. No control animals showed any clinical signs of arthritis at all 

time points examined. 

 

Front limbs appeared to be more severely affected by disease than hind limbs 

having the higher clinical scores (Figure 3.3.3, A-D). To provide a summary 

measure of disease severity for each animal the sum of the clinical scores of the 4 

limbs was plotted over time and the area under the curve calculated. The CIA group 

had a wide range of disease severity summary measures (4-124). No control 

animals showed any signs of swelling and erythema so had a disease severity 

summary score of 0 at all time point investigated (Figure 3.3.4).  
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Figure 3.3.3 Study 1: Clinical score.  

The graphs present the clinical score in the front and the hind limbs as the median of the 

CIA group (day 0-21 inclusive n=4; day 22-41 inclusive n=3; and on day 42 n=2). No 

animals from the control group (n=7) displayed any clinical symptoms at any time point 

examined
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Figure 3.3.4 Study 1: Disease severity summary meas ures. 

 

The sum clinical scores of the 4 limbs were plotted over time and the area under 

the curve calculated to give a disease severity summary measure for each animal. 

In the CIA group (day 0-21 inclusive n=4; day 22-41 inclusive n=3; and on day 42 

n=2) there were a range of disease severities whereas the control group (n=7) 

displayed no clinical symptoms at any time points investigated. Data are presented 

as the mean. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 61 

3.3.4 Study 1: Calliper measurements.  

 

In naïve adult DBA1/A mice a normal hock is approximately 1.8-2.0mm thick. The 

swelling in the front limbs of the CIA group reached a maximum hock thickness in 

excess of 2.5mm (Figure 3.3.5 A, B). By comparison the maximum hock thickness 

in the hind limbs of the CIA group did not exceed 2.5mm (Figure 3.3.5 C, D).  

 

During this study a single mouse was culled at day 21 post immunisation, which 

resulted in a low hock thickness summary measure. Overall there was no 

significant difference in the summary measurements of hock thickness in the CIA 

group by comparison to the control group (Figure 3.3.6).  

 

A correlation between the daily clinical score and calliper measurements of hock 

thickness showed that as the clinical scores increased so did the hock thickness 

(Figure 3.3.7). 
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Figure 3.3.5 Study 1: Hock thickness of the individ ual limbs.

The graphs above illustrate mean hock thickness of front and hind limbs in the control 

group (n=7) and the CIA group (day 0-21 inclusive n=4; day 22-41 inclusive n=3; and on 

day 42 n=2). Data are presented mean ± SEM. 
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Figure 3.3.6 Study 1: Hock thickness summary measur e. 

 

The sum hock thicknesses of the individual limbs were plotted over time and the 

area under the curve calculated to give a summary measure of hock thickness. The 

graph above depicts no significant difference in the hock thickness summary 

measure of the CIA group (day 0-21 inclusive n=4; day 22-41 inclusive n=3; and on 

day 42 n=2) in comparison to the control group (n=7). Statistical significance was 

determined using a Mann Whitney test and the data are presented as the mean 

(*p<0.05).  

 

 

 

 

 

 

 

 

 

Figure 3.3.7 Study 1: Relationship between clinical  score and hock thickness. 

 

Clinical scores were paired with calliper measurements of hock thickness in the 

same animal at the same time point. There was a significant correlation between 

the clinical score and the hock thickness (***r=0.8302). Statistical significance was 

calculated using a Pearson’s rank test. 
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3.3.5 Study 2: Clinical score and disease incidence . 

 

Ten mice out of a possible 12 developed clinical symptoms of erythema and 

swelling representing a disease incidence of 83%. The CIA group developed 

clinical symptoms at approximately day 21-28 post immunisation. Front limbs 

appeared to be more severely affected by disease than hind limbs having the 

higher clinical scores (Figure 3.3.8). No control animals showed any clinical signs of 

arthritis at any time point examined.  

 

To provide a summary measure of disease severity for each animal the sum of the 

clinical scores of the 4 limbs were plotted over time and the area under the curve 

calculated. The CIA group had a wide range of disease severities summary 

measures (60-190). No control animals showed any signs of clinical symptoms so 

had a disease severity summary measure of 0 at all time points investigated (Figure 

3.3.9).  
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Figure 3.3.8 Study 2: Clinical score.

From day 20 post immunisation, each limb was monitored for clinical symptoms of 

arthritis and assigned a daily clinical score ranging between 0-4. The graphs present the 

clinical score in the front and the hind limbs as the median of the CIA group (n=10). The 

hind limbs had a median clinical score of 0 at all time points examined. No animals from 

the control group (n=12) displayed any clinical symptoms at any time point investigated. 
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Figure 3.3.9 Study 2: Disease severity summary meas ure in the CIA  group and 

control group.

The sum clinical scores of the 4 limbs were plotted over time and the area under the curve 

calculated to give a disease severity summary measure for each animal. Data are 
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3.3.6 Study 2: Calliper measurements of paw thickne ss. 

 

To quantify the extent of limb swelling, from day 20 post immunisation spring 

calliper measurements of paw thickness were made every second day. Normal 

paws are approximately 1.8-2.0mm thick in naïve adult DBA1/A mice. The swelling 

in the front limbs and hind limbs of the CIA group reached a maximum paw 

thickness of 3.1mm, however overall the swelling in the front limbs was greater by 

comparison to the hind limbs (Figure 3.3.10).  

 

To provide a summary measure of paw thickness for the duration of the experiment 

for each animal in both the control and CIA group, the sum paw thickness of the 4 

limbs was plotted over time and the area under the curve calculated. Overall there 

was a significant increase in the paw thickness summary measure in the CIA group 

compared to the control group (***p<0.001; Figure 3.3.11).   
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Figure 3.3.10 Study 2: Paw thickness.

The graphs above depict the mean paw thickness in the front and hind limbs of the control 

group (n=12) and the CIA group (n=10). Data are presented as mean ±SEM. 
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Figure 3.3.11 Study 2: Paw thickness summary measur e. 

 

The sum paw thickness of the individual limbs per animal were plotted over time 

and the area under the curve calculated to give a summary measure of paw 

thickness. The graph above depict a significant difference in the summary measure 

of paw thickness in the CIA group (n=10) compared to the control group (n=12). 

Statistical significance was determined using a Mann Whitney test (***p< 0.001). 
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3.3.7 Study 2 Histological assessment of joint path ology. 

 

In addition to the clinical score another way to evaluate the murine CIA model is by 

histological examination of the joint. The characteristic features of this model are 

infiltration of inflammatory cells such as, monocytes, macrophage, basophils, 

eosinophils or neutrophils in the bone marrow (BM) and synovial tissue (ST). 

Synovial hyperplasia (SH) occurs when macrophage proliferate. Not observed in 

the image is development of the pannus over the cartilage (C) which leads to 

destruction of the cartilage and eventual erosion of the joint (Rowley et al., 2008).  

We were able to replicate the infiltration of inflammatory cells previously reported in 

the literature in response to immune activation (Courtenay et al., 1980; Wu et al., 

2007). 

 

I examined one stained section from both hind limbs from each mouse by light 

microscope to determine if inflammatory cell infiltration of the joint were present or 

absent. All control mice had the appearance of healthy joints and no obvious 

inflammatory cell infiltration (Figure 3.3.12, A). However, in the right hind limb of the 

CIA group out of the 4 limbs that displayed clinical symptoms only 3 limbs displayed 

inflammatory cell infiltration. In the left hind limb 3 mice displayed clinical symptoms 

of arthritis and all of which displayed corresponding inflammatory cell infiltration 

(Figure 3.3.12, B). 
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A

B

Figure 3.3.12 Study 2: Histological joint sections.

At day 42 post immunisation, hind limbs were processed and stained with 

haematoxylin and eosin. Section A is representative of the control group (n=12) with 

no inflammatory cell infiltration. Section B is representative of the CIA group (n=12) 

with synovial hyperplasia (SH) and inflammatory cell infiltration, which can be seen in 

the bone marrow (BM) and synovial tissue (ST). 
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3.4 Discussion.  

 

The murine model of CIA was first reported by Courtenay et al., 1980 and since 

then it has become the gold standard model for investigating the pathological 

mechanisms involved in arthritis and to investigate novel therapeutic targets. The 

present study was undertaken to establish the murine model of CIA for the first time 

within our research group. To achieve this I used a method that has been 

previously used for the induction of CIA in DBA/1 mice. To illustrate the successful 

induction of CIA data was gathered the temporal evolution of the disease including, 

disease incidence, clinical scores and hock/paw thickness. In addition to this I also 

examined the general health status of the mice. A significant detrimental effect on 

general health status could impact on the validity of any in vivo experiment. The 

induction of CIA by subcutaneous injection of type II collagen emulsification is 

technically challenging and ulcerations can occur if the type II collagen 

emulsification consistency is incorrect or if the injection site is too close to the tail 

(Brand, 2005). No ulcerations developed in mice exposed to type II collagen 

emulsification at any time point investigated and overall mice appeared healthy 

apart from the characteristic features of swelling and erythema of the limbs.  

 

Although in study 1 the incidence of disease within the CIA group was lower than 

predicted from published studies, the characteristic clinical features of the disease 

in terms of limb swelling and erythema, observed were similar to those that have 

been described previously (Brand et al., 2007). In study 1, I examined the temporal 

progression of the disease in the individual limbs, and found the temporal evolution 

of the clinical scores and hock thickness were similar to the typical development  of 

clinical symptoms reported in previous studies (Brand et al., 2007; Shibata et al., 

2009).  

 

In study 1, the clinical scores and calliper measurements demonstrate erythema 

and swelling in the front limbs only. CIA mice can develop arthritis in any limb and 

in any combination of limbs. The temporal evolution of arthritis in individual mice is 

unique and the reason why arthritic symptoms develop in a limb or limbs is 

ambiguous. Even although my results illustrate clinical symptoms in the front limbs 

only in CIA mice, the literature suggests that clinical symptoms are more frequently 
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observed in the hind limbs (Brand et al., 2007). However in these sets of 

experiments there was a poor incidence of clinical symptoms making any difference 

in the location of the appearance of arthritis inconclusive.   

 

In this study the hock thickness summary measurement had one outlier which may 

account for non significant difference between the control and CIA groups of mice 

as subsequent studies reported in this thesis of paw thickness found a significant 

difference between the groups. 

 

I successfully replicated the characteristic clinical features that have previously 

been described in the murine model of CIA, but had a lower incidence of disease 

than that reported in the literature. Previous studies have indicated the disease 

incidence that can be expected in the CIA model. This ranges from 80-100% 

(Brand et al., 2007; Courtenay et al., 1980; Niedbala et al., 2008; Xu et al., 2008). 

The lower than expected arthritic incidence in the present study of 25% may be due 

to a number of factors. It is possible that the type II collagen was denatured during 

preparation due to lack of experience with the technique. Improvements in the 

disease incidence in subsequent studies reported in this thesis have led me to 

believe that the homogeniser was not adequately submerged during the type II 

collagen emulsification in this current experiment. This resulted in an increase in 

the length of time required to get the correct consistency, during which the 

homogenizer produced heat, which may have produced sufficient heat to denature 

the type II collagen. Improvements in homogenisation technique in study 2 resulted 

in a decrease in the length of time required to obtain the correct emulsification 

consistency from an hour to approximately 20 minutes. This was associated with an 

increased arthritic incidence from 25% found in Study 1 to 83% in study 2. In study 

2 the CIA model was further characterised using histological joint sections which 

illustrated the infiltration of inflammatory cells as previously reported within other 

research groups (Courtenay et al., 1980).  
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3.4.1 Conclusion  

 

In study 1, the murine model of CIA produced a lower disease incidence and 

severity than expected compared to published data. Even although the disease 

incidence was low the characteristic features of erythema and swelling were 

observed in the animals demonstrating clinical symptoms. The clinical symptoms 

followed the typical temporal evolution observed in the literature. To improve the 

disease incidence technical improvements were made to the preparation of the type 

II collagen emulsification associated with increased disease incidence in 

subsequent studies. To characterise the arthritis further histological joint section 

illustrated the infiltration of inflammatory mediates, providing further evidence of the 

establishment of the murine model of CIA with in our department. The CIA model 

was continuously employed throughout this thesis to investigate neurochemical, 

structural and functional changes.  
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Chapter 4 
 

Autoradiographic study of serotonin and dopamine tr ansporter 
 in the murine CIA model. 

 
4.1 Introduction.   
 

The immune system is active in depressed patients and evidence for this comes 

from increased  IL-1β, IL-6, IFN-γ and TNF-α mRNA expression in peripheral blood 

mononuclear cells (Tsao et al., 2006).  There is however limited evidence as to how 

these pro-inflammatory cytokines modulate the monoaminergic neurotransmitter 

systems in patients which have a co-morbidity between peripheral inflammatory 

disease and depression. A few in vitro studies have investigated the affect of 

individual cytokines on serotonin transporter (SERT) function. SERT is present on 

pre-synaptic terminals and is responsible for recycling serotonin back into the nerve 

terminal, regulating synaptic levels of the transmitter (Rang et al., 2003).  Pro-

inflammatory cytokines IL-1β (Ramamoorthy et al., 1995; Mossner et al., 1998) and 

TNF-α (Mossner et al., 1998) have been shown to increase serotonin uptake in 

vitro. This is consistent with a later experiment which demonstrated increased 

serotonin uptake in response to TNF-α and IL-1β exposure in vitro (Zhu et al., 

2006). In comparison, the anti-inflammatory cytokine IL-4 has been shown to 

decrease serotonin uptake in vitro (Mossner et al., 2001). Therefore it can be 

construed that an increase in pro-inflammatory cytokines may increase SERT 

expression, which decreases serotonin availability through increased serotonin 

uptake, resulting in depressive symptoms. This has led to the hypothesis that 

elevated pro-inflammatory cytokines in the murine CIA model of rheumatoid arthritis 

will result in increased levels of SERT binding. 

 

Although SERT binding was our main focus, dopamine transporter (DAT) binding 

was also quantified within the CNS of CIA immunised mice with clinical symptoms. 

DAT is present on pre-synaptic terminals and is responsible for recycling dopamine 

back into the nerve terminal. Dopaminergic neurotransmission is involved in the 

regulation of motor control and mood (Rang et al., 2003). However, there is limited 

evidence pertaining to the relationship between the dopaminergic and immune 

systems. Previous studies have shown that administration of dopamine receptor 

agonists enhance immune cell production (Tsao et al., 1997). Further links between 
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the dopaminergic and immune systems have been illustrated by target deletion of 

the DAT gene which resulted in reduced production of IFN-γ by immune cells 

(Kavelaars et al., 2005). The pro-inflammatory cytokine IFN-γ has been shown to 

be neuroprotective, as when administered prior to methamphetamine, a drug of 

abuse known to damage striatal dopaminergic neurons, there was less damage to 

dopaminergic neurons (Hozumi et al., 2008). However, when macrophage cell 

cultures from DAT gene deficient mice were stimulated with LPS there was 

enhanced production of pro-inflammatory cytokine, TNF-α and anti-inflammatory 

cytokine, IL-10 (Kavelaars et al., 2005). The association between the dopaminergic 

and immune systems has led to the hypothesis that pro-inflammatory cytokines 

released during the development of the murine CIA model will alter DAT binding in 

the CNS. 

 

The limited amount of evidence available in the literature regarding the relationship 

between SERT, DAT and the immune system, which makes the data presented in 

this chapter extremely novel. As the murine CIA model is used to develop a 

peripheral immune response with which to investigate changes in the 

monoaminergic system. To achieve this in vitro autoradiography was employed 

using [123I]-βCIT, a radioligand used in single photon emission computed 

tomography (SPECT) studies to investigate SERT and DAT binding. [123I]-βCIT was 

the first ligand to be used to image SERT in depressed patients. Using this method 

SERT binding was revealed to be reduced in the brainstem of non-medicated 

patients (Malison et al., 1998). This study also reported no difference in [123I]-βCIT 

binding of DAT in the striatum. 

 

4.1.1 Aims.  

 

The main aim of this chapter was to map the distribution of both SERT and DAT 

binding sites in discrete anatomical locations. To achieve this, the radioligand [125I]-

βCIT was employed to visualise the distribution of both SERT and DAT binding 

sites within the same tissue sections. Displacers were then utilised to visualise 

SERT and DAT binding in adjacent sections. [125I]-βCIT is a non-specific ligand so 

to fully realise the aim of this chapter highly specific ligands [3H]-citalopram and 

[3H]-WIN 35,428 were utilised to label SERT and DAT respective 
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4.2 Methods.  

 

4.2.1 Animals. 

 

Mouse brain sections from the control group and the arthritic CIA group described 

in Chapter 3 were utilised in the in vitro autoradiographic studies described in this 

chapter (Section 3.3.1-3.3.7). The presence of arthritis was defined as any mouse 

with a clinical score above 0 in any limb. In this study only 4 mice out of 9 

immunised developed clinical symptoms of swelling and erythema. The 4 mice 

which demonstrated clinical symptoms were termed the CIA group. The control 

group did not exhibit clinical symptoms of swelling and erythema at any time point 

examined.  

 

4.2.2 In vitro autoradiography. 

 

On day 42 post immunisation, all brains were harvested and frozen in isopentane at 

-45ºC (section 2.2.2). Coronal sections 20µm thick were cut on a cryostat set at -

20ºC, and mounted on poly-L-lysine coated slides and stored at -20ºC prior to use. 

Slides with tissue sections from the control group (n=6) and the CIA group (n=4) 

were removed from storage at -20ºC and in vitro autoradiography performed to map 

the distribution of SERT and DAT binding sites within the CNS. Sections were 

brought to room temperature and pre-incubated in buffer prior to incubation with a 

radioactive ligand. Binding to both SERT and DAT, defined as total binding, was 

determined by incubating sections with 50pM [125I]-βCIT alone. Mazindol 

specifically binds to DAT and was used as a displacer to determine SERT binding 

(50pM [125I]- βCIT in the presence of 1µM mazindol). Fluoxetine specifically binds to 

SERT and was used as a displacer to determine DAT binding ([125I]- βCIT in the 

presence of 50nM fluoxetine). Non-specific binding was determined using 50pM 

[125I]-βCIT in the presence of 1µM mazindol and 10µM fluoxetine (McGregor et al., 

2003).  

 

Due to the non-selective nature of the SPECT radioligand [125I]- βCIT SERT and 

DAT were also labelled in separate sets of sections from the same animals using 

the highly specific ligands  [3H]-citalopram and [3H]-WIN 35,428, respectively. Non-
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specific binding for 2nM [3H]-citalopram was determined in the presence of 20µM 

fluoxetine (Hebert et al., 2001) and 10nM [3H]-WIN-35,428 in the presence of 30µM 

nomifensine (Andersen et al., 2005). Following incubation with ligand, sections 

were washed in buffer and dipped in distilled water. Sections were left to dry 

overnight and then exposed to film along with a set of pre-calibrated standards for 

varying periods of time (for full description of methods see section 2.2.3-2.2.4). 

 

4.2.3 Quantification of ligand binding. 

 

The optical densities of the pre-calibrated [125I] or [3H] standards were measured to 

produce a calibration curve of optical density against radioactivity. The optical 

densities of discrete anatomical regions were then determined from anonymised 

autoradiograms. The measuring frame was altered to fit specific anatomical regions 

and the same region was measured bilaterally in 3 tissue sections from the same 

animal and the average optical density used for analysis (Section 2.2.5).  

 

4.2.4 Statistical analysis.  

 

Ligand binding is presented as the mean±SEM. Statistical significance was 

determined using a Mann Whitney Test (*p< 0.05, **p<0.01) to investigate changes 

in ligand binding in 12-15 discrete anatomical regions throughout the CNS. The 

percentage changes was calculated as the difference between the groups divided 

by the control group and multiplied by 100.  
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4.3 Results. 

 

4.3.1 [125I]-βCIT labelling of both SERT and DAT. 

 

The distribution of SERT and DAT binding sites are displayed in Figure 4.3.1. 

Autoradiograms are an example of regions sampled and visually display that 

binding of [125I]-βCIT in the absence of displacers (total binding) is greater than in 

the presence of displacers (SERT, DAT and non-specific binding). Minimal non-

specific binding of [125I]-βCIT can be visually observed in the majority of regions 

sampled. A high level of non-specific binding was observed in the caudate putamen 

(25%), a dopaminergic structure (Figure 4.3.1) in comparison to the non-specific 

binding in the rest of the brain which was low (average 8%) compared to [125I]-βCIT 

labelling of SERT and DAT.  

 

Binding of [125I]-βCIT in the absence of displacers represents labelling of both 

SERT and DAT. [125I]-βCIT labelling in the absence of displacers in all fifteen 

regions of interest investigated did not differ significantly in the CIA group compared 

to the control group (Figure 4.3.2).The majority of structures displayed minimal 

changes in binding in the CIA group. The greatest change in binding was in the 

nucleus accumbens (41%) which was not significant.   

 

Binding of [125I]-βCIT in the presence of mazindol represents labelling of SERT. 

Three out of the 15 anatomical locations investigated demonstrated a significant 

difference in the CIA group in comparison to the control group. There was a 

significant change in binding in the nucleus accumbens (58%), thalamus (62%) and 

dentate gyrus (-60%). In all other regions examined the groups did not differ 

significantly (Figure 4.3.3). 

 

Binding of [125I]-βCIT in the presence of fluoxetine represents labelling of DAT. One 

out of the 14 anatomical locations investigated, the caudate putamen (95%) 

demonstrated a significant change in the CIA group in comparison to the control 

group. In all other regions examined the groups did not differ significantly (Figure 

4.3.4). 

 



 79 

50pM [125I]-
βCIT

alone

50pM [125I]-βCIT 
in the presence
of 1µM mazindol

Total binding SERT binding DAT binding

50pM [125I]-βCIT
the presence of
50nM fluoxetine

Figure 4.3.1 Autoradiogram of [ 125I]-βCIT binding in vitro.

Representative autoradiograms at different levels (A-F) from bregma 1.1mm to -5.5mm of 

total [125I]-βCIT binding, serotonin transporter (SERT) binding, dopamine transporter (DAT) 

binding and non-specific (NS) binding.
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Figure 4.3.2 Total binding: [ 125I]-βCIT binding in the absence of displacers.

Tissue sections from a CIA group and control group were incubated in the 

presence of [125I]-βCIT alone. Binding of [125I]-βCIT in the absence of displacers 

represents labelling of both SERT and DAT (total binding). Minimal differences in 

total binding between the groups were recorded. Data are presented mean 

±SEM and statistical significance was determined using a Mann Whitney Test. 
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Figure 4.3.3 SERT binding: [ 125I]-βCIT in the presence of mazindol. 

Binding of [125I]-βCIT in the presence of displacer mazindol represents 

labelling of SERT. In the CIA group binding reached a significant difference 

in the nucleus accumbens, dentate gyrus and thalamus in comparison to the 

control group. Data are presented mean±SEM and statistical significance 

was determined using a Mann Whitney Test (*p< 0.05, **p<0.01).
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Figure 4.3.4 DAT binding: [ 125I]-βCIT in the presence of fluoxetine.

Binding of [125I]-βCIT in the presence of displacer fluoxetine represents labelling of 

DAT. In the CIA group a significant difference in DAT binding was only reached in 

the caudate putamen in comparison to the control group.  Data are presented 

mean±SEM and statistical significance determined using a Mann Whitney Test 

(**p<0.01). 
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4.3.2 [3H]-Citalopram labelling of SERT.  

 

Autoradiographic distribution of SERT binding sites using [3H]-citalopram, are 

displayed in Figure 4.3.5, illustrating regions of interest and the high level of [3H]-

citalopram labelling in the dorsal raphe nucleus and substantia nigra. 

Autoradiograms of [3H]-citalopram labelling in the presence of displacer fluoxetine 

are not shown but the non-specific binding was extremely low (average 13 %) in 

comparison to [3H]-citalopram labelling of SERT in the brain.  

 

[3H]-citalopram labelling of SERT was greatest in the dorsal raphe nucleus which is 

densely populated with serotonergic neurons that project to the limbic system. 

However, in all the regions of interest investigated there were minimal differences in 

SERT binding between the groups (Figure 4.3.6). Two of the structures in the limbic 

system, the nucleus accumbens (28%) and the thalamus (33%) displayed the 

greatest percentage change in SERT labelling in the CIA group compared to the 

control group but this difference did not reach statistical significance. 

 

4.3.3 [3H]-WIN 35,428 labelling of DAT.  

 

Autoradiographic distribution of DAT binding sites using [3H]-WIN 35,428 are 

displayed in Figure 4.3.7, illustrating regions of interest and the high level of 

labelling in the caudate putamen in comparison to other structures. [3H]-WIN 

35,428 labelling of DAT was low in the majority of the brain including the dorsal 

hippocampus making it impossible to distinguish between the dentate gyrus, CA1 

and CA3 areas. Autoradiograms of [3H]-WIN 35,428 labelling in the presence of 

displacer nomfensine are not shown but the non-specific binding was high (average 

45%) in comparison to [3H]-WIN 35,428 labelling of DAT in the brain. [3H]-WIN 

35,428 labelling of DAT was greater in areas with densely populated dopaminergic 

neurons including the caudate putamen, ventral tegmental area and the substantia 

nigra. In all regions of interest investigated [3H]-WIN 35,428 labelling of DAT did not 

differ significantly between the CIA group compared to the control group (Figure 

4.3.8). 
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Figure 4.3.5 Representative autoradiogram of [ 3H]-citalopram binding.

Autoradiograms of mouse brain sections (A-F) extending from bregma 1.1mm to -5.5mm (Franklin 

K.B.J and Paxinos G., 2007). (A) Illustrates the cingulate cortex (cin), caudate putamen (CPu) and 

nucleus accumbens (N.acc). (B) Illustrates the globus pallidus (GP). (C) Illustrates the lateral 

hypothalamus (LH), thalamus (Thal), amygdala (Amy) and dorsal hippocampus including the 

dentate gyrus (DG), CA1 and CA3 areas. (D) Illustrates the substantia nigra (SN) and ventral 

tegmental area (VTA). (E,F) illustrates the dorsal raphe nucleus (DRN) and the cerebellum (Cere). 
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Figure 4.3.6 SERT binding: [ 3H]-citalopram.

Binding of [3H]-citalopram represents SERT binding. There were minimal 

differences in SERT binding in all areas of interest investigated in CIA group 

in comparison to the control group. Data are presented mean±SEM and 

statistical significance was determined using Mann Whitney Test.
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Figure 4.3.7 Representative autoradiogram of [ 3H]-WIN 35,428 binding.

Autoradiograms of mouse brain sections (A-F) extending from bregma 1.1mm to -5.5mm 

(Franklin K.B.J and Paxinos G., 2007). (A) Illustrates the cingulate cortex (cin), caudate 

putamen (CPu) and nucleus accumbens (N.acc). (B) Illustrates the globus pallidus (GP). 

(C) Illustrates the lateral hypothalamus (LH), thalamus (Thal), amygdala (Amy) and 

dorsal hippocampus including the dentate gyrus (DG), CA1 and CA3 areas. (D) 

Illustrates the substantia nigra (SN) and ventral tegmental area (VTA). (E,F) illustrates 

the dorsal raphe nucleus (DRN) and the cerebellum (Cere).
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[3H]-WIN 35,428 labelling of DAT
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Figure 4.3.8 DAT binding: [ 3H]-WIN 35,428.

Binding of [3H]-WIN 35,428 represents labelling of DAT. There were minimal 

differences in DAT binding in all anatomical locations investigated. Data are 

presented mean±SEM and statistical significance was determined using a Mann 

Whitney Test.
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4.4 Discussion. 

 

To my knowledge this is the first study to investigate binding in discrete brain 

anatomical locations in the murine CIA model of rheumatoid arthritis. However, 

there is limited evidence of the effect pro-inflammatory cytokines have on SERT 

and DAT in this animal model. The primary aim of this chapter was to map the 

distribution of both SERT and DAT in CIA immunised mice which developed clinical 

symptoms. Overall the data suggest minimal influence of CIA on SERT and DAT 

binding. It may have been a combination of factors which led to minimal differences 

in SERT and DAT binding in the CIA group in comparison to the control group. All 

the autoradiographic studies described in this chapter were performed on brain 

sections from a pilot CIA experiment, which was used to establish the CIA model 

within the department (Chapter 3, study 1). All mice within the CIA group had mild 

swelling and erythema of the limbs which is described in more detail in the previous 

chapter (Chapter 3). It is for this reason that there was a low n number in the CIA 

group (n=4). 

 

The overall hypothesis of this thesis is that there is an association between 

depression and the peripheral immune response associated with rheumatoid 

arthritis. The hypothesis tested in this chapter was that there would be increased 

SERT labelling in response to elevated levels of pro-inflammatory cytokines in the 

murine CIA model. [125I]-βCIT labelling of SERT reached a significant increase in 

the nucleus accumbens and thalamus and a significant decrease in the dentate 

gyrus of the hippocampus in the CIA group compared to the control group (Figure 

4.3.3). The nucleus accumbens, thalamus and hippocampus are limbic regions 

implicated in the symptoms of depression and the increase in SERT binding 

observed in the nucleus accumbens and thalamus is consistent with previous 

studies in vitro which have shown increased SERT activity in response to pro-

inflammatory cytokines (Zhu et al., 2006). The increase in [125I]-βCIT labelling of 

SERT in the thalamus is also consistent with a SPECT study which used the SERT-

specific ligand [11C]-DASB in non-medicated major depressive patients which 

reported a significant increase in SERT binding in the thalamus (Cannon et al., 

2007). However, no statistically significant difference was apparent between the 

groups using the specific SERT ligand [3H]-citalopram (Figure 4.3.6). This is 
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consistent with a previous SPECT study in non-medicated majorly depressed 

patients, using [11C]-DASB which reported no change in SERT binding (Meyer et 

al., 2004). SPECT studies of SERT binding in non-medicated depressive patient 

have shown varied results using both βCIT (Malison et al., 1998; Lehto et al., 2006) 

and [11C]-DASB (Cannon et al., 2007; Meyer et al., 2004). A possible explanation 

for this is that imaging studies of SERT binding in patients with depressive 

symptoms usually comprise small sample sizes, patient variation and different 

antidepressants have varied effects on SERT binding. This adds a level of difficulty 

interpreting SPECT studies as most depressed patients are medicated and the 

examples described above of non-medicated patients have been medication free 

for as little as 2 or 3 weeks (Malison et al., 1998; Newberg et al., 2005), to greater 

than 3 months (Meyer et al., 2004). This may have an unknown impact on SERT 

binding as there is limited information about the length of time the patients in these 

studies were previously on medication and which antidepressants they were 

prescribed. 

 

Ligands used in SPECT studies give an indication of possible changes in 

transporter expression within the CNS. On the other hand in vitro autoradiography 

gives a quantitative measure of altered transporter labelling in an animal 

experiment, in which variability is controlled. However, autoradiographic 

experiments sample from a number of anatomical regions throughout the brain 

which can led to false positives. This may be a possible explanation why significant 

differences in binding were observed in [125I]-βCIT labelling of SERT but not 

replicated using a second more specific ligand. [125I]-βCIT is a non-specific ligand 

which binds to SERT, DAT and to a lesser extent noradrenaline, this can be 

observed in the autoradiograms of non-specific binding (Figure 4.3.1). This has led 

to the conclusion that peripheral inflammation in the CIA group has minimal effects 

on SERT expression. A possible explanation for the minimal differences in SERT 

binding may be the temporal evolution of inflammation in the CIA model. The CIA 

experiment has a duration of 42 days post immunisation, after which time the 

disease is still progressing. Therefore it is possible that it may take weeks for 

peripheral inflammation to alter SERT expression within the CNS in the murine CIA 

model and termination at day 42 post immunisation may be too early to detect 

changes.   
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The second hypothesis to be tested in this chapter was that the peripheral immune 

response in the CIA model would alter DAT expression. One difference between 

the experiments was the average non-specific binding, which may be due to the 

different specifities of the ligands. Overall there was low binding of [3H]-WIN 35,428 

in all anatomical locations except for the caudate putamen. Therefore when the 

non-specific binding was compared to [3H]-WIN 35,428 binding in the brain the 

average non-specific binding appeared high (average 45%). In comparison, [125I]-

βCIT is a non-specific ligand which binds to both SERT and DAT. This may be the 

reason [125I]-βCIT labelling of DAT was more pronounced throughout the brain 

compared to [3H]-WIN 35,428 labelling of DAT and when [125I]-βCIT non-specific 

binding was compared to the [125I]-βCIT labelling of DAT, the non-specific binding 

calculated as a lower percentage (average 8%). 

 

Nevertheless, there were minimal differences between the experimental groups 

using [3H]-WIN 35,428 or [125I]-βCIT labelling of DAT. A previous PET study has 

reported reduced DAT binding in the caudate putamen of patients with depressive 

symptoms (Meyer et al., 2001). However, there was an increase in [125I]-βCIT 

labelling of DAT in the caudate putamen of the CIA group compared to the control 

group (Figure 4.3.4). In this study the mice were not tested for anhedonia, a 

characteristic feature of depression. It is therefore possible, that there was no 

decrease in DAT binding as the mice are not experiencing anhedonia and that the 

observed increase is in response to the induction of CIA. However, the increase in 

DAT binding was not replicated using the [3H]-WIN 35,428, a specific ligand used to 

measure DAT binding in adjacent tissue sections (Figure 4.3.8). There are a 

number of explanations for the differences in binding between the ligands. As 

mentioned above autoradiographic experiments sample from a number of different 

regions which can led to a false positive result. The ligands [125I]-βCIT and [3H]-WIN 

35,428 have different specificities and affinities for DAT. This can be observed in 

the autoradiograms, [3H]-WIN 35,428 has a high specificity for DAT and there is low 

binding in all anatomical locations except for the caudate putamen (Figure 4.3.7). 

However, in the autoradiograms representing [125I]-βCIT labelling of DAT the 

structures are more defined (Figure 4.3.1). It has been noted in the literature that 

the ligands [125I]-βCIT and [3H]-WIN 35,428 may bind to different forms of DAT 
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resulting in different densities of binding being calculated in different anatomical 

locations (Coulter et al., 1995). The ligands may bind to different forms of DAT but I 

believe that it is the lack of specificity of [125I]-βCIT labelling of DAT which is 

responsible for the observed differences in binding and that [3H]-WIN 35,428 

autoradiographic labelling of DAT is more accurate. This has led to the conclusion 

that the peripheral immune response in CIA immunised mice has a minimal effect 

on DAT expression.  

 

A subordinate aim of this chapter was to investigate combined SERT and DAT 

binding within in the same tissue section. In all anatomical locations investigated 

there were minimal differences in combined SERT and DAT binding between the 

groups (Figure 4.3.2).  

 

4.4.1 Conclusion. 

 

There were minimal changes in SERT and DAT binding in tissue sections from the 

CIA group compared to the control group. This suggests that any change in SERT 

or DAT binding is very subtle or that SERT or DAT expression is unaltered. Overall, 

this study adds to the limited evidence available in the literature and in the future 

may aid in understanding the relationship between the immune and monoaminergic 

systems. 
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Chapter 5 
 

 [14C]-2-deoxyglucose autoradiographic study of local c erebral glucose 

utilisation in the murine CIA model. 

 

5.1 Introduction. 

 

The [14C]-2-deoxyglucose autoradiographic technique ([14C]-2-DG) is used to 

investigate functional changes in glucose utilisation in discrete anatomical regions 

throughout the CNS. In the brain glucose provides energy for different types of cells 

including glia and neurons and for energy dependent processes including 

neurotransmitter release, synthesis, re-uptake and to maintain ion gradients. The 

basic principle underlying [14C]-2-DG is that glucose catabolism under normal 

physiological conditions is directly related to energy consumption in cerebral tissue.  

 

There is evidence that pro-inflammatory cytokines influence different brain systems, 

which could led to altered brain function. In the pre-synaptic terminals of neurons, 

abnormal local cerebral glucose utilisation (LCMRglu) could be the result of altered 

synthesis, storage or release of neurotransmitters or altered SERT density. 

Cytokines have been shown to increase serotonin uptake in vitro (Ramamoorthy et 

al., 1995; Mossner et al., 1998). In addition IL-2 and/or IFN-α therapy in cancer 

patients has been shown to led to the development of depression and decreased 

plasma levels of tryptophan (Capuron et al., 2002). In depressed patients there is 

decreased 5-HT1A receptor mRNA expression, in the hippocampus and prefrontal 

cortex compared to controls (Lopez-Figueroa et al., 2004). Similarly in vitro studies 

investigating the effect of IFN- α on 5-HT1A receptors in cell cultures illustrated a 

reduction in 5-HT1A receptors, which was reversed by administering fluoxetine or 

desipramine (Cai et al., 2005). IFN-α is just one of a number of elevated cytokines 

in the CIA model (Thornton et al., 1999; Mauri et al., 1996). The evidence suggests 

that cytokines can affect either the pre- or post-synaptic serotonergic system or 

both.  

 

The previous chapter investigated serotonin transporter density in the murine CIA 

model. In this chapter mice with CIA were challenged with fenfluramine, an agent 
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that alters synaptic serotonin levels, in an attempt to reveal any abnormalities in 

serotonergic function caused by the disease. Fenfluramine is an amphetamine 

analogue, originally used as an anorexigenic drug (Munro et al., 1966) which has 

also been used as a pharmacological tool to investigate blunted serotonergic 

response in patients with mood disorders (Newman et al., 1998). Early studies on 

the effect of fenfluramine in the brain demonstrated that fenfluramine targeted the 

serotonergic system to deplete central stores of serotonin (Costa et al., 1971; 

Tagliamonte et al., 1971). The first study to investigate the mechanism of action of 

fenfluramine showed a dual mechanism of induced serotonin release from nerve 

terminals and inhibition of serotonin re-uptake in blood platelets (Buczko et al., 

1975). Evidence that fenfluramine inhibits serotonin re-uptake has been further 

shown by the selective serotonin re-uptake inhibitors, fluoxetine (Sarkissian et al., 

1990; Sabol et al., 1992) and the ability of citalopram (Kreiss et al., 1993) to 

attenuate fenfluramine induced release of serotonin. A possible explanation for this 

effect is that antidepressants inhibit the uptake of fenfluramine, which competes 

with serotonin for the serotonin transporter. Once within the nerve terminal there is 

evidence from studies using tetanus toxin, an exocytosis inhibitor, that suggest 

fenfluramine induces exocytotic release of serotonin containing vesicles from the 

nerve terminal (Gobbi et al., 1993). 

 

The [14C]-2-DG technique is a similar technique to positive emission tomography 

(PET) using 18F-Fludeoxyglucose (18FDG); both techniques measure in vivo, 

LCMRglu in discrete anatomical locations of the nervous system. 18FDG, an analog 

of glucose is used as a radiotracer in PET brain imaging studies to assess cerebral 

glucose metabolism (Gallagher et al., 1978). The first study to use PET to 

investigate fenfluramine challenge in healthy males found an increase in LCMRglu 

in the prefrontal cortex and a decrease in the occipital-temporal regions compared 

to placebo in the same subject (Kapur et al., 1994). This study was presented as a 

short communication, and a couple of years later a more in-depth study also 

examined the effect of fenfluramine challenge in healthy volunteers resulting in an 

increase in LCMRglu in the prefrontal cortex and left temporal and parietal cortex 

(Mann et al., 1996). PET studies have also utilised the fenfluramine challenge to 

investigate regional abnormalities in the serotonergic system in patients with 

depressive symptoms. Fenfluramine challenge resulted in a significant increase in 
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LCMRglu in the prefrontal and frontal cortex in healthy male volunteers compared 

to medication free male depressed patients (Anderson et al., 2004). This suggests 

that patients with depression have a blunted response to fenfluramine challenge 

compared to healthy controls implicating altered brain function in patients with 

depressive symptoms.  

 

The CIA model is a well established model used to investigate novel anti-cytokine 

agents to treat inflammation. The hypothesis underlying this thesis is that pro-

inflammatory cytokines released by the peripheral immune response influence the 

brain. The hypothesis of this chapter is that cerebral glucose utilisation is altered in 

the CIA model. The first objective of this chapter was to use [14C]-2-DG 

autoradiography to investigate regional cerebral metabolism in CIA mice which 

developed clinical symptoms. A second objective was to explore the serotonergic 

system further in CIA mice by employing a fenfluramine challenge to reveal any 

abnormalities in serotonergic function as detected by [14C]-2-DG autoradiography. 

 

5.1.1 Aims. 
 

1. Measure LCMRglu in CIA group compared to a control group (Study 1)  

2. Challenge the serotonergic system with fenfluramine in naïve mice and measure 

changes in LCMRglu (Study 2). 

 3. Challenge the serotonergic system with fenfluramine in a CIA group compared 

to a control group and measure changes in serotonergic transmission (Study 3).  
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5.2 Methods.  

 

5.2.1 Experimental protocol for semi-quantitative [ 14C]-2-deoxyglucose 

autoradiography. 

 

Mice were fasted overnight before receiving an intraperitoneal injection of [14C]-2-

DG (5µCi in 0.4mls sterile saline) at a steady rate over 10 seconds. Forty-two and a 

half minutes after [14C]-2-DG administration, mice were anaesthetised with 4% 

isofluorane in a mixture of 30% oxygen/70% nitrogen for 2.5 minutes. Exactly 45 

minutes after [14C]-2-DG administration mice were decapitated, a terminal blood 

sample taken by torso inversion and blood immediately centrifuged. The plasma 

samples were stored in ice until the afternoon, when glucose levels were analysed 

using a semi-automated glucose oxidase enzyme assay (Glucose analyser 2, 

Beckman) and plasma [14C] levels were measured using a liquid scintillation 

counter. After blood collection, brains were rapidly dissected from the skull and 

frozen in isopentane at -45ºC. Coronal brain sections (20µm thick) were cut on a 

cryostat at -15 ºC. Three out of every 6 brain sections were collected on coverslips 

and dried on a hotplate at 60 ºC. The sections were then exposed to x-ray film for 4 

days along with a set of pre calibrated [14C]-standards and developed using an x-

ray film processor (Sokoloff, 1977).  

 

5.2.2 Study groups. 

 

In study 1, on day 0, a CIA experiment was initiated in a CIA group (n=12) and a 

control group (n=12), as previously described in Chapter 3. On day 41 or 42 post 

immunisation the experimental protocol for [14C]-2-DG was performed on controls 

(n=12) and CIA mice exhibiting clinical symptoms of disease (n=5).  

 

In study 2, naïve Balb/c mice (n=6) were injected intraperitoneally with 10mg/kg 

fenfluramine 30 minutes prior to [14C]-2-DG. A control group (n=6) received saline 

30 minutes prior to [14C]-2-DG.  

 

In study 3, on day 0, a CIA experiment was initiated in a CIA group (n=12) and a 

control group (n=12). On day 41/42 post immunisation the control group (n=12), 
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and CIA mice exhibiting clinical symptoms of disease (n=7) were injected 

intraperitoneally with 10mg/kg fenfluramine 30 minutes prior to the [14C]-2-DG 

technique (Figure 5.2.1). During study 3, one mouse was terminated on day 0 post 

immunisation due to an injury unrelated to the induction of CIA. 

42.5 min 2.5 min

Anesthetise

Figure 5.2.1 Schematic of [ 1414C]-2-DG experiments.

Day 0

CIA experiment 42.5 min 2.5 min

Anesthetise10kg/mg
Fenfluramine 
was injected on 
day 41/42 post 
immunisation

30 min

[14C]-2-DG

Terminal blood sampled 

and brains harvested

Saline or
10kg/mg
Fenfluramine

[14C]-2-DG

30 min 42.5 min

Anesthetise

Day 0

CIA experiment 42.5 min 2.5 min

Anesthetise[14C]-2-DG 
on day 41/42 
post 
immunisation

Terminal blood sampled 

and brains harvested

Terminal blood sampled 

and brains harvested

Study 1: CIA group compared to a control group.

Study 2: Fenfluramine challenge in naïve mice.

Study 3: Fenfluramine challenge in a CIA group compa red to a control group. 
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) ( 
   mean(Cp*/Cp)control group 

Ci*(T) 

5.2.3 Calculation of iLCMRglu.  

 

Optical density measurements were made by placing a measuring frame over 

33/34 discrete anatomical regions on anonymised autoradiographic images. The 

size of the measuring frame was adjusted depending on the region of interest and 

the average optical density of 3 non-overlapping frames in each region of interest in 

both hemispheres was obtained. The index of LCMRglu (iLCMRglu) was calculated 

according to the methods in chapter 2, Section 2.3.2. The equation used for this 

calculation is displayed below: 

 

 

           iLCMRglu= 

 

 

 

 

 

 

 

5.2.4 Statistical analysis.  

 

The disease severity summary measure and paw thickness summary measure data 

are presented as the mean. Statistical significance was determined using a Mann 

Whitney test to determine differences between the groups in the summary 

measurements of paw thickness.  

 

Plasma glucose, plasma [14C] and plasma glucose/ plasma [14C] ratio data for the 3 

studies was analysed using 2-way ANOVA with Bonferroni correction.  iLCMRglu 

data are presented as mean+SEM and statistical significance was determined 

using a Students unpaired t-test. The percentage difference for each animal within 

a group was added together and divided by the number of regions of interest to 

provide an average percentage difference. In study 1, autoradiograms from one 

Figure 5.2.2 Equation used to calculate iLCMRglu. 

 

Ci*(T) represents the total 14C tissue concentration in a region of interest. 

Cp and Cp* represents the glucose concentration and [14C]-2-deoxyglucose 

concentration in the arterial plasma respectively. 
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control animal were excluded from analysis as the autoradiographic images were 

not sharp enough for analysis, resulting in n=11. 
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5.3 Results. 

 

5.3.1 Disease features and incidence in the CIA mod el. 

 

Study 1. 

Five mice out of the 12 immunised with CIA developed clinical symptoms of arthritis 

representing a disease incidence of 42%. No control animal displayed any sign of 

limb swelling and erythema at any time point investigated. The severity of disease 

differed between animals resulting in a range of disease severities. The swelling in 

the front and hind limbs of the CIA group reached a maximum paw thickness of 

2.7mm. There was a significant increase in the summary measure of paw thickness 

in the CIA group compared to the control group. These data show that the mice 

used in study 1, had clinical symptoms of CIA and that there was a statistically 

significant difference in paw swelling in the disease group compared to the control 

group (Figure 5.3.1). 

 

Study 3. 

Seven mice out of 12 immunised developed clinical symptoms of swelling and 

erythema. One mouse was culled on day 0 post immunisation due to injury 

unrelated to CIA immunisation. Therefore, the 7 mice with clinical symptoms 

represent a disease incidence of 64%. No control animals exhibited clinical 

symptoms of swelling or erythema. The graphs show that the CIA group used in 

study 3, displayed clinical symptoms and that the swelling of the paws reached a 

statistical significant difference in the CIA group compared to the control group 

(Figure 5.3.2).  
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Figure 5.3.1 Study1: Summary measures depicting the disease in the CIA group 

compared to the control group.

The sum clinical score and the paw thickness were plotted over time and the area under 

the curve calculated to give a summary measure of disease severity and a summary 

measure of paw thickness in each animal. A) The disease severity varied between animals 

in the CIA group. No animal in the control group showed any signs of clinical symptoms. B) 

The graph above depicts a significant difference in the summary measure of paw thickness 

in the CIA group compared to the control group. Horizontal bar represents the mean. 

Statistical significance was determined using a Mann Whitney test (**p< 0.01).

A

B **

 



 101 

 

 

Control CIA
0

125

135

145

155

165

175

P
aw

 t
hi

ck
ne

ss
 s

um
m

ar
y 

m
ea

su
re

Figure 5.3.2 Study 3: Summary measures depicting the  disease in the CIA group 

compared to the control group. 

The sum clinical scores and the paw thickness were plotted over time and the area under 

the curve calculated to give a summary measure of disease severity and a summary 

measure of paw thickness in each animal. A) The disease severity varied between animals 

in the CIA group. No animal in the control group showed any signs of clinical symptoms. B) 

The graph above depicts a significant difference in the summary measure of paw thickness 

in the CIA group compared to the control group. Horizontal bar represents the mean. 

Statistical significance was determined using a Mann Whitney test (**p< 0.01).
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5.3.2 Terminal plasma glucose and 14C concentrations. 

 

Both the blood plasma glucose and [14C] were similar between the groups and 

within the same range as those previously reported in the literature (Dawson et al., 

2009). Therefore, neither CIA nor fenfluramine challenge appears to affect the 

plasma glucose or plasma [14C] alone. In comparison, when CIA and fenfluramine 

were combined (study 3) there was a significant difference in the blood plasma [14C] 

compared to the control group in study 1. However, the significant difference in 

[14C] in study 3 did not influence the blood plasma glucose and [14C] ratio, which is 

used to calculate the iLCMRglu.  

 
 Study 1  Study 2  Study 3 

 
Control  

 
CIA 

  
Control  

 
FEN 

  
Control FEN  

 
CIA FEN 

 
 

Plasma Glucose 
(µmol .ml -1) 

 

6.8 
± 0.22 

 

7.0 
± 0.43 

  

7.1 
± 0.56 

 

6.7 
± 0.36 

  

6.5 
± 0.38 

 

6.6 
± 0.20 

 
 

Plasma [ 14C] 
(nCi .ml -1) 

126.1 
± 8.92 

 

117.6 
± 5.33 

  

115.6 
± 19.49 

 

125.2 
± 14.76 

  

117.7 
±  5.09 

 

106.9* 
± 4.33 

 
 

Plasma Glucose/Plasma [ 14C] 
(nCi .

µmol -1) 
 

18.5 
± 1.45 

 

17.59 
± 1.45 

  

16 
± 2.97 

 

18.95 
± 2.47 

  

18.75 
± 0.95 

 

16.64 
± 0.58 

 
 

 

Table 5.3.1 Plasma glucose and 14C. 

 

Plasma glucose and 14C values used to calculate iLCMRglu for the individual 

experiments (FEN= fenfluramine). There was a significant difference in plasma 

[14C] in the CIA FEN group in study 3 in comparison to the control group in study 1. 

Data are presented mean ± SEM and were analysed using 2 way ANOVA with 

Bonferroni correction (p<0.05).  
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5.3.3 Study 1: iLCMRglu in the CIA group compared t o the control group. 

 

iLCMRglu did not differ significantly between the CIA and control groups in any of 

the 34 anatomical locations investigated (Figure 5.3.3). The trend indicated minimal 

changes in iLCMRglu (average -2%) between the control and CIA groups. This 

trend was also observed within the dorsal raphe nucleus (Figure 5.3.8), which is 

densely populated with serotonergic neurons, where there was no difference (0%) 

in iLCMRglu between the groups. 

 

 

 

 

Control  CIA 

Figure 5.3.3 Representative autoradiographic images  of [ 14C] at bregma -1.7mm in 

the tissue of a control and a CIA animal (Franklin K.B.J and Paxinos G., 2007).  
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Figure 5.3.4 iLCMRglu in cortical regions of the CIA  group compared 

to the control group.

[14C]-2-DG was performed on a CIA group and control group on day 41/42 

post immunisation. The CIA group was defined as any mouse with a clinical 

score greater than 0 in any limb. The graph depicts iLCMRglu in cortical 

regions of the control and CIA groups. There were minimal differences in 

iLCMRglu in all cortical regions examined. Data are presented as 

mean+SEM and statistical significance was determined using a Students 

unpaired t-test.
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Figure 5.3.5 iLCMRglu in motor regions of the CIA gr oup compared to the 

control group.

[14C]-2-DG was performed on a CIA group and control group on day 41/42 post 

immunisation. The CIA group was defined as any mouse with a clinical score 

greater than 0 in any limb. The graph depicts iLCMRglu in motor regions of the 

control and CIA groups. There were minimal differences in iLCMRglu in all 

motor regions examined. Data are presented as mean+SEM and statistical 

significance was determined using a Students unpaired t-test.
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Figure 5.3.6 iLCMRglu in limbic regions of the CIA g roup compared to the 

control group.

[14C]-2-DG was performed on a CIA group and control group on day 41/42 post 

immunisation. The CIA group was defined as any mouse with a clinical score 

greater than 0 in any limb. The graph depicts iLCMRglu in limbic regions of the 

control and CIA groups. There were minimal differences in iLCMRglu in all 

limbic regions examined. Data are presented as mean+SEM and statistical 

significance was determined using a Students unpaired t-test.
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Figure 5.3.7 iLCMRglu in hippocampal regions of the CIA group 

compared to the control group.

[14C]-2-DG was performed on a CIA group and control group on day 41/42 

post immunisation. The CIA group was defined as any mouse with a clinical 

score greater than 0 in any limb. The graph depicts iLCMRglu in 

hippocampal regions of the control and CIA groups. There were minimal 

differences in iLCMRglu in all hippocampal regions investigated. Data are 

presented as mean+SEM and statistical significance was determined using 

a Students unpaired t-test.
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Figure 5.3.8 iLCMRglu in other regions of the CIA gr oup compared to the 

control group.

[14C]-2-DG was performed on a CIA group and control group on day 41/42 

post immunisation. The CIA group was defined as any mouse with a clinical 

score greater than 0 in any limb. The graph depicts iLCMRglu in other brain 

regions in the control and CIA groups. There were minimal differences in 

iLCMRglu in all other brain regions investigated. Data are presented as 

mean+SEM and statistical significance was determined using a Students 

unpaired t-test. 
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5.3.4 Study 2: LCMRglu after fenfluramine challenge  in naïve mice. 

 

Fenfluramine challenge in naïve mice resulted in iLCMRglu in 24 out of the 33 brain 

region of interest examined being significantly different compared to controls. Lower 

glucose utilisation after fenfluramine challenge is illustrated by the lighter 

autoradiograms in comparison to the control group (Figure 5.3.9). The average 

difference between the control and CIA group was -26%, the greatest significant 

percentage difference was in the ventrolateral thalamus (Figure 5.3.11), where after 

fenfluramine challenge there was a 36% reduction in iLCMRglu compared to the 

control group. A significant difference was also reached in the dorsal raphe nucleus 

(Figure 5.3.14). The dorsal raphe nucleus is densely populated with serotonergic 

neurons which project to cortex, hippocampus, hypothalamus and limbic system 

(Rang et al., 2003).  Overall fenfluramine challenge appears to have a global effect 

on the brain decreasing iLCMRglu in all hippocampal regions examined and the 

majority of cortical, motor and limbic regions examined. 

       

The majority of areas did not display statistically significant reductions still showed 

minimal changes in iLCMRglu. The anterior hypothalamus and ventromedial 

hypothalamus displayed a 5% and 9% change in iLCMRglu between the groups, 

respectively (Figure 5.3.14).  Another region where a significant difference was not 

reached was the periaqueductal grey (Figure 5.3.14) which is involved in the 

reward pathway and in afferent and efferent pain pathways (Borsook et al., 2007).  
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Control Fenfluramine

Figure 5.3.9 Autoradiograms illustrating the effect  of fenfluramine challenge. 

Representative autoradiograms at different levels (A-D) from bregma 1.7mm to -4.04mm of 

glucose utilisation in a control group and fenfluramine group (Franklin K.B.J and Paxinos G., 2007). 
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Figure 5.3.10 iLCMRglu in cortical regions of the fe nfluramine treated group 

compared to the control group.

The graph depicts iLCMRglu in cortical regions of fenfluramine treated (10mg/kg)  

naïve mice in comparison to a saline treated controls. There were differences in 

iLCMRglu in the majority of cortical regions examined that reached statistical 

significance in the orbital cortex, medial prefrontal cortex, anterior cingulate, 

somatosensory, temperoparietal and perirhinal cortex. Data are presented as 

mean+SEM and statistical significance was determined using a Students unpaired 

t-test (* p< 0.05, **p< 0.01). 
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Figure 5.3.11 iLCMRglu in motor regions of the fenfl uramine treated group 
compared to the control group.

The graph depicts iLCMRglu in motor regions of fenfluramine treated (10mg/kg) 

naïve mice in comparison to a saline treated controls. The difference in 

iLCMRglu reached statistical significance in the majority of motor regions 

examined, these included the caudate putamen, globus pallidus, subthalamic

nucleus, sunstantia nigra par compacta, ventrolateral thalumus and lateral 

habenula. Data are presented as mean+SEM and statistical significance was 

determined using a Students unpaired t-test (* p< 0.05, **p< 0.01). 
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Figure 5.3.12 iLCMRglu in limbic regions in the fenf luramine treated group  

compared to the control group.

The graph depicts iLCMRglu in limbic regions of fenfluramine treated (10mg/kg) 

naïve mice in comparison to saline treated control group. There were 

differences in iLCMRglu in all limbic regions examined that reached statistical 

significance in the medial amygdala, basolateral amygdala, medialdorsal

thalamus, ventral tegmental area and mammillary body. Data are presented as 

mean+SEM and statistical significance was determined using a Students 

unpaired t-test (* p< 0.05, **p< 0.01).
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Figure 5.3.13  iLCMRglu in hippocampal regions in th e fenfluramine 

treated group compared to the control group.

The graph depicts iLCMRglu in hippocampal regions of fenfluramine treated 

(10mg/kg) naïve mice in comparison to a saline treated controls. The 

difference in iLCMRglu reached significance in all hippocampal regions 

examined, these included the dorsal CA1, dorsal CA2, ventral CA1, ventral 

CA2, molecular layer and dentate PO. Data are presented as mean+SEM and 

statistical significance was determined using a Students unpaired t-test 

(*p<0.05, **p< 0.01).
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Figure 5.3.14 iLCMRglu in other regions of the fenfl uramine treated group 

compared to the control group.

The graph depicts iLCMRglu in other regions of fenfluramine treated (10mg/kg) 

naïve mice in comparison to a saline treated controls. There were minimal 

differences in iLCMRglu in the hypothalamus and the bed nucleus of the stria

terminalis. iLCMRglu reached a significance difference in the dorsal raphe nucleus. 

Data are presented as mean+SEM and statistical significance was determined 

using a Students unpaired t-test (* p< 0.05).
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5.3.5 Study 3: The effect of fenfluramine challenge  on iLCMRglu in the CIA 

group compared to the control group. 

 

Fenfluramine challenge in the CIA group resulted in only 2 out of the 34 regions of 

interest examined being significantly different from fenfluramine challenged 

controls. The orbital cortex (-41%, Figure 5.3.16) and the molecular layer (-26%, 

Figure 5.3.19) of the hippocampus were the only regions where a significant 

difference in iLCMRglu was demonstrated. In the majority of regions of interest 

investigated there was a trend for serotonergic transmission to be lower in the CIA 

group in comparison to the control group which were not significant. The average 

percentage change in iLCMRglu was -14%, but overall there were minimal 

differences between the groups after fenfluramine challenge. This could be visually 

observed in the autoradiograms, where the darker the structure the greater the 

glucose utilisation (Figure 5.3.15) 

 

 

Figure 5.3. 15 The effect of fenfluramine challenge on tissue [ 14C] in the control group and 

CIA group at bregma -1.7mm (Franklin K.B.J and Paxi nos G., 2007).  

 
 

Control + Fenfluramine   CIA + Fenfluramine 
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Figure 5.3.16 The effect of fenfluramine challange o n iLCMRglu in cortical 

regions of the CIA group compared to the control gr oup.

The CIA group was defined as CIA immunised mice, which demonstrated clinical 

symptoms. Both the control group and the CIA group were challenged with 

fenfluramine (10mg/kg), 41/42 days post immunisation. The graph depicts 

iLCMRglu in cortical regions of the control and CIA groups. iLCMRglu reached a 

significance difference between the groups in the orbital cortex. However, in all 

other cortical regions examined there were minimal differences in iLCMRglu in the 

CIA group compared to the control group. Data are presented as mean+SEM and 

statistical significance was determined using a Students unpaired t-test (*p<0.05).
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Figure 5.3.17 The effect of fenfluramine challenge on iLCMRglu in motor 

regions of the CIA group compared to the control gr oup.

The CIA group was defined as CIA immunised mice, which demonstrated clinical 

symptoms of swelling and erythema. Both the control group and the CIA group 

were challenged with fenfluramine (10mg/kg), 41/42 days post immunisation. The 

graph depicts iLCMRglu in the motor regions of the control and CIA groups. There 

were minimal differences in iLCMRglu in the CIA group compared to the control 

group in all motor regions examined. Data are presented as mean+SEM and 

statistical significance was determined using a Students unpaired t-test. 
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Figure 5.3.18 The effect of fenfluramine challenge on iLCMRglu in limbic 

regions of the CIA group compared to the control gr oup.

The CIA group was defined as CIA immunised mice, which demonstrated 

clinical symptoms. Both the control group and the CIA group were challenged 

with fenfluramine (10mg/kg), 41/42 days post immunisation. The graph depicts 

iLCMRglu in limbic regions of the control and CIA groups. There were minimal 

differences in iLCMRglu in the CIA group compared to the control group in all 

limbic regions examined. Data are presented as mean +SEM and statistical 

significance was determined using a Students unpaired t-test.
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Figure 5.3.19 The effect of fenfluramine challenge on iLCMRglu in 

hippocampal regions of the CIA group compared to th e control group.

The CIA group was defined as CIA immunised mice, which demonstrated clinical 

symptoms. Both the control group and the CIA group were challenged with 

fenfluramine (10mg/kg), 41/42 days post immunisation. The graph depicts 

iLCMRglu in hippocampal regions of the control and CIA groups. iLCMRglu

reached a significance  difference in the molecular layer of the hippocampus. 

However, in all other hippocampal regions examined there were minimal 

differences in iLCMRglu between the groups. Data are presented as mean+SEM

and statistical significance was determined using a Students unpaired t-test 

(*p<0.05).
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Figure 5.3.20 The effect of fenfluramine challenge on iLCMRglu in other 

regions of the CIA group compared to control group.

The CIA group was defined as CIA immunised mice, which demonstrated clinical 

symptoms of swelling and erythema. Both the control group and the CIA group were 

challenged with fenfluramine (10mg/kg), 41/42 days post immunisation. The graph 

depicts iLCMRglu in other brain regions of the control and CIA groups and in all

other regions examined there were minimal differences in iLCMRglu between the 

groups. Data are presented as mean+SEM and statistical significance was 

determined using a Students unpaired t-test (* p< 0.05).

 

 



 122 

5.4 Discussion.  

 

The focus of this thesis is the hypothesis that there is altered brain function in CIA 

immunised mice with proven clinical symptoms. This chapter used the [14C]-2-DG 

autoradiographic technique and a challenge to the serotonergic system to identify 

any abnormal brain function within the CIA model from regional glucose utilisation 

values.  

 

To the author’s knowledge, there have been no previous attempts to investigate 

altered cerebral metabolic function in the CIA model. The [14C]-2-DG 

autoradiographic technique has however previously been utilised to investigate 

altered cerebral metabolic function during the temporal evolution in the rat adjuvant 

monoarthritic model to investigate brain function related to pain (Neto et al., 1999). 

This study reported increased metabolic function in the thalamic, cortical and limbic 

regions at day 2 and 14 but not day 4, suggesting metabolic function varies during 

the temporal evolution of the model (Neto et al., 1999). There was no difference in 

glucose utilisation in the CIA model after a chronic inflammatory response on day 

42 post immunisation, a similar time point to day 14 in the adjuvant monoarthritic 

model. Both models have a similar period of clinical symptoms. However, the CIA 

model is very different from the adjuvant monoarthritic model. The CIA model has a 

greater severity than the adjuvant monoarthritic model as multiple joints and limbs 

develop clinical symptoms of disease in the CIA model in comparison to a single 

joint in the left limb of the adjuvant monoarthritic model. Since the CIA model has 

greater severity it would be expected that the CIA model would also have altered 

cerebral glucose utilisation in the thalamus, cortical and limbic regions associated 

with pain, but this was not the case. Both studies used complete Freunds’s 

adjuvant which was administered via different routes. In the CIA model mice were 

immunised with a subcutaneous injection of type II collagen in complete Freund’s 

adjuvant emulsification. In comparison in the adjuvant monoarthritic model, 

complete Freund’s adjuvant was injected into the left tibiotarsal joint. The diverse 

immunisation techniques and the dissimilar degrees of severities between the 

models may have influence metabolic function differently. The temporal evolution of 

the models also differs and may account for the difference in cerebral metabolic 

function as the glucose metabolism was shown to vary during the temporal 
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evolution of the adjuvant monoarthritic model (Neto et al., 1999). This suggests that 

there may be also be altered metabolic function in the CIA model at a different time 

points. This is consistent with recent reports which suggest the BBB integrity varies 

during the temporal evolution of CIA (Nishioku et al., 2010b).  

 

Although there were no abnormalities in glucose utilisation in the CIA group this 

does not necessarily, mean that neuronal pathways are not compromised by the 

disease. The previous chapter (chapter 4) investigated altered serotonin transporter 

density and discussed the influence of pro-inflammatory cytokines on the 

serotonergic system. To assess altered serotonergic function, fenfluramine 

challenge was applied to drive serotonergic transmission. Study 2, characterised 

the iLCMRglu response to fenfluramine challenge and verified the dose in naïve 

mice. The results illustrated reduced iLCMRglu in a number of regions throughout 

the brain including cortical, motor, hippocampal and a few limbic regions. This was 

as expected because fenfluramie has driven the serotonergic system depleting 

serotonergic stores, so that 30 minutes later when 2-DG is administered, the brain 

has still not recovered resulting in reduced cerebral glucose utilisation. Serotonergic 

neuronal pathways originate from the raphe nucleus which displayed a significant 

reduction in cerebral glucose utilisation and is known to project to limbic and 

hippocampal regions which are involved in emotional and cognitive behaviour 

(Jacobs and Azmitia, 1992). Therefore the reduction in cerebral glucose response 

is consistent with the literature describing serotonergic pathways. From the data in 

study 2, it was concluded that 10mg/kg fenfluramine was a suitable dose of 

fenfluramine to drive the serotonergic system. 

 

In study 3, both groups were administered a fenfluramine challenge, examining 

altered serotonergic transmission in the murine CIA model, in comparison to the 

previous study which examined iLCMRglu response in the CIA model per se. The 

results demonstrated a significant difference in serotonergic transmission in the 

orbital cortex and the molecular layer of the hippocampus, structures which are 

known to be implicated in the pathology of depression and pain. Evidence for the 

involvement of the orbital cortex in the development of depression comes from 

reduced orbital cortex volume (Drevets et al., 2008) and increased cerebral blood 

flow in the orbital cortex of major depressive patients (Price et al., 1996). The 
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hippocampus is known to be involved in the modulation of emotional behaviour and 

there is evidence of reduced hippocampal volume in people suffering from 

depression which is intensified with repeated episodes and duration (Sheline et al., 

1996; Sheline et al., 2003). The orbital cortex and hippocampus are also involved in 

the neuro-circuitry of pain. The orbital cortex, thalamus and periaqueductal grey are 

involved in the pathway believed to modulate pain (Tang et al., 2009). The 

hippocampus is also believed to be involved in aversive behaviour associated with 

pain. The difference in serotonergic transmission observed in the hippocampus and 

orbital cortex correspond to the altered glucose response observed in the rat 

adjuvant monoarthritic model, which the author attributed to pain. To discount this 

future studies are required which employ a non-anti-inflammatory pain killer, to 

inhibit pain but not the immune response to determine if altered brain function is 

attributed to pain or the inflammation.   

 

In study 3 glucose utilisation was greater than was expected when compared to the 

previous studies. There were a number of differences between study 3 and the 

previous studies which may account for the observed difference in iLCMRglu. 

Although there were similar plasma glucose levels between all the studies. There 

was significantly lower plasma [14C] in the CIA FEN group in study 3 compared to 

the control group in study 1. This however did not appear to affect the plasma 

glucose/ plasma [14C] ratios as there was no significant difference between all the 

studies (Table 5.3.1). The [14C]-2-DG technique is a very sensitive method of 

investigating altered brain function which relies heavily on normal glucose levels. 

Glucose levels may become altered if an animal is stressed. However, if the animal 

was stressed or if it was given a higher dose of [14C]-2-DG this would be apparent 

in the plasma profiles. Furthermore, a new bottle of [14C]-2-DG was used in the final 

study with a specific activity of 57.7 mCi/mmol compared to the bottle of [14C]-2-DG 

used in study 1 and study 2 which has a specific activity of 50.0 mCi/mmol. Other 

members of the department who performed experiments with both bottles of [14C]-

2-DG reported no differences between studies. The greatest unknown was the fact 

in study 3 both groups received a fenfluramine challenge and investigated 

serotonergic function compared to the previous studies which investigated glucose 

response. Both the control group and the CIA group were administered 

fenfluramine. This fact possibly combined with the differences in plasma glucose 
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and plasma [14C] may have resulted in the increased glucose utilisation observed in 

the final study. All the studies were performed on separate days and may have 

been exposed to different variables. In hind sight if I were to repeat these study I 

would perform a single experiment with 4 groups; control, control with fenfluramine 

challenge, CIA and CIA with fenfluramine challenge in the hope of identifying 

compromised brain function in the CIA model. 

 

5.4.1 Conclusion. 

 

In the CIA mice there was no significant change in glucose response and minimal 

differences in serotonergic transmission. This still does not mean that CIA has no 

effect on brain function. In the future the experiment needs to be repeated as a 

single experiment with 4 experimental groups. It will also be important to consider 

the CIA model and identify the time points with increased likelihood of altered 

cerebral metabolic function. 
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 Chapter 6 

 

Cell proliferation and cell survival in the hippoca mpus  

of the murine CIA model. 

 

6.1 Introduction. 

 

Stem cells proliferate into neural progenitor cells which have the ability to 

differentiate into new neurones, astrocytes or oligodendrocytes (Gage et al., 1998). 

Neurogenesis occurs throughout adult life within the subventricular zone and the 

subgranular zone of the dentate gyrus only. Stem cells born in the subgranular 

zone of the dentate gyrus differentiate and migrate to the cellular level of the 

dentate gyrus where they mature into new neurons (Elder et al., 2006). Mature 

neurons have been shown to integrate into the existing neuronal circuitry to both 

receive synaptic input (Van Praag et al., 2002) and transmit neuronal output to 

postsynaptic targets (Toni et al., 2008). The functional implications and importance 

of neurogenesis within the subventricular zone and the subgranular zone are 

unknown.  

 

There is some evidence to suggest that reduced neurogenesis in the subgranular 

zone of the hippocampus is linked to deficits in learning and memory (Zhao et al., 

2008). Magnetic resonance imaging (MRI) has provided evidence of reduced 

hippocampal volume in people suffering from depression (Frodl et al., 2002; 

Bremner et al., 2000; Sheline et al., 1996). Investigation of the functional 

implications of altered hippocampal morphology using MRI found an association 

between reduced hippocampal volume and deficits in executive memory (Frodl et 

al., 2006). The reduction in hippocampal volume observed in depressive patients 

may be associated with reduced neurogenesis as, a MRI study on hippocampal 

volume in untreated depressed patients has suggested antidepressant treatment 

may be beneficial and protect the hippocampus (Sheline et al., 2003). 

Complementary rodent studies have shown chronic antidepressant treatment may 

increase hippocampal neurogenesis (Santarelli et al., 2003). 
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LPS induced systemic inflammation reduces cell proliferation and microglia cells 

are found in close proximity to proliferating cells in the subgranular zone (Ekdahl et 

al., 2003). LPS induced inflammation has been shown to be dependent on the 

activation of microglia as treatment with minocycline, inhibits microglia activation 

and restores neurogenesis (Ekdahl et al., 2003). Pro-inflammatory cytokine are 

secreted from microglia in response to trauma and infection and LPS treated 

microglia cell cultures  showed upregulation of IL-6, and TNF-α mRNA expression 

(Kim and de Vellis, 2005) which have been shown to reduce neurogenesis. 

Transgenic mice expressing IL-6 demonstrated reduced neurogenesis (Vallieres et 

al., 2002). Similarly exposure to IL-6 (Monje et al., 2003) and TNF-α (Ben Hur et al., 

2003; Monje et al., 2003) significantly reduced neurogenesis in vitro. Blockade of 

IL-6 restores neurogenesis suggesting IL-6 is an important mediator in reducing 

neurogenesis. IL-6 has also been implicated in reduced cell survival (Monje et al., 

2003). Deletion of the TNFα-R1 resulted in increased neurogenesis which suggests 

TNF-α mediates its effect through the TNFα-R1 to reduce neurogenesis (Iosif et al., 

2006). Exposure of TNF-α to a hippocampus-derived progenitor cell line also 

decreases cell survival (Cacci et al., 2005). Exposure to IL-1β or IFN-γ showed no 

change in neurogenesis (Monje et al., 2003), however other research groups have 

shown IFN-γ reduces cell proliferation and increases apoptosis (Ben Hur et al., 

2003). 

 

In the CIA model immunisation with type II collagen and complete Freund’s 

adjuvant stimulates the recruitment of neutrophils and macrophages which secrete 

pro-inflammatory cytokines IL-6, TNF-α and IL-1β (Cho et al., 2007). T-cells are 

important in the induction of arthritis (Ranges et al., 1985) and are observed in the 

lymph nodes from week three onwards in the CIA model (Cho et al., 2007). The 

CIA model is a T helper 1 (TH1) and TH17 cell mediated disorder. TH1 cells are 

activated by IL-12 and express IFN-γ and IL-2, whereas TH17 cell are activated by 

IFN-γ, IL-6, TNF-α, IL-1 and IL-17 and express IL-6, TNF-α, IL-1 and IL-17. The 

secretion of the cytokine IFN-γ by TH1 leads to negative regulation of TH17 in 

comparison to the secretion of cytokines IL-6, TNF-α, IL-1 and IL-17 by TH17 which 

led to positive regulation of TH17 cells (Furuzawa-Carballeda et al., 2007). IL-17 

has been linked with the severity of the inflammation, as mice over expressing IL-

17 have increased inflammation and joint destruction and blocking IL-17 inhibits the 
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induction of CIA (Lubberts et al., 2005). Evidence from IL-6 knockout mice illustrate 

the importance of IL-6 in the induction of CIA as the induction of arthritis was 

inhibited in IL-6 knockout mice and restored by administration of IL-6 (Alonzi et al., 

1998). Cytokines vary throughout the temporal evolution of the CIA model TNF- α 

and IL-6 are plentiful after the onset of clinical symptoms in comparison to IFN-γ 

which was scarcely expressed in the synovial tissue (Mussener et al., 1997) 

 

The hypothesis underlying this thesis is that pro-inflammatory cytokines released in 

the periphery alter the CNS resulting in the development of depression. The 

hypothesis underlying this study is that during the inflammatory response in the CIA 

model pro-inflammatory cytokines IL-6 and TNF-α are released by microglia 

resulting in reduced neurogenesis in the subgranular zone of the hippocampus.  

 

6.1.1 Aims. 

 

The main aim was to investigate cell proliferation in the subgranular zone of the 

hippocampus at varying stages of disease progression in the murine CIA model. To 

achieve this, 5’ –bromo-2’-deoxyuridine (BrdU), a marker of cell proliferation was 

injected intraperitoneally into CIA immunised mice at three different time points, to 

investigate:  

 

1. Establish the BrdU protocol (Study A). 

2. Cell proliferation before the onset of clinical symptoms (Study 1).  

3. Cell survival during the development of clinical symptoms (Study 2). 

4. Cell proliferation after the development of clinical symptoms (Study 3). 
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6.2 Methods.  

 

6.2.1 Induction of CIA. 

 

On day 0, male DBA/1 mice aged 7-8 weeks (13-15g, Harlan) were anaesthetised 

with 4% isofluorane in a mixture of 30% oxygen /70% nitrogen and the fur at the 

base of the tail shaved. Under anaesthetia the CIA group (n=10 or 12) were 

injected subcutaneously with 0.1ml of collagen emulsification at 2 sites just above 

the base of the tail, of 0.05ml each. The collagen emulsification was made up of 

equal volumes of bovine type II collagen and complete Freund’s adjuvant. At this 

time point the control group (n=10/12) received no treatment. On day 21 post 

immunisation, the CIA group were injected intraperitoneally with 0.2ml bovine type 

II collagen 2mg/ml in an equal volume of sterile phosphate buffered saline. At this 

time point the control group received an intraperitoneal injection of 0.2ml sterile 

phosphate buffered saline. On day 42 post immunisation, brains were harvested 

(Section 2.1.1). Immunohistochemistry was performed on any mouse which had a 

clinical score greater than 0 in at least 1 limb. In study 1 and 2 one mouse was 

excluded from the immunohistochemistry experiments due to inaccurate cryostat 

cutting.  

 

6.2.2 Termination criteria. 

 

In accordance with the Home Office project licence animals were assigned a score 

of ill-health. Any mouse with an ill-health score of 7 or greater was killed by a 

Schedule 1 method on ethical grounds (Section 2.1.2).   

 

6.2.3 Assessment of the disease. 

 

Each limb was assigned a daily clinical score describing the extent of the swelling 

and erythema in the limb. A score of 0 represents no sign of swelling and erythema, 

a score of 2 or 3 represents mild swelling and erythema and a clinical score of 4 

represents severe swelling and erythema and usually results in the loss of function 

of the limb (Section 2.1.3). A mouse was defined as having clinical symptoms of 

arthritis if it was assigned a clinical score greater than 0 in any limb. The incidence 
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of disease was calculated as the percentage of immunised mice which 

demonstrated clinical symptoms. To measure paw thickness the paw was held 

horizontal and the two heads of the spring callipers were placed above and below 

the paw clamping it in place (Section 2.1.6). 

 

6.2.4 Experimental design. 

 

From the schematic of the CIA model it can be observed that the experiment has a 

duration of 42 days, on day 0 mice were immunised by an initial subcutaneous 

injection of type II collagen emulsification. On day 21 post immunisation, mice were 

challenged with type II collagen mixed with phosphate buffered saline. On days 41 

post immunisation mice were injected intraperitoneally with BrdU (150mg/kg). 

Finally on day 42 post immunisation mice were culled and the brains harvested 

(Figure 6.2.1).  

 

Figure 6.2.1 Study A: Experimental design of a prel iminarily cell proliferation 

study. 

 

From the schematic of the CIA experiment it can be observed that the experiment 

has duration of 6 days, on day 0 mice were immunised by an initial subcutaneous 

injection of type II collagen emulsification. Both the CIA (n=10) and control (n=10) 

groups were injected intraperitoneally with BrdU (100mg/kg) twice daily on days 1-5 

inclusive. Mice were culled on day 6 and the brains harvested (Figure 6.2.2).  

 

Day 0 Immunisation  
CIA group:  0.1ml s.c 
injection of 2mg/ml bovine 
type II collagen and 
complete Freund’s adjuvant. 
 
Control group:   
No treatment. 

No clinical symptoms Clinical symptoms  

Day 21 Challenge  
CIA group:  0.2ml i.p injection  
2mg/ml bovine type II  
collagen and phosphate  
buffered saline. 
 
Control group: 0.2ml phosphate  
buffered saline. 

BrdU 
Day 42 
Maximum 
 duration of  
experiment. 
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Figure 6.2.2 Study 1: Experimental design of the ce ll proliferation study 

before the onset of clinical symptoms. 

  

From the schematic of the CIA model it can be observed that the experiment has a 

duration of 42 days, on day 0 mice were immunised by an initial subcutaneous 

injection of type II collagen emulsification. On days 18-20 post immunisation mice 

were injected intraperitoneally twice daily with BrdU (100mg/kg). The CIA 

experiment then continued and the mice were challenged with type II collagen 

mixed with phosphate buffered saline on day 21 post immunisation. Then on day 42 

post immunisation, mice were culled and brains harvested. This would have given 

enough time for BrdU positive cells to either differentiate or undergo apoptosis, 

allowing cell survival to be investigated (Figure 6.2.3).  

 

 

 

 

 

 

 

 

 

 

 

Day 0 Immunisation  
 
CIA group:  0.1ml s.c injection  
of 2mg/ml bovine type II  
collagen and complete  
Freund’s adjuvant. 
 
Control group:  No treatment. 

No clinical symptoms Clinical symptoms  

 

 
 

 
Day 42 

Day 6 
Duration of  
experiment. 

BrdU  

 

 

Day 0 Immunisation  
 
CIA group:  0.1ml s.c 
injection of 2mg/ml 
bovine type II collagen 
and complete Freund’s 
adjuvant. 
 
Control group:  No 
treatment. 

No clinical symptoms 

Day 21 Challenge  
 
CIA group:  0.2ml i.p 
injection 2mg/ml bovine 
type II collagen and 
phosphate buffered saline. 
 
Control group:  0.2ml 
phosphate  
buffered saline. 

Day 42:   
Maximum 
duration of 
experiment. 

BrdU 

Clinical symptoms  

Figure 6.2.3 Study 2: Experimental design of the ce ll survival study 

during the development of and clinical symptoms.  
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From the schematic of the CIA model it can be observed that the experiment has a 

duration of 42 days, on day 0 mice were immunised by an initial subcutaneous 

injection of type II collagen emulsification. On day 21 post immunisation, mice were 

challenged with type II collagen mixed with phosphate buffered saline. On days 39-

41 post immunisation mice were injected intraperitoneally twice daily with BrdU 

(100mg/kg). Finally on day 42 post immunisation mice were culled and the brains 

harvested (Figure 6.2.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.5 Experimental protocol for BrdU immunohistoche mistry. 

 

Sections were placed in a container of sodium citrate buffer (pH6) in a water bath 

preheated at 98ºC for 40 minutes. Still in the sodium citrate, sections were then 

placed in a sink of cold water for 20-30 minutes. Once cooled the endogenous 

peroxidise activity was quenched with 3% hydrogen peroxide in phosphate buffered 

saline for 10 minutes. Sections were then incubated in 0.025% trypsin solution for 

10 minutes. BrdU is incorporated into proliferating cells during mitosis, in order for 

the BrdU antibody to gain access to the labelled cells DNA was denatured with 2M 

HCl at 37 ºC for 30 minutes. Non-specific binding sites were blocked for 60 minutes 

using a blocking solution of 1% normal rabbit serum in phosphate buffered saline 

and 0.3% triton X-100. Sections were incubated in primary antibody Rat anti-BrdU 

(1:200, Serotec) and blocking solution at 4ºC overnight. Sections were then 

incubated in secondary antibody biotinylated rabbit anti-rat (1:200, Vector 

Day 0 Immunisation  
 
CIA group:  0.1ml s.c 
injection of 2mg/ml 
bovine type II collagen 
and complete Freund’s 
adjuvant. 
 
Control group:  No 
treatment. 

 

No clinical symptoms Clinical symptoms  

Day 21 Challenge  
 
CIA group:  0.2ml i.p 
injection 2mg/ml bovine 
type II collagen and 
phosphate buffered saline. 
 
Control group:  0.2ml 
phosphate buffered saline. 

 

Day 42:   
Maximum 
duration of 
experiment. 

BrdU 

Figure 6.2.4 Study 3: Experimental design of the ce ll proliferation study 

after the development of clinical symptoms.  
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Laboratories) in blocking solution for 60 minutes. This was followed by incubation in 

ABC (Vector Laboratories) for 60 minutes and visualization with DAB (Vector 

Laboratories). Between each step in the experiment sections were rinsed in two 5 

minute phosphate buffered saline washes on a shaker. The only exception was 

between the non-specific block and the primary antibody incubation where there 

was no rinse step. Finally sections were rinsed in distilled water for 30 minutes and 

counterstained with haematoxylin prior to mounting with a cover slip using DPX 

(Section 2.4.3).  

 

6.2.6 Quantification of BrdU positive cells. 

 

Prior to quantification BrdU sections were anonymised. BrdU positive cells in the 

subgranular zone, granule cell layer and hilus were counted in every 6th section 

through the hippocampus using a light microscopy (x400). The total number of 

BrdU positive cells in each anatomical area was estimated by multiplying the 

number of cells in each section by 6. A BrdU positive cell was counted as being in 

the subgranular zone if the distance was less then one cell away or touching the 

granule cell layer. A BrdU positive cell was classed as being in the granule cell 

layer if it was within the granule cell layer and a BrdU positive cell was classed as 

being in the hilus if the distance was more then one cell away from the granule cell 

layer (Section 2.4.4). 

 

6.2.7 Statistical analysis.  

 

The disease severity summary measure and paw thickness summary measure data 

are presented as the mean. Statistical significance was determined using a Mann 

Whitney test to investigate changes in the paw thickness summary measurements 

between groups. Statistical significance was determined using a Students unpaired 

t-test to investigate changes in the estimated number of BrdU positive cells in the 

subgranular zone, granule cell layer or hilus between the groups. To examine the 

correlation between the disease severity summary measure and the number of 

BrdU positive cells in the subgranular zone a Spearman rank test was used.  
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6.3 Results.   

 

6.3.1 Disease incidence and clinical score. 

 

Study A. 

Ten mice out of a possible 12 developed clinical symptoms of erythema and 

swelling representing a disease incidence of 83%. Further details of CIA model 

used in this study are located in chapter 3 Section 3.3.5-3.3.6.  

 

Study 1. 

Both the CIA and control groups displayed no clinical symptoms of erythema or 

swelling at any time point investigated.  

 

Study 2.  

In the cell survival study, 11 mice out of the12 immunised developed clinical 

symptoms of arthritis representing a disease incidence of 92%. In the CIA group 

swelling and erythema of the limbs developed between days 21-35 post 

immunisation. Front limbs appeared to be more severely affected by disease than 

hind limbs having the higher clinical scores over a longer period of the experiment. 

No control animal displayed any sign of limb swelling and erythema at any time 

point investigated. 

 

To provide a summary measure of disease severity for each animal, the sum 

clinical scores of the 4 limbs were plotted over time and the area under the curve 

calculated. The severity of disease described by the clinical score differed between 

animals resulting in a range of disease severities (Figure 6.3.1, A).  

 

Paws are approximately 1.8-2.0mm thick in naïve adult DBA1/A mice. The swelling 

in the front and hind limbs of the CIA group reached a maximum paw thickness of 

3.0mm, however overall the swelling was greater in the front limbs by comparison 

to the hind limbs. Overall there was a significant increase in the summary measure 

of paw thickness in the CIA group compared to the control group (***p<0.001; 

Figure 6.3.1, B).   
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Study 3. 

Nine mice out the 10 immunised developed clinical symptoms of arthritis 

representing a disease incidence of 90%. The CIA group began to develop clinical 

signs of arthritis at approximately day 23-30 post immunisation. The right front limb 

appeared to be more severely affected by disease than the rest of the limbs having 

the higher clinical scores over a longer period of the experiment. No control animals 

showed any clinical signs of arthritis at any time point examined. 

 

Disease affected each animal to different extents. To provide a summary measure 

of disease severity for each animal the sum of the clinical scores of the 4 limbs 

were plotted over time and the area under the curve calculated. The severity of the 

disease varied in the CIA group. No control animals showed any signs of clinical 

symptoms so had a disease severity of 0 at all time points investigated (Figure 

6.3.2, A). 

 

The swelling in the front and hind limbs of the CIA group reached a maximum paw 

thickness of 3.0mm. Even although the right hind limb reached a maximum paw 

thickness of 3.0mm, the majority of right hind limb calliper measurements did not 

exceed a maximum paw thickness of 2.4mm. 

 

In order to demonstrate the swelling in the CIA group compared to the control group 

the sum paw thickness of the 4 limbs were plotted over time and the area under the 

curve calculated to give a summary measure of paw thickness. Overall there was a 

significant increase in the summary measure of paw thickness in the CIA group 

compared to the control group (Figure 6.3.2, B).   
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Figure 6.3.1 Study 2: Summary measures depicting th e disease in the CIA group 

compared to the control group.

The sum clinical score and the paw thickness were plotted over time and the area under 

the curve calculated to give a summary measure of disease severity and a summary 

measure of paw thickness in each animal in study 2. A) The disease severity varied 

between animals in the CIA group. No animal in the control group showed any signs of 

clinical symptoms. B) The graph above depicts a significant difference in the summary 

measure of paw thickness in the CIA group compared to the control group. Horizontal 

bar represents the mean. Statistical significance was determined using a Mann Whitney 

test (***p< 0.001).
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Figure 6.3.2 Study 3: Summary measures depicting th e disease in the CIA group 

compared to the control group.

The sum clinical score and the paw thickness were plotted over time and the area under the 

curve calculated to give a summary measure of disease severity and a summary measure of 

paw thickness in each animal in study 3 (A) The disease severity varied between animals in 

the CIA group. No animal in the control group showed any signs of clinical symptoms. B) 

The graph above depicts a significant difference in the summary measure of paw thickness 

in the CIA group compared to the control group. Horizontal bar represents the mean. 

Statistical significance was determined using a Mann Whitney test (***p< 0.001).
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6.3.2 Cell proliferation and cell survival. 

 

BrdU cells were quantified in the subgranular zone, granule cell layer and hilus of 

the hippocampus in the control and CIA group. A BrdU positive cell was counted 

as being in the subgranular zone if the distance was less than one cell away or 

touching the granule cell layer. A BrdU positive cell was classed as being in the 

granule cell layer if it was within the granule cell layer and a BrdU positive cell was 

classed as being in the hilus if the distance was greater than one cell from the 

granule cell layer (Section 2.4.4). BrdU positive cells are predominantly located in 

the subventricular zone, in contrast cell proliferation occurs throughout the 

embryonic brain (Figure 6.3.3). 

 

Study A.  

On day 42 post immunisation, BrdU positive cell were quantified in the subgranular 

zone, granule cell layer and hilus of the control and CIA groups. The estimated 

number of BrdU positive cells was higher in the subgranular zone in comparison to 

the granule cell layer and hilus. In all anatomical locations examined, no significant 

difference was found in the number of BrdU positive cells in the CIA group 

compared to the control group (Figure 6.3.4). 

 

Study 1.  

The number of BrdU positive cells was higher in the subgranular zone in 

comparison to the granule cell layer and the hilus. Within the subgranular zone 

there was a decrease in the number of BrdU positive cells in the CIA group 

compared to the control group, however this did not reach statistical significance 

(Figure 6.3.5 A). In the granule cell layer and hilus there was no significant 

difference between BrdU positive cells in the CIA group compared to the control 

group (Figure 6.3.5 B, C). 

 

Study 2.  

At day 42 post immunisation there were similar numbers of BrdU positive cells in 

the subgranular zone, granule cell layer and hilus. There was also no significant 

difference in the number of BrdU positive cells in the CIA group compared to the 

control group in all anatomical locations investigated (Figure 6.3.6, A-C).  
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Study 3. 

There was a lower number of proliferating cells within the granule cell layer and 

hilus by comparison to the subgranular zone. There was no significant difference 

between the number of proliferating cells in the CIA group compared to the control 

group in the granule cell layer and the hilus (Figure 6.3.7, B, C). In the subgranular 

zone however, there was a significant increase in the number of proliferation cells 

in the CIA group compared to the control group (Figure 6.3.7,A).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3.3  Representative BrdU immunostained sections. 

 

BrdU positive cells in the subgranular zone (SGZ), granule cell layer (GCL) and hilus were 

counted using light microscopy (x400).  Arrow indicate BrdU positive staining in the SGZ. 

There is substantial BrdU staining in an embryonic brain and was used as a positive 

control. Scale bar =10µm. 
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Figure 6.3.4 Study A: Cell proliferation.

On day 41 post immunisation, mice were injected intraperitoneally with 150mg/kg BrdU.

On day 42 post immunisation, mice were culled and the brains harvested, stained for

BrdU and BrdU positive staining quantified. Quantification of cell proliferation in the 

subgranular zone, granule cell layer and hilus revealed no significant difference between 

BrdU positive cells in the CIA group (n=10)  compared to the control group (n=10). 

Statistical difference was assessed using a Student’s unpaired t-test.
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Figure 6.3.5 Study 1: Cell proliferation.

Mice were injected intraperitoneally with 100mg/kg BrdU twice daily on days 1-5 

inclusive. On day 6 post immunisation the mice were culled and the brains harvested, 

stained for BrdU and BrdU positive staining quantified in the subgranular zone, granule 

cell layer and hilus.There was no significant difference between BrdU positive cells in the 

CIA group compared to the control group in any anatomical location investigated. 

Horizontal bars represent the mean. Statistical significance was assessed using a 

Student’s unpaired t-test.
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Figure 6.3.6 Study 2: Cell Survival.

Mice were injected intraperitoneally twice daily with 100mg/kg BrdU on days 18-20 

inclusive. They were culled on day 42 post immunisation and the brains harvested, 

stained for BrdU and positive staining quantified. Quantification of BrdU positive cell 

survival in the subgranular zone and surrounding granule cell layer and hilus revealed 

that there was no significant difference between BrdU positive cells in the CIA group 

compared to the control group in any anatomical location investigated. Horizontal bar 

represents the mean. Statistical difference was assessed using a Student’s unpaired t-

test. 
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Figure 6.3.7 Study 3: Cell proliferation.

Mice were injected intrapertaneally twice daily with 100mg/kg BrdU on days 39-41 

inclusive. They were culled on day 42 post immunisation and the brains harvested, stained 

for BrdU and BrdU positive staining quantified. Quantification of cell proliferation in the 

subgranular zone and surrounding granule cell layer and hilus revealed that there was a 

significant increase in BrdU mice compared to controls. In the granule cell layer and hilus

there was no significant difference between BrdU positive cells in CIA mice compared to 

controls. Statistical difference was assessed using a Student’s unpaired t-test (*p<0.05).
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6.3.3 Relationship between disease severity and cel l survival and 

proliferation. 

 

Study 2. 

Disease severity varied between animals in the CIA group. To investigate the 

impact varying disease severities has on cell proliferation, the summary 

measurement of disease severity was compared with the estimated number of 

BrdU cells in the subgranular zone in the same animal. The results show no 

association between clinical score and number of BrdU positive cells (Figure 6.3.8 

A). 

 

Study 3. 

There was a range of disease severity summary measures (Figure 6.3.2, A) which 

may account for the variation in BrdU labelled cells in the subgranular zone 

between animals (Figure 6.3.8, A). To investigate this association the summary 

measurement of disease severity was compared with the total number of BrdU cells 

in the subgranular zone in the same animal. When plotted the data showed that as 

disease severity increased so did the total number of BrdU positive cells (Figure 

6.3.8, B). 
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Figure 6.3.8 Relationship between disease severity a nd cell survival and 

proliferation.

The summary measurement of disease severity was compared with the total number of 

BrdU cells in the subgranular zone (SGZ) from the same animal. A) There was no 

significant correlation (r=0.5714) between clinical score and BrdU positive cells in study 

2. B) The results show a significant correlation (r=0.7667) between clinical score and 

BrdU positive cells in study 3. Statistical significance was calculated using a Spearman 

rank test.
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6.4 Discussion.  

 

Overall the data reported in this chapter show no significant reduction in cell 

proliferation as described in the hypothesis. There was a negligible reduction in cell 

proliferation before the onset of clinical symptoms (study 1), however this was not 

statistically significant.  After the development of clinical symptoms there was a 

significant increase in cell proliferation (study 3). The significant increase in cell 

proliferation was not reproducible (study A) and the total number of proliferating 

cells varied per animal.  

 

In study A no significant difference was found in the number of proliferating cells in 

the subgranular zone, granule cell layer or hilus of the CIA group compared to the 

control group. Even although there was no significant difference in the number of 

proliferating cells in the subgranular zone in the CIA group compared to the control 

group, we were able to reproduce the BrdU staining previously described in the 

literature (Wojtowicz and Kee, 2006). BrdU staining occurs throughout the entire 

brain. To illustrate the higher level of BrdU positive staining in the subgranular 

zone the surrounding granule cell layer and hilus were also quantified. There are a 

number of possible explanations why no significant difference was observed 

between the CIA group and the control group. This was the first time I had 

prepared sucrose brains and the brain tissue immunostained was of poor quality 

with a high level of crystal artefact. As the tissue was damaged it was difficult to 

count the BrdU positive staining. Therefore in subsequent studies the brains were 

left in sucrose for a longer period of time. Another possible reason that no 

significant change was observed in the number of BrdU positive cells was that 

there may have not been enough proliferating cells labelled with BrdU. Therefore 

in the subsequent cell proliferation studies the number of BrdU injections were 

increased. These methological problems may also account for the differences 

observed between study A and study 3 as these studies have the same timeline. 

 

To better understand cell proliferation during the temporal development of the CIA 

model, cell proliferation was investigated at two distinct time points. The first of 

these was before the onset of clinical symptoms. On day 0 of the murine CIA 

model, naïve mice were infected with the pathogen complete Freund’s adjuvant 
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which rapidly activated the innate immune response. Complete Freund’s adjuvant is 

an endotoxin similar to LPS which activates the immune response and is implicated 

in reduced neurogenesis (Monje et al., 2003; Ekdahl et al., 2003). IL-6 is important 

in the induction of CIA and has been shown to reduce neurogenesis (Alonzi et al., 

1998). We found no significant reduction in cell proliferation within the subgranular 

zone (Figure 6.3.5). The second time point investigated was after the development 

of clinical symptoms. By day 42 post immunisation, in the CIA experiment mice 

have experienced chronic clinical symptoms of rheumatoid arthritis. In this study 

there was a significant increase in cell proliferation (Figure 6.3.7). This was not the 

result we had anticipated as the literature has shown that pro-inflammatory cytokine 

decrease cell proliferation (Monje et al., 2003; Vallieres et al., 2002; Iosif et al., 

2006) 

 

The significant increase in cell proliferation after chronic inflammation  is consistent 

with previous studies which have found an increase in neurogenesis in 

neurodegenerative disorders including Alzheimer’s disease (Jin et al., 2004), 

Parkinson’s disease (Shan et al., 2006) and Piron’s disease (Steele et al., 2006). A 

recent publication by Wolf etal., 2009 found a significant increase in BrdU labelled 

cells expressing doublecortin, a marker of immature neurons at day 7 in the 

adjuvant induced arthritic (AIA) model of rheumatoid arthritis. The main difference 

between the AIA and the CIA models of rheumatoid arthritis is the temporal 

evolution. The AIA arthritic model develops between day 1-3 which is described as 

the acute phase and continued between day 4-21 which is described as the chronic 

phase. Day 7 in the AIA model is equivalent to day 28 post immunisation in the CIA 

model. Cell proliferation in CIA model was not investigated at day 28 post 

immunisation, in this study as it is likely at this time point that the clinical symptoms 

have just developed and are still continuing to develop. Increased cell proliferation 

in the CIA model at day 42 post immunisation, however, was not reported in the 

AIA model at the equivalent time point (Wolf et al., 2009b). Difference in sex, age 

and n numbers are possible explanations for the difference in proliferating cells 

between the models. Another important point  to note is in the CIA model multiple 

joints in multiple limbs display clinical signs of disease compared to the AIA model 

which is limited to the antigen injected joint (Brand, 2005). There was also a 

substantial difference in BrdU administration, a single intraperitoneal injection of 
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50mg/kg BrdU was administered in the AIA model compared to twice daily 

injections of 100mg/kg BrdU over three days in the CIA model. Thus labelling a 

greater number of BrdU positive cells, which may account for the significant 

difference observed at day 42 post immunisation in the CIA model. Aside from all 

these difference in both the AIA and the CIA model there was a significant increase 

in cell proliferation, which correlated with the clinical symptoms of disease. 

 

Increased CD4+ T-cells in the murine CIA model may stimulate the increase in cell 

proliferation found in the CIA experiment. A recent publication illustrated that T-cell 

knockout mice had reduced neurogenesis in the dentate gyrus  implicating T-cells 

involvement in neurogenesis (Wolf et al., 2009b). There is also a reduction in T-cell 

response in depressed patients (Irwin and Miller, 2007). If T-cells are indeed 

neuroprotective this may implicate reduced T-cells as a possible mechanism for 

reduced neurogenesis in depressed patients. T-cells can cross the BBB via the 

choroid plexus (Engelhardt and Ransohoff, 2005). This makes them possible 

candidates for translating the peripheral immune response to the CNS. Further 

investigation is required to determine the full mechanism which may involve the 

expression of cytokines from T-cells. T-cell derived IFN-γ has also been shown to 

promote microglia-induced inflammation and impair cell renewal (Butovsky et al., 

2006). Therefore it may depend, on the immune homeostasis in the CIA model 

whether the immune system will have a neuroprotective or detrimental effect.   

 

The increase in cell proliferation observed in our study may not be new neurons but 

other proliferating cells. Different markers are required to investigate the increase in 

cell proliferation further to determine the cell phenotype which may be stem cells, 

new neurons, microglia, oligodendrocytes or astrocytes. There is evidence to 

suggest that cytokine influence cell proliferation and create a bias towards a 

particular phenotype. For example IL-4 is believed to promote the differentiation of 

proliferated cells towards an oligodendritic phenotype, IFN-γ towards a neuronal 

phenotype (Butovsky et al., 2006) and IL-6 towards an astrocytic phenotype 

(Nakanishi et al., 2007). These are just three known examples of cytokines which 

may promote differentiation to a specific phenotype. There are an array of cytokines 

released during the temporal evolution of the CIA model which may also create a 
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bias towards a particular phenotype. Therefore further investigation is required to 

phenotype the newly differentiated cells.  

 

It is also important to note the limitations of BrdU as a marker. Firstly BrdU is a 

toxin. Secondly, BrdU is a marker of DNA synthesis therefore there may also be 

some cells labelled during DNA repair, (Selden et al., 1993). Thirdly, labelling does 

not label all proliferating cells within the CNS it only provides a snap shot as it has a 

short bioavailability of approximately 2 hours (Taupin, 2007). Finally BrdU labelling 

is diluted with each subsequent cell division. This is not as important in the cell 

proliferation studies but is important to consider in the cell survival study. 

 

Cell survival was investigated during the onset of clinical symptoms. There was no 

significant effect of disease progression on cell survival. However there was a 

similar number of proliferating cells in the subgranular zone compared to the 

granule cell layer and hilus (Figure 6.3.6). This is a different trend then that 

observed in the other studies in this chapter where there was a greater number of 

proliferating cells in the subgranular zone by comparison to the granule cell layer 

and hilus. There are a number of possible explanations for this, the increased 

number of proliferating cells observed in the subgranular zone in the other studies 

may be new cells with a neuronal phenotype, which do not mature into new 

neurons but undergo apoptosis. Therefore it is possible that 21 days after BrdU 

administration the subgranular zone had a similar number of BrdU positive cells 

compared to the granule cell layer and the hilus as a number of BrdU labelled cells 

within the subgranular zone had undergone apoptosis. This is consistent with 

previously published data investigating cell survival which found that after a 4 week 

period only 43% of BrdU labelled cells survived (Van Praag et al., 1999). 

Alternatively BrdU is a marker of proliferating cells and can only provide information 

on the time point it was administered. BrdU was administered prior to day 21 post 

immunisation. Therefore there may have been a decreased immune response and 

hence similar levels of proliferating cells in the subgranular zone, granule cell layer 

and hilus at this particular time point.  
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6.4.1 Conclusion. 

 

No significant reduction in cell proliferation was observed in the subgranular zone of 

the CIA group compared to the control group at any time point examined. However, 

the data implicated an increase in cell proliferation after development of clinical 

symptoms. Further characterisation of cytokines, microglia and T-cells released in 

the CNS during the temporal evolution of the CIA model is required to determine 

potential mechanisms of action. 
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Chapter 7 
 

General discussion. 
 
 

7.1 Discussion. 
 
7.1.1 Reproducibility of the CIA model. 
 
 
One of the main focuses of this thesis has been the effect of CIA on the brain 

however, it is important to note the variability between CIA experiments. Summary 

measures of the clinical score were used to give an indication of the varying 

temporal evolution of disease over the duration of the experiment. The summary 

measure takes into account the variables of time, clinical score and the number of 

limbs displaying clinical symptoms. This is important as CIA mice can develop 

arthritis in any limb and in any combination of limbs over varying periods of time. 

Therefore the temporal evolution of arthritis in individual mice is unique and the 

reason why arthritic symptoms develop in a limb or limbs is ambiguous. 

 

Chapter 3 5 6 

Study 1 2 1 3 2 3 

n= 4 10 5 7 11 9 

Mean summary 

measure of disease 

severity 

62 119 53 61 127 97 

 

Table 7.1.1 Mean summary measure of disease severit y. 

 

The results in Table 7.1.1 show the variability between the CIA groups and 

highlight that each CIA group produces a unique set of results which are not 

reproducible between groups. In the future to counteract the variability in the CIA 

model it may be necessary to increase the n number in the CIA group to determine 

any effect of CIA on the brain.   
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7.1.2 CIA has minimal influence on the brain. 
 
 
The CIA model is a well established model of rheumatoid arthritis used to 

investigate novel anti-inflammatory agents. However, at the start of this thesis there 

was no information to our knowledge that characterised changes in the CNS in the 

model. Due to the novelty of this project we began by identifying key characteristics 

of depression and examined potential markers of these in the CIA model. Both 

altered serotonergic system function and hippocampal atrophy are implicated in the 

pathology of depression. It is believed that pro-inflammatory cytokines IL-1β, IFN-γ, 

and TNF-α drive IDO activity in activated microglia to metabolise tryptophan to the 

neurotoxic metabolites 3-hydroxy kynurenine and quinolinic acid (Miura et al., 

2008). Thus, depriving the serotonin pathway of tryptophan could possibly result in 

reduced cell proliferation. My results showed minimal differences in both serotonin 

transporter levels and hippocampal cell proliferation between CIA immunised mice 

with proven clinical symptoms compared to controls. Since the serotonergic system 

appears to be unaltered and there was no reduction in cell proliferation it is possible 

that IDO activity was not being driven by cytokines and thus not metabolising 

tryptophan to its neurotoxic metabolites. In addition to the lack of changes in either 

serotonin transporters or cell proliferation there was also no significant difference in 

cerebral glucose metabolism between CIA immunised mice with proven clinical 

symptoms and controls. Altogether the results in the thesis suggest that CIA has 

minimal influence on the brain, at least on the systems I investigated. 

 

The reduced integrity of the BBB in the CIA model (Nishioku et al., 2010b) 

increases the likelihood that cytokines released during the peripheral inflammatory 

response can enter the brain by passive diffusion. Similar to the CIA model, LPS 

has also been shown to decrease the integrity of the BBB (Nishioku et al., 2010a) 

and studies investigating cytokine levels in mice challenged with LPS have 

demonstrated a significant increase in IL-1β, IL-6 or TNF-α expression in the 

hippocampus, hypothalamus and brainstem (Datta and Opp, 2008). As the 

permeability of the BBB appears to vary during the temporal development of the 

CIA model, in the future it would be beneficial to profile the pro-inflammatory 

cytokine response in the CNS at various time points during development of the 
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disease. If pro-inflammatory cytokines are not increased within the brain then 

cytokine-induced mechanisms would not alter brain function in the CIA model.    

 

7.1.3 Compensatory or beneficial mechanisms in the CIA model.  

 

The innovative nature of the project also posed the problem of identifying the time 

point in the temporal evolution of the CIA model at which the peripheral immune 

system was most likely to have caused alterations in the brain. Cell proliferation 

was examined before the development of clinical symptoms and no significant 

difference was observed. However, there was a significant increase in cell 

proliferation after the development of clinical symptoms in CIA mice in comparison 

to controls. The significant increase in cell proliferation after the development of 

clinical symptoms further supports the interpretation that cytokines are not driving 

IDO to metabolise tryptophan to its neurotoxic components and that levels of pro-

inflammatory cytokines in the brain were not increased. An increase in cell 

proliferation raises the possibility of compensatory or protective mechanisms. 

Studies of other rodent models of rheumatoid arthritis have reported protective 

mechanisms within the brain. Antagonism of the glucocorticoid receptor in the rat 

streptococcal cell wall model of arthritis increased the severity of arthritic clinical 

symptoms and it was suggested that corticosterone is beneficial and suppresses 

arthritic clinical symptoms (Sternberg et al., 1989). A recent study in the adjuvant 

induced arthritic model illustrated a corticosterone peak which paralleled the 

increase in neurogenesis. The same group also demonstrated in vitro that high 

levels of  corticosterone decreased neurogenesis while lower levels similar to those 

found in the adjuvant induced arthritic model, increased neurogenesis (Wolf et al., 

2009b). In addition, reduced cell survival has been reported in adrenalectomized 

rats which was attenuated by administration of corticosterone (Sloviter et al., 1989). 

The studies in the rodent rheumatoid arthritis models suggest possible 

compensatory mechanisms and there is evidence to suggest a beneficial effect of 

glucocorticoids. However, increased cell proliferation has been reported in 

adrenalectomized rats suggesting that normal levels of corticosterone negatively 

regulate cell proliferation in the rat dentate gyrus (Gould et al., 1992). It is therefore 

possible that glucocorticoids are both beneficial and detrimental depending on the 

level of glucocorticoids and the mechanism whereby the HPA-axis is activated. T-
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cells may also increase cell proliferation, as T-cell knockout mice were found to 

have reduced neurogenesis in the dentate gyrus (Wolf et al., 2009a). It is therefore 

possible that the innate immune system is detrimental to cell proliferation and the 

adaptive immune system compensates by increasing cell proliferation. If there are 

compensatory or beneficial mechanisms occurring in the CIA model this suggests 

that the model does not represent a model of depression.  

 

7.1.4 The CIA model as a model of depression. 

 

There is currently no information which indicates the utility of the CIA model as a 

model for investigating mechanisms pertinent to depression. There are a number of 

studies where LPS is administered in vivo to investigate the effect of systemic 

inflammation on rodent behaviour. A characteristic response of LPS treatment is 

anhedonia and this model has frequently been used to investigate the association 

between depression and the immune response (Frenois et al., 2007; Yirmiya, 

1996). However, one limitation of LPS-induced anhedonia is that it is coupled with 

sickness behaviour. The CIA model would have a number of benefits over the LPS 

model as it is chronic and the experimenter can measure the response to peripheral 

inflammation without the secondary response of sickness behaviour. However, 

further research is required to determine wither or not the CIA model is a suitable 

model to investigate the association between peripheral inflammation and 

depression. There are well established criteria that need to be met before a model 

is considered an animal model of depression (Willner and Mitchell, 2002). The 

studies presented in this thesis begin to address the dimension of construct validity, 

that is the examination of similar neurochemical processes. However, for the CIA 

model to be considered a valid model of depression it would also have to 

demonstrate two further dimensions. These are predictive validity; the model 

responds to antidepressant treatment and face validity; the model has a similar 

symptom profile (Willner and Mitchell, 2002). The CIA model is believed to mimic 

the human form of rheumatoid arthritis as in both patients and mice with CIA an 

autoimmune response develops against type II collagen (Kim et al., 1999; Londei et 

al., 1989). In addition there are specific major histocompatibility complex class II 

antigens associated with the development of the disease (Wooley et al., 1981; 

Rosloniec et al., 1998; Rosloniec et al., 1997) . However, it is unknown if the CIA 
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model has any face validity for depressive symptoms. Previously it has been shown 

that hypothalamic IL-1β concentration negatively correlates with sucrose 

consumption after chronic mild stress in rats (Grippo et al., 2005). Mice find sucrose 

a rewarding substance and if there is reduced consumption of sucrose it shows the 

mouse no longer derives pleasure from a rewarding substance suggesting 

anhedonia. In the future it would be beneficial to employ the saccharine 

consumption test to investigate anhedonia in the CIA model. If it was confirmed that 

the CIA model has face validity and the neurochemical changes have been fully 

characterised, it may then be worthwhile to examine the predictive validity of the 

model using antidepressant treatment. 

 

7.2 Future work.  

 

The aim of this thesis was to examine the brain in a murine CIA model as a means 

to investigate possible neurochemical, functional and structural links between 

rheumatoid arthritis and depression. The results suggest that the CIA model may 

not be a suitable model to investigate rheumatoid arthritis associated depression. 

There were a number of limitations in this study and unanswered questions. The 

most pertinent unanswered question was if CIA immunised mice display symptoms 

of anhedonia. The best test of anhedonia in the CIA model would be the saccharine 

solution test as other tests involve movement and it would not be possible to 

dissociate the effect of swollen limbs from anhedonia. This test was considered but 

was not performed due to time constraints but if this work were to be continued by 

another researcher I believe the saccharine test as a test of anhedonia should be 

their top priority.  

 

The second major limitation of this thesis was the fact the immune response in the 

brain was not characterised. Our hypothesis was that inflammatory response in the 

periphery alters the brain. In reflection I feel I focused too much on the cytokine 

theory of depression. I believe we should have considered the immune system as a 

whole and cytokines are just a small part of the bigger picture. Nevertheless, it 

would have been benefical to characterise cytokine expression in the brain. Debbie 

Paterson a B.Sc. Med Sci student performed a pilot study to investigate pro-

inflammatory cytokine expression within the whole brain, cortex, hippocampus and 
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cerebellum of CIA mice using Enzyme Linked ImmunoSorbent Assay and Multiplex 

Bead Immunoassay. The study failed to find a significant difference in IL-1β, IL-6 or 

TNF-α expression in the CIA group compared to the control group (data not 

published), although this may be attributed to the small sample sizes or the 

sensitivity of the detection method. This has led me to question whether the murine 

CIA model was the best model and in retrospective would a rat CIA model have 

been more appropriate. A rat CIA model would provide larger sample sizes to 

investigate cytokine expression in discrete brain regions such as the hippocampus 

and if successful, could be used to characterise the brain cytokine profile during the 

temporal evolution of the model.  

 

I also feel I concentrated too much on the serotonergic system and should have 

also taken the time to investigate the hypothalamic-pituitary-adrenal axis  

 (HPA-axis). The HPA-axis is associated with both depression and stress and 

therefore may more likely be altered in the CIA model. Finally in the distant future 

once the CIA model has been fully characterised it will then be necessary to 

dissociate the influence of the immune response to any possible change in the 

brain due to pain. 

 

7.3 Conclusion 

 

By further understanding animal models of disease they may in the future aid in the 

identification of target brain regions which, can be used to examine the therapeutic 

benefit of anti-inflammatory agents to treatment inflammation associated 

depression.  
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Appendix 1: Details of solutions used. 

 

Cryoprotectant 

 

• 30% glycerol /30% ethylene in 10mM phosphate buffer, stored at -20°C 

 

Poly-L-lysine slides 

 

• Racks of slides were submerged in 1:10 dilution of poly-L-lysine (Sigma-

Aldrich) solution for 5 minutes and dried over night in an oven at 65°C 

 

Neutral-buffered formalin (pH 7.0) 

 

• Combine 6.5g anhydrous sodium phosphate dibasic (Na2HPO4) and 4.0g 

acid sodium phosphate monohydrate (NaH2PO4H2O, or 4.5g dehydrate) in 500ml 

distilled water. Once dissolved add 100ml formalin (37-40% formaldehyde) whilst 

stirring. Adjust to pH7 and add 400ml distilled water.   
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Abbreviations 

 

2-DG                       2-deoxyglucose 

ABC                        Avidin-biotin complex 

AMY                        amygdala  

ANOVA                   analysis of variance 

BBB                         blood brain barrier 

BrdU                        5’ –bromo-2’-deoxyuridine 

CAIA                       collagen antibody induced arthritis 

Cere                        cerebellum  

CIA                          collagen induced arthritis 

cin                           cingulate cortex  

CNS                         central nervous system 

CPu                         caudate putamen  

DAB                         diaminobenzidine   

DAT                         dopamine transporter 

DG                          dentate gyrus  

DRN                        dorsal raphe nucleus  

GP                          globus pallidus  

HC                           hippocampus 

HPA                            hypothalamic-pituitary-adrenal   

IFN                           interferon  

IL                              interleukin 

iLCMRglu                 index of local cerebral glucose utilisation 

i.p                             intraperitoneal 

i.v                             intravenously 

LCMRglu                  local cerebral glucose utilisation 

LH                            lateral hypothalamus  

LPS                          lipopolysaccharide 

N.acc                        nucleus accumbens  

NRS                          normal rabbit serum 

NS                            non-specific 

PAM                         4% formaldehyde in phosphate buffer 

PBS                          phosphate buffed saline 



 C 

s.c                             subcutaneous 

SD                            standard deviation 

SERT                       serotonin transporter 

SN                            substantia nigra  

SPECT                     single photon emission computed tomography 

SQ                            semi-quantitative 

thal                            thalamus 

TNF                           tumor necrosis factor 

VTA                           ventral tegmental area  

βCIT                          β-carbomethoxy-3-β-(4 iodophenyl)tropane 

 

 

 


