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Summary 
 
Hypertension is a common, highly heritable trait of complex aetiology.  Multiple 

environmental and lifestyle factors contribute to blood pressure variation.  Hence the study 

of hypertension causality is not straightforward.  Genetic linkage studies have implicated a 

number of loci involved in blood pressure regulation and the development of hypertension.  

Candidate gene association studies, however, have not reported any reproducible 

associations.  Early genome-wide association studies (GWAS) showed remarkable success 

in identifying validated common variants associated with common diseases such as 

coronary artery disease and type 1 diabetes.  However, the first GWAS of hypertension 

showed little success.  This was largely because of a lack of statistical power and 

insufficient genomic coverage.  Furthermore, it is widely believed that the failure of one 

GWAS of hypertension was partly due to misclassification of controls that were not 

phenotyped for blood pressure.  Subsequently, two large international consortia-run 

GWAS of blood pressure as a quantitative trait produced tangible results. 

The current study is a GWAS of hypertension using an extreme case-control design.  It 

employed intensive phenotyping and extreme case-control definitions to select a sample of 

individuals from a restricted geographical area of relative homogeneity.  The aim was to 

reduce misclassification bias and increase the likelihood of detecting any genetic effects.  

Cases were sampled from the Nordic Diltiazem study, and defined as individuals younger 

than 60 years with at least two consecutive measurements of systolic blood pressure (SBP) 

≥ 160 mmHg or diastolic blood pressure (DBP) ≥ 100 mmHg. Controls were sampled from 

the prospective Malmö Diet and Cancer Study, and defined as individuals aged at least 50 

years with SBP ≤ 120 mmHg and DBP ≤ 80 mmHg with no evidence of cardiovascular 

disease during ten years of follow-up.  The groups represent, respectively, the upper 1.7% 

and lower 9.2% of the Swedish blood pressure distribution.  Comparison of groups from 

the extreme tails of distribution increased statistical power by inflating observed effect 

sizes. With genome-wide SNP coverage we were able to adjust for population stratification 

using principal components analysis.   

Following quality control exclusions, a final set of 521,220 single nucleotide 

polymorphisms was available for analysis in 1,621 cases and 1,699 controls.  Seventeen 

SNPs were associated with hypertension at a P < 1 × 10-5 threshold of significance, of 

which three attained genome-wide significance, defined as P < 5 × 10-7.   



 

20 

The top hit, rs13333226, underwent a two stage validation process in a total of 14 

independent cohorts.  The combined odds ratio for the discovery cohort and all replication 

cohorts meta-analysed was 0.87 (95% CI 0.84 – 0.91, P = 3.67 × 10-11) with the minor G 

allele associated with a lower risk of hypertension.  In total 21,466 cases and 18,240 

controls were included.  After adjustment for age, age2, sex, and BMI, and when the 

discovery cohort was excluded from analysis, the association remained significant.  

Estimated glomerular filtration rate (eGFR), a measure of kidney function, was available in 

seven of the cohorts. When the analysis was repeated with adjustment for eGFR the effect 

was marginally strengthened.  rs13333226 is located in close proximity, at -1617 base 

pairs, to the uromodulin (UMOD) transcription start site.  UMOD encodes uromodulin, 

also known as the Tamm-Horsfall protein.  Uromodulin is produced predominantly in the 

thick ascending limb of the loop of Henle and is the most abundant protein in urine.  Its 

function is unclear; however, variants in UMOD have been associated with chronic kidney 

disease. 

Clinical functional studies were conducted in three separate populations.  The minor G 

allele of rs13333226 (associated with a lower risk of hypertension) was associated with 

lower urinary uromodulin excretion.  Furthermore, in one sample following a low salt diet 

urinary uromodulin excretion was significantly lower in the presence of the G allele, 

whereas after a high salt diet genotype was no longer associated with urinary uromodulin.  

If this were verified, this would entail a gene-environment interaction.  Our combined 

results suggest that UMOD may have a role in regulating blood pressure, possibly through 

an effect on sodium homeostasis. 

There is ample evidence of a strong, graded relationship between blood pressure and 

subsequent renal disease.  Hence the current finding is biologically plausible.  Information 

on kidney disease was not available for the discovery samples so this could not be 

explored.  However, the association between rs13333226 and hypertension was not 

substantively altered by adjustment for eGFR in the seven validation cohorts in which it 

was recorded, suggesting that it is independent of renal function.   

In conclusion, we have performed a GWAS of hypertension using an extreme case-control 

design.  The most significant hit was validated in a meta-analysis of the discovery sample 

and 14 additional cohorts.  Moreover, functional studies showed a relationship between 

genotype and urinary protein excretion.  Overall, we demonstrate that with careful 
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methodological planning and phenotyping it is possible to generate replicable hypertension 

GWAS results in a relatively small sample size.   
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1 Introduction 
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1.1 Cardiovascular disease 

Cardiovascular disease (CVD) is a common complex disease of major public health 

importance with high prevalence throughout the world.  This was highlighted by the 

Global Burden of Disease Study which analysed data from 47 countries between 1950 and 

1990 to estimate the leading causes of mortality and disability worldwide 1, 2.  In addition, 

it predicted the impact of the same causes in 2020 using these estimates and regression 

equations by region, based on projected changes in key socioeconomic parameters (gross 

domestic product per person, average number of years of education, smoking intensity) and 

time.  Ischaemic heart disease and cerebrovascular disease were identified as the first and 

second most common causes of death, respectively, and were predicted to remain so in 

2020.  Their proportional impact on disability adjusted life years (DALYs) was projected 

to increase from being the fifth and sixth most common causes, to the first and fourth.  

[The DALY is a measure of overall burden of disease, commonly used in public health 

research, which combines the impact of premature death and disability 3.]  The reason for 

this increase is that most of the world is developing economically, and in the process the 

prevalence of many cardiovascular (CV) risk factors, such as older age, obesity, smoking, 

alcohol, decreased physical activity, is increasing.  The change in pattern of disease as 

countries develop, from predominantly communicable diseases to chronic 

noncommunicable degenerative diseases, is termed epidemiologic transition (Figure 1.1)4.  

The 2003 World Health Report found CVD to be the leading cause of mortality in 

developing countries (Figure 1.2)5, which translates to more than 10 million deaths. 

Moreover these deaths occur at a relatively younger age compared with developed 

countries.  A further point made in the report is that CVD accounts for as many deaths in 

young and middle-aged adults globally as HIV/AIDS.  Within the United Kingdom 

coronary heart disease (CHD) mortality varies geographically with higher rates in Northern 

England and Scotland (Figure 1.3)6.  High blood pressure (i.e. hypertension) is the leading 

risk factor for mortality globally 7.  This is through the effect it has on various 

cardiovascular diseases.   
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Figure 1.1 The shift towards noncommunicable diseas es and accidents as causes of death. 
(reproduced from 4) 
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Figure 1.2 Deaths attributable to 16 leading causes  in developing countries, 2001. 
(reproduced from 5) 
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Figure 1.3 Age-standardised death rates per 100,000  population from CHD. For a. men and b. 
women, under 65 by local authority, 2004/2006, United Kingdom (reproduced from 6) 
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1.2 Human essential hypertension 

Blood pressure refers to the pressure exerted by circulating blood on the walls of blood 

vessels, and is chiefly determined by cardiac output and total peripheral resistance.  It is a 

quantitative trait that is highly variable both between and within individuals 8.  Blood 

pressure is typically measured non-invasively by sphygmomanometer via a cuff around the 

upper arm.  It varies throughout the day in a circadian rhythm.  Consequently, ambulatory 

pressure measured over 24 hours is a more reliable method of measurement than single (or 

a few averaged) measurements taken in the clinic or the home.  Furthermore, 

measurements made in the clinic may be higher than average due to white-coat syndrome, 

the term used to describe the phenomenon of elevated blood pressure due to anxiety 

induced by the clinical setting.  In the population blood pressure follows a slightly 

positively skewed distribution 9.  The blood pressure of an individual is expressed in terms 

of their maximum (termed systolic) and minimum (termed diastolic) pressures per 

heartbeat.  These values are reported in millimetres of mercury (mmHg). 

Hypertension is defined as a clinically significant increase in blood pressure, often 

considered to be diastolic blood pressure (DBP) ≥90mmHg or systolic blood pressure 

(SBP) ≥140mmHg.  This cut-off is required for patient diagnosis and treatment; however it 

is somewhat arbitrary as there is evidence of a continuous relationship between blood 

pressure and CVD risk.  For example, the Prospective Studies Collaboration comprised 61 

prospective observational studies of blood pressure and mortality 10.  Age-specific survival 

analysis was conducted on a total of 958,074 participants.  The subgroups of age at event 

were 40-49, 50-59, 60-69, 70-79, and 80-89 (deaths out with the range 40-89 years were 

ignored).  Further analysis stratified by sex was also performed.  Within each age group 

blood pressure was found to be strongly and directly related to vascular and overall 

mortality.  There was no evidence of a threshold for risk, down to at least 115/75 mmHg 

(i.e. far lower than the cut-off typically employed for hypertension diagnosis).  In other 

words, the mortality risk posed by blood pressure was continuous throughout most of its 

normal range.  The findings were similar for males and females.   

There has long been debate regarding the better way to classify and define essential 

hypertension, i.e. as a quantitative versus as a qualitative construct.  Discussion of the topic 

was initiated in the 1940s and 1950s by the competing views expressed by Sir Robert Platt 
11, 12 and Sir George Pickering 13, which developed into the “Platt versus Pickering debate”.  

Platt’s belief was that essential hypertension is a qualitative Mendelian trait that follows a 
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bimodal distribution, with one peak at the level of normotension and another at 

hypertension.  Because blood pressure is also affected by environmental factors these 

curves would likely overlap.  Conversely, Pickering believed that essential hypertension is 

a quantitative non-Mendelian trait with a unimodal distribution.  According to this 

paradigm hypertension merely represents the extreme top end of the overall blood pressure 

distribution, and does not exist as a separate entity.  Pickering and colleagues opposed the 

categorisation of blood pressure values into normal and abnormal as artificial.  At the time 

of the debate Platt’s viewpoint was favoured.  However, over time Pickering’s has come to 

dominate.   

Hypertension is more common in men than women (at least until menopause age), people 

of African ancestry than European ancestry 14, and prevalence increases with age 15.  

Kearney and colleagues estimated the global burden of hypertension by searching the 

published literature from 1980 to 2002 16.  They concluded that 26.4% of the global adult 

population had hypertension in 2000, and projected that this would increase to 29.2% by 

2025.  It was estimated that the total number of adults with hypertension would increase by 

over 60% during this time period from 972 million to 1.56 billion.  The rise will be far 

greater in economically developing than developed countries.       

The impact of the high prevalence of hypertension is substantial because of its large effects 

on mortality and morbidity.  A comprehensive review undertaken by expert working 

groups of 26 selected risk factors identified high blood pressure as the leading global risk 

factor for mortality and third largest cause of DALYs 7.  Figure 1.4 is adapted from the 

review findings and shows the contribution of this and other risk factors to mortality by 

region.  Out of the ten highest contributors, five are major modifiable cardiovascular risk 

factors (high blood pressure, tobacco, high cholesterol, high BMI, physical inactivity).  

Underweight and unsafe sex result in a high proportion of mortality in developing regions 

with high mortality, but have very little impact in other regions.  By contrast, hypertension 

causes a relatively high proportion of mortality in all regions, regardless of stage of 

development.   

1.2.1 Causation of hypertension 

 90-95% of hypertension cases are described as essential or primary hypertension, meaning 

that no medical cause is known for the elevation in blood pressure.  In the remaining cases 
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Figure 1.4  Number of deaths attributable to major risk factors worldwide. (adapted from 7).  
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it is secondary to renal disease, endocrine disorders or other causes, or is monogenic (due 

to variation in a single gene).  Essential hypertension is a complex heterogeneous disorder 

and it is thought that many factors contribute to it.  Two that have been identified and 

studied a great deal are salt intake and obesity.  Others include insulin resistance, high 

alcohol intake, lack of exercise, stress, low calcium intake and low potassium intake 17, 18.  

These risk factors as well as genes, gene-gene interactions and gene-environment 

interactions, contribute to the complexity of hypertension and make it inherently difficult 

to study 19. 

Some of the variables influencing hypertension risk, such as level of exercise and dietary 

calcium and potassium, are solely environmental and can be significantly improved 

through lifestyle modification.  Others are themselves heterogeneous variables affected by 

both genes and the environment.  For example, alcohol intake is clearly mainly determined 

by consumption.  But individuals inheriting a variant of aldehyde dehydrogenase 2 

(ALDH2), common in the Japanese, experience a more extreme negative response to 

alcohol and hence consume less on average 20.  The relationship between salt intake and 

blood pressure is mediated by a person’s salt sensitivity which is partly genetically 

determined 21.  Furthermore all of the genes hitherto implicated in monogenic forms of 

hypertension and hypotension regulate renal salt re-absorption 22.  There is now substantial 

evidence, including many genome-wide association studies (GWAS), of a genetic 

component to obesity 23.  However the huge increase, especially in the developed world, in 

obesity prevalence is on the whole due to the widespread adoption of sedentary lifestyles.   

 

1.3 Genetic factors in hypertension 

1.3.1 Evidence of genetic determinants of blood pre ssure 

regulation and hypertension 

There are multiple strands of evidence showing that genetic factors contribute to blood 

pressure and hypertension. Firstly, the normal distribution of blood pressure in the general 

population indicates the presence of multiple environmental and genetic factors and thus a 

polygenic aetiology. Secondly, rare monogenic forms of hypertension associated with 

major defects in renal salt handling prove that gene mutations can cause hypertension, and 

there is a hypothesis that minor variations in these genes may contribute to essential 
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hypertension. Finally, from a population perspective, there is considerable evidence from 

twins and family aggregation studies indicating the presence of a heritable component. 

It is estimated that around 30% of variation in blood pressure is due to genetic factors 24.   

Hypertension is about twice as common in individuals who have one or two hypertensive 

parents, and blood pressure is more closely correlated in identical (monozygotic, MZ) than 

nonidentical (dizygotic, DZ) twins 9, 25.  The Victorian Family Heart Study recruited a 

sample of adult families, comprising both parents and at least one offspring, that was 

enriched with families containing twins.  Figure 1.5 presents plots of correlation 

coefficients and their standard errors for SBP, DBP and pulse rate, for different types of 

family member pairs.  There is a trend towards decreasing correlation with decreasing 

genetic similarity.  As expected MZ twins have the highest correlation coefficients for each 

parameter, and spouse-spouse pairs the lowest.  In the Montreal Adoption Study 

investigators compared blood pressure correlation between biological sibling pairs and 

adoptive sibling pairs (as well as parent-child correlations).  SBP correlation coefficients 

were 0.38 and 0.16 for biological and adopted siblings respectively, and DBP coefficients 

0.53 compared with 0.29 respectively 26.     

Two measures that are commonly used to assess the genetic component of a trait are 

heritability (h2) which is the fraction of variation in disease susceptibility due to genetic 

factors, and sibling recurrent risk (λs) which is the degree of elevated risk of disease for a 

sibling of an affected individual compared with a member of the general population. The 

heritabilities of clinic systolic blood pressure and clinic diastolic blood pressure are around 

15-40% 27, 28, whereas for ambulatory night-time systolic and diastolic blood pressure the 

heritabilities are 69% and 51%27. It is pertinent to point out that though the heritability 

estimates are considerable, this does not equate to magnitude of genetic effect. This is 

because the denominator in the estimate of heritability comprises measurement error and 

variances attributable to genes, shared environment, unshared environment and 

unmeasured determinants. This is illustrated by the example above where minimising 

measurement errors by using ambulatory night-time values inflates the heritability 

estimates. Heritability is also a property of the population studied and low heritability 

estimates would suggest that genetic mapping would be difficult for that phenotype. The 

sibling recurrent risk of hypertension is around 1.2-1.529 indicating a phenotype with 

modest genetic effect.  The complicated interplay between genetic and environmental 

factors that influence intermediary phenotypes in the development of hypertension is 

shown in Figure 1.6. 
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Figure 1.5 Correlation coefficients and their stand ard errors for pairs of family members. Pairs are spouse-spouse, parent-offspring, non-twin siblings, dizygotic (DZ) 
twins, and monozygotic (MZ) twins; for systolic blood pressure (left), diastolic blood pressure (middle), and pulse rate (right) (reproduced from 30). 
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Figure 1.6 Interaction among genetic and environmen tal factors in the development of hypertension.  Left side of figure shows how environmental factors and 
multiple genes responsible for high blood pressure interact and affect intermediary phenotypes.  In the graph on right side of figure, unbroken line indicates theoretical 
blood pressure (BP) of the population that is not affect by factors that increase BP; the shaded area indicates SBP in the hypertensive range.  Broken and dotted lines 
indicate populations in which 1 (obesity) or 2 (obesity plus high alcohol intake) factors which increase BP have been added.  In these two populations the distribution 
curves are shifted to the right and the number of hypertensive individuals is significantly increased (reproduced from 9). 
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1.3.2 Monogenic forms of hypertension 

Seven monogenic (i.e. due to a single gene mutation), or Mendelian, forms of hypertension 

have been identified 31.  These forms of the disease are characterised by their severity and 

early onset, but their rarity means that they account for less than 1% of human 

hypertension.  They can be categorised by initial mechanism into three distinct groups, all 

of which ultimately lead to a common mechanism of increased distal tubular re-absorption 

of sodium and chloride, volume expansion and hypertension. The first group includes 

Liddle syndrome, Gordon’s syndrome, and activating mineralocorticoid receptor mutation 

in hypertension exacerbated by pregnancy; the mechanism involves mutations in sodium 

and chloride transporters that lead to their hyperactivity, or mutations of mineralocorticoid 

receptors that mimic mineralocorticoid excess.  The second group includes congenital 

adrenal hyperplasia and apparent mineralocorticoid excess; the mechanism involves 

deficiencies of enzymes that regulate adrenal steroid synthesis and activity, thus increasing 

volume of precursors with mineralocorticoid activity.   The third group includes familial 

hyperaldosteronism types I and II; the mechanism is excessive aldosterone synthesis that 

avoids regulatory mechanisms, and results in volume-dependent hypertension that 

suppresses renin release. 

Mutations in 8 genes have been discovered that cause Mendelian/monogenic forms of 

hypertension 22.  In each instance the mutated gene products act in the same physiologic 

pathway in the kidney.  The effect is to increase net renal salt re-absorption.   Genes 

identified that cause Mendelian hypotension also act in this pathway but have the opposite 

effect of decreasing renal salt re-absorption (Figure 1.7). Raised renal salt re-absorption 

leads to increased intravascular volume and increased volume delivery to the heart, which 

in turn raises cardiac output hence blood pressure.  Studies of candidate genes within the 

same pathway have had some success in identifying common genetic variants associated 

with essential hypertension 32-35. 

Tobin et al conducted a study of the effect, in the general population, of common variation 

in all causal genes for monogenic hypertension and hypotension 36.  The sample studied 

comprised 2019 individuals from 520 nuclear families, unselected for blood pressure.   

Primary analyses were of mean 24 hour SBP and mean 24 hour DBP.  Secondary analyses 

were of other blood pressure phenotypes and biochemical measurements.  The key findings 

were for variants in the KCNJ1 (potassium inwardly-rectifying channel, subfamily J, 
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Figure 1.7 Mutations altering blood pressure in hum ans.  A diagram of a nephron, the filtering 
unit of the kidney, is shown.  The molecular pathways mediating NaCl re-absorption in individual 
renal cells in the thick ascending limb of the loop of Henle (TAL), distal convoluted tubule (DCT), 
and the cortical collecting tubule (CCT) are indicated, along with the pathway of the renin-
angiotensin system, the major regulator of renal salt re-absorption.  Inherited diseases affecting 
these pathways are indicated, with hypertensive disorders in red and hypotensive disorders in blue.  
AI = angiotensin I. ACE = angiotensin converting enzyme. AII = angiotensin II. MR = 
mineralocorticoid receptor. GRA = glucocorticoid-remediable aldosteronism. PHA1 = 
pseudohypoaldosteronism, type-1. AME = apparent mineralocorticoid excess. 11 βHSD2 = 11β-
hydroxysteroid dehydrogenase-2. DOC = deoxycorticosterone. PT = proximal tubule (adapted from 
37). 
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member 1) gene: minor allele of the top hit for mean 24 hour SBP associated with a -1.58 

mmHg change ( 95% CI -2.47 to -0.69, p = 0.00048); minor allele of the top hit for mean 

24 hour DBP associated with a -0.95 mmHg change (95% CI -1.52 to -0.39, p = 0.00095).  

There were also nominally significant associations in NR3C2 (nuclear receptor subfamily 

3, group C, member 2), CASR (calcium-sensing receptor), SCNN1B (sodium channel, 

nonvoltage-gated 1, beta), and SCNN1G (sodium channel, nonvoltage-gated 1, gamma).  

These findings suggest that minor variants in the genes causing monogenic forms of 

hypertension may underlie common essential hypertension and variations in blood pressure 

more generally.   

1.3.3 Linkage studies 

Linkage studies map genetic loci in related individuals.  The main advantages of family 

studies are that they allow the measurement of sex specific effects and heritability 

estimates, and avoid the problem of population stratification.  Linkage analysis identifies 

large genomic regions that contain disease predisposing genes.  If two loci are transmitted 

together from parent to offspring more often than expected under independent inheritance 

they are considered to be linked.  Analysis can be parametric or non-parametric.  

Parametric linkage tracks the co-segregation of a marker and putative disease locus in large 

pedigrees, and then estimates recombination probabilities.  If two loci are close together on 

the same chromosome they segregate together more often, and are less likely to be 

separated by a recombination event at meiosis.  With decreasing relatedness of individuals 

the power to detect small effects increases, however the likelihood of recombination also 

increases meaning areas of linkage are shorter hence more markers are required.  

Parametric linkage makes many assumptions about the disease process, hence the term 

parametric, and is therefore effective for Mendelian disorders.  The assumptions are 

required because of missing data, unknown phase, degree of penetrance, and sex-specific 

recombination.   

Recently the focus of genetic studies has been on common (more than one case per 1,000 

individuals 38) complex diseases.  For these diseases, hypertension amongst them, 

parametric linkage analysis is not possible because there is not a simple disease model and 

mode of inheritance.  Instead non-parametric, i.e. assumption free, linkage analysis is used.  

This examines the proportion of haplotypes that are shared identical by descent (IBD) 

between affected relatives (common complex diseases have lower penetrance so unaffected 

family members provide much less information for linkage than affecteds).  It is expected 
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that in the region of a disease-susceptibility gene there will be an excess of IBD sharing 

between affected relatives.  The most straightforward way to perform non-parametric 

linkage is in affected sibling pairs (ASPs).  Under the null hypothesis of no linkage, at a 

single locus the probability that no alleles are shared IBD by an ASP is 0.25, the 

probability that one is shared is 0.50, and the probability that two are shared is 0.25.  These 

expected frequencies are compared with those observed, to assess whether significantly 

more alleles are shared IBD than expected by chance.  Analysis can also be performed on 

relative pairs other than siblings.  There has been some success in identifying susceptibility 

genes that modestly increase risk of hypertension by non-parametric linkage, for example 

the MRC British Genetics of Hypertension (BRIGHT) study 39. 

The field of common complex disease genetics has in recent years moved from linkage to 

association study design because association analysis has far greater power to detect 

variants of modest effect and of lower frequency.  The gene mutations responsible for 

monogenic Mendelian forms of hypertension are highly penetrant, and under very strong 

selection which keeps them at low frequencies with high levels of allelic heterogeneity.  

Thus these are highly amenable to linkage analysis.  By contrast, susceptibility variants 

involved in essential hypertension are likely to have low or medium penetrance, and are 

probably not subject to such strong selection resulting in lower allelic heterogeneity and 

greater prevalence of the trait.  Thus linkage analysis as expected has not really provided 

robust validated loci for hypertension. The minor allele frequency (MAF) of a polymorphic 

locus is defined as the frequency of the less/least common allele and consequently varies 

between 0 and 0.5. It is used to define the commonality of single nucleotide 

polymorphisms (SNPs) for analysis.  When individuals are compared a SNP refers to a 

single base difference in the DNA sequence.  SNPs are the most common variation in the 

genome 40.   At an MAF of 1% (i.e. 0.01) it is estimated that SNPs occur once every 290 

base pairs (bps), amounting to around 11 million in total 41.  At an MAF of 5% they are 

expected to occur once every 450 bps.  To detect loci conferring a genotypic relative risk 

of 1.5 (MAF=0.1) by linkage analysis requires an estimated 67,816 ASPs, whereas 

detection is possible through association with just 2218 singletons 42.  Moreover it is easier 

to recruit participants from the general population (than families), and there are fewer 

sampling restrictions in some disease categories such as late onset.   
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1.3.4 Association studies 

Association studies are typically performed in unrelated population samples (although it is 

possible to conduct them on related individuals).  The same allele(s) is associated with the 

trait across the population, whereas linkage can associate the trait with different alleles in 

different families.  For qualitative traits, association analysis measures statistical 

association between a disease (phenotype) and genetic marker (genotype) directly by 

comparing allele frequencies of cases and controls.  The aim is to establish whether a 

particular allele occurs in cases (compared with controls) more frequently than expected by 

chance.  Quantitative traits, e.g. blood pressure, cholesterol, glucose, are assessed for 

association using linear regression.  Association operates over shorter genomic distances 

than linkage and requires far more markers.  In the past it was primarily used to fine map 

loci identified by linkage.  There are two forms of association; direct and indirect.  Direct 

association studies measure polymorphisms (usually SNPs) which are putatively causal.  

They are more powerful than indirect association studies, however the identification of 

candidate polymorphisms is not easy.  It is probable that many causal variants for common 

complex diseases will be non-coding, instead influencing gene regulation, expression and 

splicing.  There is not currently sufficient information on the causality of common 

diseases, including hypertension, for such variants to be identified and assessed for 

association.   

Most GWAS rely on indirect association, on a large scale, to detect causal variants 43.  

Indirect association measures the association between a phenotype and a marker 

polymorphism (or ‘tag’ SNP), which is correlated with the true causal allele due to linkage 

disequilibrium (LD).    This is illustrated in Figure 1.8.  Linkage disequilibrium is defined 

as “The statistical association, within gametes in a population, of the alleles at two loci” 44 

(on the same chromosome).  It is assumed that typically a causal variant will not have been 

typed in a given study.  The amount of LD between two loci is summarised by the metric 

r2 which varies between 0 and 1 and is inversely proportional to sample size, so with 

increasing LD a lower sample size is required.  To cover unobserved loci well an r2 value 

of ≥ 0.8 with typed loci is considered sufficient 45.  A related measure of LD is D’ , which 

provides additional information about recombination breakpoints.  In general SNPs in LD 

are more likely to be inherited together because they are physically close to each other on 

the genome.  But this is not necessarily the case; studies have shown that levels of local LD 

vary, with some adjacent SNPs being independent despite their proximity and others of ≥ 

100kb apart being in useful LD 46.   Patterns of LD are affected by many factors such as  
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Figure 1.8 Pictorial representation of indirect ass ociation.  Because the causal locus is 
unobserved the two direct associations cannot be observed.  However if LD between the typed 
marker locus and causal locus is high then it may be possible to detect the indirect association 
between the marker locus and disease phenotype (reproduced from 44). 
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population growth, population structure, admixture, natural selection, genetic drift, rate of 

recombination and mutation, and gene conversion 43. 

1.3.5 Candidate gene studies 

Traditionally association studies tested hypotheses based on candidate genes, for which 

there was prior evidence (of known physiological pathways that affect the phenotype in 

question) that a genetic variant influenced disease risk (Figure 1.7).  Findings from 

candidate gene studies suggest that numerous polymorphisms act together (along with 

environmental variables) to produce a cardiovascular phenotype.   

 

No candidate gene study has yet demonstrated a reproducible association with 

hypertension 47.  There are several potential reasons for this which highlight the drawbacks 

of candidate gene studies: 

- the wrong genes may have been selected 

- the causative genes may be upstream or downstream from the genes studied 

- discovery of genetic variants in novel pathways is not possible as candidate gene 

studies rely on a priori information regarding disease mechanisms 

 

In addition to the above there are the possibilities of population stratification, phenotypic 

and locus heterogeneity, and insufficient sample size: problems common to candidate gene 

studies and GWAS.  Finally the SNPs studied might not provide complete coverage of the 

variants within the genes.  Candidate gene studies do have the advantage over GWAS, 

however, that markers can be typed more densely.  Thus the probability of detecting any 

true causal effect is improved as well as the probability that negative findings are true 

negatives.    

 

 

 

1.4 Genome-wide association studies 

In recent years there has been a great increase in the number of GWAS.  They are 

hypothesis generating with the aim of identifying variants not previously implicated in the 

disease process, and no assumptions are made regarding the location or function of the 

causal variant.  Typically, tag SNPs are used at suitable intervals along the entire genome, 



 

41 

in order to economically cover it without the genotyping of every SNP.  The dense 

genotyping chips that are now available contain hundreds of thousands of SNPs so offer 

increasingly better coverage of the human genome (whether within or outside genes).  

Adequate coverage requires ≥ 300,000 SNPs with more needed for African samples due to 

greater genetic diversity in those populations 44 and less LD 48, 49.  One limitation is that 

tagging can only effectively capture variants that are common (see common disease 

common variant hypothesis below).  Furthermore there is some concern that a set of tag 

SNPs that were selected in one population may not perform well in another, particularly in 

reference to the generalisability of the International HapMap Project samples. But there is 

evidence of good tag SNP transference across populations 50, 51.  This is especially true for 

different populations within the same continent; and the greatest disparities are between 

African and non-African samples.    

 

An alternative genotyping method (to using tag SNPs) which similarly reduces the overall 

burden is to use direct association and genotype all potentially functional SNPs 43.  In this 

case the assumption is that certain variants are more likely to be associated with complex 

traits than others.  They are chosen based on information recorded in publicly available 

SNP databases.  There are not usually a priori hypotheses available about specific variants 

in relation to common complex diseases, hence the widespread use of indirect association 
52. 

 

Jorgenson and Witte have argued for a gene-centric approach to GWAS 53.  The reasons 

they outline are: genic variants are more likely to be functionally important than non-genic; 

and variants in many genes are in lower LD than those outside genes so may be difficult to 

capture through indirect association.  By focusing solely on genes and not the whole 

genome there is potential to increase coverage of genes and decrease the genotyping 

burden.  The genic approach has greater power to detect variants within genes but suffers 

from a loss of power for non-genic variants.  Despite this Jorgenson and Witte 

demonstrated empirically using HapMap data that it is more efficient in detecting causal 

variants than the indirect whole-genome approach when related to genotyping burden.  

Their suggestion of the best overall GWAS approach is to combine indirect genotyping 

data with gene-based SNPs in high priority regions, or alternatively to use a more stringent 

LD threshold in genic regions to ‘over-capture’ genic SNPs. 
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A limitation of GWAS is that they are very expensive, especially with the large sample 

sizes that are required for small effects.  But technological advancements are rapidly 

reducing the cost of genotyping.  In a bid to further reduce costs, some researchers have 

adopted a two-stage GWAS study approach.  In stage 1 a proportion of the samples are 

genotyped on all markers, and then in stage 2 a proportion of these markers are genotyped 

in the remaining samples 54.  Another approach to make studies more economical is the 

use of common controls for several groups of different disease cases.  This was recently 

demonstrated by the Wellcome Trust Case Control Consortium (WTCCC) 55.  In 2008 

Donnelly summarised all GWAS recorded at that time in the National Human Genome 

Research Institute (NHGRI) catalogue in the United States 56, which amounted to more 

than 300 replicated associations for more than 70 common diseases and quantitative traits 
57.  As of September 2009 there were more than 500 published associations of genome-

wide significance, defined as P ≤ 5 × 10-8 (Figure 1.9). 

 

1.4.1 Subject ascertainment/ phenotyping 

Technological advances have recently improved the quality of genotyping so that 

increasingly the chance of identifying genetic effects depends upon phenotyping quality.  

This is especially true for hypertension as it exists on a continuum of blood pressure which 

is affected by factors such as antihypertensive medication, and time and method of 

measurement.  Furthermore, as mentioned above its definition is somewhat arbitrary and 

has changed over time.  Because of this some investigators have studied blood pressure as 

a quantitative trait 58, 59.  It has become apparent that controls as well as cases must be 

intensively phenotyped, to avoid the inclusion of controls with undiagnosed hypertension 
47, 55.  Ideally phenotyping and genotyping protocols should be the same for cases and 

controls. 

1.4.2 Phenotypic enrichment for genetic effects 

In order to increase the chance of detecting any genetic effect some studies employ 

phenotypic enrichment.  This involves selecting a subsample of cases with severe disease.  

For example, in their study of loci for essential hypertension, the BRIGHT study sampled 

individuals in the top 5% of the UK blood pressure distribution 39.  Furthermore 

participants were not diabetic and not obese, decreasing environmental risk.  Low 

environmental risk increases the chances of a disease case having substantial genetic 

causation.  For example, the study of obstructive lung disease in non-smokers minimises  
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Figure 1.9  Published genome-wide associations up u ntil September 2009.  536 published genome-wide significant associations at P ≤ 5 × 10-8 (reproduced from 56)
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environmental risk, and increases the likelihood of detecting genetic effects, because 

smoking is a major contributing factor.  The study of cases with premature disease and a 

strong family history also increases the chance of finding genetic effects 60, 61. 

1.4.3 Population stratification 

Stratification acts as a confounder and can result in artefactual evidence of association.  It 

occurs when there are two or more strata in a population, and both the risk of disease and 

the frequency of marker alleles differ between strata.  It therefore may appear that the risk 

of disease is related to the marker alleles when in fact it is not.  A similar concept is 

admixture, which refers to “the mixture of two or more genetically distinct populations” 45.  

The International HapMap Project, described below, has demonstrated clear genetic 

differences between geographically separated populations 62. 

There are two examples of confounding by population stratification that are frequently 

cited in the literature 63.  The first is a significant association between diabetes and an HLA 

(human leukocyte antigen system) haplotype amongst individuals on a Pima Indian 

reservation in the United States 64.  This observation was found to be due to ethnic 

admixture of white European and Pima Indian ancestry, in that prevalence of diabetes and 

the susceptibility haplotype were both much higher in those of Pima Indian ancestry.  Once 

analysis was restricted to only those of purely Native American ancestry the association 

disappeared.  The second example is studies that observed a significant association 

between alcoholism and the dopamine D2 receptor 65, 66.  It has been established that this is 

confounded by varying allele frequencies and alcoholism prevalence by ethnic group.  

Other than these there are few examples of type 1 error introduced by population 

stratification, and it is thought that in the past the issue was overstated.    In a case control 

study associating the N-acetyltransferase slow acetylation genotype with male bladder 

cancer and female breast cancer in American Caucasians with ancestries from eight 

European countries, Wacholder et al demonstrated empirically that when ethnicity was 

ignored the resulting bias was only ≤ 1% 67.   Moreover in a theoretical study that assessed 

a range of cancer rates and genotype frequencies they found that the risk ratio was biased 

by less than 10% in U.S. studies except in extreme circumstances.  That is when there are 

large differences in genetic variance and disease prevalence between ethnic groups, and the 

information provided on ethnicity is insufficient for adjustment.  The effect of stratification 

on analysis increases with increasing sample size because even modest levels of underlying 

population structure are amplified 68, 69.  This has particular relevance to GWAS as they are 
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employing larger and larger samples.  A final important point is that confounding by 

population stratification tends to actually decrease (counter intuitively) with increasing 

number of ethnic groups 67.  This is because the direction of bias may differ between 

groups so that the overall combined effect is diluted.  Whether population stratification is a 

real concern or not, to avoid any possibility of bias it is now commonplace in studies of 

unrelated cases and controls to employ stratification detection and correction methods. 

1.4.4 Solutions to population stratification 

Aside from matching cases and controls for genetic background and relevant 

environmental factors as well as possible and straightforward adjustment for ethnic group, 

a number of possible solutions to population stratification have been proposed.  One is 

genomic control (GC) which employs detection and correction methods, e.g. by using a 

bank of randomly selected markers (preferably >100 44) that are unrelated to the question 

of interest to assess artefactual association 68, 70-72.  GC calculates an inflation factor λ by 

dividing the median of the genome-wide chi-square distribution (for data being assessed) 

by the median of the ideal, i.e. without population stratification, chi-square distribution 73.  

If there is not significant evidence of population stratification then λ will equal 1 or be 

close to 1.  Each association test chi-square statistic is divided by λ which has the global 

effect, if stratification is present, of adjusting p-values to be less significant across the 

dataset.  The GC method of correction is crude in that all genotype-phenotype associations 

are adjusted by a uniform amount.  This does not take into account the variability of 

marker allele frequency differences across ancestral populations 74; therefore GC may lead 

to under adjustment at markers that have strong differentiation across ancestral populations 

and over adjustment at those that are not differentiated.   

 

A similar approach is structure assessment (SA), which too uses unlinked genetic markers 

for detection but then attempts to match homogeneous subgroups of the sample for 

association analysis within these subpopulations 75-78. It is assumed that any significant 

association observed within a subpopulation cannot be due to population structure; there is 

an issue, however, about how many subpopulations to apply since they are a theoretical 

concept 44.   

 

Explicit detection/correction methods by principal components analysis (PCA) have also 

been employed 74, 79.  The aim of PCA is to reduce the dimensionality of multivariate data.  

It transforms variables into axes that account for decreasing proportions of variance in the 
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data and that are uncorrelated with each other.  For example, the program EIGENSTRAT 
74 uses PCA to infer continuous axes of variation which describe as much data variability 

as possible in a few dimensions.  These axes are termed the top eigenvectors of a 

covariance matrix between samples, and can be entered as covariates into logistic (for 

qualitative traits) or linear (for quantitative traits) regression analysis.  This enables the 

identification of extreme outlying individuals for exclusion, and for the remaining 

individuals genotypes and phenotypes are adjusted along each axis by amounts attributable 

to ancestry.  Finally association analysis is conducted on the adjusted genotypes and 

phenotypes.  EIGENSTRAT has the advantage that each marker is considered separately, 

hence the correction for ancestry effects is more precise than the uniform correction 

provided by GC. 

 

Due to the large number of markers genotyped in GWAS it is possible to detect low levels 

of stratification.  A caveat to all of these detection methods is that with a large enough 

sample size even small biases will be statistically significant, and may lead to 

overcorrection.  Another approach is to study genetic isolates: areas that have a limited 

number of founders, short evolutionary history and limited mixing, making stratification 

less likely.  In addition environmental conditions tend to be more homogeneous within 

isolates.  For example the European Special Populations Research Network (EUROSPAN) 

is a collaboration linking five genetic isolate populations in Europe; Orkney, Croatian 

islands, part of the Netherlands, the Saami people and the Tyroleans 80.  Other isolates 

include Inuit people, the Amish and the Hutterites.  A recent study of the Sorbs, a Slavic 

population isolate in Germany, identified a locus for hypertension on chromosome 1p36 81.  

Limitations of genetic isolate populations are their excess homozygosity due to inbreeding 

and their long regions of LD, which will make fine mapping and identification of causative 

variants next to impossible.   

 

A commonly used method of avoiding population stratification in association studies is the 

transmission disequilibrium test (TDT) 82 which uses family based controls.  The TDT is a 

method of assessing linkage in the presence of association.  The basic study design is trios 

of an offspring proband and both parents.  The genotype that is not transmitted to the 

proband (case) becomes the matched pseudo-control.  Because cases and controls have the 

same genetic background there is no confounding by stratification.  The TDT evaluates the 

frequency with which an allele associated with disease or its alternate is transmitted to the 

proband.  Alleles have a 50% chance of being transmitted to offspring under Mendelian 

inheritance.  So if an allele is transmitted to affecteds more than 50% of the time this 
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would indicate that it is associated with disease risk. This approach also allows the 

assessment of parent-of-origin effects, i.e. whether allele effects differ depending on 

whether they are inherited from the mother or father, which is not possible in case-control 

studies 83.  Moreover the inclusion of parental phenotypes in the analysis improves power.  

There are, however, some drawbacks to the TDT which limit its use.  Parents must be 

heterozygous at a SNP for allele transmission to be evaluated, so ≥ 50% of data collected 

for each parent cannot be analysed 63.  Three people are required to gain information that 

would otherwise be provided by two (a case and a control), therefore efficiency is only 

two-thirds.  Finally, as already mentioned above family recruitment can be very difficult 

for late onset disorders and there is the risk of an age-at-onset bias towards younger 

patients 84.  The inclusion of unaffected sibs in the TDT is possible, and should provide 

information on negative transmission of alleles.  But for complex diseases of low 

penetrance their addition is not useful in practice because the amount of noise introduced 

outweighs any gain, thus reducing power 85. 

 

1.4.5 Common Disease Common Variant Hypothesis 

The chance of detecting genetic variants that influence common disease depends on the 

underlying genetic architecture.  That is to say, the number of susceptibility alleles, 

whether they are common or rare, their effect size, and whether their action is neutral or 

deleterious. Allelic spectra vary greatly between disease genes.  Common alleles and those 

of large effect are of course easier to detect, as are deleterious alleles.  Thus far the success 

of GWAS has been dependent upon the validity of the common disease-common variant 

(CDCV) hypothesis, in that studies have had insufficient power to detect rare variants.  The 

CDCV hypothesis predicts that the causative genes for common diseases have relatively 

simple allelic spectra, i.e. one or a few predisposing alleles of relatively high frequency.  

As yet there is insufficient empirical evidence to determine the validity of the CDCV 

hypothesis, and arguments for and against have put forward.  These are crucial to research 

using SNP mapping to predict common disease risk which assumes that the theory is by 

and large accurate (linkage studies of families or ASPs, by contrast, are robust to allelic 

heterogeneity).   For GWAS it has been suggested that, as a rough guide, SNPs should 

meet a threshold of MAF ≥ 1% 84 or MAF ≥ 5% 44 to be considered common. 

Reich and Lander have outlined a model for predicting disease allele diversity that 

supports the CDCV hypothesis 86.  They argue that in human founder populations an 

allele’s equilibrium frequency was determined by its effect on reproductive fitness.  
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Therefore, at least for late onset disorders such as hypertension and type 2 diabetes that 

have no discernable effect on fitness, disease-predisposing alleles could achieve high 

frequency.  This is coupled with the estimation that the human population expanded 

rapidly from a small founder pool where neutral alleles had low diversity 87, 88.  During 

population growth many new alleles are generated, but Reich and Lander argue that it 

takes a long time for these to dilute out common alleles from the founder population, 

perhaps more than a million years.  Taking these observations together, because common 

disease-predisposing alleles were likely not affected by natural selection they may have 

had high frequencies in the past and consequently remain at high frequency now.  Hence 

they will be detectable by genome wide association.  Reich and Lander state that it is in 

principle possible that the opposite is true, i.e. that some common disease risk is 

attributable to a large number of loci with rare disease-predisposing alleles.  But the 

relative risks observed in family members (a more rapid than linear decline in risk with 

increasing distance of relationship) support the conclusion that the majority of risk is due 

to a modest number of loci with common disease-predisposing alleles.     

A key part of the argument against the CDCV hypothesis rests on the fact that the risk of 

common disease depends on the interaction of many genes and environmental factors.  In 

particular late-onset disorders of high prevalence in modern western society have been 

heavily influenced by changes in lifestyle factors such as diet and physical activity, and not 

by common disease-predisposing alleles.  The risk conferred by any one factor, whether 

genetic or environmental, is weak and most cases are not predominantly determined by 

genetic variance.  Pritchard devised a method to model the likely allelic spectra underlying 

common disease 89, and reaches very different conclusions to Reich and Lander.  He argues 

that the frequency of disease-predisposing alleles is random, and results from the joint 

effects of selection, mutation, and random genetic drift.  Furthermore he posits that, though 

it is possible that susceptibility alleles for common disease may be selectively neutral, it is 

also plausible that they are under weak selection in early life.  Neutral alleles by their very 

nature tend to have disappeared or else become almost fixed in the population, so do not 

contribute much to the genetic variance associated with disease.  Pritchard concludes that, 

with allelic heterogeneity underlying disease being high, the power of current association 

analysis is reduced and new statistical methods are needed. 

Additional evidence against the CDCV hypothesis is taken from observations of the allelic 

diversity of late-onset disorders with Mendelian inheritance patterns 90.  Causal genes for 

these should also be selectively neutral, due to their late onset.  However empirical 
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evidence shows that despite this, and contrary to the CDCV hypothesis prediction of low 

allelic diversity, these disorders can be highly diverse.  This suggests adverse selection and 

low allele frequencies in founder populations 90.  For example >735 rare alleles of the 

Low-Density Lipoprotein (LDL) receptor have been found that increase the risk of 

premature coronary artery disease through familial hypercholesterolaemia.  No common 

LDL receptor alleles have been found to influence disease risk.  In contrast there are 

examples, such as the association between apolipoprotein E(*4) (APOE4) and early onset 

Alzheimer disease, that support the CDCV hypothesis.  Variability of allelic spectra 

cannot, it appears, be predicted on the basis of a disorder’s prevalence or time of onset.  

Moreover the existing evidence suggests that alleles of both high and low frequency play a 

part in common disease 38, 91-95. 

Wang et al have argued against making a distinction between rare and common disease-

predisposing alleles 45.  Instead they propose that the allelic spectrum of disease associated 

variants be considered in the context of all variants in the human genome.  In this 

framework the neutral model is that the allelic spectrum of disease variants and that of all 

variants are the same.  Most susceptibility variants would be rare (MAF < 0.01), however 

SNPs with MAF > 0.01 would still account for more than 90% of genetic differences 

between individuals and therefore make a significant contribution to phenotypic variation 
41.  This lies somewhere between the two opposing views regarding the CDCV hypothesis 

discussed above.   Common diseases will vary in their allelic spectra depending on the 

evolutionary forces exerted upon them; nevertheless it is estimated that each will likely 

have hundreds of common and rare variants contributing to their familial clustering 45. 

The completion of Phase I of the International HapMap Project in 2005 represented a great 

step forward in the GWAS field 96.  The resulting HapMap (i.e. haplotype map) resource is 

a public database of common variation (defined as MAF ≥ 0.05) in over a million SNPs in 

the human genome.  This translates to a SNP density of at least one every 5 kb.  These 

SNPs were completely genotyped in a sample of 269 individuals from four populations: 

the Yoruba in Ibadan, Nigeria (YRI); Caucasians in Utah, USA (CEU); Han Chinese in 

Beijing, China (CHB); and Japanese in Tokyo, Japan (JPT).  Because of the international 

sampling method used, information on genetic variation is available within and between 

populations.  In the characterisation of patterns of LD across the genome, HapMap 

facilitates the design of GWAS in the choosing of tag SNPs, improving study efficiency.  

Knowledge of LD patterns is crucial for study design; low levels can make it easy to miss a 

variant even when a large number of SNPs are genotyped, and conversely high levels make 
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detection more likely but can impede identification of the causal variant (as many SNPs in 

a region may be in LD together). HapMap can also aid data analysis through haplotype 

imputation of untyped variants.  Phase II has since been completed which genotyped a 

further 2.1 million SNPs (approximately one per kb) in the same sample of people 97.    

Additional samples are now being collected from the original four populations, as well as 

seven further populations: Luhya in Webuye, Kenya (LWK); Maasai in Kinyawa, Kenya 

(MKK); Tuscans in Italy (TSI); Gujarati Indians in Texas, USA (GIH); metropolitan 

Chinese in Colorado, USA (CHD); Mexican origin individuals in California, USA (MEX); 

and African ancestry individuals in the southwestern USA (ASW). 

1.4.6 Significance thresholds for GWAS 

By convention statistical significance using frequentist methods is determined using the P 

value threshold of 0.05, with values below this considered significant (i.e. there is evidence 

to reject the null hypothesis of no effect).  This is not appropriate for GWAS because the 

large number of tests performed increases the chance of type I error.  An alternative 

threshold, proposed by Risch and Merikangas and now widely adopted, is P < 5 × 10-8, 

which corresponds to an equivalent false positive rate of 5% for 1,000,000 independent 

tests of association 42.  This is calculated using the simple Bonferroni correction for 

multiple testing, which calculates a new significance threshold by dividing 0.05 by the 

number of tests performed.   In practice this is conservative as it does not take levels of LD 

into account; the use of tag SNPs means the genome can be covered sufficiently with 

around half this number of SNPs (i.e. ~500,000). This threshold is preferable to the 

traditional 0.05 but it has been argued that P value alone is not adequate for assessing 

significance.  In addition to the possibility of false positives within a study, the issue of 

multiple testing can be viewed in the context of replication across studies.  If several 

groups publish the same nominally significant association and these are combined then the 

finding may be given undue weight 44, unless negative results are also made public thus 

avoiding publication bias. 

The Bayesian school of statistical thought states that the prior probability of an association 

being true and the power of the study must also be taken into account.  This is a 

complicated process in that probability must be calculated for each variant, and due to the 

large size of the genome and number of possible disease models the probability of any 

particular variant being causally associated with the phenotype in question is low.  A major 

advantage of the Bayesian approach is that, unlike the frequentist method, conducting 
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additional post-hoc analysis does not lead to a more stringent significance threshold 

because the a priori probability is unaffected.  Wacholder et al employed a variation on 

Bayesian methods to calculate their false positive report probability (FPRP), the 

probability of no true association between a genetic association and disease given a 

statistically significant finding 98.  The FPRP takes into account the observed P value, the 

prior probability that the association is real, and the statistical power of the test.  It is 

compared against a criterion for assessing whether a finding is important.  If the prior 

probability is high then the FPRP can be markedly reduced by increasing sample size.  

However if prior probability is low the benefit of added power is minor.  Wacholder et al 

argue that evaluating significance by P value alone, even if an association has a very low P 

value, is incorrect because if prior probability it low then FPRP may be high.  Conversely, 

setting a very low P threshold for statistical significance can be unnecessarily conservative 

if prior probability is high. 

1.4.7 Statistical power 

Statistical power to detect a phenotype-genotype association is dependent upon the 

magnitude of effect, the frequency of causal allele(s), and the sample size.  Moreover for 

indirect association it is not only the disease predisposing allele frequency that matters, but 

also the marker allele (or tag SNP) frequency, and the power to detect an association is 

greatest when these frequencies match 52.   The extent of LD also influences the likelihood 

of observing an association.  However if the effect size is large this is less important with 

power being high even at low to moderate LD.  Effect size for case control studies is 

measured as an odds ratio (OR), which estimates the odds of an individual in a given 

exposure group (i.e. with a certain genetic variant) being a case versus being a control.  If 

the OR is significantly greater than 1 then the variant confers susceptibility to the disease, 

if it is significantly less than 1 then its effect is protective.  Unfortunately large effects are 

usually rare.  For common complex disease the causal variants that are likely to be 

observed are typically of low or moderate effect (OR < 2.0), so a reasonable level of LD is 

necessary as well as the disease allele being common and close to the marker allele 

frequency.  These conditions translate to a feasible sample size of several thousand of 

cases and controls.  Increasing sample size should lower the p-value of true positive 

results, enabling their detection, and raise the p-value of false positive results 99. 

It is possible for variants of small effect to have large clinical implications by their 

interaction with other genetic variants (epistasis) or environmental factors.  Analysis of 
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gene-gene and gene-environment interactions can be performed within usual GWAS of 

independent SNP effects, but greater sample sizes are required to achieve sufficient power. 

Moreover the problem of multiple testing is amplified, for example if a study tests 300,000 

SNPs there are potentially ~100 billion pairwise tests of epistasis 44.  The identification of 

gene-environment interactions is especially important because the avoidance of an 

environmental exposure can prevent the detrimental modification of a gene, thus avoiding 

the final disease product (since the exposure and genetic variant must be present to produce 

disease) 100.  Measurement of environmental factors is prone to recall bias in case-control 

studies.  Therefore a prospective cohort study design is preferable for assessment of gene-

environment interactions.  Data are currently being collected in large scale population 

cohorts which will make this possible, e.g. UK Biobank 101, Generation Scotland 102. 

Manolio and colleagues examined power to detect environmental, genetic, gene-

environment interaction, and gene-gene interaction effects for various ORs, disease 

incidence rates and sample sizes 100.  Estimated minimum detectable ORs were far greater 

for interaction effects than simple effects (Figure 1.10).  This was expected because fewer 

participants in a sample will be exposed to both a genetic and an environmental risk factor, 

or two genetic risk factors, than a single genetic or environmental factor.   For 

hypertension, assuming an incidence rate of 5%, a sample size of 200,000 is estimated to 

be more than sufficient to detect marginal effects and interactions with ORs of ~1.5, the 

magnitude predicted to be important in complex diseases based on prior evidence.  

However diseases that fall into the rare incidence category of 0.01% (e.g. Parkinson 

disease, schizophrenia) will require extremely large samples for there to be any chance of 

detecting interactions.  Even with an as yet unfeasible sample of 1,000,000 follow-up 

would need to be far longer than 5 years to accrue enough incident cases of rare diseases.   

For common complex diseases most published genetic effects have to date been modest 

(OR ~1.1 – 1.5) 91, 103.  An exception, which no doubt increased expectations of similar 

findings, is the association between APOE4 and late-onset Alzheimer disease 104 for which 

the allelic OR is 3.3 52.  As yet only a small percentage of the human genome has been 

subject to well-designed association study so it is unknown whether the published effect 

sizes are representative of the genome overall 45.   The effect sizes observed are expected 

due to the multifactorial nature of the diseases concerned, and individually translate to only 

a small increase in population absolute risk.  Multiple common risk variants of small effect 

have been combined theoretically, however, to construct risk scores of greater practical 

significance.  Studies of the distribution of genetic effect sizes in other species such as 
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Figure 1.10  Sample-size requirements in prospectiv e cohort studies.  The estimated 
minimum detectable odds ratios after 5 years of follow-up for various cohort sizes and disease 
incidences are shown, assuming: 10% allele frequency for a dominant risk allele, 10% 
environmental exposure frequency, no prevalent cases in the cohort at the start of the study, 3% 
annual loss to follow-up, 80% power, and a type 1 error rate of 0.0001.  Minimum odds ratios are 
shown for: a. an environmental exposure effect; b. a genetic effect (for a dominant variant); c. a 
gene-environment interaction, assuming genetic and environmental marginal effects of 1.5; d. a 
gene-gene interaction, assuming genetic and environmental marginal effects of 1.5.  Asterisks 
indicate minimum detectable odds ratios in excess of 10.  The colour key refers to sample size 
(reproduced from 100).   
 

 



 

54 

rodents, Drosophila melanogaster, crops and livestock suggest that there will be few 

genetic loci of large effect and many loci of small effect 105-111.  This view is now 

widely accepted in the field of common disease genetics 112. 

1.4.8 Replication  

Many published association findings have failed to be replicated.  This is partly due to 

the so-called “winner’s curse”, which is a bias whereby genetic effect size estimates are 

overestimated in initial discovery studies of disease-predisposing variants.   Lohmueller 

and colleagues conducted a meta-analysis of 301 published studies covering 25 

associations between common variants and common diseases 91.  They found that in 23 

of the 25 initial studies there was inflation of effect size consistent with winner’s curse.  

Similar biases were observed in an earlier meta-analysis of case-control association 

studies 113, and by linkage analysis of a quantitative trait locus (QTL) where data 

consisted of a genome wide simulation along with analytical results 114.  The degree of 

bias can be reduced or eliminated by increasing sample size, and several correction 

methods have been proposed (such as 115, 116). 

As with all fields of scientific literature there will exist a certain level of publication 

bias that leads to positive studies being reported more often than negative studies, with 

the consequence that a positive finding may occur by chance in an area where others 

have tried and failed to find anything of significance.  However Lohmueller et al found 

that publication bias does not explain the level of replication observed in the literature 
91, coming to the conclusion that there are many real associations reported as well as 

false positives.  Technical bias can occur if cases and controls are not genotyped and 

analysed together in the same way.  It is also thought that poor choice of controls and 

population stratification affect data quality and therefore play a part in replication 

failure.   

Replication of GWAS findings is as important as replication of candidate gene 

associations, if not more so.  The large number of SNPs studied in GWAS and resulting 

volume of statistical tests performed increases the likelihood of observing type I errors, 

i.e. false positives.  In 2007 an NCI (National Cancer Institute) – NHGRI Working 

Group on Replication in Association Studies published an excellent summary of their 

recommendations on the reporting of initial association studies and criteria for 

replication 117.  These criteria include: replication studies should be of sufficient sample 

size; a similar population should be studied and ideally the same phenotype; similar 
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magnitude of effect and statistical significance in the same direction should be 

demonstrated; initially significance should be obtained using the same genetic model as 

the discovery study; a strong rationale should be provided for attempting replication of 

the chosen SNPs.    There are certain situations in which there are insufficient 

participant numbers for replication, such as rare diseases or environmental exposures.  

These concerns do not affect most association studies of common diseases, though, so 

usually replication is advised.   

Newton-Cheh and Hirschhorn summarised the three main reasons for failure to 

reproduce an initial significant finding when replication is attempted 99: 

- initial association is a false positive therefore correctly not replicated 

- initial association is true but follow-up study underpowered to detect it 

- association is true in one population but not another due to genetic or 

environmental heterogeneity  

Meta-analyses that have examined replication failure indicate that in the majority of 

instances false positives are to blame 91, 113.   

A strategy that increases power over that of individual studies and may be more cost 

effective than replication is meta-analysis of genome wide datasets.  This collaborative 

way of working is increasingly common as investigators attempt to detect loci with 

smaller effects.  One caveat is that genomic coverage does depend on the genotyping 

platform used, so retrospective meta-analysis where studies have used different 

platforms is less successful.  Another is that the combination of results from multiple 

centres may increase genetic and environmental heterogeneity; consequently the gain in 

power may not be as great as one might expect 52.  Evangelou et al examined different 

meta-analytic strategies empirically with specific application to Parkinson disease 118.  

They used three genome wide datasets, two of which were stages of the same study 

(referred to as Mayo tier 1 and Mayo tier 2) and the other a different study altogether 

(referred to as NINDS due to sponsorship by the National Institute of Neurological 

Disorders and Stroke).  Three strategies for combining the datasets were considered: 

enhancement of replication data, where Mayo 1 was considered to be stage 1 analysis 

and Mayo 2 and NINDS combined to form an independent stage 2; enhancement of 

first-stage data, where Mayo 1 and NINDS combined as stage 1 and significant SNPs 



 

56 

were examined independently for replication in Mayo 2; and joint meta-analysis of all 

three datasets.  Of the three strategies, the third of joint analysis proved to have the 

greatest power to detect associations between SNPs and Parkinson disease.  However a 

major drawback was that there were only 527 SNPs available for study that were 

common to all datasets.  This was despite ~200,000 SNPs passing quality control in the 

Mayo study and ~400,000 in NINDS, and highlights the difference in genotyping 

platform coverage.  Between-study heterogeneity can also affect the results of meta-

analyses and should be taken into account as much as possible 119.  

 

1.4.9 GWAS of hypertension and blood pressure 

To date there have been few GWAS of hypertension and/or blood pressure.  Those 

studies that have been published have demonstrated very little success in identifying 

genetic variants that are associated with either hypertension, SBP or DBP.  Many have 

not observed any SNPs that reached genome wide significance 120-124.  One possible 

reason for this failure in some studies is that hypertension and/or blood pressure were 

not the primary trait of interest 120, or not of a priori interest when the cohort was 

recruited 123 therefore phenotyping may not have been necessarily thorough.  Another 

possibility is that there were not enough SNPs studied to provide sufficient coverage of 

the whole genome, in some studies fewer than 100,000 passing quality control 

measures 121, 122, 124.   

Table 1.1 summarises the most significant hits from GWAS of hypertension and/or 

blood pressure published since 2007 (other than WTCCC, Global BPgen, and 

CHARGE), along with meta-analysed discovery and replication results if replication 

was attempted.  One study conducted by Sabatti et al (2009) is omitted because the 

authors did not publish any results for blood pressure, instead reporting that analysis of 

blood pressure did not produce any genome-wide significant results.  However it was 

not the primary trait of interest; the authors also studied triglycerides, HDL, LDL, CRP, 

glucose, insulin and BMI.  

Levy et al (2007) and Wang et al (2009) failed to find any associations of genome-wide 

significance but had limited genomic coverage, studying just 70,897 and 79,447 SNPs 

respectively.  Furthermore the discovery sample employed by Wang et al was small at 

542 participants.   Org et al (2009) and Cho et al (2009) also did not find any 

associations of genome-wide significance.
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Table 1.1 Summary of recent GWAS of hypertension an d/or blood pressure 

  Discovery sample 
 

Discovery & replication meta-analysis  

Publication 
date 

Phenotype N OR/beta Lowest P-
value 

N OR/beta P-value 

DBP 1233 
 

- 3.31 × 10-6 - - - Levy et al 121 Sep-07 

SBP 1260 
 

- 1.69 × 10-6 - - - 

*Wang et al 124 Jan-09 SBP 542 
 

- 7.6 × 10-5 7125 1.9 1.6 × 10-7 

Org et al 125 Mar-09 hypertension 364/596 
 

0.49 2.34 × 10-6 3808/4334 0.78 1.39 × 10-6 

SBP 8842 
 

-1.309 9.1 × 10-7 16703 -1.064 1.3 × 10-7 Cho et al 126 May-09 

DBP 8842 
 

-0.882 1.2 × 10-6 16703 -0.63 3.0 × 10-6 

SBP 1017 
 

- 4.72 × 10-8 - - - 

DBP 1017 
 

- 0.448 1997 - 0.162 

Adeyemo et al 127 Jul-09 

hypertension 509/508 
 

0.58 5.10 × 10-7 875/1122 - 0.009 

* Observed a SNP with a lower p-value but did not r eport on it as situated in gene desert. 
- Value not reported (or in the case of meta-analys is replication not attempted). 
OR = odds ratio 
Effect sizes for associations with hypertension are  presented as odds ratios, and for associations wit h continuous blood pressure as beta coefficients.
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The vast majority of GWAS thus far have been conducted on samples of Caucasian 

individuals of European ancestry.  One of the few studies to examine African Americans 

was that of Adeyemo et al (2009).   Their initial findings were promising, however 

replication was either not attempted (in the case of SBP) or the replication findings were in 

the opposite direction of effect (DBP and hypertension). 

Three recent studies conducted by large consortia, the WTCCC 55, the Global Blood 

Pressure Genetics Consortium (Global BPgen) 58, and the Cohorts for Heart and Aging 

Research in Genome Epidemiology Consortium (CHARGE) 59, were more wide-ranging in 

their scope and implications.  They are described in detail below. 

1.4.9.1 Wellcome Trust Case Control Consortium (WTC CC)  

The WTCCC, made up of over 50 British research groups, conducted a GWA study of 

2,000 cases each for 7 complex diseases of major public health importance; bipolar 

disorder, coronary artery disease, Crohn’s disease, hypertension, rheumatoid arthritis, type 

1 diabetes, and type 2 diabetes.  These were compared with 3,000 shared common controls 

that came from two sources: 1,500 from the 1958 British Birth Cohort and 1,500 blood 

donors that were recruited for the project.  The reason for the use of shared common 

controls was to reduce the huge cost of GWA, as described above.  The 2,000 hypertension 

cases were unrelated participants from the BRIGHT study 128.  The primary aim of the 

study was to gain insights into the genetic contributions to each of the diseases, while at 

the same time discovering differences in allelic architecture between them.  Furthermore, 

because GWAS is a comparatively new area of research, the study aimed to address 

methodological issues of relevance to all GWAS. 

The majority of participants were self-reported white Europeans.  All samples were 

genotyped with the GeneChip 500K Mapping Array Set, produced by Affymetrix, which 

comprises 500,568 SNPs.  The average power of the study for SNPs with minor allele 

frequencies (MAFs) above 5% was estimated to be 43% for alleles with a relative risk of 

1.3, increasing to 80% for a relative risk of 1.5, where the threshold for genome wide 

significance is P < 5 × 10-7.  The investigators developed a new algorithm, CHIAMO, 

which was applied to simultaneously call the genotypes from all individuals.  Of the total 

sample 809 individuals were excluded due to contamination, false identity, non-Caucasian 

ancestry, or relatedness, leaving 16,179 study participants.  469,577 SNPs (93.8%) passed 

quality control filters with an average call rate of 99.63%.  Of those, 392,575 had study-
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wide MAFs > 1%.  All of the SNPs that passed quality control filters were used in the 

association analyses.  Those that showed strong association underwent visual cluster plot 

inspection, identifying 638 SNPs with poor clustering that were removed.   

The control groups were compared to assess bias in their ascertainment and processing 

(which differed).  Few significant differences were found, indicating that there would be 

little bias introduced by the use of either of them as a control group for any of the case 

groups.  Additionally it meant that they could be combined into a single control group of 

3,000 individuals.   

Samples were seeded with those from the HapMap panels and then examined for non-

European ancestry using multidimensional scaling.  This led to the exclusion of 153 

individuals, of which many were people of South Asian origin in the diabetes case groups.  

Next the samples were split into 12 geographical regions of Great Britain defined by 

postcode, which were compared for allele frequency differences as evidence of population 

heterogeneity.  Table 1.2 shows SNPs in thirteen genomic regions that were highly 

differentiated by geographical region.  This would have been a cause for concern, but no 

associations were found within the regions so they were not of interest.  Otherwise there 

was only a small effect of population structure found; therefore the association analyses 

were not adjusted. 

The investigators used both frequentist and Bayesian statistical methods.  Trend tests, 

genotype tests, and sex-differentiated tests were performed between each disease group 

and the pooled controls.  Imputation analysis was also performed using HapMap reference 

samples to impute 2,193,483 SNPs not covered by the Affymetrix 500K chip. 

The association analysis began with an investigation of 15 variants for which there was 

strong prior evidence of association with at least one of the diseases.  These significant 

associations were replicated in the WTCCC sample for 13 of the variants, with effect sizes 

similar to those observed in previous studies (Table 1.3).  Over the entire genome there 

were 21 SNPs identified with P values lower than the genome wide significance threshold 

of 5 × 10-7 (Figure 1.11).  Of these 10 were known associations.  Unfortunately, of the 7 

diseases of interest, hypertension could be described as the loser in that it was not 

associated with any SNPs at P < 5 × 10-7.  Moreover there was no evidence for any of the 

variants previously associated with hypertension (at least partly due to some not being well 

tagged by the Affymetrix chip, e.g. promoter of the WNK1 (WNK lysine deficient protein 
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Table 1.2 WTCCC results: SNPs highly differentiated  by graphical region 55 
Chromosome Genes Region (Mb) SNP Position P value 
2q21 LCT 135.16-136.82 rs1042712 136,379,576 5.54 × 10-13 
4p14 TLR1, TLR6, TLR10 38.51-38.74 rs7696175 386,43,552 1.51 × 10-12 
4p28  137.97-138.01 rs1460133 137,999,953 4.43 × 10-08 
6p25 IRF4 0.32-0.42 rs9378805 362,727 5.39 × 10-13 
6p21 HLA 31.10-31.55 rs3873375 31,359,339 1.07 × 10-11 
9p24 DMRT1 0.86-0.88 rs11790408 866,418 4.96 × 10-07 
11p15 NAV2 19.55-19.70 rs12295525 19,661,808 7.44 × 10-08 
11q13 NADSYN1, DHCR7 70.78-70.93 rs12797951 70,820,914 3.01 × 10-08 
12p13 DYRK4, AKAP3, NDUFA9, 

RAD51AP1, GALNT8 
4.37-4.82 rs10774241 45,537,27 2.73 × 10-08 

14q12 HECTD1, AP4S1, STRN3 30.41-31.03 rs17449560 30,598,823 1.46 × 10-07 
19q13 GIPR, SNRPD2, QPCTL, 

SIX5, DMPK, DMWD, 
RSHL1, SYMPK, FOXA3 

50.84-51.09 rs3760843 50,980,546 4.19 × 10-07 

20q12  38.30-38.77 rs2143877 38,526,309 1.12 × 10-09 
×p22  2.06-2.08 rs6644913 2,061,160 1.23 × 10-07 
Properties of SNPs that show large allele frequency  differences between samples of individuals from 12  regions across                                                              
Great Britain. Regions showing differentiated SNPs are given with details of the SNP with the smallest  P value in each                                                                           
region for differentiation on the 11-d.f. test of d ifferences in SNP allele frequencies between geogra phical regions, within                                                             
the 9 collections.  Positions are in NCBI build 35 coordinates. LCT = lactase. TLR1 = toll-like recept or 1. TLR6 = toll-like  
receptor 6. TLR10 = toll-like receptor 10. IRF4 = i nterferon regulatory factor 4. HLA = major histocom patibility complex. 
DMRT1 = doublesex and mab-3 related transcription f actor 1. NAV2 = neuron navigator 2. NADSYN1 = NAD s ynthetase 1. 
DHCR7 = 7-dehydrocholesterol reductase. DYRK4 = dua l-specificity tyrosine-(Y)-phosphorylation regulate d kinase 4. 
AKAP3 = A kinase (PRKA) anchor protein 3. NDUFA9 = NADH dehydrogenase (ubiquinone) 1 alpha subcomplex,  9, 39kDa.  
RAD51AP1 = RAD51 associated protein 1. GALNT8 = UDP -N-acetyl-alpha-D-galactosamine:polypeptide  
N-acetylgalactosaminyltransferase 8 (GalNAc-T8). HE CTD1 = HECT domain containing 1. AP4S1 = adaptor-re lated  
protein complex 4, sigma 1 subunit. STRN3 = striati n, calmodulin binding protein 3. GIPR = gastric inh ibitory polypeptide  
receptor. SNRPD2 = small nuclear ribonucleoprotein D2 polypeptide 16.5kDa. QPCTL = glutaminyl-peptide  
cyclotransferase-like. SIX5 = SIX homeobox 5. DMPK = dystrophia myotonica-protein kinase. DMWD = dystr ophia  
myotonica, WD repeat containing. RSHL1 = radial spo kehead-like 1. SYMPK = symplekin. FOXA3 = forkhead box A3.  
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Table 1.3 WTCCC results: Evidence for signals of as sociation at previously robustly replicated loci 55 
Collection Genes Chromosome Reported SNP WTCCC SNP HapMap r2 Trend P value Genotypic P value 
CAD APOE 19q13 * rs4420638 - 1.7 × 10-01 1.7 × 10-01 
CD NOD2 16q12 rs2066844 rs17221417 0.23 9.4 × 10-12 4.0 × 10-11 
CD IL23R 1p31 rs11209026 rs11805303 0.01 6.5 × 10-13 5.9 × 10-12 
RA HLA-DRB1 6p21 * rs615672 - 2.6 × 10-27 7.5 × 10-27 
RA PTPN22 1p13 rs2476601 rs6679677 0.75 4.9 × 10-26 5.6 × 10-25 
T1D HLA-DRB1 6p21 * rs9270986 - 4.0 × 10-116 2.3 × 10-122 
T1D INS 11p15 rs689 † - - - 
T1D CTLA4 2q33 rs3087243 rs3087243 1 2.5 × 10-05 1.8 × 10-05 
T1D PTPN22 1p13 rs2476601 rs6679677 0.75 1.2 × 10-26 5.4 × 10-26 
T1D IL2RA 10p15 rs706778 rs2104286 0.25 8.0 × 10-06 4.3 × 10-05 
T1D IFIH1 2q24 rs1990760 rs3788964 0.26 1.9 × 10-03 7.6 × 10-03 
T2D PPARG 3p25 rs1801282 rs1801282 1 1.3 × 10-03 5.4 × 10-03 
T2D KCNJ11 11p15 rs5219 rs5215 0.9 1.3 × 10-03 5.6 × 10-03 
T2D TCF7L2 10q25 rs7903146 rs4506565 0.92 5.7 × 10-13 5.1 × 10-12 
Where information on the strength of association at  a particular SNP had been previously published and  replicated the P value of both the trend and          
genotype test at the same SNP are tabulated, or the  best tag SNP (defined to be the SNP with the highe st r2 with the reported SNP, calculated in the CEU 
sample of the HapMap project).  *Previous reports relate to haplotypes rather than s ingle SNPs.  †Not well tagged by SNPs that pass the quality contr ol.  
APOE = apolipoprotein E. NOD2 = nucleotide-binding oligomerization domain containing 2. IL23R = interl eukin 23 receptor. HLA-DRB1 = major 
histocompatibility complex, class II, DR beta 1. PT PN22 = protein tyrosine phosphatase, non-receptor t ype 22. INS = insulin. CTLA4 = cytotoxic T-lymphocy te-
associated protein 4. IL2RA = interleukin 2 recepto r, alpha. IFIH1 = interferon induced with helicase C domain 1. PPARG = interferon induced with helicas e C 
domain 1. KCNJ11 = potassium inwardly-rectifying ch annel, subfamily J, member 11. TCF7L2 = transcripti on factor 7-like 2 (T-cell specific, HMG-box).                                                                                                                                                                                                                                                
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Figure 1.11 WTCCC results. For each of seven diseases –log10 of the trend test P value for 
quality-control-positive SNPs, excluding those in each disease that were excluded for having poor 
clustering after visual inspection, are plotted against position on each chromosome.  Chromosomes 
are shown in alternating colours for clarity, with P values <1 x 10-5 highlighted in green.  All panels 
are truncated at –log10(P value) = 15, although some markers (for example, in the major 
histocompatibility complex in type 1 diabetes and rheumatoid arthritis) exceed this significance 
threshold (reproduced from 55). 
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kinase 1) gene). There were, however, a similar number and distribution of marginal 

results (with p-values between 10-4 and 10-7) to the other case groups.  It was speculated 

that the lack of a genome-wide significant result may have been due to poorly tagged 

variants or that hypertension may have few common risk alleles with larger effect sizes.  

Moreover, misclassification bias may have reduced the power of detecting effects.  The 

common controls were not specifically phenotyped for blood pressure.  Due to the high 

prevalence of hypertension and its existence on the continuum of blood pressure some of 

the controls may have been misclassified cases.  The WTCCC estimated that the 

misclassification of 5% of controls (i.e. if 5% of controls were in fact undiagnosed cases) 

would translate to a loss of power equivalent to a 10% reduction in sample size.  This is 

because of the dilution of any observable genetic difference, caused by the blurring of the 

distinction between cases and controls.  Considering the expense of genome-wide 

association analysis and the anticipated relatively small effect sizes any reduction in power 

poses a serious problem.  Moreover individuals with blood pressure in the mid-range of 

normotension (that is not considered to pose a risk clinically) may still be at increased risk 

in relation to individuals with low blood pressure.   

Partly due to the failure to find any significant association with hypertension, there have 

been several recent reviews and commentaries published about the genetics of 

cardiovascular disease and how to proceed from here 47, 129-131.  One suggestion is to take a 

pathway approach that takes into account gene-gene and gene-environment interactions, 

although currently single studies are not powered for this 131. 

The WTCCC study makes several recommendations for GWAS in general: 

• Extensive data quality control checking is essential including visual inspection of 

cluster plots for SNPs of interest 

• After excluding participants with non-European ancestry, and out with the loci 

listed in Table 1.2, the effects of population structure on case-control association 

are not sufficient to warrant concern of confounding by stratification (at least in 

Britain).  

• The validity of common control group usage demonstrates that concern about 

matching of cases and controls (in genetic association studies) for socio-

demographic variables has been exaggerated (again at least in Britain). 
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• The modest effect sizes observed are in line with the now widely held view that for 

common diseases there will be few large genetic effects (“low hanging fruit”), 

some modest effects, and many small (probably undetectable in the sample sizes of 

most studies) effects.   

• Because estimates of variant-disease association effect size in initial discovery 

studies are often inflated (“winner’s curse”), crucial replication attempts will need 

to employ study samples of even greater size. 

1.4.9.2 Global Blood Pressure Genetics (Global BPge n) 
Consortium 

The Global BPgen consortium, a collaboration of 17 GWAS from Europe and the USA 

(including the WTCCC 1958 British Birth Cohort control group), examined genetic 

associations with SBP and DBP 58.  Some of the component studies were population-based 

and some case-control.  Participants were of European ancestry and, after exclusion of 

those who had been ascertained to their original study group on the basis of case status for 

hypertension, type 1 or 2 diabetes, or coronary artery disease (CAD), totalled 34,433.  

Investigators dealt with the confounding effect of antihypertensive medication by adding 

15 mm Hg to recorded SBP and 10 mm Hg to DBP for those who were on such treatment.  

The genotyping platform used varied by study and included: Affymetrix 500K; Illumina 

550K; AffymetrixSNP 5.0; Illumina HumanHap 300; Affymetrix 6.0; Illumina 370; 

Illumina 1M; Affymetrix 500; AffymetrixSNP 6.0; and Illumina 317K.  Studies also varied 

in their participant ascertainment and method of blood pressure measurement. 

In Stage 1, for each study ~2.5 million autosomal SNPs in the HapMap CEU sample 

(Caucasians in Utah, USA) were imputed and tested for association with SBP and DBP 

separately.  At a significance threshold of P < 5 × 10-5 there were 11 independent signals 

for SBP and 15 for DBP, two of which achieved P < 5 × 10-8 (considered genome wide 

significance for this analysis).   

Stage 2a of the study followed-up 12 SNPs from Stage 1.  These were genotyped in 13 

cohorts of European ancestry (N≤71,225), one of them the BRIGHT cohort, and one cohort 

of Indian Asian ancestry (N≤12,889).  Finally, stage 2b was in-silico analysis of ten 

independent signals each for DBP and SBP in the CHARGE cohort (described in section 

1.4.3 below).  Meta-analysis of stages 1, 2a and 2b association results identified 
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associations of genome wide significance (for either DBP or SBP) at eight loci, listed in 

Table 1.4. 

The results for the eight genome wide significant associations were compared for DBP and 

SBP for stage 1 (validation having only been attempted at stages 2a and 2b for the 

phenotype with the lower stage 1 P value).  All eight showed some level of association 

with both phenotypes in the same direction of effect (Table 1.4).  Investigators also 

assessed whether these loci were associated with hypertension, defined as SBP ≥ 140 mm 

Hg or DBP ≥ 90 mm Hg or self-reportedly on antihypertensive medication.  Normotension 

was defined as not taking antihypertensives, SBP ≤ 120 mm Hg and DBP ≤ 85 mm Hg.  

Stage 1 genome wide analysis was not conducted for hypertension due to lack of power, so 

instead the significant loci were examined in planned secondary analysis (N range = 

57,410 – 99,802).    In the secondary samples all eight alleles showed association with 

hypertension in the same direction of effect as continuous blood pressure (Table 1.5).  

However, in the stage 1 sample alone four of the SNPs had p-values in the range 0.01 < P 

≤ 0.10.   

In the Indian Asian sample two of the 12 stage 2a SNPs were replicated with P < 0.01.  

These were rs16998073 on chromosome 4q21 (P = 5 × 10-4) and rs11191548 on 

chromosome 10q24 (P = 0.008).  It should be noted that all of the reported associations 

translate to a very small change in blood pressure, approximately 1 mm Hg per allele SBP 

or 0.5 mm Hg per allele DBP.  However, the effects of multiple variants can be combined 

to produce a meaningful change in population cardiovascular risk. 

1.4.9.3 Cohorts for Heart and Aging Research in Gen ome 
Epidemiology (CHARGE) Consortium 

The CHARGE consortium is made up of six population-based studies of individuals of 

European descent from Europe and the USA, N = 29,136 59.  It conducted GWA studies of 

SBP, DBP and hypertension (defined as SBP ≥ 140 mm Hg or DBP ≥ 90 mm Hg or 

antihypertensive treatment).  Participants taking antihypertensive medication had 10 

mmHg added to their recorded SBP and 5 mmHg to their DBP.  The genotyping platform 

used varied by study and included: Illumina 550K; Affymetrix 6.0; Illumina 370CNV; and 

Affymetrix 500K & MIPS 50K combined.   

The association results for SBP (Table 1.6), DBP (Table 1.7) and hypertension (Table 1.8) 

are presented for SNPs of genome-wide significance, considered P <4 × 10-7, along with  
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Table 1.4 Global BPgen results.  Relationship of SN Ps at 8 genome-wide significant loci to both blood pressure traits 58 
SNP ID Chromosome N (effective) Trait Beta mm Hg s.e. P 
rs17367504 1 34,158 SBP -0.79 0.18 1 × 10-05 
   DBP -0.50 0.12 3 × 10-05 
rs11191548 10 33,123 SBP 1.17 0.22 3 × 10-07 
   DBP 0.56 0.15 2 × 10-04 
rs12946454 17 32,120 SBP 0.68 0.15 4 × 10-06 
   DBP 0.34 0.09 6 × 10-04 
rs16998073 4 26,106 DBP 0.65 0.11 7 × 10-09 
   SBP 0.74 0.17 1 × 10-05 
rs1530440 10 32,718 DBP -0.51 0.11 3 × 10-06 
   SBP -0.43 0.16 7 × 10-03 
rs653178 12 30,853 DBP -0.46 0.09 1 × 10-07 
   SBP -0.47 0.13 3 × 10-04 
rs1378942 15 34,126 DBP 0.48 0.09 6 × 10-08 
   SBP 0.62 0.13 2 × 10-06 
rs16948048 17 34,052 DBP 0.40 0.09 5 × 10-06 
   SBP 0.41 0.13 2 × 10-03 
For each of eight SNPs, the upper row shows associa tion statistics for the blood pressure trait used f or the analysis in which they were 
selected (SBP or DBP).  The lower row (in boldface)  shows the equivalent association statistics for th e alternate blood pressure trait.   
Results are shown for the 34,433 individuals in the  stage 1 Global BPgen GWAS samples.                                                         
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Table 1.5 Global BPgen results. Association of eigh t SBP- and DBP- associated loci with hypertension 59 
SNP ID Chromosome Continuous 

Trait 
Continuous 
BP effect 

HTN OR HTN 95% CI HTN P N 

rs17367504 1 SBP ↓ 0.89 0.86-0.93 2 × 10-09 62,803 
rs11191548 10 SBP ↑ 1.16 1.11-1.21 3 × 10-13 99,153 
rs12946454 17 SBP ↑ 1.07 1.04-1.11 2 × 10-05 57,410 
rs16998073 4 DBP ↑ 1.10 1.07-1.13 7 × 10-10 73,756 
rs1530440 10 DBP ↓ 0.95 0.91-0.98 2 × 10-03 83,156 
rs653178 12 DBP ↓ 0.93 0.91-0.96 8 × 10-07 60,030 
rs1378942 15 DBP ↑ 1.10 1.07-1.12 2 × 10-14 99,802 
rs16948048 17 DBP ↑ 1.06 1.03-1.09 1 × 10-04 62,411 
Shown are the meta-analysis results for the top SNP  from each genome-wide significant SBP or DBP locus  from a logistic regression  
analysis of the odds of hypertension compared to no rmotension.   
HTN = hypertension. OR = odds ratio. 
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Table 1.6 CHARGE results. Association of 13 loci si gnificantly associated genome-wide with SBP, and co rresponding results for DBP and hypertension  59 
  Meta-analysis, SBP Meta-analysis, DBP Meta-analysis, hypertension 
SNP ID Chromosome Beta s.e. P Beta s.e. P Beta s.e. P 
rs2681492 12 -1.26 0.19 3.0 × 10-11 -0.62 0.11 4.6 × 10-08 -0.14 0.03 8.4 × 10-08 
rs2681472 12 -1.29 0.19 3.5 × 10-11 -0.64 0.11 3.7 × 10-08 -0.16 0.03 1.7 × 10-08 
rs11105354 12 -1.30 0.20 3.7 × 10-11 -0.63 0.11 5.8 × 10-08 -0.16 0.03 1.8 × 10-08 
rs11105364 12 -1.30 0.20 4.8 × 10-11 -0.63 0.12 1.2 × 10-07 -0.16 0.03 2.1 × 10-08 
rs17249754 12 -1.30 0.20 5.2 × 10-11 -0.63 0.12 1.0 × 10-07 -0.16 0.03 2.2 × 10-08 
rs11105368 12 -1.30 0.20 5.3 × 10-11 -0.63 0.12 1.3 × 10-07 -0.16 0.03 2.2 × 10-08 
rs12579302 12 -1.29 0.20 6.2 × 10-11 -0.62 0.12 1.3 × 10-07 -0.16 0.03 2.2 × 10-08 
rs12230074 12 -1.31 0.20 9.1 × 10-11 -0.62 0.12 3.4 × 10-07 -0.17 0.03 2.9 × 10-08 
rs11105378 12 -1.31 0.20 9.1 × 10-11 -0.62 0.12 3.1 × 10-07 -0.17 0.03 2.8 × 10-08 
rs4842666 12 -1.20 0.21 6.5 × 10-09 -0.62 0.12 4.5 × 10-07 -0.15 0.03 3.4 × 10-07 
rs8096897 18 -12.87 2.33 3.2 × 10-08 -4.07 1.33 2.9 × 10-03 -0.73 0.35 0.04 
rs11105328 12 -1.11 0.20 4.2 × 10-08 -0.61 0.12 5.1 × 10-07 -0.15 0.03 7.1 × 10-07 
rs880315 1 0.89 0.17 2.1 × 10-07 0.30 0.10 2.9 × 10-03 0.09 0.02 6.2 × 10-05 
Beta is the effect size on blood pressure in mmHg, per allele based on the additive genetic model.  
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Table 1.7 CHARGE results. Association of 20 loci si gnificantly associated genome-wide with DBP, and co rresponding results for SBP and hypertension  59 
  Meta-analysis, DBP Meta-analysis, SBP Meta-analysis, hypertension 
SNP ID Chromosome Beta s.e. P Beta s.e. P Beta s.e. P 
rs3184504 12 0.50 0.09 1.7 × 10-08 0.75 0.15 5.7 × 10-07 0.07 0.02 7.4 × 10-04 
rs653178 12 0.50 0.09 2.0 × 10-08 0.74 0.15 8.5 × 10-07 0.07 0.02 7.7 × 10-04 
rs2681472 12 -0.64 0.12 3.7 × 10-08 -1.29 0.19 3.5 × 10-11 -0.16 0.03 1.7 × 10-08 
rs4766578 12 0.49 0.09 4.2 × 10-08 0.73 0.15 1.2 × 10-06 0.06 0.02 1.9 × 10-03 
rs10774625 12 0.49 0.09 4.2 × 10-08 0.73 0.15 1.1 × 10-06 0.06 0.02 1.8 × 10-03 
rs2681492 12 -0.62 0.11 4.6 × 10-08 -1.26 0.18 3.0 × 10-11 -0.14 0.03 8.4 × 10-08 
rs11105354 12 -0.63 0.12 5.8 × 10-08 -1.30 0.19 3.7 × 10-11 -0.16 0.03 1.8 × 10-08 
rs17630235 12 0.50 0.09 1.0 × 10-07 0.69 0.15 1.1 × 10-05 0.06 0.02 4.3 × 10-03 
rs17249754 12 -0.63 0.12 1.0 × 10-07 -1.30 0.19 5.2 × 10-11 -0.16 0.03 2.2 × 10-08 
rs11066188 12 0.50 0.09 1.1 × 10-07 0.68 0.15 1.3 × 10-05 0.06 0.02 4.2 × 10-03 
rs11105364 12 -0.63 0.12 1.2 × 10-07 -1.30 0.19 4.8 × 10-11 -0.16 0.03 2.1 × 10-08 
rs11105368 12 -0.63 0.12 1.2 × 10-07 -1.30 0.19 5.3 × 10-11 -0.16 0.03 2.2 × 10-08 
rs12579302 12 -0.62 0.12 1.2 × 10-07 -1.29 0.19 6.2 × 10-11 -0.16 0.03 2.2 × 10-08 
rs2384550 12 -0.48 0.09 1.3 × 10-07 -0.71 0.15 4.3 × 10-06 -0.08 0.02 5.6 × 10-05 
rs1991391 12 -0.48 0.09 1.4 × 10-07 -0.71 0.15 3.8 × 10-06 -0.09 0.02 5.6 × 10-05 
rs6489992 12 -0.48 0.09 2.0 × 10-07 -0.71 0.15 4.7 × 10-06 -0.08 0.02 1.9 × 10-04 
rs11065987 12 0.48 0.09 2.2 × 10-07 0.70 0.15 9.4 × 10-06 0.06 0.02 4.1 × 10-03 
rs11024074 11 0.50 0.10 2.8 × 10-07 0.79 0.16 1.6 × 10-06 0.09 0.02 5.2 × 10-05 
rs11105378 12 -0.62 0.12 3.1 × 10-07 -1.31 0.20 9.1 × 10-11 -0.17 0.03 2.8 × 10-08 
rs12230074 12 -0.62 0.12 3.4 × 10-07 -1.31 0.20 9.1 × 10-11 -0.17 0.03 2.9 × 10-08 
Beta is the effect size on blood pressure in mmHg, per allele based on the additive genetic model.  
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Table 1.8 CHARGE results. Association of 10 loci si gnificantly associated genome-wide with hypertensio n, and corresponding results for SBP and DBP  59 
  Meta-analysis, SBP Meta-analysis, DBP Meta-analysis, hypertension 
SNP ID Chromosome Beta s.e. P Beta s.e. P Beta s.e. P 
rs2681472 12 -0.16 0.03 1.7 × 10-08 -1.29 0.19 3.5 × 10-11 -0.64 0.11 3.7 × 10-08 
rs11105354 12 -0.16 0.03 1.8 × 10-08 -1.30 0.19 3.7 × 10-11 -0.63 0.11 5.8 × 10-08 
rs11105364 12 -0.16 0.03 2.1 × 10-08 -1.30 0.19 4.8 × 10-11 -0.63 0.12 1.2 × 10-07 
rs17249754 12 -0.16 0.03 2.2 × 10-08 -1.30 0.19 5.2 × 10-11 -0.63 0.12 1.0 × 10-07 
rs11105368 12 -0.16 0.03 2.2 × 10-08 -1.30 0.19 5.3 × 10-11 -0.63 0.12 1.2 × 10-07 
rs12579302 12 -0.16 0.03 2.2 × 10-08 -1.29 0.19 6.2 × 10-11 -0.62 0.12 1.2 × 10-07 
rs11105378 12 -0.17 0.03 2.8 × 10-08 -1.31 0.20 9.1 × 10-11 -0.62 0.12 3.1 × 10-07 
rs12230074 12 -0.17 0.03 2.8 × 10-08 -1.31 0.20 9.1 × 10-11 -0.62 0.12 3.4 × 10-07 
rs2681492 12 -0.14 0.03 8.4 × 10-08 -1.26 0.18 3.0 × 10-11 -0.62 0.11 4.6 × 10-08 
rs4842666 12 -0.15 0.03 3.4 × 10-07 -1.20 0.20 6.5 × 10-09 -0.62 0.12 4.5 × 10-07 
Beta is the effect size on blood pressure in mmHg, per allele based on the additive genetic model. 
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the results for the other two phenotypes.  Taking this significance threshold there were 13 

significant SNP associations for SBP, 20 for DBP, and ten for hypertension.  There is quite 

a bit of overlap between phenotypes with many of the top hits attaining significance in the 

same direction of effect for more than one phenotype. The top ten loci for SBP, DBP and 

hypertension (30 in total) in the CHARGE cohort were checked for significance in the 

Global BPgen results (described above).  One SNP for SBP, four for DBP and one for 

hypertension were assessed for independent replication in Global BPgen.  Five SNPs out of 

this six attained P <0.008, the threshold for external replication in Global BPgen.    When 

the results for the same 30 SNPs in both studies were analysed together by meta-analysis, 

there were four associations of genome wide significance (P <5 × 10-8) for SBP, six for 

DBP, and one for hypertension.  Again effect sizes were very small, approximately 1 mm 

Hg change in SBP per allele or 0.5 mm Hg change in DBP per allele.   

1.4.9.4 Potential candidate genes for blood pressur e regulation 
identified by Global BPgen and/or CHARGE 

Several of the loci associated with SBP, DBP, or hypertension in the Global BPgen study 

and/or the CHARGE study are potential candidate genes for blood pressure regulation.  For 

example, CYP17A1 (cytochrome P450, family 17, subfamily A, polypeptide 1) on 

chromosome 10q24, implicated in both studies, has been associated with a rare Mendelian 

form of hypertension 132.  Furthermore, the protein encoded is involved in the biosynthesis 

of mineralocorticoids and glucocorticoids that affect sodium handling.  In a region of 

chromosome 1p36, identified in Global BPgen, lies NPPA (natriuretic peptide precursor A) 

which has previously been associated with blood pressure and hypertension 133.  Another 

possibility is ATP2B1 (ATPase, Ca++ transporting, plasma membrane 1) on chromosome 

12q21, variants in which were associated with all three traits in CHARGE.  Elevated 

mRNA levels of the encoded protein, PMCA1, have been found in aortic smooth muscle 

cells of spontaneously hypertensive rats compared with controls 134.  Global BPgen 

identified FGF5 (fibroblast growth factor 5) on chromosome 4q21 as a possible candidate 

gene because it has been associated with angiogenesis in the heart 135.  A missense SNP 

located in exon 3 of SH2B3 (SH2B adaptor protein 3) on chromosome 12q24, and 

implicated in both studies, has been previously associated with type 1 diabetes 136, 137, 

celiac disease 137, 138, and MI 139. 
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1.5 Aims 

The specific aims of this study are: 

1) to identify common polymorphisms associated with hypertension using a genome 

wide association approach on the extremes of the blood pressure distribution; 

2) to validate the top hit(s) in independent cohorts using a similar strategy and 

perform a meta-analysis of the combined samples; 

3) to elucidate the possible functional underpinnings of the validated hit(s). 
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2 Materials and methods 
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2.1 Description of samples 

Cases and controls were both sampled from existing cohorts in Norway and Sweden: cases 

from the Nordic Diltiazem study (NORDIL) 140, 141; and controls from the Malmö Diet and 

Cancer Study (MDC) 142-144. 

2.1.1 Nordic Diltiazem study (NORDIL)  

The NORDIL study was a prospective randomised controlled trial of diltiazem, a calcium 

antagonist, versus conventional (at time of recruitment) antihypertensive treatment 141.  

Conventional treatment was mainly considered to be diuretics and/or beta-blockers, 

although participants could also be prescribed other classes of drug.  Recruitment began in 

September 1992 and took place in 1032 health centres in Norway and Sweden.  The 

primary endpoints considered were CV mortality defined as fatal acute myocardial 

infarction (MI), fatal acute stroke, sudden death and other fatal CVD; and CV morbidity 

defined as MI and stroke.  Secondary endpoints were total mortality, development or 

deterioration of ischaemic heart disease (IHD), congestive heart failure, atrial fibrillation, 

transient ischaemic attacks, diabetes mellitus and renal insufficiency.  Participants were 

hypertensive patients aged between 50 and 69 years at recruitment, with an untreated DBP 

of at least 100 mmHg during a run-in period without antihypertensive treatment.  

Previously treated and untreated patients were included.  The final sample size was 10,881, 

of whom 5410 participants were randomised to diltiazem and 5471 to diuretics/beta-

blockers.  In both groups a little over 51% of individuals were female and the mean age 

was 60.  At baseline mean SBP was ~173 mmHg and mean DBP ~106 mmHg.  During the 

mean follow-up period of 4.5 years this reduced to 154.9/88.6 mmHg in the diltiazem 

group and 151.7/88.7 mmHg in the diuretic/beta-blocker group.  Survival analysis showed 

that the only endpoint for which there was a significant difference between groups was all 

stroke, with a lower risk of events in the diltiazem group (RR 0.80, 95% CI 0.65-0.99, 

p=0.04).  For all other endpoints there was no significant difference in risk observed 

between treatment groups.  Examination of the 12 most frequently reported adverse effects 

found that those in the diltiazem group were more likely to experience headaches but less 

likely to experience fatigue, dyspnoea or impotence.  In the current study participants were 

selected from the 5,280 Swedish NORDIL patients. 
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2.1.2 Malmö Diet and Cancer Study (MDC) 

The MDC was established as a resource to examine the relationship between diet and the 

subsequent development of cancer 145. It is a population based sample of 28,098 

individuals aged 40-70 years living in the Swedish city of Malmö (total population 

235,000).  Recruitment occurred between 1991 and 1996.  Blood pressure was measured 

twice in the supine position at recruitment, and the mean of the measurements recorded. As 

well as detailed dietary data, the study collected additional information on medical history, 

medication, anthropometry, and covariates such as alcohol consumption, smoking, 

physical activity, weight and socioeconomic category. For cardiovascular endpoints 

(defined as fatal and non-fatal coronary events and stroke) participants have been 

followed-up for 10.5 years through routine data linkage.  There were 860 prevalent 

cardiovascular events at baseline and 2,100 incident events during follow-up.  The age 

range of the MDC and NORDIL studies is similar and recruitment occurred during the 

same period of time.   

2.1.3 Use of hypercontrols 

As mentioned in Chapter 1, one of the reasons proposed for the failure of the WTCCC and 

other studies to find a genome-wide significant result for hypertension may have been 

misclassification bias.  This is particularly likely for hypertension in comparison with other 

common diseases, because of its high prevalence and the continuum of risk conferred by 

elevated blood pressure.  Many published studies have not phenotyped controls as 

carefully as they have cases and the use of retrospectively collected common controls 

amplifies this issue.  In the WTCCC it was estimated that the misclassification of 5% of 

controls (i.e. if 5% of controls were in fact undiagnosed cases) would translate to a loss of 

power equivalent to a 10% reduction in sample size 55.  This is because of the dilution of 

any observable genetic difference, caused by the blurring of the distinction between cases 

and controls.  Considering the expense of genome-wide association analysis and the 

anticipated relatively small effect sizes any reduction in power poses a serious problem.  

Moreover individuals with blood pressure in the mid-range of normotension that is not 

considered to pose a risk clinically may still be at increased risk in relation to individuals 

with low blood pressure.  For this reason and to increase the likelihood of detecting genetic 

effects we advocate the novel approach of using hypercontrols 47.  Hence the current study 

compares cases and controls at the extreme high and low ends, respectively, of the blood 

pressure distribution. 
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2.1.4 Case inclusion criteria 

Cases, selected from the NORDIL study sample, were defined as individuals younger than 

60 years with at least two consecutive measurements of SBP ≥ 160 mmHg or DBP ≥ 100 

mmHg.  The blood pressure readings were taken while participants were off treatment, 

following a wash-out period of one week. According to these criteria 2,000 cases were 

identified, representing the top 1.7% of the Swedish population blood pressure distribution 

(Figure 2.1). 

2.1.5 Control inclusion and exclusion criteria 

Controls, collected from the MDC sample, were defined as individuals aged at least 50 

years with SBP ≤ 120 mmHg and DBP ≤ 80 mmHg who were not prescribed any blood 

pressure lowering medication.  The exclusion criterion was any evidence of cardiovascular 

disease, defined as no prevalent CAD or stroke and no incident CAD or stroke in the last 

ten years.  2585 individuals meeting these criteria were identified in the MDC sample, 

representing the lower 9.2% of the Swedish population blood pressure distribution (Figure 

2.1).  This does not reflect very extreme low blood pressure (unlike the cases who have 

very extreme high blood pressure) because in the adult population the blood pressure 

distribution curve is skewed to the right.  Therefore, using the same percentage cut-off at 

both tails would provide fewer controls than cases.  Instead we have selected the bottom 

9.2% in order to sample at least 2000 controls (compared with top 1.7% for cases) and 

have enhanced the definition by utilising ten year follow-up information to exclude 

prevalent disease. 

 

2.2 Software 

Phenotypic data were summarised and analysed using SPSS 15.0 146 and Stata 10 147.  

Genetic data were analysed using the program described below. 
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Figure 2.1 Blood pressure distribution in the curre nt study sample.   
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2.2.1 DNA extraction and genotyping  

High quality DNA was extracted in Glasgow for all participants on an Autopure LS DNA 

extraction system from Qiagen.  The Autopure LS workstation allows fully automated high 

throughput purification of genomic DNA.  A NanoDrop at OD260/280 is used to assess 

quantification and quality of DNA.  Samples were genotyped using Illumina Infinium 

DNA Analysis BeadChips 148.  Due to cost and availability considerations the current 

analysis used three BeadChip types consecutively; HumanHap550, HumanHap550-Duo, 

and Human610-Quad.  The HumanHap550 chip genotypes a single sample for more than 

555,000 SNPs; this amounts to 90% of all Phase I and II CEU (Caucasian) HapMap loci 

with MAF ≥ 0.05.  The same SNPs are covered by the HumanHap550-Duo chip but there 

is the added advantage that two samples can be genotyped concurrently.  Furthermore it 

provides deep coverage of over 2,900 copy number variant (CNV) regions.  The 

Human610-Quad chip also covers > 555,000 SNPs and an additional ~60,000 CNV 

specific markers, and as indicated by its name can genotype four samples simultaneously.   

Both BeadChip versions are reported by Illumina to have high validity and reliability with 

average call rate, reproducibility and HapMap concordance all > 99%.  Half of the samples 

were genotyped at the British Heart Foundation Glasgow Cardiovascular Research Centre, 

and half at the Istituto Auxologico Italiano, Milan, Italy.   

2.2.2 PLINK 

PLINK 149, 150 is an open-source tool set for whole genome association and population-

based linkage analyses.  PLINK enables the user to manage large genome-wide datasets 

and perform standard summary statistics and association analyses.  It offers tests of 

confounding due to both population stratification and non-random genotyping failure, and 

a method to assay rare variation with the use of common SNP panels.  Furthermore gene-

gene and gene-environment interactions can be assessed as well as copy number variation.  

There is not a fixed limit to the number of samples or SNPs, or indeed overall size of data 

file that PLINK can cope with, but computer processing capability limits what is possible.  

Analysis can be run separately for each chromosome if the machine in use has insufficient 

memory for the whole dataset.  In addition analyses can be run on parallel processors to 

reduce computational time.   

In order to run analysis PLINK requires data in the format of two input files: PED and 

MAP.  PED files contain six mandatory columns: Family ID; Individual ID; Paternal ID; 
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Maternal ID; Sex; and Phenotype.  Phenotype can be a single affection status or single 

quantitative trait.  Genotypes are stored in column 7 and onwards, and markers must be 

biallelic.  Flags can be used within analysis code to specify that family ID, parents’ 

identities, sex or phenotype are unknown. The simplest file format possible is an individual 

ID followed by genotypic data.  In MAP files each row represents a single marker and four 

columns are required: Chromosome; rs number or SNP identifier; Genetic distance; and 

Base-pair position.  It is possible to use a flag to indicate that genetic distance is excluded 

as for many analyses it is not necessary.  PLINK files do not contain column headings. 

In the current study we have used binary PED (BED) files.  These are smaller than PED 

files because pedigree/phenotype information is stored in a separate file (FAM), hence 

analysis is accelerated.  BED files contain the chromosome name, the start and end 

positions of the feature (in this case a SNP), and binary genotype information, and are 

accompanied by a FAM file and a BIM file.  FAM files contain the first six columns of 

PED files (i.e. they are PED files without genotypes).  BIM files are extended MAP files 

that contain the same four columns with the addition of two further columns containing 

allele names. 

For reasons of computational power the analyses reported here were performed on a 

remote server via the open-source Telnet/SSH client PuTTY 

(http://www.chiark.greenend.org.uk/~sgtatham/putty/) and files were managed remotely 

using WinSCP (http://winscp.net/eng/index.php), an open-source SFTP, FTP and SCP 

client for Windows.  A useful aspect of PLINK is the ability to view genome-wide output 

in Haploview 151 and in tables and figures created in R 152.  Both of these facilities have 

been employed in the current study.   

2.2.3 Haploview 

Haploview 151 is a software package that provides tools for haplotype analysis.  Like 

PLINK it can perform single marker association analysis and quality control analysis of 

markers.  Moreover it generates LD information, haplotype blocks and population 

haplotype frequencies.  As mentioned above there is the ability to import PLINK 

association and quality-control results into Haploview in order to create LD plots and 

Manhattan plots amongst other things.  Several pairwise measures of LD are calculated and 

the user has a choice of LD block definitions to base plots on.  Data can be sorted and 

filtered based on parameters such as association p-value, GC adjusted p-value, 
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missingness, MAF, Hardy-Weinberg frequency etc.  If there is information on affection 

status in the input file Haploview can calculate the χ2 statistic for case/control data or the 

TDT statistic for trio data.   

2.2.4 EIGENSTRAT 

As described in Chapter 1, PCA has been employed as an explicit method of detecting and 

correcting population stratification in GWAS.  EIGENSTRAT 74 is a program which does 

this in three steps: 

1. PCA is applied to genotype data to infer continuous axes of genetic variation 

2. genotypes and phenotypes are continuously adjusted by amounts attributable to 

ancestry along each axis, via computing residuals of linear regressions 

3. association statistics are computed using ancestry-adjusted genotypes and 

phenotypes 

The axes of variation aim to describe the maximum amount of data variability possible in a 

small number of dimensions.  These dimensions are principal components (PCs), termed 

“eigenvectors”, and are rated in EIGENSTRAT output based on the amount of data 

variability explained, enabling the user to select the “top” eigenvectors to adjust 

association analysis for.  If ancestry differences exist between samples then the axes may 

be interpreted geographically (e.g. north to south, east to west).  It should be noted that 

EIGENSTRAT requires genome-wide data for population stratification to be assessed. 

The developers of EIGENSTRAT have run simulations to determine how much data are 

required to accurately infer population structure and then correct for stratification.  More 

data are needed for correction than for detection alone.  Correction was found to be 

insensitive to number of samples, being effective in sample sizes as small as 100.    When 

sample size was fixed at 1000 and FST = 0.005 full correction of stratification at highly 

differentiated SNPs required 20,000 SNPs.  This rose to 100,000 SNPs when FST = 0.001 

(the smaller value indicating that allele frequencies within the populations being compared 

are more similar). Hence the magnitude of currently reported datasets, of thousands of 

participants and hundreds of thousands of SNPs, is sufficient for EIGENSTRAT use.  FST 

is defined as “the correlation between gametes chosen randomly from within the same 
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subpopulation relative to the entire population”153.  It is used as a measure of genetic 

differentiation.   

An additional benefit of using EIGENSTRAT is that it can detect problems with 

experimental design, for example if the laboratory treatment of cases and controls is not 

fully matched.  Any resultant bias is potentially a far greater concern than population 

stratification.  In an example outlined by its authors, Price and colleagues, the two most 

significant PCs produced by EIGENSTRAT described ancestry effects with the third 

detecting subtle differences in laboratory treatment among samples 74. 

The current study samples are all Swedish Caucasian, so it is likely that any population 

structure present is low level and caused by mixed European ancestry.    Price and 

colleagues studied six European population samples and an American Ashkenazi Jewish 

sample using EIGENSTRAT 154.  The most significant axes clustered individuals into three 

groups, approximately representing northwest European, southeast European, and 

Ashkenazi Jewish ancestry.  The Swedish sample clustered in the northwest European 

group along with the UK and Poland.  In a similar study of samples from 16 European 

countries Nelis and colleagues also observed a northwest to southeast gradient 155.  Figure 

2.2 is a scatterplot of the first two axes of variation in 5,847 European samples in an 

analysis conducted by Heath et al 156.  Their data most clearly demonstrates a correlation 

between geographic origin and genetic origin, with Swedish participants clustering close to 

Norwegians and Germans.  Furthermore, when compared with the STRUCTURE method 

of detecting population structure, EIGENSTRAT was superior in assigning origins to 

unknown samples 156. The HapMap CEU samples were most similar to participants from 

the UK, followed by Germany, Belgium, Norway and Sweden.  There was no evidence of 

non-European origin in any of the CEU samples.   

2.3 Statistical analysis 

2.3.1 Power calculations 

Sample size was calculated using PBAT 

(http://www.goldenhelix.com/SNP_Variation/Manual/svs7/pbat_power_calculations.html),  

for 500,000 SNPs with 80% power for various odds ratios, assuming an equal number of 
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Figure 2.2 The top two axes of variation of a datas et of diverse European samples. 
Demonstrating both an East-West and a North-South gradient (reproduced from 156). 
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cases and controls (Figure 2.3 47).  Sample size estimates were modelled using Monte-

Carlo simulations, with 1,000,000 simulations computed.  Based on the blood pressure 

distribution in the general population and the commonly used hypertension cut-off of DBP 

≥90mmHg or SBP ≥140mmHg, the expected OR is less than 1.3.  At an MAF of 0.01 this 

translates to a sample size of at least 6,000 cases and as many controls.  However high-

fidelity phenotyping of extreme cases and controls will artificially inflate the OR to an 

estimated 1.5, meaning only ~2,000 cases and ~2,000 controls are required for 80% power 

to detect any effects.  Furthermore the recruitment of both cases and controls from the 

same country, Sweden, should minimise the confounding effect of population structure and 

the resultant loss of power. 

2.3.2 Summary of phenotypic data 

Phenotypic data were analysed using SPSS 15.0.  Information was available on age, BMI, 

SBP and DBP.  Cases and controls were compared with the two sample t-test. 

2.3.3 Reformatting of Illumina output files 

Illumina report files contain nine rows of descriptive information followed by four column 

headings; sample ID, SNP name, allele 1, and allele 2.  Beneath these headings the data are 

formatted as a row for each individual for each SNP.  Report files were converted to 

LGEN (long-format) PLINK files by the removal of the first ten rows (descriptive 

information and column headings) and the addition of a fifth column for family ID.  In this 

study there is no family ID since the samples are unrelated individuals.  Therefore to meet 

PLINK file requirements the individual ID column was duplicated.  This process was 

carried out separately for the Illumina report files generated by the three BeadChip types; 

HumanHap550, HumanHap550-Duo, and Human610-Quad.  To differentiate between data 

genotyped by the different chip types we termed them “Singles”, “Duos”, and “Quads”, 

respectively.  The three resulting LGEN files were merged longitudinally.  Finally this 

LGEN file for the total sample of all cases and controls was converted to BED format with 

the use of a FAM file listing individual IDs and a MAP file listing marker information (for 

those common to all three chip types).   
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Figure 2.3 Sample size for a case-control genome-wi de association study. Using 500,000 
SNPs with 80% power for various odds ratios assuming an equal number of cases and controls; 
prevalence = 30%; P = 5 × 10-7 (reproduced from 47). 
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2.3.4 Quality control 

Rates of missingness were assessed in PLINK.  This produces two output files; IMISS 

which gives missing rates per individual, and LMISS which gives rates per marker.  

Columns include the number missing, number genotyped, and missing as a proportion. 

Hardy-Weinberg test statistics for each SNP were computed in PLINK.  The resultant 

output file contains genotype counts for both homozygotes and the heterozygote, observed 

heterozygosity, expected heterozygosity, and Hardy-Weinberg p-value. 

The allele frequency command was run in PLINK which generates an output file with 

minor allele frequencies for each SNP. 

2.3.5 Assessment of population stratification 

The degree of population stratification present in the sample was assessed in various ways.  

Initially PLINK methods were used that are based on the average proportion of alleles 

shared identical by state (IBS) between any two individuals genome-wide.  As opposed to 

identical by descent (IBD) alleles which are identical copies of the same ancestral allele 

(i.e. inherited from the same parent in the case of family studies), those that are IBS have 

the same DNA sequence but are not derived from a known common ancestor.  In the case 

of monozygotic twins 100% of the genome is shared IBD.  On average a parent shares 

50% of the genome IBD with each offspring.   

The first method employed in PLINK uses complete-linkage hierarchical clustering that 

clusters individuals into homogeneous subsets.  The process begins by considering each 

individual as a separate cluster.  The two closest clusters, i.e. those with the highest 

proportion of the genome shared IBS, are then repeatedly merged.  This process continues 

until all individuals belong to one cluster, or else merging stops according to prespecified 

constraints.  

The second produces multidimensional scaling (MDS) plots.  These provide a visual 

representation of any substructure rather than clustering participants into groups (above).  

The dimensions of the representation can be included as covariates in association analysis 

to adjust for population stratification. 
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The final method identifies participants who are outliers.  The IBS distance between each 

individual and its nearest neighbour is calculated.  The distribution of all distances is then 

standardised and inspected for outliers, defined as individuals whose nearest neighbour is 

far less near than the average nearest neighbour.  

EIGENSTRAT was also used to evaluate stratification.  Beforehand the current samples of 

cases and controls were merged with a sample of 988 individuals from the International 

HapMap Project.  This enabled comparison with densely genotyped population groups.  

The HapMap sample comprised: 112 CEU; 84 CHB; 86 JPT; 113 YRI; 49 ASW; 85 CHD; 

88 GIH; 90 LWK; 50 MEX; 143 MKK; and 88 TSI.  There were 300,000 SNPs common 

to the Illumina array and HapMap data, which were used to calculate eigenvectors. 

2.3.6 Association 

The standard case-control allelic association test was run in PLINK with the following 

limits: maximum proportion of SNPs missing per individual 0.05; minimum minor allele 

frequency 0.01; minimum Hardy-Weinberg disequilibrium frequency p-value 1 × 10-7; and 

maximum proportion of participants missing per SNP 0.05.  The test compares allele 

frequencies between cases and controls.  Only SNPs that were common to all three 

Illumina BeadChips were examined for association with case-control status, and those 

whose genotypes were poorly clustered (determined by eye; see section 2.3.7) were 

excluded.  Participants who were found to deviate from the group when population 

stratification was assessed were excluded.  Genome-wide significance was defined as P < 5 

× 10-7.   

A further association test was run in PLINK that adjusts for multiple testing.  Amongst 

other output variables this produces a genomic control corrected p-value for each marker. 

Finally logistic regression analysis was performed in PLINK with adjustment for 

eigenvectors that on average significantly explained data variability. 

2.3.7 Examination of cluster plots 

Based on initial association analysis results SNPs were sorted by p-value for statistical 

significance from lowest to highest (i.e. most to least significant).  A cluster plot for each 

SNP was generated in Microsoft Excel and the most significant reviewed by eye.  In total 
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more than 110,000 plots were viewed and if necessary reclustered by hand using Excel 

macros specifically created for that purpose.  Figure 2.4 shows examples of good and poor 

plots.   

2.3.8 Meta-analysis 

Four of the validation cohorts were case-control samples selected using the same blood 

pressure thresholds as the discovery cohort: the Malmö Preventive Project (MPP); 

additional participants from the MDC study; the combined World Health Organization 

Monitoring Trends and Determinants in Cardiovascular Disease Project (MONICA) and 

Pressioni Arteriose Monitorate e Loro Associazioni (PAMELA) study; and the Netherlands 

Study of Depression and Anxiety (NESDA).  Ten further validation cohorts were obtained 

through collaboration with the Global BPgen consortium 58.  From these validation cohorts 

individuals were selected as cases if less than 60 years of age with SBP ≥ 140 mmHg or 

DBP ≥ 90 mmHg or current treatment with antihypertensive or blood pressure lowering 

medication, or if ≥ 60 years treatment commenced before age 60.   

Individuals were selected as controls if at least 50 years of age with SBP ≤ 120 mmHg and 

DBP ≤ 80 mmHg and not treated with any blood pressure lowering medication.  

Individuals younger than 50 years were included as controls if they met a lower blood 

pressure threshold of SBP ≤ 115 mmHg and DBP ≤ 80 mmHg (and free from blood 

pressure lowering medication). 

The top hit was assessed in a two stage validation process.  A flowchart of the cohorts 

included and their sample sizes is shown in Figure 2.5.  In stage 1 genotyping was 

performed in a combined World Health Organization Monitoring Trends and Determinants 

in Cardiovascular Disease Project (MONICA) and Pressioni Arteriose Monitorate e Loro 

Associazioni (PAMELA) sample, a Malmö Preventive Project sample, and in a larger 

additional Malmö Diet and Cancer Study sample.  In total stage 1 validation analysed 

9,827 cases and 8,694 controls.  Stage 2 analysis was conducted on a total sample of 

10,018 cases and 7,847 controls from eleven further cohorts; combined British Genetics of 

Hypertension Study (BRIGHT)/ Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT), 

Prevention of Renal and Vascular End Stage Disease Study (PREVEND), Cohorte 

Lausannoise (CoLaus), Kooperative Gesundheitsforschung in der Region Augsburg 

(KORA), Study of Health in Pomerania (SHIP), British 1958 Birth Cohort (B58C), 

TwinsUK, Myocardial Infarction Genetics Consortium (MIGen), Diabetes Genetics 
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a) b) 

c)

a) b) 

c)

 

Figure 2.4 Examples of genotype cluster plots.  Each plot represents an individual SNP and 
each data point a person, where green and red circles have been identified by Illumina as the two 
homozygotes and blue the heterozygote.  a) good plot, included in formal analysis ; b) poor plot, 
removed from formal analysis; c) included in formal analysis following removal of the uppermost 
heterozygote individual who has not been clustered in any group.  The top right individual, 
represented as a black cross, has already been excluded by Illumina.  
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Figure 2.5 Flow chart of discovery, validation stag e 1, and validation stage 2 analyses.   
MDC = Malmö Diet and Cancer Study. MPP = Malmö Preventive Project. MONICA = World Health 
Organization Monitoring Trends and Determinants in Cardiovascular Disease Project. PAMELA = 
Pressioni Arteriose Monitorate e Loro Associazioni. BRIGHT = British Genetics of Hypertension 
Study. ASCOT = Anglo-Scandinavian Cardiac Outcomes Trial. PREVEND = Prevention of Renal 
and Vascular End Stage Disease Study. CoLaus = Cohorte Lausannoise. KORA = Kooperative 
Gesundheitsforschung in der Region Augsburg. SHIP = Study of Health in Pomerania. B58C = 
British 1958 Birth Cohort. MIGen = Myocardial Infarction Genetics Consortium. DGI = Diabetes 
Genetics Initiative. NESDA = Netherlands Study of Depression and Anxiety. 
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Initiative (DGI), the Fenland Study, and Netherlands Study of Depression and Anxiety 

(NESDA).  Finally, an overall meta-analysis was performed of the discovery sample and 

14 validation cohorts, using an inverse-variance weighted fixed-effects model in Stata 

version 10 147.  The beta coefficient estimate and standard error for each study were entered 

into the analysis, which produced a global (i.e. average) OR and associated 95% 

confidence interval.  This is presented in graphical form as a forest plot of the individual 

and global ORs and 95% confidence intervals.  Analysis was performed unadjusted, 

adjusted for age, age2, sex, and BMI, and with further adjustment for estimated glomerular 

filtration rate (eGFR) in seven cohorts in which this was available.  eGFR was calculated 

using the Modification of Diet in Renal Disease (MDRD) formula 157. 

Heterogeneity of studies within the meta-analysis was assessed to determine whether a 

fixed-effects model, which assumes the true effect size is the same in each dataset, is 

appropriate 158.  Precision of effect size estimation and statistical power are both decreased 

by the presence of study heterogeneity.  If within-study variability (ubiquitous sampling 

error/chance) alone is present then a global effect size can be calculated using a fixed-

effects model.  However, if there is evidence of further heterogeneity in the form of 

between-study variability then a random-effects model, which assumes the effect sizes in 

individual datasets vary around an overall average, must be used to take this into account.  

Alternatively, a search can be conducted within the fixed-effects model for covariates that 

may be introducing heterogeneity.  This heterogeneity, over and above sampling error, is 

termed true heterogeneity.  Its extent is summarised by the Q statistic and I 2 statistic.  To 

calculate the Q statistic, the squared deviations of each individual study effect estimate 

from the global estimate are summed.  The contribution of each study is weighted by its 

inverse variance.  The null hypothesis is homogeneity and under it the Q statistic follows a 

chi-square distribution with k – 1 degrees of freedom, where k is the number of studies.  A 

P-value threshold of 0.10 is applied to determine significance.  The I2 statistic is calculated 

by dividing the difference between the Q statistic and its degrees of freedom by the Q 

statistic and multiplying by 100, and varies between 0 and 100%.  I2 is interpreted as the 

percentage of total variability that is due to between-studies variability, or true 

heterogeneity.   

Funnel plots were created, also using Stata version 10, and assessed for evidence of bias 

resulting from overestimation of effect size in smaller studies of poor methodological 

quality.  In general funnel plots are scatter plots in which treatment effects (horizontal axis) 

are plotted against a measure of study precision or sample size (vertical axis). Each data 
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point represents an individual study.  Various measures can be used as the vertical and 

horizontal axes.  In this case the vertical axis is the standard error of the effect estimate, 

with larger studies located towards the top of the graph.  The horizontal axis is the 

exponential of the beta coefficient (i.e. the OR) on the log scale.  This is as per the 

recommendations made by Sterne and Egger, who conducted a study evaluating the 

efficacy of several axes variables 159.  If there is no evidence of bias the plot is 

approximately symmetrical and looks like an inverted funnel, with the smaller studies at 

the bottom spread more widely because they have less precision than larger studies.  

Examples of hypothetical plots in the presence and absence of bias are shown in Figure 2.6 
160. 

2.3.9 Annotation of top hits 

A meta-analysis of the discovery cohort and combined MONICA/PAMELA dataset was 

performed for the 87 SNPs with association P ≤ 5.6 × 10-4, again using an inverse-variance 

weighted fixed-effects model.  Included in the analysis were 2,515 cases and 2,445 

controls.  Decisions on the importance of any genotype-phenotype association should be 

based on more than P value and effect size.  Thus the top hits from this combined analysis 

were investigated to determine whether any SNPs were located in or near genes of 

potential biological significance, their functional relevance if within a gene, and which 

phenotypes they had been previously associated with, if any.  To obtain this information 

the association results were uploaded to WGAViewer 161, a whole genome association 

annotation software package.  PLINK association files can be uploaded to it directly 

without reformatting.  WGAViewer enables polymorphisms to be considered in their wider 

genomic context and their relation via LD to other genotyped and ungenotyped SNPs, as 

well as providing hyperlinks to online genetic databases.  Its comprehensive annotation 

facility performs LD tests using HapMap data by default (alternatively, pre-calculated LD 

datasets can be uploaded from PLINK or Haploview and used as LD sources) to assess 

whether there are functional proxies for hits in the study under consideration.  A choice of 

the four original HapMap populations (CEU, CHB, JPT, and YRI) is offered; in the current 

study SNPs were annotated with the CEU population.  Furthermore, the current study 

employed all default annotation parameters, namely; 500kb area around SNP searched for 

closest gene, 200bp area around SNP searched for closest exon, LD window span 200kb, 

and minimum r2 threshold of 0.8 for LD. 
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Figure 2.6 Hypothetical funnel plots. A) Symmetrical plot in the absence of bias (open circles 
indicate smaller studies showing no statistically significant effects); B) asymmetrical plot in the 
presence of publication bias (smaller studies showing no statistically significant effects are 
missing); C) asymmetrical plot in the presence of bias due to low methodological quality of smaller 
studies (open circles indicate small studies of inadequate quality whose results are biased toward 
larger effects) (reproduced from 160). 
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Following annotation, WGAViewer hyperlinks specific to the gene closest to each SNP 

were followed to Online Mendelian Inheritance in Man (OMIM) 162, 163, Entrez Gene 164, 

165, and GeneCards 166, 167.  These three databases were accessed, rather than only one, to 

avoid missing data on a potentially interesting finding.  All are freely available to the 

public for unrestricted use.  The amount of information available varies depending on how 

much is known about a gene.  For example those that have been associated with disease 

have typically been extensively studied hence much is known about them, whereas for 

others there is no detail beyond genomic location.  The potential information supplied by 

each database is outlined below. 

OMIM and Entrez Gene both belong to the Entrez suite of databases 168, produced by the 

National Center for Biotechnology Information (NCBI) in the United States.  OMIM began 

life in 1966 as Mendelian Inheritance in Man (MIM), a printed reference guide to genetic 

disorders and genes.  There were 12 print editions of MIM, the last published in 1998 169.  

Since then it has been distributed electronically as OMIM and now contains around 20,000 

entries (database accessed 6th of May 2010).  The database contains information on: gene 

name and symbol; alternative names and symbols; cloning; gene structure, mapping and 

function; molecular genetics; associations with phenotypes; animal models; allelic 

variants; and a reference list with links to relevant abstracts and sometimes full articles (if 

available) in PubMed.  

Entrez Gene is a gene-specific database that aims to provide tracked, unique identifiers for 

genes of multiple genomes and associated information.  Genes are reported for several 

model organisms with species-specific identifiers.  Information provided by Entrez Gene 

includes: gene name, symbol and synonyms; gene type; organism; genomic regions, 

transcripts and products; genomic context; expression; a list of references regarding gene 

discovery, mapping, and function with links to PubMed; pathways; markers; associated 

phenotypes with links to citations; homologs; and proteins.  It contains entries for 42,506 

genes in humans, and more than 6 million genes in total (database accessed 6th of May 

2010).   

The GeneCards database integrates information about human genes, proteins and diseases, 

extracted from over 80 databases including both OMIM and Entrez Gene.  Specifically, a 

GeneCard provides information on: official gene name; synonyms; orthologs in 

homologous species and species with no ortholog; chromosomal location of the gene and 

its homologues; protein(s) encoded by the gene along with their function, expression, 



 

94 

association with disease; diseases that have been associated with the gene; new diagnoses 

and treatments that have been developed from knowledge of the gene; and links to other 

sites providing more information 170.  GeneCards are available for more than 70,000 genes 

(database accessed 5th of May 2010).  The database authors estimate that the prevalence of 

false negatives, i.e. missing data from a source that does in fact contain gene information, 

is in range 0-10% depending on the source 171.  This should not be of concern as multiple 

sources contribute to GeneCards, moreover the current study also searched OMIM and 

Entrez Gene.   

Further to the above, each gene was entered into the HuGE Navigator 

(http://hugenavigator.net/) 172, 173 Genopedia search engine to establish whether any 

pertinent information had been missed.  The HuGE Navigator is a continuously updated 

online knowledge base of genetic associations and genome epidemiology.  The information 

contained within is taken from published, population-based epidemiologic studies of 

human genes, extracted and curated from PubMed.  The Navigator is managed and 

maintained by the Human Genome Epidemiology Network (HuGENet: 

http://www.cdc.gov/genomics/hugenet/default.htm), a voluntary international 

collaboration. It provides several search tools and informatics utilities as well as two 

encyclopaedias: Phenopedia which is searchable by phenotype; and Genopedia which is 

searchable by gene 174. 

As a final check for any information that may have been missed, each gene was entered 

into the NCBI dbGaP database of genotypes and phenotypes 

(http://www.ncbi.nlm.nih.gov/sites/entrez?db=gap) 175.  dbGaP archives the results of 

studies that have investigated associations between genotype and phenotype.  The types of 

study it contains include GWAS, medical sequencing, molecular diagnostic assays, and 

associations between genotypes and non-clinical traits.  Data is summarised by study, with 

PubMed links to related articles.  There is a facility to apply for access to data, for the 

exploration of new research hypotheses. 

Regional association plots of the top hits were created using LocusZoom Version 1.1 

(http://csg.sph.umich.edu/locuszoom/), a tool that plots local association results along with 

information about the locus including the location and orientation of genes, local estimates 

of recombination rates, and levels of LD.  In the current study all plots were created at the 

same time using the batch mode facility.  Each individual plot was specified by the SNP of 

interest, acting as the key marker for the region.  All markers within an area flanking 
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500kb each side of the index SNP were included.  Plots were generated based on Human 

Genome Build 18 (hg18).  Pairwise LD coefficients, measured as r2, between each SNP 

and the index SNP were calculated by LocusZoom using the HapMap Phase II CEU 

population as a reference.  Data points are coloured accordingly and an explanatory key 

provided.  Recombination rates were also estimated from the HapMap Phase II CEU 

samples. 

2.3.10 Clinical functional studies 

Functional associations of the top SNP were studied in samples from three cohorts: the 

BRIGHT study 128; the Hypertension Evaluation by Remler and CalciUria LEvel Study 

(HERCULES) 176; and a Groningen Renal Hemodynamic Cohort Study Group (GRECO) 

study 177, 178.  The BRIGHT sample comprised 256 hypertensive participants who had 

completed 24-hour urine collection with urinary sodium, potassium, creatinine and 

microalbuminuria recorded.   The HERCULES sample was 100 middle aged general 

population participants with 24-hour ambulatory blood pressure measurement and 24-hour 

urine collection phenotyped for variables including urinary sodium, creatinine clearance, 

endogenous lithium clearance, potassium and uric acid excretion, and microalbuminuria.  

Finally, the GRECO sample comprised 64 healthy young males from a crossover protocol 

consisting of two 7-day periods, one a high sodium diet (HS; 200 mmol Na+/day), and the 

other a low sodium diet (LS; 50 mmol Na+/day). 24-hour urine collection was used to 

assess dietary compliance and the achievement of a stable sodium balance.   

In the current analysis the primary measurement of interest was urinary uromodulin.  This 

was measured in duplicate in 24-hour urine samples using a commercially available 

enzyme-linked immunosorbent assay (ELISA) produced by MD Biosciences in Zurich, 

Switzerland (http://www.mdbiosciences.com/), and applied as recommended by the 

manufacturer.  The range of the assay is 9.375 – 150 ng/ml and its sensitivity is <5.50 

ng/ml.  The inter-assay coefficient of variation was 11.9%.  For the BRIGHT and GRECO 

samples urinary uromodulin was measured in Glasgow, whereas the HERCULES samples 

were processed in Lausanne by HERCULES investigators.  Measured uromodulin was 

corrected for urinary creatinine and then statistical analysis performed.  The BRIGHT data 

were analysed in Glasgow, and the GRECO and HERCULES data analysed by their 

respective investigators.  Multiple regression was used to assess association between 

genotype and uromodulin, as well as other functional parameters such as creatinine 

clearance, eGFR, and fractional excretion of sodium (FENa).  In the BRIGHT samples 
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eGFR was calculated using the MDRD equation, and in the HERCULES samples the 

abbreviated MDRD 179, whereas in the GRECO study glomerular filtration rate (GFR) was 

measured directly.  Traits with non-normal distributions were tested using the non-

parametric Kruskal Wallis test.  In the GRECO sample only five individuals had the GG 

genotype, therefore AG and GG were combined for analysis that compared them with AA.  
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3 Genome-wide association study in extremes of 

blood pressure distribution 
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The first part of the current study is a genome-wide association study of hypertension as 

defined by extreme case and control criteria.  This chapter describes the initial quality 

control measures undertaken and resultant exclusion of participants and SNPs that did not 

pass predetermined thresholds.  Following this the results of the population stratification 

detection and correction method employed are outlined, and the final sample population 

characteristics are presented.  Lastly the results of the formal GWAS analysis are presented 

and discussed. 

 

3.1 Sample quality control 

3.1.1 Specification of gender 

Where available the observed genotypes of SNPs on chromosomes X and Y were 

examined to confirm the gender assignments contained in the phenotype file.  Individuals 

were inspected who were coded as “male” but had a significant amount of heterozygous X 

genotypes (≥1%), or who were coded as “female” but had a high frequency of homozygous 

X genotypes (≥80%) or Y genotype readings.  If it was not possible to correct any 

discrepancy, the individual was excluded from formal analysis. In this step five individuals 

were removed. 

3.1.2 Cryptic relatedness 

This step was taken to check for unexpected relatedness between study participants. 

Sharing of genetic information was estimated using identity by state (IBS) values 

calculated by PLINK, for every possible pairwise comparison of participants. All pairs of 

DNA samples with IBS ≥ 0.80 were individually inspected, and the sample with the lower 

call rate in each pair was excluded from further analyses. In total, 68 subjects were 

removed in this step.  

3.1.3 Skewed missingness 

A test of missingness by case/control status was performed, to determine whether the 

missing genotypes were skewed and hence may give rise to spurious association p values.  
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There was no evidence of bias for the most associated SNPs that were carried forward for 

validation. 

3.1.4 Multidimensional scaling plot outliers 

In the first stage of analysis, MDS was used to remove 33 individuals who were outliers as 

they did not cluster with the rest of the samples.  However, despite this, there were issues 

with structure and genotyping quality.  Therefore 752 samples were regenotyped (for 

further explanation see section 3.2), and remaining population structure identified and 

corrected using EIGENSTRAT.   

3.1.5 Genotyping success 

92 individuals were removed who had genotyping success less than 95%. 

To summarise, through the QC detailed above the following removals were made: 388 

participants due to ancestry problems (identified by EIGENSTRAT, below), five with 

unspecified sex, 68 duplicates or participants with evidence of relatedness, 33 MDS plot 

outliers, and 92 individuals with genotyping success less than 95%.  The remaining final 

sample size is 3,320, comprising 1,621 cases and 1,699 controls.   

 

3.2 SNP quality control 

SNP data were screened within BeadStudio using a two step procedure.  First of all, SNPs 

with a cluster separation value below 0.3 were manually checked to ensure correct calls.  

Many of these were fixed manually, but some were excluded.  The second step evaluated 

any SNP that had a Het Excess value between -1.0 to -0.1 and 0.1 to 1.0.  The Het Excess 

value indicates the quantity of excess heterozygote calls relative to expectations based on 

Hardy-Weinberg equilibrium.  It varies from -1 (no heterozygotes) to 1 (100% 

heterozygotes).  This is with the exception of SNPs on the X chromosome, which are not 

assessed because males are not expected to be heterozygous for X chromosome loci.   

Following the above procedure the genotyping success rate was 98.4%.  When the 

different chip types were examined separately it became apparent that the single and duo 
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chips performed sub-optimally, in terms of genotyping call rate, when compared with the 

quad chip.  Therefore 752 samples that had been genotyped on the single or duo chips were 

repeated using quad.  Table 3.1 presents the numbers of cases and controls genotyped on 

each bead chip type, before and after regenotyping.  The concordance rate for duplicate 

genotyping was 99.99%. 

3.2.1 Visual cluster plot inspection 

With assistance from colleagues at the British Heart Foundation Glasgow Cardiovascular 

Research Centre, more than 110,000 cluster plots were individually examined.  Of these, I 

personally examined >30,000.  In total 3319 SNPs were removed for poor clustering. 

3.2.2 Minor allele frequency 

23,562 SNPs were removed prior to formal analysis because they had an MAF <0.01. 

3.2.3 Hardy-Weinberg disequilibrium 

Deviation from Hardy-Weinberg equilibrium was checked in both cases and controls 

because technically both were selected from extreme ends of the trait distribution, and thus 

do not represent normal randomly mating populations.  1,915 SNPs had a Hardy-Weinberg 

P value ≤ 1 × 10-7 in either cases or controls and were therefore removed.  

3.2.4 Missingness 

12,097 SNPs had a genotype missing rate of >5% in either cases or controls and were 

therefore removed. 

Following SNP exclusions due to low MAF, Hardy-Weinberg disequilibrium, and/or high 

rate of missingness, a final set of 521,220 SNPs was available for analysis.  The overall 

exclusion rate is comparable with those reported for similar studies 58, 59. 

3.2.5 Adjustment for stratification using principal  components 

Examples of biplots of eigenvectors for the current sample and HapMap samples are 

shown in Figures 3.1 and 3.2.  Ten PCs (eigenvectors) were extracted using 
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Table 3.1 Numbers of cases and controls genotyped o n each bead chip type.  Before and 
after regenotyping. 

Singles Duos Quads    

Cases Controls Cases Controls Cases Controls 

Original 
genotyping 

726 3 540 5 796 1976 

After 
regenotyping 

565 2 321 4 1123 1895 
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Figure 3.1 Biplot of first two principal components  for all HapMap samples and the current 
study cases and controls.  Cases are represented as pink squares, controls as open red circles. 
Outlying individuals in tails of European distribution (i.e. closer to African and Chinese/Japanese 
HapMap samples than European) were excluded from association analysis.  ASW = African 
ancestry in Southwest USA. CEU = Utah residents with Northern and Western European ancestry. 
CHB = Han Chinese in Beijing, China. CHD = Chinese in metropolitan Denver, Colorado. GIH = 
Gujarati Indians in Houston, Texas. JPT = Japanese in Tokyo, Japan. LWK = Luhya in Webuye, 
Kenya. MEX = Mexican ancestry in Los Angeles, California. MKK = Maasai in Kinyawa, Kenya. TSI 
= Toscani in Italy. YRI = Yoruba in Ibadan, Nigeria. 
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Figure 3.2 Biplot of principal components 4 and 5 f or some of HapMap samples and the 
Swedish sample from the current study.  Swedish samples are represented as open lilac circles. 
CEU = Utah residents with Northern and Western European ancestry. JPT = Japanese in Tokyo, 
Japan. SWE = current study sample in Sweden. TSI = Toscani in Italy. YRI = Yoruba in Ibadan, 
Nigeria. 
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EIGENSTRAT 74, and were then entered into logistic regression analysis sequentially to  

assess which were most effective in explaining any population structure within the sample.  

The genomic control inflation factor, λ, was used to determine the impact of their 

inclusion.  Five PCs (3,4,5,6, and 10) accounted for a significant amount of population 

structure, defined as a significant p-value for the t statistic coefficient, and their combined 

effect had the maximum impact on λ.  Therefore these were included as covariates in all 

subsequent association analysis.  In addition extreme genetic outliers were identified, 

defined as individuals whose ancestry is at least six standard deviations from the mean on 

one of the top ten eigenvectors.  The process is applied iteratively, and the EIGENSTRAT 

default setting of 5 iterations was used.  In this manner 388 outliers were identified and 

excluded from the formal analysis.  

3.3 Formal analysis 

3.3.1 Final sample population characteristics 

The population characteristics for the final sample of 3,320 participants are presented in 

Table 3.2.  Data were available for the variables SBP, DBP, age, and BMI.  As determined 

by recruitment criteria cases had higher SBP and DBP.  They were also younger and had 

higher BMI on average. 

3.3.2 Association analysis 

After removing SNPs that were clustered badly and QC, 521,220 SNPs were available for 

analysis.  Genotype information was compared for 1,621 cases and 1,699 controls using 

logistic regression, assuming an additive model.  The Manhattan plot of GC adjusted –

log10 P values for association of hypertension status with markers in all chromosomes is 

shown in Figure 3.3.  This is after adjustment for PCs.   

A quantile-quantile plot of (GC adjusted) observed versus expected –log10 P values is 

shown in Figure 3.4, where λ = 1.07.  This is close to 1 which indicates that, after removal 

of genetic outliers and adjustment for PCs, there is some residual inflation but no 

substantial evidence of population stratification.  Prior to outlier removal λ was far greater 

at 2.08, and before PC adjustment it remained high at 1.8; hence these quality control 

measures were necessary and effective. 



 

105 

Table 3.2 Population characteristics of controls an d cases. Summarised as mean (SD). P-
value is for two sample t-test. 

  Controls 
(n=1699) 

Cases 
(n=1621) 

P 

Age at enrolment, years 
 

57.4 (5.9) 55.4 (7.1) <0.001 

BMI, kg/m2 

 
24.2 (3.5) 27.1 (7.8) <0.001 

SBP, mmHg 
 

115.8 (6.8) 175.8 (22.5) <0.001 

DBP, mmHg 
 

73.7 (5.7) 104.7 (11.8) <0.001 
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Figure 3.3 Manhattan plot of –log 10 transformed P values against genomic position for association of  hypertension status with markers in all chromosome s.  
Red line indicates P=5x10-8 and blue line indicates P=5x10-7. 
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Figure 3.4 Quantile-quantile plot of observed versu s expected –log 10 P values for genome-
wide data.  Red line represents line of equality, i.e. no association.  λ = 1.07. 
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Cluster plots of the 119 SNPs with a GC adjusted P value ≤ 1 × 10-4 were visually 

inspected, leading to the exclusion of 39 poorly clustered SNPs.  Table 3.3 presents the 

association results for all markers with a P < 1 × 10-5.  Of the total 521,220 SNPs entered 

into analysis, seventeen met this threshold of significance, of which three attained P < 5 × 

10-7.   
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Table 3.3 Association results for SNPs with GC adju sted P < 1 × 10 -5 
 

SNP ID CHR Position OR 
 

95% CI 
Unadjusted 

P  
GC adjusted 

P  

rs13333226 16 20273155 0.67 
 

0.58 – 0.78 1.14 × 10-07 3.28 × 10-07 

rs4293393 16 20272089 0.67 
 

0.58 – 0.78 1.45 × 10-07 4.09 × 10-07 

rs4932779 19 22573041 1.45 
 

1.26 – 1.67 2.83 × 10-07 7.63 × 10-07 

rs13378149 13 58050022 0.54 
 

0.43 – 0.69 4.30 × 10-07 1.13 × 10-06 

rs13353058 10 124740712 1.62 
 

1.34 – 1.96 5.26 × 10-07 1.36 × 10-06 

rs8111998 19 22533515 0.52 
 

0.41 – 0.68 6.59 × 10-07 1.68 × 10-06 

rs11647727 16 20263666 0.72 
 

0.63 – 0.82 7.03 × 10-07 1.78 × 10-06 

rs10009111 4 10580521 0.76 
 

0.68 – 0.85 1.35 × 10-06 3.26 × 10-06 

rs10011697 4 10580930 0.76 
 

0.68 – 0.85 1.50 × 10-06 3.61 × 10-06 

rs487331 20 53608771 0.77 
 

0.69 – 0.86 2.73 × 10-06 6.29 × 10-06 

rs2084543 2 162404660 0.60 
 

0.48 – 0.74 3.36 × 10-06 7.63 × 10-06 

rs555848 20 53613135 0.77 
 

0.69 – 0.86 3.48 × 10-06 7.86 × 10-06 

rs7669524 4 102833192 1.36 
 

1.19 – 1.54 3.60 × 10-06 8.12 × 10-06 

rs13124455 4 102830679 1.36 
 

1.19 – 1.54 4.00 × 10-06 8.97 × 10-06 

rs292196 5 36949936 0.70 
 

0.60 – 0.81 4.21 × 10-06 9.41 × 10-06 

rs172384 5 36839982 0.71 
 

0.61 – 0.82 4.27 × 10-06 9.53 × 10-06 
 
rs2289006 
 

9 18768319 0.76 
 

0.68 – 0.86 4.41 × 10-06 9.82 × 10-06 
CHR = chromosome. OR = odds ratio. CI = confidence interval. GC = genomic control. 
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3.4 Discussion 

We have demonstrated a novel extreme phenotyping method to identify common genetic 

markers associated with hypertension.  High fidelity phenotyping, comparing the top and 

bottom end of the blood pressure distribution, has reduced misclassification of controls and 

resultant noise 130.  This experimental design increases statistical power to detect effects, 

thus a smaller sample size is required.  We have identified markers significantly associated 

with hypertension from a discovery sample of just 3,320 individuals, far fewer than other 

successful GWAS of hypertension e.g. Global BPgen 58 and CHARGE 59. Furthermore the 

strategy allows the sampling of participants from a single population, rather than 

combining multiple cohorts from heterogeneous populations, which reduces confounding 

by stratification and allows for uniform phenotypic characterisation.  This confers practical 

benefits and reduces costs.  The estimated odds ratios are likely to be inflated compared 

with the true odds ratios for hypertension as typically defined.   

There is more than one way to conduct a GWAS of hypertension and/or blood pressure.  

The study of blood pressure as a quantitative trait, rather than qualitative hypertension (as 

conventionally defined), may confer more statistical power 180, 181.  This is exemplified by 

the Global BPgen study, which in Stage 1 analysis identified eight loci associated with 

SBP and/or DBP at the level of genome-wide significance 58.  However, there was 

insufficient power to examine associations with hypertension in Stage 1.  Instead the eight 

significant loci were associated with hypertension in planned secondary analysis, which 

showed that all were indeed associated in the same direction of effect.  Furthermore, in the 

CHARGE study the loci discovered in scans of SBP and DBP were not all discovered in 

the hypertension scan, whereas all those discovered in the hypertension scan were also 

associated with continuous blood pressure 59.  Thus, had the group studied hypertension 

alone, some markers would have been missed.  Undoubtedly power would have been yet 

greater in both studies had they been single centre or had the multiple component studies 

been prospective with rigorous identical phenotyping.   

Plomin et al argue that, as common disorders are affected by multiple genetic variants, they 

are best represented as quantitative rather than qualitative traits 182.  This is because several 

markers combined can resemble a risk score with a continuous, normal distribution.  

Within this paradigm qualitative disorders represent merely the quantitative extremes of a 

continuous distribution of genetic risk.  They point out that for most common disorders, 

e.g. cancers, arthritis, autism, the relevant quantitative traits are not clear.  However in 
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hypertension research it is fortunate that blood pressure is the obvious quantitative 

equivalent.  It was Fisher who originally showed that complex quantitative traits that are 

affected by several genes can follow a qualitative Mendelian pattern of inheritance 183.  

This resolved the early 1900s conflict between Mendelians who believed that all traits have 

simple Mendelian inheritance patterns, and biometricians who believed that Mendel’s laws 

do not apply to complex traits. 

To date, the SNPs associated with continuous blood pressure have only explained a small 

amount of its variability; approximately 1 mmHg SBP per allele and 0.5 mmHg DBP per 

allele 58, 59.  When combined, however, these SNPs can exert cumulative effects of a 

magnitude found to produce meaningful changes in cardiovascular risk at a population 

level.  For example the Prospective Studies Collaboration observed that in middle age a 2 

mmHg reduction in SBP translated to a 7% lower mortality from ischaemic heart disease 

(IHD) and other vascular causes, and a 10% lower stroke mortality 10.  This applied 

throughout the normal range of blood pressure down to 115/75 mmHg.  Hence even small 

reductions in blood pressure will have a clinically significant impact on absolute 

population risk.    It seems rational to view the qualitative definition of hypertension and 

quantitative definition of blood pressure as complementary rather than contradictory.  Both 

have led to whole genome experimental designs with positive results. 

Despite the above described successes, there remains a large proportion of unexplained 

blood pressure heritability.  For example, the cumulative effect of the top ten loci identified 

by the CHARGE consortium explains only 1% of blood pressure variability 59.  This is 

expected, however, when viewed in the context of findings for other highly heritable 

complex traits 184.  In a GWAS of adult height, Weedon et al identified 20 associated 

variants in a discovery sample of 13,655, which were then replicated in an additional 

16,482 individuals 185.  Taken together the 20 SNPs explained around 3% of height 

variation.  Similarly, Willer et al further confirmed two previously reported loci (in FTO 

and MC4R) and discovered six novel loci associated with BMI in a GWAS with a 

combined discovery and replication sample of more than 90,000 individuals 186.  In spite of 

the size of the study and positive findings, when combined the eight SNPs explained just 

0.84% of variation in BMI.   

In an effort to explain the remaining heritability of height, Yang and colleagues combined 

the effects of all common SNPs measured genome-wide in a single study 187, instead of 

testing the significance of individual SNPs.  They show that in this manner 45% of height 
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variation is explained, and argue that the discrepancy between this and the total heritability 

of 80% is in part due to incomplete LD between causal variants and genotyped SNPs.  

Therefore, a substantial number of causal SNPs are being missed because they do not meet 

the stringent threshold for genome-wide significance; most heritability is not missing but is 

hidden 188.  However, this being said, the work of Yang et al does not suggest a practical 

use for the additional explanatory variants in terms of risk prediction or treatment.  Their 

method has no way to differentiate individual variants of potential interest from the rest.  

Rather, their analysis serves as an exemplar study on the meaning of the entire spectrum of 

genome-wide data.   

Meta-analyses of GWAS are becoming ever larger, in a bid to detect rare variants and 

common variants with smaller effect sizes.  The International Consortium for Blood 

Pressure-Genome-Wide Association Study (ICBP-GWAS) 180 comprises all cohorts from 

Global BPgen 58 and CHARGE 59 as well as some additional cohorts.  The combined 

sample is more than 70,000 individuals of European ancestry plus smaller numbers of 

other ethnic groups.  This should be a sufficient sample to detect further novel variants of 

similar effect size to those already identified 189.  It has been argued that earlier GWAS 

power calculations underestimated adequate sample size in certain circumstances.  For 

example, Burton et al recommend that calculations take into account realistic assessment 

error rates in exposures and outcomes, plus the impact of unmeasured aetiological 

determinants 190.  This is relevant to large collaborations where participants were not 

specifically recruited and phenotyped for the trait being examined, such as Global BPgen 

and CHARGE where blanket blood pressure adjustments were applied to account for blood 

pressure reducing treatment.  Furthermore, the INTERSALT study estimated the test-retest 

reliability of clinic SBP as 0.69-0.74 and DBP as just 0.63-0.67, with an average of 14 

days between measurements 191.  Home and ambulatory blood pressure measurements are 

shown to be more reproducible 192, and would be preferable methods in prospective 

studies. Technological advances mean that genetic exposure variables can be measured 

almost without error.  However the same cannot be said for many environmental exposures 

and errors in their assessment can reduce study power.   

In the current study the chance of detecting true genetic effects was increased through the 

method of comparing individuals with very low and very high blood pressure.  An 

alternative, complementary strategy is to decrease the influence of environmental factors 

contributing to overall risk.  For example, Spence and colleagues have employed multiple 

regression modelling to identify participants with excessively high carotid plaque area 
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once traditional risk factors were taken into account 193.  Such individuals were described 

as having “unexplained atherosclerosis”, and Spence et al proposed the use of this trait to 

ascertain subjects for the study of genetic loci.   In theory individuals with atherosclerosis 

and low levels of traditional risk factors should have high genetic risk, thus this approach 

should increase statistical power.  

Lanktree et al developed this method in the context of GWAS 194.  Again using plaque area 

as a quantitative measure of carotid atherosclerosis, they conducted power calculations for 

different theoretical phenotyping strategies.  They first ran a stepwise regression model to 

predict plaque area with known CVD risk factors as input variables including sex, age, 

smoking, blood pressure, cholesterol, diabetes, and blood pressure and lipid lowering 

treatment.  Individuals falling into the bottom 5% of regression residuals were defined as 

having “unexplained atherosclerosis” (i.e. large observed plaque area compared with area 

predicted by model), and those in the top 5% of residuals were defined as having 

“unexplained protection” (i.e. small observed plaque area compared with that predicted by 

model).  The power conferred by using these groups as cases and controls in a GWAS was 

calculated as well as the power conferred by analysing plaque area as a simple quantitative 

trait.  Under comparable effect sizes and allele frequencies the quantitative strategy 

required a sample four times larger to obtain the same level of power as extreme 

qualitative selection.  The advantage of this novel approach is that it excludes potential 

participants who are not of interest and would introduce noise into the genetic analysis, 

namely those whose plaque area is predicted by traditional risk factors.  Of course a 

limitation is the requirement of additional phenotyping which may not be possible in 

retrospective studies.    

Two companies, Affymetrix 195 and Illumina 148, are at the forefront of whole-genome 

genotyping technology and provide genotyping platforms for SNPs and copy number 

variants (CNVs).  Both companies manufacture standard chips as well as customised chips 

that cover variants of interest to the researcher. However they differ in SNP selection 

strategy.    Illumina uses genome-wide arrays of tag SNPs derived from HapMap data.   By 

contrast, Affymetrix distributes SNPs randomly across the genome ignoring levels of LD.   

Consequently their standard chips do not cover the same SNPs, but they do share some in 

common, allowing comparisons of genotyping agreement and reliability.  One study 

conducted by Suarez and colleagues found that for 94 shared SNPs genotypic concordance 

was 99.85% between platforms 196.  However Affymetrix had a much greater no-call rate, 

with 6251 missing genotypes compared with 726 for Illumina.   



 

114 

More recently Kim and colleagues compared, for 757 common SNPs, the genotyping 

accuracy of the Illumina HumHap550, the Affymetrix 500K, and the Affymetrix custom-

made GeneChip Targeted Genotyping (TG) 25K 197.  The TG 25K was used as an 

independent reference panel to evaluate the accuracy of the other two.  A consensus dataset 

was created, containing genotypes called identically by at least two platforms.  The 

percentage consistency was then calculated for each platform, i.e. the percentage of 

genotypes that the platform called as the same as the consensus genotype.  After excluding 

SNPs with genotype call rate <80% and deviations from Hardy-Weinberg equilibrium, 

consistency was 99.08% in TG, 98.64% in Affymetrix, and 99.95% in Illumina (which also 

had the highest consistency without QC exclusions). 

Other studies have analysed the proportion of the genome covered by different SNP panels.  

Barrett and colleagues compared the Illumina HumanHap300 and the Affymetrix 500K 

depending on the HapMap population samples studied 198.  Whereas Illumina coverage was 

better for CEU samples (Illumina, 75%; Affymetrix, 65%), Affymetrix performed better 

for YRI samples (Illumina, 28%; Affymetrix, 41%).  Whole-genome coverage of 

JPT+CHB samples was similar (Illumina, 63%; Affymetrix, 66%).  Conversely, when 

Wollstein and colleagues examined five SNP chips (Affymetrix 100K and 500K, and 

Illumina HumanHap100, 300, and 550) for the same HapMap populations using their own 

measure of coverage, they found little difference between Illumina HumanHap300 and 

Affymetrix 500K 199.  The greatest coverage in all three samples was provided by Illumina 

HumanHap550.  This conclusion was also reached in a study of the same SNP panels 

(apart from HumanHap100) conducted by Mägi and colleagues 200.  In addition to the 

HapMap samples they looked at genome-wide SNP coverage in an Estonian Caucasian 

population sample.  For all four chips the Estonian sample coverage was as good as for the 

CEU sample, confirming that commercially available chips are suitable for use in non-

reference populations.  Li and colleagues found that the Illumina HumanHap650Y and 

Human1M chips provide superior coverage, both local and gene specific, compared with 

the Affymetrix SNP Array 5.0 and SNP Array 6.0 201.  This is achieved despite the 

significantly higher number of SNPs genotyped by Affymetrix, because Illumina employs 

LD information to a greater degree to increase efficiency.  An important point is that in all 

of these comparison studies the platforms examined are the most recent releases at the time 

of study, so depending on the timing either company could have a more up to date product.   

The current study used the Illumina genotyping platform because it has been shown to 

have better coverage, especially among Caucasians.  This is because the SNP tagging 
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strategy employed by Illumina provides better coverage of the common variants identified 

through HapMap, than other genotyping platform strategies.  Three BeadChip types were 

used; HumanHap550, HumanHap550-Duo, and Human610-Quad.  This was primarily for 

two reasons, the first cost saving and the second the increased coverage provided by newer 

chips.  In hindsight this was a mistake.  Cases and controls did not arrive at the lab at the 

same time and for expedience and convenience were genotyped sequentially rather than in 

parallel.  As a result most cases were genotyped using the single and duo chips, and most 

controls using the quad chips.  This breaks a central rule of epidemiological study design: 

cases and controls must be treated and analysed under the same experimental conditions.  

During the QC procedure the MDS plots showed evidence of substructure.  It transpired 

that some of this was due to experimental differences, as well as population stratification.   

Single and duo chips had performed sub-optimally when compared with the quad chip, and 

for that reason 752 samples that had been genotyped on the single or duo chips were 

repeated using quad.  This additional expense could have perhaps been avoided had the 

methodology been more carefully thought through from the outset.  However the 

differences between chip types were entirely unexpected because they were different 

releases of the same product from Illumina. 

In summary, the results presented validate the extreme case-control phenotyping method 

for the study of hypertension as a qualitative trait.  The genome-wide association analysis 

of 521,220 SNPs in 3,320 individuals uncovered three SNPs associated with hypertension 

at a significance level of P < 5 × 10-7.  The top hit, rs13333226 on chromosome 16, is 

located in close proximity to the uromodulin (UMOD) transcription start site.  Variants in 

UMOD have been associated with chronic kidney disease (CKD) and estimated glomerular 

filtration rate (eGFR), a quantitative measure of kidney function 202.  In the current study, 

the association between hypertension and rs13333226 was followed up in a two stage 

validation analysis in a total of 14 independent cohorts.  The results of this and the 

combined meta-analyses are presented in the following chapter. 
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4 Validation and clinical functional studies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

117 

This chapter summarises the cohorts included in the initial validation analysis and larger 

meta-analysis of the top hit, as determined by combined association P-value.  Unadjusted 

analyses and analyses adjusted for possible confounding variables have been performed.  

The association results for each cohort and the combined summary measure are presented, 

as well as measures to assess heterogeneity between component studies. 

Functional associations between the top hit, rs13333226, and urinary uromodulin levels 

were studied in three samples: a hypertensive cohort; a population cohort with extensive 

urine phenotypes; and an interventional study of low and high salt intake.  The latter study 

recorded extensive measurements of sodium balance that were also analysed.  This chapter 

summarises the cohorts and presents the results.   

 

4.1 Validation cohorts 

Table 4.1 provides summary demographics of the validation cohorts. 

4.1.1 Malmö Preventive Project 

The Malmö Preventive Project (MPP) is a cardiovascular risk screening programme of the 

general population in Malmö, Sweden 142.  Blood pressure measurement was the mean of 

two supine readings using a mercury sphygmomanometer.  From the sample 1,956 cases 

and 1,057 controls were included in the replication analysis. 

4.1.2 Malmö Diet and Cancer Study 

An additional (i.e. not overlapping with discovery samples) 6,977 case individuals and 

6,891 controls were selected from the MDC study for replication analysis 145. 

4.1.3 MONICA/PAMELA 

The World Health Organization Monitoring Trends and Determinants in Cardiovascular 

Disease (MONICA) Project is an international collaborative study of 37 populations in 21 

countries 203, 204.  Recruitment of individuals aged 25-64 years began in 1981.  Blood 

pressure measurement was the mean of two seated readings using a random-zero 
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Table 4.1 Summary demographics of the validation co horts. Data are presented as mean (SD).   
Study Controls 

 
Cases 

 N Age, years BMI, kg/m2 SBP, mmHg 
 

DBP, mmHg N Age, years BMI, kg/m2 SBP, mmHg DBP, mmHg 

BRIGHT/ ASCOT 1787 58.7 (8.92) 25.2 (3.26) 123.0 (10.47) 
 

76.3 (7.19) 3069 60.0 (9.77) 28.1 (4.22) 165.6 (20.35) 99.1 (11.92) 

MPP 1057 65.7 (6.4) 25.3 (3.4) 120.4 (6.8) 
 

72.7 (4.9) 1956 67.4 (6.3) 28.3 (4.1) 169.8 (15.6) 98.5 (7.0) 

MDC 6891 54.3 (6.7) 24.3 (3.4) 119.9 (7.7) 
 

75.1 (5.1) 6977 60.8 (7.5) 27.0 (4.3) 165.4 (13.5) 97.2 (6.6) 

PREVEND 1613 44.6 (10.5) 24.1 (3.4) 109.1 (6.1) 
 

65.9 (5.9) 2411 47.6 (7.7) 27.9 (4.7) 142.3 (17.2) 80.9 (9.6) 

CoLaus 1375 49.1 (9.2) 23.6 (3.6) 108.8 (6.7) 
 

68.8 (6.1) 1300 54.8 (8.8) 28.2 (4.9) 141.9 (16.2) 88.1 (10.8) 

KORA 300 46.3 (9.2) 25.1 (3.7) 109.9 (6.2) 
 

70.4 (5.6) 457 51.0 (6.6) 28.7 (4.1) 147.5 (15.5) 91.3 (9.6) 

SHIP 240 62.1 (9.0) 26.5 (3.9) 110.7 (7.1) 
 

70.1 (6.4) 656 48.2 (7.8) 29.4 (5.2) 144.5 (15.5) 91.7 (9.5) 

B58C 529 44.9 (0.3) 25.6 (4.1) 108.7 (5.0) 
 

68.3 (5.2) 514 45.0 (0.3) 29.4 (5.5) 148.1 (11.9) 92.7 (8.2) 

TwinsUK 845 45.7 (11.8) 24.8 (4.6) 117.5 (13.3) 
 

74.8 (8.8) 245 47.2 (12.1) 25.1 (4.7) 139.3 (16.0) 88.3 (11.7) 

MIGen 278 45.9 (7.0) 25.0 (4.0) 107.3 (7.1) 
 

69.7 (7.0) 316 48.9 (5.9) 29.0 (5.5) 141.4 (14.0) 89.5 (11.3) 

DGI 161 60.1 (7.4) 25.5 (3.2) 113.2 (6.8) 
 

70.4 (6.7) 277 52.7 (5.7) 27.6 (3.7) 145.8 (15.0) 87.6 (8.9) 

Fenland 510 44.1 (7.4) 25.4 (4.6) 107.2 (6.8) 
 

66.7 (6.2) 264 48.8 (6.4) 29.5 (4.9) 143.7 (14.1) 88.0 (9.4) 

MONICA/ PAMELA 746 56.1(5.2 25.4(3.8) 119.6(8.5) 
 

78.4(7.4) 894 55.8(7.2) 27.6(4.4) 156.6(20.1) 94.3(10.7) 

NESDA 209 38.6 (11.8) 22.9 (3.4) 111 (4.2) 
 

69.9 (5.2) 509 46.6 (10.9) 27.1 (5.1) 149.6 (14.8) 88.8 (9.5) 
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BRIGHT = British Genetics of Hypertension Study. AS COT = Anglo-Scandinavian Cardiac Outcomes Trial. MP P = Malmö Preventive Project. MDC = Malmö Diet 
and Cancer Study. PREVEND = Prevention of Renal and  Vascular End Stage Disease Study. CoLaus = Cohorte  Lausannoise. KORA = Kooperative 
Gesundheitsforschung in der Region Augsburg. SHIP =  Study of Health in Pomerania. B58C = British 1958 Birth Cohort. MIGen = Myocardial Infarction 
Genetics Consortium. DGI = Diabetes Genetics Initia tive. MONICA = World Health Organization Monitoring  Trends and Determinants in Cardiovascular Disease 
Project. PAMELA = Pressioni Arteriose Monitorate e Loro Associazioni. NESDA = Netherlands Study of Dep ression and Anxiety. 
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sphygmomanometer or a mercury sphygmomanometer.  Participants from the MONICA 

study included in the current validation analysis are all Italian. 

The PAMELA (Pressioni Arteriose Monitorate e Loro Associazioni) study is a prospective 

general population study that randomly sampled residents aged 25-64 years in the Italian 

city of Monza 205.  It compared ambulatory and home blood pressure measurement with 

clinic blood pressure.   In the current analysis phenotype was determined using clinic 

measurements. 

In the current analysis 894 cases and 746 controls were included from MONICA and 

PAMELA collectively. 

4.1.4 Netherlands Study of Depression and Anxiety 

The Netherlands Study of Depression and Anxiety (NESDA) is a cohort study of 

individuals aged 18-65 years 206.  Its aim is to examine the course of depressive and 

anxiety disorders throughout life.  Blood pressure measurement was the mean of two 

supine readings using the Omron HEM-907XL machine.  From the sample 509 

participants met our case criteria and 209 our control criteria, and were included in the 

replication analysis. 

4.1.5 BRIGHT/ASCOT 

As previously described, the BRIGHT study is a UK hypertension case-control study with 

the following exclusion criteria; BMI ≥35 kg/m2, diabetes, secondary hypertension or a co-

existing illness (http://www.brightstudy.ac.uk)128.  Blood pressure measurement was the 

mean of three seated readings using the Omron 705CP machine.   

The Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT) is a study of 19,342 

hypertensive patients in the UK, Ireland, and Scandinavia (http://www.ascotstudy.org/ ) 
207.  Its initial primary aims were to investigate the effects of different categories of blood 

pressure lowering medication and statins on non-fatal MI and fatal CHD.  All participants 

had at least three pre-specified risk factors for a CV event, in addition to hypertension, at 

the time of recruitment.  Blood pressure was measured using the Omron HEM-605CP 

machine at screening and at randomisation.  Individuals defined as hypertensive at both 

visits were included in the study.  
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In the current analysis BRIGHT and ASCOT cases were combined and compared with 

BRIGHT controls.  3,069 and 1,787 individuals, respectively, met our case and control 

criteria and were included in the replication analysis. 

4.1.6 Prevention of Renal and Vascular End Stage Di sease Study 

The Prevention of REnal and Vascular ENd stage Disease (PREVEND) study is a 

prospective general population study of individuals aged 28-75 years in Groningen, The 

Netherlands 208, 209.  Its aim is to investigate the natural course of increased levels of 

urinary albumin excretion and its association with renal and cardiovascular disease.  47% 

of eligible individuals responded to a questionnaire of which cases were selected with 

urinary albumin concentration ≥ 10 mg/L and controls with urinary albumin concentration 

< 10 mg/L.  Blood pressure was measured every minute for 10 and 8 minutes, respectively, 

in the supine position using an automatic DINAMAP XL Model 9300 series monitor, and 

the mean of the last two measures used in analysis.  For the current replication analysis 

2,411 cases and 1,613 controls were included who met our inclusion criteria.   

4.1.7 Cohorte Lausannoise 

Cohorte Lausannoise (CoLaus) is a population based study of the Caucasian population in 

Lausanne, Switzerland (http://www.colaus.ch/en/cls_home/cls_pro_home.htm) 210, where 

Caucasian is defined as both parents and grandparents born in any of a list of predefined 

European countries.  Its primary aims were to assess the prevalence and molecular 

determinants of cardiovascular risk factors and diseases as well as mental health.  

Participants were randomly selected from the population register of people in Lausanne 

aged 35-75 years in 2003. Blood pressure was measured three times in the seated position 

using the Omron HEM-907 machine, and the mean of the last two measures used in 

analysis.  From the sample 1,300 and 1,375 individuals, respectively, met our case and 

control criteria and were included in the replication analysis. 

4.1.8 Kooperative Gesundheitsforschung in der Regio n Augsburg  

Kooperative Gesundheitsforschung in der Region Augsburg (KORA) is a general 

population cohort in Augsburg, Germany recruited in 1994-1995 (http://epi.helmholtz-

muenchen.de/kora-gen/)211, 212.  Blood pressure measurement was the mean of two seated 

readings using a random zero sphygmomanometer.  Participants for the current replication 
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analysis were selected from a subset of individuals with BMI <35 kg/m2 and no diabetes.  

From the subsample 457 cases and 300 controls met our inclusion criteria.   

4.1.9 Study of Health in Pomerania 

The Study of Health in Pomerania (SHIP) is a population based sample of individuals aged 

20-79 years in north-east Germany, drawn from population registries in the region 213.  

Blood pressure was measured three times in the seated position at three minute intervals 

using the Omron HEM-705CP machine, and the mean of the last two measures used in 

analysis.  From the sample 656 cases and 240 controls were included in the replication 

analysis. 

4.1.10 British 1958 Birth Cohort 

The British 1958 Birth Cohort (B58C) is a population based sample of all individuals born 

in a single week in Britain in 1958, followed from birth to age 44-45 years 

(http://www.b58cgene.sgul.ac.uk/collection.php).  Blood pressure measurement was the 

mean of three seated recordings using the Omron 705CP machine.  From the sample 514 

participants met our case criteria and 529 our control criteria, and were included in the 

replication analysis. 

4.1.11 TwinsUK 

The TwinsUK study is a sample of healthy female Caucasians aged 18-76 years recruited 

from the general population through the TwinsUK registry (http://www.twin-

research.ac.uk).  Blood pressure was measured three times in the seated position using the 

Omron HEM-907 machine, and the mean of the last two measures used in analysis.  

Participants for the current study were selected from a subset of individuals, one of each 

twin pair.  From the subsample 245 participants met our case criteria and 845 our control 

criteria, and were included in the replication analysis. 

4.1.12 Myocardial Infarction Genetics Consortium 

The Myocardial Infarction Genetics Consortium (MIGen) cohort is a subset of the controls 

from a study to identify genetic variants associated with early-onset MI.  Most of the 

controls were selected from population based studies and came from the USA, Spain, 
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Finland, and Sweden.  In the majority of studies blood pressure was the mean of two seated 

recordings using calibrated sphygmomanometers.  From the sample 316 and 278 

individuals, respectively, met our case and control criteria and were included in the 

replication analysis. 

4.1.13 Diabetes Genetics Initiative 

The Diabetes Genetics Initiative (DGI) is a type 2 diabetes (T2D) case-control study of 

individuals from Sweden and Finland 120.  Blood pressure measurement was the mean of 

two seated recordings using a mercury sphygmomanometer.  For the current study 

participants were selected from the controls (i.e. T2D free), of which 277 hypertension 

cases and 161 normotensive controls were included in the replication analysis.   

4.1.14 Fenland Study 

The Fenland Study is a UK population based cohort study of individuals aged 30-55 years.  

Its aim is to investigate the influence of genetic and environmental factors on the risk of 

obesity, insulin sensitivity, hyperglycemia and related metabolic traits.  Blood pressure 

measurement was the mean of three seated recordings at one minute intervals, using an 

Accutorr automated sphygmomanometer.  From the sample 264 cases and 510 controls 

were included in the current replication analysis. 

 

4.2 Validation analysis 

The top hit was rs13333226 with the minor G allele associated with a lower risk of 

hypertension (OR = 0.67, 95% CI = 0.58 – 0.78, P = 1.14 × 10-7), and was selected for 

validation in two stages.  It is located on chromosome 16 in close proximity, at -1617 base 

pairs, to the UMOD transcription start site (Figure 4.1).  The genotype cluster plot for 

rs1333226 in the discovery sample is shown in Figure 4.2.  Table 4.2 presents the 

association results for each stage of the discovery and validation process as well as the 

combined results.  In stage 1 validation rs13333226 was genotyped in the combined 

MONICA/PAMELA sample, the MPP sample, and in the larger additional MDC sample.  

In a combined analysis of 9,827 cases and 8,694 controls, the minor G allele remained 

associated with a lower risk of hypertension (OR = 0.87, 95% CI = 0.82 – 0.92, P = 3.6 × 
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Figure 4.1 Association plot of the genomic region a round rs13333226 showing both typed and imputed SNP s.  Observed (-logP) is the –log10 transformed P 
values for association with hypertension status in the discovery sample.  Recombination rate, represented by the blue line, is estimated from HapMap CEU samples.  The 
level of LD between rs13333226 and the surrounding SNPs, measured by r 2, is indicated by the key with red meaning high LD.  GP2 = glycoprotein 2 (zymogen granule 
membrane).  UMOD = uromodulin.  PDILT = protein disulfide isomerase-like, testis expressed.  FLJ20581 = acyl-CoA synthetase medium-chain family member 5.  
LOC123876 = acyl-CoA synthetase medium-chain family member 2A.
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Figure 4.2 Genotype cluster plot for rs1333226 in t he discovery sample.  Each data point 
represents a person, where green and red circles have been identified by Illumina as the two 
homozygotes and blue the heterozygote.  The black cross represents an individual that has 
been excluded by Illumina.  
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Table 4.2 Results from the meta-analysis of rs13333 226 and hypertension in the discovery sample and af ter validation 

Study origin cases controls maf Unadjusted Analysis Adjusted for age, age2, sex BMI Q (Unadj/Adj) 

     OR [95%-CI] p OR [95%-CI] p 
 
 

Swedish BP Extremes (Discovery) Swedish 1621 1699 0.17 0.67 [0.58-0.78] 1.14x10-07 0.6 [0.5-0.73] 3.3 x10-07  
 

Stage 1         
 
 

MONICA/ PAMELA Italian 894 746 0.19 0.91 [0.76-1.08] 0.282 0.87 [0.72-1.05] 0.145 
 
 

MPP Swedish 1956 1057 0.18 0.91 [0.78-1.05] 0.193 0.91 [0.78-1.05] 0.186 
 
 

MDC Swedish 6977 6891 0.18 0.86 [0.80-0.92] 0.001 0.86 [0.80-0.92] 3.0x10-05  
 

Stage 1 Analysis 9827 8694 0.183 0.87 [0.82-0.93] 6.7x10-6 0.87 [0.82-0.92] 3.6x10-6 
 

0.73/0.81 
 

Stage 1 + Discovery 

 

21275 19087 0.18 0.84 [0.79-0.89] 4.4x10-10 0.84 [0.79-0.89] 2.5x10-9 0.01/0.01 

Stage 2         
 
 

BRIGHT/ ASCOT British/ Irish 3069 1787 0.18 0.94 [0.84-1.04] 0.229 0.9 [0.80-1.02] 0.103 
 
 

PREVEND Dutch 2411 1613 0.18 0.9 [0.80-1.02] 0.091 0.89 [0.77-1.03] 0.113 
 
 

CoLaus Swiss 1300 1375 0.19 0.97 [0.84-1.11] 0.634 0.93 [0.79-1.1] 0.375 
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KORA German 457 300 0.16 0.8 [0.61-1.06] 0.128 0.7 [0.51-0.97] 0.03 
 
 

SHIP German 656 240 0.18 1.07 [0.81-1.41] 0.627 0.74 [0.50-1.1] 0.137 
 
 

B58C British 514 529 0.19 0.82 [0.66-1.02] 0.077 0.77 [0.61-0.97] 0.026 
 
 

TwinsUK British 245 845 0.19 0.88 [0.68-1.14] 0.332 0.84 [0.63-1.12] 0.236 
 
 

MIGen European Ancestry 316 278 0.21 0.68 [0.51-0.9] 0.004 0.61 [0.44-0.84] 0.002 
 
 

DGI Swedish/ Finnish 277 161 0.23 1.11 [0.77-1.62] 0.572 1.15 [0.78-1.68] 0.483 
 
 

Fenland British 264 510 0.19 0.91 [0.69-1.19] 0.478 0.8 [0.58-1.09] 0.158 
 
 

NESDA Dutch 509 209 0.18 0.98 [0.73-1.31] 0.898 0.93 [0.63-1.35] 0.689 
 
 

Stage 2 Analysis 10018 7847 0.189 0.91 [0.86-0.96] 0.0019 0.86 [0.81-0.92] 1.0x10-5 0.5/0.3 

Stage 2 Analysis + Discovery 

 

11639 9546 0.188 0.88 [0.83-0.93] 1.2x10-6 0.83 [0.78-0.88] 5.4x10-9 0.01/0.02 

Combined Analysis - Stage 1 + Stage 2 19845 16541 0.188 0.89 [0.85-0.93] 8.98x10-08 0.86 [0.83-0.90] 1.61x10-10 0.52/0.51 

Combined Analysis - Discovery + Stage 1 + Stage 2 21466 18240 0.187 0.87 [0.84- 0.91] 3.67x10-11 0.85 [0.81- 0.89] 1.5x10-13 0.02/0.04 

Q(unadj/adj) = P value of the meta-analysis Q test for heterogeneity for the unadjusted and adjusted m eta-analysis respectively. OR = odds ratio.CI = 
confidence interval. MONICA = World Health Organiza tion Monitoring Trends and Determinants in Cardiova scular Disease Project. PAMELA = Pressioni 
Arteriose Monitorate e Loro Associazioni. MPP = Mal mö Preventive Project. MDC = Malmö Diet and Cancer Study. BRIGHT = British Genetics of Hypertension 
Study. ASCOT = Anglo-Scandinavian Cardiac Outcomes Trial. PREVEND = Prevention of Renal and Vascular E nd Stage Disease Study. CoLaus = Cohorte 
Lausannoise. KORA = Kooperative Gesundheitsforschun g in der Region Augsburg. SHIP = Study of Health in  Pomerania. B58C = British 1958 Birth Cohort. 
MIGen = Myocardial Infarction Genetics Consortium. DGI = Diabetes Genetics Initiative. NESDA = Netherl ands Study of Depression and Anxiety. 
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10-6) after adjustment for age, age2, sex, and BMI.  These adjustments were made because 

not all of the replication cohorts met our strict criteria for age cut-offs, and because these 

covariates are known to associate with blood pressure.  Stage 2 analysis was conducted on 

a total sample of 10,018 cases and 7,847 controls from the eleven remaining cohorts; 

BRIGHT/ASCOT, PREVEND, CoLaus, KORA, SHIP, B58C, TwinsUK, MIGen, DGI, 

Fenland, and NESDA.  The results were similar with the G allele again associated with 

reduced risk of hypertension (adjusted OR = 0.86, 95% CI = 0.81 – 0.92, P = 1.0 × 10-5).  

When stage 1 and stage 2 were combined the effect size was unchanged but strength of the 

association was greater (OR = 0.86, 95% CI = 0.83 – 0.90, P = 1.61 × 10-10).  As assessed 

by the Q statistic, there was no evidence of heterogeneity between studies in stage 1, stage 

2, or the combined stage 1 and stage 2 samples (P > 0.10).  The meta-analyses of all 

validation samples and the discovery sample are presented in more detail below. 

4.3 Unadjusted meta-analysis of rs13333226 

The results of the meta-analysis of the crude ORs and 95% CIs for the association between 

hypertension status and rs13333226, for the discovery sample and all 14 replication 

cohorts, are presented in Figure 4.3.  In total 21,466 cases and 18,240 controls were 

included.  The summary estimate was 0.87 (95% CI 0.84 – 0.91, P = 3.67 × 10-11).  The 

funnel plot was roughly symmetrical, indicating that there was no evidence of bias due to 

overestimation of effect size in smaller samples.  The data point lying outside the 95% 

confidence interval represents the discovery sample.  The Q statistic is 27.34, P = 0.017, 

i.e. there was significant evidence of heterogeneity between studies.  Furthermore the I 2 

statistic was 48.8%, suggesting a moderate level of heterogeneity. The funnel plot shows 

the discovery (i.e. Swedish) sample lying outside the odds ratio 95% confidence limits, 

because it has a greater effect size than the validation cohorts.  This suggests that the 

observed heterogeneity may be due to the extreme case-control study design of the 

discovery sample, the winner’s curse, or a combination of both.  Therefore it was excluded 

and the meta-analysis repeated for the validation cohorts (Figure 4.4).  This slightly 

decreased the effect size to OR = 0.89 (95% CI 0.85 – 0.93, P = 8.98 × 10-08).  The Q 

statistic was 11.46, P = 0.572, and the I 2 statistic 0.0%, i.e. no evidence of true 

heterogeneity, indicating that all of the variability in effect size estimates is due to 

sampling error.  Hence it can be concluded that the initial heterogeneity was due to the 

inclusion of the discovery cohort.  After its omission there remained a significant 

association between rs13333226 genotype and hypertension status.  All cohort ORs now 

lie within the 95% confidence limits of the funnel plot. 
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Figure 4.3 Results of meta-analysis of crude odds r atios for the association between 
rs13333226 and hypertension status in Swedish disco very sample and 14 replication 
cohorts. a) forest plot of odds ratios and 95% confidence intervals for individual studies summary 
result; b) funnel plot of standard error of coefficient (y axis) against odds ratio (x axis) for individual 
studies, with 95% confidence interval.  Vertical line represents summary odds ratio. 
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Figure 4.4 Results of meta-analysis of crude odds r atios for the association between 
rs13333226 and hypertension status in 14 replicatio n cohorts, with exclusion of the Swedish 
discovery sample. a) forest plot of odds ratios and 95% confidence intervals for individual studies 
summary result; b) funnel plot of standard error of coefficient (y axis) against odds ratio (x axis) for 
individual studies, with 95% confidence interval.  Vertical line represents summary odds ratio. 
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4.4 Analysis of rs13333226 adjusted for age, age 2, sex, 

and BMI  

Adjustment for the potential covariates, age, age2, sex, and BMI, strengthened the overall 

meta-analysed association for the discovery sample and replication cohorts (OR = 0.85, 

95% CI 0.81 – 0.89, P = 1.51 × 10-13) (Figure 4.5).  Again 21,466 cases and 18,240 

controls were included.  The funnel plot was approximately symmetrical.  There was 

significant heterogeneity present (Q = 24.81, P = 0.037; I 2 = 43.6%).  The exclusion of the 

discovery sample again led to a slight decrease in effect size (OR = 0.86, 95% 0.83 – 0.90, 

P = 1.61 × 10-10) (Figure 4.6), and the disappearance of heterogeneity (Q = 12.17, P = 

0.514; I 2 = 0.0%). 

 

4.5 Analysis of rs13333226 adjusted for age, age 2, sex, 

BMI, and eGFR 

Values for eGFR were available in only seven cohorts; PREVEND, CoLaus, SHIP, DGI, 

Fenland, MONICA/PAMELA, and MPP.  It was not recorded in the discovery sample.  

Thus the sample size for this analysis was reduced to 5739 cases and 7427 controls.  When 

these seven ORs from the association analysis adjusted for age, age2, sex, and BMI were 

meta-analysed the overall association remained significant (OR = 0.90, 95% CI 0.83 – 0.97 

P = 0.004; Q = 3.32, P = 0.767; I 2 = 0.0%) (Figure 4.7).  Additional adjustment for eGFR 

strengthened the effect marginally (OR = 0.90, 95% CI 0.85 – 0.95, P < 0.001; Q = 2.41, P 

= 0.879; I 2 = 0.0%) (Figure 4.8).  There was no evidence of heterogeneity between studies 

in either analysis. 
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Figure 4.5 Results of meta-analysis of odds ratios for the association between rs13333226 
and hypertension status in Swedish discovery sample  and 14 replication cohorts, adjusted 
for age, age 2, sex, and BMI. a) forest plot of odds ratios and 95% confidence intervals for 
individual studies summary result; b) funnel plot of standard error of coefficient (y axis) against 
odds ratio (x axis) for individual studies, with 95% confidence interval.  Vertical line represents 
summary odds ratio.
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Figure 4.6 Results of meta-analysis of odds ratios for the association between rs13333226 
and hypertension status in 14 replication cohorts, with exclusion of the Swedish discovery 
sample, adjusted for age, age 2, sex, and BMI. a) forest plot of odds ratios and 95% confidence 
intervals for individual studies summary result; b) funnel plot of standard error of coefficient (y axis) 
against odds ratio (x axis) for individual studies, with 95% confidence interval.  Vertical line 
represents summary odds ratio. 
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Figure 4.7 Results of meta-analysis of odds ratios for the association between rs13333226 
and hypertension status in 7 replication cohorts (t hose with eGFR available), adjusted for 
age, age2, sex, and BMI. a) forest plot of odds ratios and 95% confidence intervals for individual 
studies summary result; b) funnel plot of standard error of coefficient (y axis) against odds ratio (x 
axis) for individual studies, with 95% confidence interval.  Vertical line represents summary odds 
ratio. 
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Figure 4.8 Results of meta-analysis of odds ratios for the association between rs13333226 
and hypertension status in 7 replication cohorts (t hose with eGFR available), adjusted for 
age, age2, sex, BMI, and eGFR. a) forest plot of odds ratios and 95% confidence intervals for 
individual studies summary result; b) funnel plot of standard error of coefficient (y axis) against 
odds ratio (x axis) for individual studies, with 95% confidence interval.  Vertical line represents 
summary odds ratio. 
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4.6 Clinical functional cohorts 

4.6.1 British Genetics of Hypertension study 

As previously described, the BRIGHT study is a UK hypertension case-control study with 

the following exclusion criteria; BMI ≥35 kg/m2, diabetes, secondary hypertension or a co-

existing illness (http://www.brightstudy.ac.uk)128.  Cases were individuals with a diagnosis 

of hypertension, defined as >150/100 mmHg, prior to 50 years of age.  All cases completed 

24-hour urine collection with urinary sodium, potassium, creatinine and microalbuminuria 

recorded.  In the current study urinary uromodulin was measured in 256 hypertensive 

participants. 

4.6.2 Hypertension Evaluation by Remler and CalciUr ia LEvel 

Study 

Hypertension Evaluation by Remler and CalciUria LEvel Study (HERCULES) is a 

subsample of 400 randomly selected participants of the CoLaus study 210.  HERCULES 

(http://www.colaus.ch/en/cls_home/cls_pro_home/cls_pro_studies/cls_pro_studies-

hercules.htm) 176 aims to study the prevalence of hypertension using 24-hour ambulatory 

blood pressure measurement, assess renal function using 24-hour urine collection, and 

expand understanding of genetic variants associated with hypertension and renal function 

within CoLaus.  Hence as a sample it is ideal for the current study’s purposes.  Again 24-

hour urine was collected and the phenotypes recorded include urinary sodium, creatinine 

clearance, endogenous lithium clearance, potassium and uric acid excretion, and 

microalbuminuria.  The current study measured urinary uromodulin in 110 HERCULES 

participants.   

 

4.6.3 Groningen Renal Hemodynamic Cohort Study Grou p 

The Groningen Renal Hemodynamic Cohort Study Group (GRECO) is carrying out a 

series of studies examining blood pressure, renal function, and extracellular volume 

following sodium controlled diets 177, 178.  Dietary compliance and the achievement of a 

stable sodium balance are assessed via 24-hour urine.  The current study analysed GRECO 
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data for 64 healthy males from a crossover protocol consisting of two 7-day periods, one a 

high sodium diet (HS; 200 mmol Na+/day), and the other a low sodium diet (LS; 50 mmol 

Na+/day).   

4.7 Clinical functional results 

The primary results of the BRIGHT sample analysis are presented in Table 4.3.  The G 

allele was significantly associated with higher eGFR (P = 0.005), higher creatinine 

clearance (P = 0.004), and lower FENa (P = 0.032).  There was no association between 

genotype and uromodulin excretion (P = 0.234). 

Table 4.4 presents the results of the HERCULES sample analysis.  The G allele was 

significantly associated with lower urinary uromodulin excretion both as a single 

measurement (P = 0.005) and as averaged over 24 hours (P = 0.006).  There was no 

association between genotype and creatinine clearance (P = 0.866).   

The results from the GRECO interventional study are presented in Table 4.5.  Urinary 

uromodulin excretion was significantly lower in the presence of the G allele following the 

low salt diet (P=0.002). However, following the high salt diet no such difference was 

observed (P=0.513).  
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Table 4.3 Univariate association analysis of rs1333 3226 in 256 hypertensive patients from the BRIGHT s tudy. 
 AA (n=141) AG (n=93) GG (n=22) P 
Male:Female 0.7 0.8 0.6 0.763 
Age (years) 64.7 (8.4) 63.9 (7.8) 59.5 (9.5) 0.036 
SBP (mmHg) 156 (19.5) 151.5 (18.9) 153.3 (14.5) 0.205 
DBP (mmHg) 93.1 (10) 90.9 (10.7) 93.3 (10.3) 0.266 
Body mass index (Kg/m2) 26.8 (4.6) 26.8 (5.4) 27.2 (3.9) 0.927 
Body surface area (m2) 1.8 (0.2) 1.9 (0.2) 1.8 (0.2) 0.494 
Sodium (mmol/L) 138.6 (3.1) 138.9 (3.0) 137.8 (2.9) 0.341 
Potassium (mmol/L) 4.4 (0.9) 4.2 (0.8) 4.4 (1.0) 0.429 
Urea (umol/L) 6.3 (1.6) 5.7 (1.6) 6.0 (1.6) 0.025 
Creatinine (mmol/L) 92.2 (21.7) 88.4 (18.7) 82.9 (20) 0.096 
Urate (mmol/L) 0.3 (0.1) 0.3 (0.1) 0.3 (0.1) 0.726 
eGFR (ml/min/1,73m2) 67.6 (16.2) 70.3 (12.3) 79.5 (15.2) 0.005 
Creatinine Clearance (ml/min) 70.6 (20.3) 76.2 (20) 86.6 (26.6) 0.004 
Urine Sodium (mmol/24h) 139.1 (61.9) 158.9 (70.6) 142.4 (58.3) 0.073 
Urine Potassium (mmol/24h) 66.4 (24.1) 78.8 (54) 69.2 (18.8) 0.050 
Creatinine excretion (mmol/24h) 10.2 (3.6) 10.8 (4.6) 10.7 (3.1) 0.520 
Uromodulin (mg/L) 5.3 (5.3) 5.2 (5.5) 3.2 (3.4) 0.234 
Fractional Excretion of Sodium (%) 0.92 (0.37) 0.95 (0.36) 0.73 (0.19) 0.032 
With the exception of male:female, data are present ed as mean (standard deviation). 
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Table 4.4 Univariate association analysis of rs1333 3226 in 110 participants from the HERCULES Study. 
 
  AA (n=53) AG (n=45) GG (n=12) P 
   M / F (n) 29 / 24 17 / 28 7 / 5 0.187 
   Age (years) 59 (49 - 67) 56 (49 - 66) 59 (49 - 66) 0.845 
   Body mass index (Kg/m2) 26.1 (23.6 - 29.3) 24.2 (21.8 – 29.0) 24.7 (24.0 – 28.0) 0.130 
   Body surface area (m2) 1.85 (1.72 - 1.99) 1.75 (1.62 - 1.91) 1.87 (1.77 – 2.0) 0.028 
   24h SBP (mmHg) 115.5 (107.7 - 123.2) 113 (105.8 - 125.6) 118.4 (111.4 - 130.7) 0.562 
   24h DBP (mmHg) 76.3 (69.7 - 80.4) 76.8 (71.1 - 85.2) 77.7 (71.1 - 87.7) 0.495 
Hypertension (%) 37 50 25 0.871 
Fasting plasma     
   Sodium (mmol/L) 139.1 (137.1 - 140.9) 139.5 (137.8 - 140.9) 138.9 (138.1 - 141.5) 0.869 
   Potassium (mmol/L) 4.0 (3.9 - 4.3) 4.0 (3.7 - 4.1) 3.7 (3.5 – 4.0) 0.059 
   Urea (umol/L) 5.2 (4.4 - 6.1) 4.8 (4.4 – 6.0) 4.3 (4.1 - 4.6) 0.090 
   Creatinine (mmol/L) 81.0 (73.0 – 89.0) 80.5 (73.0 – 88.0) 77.5 (75.0 - 81.5) 0.787 
   Urate (mmol/L) 316 (287 - 378) 317 (262 - 378) 294 (274 - 317) 0.244 
24 h urine     
   Uromodulin (mg/L) 30.6 (14.9 - 49.7) 24.7 (14.2 - 42.5) 14 (10.6 - 16.5) 0.005 
   Uromodulin (mg/24h) 53 (25 - 75) 39 (28 - 68) 17 (14 - 33) 0.006 
   Urine volume (mL) 1700 (1200 - 2350) 1600 (1150 - 2050) 1773 (1125 - 2300) 0.780 
   Creatinine clearance (mL/min) 96.6 (69.8 - 122.3) 98.8 (75.0 - 122.8) 99.1 (79.2 - 128.7) 0.866 
   Creatinine excretion (mmol/kg/24h) 0.15 (0.10 - 0.19) 0.16 (0.14 - 0.19) 0.15 (0.12 - 0.19) 0.447 
   Urine Sodium (mmol/24h) 147.35 (96.14 - 187.81) 147.5 (110.13 - 177.18) 103.71 (81.49 - 144.70) 0.322 
   Urine Potassium (mmol/24h) 61.86 (50.08 - 84.46) 64.16 (54.9 - 74.47) 47.88 (38.06 - 93) 0.662 
Fractional Excretion of Sodium  0.013 (0.007 - 0.018) 0.012 (0.009 - 0.017) 0.006 (0.005 - 0.007) 0.130 
With the exception of M/F and hypertension, data ar e presented as median (interquartile range). 
Hypertension is defined as 24-hour ambulatory blood  pressure >135/85 or on antihypertensive treatment.  
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Table 4.5 Univariate association analysis of urinar y uromodulin in relation to rs13333226 polymorphism  and response to high and low salt intake (GRECO 
Study). 
 
 AA (n=40) AG and GG (N=24) p-value  
M / F (n) 40 / 0 24 / 0 1.0 
Age (years) 26 ± 8 23 ± 6 0.105 
Body mass index (Kg/m2) 23.4 ± 2.7 23.4 ± 2.1 1.0 
Body surface area (m2) 2.05 ± 0.14 2.03 ± 0.15 0.590 
SBP LS (mm Hg) 120 ± 10 121 ± 10 0.670 
DBP LS (mm Hg) 68 ± 9 70 ± 6 0.453 
SBP HS (mm Hg) 123 ± 10 124 ± 10 0.805 
DPB HS (mm Hg) 69 ± 8 70 ± 7 0.661 
GFR LS (mL/min/1.73m2) 109 ± 13 103 ± 14 0.127 
GFR HS (mL/min/1.73m2) 114 ± 14 116 ± 15 0.719 
ERPF LS (mL/min/1.73m2) 472 ± 74 449 ± 68 0.209 
ERPF HS (mL/min/1.73m2) 502 ± 90 489 ± 68 0.529 
ECV LS (L/1.73m2) 16.5 ±1.9 16.3 ± 1.6 0.657 
ECV HS (L/1.73m2) 17.2 ± 1.7 18.0 ± 1.9 0.093 
FENa LS (%) 0.19 ± 0.18 0.22 ± 0.25 0.342 
FENa HS (%) 0.99 ± 0.35 0.82 ± 0.31 0.001 
PRA LS (nmol/L/h) 6.3 ± 3.7 6.6 ± 3.1 0.723 
PRA HS  (nmol/L/h) 2.5 ± 1.5 2.0 ± 0.9 0.155 
UMOD LS median (IQR) (mg/L) 10.3 (6.9-15.6) 9.0 (6.3-14.2) 0.002 
UMOD HS median (IQR) (mg/L) 11.9 (7.5-27.9) 12.2 (7.2-21.3) 0.513 
BSA = Body Surface Area. LS = Low salt diet. HS = H igh salt diet. GFR = Glomerular Filtration Rate. ER PF = Effective Renal Plasma Flow. ECV = Extracellul ar 
Volume. FENa = Fractional Excretion of Sodium. PRA = Plasma Renin Activity. UMOD = Uromodulin. 
With the exception of FENa and UMOD, data are prese nted as mean (standard deviation). 
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4.8 Discussion 

The initial observation of a significant association between hypertension and rs13333226 

genotype was identified as the main result of interest and was successfully replicated in a 

two stage validation analysis.  As anticipated, the meta-analysed effect size was smaller 

than that of the discovery sample, in which the odds ratio (0.67) was inflated.  This is 

explained in large part by the selection of cases and controls from the extreme ends of the 

blood pressure distribution in the discovery cohort (see Figure 2.1).  Furthermore, the 

winner’s curse may be a contributory factor.  The finding remained significant after 

adjustment for age, age2, sex, and BMI, and when the discovery cohort was excluded from 

analysis.  Moreover, when the analysis was repeated with adjustment for eGFR, in the 

seven cohorts for which this was available, the effect was marginally strengthened 

(compared with initial adjustment of the seven cohort meta-analysis).  In three separate 

populations the minor G allele of rs13333226 (associated with a lower risk of 

hypertension) was associated with lower urinary uromodulin excretion, although in the 

BRIGHT sample this did not reach statistical significance.  In GRECO participants 

following a high salt diet, genotype was not associated with urinary uromodulin excretion 

suggesting a gene-environment interaction.  Our combined results suggest that UMOD may 

have a role in regulating blood pressure, possibly through an effect on sodium homeostasis. 

The only study to have examined UMOD in relation to hypertension was a candidate gene 

association study conducted by a Japanese group 214.  Iwai et al analysed 161 SNPs of 10 

candidate genes and their association with hypertension, defined as SBP ≥ 140 mmHg or 

DBP ≥ 90 mmHg or current use of antihypertensive medication.  Participants were from 

the Suita Study, a longitudinal general population study of a random sample of people aged 

30-79 years in the Japanese city Suita, which began recruitment in 1989 215.  Blood 

pressure measurement was the mean of two seated readings following 10 minutes at rest.  

Candidate genes were selected based on evidence of physiological function, being involved 

with blood pressure homeostasis, kidney function, leptin and insulin signalling, antioxidant 

effects, or familial juvenile stroke.  Adjustment was made for age and BMI.  In an analysis 

of 1,509 individuals with hypertension and 2,119 controls the minor allele of rs6497476, 

located in the 5' region of UMOD (-744 bp from UMOD transcriptional start point), was 

associated with lower risk of hypertension with P = 0.039.  Following Bonferroni 

correction for multiple testing, however, the association was no longer significant.  

Moreover, the polymorphism was not associated with blood pressure measured in the 

recumbent position or with uric acid levels.  In the Japanese HapMap population 
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rs6497476 is in LD with rs13333226 (r2 = 0.91) and shows the same directionality of 

effect.   

A recent GWAS of CKD conducted by Köttgen and colleagues identified rs12917707, 

located -3653bp upstream from the UMOD transcription start site, as the most strongly 

associated polymorphism (P = 2.85 × 10-9 in discovery sample only; P = 5 ×10-16 across 

discovery and replication samples combined) 202.  The minor T allele was associated with a 

20% reduction in CKD risk.  The association was consistent after adjustment for CKD risk 

factors including SBP, blood pressure lowering medication, and diabetes, and analysis 

stratified by age, sex, hypertension, and diabetes produced similar odds ratios.  In HapMap 

CEU samples rs12917707 is perfectly correlated with rs13333226 (r2 = 1).  In the Köttgen 

study, rs13333226 was one of seven additional SNPs in or upstream of UMOD associated 

with CKD at the level of genome-wide significance and in high LD (r2 > 0.8) with 

rs12917707.  All eight SNPs were also associated with eGFR. 

Specifically, eGFR describes the flow rate of filtered fluid through the kidney, hence 

higher values indicate better function 179.  The extent of chronic kidney disease, if present, 

is graded by how much eGFR is reduced 216, with values of less than 60ml per minute per 

1.73 m2 of body-surface area indicative of early stage disease.  Our results show that the 

association between hypertension and rs13333226 is independent of kidney function as 

defined by eGFR.  This is a critical point because rs13333226 is located close to the 

UMOD gene, and mutations of UMOD have been associated with chronic renal failure 217, 

218.  For example, Hart and colleagues studied large, multigenerational families with 

familial juvenile hyperuricaemic nephropathy (FJHN) and medullary cystic kidney disease 

2 (MCKD2) 219.  Both are autosomal dominant renal diseases and exhibit similar 

phenotypic characteristics.  Primary clinical features vary in occurrence and severity but 

include juvenile onset of hyperuricaemia, gout, and progressive renal failure.  

Hypertension is a potential long term complication.  Through linkage and haplotype 

analysis, Hart et al identified four novel UMOD mutations segregating with FJHN and 

MCKD2.  This suggests that the protein encoded has a role in renal urate handling and 

possibly renal development.  In total, 37 distinct mutations in UMOD have been associated 

with FJHN and/or MCKD2; there is a clustering in exons 4 and 5218, 220, 221.  Of the 37 

mutations, 33 are single amino acid changes of which 23 modify cysteine and 10 charged 

residuals.   
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UMOD encodes uromodulin, also known as the Tamm-Horsfall protein because it was 

identified and characterised by Tamm and Horsfall 222.  Uromodulin is a 

glycosylphosphatidylinositol (GPI) anchored glycoprotein.  It has long been recognised as 

the most abundant tubular protein in urine; however its function is unclear.  It is expressed 

predominantly in the thick ascending limb of the loop of Henle (TAL) with negligible 

expression elsewhere 223, 224.  Studies have shown urinary uromodulin levels to be 

decreased in older healthy individuals 225 and in patients with reduced renal function 226, 

although the latter study had a sample size of just 42.   The evidence for effects of blood 

pressure on uromodulin excretion is inconsistent 227, 228.  The TAL is also the site where 

mutations of tubular transporters have resulted in rare Mendelian high or low blood 

pressure syndromes 229.   

A study conducted by Dahan and colleagues identified further mutations in the UMOD 

gene in families with FJHN 230.  Furthermore, uromodulin excretion was measured in urine 

and kidney biopsies of patients with UMOD mutations.  In these individuals urinary 

uromodulin excretion was decreased, and expression increased in a subset of tubules, in 

comparison with control participants and patients with renal failure due to other causes, 

including FJHN patients without a UMOD mutation.  Similarly, Bleyer et al observed 

significantly lower urinary uromodulin excretion in individuals with UMOD deletion 

mutations compared with unaffected relatives and spouses 231.  This was independent of 

sex, age, and glomerular filtration rate.   

Studies of uromodulin knockout mice have provided some clues as to its function.  The 

first uromodulin deficient mice were created by Mo et al who deleted the first four exons 

and a 650bp proximal promoter region of UMOD 232, with the effect of rendering it non-

functional.  Compared with wild-type mice the knockout animals were predisposed to 

bladder infections, but no major effects on embryonic development or the histology of the 

kidney were observed.  In a similar study undertaken concurrently, Bates et al targeted 

disruption of exon 2 in a separate knockout model and independently confirmed the 

increased susceptibility to urinary tract infections (UTI) in uromodulin-null mice 233.  Thus 

uromodulin is involved in host-defence against Escherichia coli (E.coli) adhesion to the 

urothelium, E.coli being the cause of 85% of UTI 233.  Mo and colleagues also used their 

knockout mice to show that uromodulin has a role in preventing the development of 

calcium oxalate crystal formation (kidney stones) 234.  Conversely, in humans with UMOD-

associated FJHN or MCKD2 there is not an increase in prevalence of UTI or kidney stones 
220.  This is probably because, whereas knockout mice excrete no urinary uromodulin, 
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patients with UMOD mutations retain a small amount of wild-type excretion.  It appears 

that this is enough to protect against UTI or renal stone formation 220.  

Lynn and Marshall demonstrated that patients with renal disease have significantly lower 

levels of uromodulin excretion than individuals with normal renal function (19 mg/24h and 

39 mg/24h respectively) 235.  Excretion was yet lower in patients with polycystic kidney 

disease.  This was independent of age, sex, and urine volume.  Furthermore, excretion was 

neither influenced by degree of proteinuria, nor by variations in proteinuria with changes in 

disease activity or albumin infusions.  It was positively correlated with creatinine 

clearance.   

Lupus nephritis (LN) is defined as inflammation of the kidney caused by systemic lupus 

erythematosus.  Tsai et al have shown that uromodulin excretion is lower in patients with 

active LN and tubulointerstitial inflammation (another complication of systemic lupus 

erythematosus) compared with those with inactive LN or normal individuals 236.   

With the aim of testing the theory that uromodulin has a role in regulating renal salt and 

water excretion, Bachmann et al ran functional and morphological studies to compare 

knockout mice (the breed created by Bates and colleagues) and their wild-type siblings 
237.The uromodulin-null mice had kidneys that were anatomically normal and there was no 

change in steady-state electrolyte concentrations.  However, there was significant 

upregulation of major distal transporters, juxtaglomerular immunoreactive 

cyclooxygenase-2 (COX-2) and renin mRNA expression both were decreased, and 

creatinine clearance was 63% lower than in wild-type mice.  Collectively these 

observations support the conclusion that uromodulin plays a part in renal function 

regulation, as does research conducted on rats with hyperthyroidism 238.  Ying et al 

examined male Sprague-Dawley rats on diets that contained either 0.3%, 1.0%, or 8.0% 

salt 239.  Higher salt intake led to sustained increases in relative steady-state mRNA and 

uromodulin levels in the kidney.   

The finding of an association between hypertension and a genetic variant in UMOD is 

biologically plausible.  An association between malignant hypertension and increased risk 

of renal disease was first recognised in the 19th century.  Following initial observations, a 

large evidence base was established irrefutably linking the two conditions.  However, up 

until the 1990s any relationship between milder forms of hypertension and renal problems 

was uncertain.  A 1989 review of the clinical and epidemiological evidence by Whelton 
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and Klag 240 concluded that, although there was ample evidence of a causal relationship 

between severe hypertension and the occurrence of renal disease, there was insufficient 

comparable data to make such an assessment for mild to moderate hypertension.  Rather 

they state that at the time there was a suggestive yet inconclusive relationship.  

Subsequently, they along with others conducted a study of 16 years follow-up of 

prospective data from the Multiple Risk Factor Intervention Trial 241.  They analysed blood 

pressure at recruitment and later incidence of end-stage renal disease in 332,544 males, and 

observed a strong, graded relationship between the two.   Compared with normotensive 

participants (SBP <120 mmHg and DBP <80 mmHg), the relative risk of end-stage renal 

disease was 3.1 for mild hypertension (SBP 140-159 mmHg and DBP 90-99 mmHg), 6.0 

for moderate (SBP 160-179 mmHg and DBP 100-109 mmHg), 11.2 for severe (SBP 180-

209 mmHg and DBP 110-119 mmHg), and 22.1 for very severe hypertension (SBP ≥210 

mmHg or DBP ≥120 mmHg) (all P<0.001).  A limitation of the study was that baseline 

renal function was not assessed in all participants, therefore confounding by pre-existing 

disease could not be ruled out.  However, a later study by Hsu et al, that was able to screen 

out baseline kidney disease, demonstrated a similar graded relationship between blood 

pressure and end-stage renal disease 242.  In a paper recently published in Hypertension risk 

of chronic kidney disease was shown to be increased even in prehypertension, defined as 

SBP ≥120 and <140 mmHg or DBP ≥80 and <90 mmHg 243.  Prevalence of chronic kidney 

disease was 17.3% among prehypertensive participants, compared with 13.4% in those 

with normotensive blood pressure levels, 22.0% in undiagnosed hypertension, and 27.5% 

in those diagnosed with hypertension. Hypertension was more strongly related to 

albuminuria than eGFR.   The prevalence of other risk factors for chronic kidney disease 

was similar across blood pressure categories.  It is pertinent to mention that in the current 

study neither the discovery sample nor the majority of validation samples were phenotyped 

for renal function.   

The meta-analysis was conducted using an inverse-variance fixed-effects model.  Random-

effects models are generally more conservative, thus require more data to achieve the same 

statistical power as fixed-effects models.  Ioannidis and colleagues examined findings from 

three GWAS studies of type 2 diabetes where data were meta-analysed using fixed-effects 

models 119.  They repeated the analysis using random-effects and compared the results of 

the two model types.  At all levels of heterogeneity the average ORs were similar for both 

models.  But when heterogeneity was moderate to high, as estimated by I 2, the associated 

95% confidence intervals were wider for random effects estimates and P-values no longer 

crossed the threshold for genome-wide significance. 
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Pereira and colleagues compared random- and fixed-effects models, under different 

experimental circumstances, via simulations of cumulative meta-analyses of GWAS 

signals 244.  The simulations allowed for genetic model misspecification and true/between-

study heterogeneity.  They found that random-effects models exhibit a high type I error 

rate when there are only a few datasets in the analysis.  Furthermore, in the presence of 

heterogeneity in meta-analyses of ≤ 10 datasets of around 1,000 cases and 1,000 controls 

each, random-effects models did not increase power over a single study and could be less 

powerful.  However, in fixed-effects models when there is true heterogeneity and there is 

no effect on average, the type I error rate increases considerably as the volume of data 

increases.  Therefore, whereas fixed-effect models are preferable for initial screenings, 

random-effects models are preferable for subsequent generalisability of findings.  For this 

reason the current study employed a fixed effects model.  This decision was supported by 

the observed lack of heterogeneity. 

The extent of study heterogeneity in the meta-analysis was summarised by the Q statistic 

and I 2 statistic, to determine whether the use of a fixed-effects model was appropriate.  

The Q statistic does not give a measure of the magnitude of true heterogeneity, only 

whether it is present.  The I 2 statistic, on the other hand, does give a measure of the extent 

of true heterogeneity 245 and moreover is independent of the number of studies.  A study by 

Huedo-Medina and colleagues that compared the Q statistic and I 2 statistic found them to 

have comparable Type I error rates and statistical power 158.  There is evidence, however, 

that when there are only a few studies the Q statistic is greatly underpowered 119.  This is 

not a concern in the current analysis. 

Further functional studies are required to investigate the renal mechanisms by which 

UMOD may influence hypertension and renal sodium handling.  The main limitations of 

the current functional studies are the use of three different populations and single time 

point renal and blood pressure measurements.  To explore genotype-phenotype effects over 

prolonged periods repeated measurements are essential.   

To summarise, rs13333226 on chromosome 16 was followed up for replication meta-

analysis in a total of 14 independent cohorts.  The combined sample size was 21,466 cases 

and 18,240 controls.  The meta-analysed effect size was diminished relative to the 

discovery cohort, however, it was in the same direction and statistical significance was 

strengthened (OR = 0.87, P = 3.67 × 10-11).  In analysis adjusted for age, age2, sex, BMI 

and eGFR, and when the discovery cohort was excluded, the association remained 
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significant.  Thus it may be concluded that the finding is robust.  rs13333226 is located 

close to the transcription start site of the UMOD gene, mutations in which have previously 

been linked to chronic renal failure.  Our findings indicate that UMOD is independently 

associated with hypertension.  Following a high salt diet, in healthy males the G-allele was 

associated with a larger increase in measured GFR and hence filtered sodium load, and a 

smaller increase in tubular sodium excretion.  Together these adaptations achieve sodium 

balance. Additionally, in G-allele carriers the rise in extracellular fluid volume is greater 

after increased salt intake.  The appendix provides information on the genetic locations and 

possible biological significance of other SNPs associated with hypertension status at the 

borderline level of genome-wide significance in the combined discovery and 

MONICA/PAMELA sample. 
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5 General discussion 
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We have demonstrated that using an extreme phenotyping method to ascertain cases and 

controls can lead to successful identification of genome wide association signals for 

hypertension.  High fidelity phenotyping, comparing the top and bottom end of the blood 

pressure distribution, reduced misclassification of controls and also inflated the effect sizes 

allowing for a more efficient design with smaller sample sizes.  We have identified and 

validated a marker significantly associated with hypertension from a discovery sample of 

just 3,320 individuals, far fewer than other successful GWAS of hypertension e.g. Global 

BPgen 58 and CHARGE 59. Furthermore, the strategy allows the sampling of participants 

from a single population, rather than combining multiple cohorts from heterogeneous 

populations, which reduces confounding by stratification.  This confers practical benefits 

and reduces costs.  The estimated odds ratios are likely to be inflated compared with the 

true odds ratios for hypertension as typically defined.  This is reflected in the smaller effect 

sizes observed in the validation cohorts that had a somewhat relaxed case/control 

definition.  Importantly, the meta-analysed overall effect size in the current study is 

comparable to the effect sizes of the robust association signals for blood pressure identified 

by Global BPgen and CHARGE. 

Although the current study validated the association between rs13333226 and hypertension 

status in cohorts from the Global BPgen study 58, no variants in or near the UMOD gene 

were identified as either blood pressure or hypertension associated in the original Global 

BPgen or CHARGE analyses 59.  The most likely explanation for this discrepancy is the 

current study’s strict case control criteria for very high and very low blood pressure.  In the 

discovery sample blood pressure cut-offs were SBP ≥ 160 mmHg or DBP ≥ 100 mmHg for 

cases, and SBP ≤ 120 mmHg and DBP ≤ 80 mmHg for controls.  This is contrasted with 

hypertension defined as SBP ≥ 140 mmHg or DBP ≥ 90 mmHg in Global BPgen and 

CHARGE, and normotension defined as SBP ≤ 120 mmHg and DBP ≤ 85 mmHg in 

Global BPgen (CHARGE normotension criteria not provided).  In addition controls in this 

study had no evidence of CVD in ten years of follow-up, information either not available 

or not taken into account by the other two studies.  Furthermore, the age restrictions of <60 

and ≥50, respectively, used in the current study reduced the confounding effect of age and 

increased the power to detect genetic effects.  The criteria for participants from Global 

BPgen samples in the current validation analysis, while somewhat relaxed, were still 

comparatively stringent in that the original Global BPgen study did not employ age cut-

offs.  Moreover, in the current discovery sample cases were recruited while off treatment 

following a washout period, whereas both the Global BPgen and CHARGE studies dealt 

with the confounding effects of blood pressure lowering medication with the use of blanket 
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corrections (15 mmHg to recorded SBP and 10 mmHg to recorded DBP in Global BPgen; 

10 mmHg to recorded SBP and 5 mmHg to recorded DBP in CHARGE).  Once all of the 

differences in phenotypic definitions between the three studies are taken into account, it is 

not surprising that their principal findings were different. 

The Iwai et al study of UMOD as a candidate gene for hypertension offers some evidence 

of association in a different ethnic group, namely Japanese individuals 214.  While 

rs6497476, located in the 5' region of UMOD (-744 bp from UMOD transcriptional start 

site) was found in initial analysis to be significantly associated with hypertension risk (P = 

0.039), significance was lost following Bonferroni multiple testing correction.  Sample 

size, however, was comparatively small at 1,509 cases and 2,119 controls.  Therefore, it is 

possible that lack of significance was due to low statistical power.   

The association of rs133332226 and other UMOD variants with CKD and eGFR in the 

GWAS conducted by Köttgen et al 202 supports our finding.  Hypertension and renal 

disease are inextricably linked and each has been shown to increase the risk of the other.  

In the Köttgen study findings were consistent in models adjusted for and stratified by 

hypertension.  Moreover, the association between rs13333226 genotype and hypertension 

in the current study remained after adjustment for eGFR, suggesting that it is independent 

of renal function.  However, this observation is limited because eGFR was calculated at a 

single point in time, as was blood pressure, and we did not have access to measurements 

over the life course.  Further work is required in this area before any firm conclusions can 

be made.   

In the current study only the top hit was followed up in validation analyses.  However, 

there was another SNP in a different region which also attained genome-wide significance; 

rs13353058 in IKZF5 on chromosome 10q26. It would be interesting to follow this up in a 

larger sample as well as any borderline SNPs of potential biological importance.  Of the 

borderline associations the most appealing is probably rs1893469, located close to the 

NEDD4L gene on chromosome 18q21.  As discussed in the appendix, the encoded protein 

is a determinant of sodium reabsorption in the distal nephron 246, 247, and variants in 

NEDD4L have been associated with salt sensitivity 248, 249 and essential hypertension 250-253.  

Therefore, further investigation of this locus may provide some insight into the 

mechanisms linking sodium reabsorption and blood pressure variability.  Other 

possibilities are: THBS2, previously associated with risk of thoracic aortic aneurysm in 
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hypertensive patients 254 and premature MI 255; and COL4A1, associated with arterial 

stiffness 256 and heredity angiopathy with nephropathy, aneurysms, and muscle cramps 257.  

Of course the ultimate goals of GWAS analysis are to improve patient risk prediction, 

diagnosis, prevention, and finally to develop treatments that improve quality of life and 

survival. However, current evidence from published GWAS studies indicates that the 

common variants identified using this method not only explain very little of the population 

variation of disease traits and heritability, but also have very poor predictive potential on 

an individual basis 258. Some studies have combined the risk estimates of several SNPs into 

a single genotypic risk score that shows association with disease even after adjustment for 

traditional risk factors.  However, odds ratios or similar measures are not sufficient to 

assess the utility of genetic variants for individual risk prediction 259, 260, and the existing 

evidence suggests that when more complex measures are employed such genetic 

information has little or no effect on clinical risk prediction 261, 262.  For accurate prediction 

using a quantitative risk factor, the population distributions for cases and controls must be 

sufficiently well separated to allow selection of a cut-off value that discriminates between 

the groups with adequate sensitivity and specificity.  Ware argues that for this to be 

achieved an odds ratio, cumulative or otherwise, of more than 200 is necessary 263.  This is 

unrealistic at the moment because the disease-associated variants identified are too few and 

of too small effect 258.  The reported association between hypertension status and 

rs13333226 in this study will contribute little to individual risk prediction.  Moreover, the 

case-control definitions applied do not equate to those used in clinical practice.  Rather it is 

hoped that the finding will provide insight into the mechanisms underlying the 

development of hypertension.  

Evans and colleagues 264 used the original genome-wide WTCCC data 55 to investigate 

whether genome-wide data could improve diagnostic accuracy over and above information 

on loci known to affect risk.  The addition of genome-wide data improved discriminative 

accuracy most for coronary heart disease, type II diabetes, and bipolar disorder.  The 

improvement was of such a small magnitude that the authors considered it unlikely to be of 

diagnostic or predictive utility; however it suggests that there remain undiscovered variants 

that are associated with disease.  Perhaps surprisingly, when the additional SNPs to be 

included were determined using a liberal significance threshold any improvement in 

predictive ability was greater than when more stringent thresholds were employed.   This is 

consistent with there being many unknown loci of small effect.  Improvements were far 

smaller for rheumatoid arthritis and type I diabetes, and for Crohn’s disease the inclusion 
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of whole genome data actually decreased discrimination of case-control status.  This may 

be because more loci associated with these diseases have been discovered; hence genome-

wide data has little or no added value.  It was not possible to evaluate the use of whole 

genome data for hypertension case determination in the same manner because at the time 

no known confirmed loci had been associated with common essential hypertension.  

Nevertheless, genome-wide data alone provided a median area under the curve (AUC) of 

0.61 for hypertension, considerably better than chance defined as AUC = 0.5.  As 

discussed in chapter 1 page 46, the possibility of misclassification bias in the WTCCC 

samples stands.   

The major breakthrough with GWAS has been the identification of robust signals for 

common diseases and traits and novel pathways of disease.  Despite this success, the large 

amount of unexplained variation that remains for many traits, coupled with high financial 

cost, means that researchers are looking at other scientific strategies.  Several explanations 

for the missing heritability have been proposed.  These include rarer variants in novel 

pathways that are undetectable through traditional GWAS case-control study design; many 

more variants of smaller effect size that haven’t been discovered; structural variants, such 

as CNVs, that are poorly captured by existing arrays; insufficient power to detect gene-

gene interactions; and shared environment unaccounted for in family studies 265.  

Moreover, in GWAS of common variants, imperfect LD between tag SNPs and causal 

SNPs may have caused underestimation of effect sizes.  As noted in a review by Manolio 

et al, explaining missing heritability is not really an end in itself 265.  Rather it is a step on 

the path to achieving the ultimate goals of all genetic research into complex disease; 

improved prevention, diagnosis, and treatment.  Figure 5.1, reproduced from the Manolio 

review, plots the effect size of variants against their allele frequency.  It is thought that 

most of the unexplained heritability for many complex traits is likely to lie in the middle 

region of the graph, i.e. low-frequency variants with intermediate effect.  The primary 

method in the search for such variants is next-generation deep sequencing. 

Our study, using extreme case/control definitions, was able to identify a novel signal in 

UMOD that could potentially identify a novel pathway for blood pressure regulation. We 

have identified a common variant with an effect-size similar to other GWAS signals, 

suggesting that there is potential for identifying common variants using different study 

designs. Our study design has the potential to identify rare and intermediate frequency 

variants with MAF<5%.  However, our current strategy is blind to rare variants and we are 

now pursuing an exome sequencing (described below) experiment which is underway in  
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Figure 5.1 Feasibility of identifying genetic varia nts by strength of genetic effect (odds ratio) 
and risk allele frequency.  Most emphasis and interest lies in identifying associations with 
characteristics shown within diagonal dotted lines (reproduced from 265).
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collaboration with Richard Lifton at Yale to identify rare variants that influence blood 

pressure.  

As noted above, next-generation deep sequencing technology is available which will 

increase the chances of rare variant detection 266.  Possible sequencing strategies to detect 

rare variants include focusing on genomic regions where disease has been repeatedly and 

strongly associated with common variants, sequencing a larger portion of the genome in 

individuals with extreme phenotypes, and studying populations of recent African ancestry 
265.  The latter may be more effective than studying European populations, where most 

research has been focused so far, because Africans have greater genetic variation.  

Diversifying GWAS analysis beyond European populations could also contribute greatly to 

discovering the common genetic determinants of multifactorial disease.  But certain 

methodological issues need to be tackled carefully, including marker ascertainment, tag 

SNP portability, imputation, replication, and admixture 267.  Some of these issues are of 

particular concern in sub-Saharan African populations of low LD, due to their dissimilarity 

from the reference populations employed in the design of analysis tools. 

Whole genome resequencing is currently prohibitively expensive, therefore as a practical 

alternative whole exome arrays were developed.  These cover only exomic, i.e. protein 

coding, regions which account for 1% of the genome yet harbour 85% of mutations with 

large effects on disease predisposition 268, hence efficiency is increased.  A limitation is 

that they do not measure most structural variation 269.  Choi et al demonstrated the use of 

whole exome capture to make a clinical diagnosis of congenital chloride diarrhoea in a 

patient with a rare causal mutation 268.  For complex traits it is likely that whole exome 

sequencing will be performed in a subset of participants and then followed up with 

validation sequencing of regions of interest in a larger sample.  To maximise the chances 

of uncovering rare disease-predisposing variants whilst minimising financial cost, 

sequencing may be best performed in affected individuals within families at the extremes 

of trait distribution 269.  Following analysis the greatest challenge will be the identification 

of causal variants amongst the large number of novel variants uncovered, and biological 

plausibility may again come to the fore 265.  Functional information will help narrow the 

regions and variants of interest, as will association and linkage evidence for candidate 

variants.  This, in combination with co-segregation analysis of family data, will hopefully 

pinpoint the causal variants.  Statistical power will be greater for recognisable variants, i.e. 

those that have a clear function, such as ones that delete some or all of a gene 269.    
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One strategy that may aid the identification of variants with MAF <5% is the study of 

extreme phenotypes which are likely to be enriched for rare variants; a similar idea to the 

currently reported study design yet taken to another degree of distance from the normal 

distribution of trait values in the general population.    Two recent articles published back 

to back in Nature demonstrated the utility of this method.  The studies of Bochukova et al 
270 and Walters et al 271 began with genome-wide association analysis of CNVs in patients 

with severe early-onset obesity, with and without developmental delay.  Both identified a 

rare deletion on chromosome 16p11.2 which had been previously associated with autism 

and mental retardation.  The Bochukova study followed the finding up with targeted 

analysis in 16,053 individuals from eight cohorts.  Deletions were present in 0.7% of 

morbidly obese cases but were absent in healthy non-obese controls.  This methodological 

approach demonstrates that rare variants of large effect identified in extreme cases may 

also have a role in milder common forms of disease.   

Family studies may have a better chance of detecting rare variants, and any association 

between them and common diseases, than population studies.  If a disease predisposing 

variant is present in a proband individual then it should occur at higher frequency in 

affected relatives than unaffecteds.  Large family studies that are currently collecting data, 

such as the Generation Scotland: Scottish Family Health Study (GS: SFHS) 102 which aims 

to recruit a sample of 50,000 individuals, will facilitate such analysis.  Two recent studies 

have employed next-generation sequencing in small family samples with Mendelian 

disease in order to identify causal variants 272, 273; it is hoped that similar methods will be 

applied to common complex diseases once costs have fallen enough to allow sequencing of 

large samples.  Roach and colleagues analysed the whole-genome sequences of two 

siblings both with two recessive disorders, Miller syndrome and primary ciliary dyskinesia, 

and their unaffected parents 272.  This allowed the identification of very rare variants and 

the narrowing of possible candidate genes. Lupski et al sequenced the genome of a single 

patient from a family with a recessive form of Charcot-Marie-Tooth disease 273.  Once 

potential functional variants had been identified in the proband these were genotyped in 

affected family members.  The process identified two mutations in SH3TC2 (SH3 domain 

and tetratricopeptide repeats 2) segregating independently with separate subclinical 

phenotypes, demonstrating the utility of whole-genome sequencing in diagnostics.  Lupski 

et al note that, over the 6-month course of their study, “the sequence yield increased by a 

factor of three, with no appreciable increase in expense”, highlighting the current rapid 

advancement of sequencing technology.  A further benefit of family samples is that they 

permit the study of parent-of-origin effects, which may be important for common disease 
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phenotypes 274.  If these are not accounted for they could mask associations hence reducing 

the proportion of heritability that can be explained 265. 

Our plan for whole exome sequencing to uncover rare variants influencing blood pressure 

combines selection of extremes of trait distribution with family data, the aim being to 

choose participants that enable optimum study efficiency.  We hope that careful selection 

of individuals from families with very high (extreme hypertensive cases) or low blood 

pressure (hypercontrols) will maximise power and minimise sample size requirements. 

In parallel to the aforementioned search for further blood pressure associated variants, we 

will follow up the current finding.  The actual function of uromodulin is unknown; 

therefore our plans for future work include functional studies to clarify the mechanisms by 

which UMOD may influence renal sodium handling and the development of hypertension.   

To this end we hope to obtain well preserved human kidneys for the study of expression 

levels; this has not been possible to date.  Also, we currently await the arrival of knock-out 

mice from the United States 233, 237 and would like to obtain funding for knock-in mice that 

are a model of FJHN, bred in Rajesh Thakker’s group in Oxford.  Finally, the reported 

reduced urinary uromodulin excretion in the presence of the minor G allele of rs13333226 

should be confirmed in larger cohorts.  

Intensively genotyped samples are becoming available from the 1000 Genomes Project, an 

open resource catalogue of human genetic variation 275.  The project is run by an 

international consortium and aims to describe over 90% of genetic variation down to 1% 

MAF.   To date the genomes of more than 1000 individuals have been sequenced (with 

planned expansion to 2000 individuals in 2010) and around 11 million novel variants 

identified.  The resource, and other expanded reference panels of genomic variation, will 

improve GWAS coverage thus enabling the study of low frequency variants 265 and aiding 

fine mapping of regions of interest.    

Analysis of CNVs has been proposed as a possibility for exploring some of the missing 

heritability of common diseases.  CNVs are structural genomic variations that result from 

duplication or deletion of genomic segments.  This approach has had substantial success in 

rare genomic disorders, with the identification of several causal CNVs 276-278.  Thus far, a 

few rare CNVs 279-281 and common CNVs 186, 282, 283 have been associated with common 

diseases.  However, a recent WTCCC study has raised some doubt as to the additional 

information conferred over and above SNP analysis 284.  It analysed 3,432 common (MAF 
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>5%) CNVs in a sample of 16,000 cases of eight common diseases (those included in the 

original WTCCC study plus breast cancer) and 3,000 shared controls.  CNVs were found 

to be significantly associated with disease at three loci: IRGM (immunity-related GTPase 

family, M) for Crohn’s disease; HLA for Crohn’s disease, rheumatoid arthritis, and type 1 

diabetes; and TSPAN8 (tetraspanin 8) for type 2 diabetes.  But all were well tagged by 

SNPs and indeed had been previously identified in SNP association studies.  Hence the 

CNV analysis did not add anything to the state of knowledge, and currently it does not 

look as though the study of CNVs will explain much missing heritability.  Nevertheless, 

compared with SNP assays, CNV assays are at an early stage of development.  With 

improved accuracy, reliability and quality control CNV analysis of common diseases may 

prove more beneficial in the future.  De novo CNVs do not contribute to heritability but 

may explain some of the trait variation currently attributed to the environment 265.  There is 

also the possibility of studying other structural variations such as inversions or 

translocations (which are copy neutral), new sequence insertions, microsatellite repeat 

expansions, and complex rearrangements.  There is evidence of effects of all of these in 

rare Mendelian conditions, but for complex traits little data exists 265. 

It could be that the association signals for common variants identified by GWAS are 

markers for rarer causal variants of large effect 269.  This possibility was recently examined 

using computer simulations by Dickson et al 285.  They assumed that rare (defined loosely 

as less common than those routinely studied in GWAS) variants were the only contributors 

to disease risk, and found that in such a scenario the rare causal variants can create 

associations of genome-wide significance that are picked up by more common variants 

megabases (Mb) away.  Moreover, the real effect size can be several-fold stronger than that 

attributed to the common variant.  These associations are a special case of indirect 

association which Dickson et al termed ‘synthetic associations’.  They propose that the rare 

variant involved occurs, randomly, more often with one of the alleles of the common 

variant than the other allele.  Currently the proportion of GWAS signals that may be due to 

synthetic associations is unknown 269, but their likelihood has implications for the 

interpretation of GWAS results and their follow-up.  Thus far, when hits have been located 

a long way from the nearest gene it has often been concluded that a regulatory variant is 

the cause.  However, since synthetic associations can be due to rare variants that are Mb 

away, the chance of their existence means that the area examined in follow-up studies 

should be larger than that typically studied.  Thus deep sequencing of the region 

surrounding a hit should extend beyond the LD block of common variants that it is 

contained within.  Dickson et al recommend sequencing an area at least 4 Mb and ideally 
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10 Mb around the discovery signal 285.  Although there is little empirical evidence for 

synthetic associations, there are some examples of rare variants in the same regions as 

GWAS signals that influence disease risk 185, 286, 287.  The strongest supportive evidence 

comes from Fellay and colleagues 288, working in the same research centre as Dickson.   

As mentioned above, there is some evidence that common minor variants in the causal 

genes for monogenic forms of hypertension and hypotension may also have a causal role in 

blood pressure regulation, though this has not been replicated.  Moreover, similar 

associations have been found with rare variants.   Ji and colleagues screened participants of 

the Framingham Heart Study (FHS) for variation in three known candidate genes, 

SLC12A3 (solute carrier family 12 (sodium/chloride transporters), member 3), SLC12A1 

(solute carrier family 12 (sodium/potassium/chloride transporters), member 1), and KCNJI, 

in which homozygous loss-of-function mutations are causally associated with monogenic 

forms of hypotension (namely Bartter’s syndrome and Gitelman’s syndrome) 289. The FHS 

began in 1948 as a prospective general population study with the aim of identifying CVD 

risk factors.  Participants, and later their offspring, grandchildren and spouses, have been 

followed up since.  Risk scores based on its results are in widespread use 

(http://www.framinghamheartstudy.org/risk/index.html).  Resequencing by Ji et al led to 

the detection of 30 different heterozygous rare (MAF<1%) mutations in 49 individuals.  

Mutation carriers had mean long-term SBP 6.3 mmHg lower, and DBP 3.4 mmHg lower, 

than the overall cohort means.  Furthermore, the likelihood of developing hypertension by 

age 60 was 59% lower in mutation carriers compared with noncarriers.  Despite the health 

benefit conferred by these heterozygous mutations, they remain rare due to strong 

purifying selection caused by the adverse effects of the homozygous states.  These along 

with other findings 94 support the assertion that heterozygosity of rare variants explains 

some of the population variability of heritable traits.  It could be that variants in UMOD, 

such as that identified in the current study, may act to lower blood pressure in a similar 

manner, albeit to a lesser degree.   

The study of gene transcript abundance, which is directly modified by polymorphisms in 

regulatory elements, may help to elucidate the function of loci underlying complex disease 

traits 290.  Recent studies have mapped transcript abundance as a quantitative trait, termed 

expression quantitative trait loci (eQTLs).  These are identified through the simultaneous 

assay of genome-wide association data and global gene expression data.  First of all 

disease-associated variants are ascertained via GWAS in the usual way.  Then genome-

wide eQTL mapping data are studied for evidence that the same markers are also 
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associated with quantitative transcript levels (termed eSNPs) of a gene or genes.    In eQTL 

mapping the expression of thousands of genes in a target cell or tissue is measured 

simultaneously using microarray technology.  The data are treated in the same way as other 

quantitative trait phenotypes, such as blood pressure or lipids, and the same statistical 

methods used as for QTLs 290.   Many human eQTLs are highly heritable 291-293, and only 

some of this heritability is accounted for by SNPs.  Transcription is also affected by CNVs, 

deletion-insertion polymorphisms, short tandem repeats, and single amino acid repeats 294.  

VarySysDB is a database of information on all published polymorphisms that affect 

transcription 294.   

The simultaneous association of specific markers with both disease and eQTLs confers 

more power than a simple comparison of gene expression between cases and controls 290.  

Some GWAS have already taken the combined approach and have demonstrated its utility 

in identifying candidate genes 295, 296.  eQTL data have been used as supportive evidence 

for a candidate gene proposed because of biological plausibility or location, to select one 

gene from a choice of candidates, and to identify a different gene 297.    The value of 

eQTLs in the study of the biology underlying complex traits is supported by work recently 

conducted by Nicolae et al 298.  In lymphoblastoid cell lines from HapMap samples they 

showed that trait-associated SNPs are significantly more likely to be eQTLs than MAF-

matched SNPs chosen from high-throughput GWAS platforms.   

The main limitations of eQTL methodology arise from issues in the use of microarrays, 

including bias from variation in sample preparation and technical variation 299.  However, 

technology is improving and ultra-high-throughput sequencing systems can overcome 

many of these problems 300.  There is little known about epigenetic, environmental, and 

parent-of-origin effects in eQTLs; therefore these areas need investigation.  Moreover, 

future studies should take transcript stability into account as well as how expression levels 

change at different stages of development 290, 301.  A systems biology approach will help to 

clarify the function and wider context of single-gene discoveries.  To this end, several 

methods to construct data networks have been proposed 302.  Another limiting factor is 

unavailability of appropriate tissue samples.  But recent achievements in the field of eQTL 

analysis have prompted the  National Institutes of Health (NIH) Genotype-Tissue 

Expression (GTEx) 303 project, currently a 2-year pilot project to test the feasibility of 

collecting high-quality RNA and DNA from multiple tissues from ~160 donors.  If 

successful the project will be expanded to around 1000 donors, and will serve as a resource 

to study human gene expression and regulation.   
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Perhaps the most challenging area of work in the future will be the study of gene-

environment interactions.  As already discussed in chapter 1 pages 51-53, this requires 

extremely large sample sizes 100 and accurate measurement of environmental variables can 

be difficult.  Aside from this, and despite the apparent likelihood of gene-environmental 

effects in complex disease coupled with some supporting evidence 304, in reality few have 

been demonstrated 305.  It would be unwise to make assumptions regarding their 

importance in disease aetiology without further evidence.  Gene-gene interaction detection, 

although still requiring relatively large sample sizes, should be less of a challenge.  A 

pathway analysis approach may improve success rates, and has been demonstrated as 

effective in linking the SNPs most strongly associated with hypertension in the WTCCC 

data 306. 

Our finding of a variant in the Uromodulin gene with a protective effect, associated with a 

reduced risk of hypertension, is exciting on several levels.  In methodological terms we 

have effectively demonstrated an alternative phenotyping strategy that enabled the 

detection of a locus not previously linked to blood pressure or hypertension in large whole-

genome studies 58, 59.  The multiple strands of evidence linking UMOD to renal disease and 

kidney function 202, 217-219, 230, which often co-occur and correlate, respectively, with 

hypertension and blood pressure, lend biological significance to this observation.  

Furthermore, uromodulin is predominantly expressed in TAL 223, 224 where physiologically 

crucial mechanisms of sodium handling are located, suggesting that alterations of these 

mechanisms may underlie the reduced hypertension risk in G allele carriers.  In conclusion, 

we believe that the newly discovered UMOD locus for hypertension has the potential to 

provide unique insights into the mechanisms of high blood pressure, and identify novel 

drugable targets. 
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This appendix summarises the top 87 hits, as defined by P ≤5.6 × 10-4 in the discovery 

sample.   These SNPs underwent validation meta-analysis of the discovery sample and 

combined MONICA/PAMELA sample.  Included in the analysis were 2,515 cases and 

2,445 controls.  A summary of the results of the discovery, validation, and combined 

analyses is presented in Table A1.  In the combined analysis three SNPs, shown in red bold 

font, crossed a p-value threshold of 5 × 10-7: rs13333226, P = 3.86 × 10-7; rs4293393, P = 

3.30 × 10-7; and rs13353058, P = 4.78 × 10-7. Two of them, rs13333226 and rs4293393, 

are in high LD with r2=0.996.  Unlike rs13333226, the other 86 SNPs were not taken 

forward for further replication but may be of future interest.  Individual SNPs were 

annotated using WGAViewer and the results investigated via the OMIM, Entrez Gene, 

GeneCards, HuGE Navigator Genopedia, and dbGaP online databases.  The results are 

presented by gene, rather than SNP or chromosome, to highlight the potential functional 

significance of the observed hypertension-related genetic loci.  Regional plots were created 

using LocusZoom, and are presented for unique regions.  Several borderline significant 

SNPs are located in or near genes for which there is no information available at present, 

therefore they are not included in this appendix.  

IKAROS family zinc finger 5 (IKZF5) 

The third SNP associated with hypertension at the genome-wide level of significance was 

rs13353058, located in the three prime untranslated (3’ UTR) region of IKZF5 on 

chromosome 10q26.   Figure A1 is an association plot of the genomic region around 

rs13353058.  The IKZF5 gene is protein coding and belongs to the Ikaros family of 

transcription factors, which are expressed in lymphocytes and implicated in control of 

lymphoid development.  A commonly used synonym is Pegasus.  It is conserved in the 

dog, cow, mouse, rat, chicken, and zebrafish.   

Cytokine-dependent hematopoietic cell linker (CLNK)  

Three intergenic SNPs on chromosome 4 were closest to the CLNK gene, at a distance of 

between 280 and 290kb.  Two, rs10009111 (Figure A2) and rs10011697, were in LD (r2 = 

1.00) but were not in LD with the third rs10516217.  CLNK is protein coding and a 

member of the SLP76 family of adaptors.  It plays a role in the regulation of 

immunoreceptor signalling 307.  However, in a mouse model without CLNK mast cell, T 

cell, and NK cell functions were normal 308.  This suggests that its presence is not essential  
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Table A1 Initial replication analysis of the top 87  SNPs.  Results presented are the discovery sample, MONICA/PAMELA replication sample, and combined analysis 
using inverse-variance weighted fixed-effects meta-analysis. 

 DISCOVERY MONICA/PAMELA COMBINED ANALYSIS 

CHR SNP BP A1 N OR 95%CI P N OR 95%CI P P-FIXED OR-FIXED Q I2 

1 rs1399291 97349510 T 3315 1.26 1.13-1.41 3.12E-05 1611 1.08 0.94-1.25 2.71E-01 2.55E-05 1.26 0.45 0 

1 rs10857978 1.13E+08 T 3319 0.76 0.67-0.86 3.33E-05 1616 0.99 0.83-1.18 8.93E-01 3.49E-05 0.76 0.63 0 

2 rs2192615 48975598 G 3319 0.8 0.71-0.89 7.77E-05 1612 0.96 0.84-1.11 5.88E-01 8.09E-05 0.8 0.63 0 

2 rs12611661 1.05E+08 C 3314 0.76 0.66-0.86 2.61E-05 1618 1.08 0.92-1.26 3.41E-01 3.33E-05 0.76 0.26 21.95 

2 rs9636284 1.62E+08 T 3319 0.63 0.52-0.78 1.48E-05 1615 1.15 0.93-1.43 2.08E-01 2.61E-05 0.64 0.14 54.82 

2 rs2084543 1.62E+08 A 3320 0.6 0.48-0.74 3.36E-06 1616 1.18 0.94-1.49 1.54E-01 6.47E-06 0.61 0.12 58.89 

2 rs16846179 1.62E+08 G 3320 0.63 0.51-0.78 1.49E-05 1618 1.12 0.9-1.39 2.99E-01 2.14E-05 0.64 0.24 28.52 

3 rs9853991 32441801 T 3316 0.71 0.61-0.82 8.98E-06 1615 1.01 0.84-1.22 8.87E-01 9.53E-06 0.71 0.6 0 

3 rs3888882 32472578 T 3320 0.73 0.63-0.85 2.92E-05 1614 1.00 0.84-1.2 9.67E-01 2.98E-05 0.73 0.77 0 

3 rs12636240 1.15E+08 G 3319 1.26 1.12-1.4 6.15E-05 1615 1.03 0.89-1.19 7.21E-01 6.20E-05 1.26 0.84 0 

3 rs9881563 1.15E+08 C 3318 1.26 1.13-1.41 5.16E-05 1613 1.01 0.87-1.17 9.34E-01 5.00E-05 1.26 0.95 0 

3 rs9865965 1.15E+08 T 3317 1.26 1.13-1.41 4.28E-05 1615 1.01 0.87-1.17 8.94E-01 4.25E-05 1.26 0.99 0 

3 rs13061150 1.15E+08 A 3320 1.25 1.12-1.4 6.88E-05 1615 1.02 0.88-1.18 7.94E-01 6.90E-05 1.25 0.86 0 

3 rs9828099 1.15E+08 C 3320 1.25 1.12-1.4 7.92E-05 1615 1.03 0.89-1.19 7.06E-01 7.59E-05 1.25 0.79 0 

3 rs3811647 1.35E+08 A 3320 0.77 0.69-0.87 1.21E-05 1613 1.00 0.86-1.17 9.86E-01 1.21E-05 0.77 0.89 0 

3 rs6794945 1.35E+08 T 3318 0.78 0.7-0.88 5.88E-05 1614 1.04 0.89-1.21 6.39E-01 6.09E-05 0.78 0.67 0 

3 rs7635876 1.58E+08 T 3318 1.39 1.19-1.63 4.18E-05 1615 1.01 0.78-1.31 9.51E-01 4.12E-05 1.39 0.92 0 

3 rs1842840 1.58E+08 T 3319 1.27 1.13-1.42 4.20E-05 1617 1.00 0.86-1.15 9.51E-01 4.16E-05 1.27 0.77 0 

3 rs11715321 1.58E+08 C 3318 1.27 1.14-1.43 3.35E-05 1618 1.00 0.87-1.16 9.85E-01 3.37E-05 1.27 0.84 0 

4 rs10009111 10580521 G 3318 0.76 0.68-0.85 1.35E-06 1616 0.90 0.78-1.03 1.37E-01 1.94E-06 0.77 0.19 42.15 
CHR = chromosome. BP = location in base pairs. A1 =  major allele. OR = odds ratio. CI = confidence int erval. Q = Q statistic. I 2 = I2 statistic. 
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Table A1 continued. 

 DISCOVERY MONICA/PAMELA COMBINED ANALYSIS 

CHR SNP BP A1 N OR 95%CI P N OR 95%CI P P-FIXED OR-FIXED Q I2 

4 rs10011697 10580930 G 3319 0.76 0.68-0.85 1.50E-06 1616 0.90 0.78-1.03 1.37E-01 2.16E-06 0.77 0.19 42.04 

4 rs10516217 10582359 A 3319 1.26 1.13-1.4 4.57E-05 1615 0.90 0.78-1.05 1.72E-01 3.78E-05 1.26 0.53 0 

4 rs4487344 1.03E+08 G 3320 0.78 0.7-0.87 8.11E-06 1611 1.08 0.94-1.24 2.97E-01 1.23E-05 0.78 0.12 58.12 

4 rs13124455 1.03E+08 A 3318 1.36 1.19-1.54 4.00E-06 1613 0.94 0.79-1.11 4.47E-01 3.47E-06 1.36 0.63 0 

4 rs7669524 1.03E+08 A 3320 1.36 1.19-1.54 3.60E-06 1613 0.94 0.79-1.11 4.58E-01 3.15E-06 1.36 0.64 0 

4 rs768290 1.03E+08 G 3320 1.34 1.18-1.53 7.55E-06 1612 0.93 0.79-1.11 4.43E-01 6.58E-06 1.35 0.64 0 

4 rs12505043 1.03E+08 T 3319 0.78 0.68-0.89 1.79E-04 1614 1.05 0.89-1.23 5.76E-01 2.04E-04 0.78 0.4 0 

4 rs4482766 1.03E+08 C 3313 1.29 1.14-1.45 2.63E-05 1613 1.02 0.88-1.2 7.74E-01 2.52E-05 1.29 0.69 0 

5 rs106415 6845839 A 3320 0.8 0.71-0.89 5.96E-05 1614 0.91 0.8-1.05 1.98E-01 8.62E-05 0.8 0.16 48.95 

5 rs172384 36839982 G 3320 0.71 0.61-0.82 4.27E-06 1616 0.80 0.66-0.95 1.21E-02 1.51E-04 0.76 0 92.72 

5 rs292196 36949936 T 3320 0.7 0.6-0.81 4.21E-06 1614 0.82 0.68-0.98 2.59E-02 1.01E-04 0.75 0 91.75 

5 rs16903459 37067173 G 3317 0.72 0.62-0.84 4.16E-05 1616 0.83 0.69-1 5.40E-02 4.36E-04 0.76 0 89.38 

5 rs12658479 37242378 C 3313 0.76 0.66-0.87 8.61E-05 1614 0.89 0.75-1.06 1.82E-01 1.91E-04 0.77 0.06 72.4 

5 rs2460498 76177535 A 3320 0.76 0.67-0.87 5.71E-05 1613 0.88 0.73-1.07 2.13E-01 7.87E-05 0.77 0.22 33.48 

6 rs10948155 44795935 C 3319 0.79 0.7-0.89 6.47E-05 1616 1.02 0.88-1.19 7.68E-01 7.04E-05 0.79 0.5 0 

6 rs633668 1.69E+08 A 3320 1.31 1.16-1.49 2.22E-05 1618 0.96 0.82-1.13 6.55E-01 1.54E-05 1.32 0.41 0 

8 rs964307 1.1E+08 G 3320 0.77 0.68-0.86 1.05E-05 1616 0.92 0.79-1.06 2.49E-01 3.27E-05 0.78 0.02 81.5 

8 rs9297425 1.1E+08 T 3320 0.77 0.68-0.86 1.05E-05 1611 0.91 0.78-1.06 2.31E-01 3.21E-05 0.78 0.02 81.22 

8 rs7015262 1.11E+08 G 3320 0.78 0.7-0.88 3.60E-05 1612 0.93 0.81-1.08 3.68E-01 7.30E-05 0.79 0.06 71.64 

9 rs12683218 12411929 G 3318 1.33 1.17-1.51 1.29E-05 1612 0.97 0.83-1.14 7.11E-01 1.15E-05 1.33 0.64 0 

9 rs2289006 18768319 T 3320 0.76 0.68-0.86 4.41E-06 1609 1.01 0.87-1.16 9.36E-01 4.88E-06 0.77 0.48 0 
CHR = chromosome. BP = location in base pairs. A1 =  major allele. OR = odds ratio. CI = confidence int erval. Q = Q statistic. I 2 = I2 statistic. 
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Table A1 continued. 

 DISCOVERY MONICA/PAMELA COMBINED ANALYSIS 

CHR SNP BP A1 N OR 95%CI P N OR 95%CI P P-FIXED OR-FIXED Q I2 

9 rs894520 38179527 C 3205 1.29 1.14-1.45 4.35E-05 1610 1.13 0.97-1.31 1.12E-01 2.86E-05 1.29 0.28 15.44 

9 rs10867228 80449015 C 3320 1.37 1.17-1.61 7.85E-05 1618 1.07 0.9-1.28 4.52E-01 7.22E-05 1.37 0.69 0 

9 rs10868564 89157591 C 3318 1.27 1.13-1.42 6.50E-05 1616 1.03 0.89-1.19 6.61E-01 6.16E-05 1.27 0.72 0 

10 rs13353058 1.25E+08 G 3317 1.62 1.34-1.96 5.26E-07 1617 1.01 0.8-1.26 9.55E-01 4.78E-07 1.62 0.76 0 

11 rs1255182 95112039 T 3319 0.8 0.72-0.89 6.56E-05 1614 0.89 0.77-1.03 1.07E-01 1.50E-04 0.81 0.04 76.97 

11 rs3748256 95161601 G 3319 0.79 0.71-0.89 6.81E-05 1615 0.89 0.78-1.03 1.15E-01 1.36E-04 0.8 0.06 72.15 

11 rs1784135 95171396 A 3319 0.79 0.71-0.89 7.90E-05 1609 0.88 0.77-1.02 8.24E-02 1.97E-04 0.81 0.03 78.94 

11 rs693364 95261574 C 3320 0.79 0.7-0.88 4.45E-05 1615 0.92 0.8-1.06 2.71E-01 6.71E-05 0.79 0.14 53.52 

11 rs10765777 95296033 C 3317 0.79 0.71-0.89 5.01E-05 1615 0.92 0.8-1.06 2.55E-01 7.84E-05 0.8 0.12 57.59 

11 rs3808977 95297409 G 3319 0.79 0.71-0.89 6.65E-05 1613 0.92 0.8-1.06 2.34E-01 1.08E-04 0.8 0.11 60.28 

11 rs11221390 1.28E+08 T 3320 0.75 0.65-0.86 2.85E-05 1613 0.93 0.77-1.12 4.40E-01 4.41E-05 0.75 0.16 48.23 

12 rs10431296 7478801 C 3319 1.64 1.29-2.08 5.67E-05 1618 0.82 0.59-1.14 2.32E-01 3.98E-05 1.64 0.7 0 

12 rs7961094 11803634 T 3317 1.34 1.16-1.54 7.69E-05 1614 0.89 0.73-1.07 2.17E-01 5.45E-05 1.34 0.45 0 

12 rs6539747 82337800 C 3317 1.3 1.15-1.47 4.22E-05 1612 1.05 0.9-1.23 5.12E-01 4.07E-05 1.3 0.87 0 

12 rs7964484 82373606 G 3318 1.3 1.15-1.46 2.36E-05 1615 1.03 0.88-1.19 7.51E-01 2.30E-05 1.3 0.98 0 

13 rs9533108 41922710 C 3317 0.78 0.7-0.88 1.72E-05 1615 1.13 0.98-1.31 8.43E-02 4.71E-05 0.79 0.01 83.88 

13 rs665657 41987378 T 3316 1.28 1.13-1.45 7.54E-05 1612 1.16 0.99-1.36 6.29E-02 3.33E-05 1.3 0.12 59.36 

13 rs990466 48218469 G 3320 0.77 0.68-0.87 5.66E-05 1613 1.21 1.03-1.42 2.11E-02 2.17E-04 0.79 0 87.65 

13 rs1164503 75765746 A 3320 1.29 1.14-1.46 3.34E-05 1615 1.09 0.95-1.26 2.31E-01 2.79E-05 1.29 0.5 0 

13 rs529041 1.1E+08 A 3320 1.54 1.26-1.88 1.99E-05 1614 0.83 0.63-1.09 1.73E-01 1.58E-05 1.55 0.69 0 

13 rs7995158 1.1E+08 A 3318 1.25 1.12-1.4 7.53E-05 1613 1.06 0.92-1.22 4.13E-01 6.36E-05 1.26 0.5 0 
CHR = chromosome. BP = location in base pairs. A1 =  major allele. OR = odds ratio. CI = confidence int erval. Q = Q statistic. I 2 = I2 statistic. 
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Table A1 continued. 

 DISCOVERY MONICA/PAMELA COMBINED ANALYSIS 

CHR SNP BP A1 N OR 95%CI P N OR 95%CI P P-FIXED OR-FIXED Q I2 

15 rs7164857 91693946 T 3320 0.8 0.71-0.89 6.52E-05 1613 1.03 0.9-1.19 6.59E-01 6.53E-05 0.8 0.89 0 

15 rs17541566 91697940 G 3318 1.32 1.17-1.49 9.23E-06 1614 0.92 0.79-1.08 3.18E-01 7.49E-06 1.32 0.56 0 

16 rs9939858 9585398 T 3320 1.56 1.28-1.89 6.21E-06 1617 0.84 0.66-1.07 1.58E-01 1.17E-06 1.59 0.42 0 

16 rs407146 13223156 T 3319 1.26 1.12-1.41 7.06E-05 1614 1.00 0.86-1.16 9.77E-01 7.16E-05 1.26 0.98 0 

16 rs11647727 20263666 A 3319 0.72 0.63-0.82 7.03E-07 1613 0.92 0.79-1.07 2.80E-01 2.43E-06 0.73 0.02 80.29 

16 rs4506906 20264899 C 3320 0.79 0.7-0.88 4.76E-05 1614 0.90 0.78-1.04 1.39E-01 1.71E-04 0.8 0.01 84.35 

16 rs4293393 20272089 C 3320 0.67 0.58-0.78 1.45E-07 1614 0.93 0.77-1.11 4.00E-01 3.30E-07 0.68 0.08 67.53 

16 rs13333226 20273155 G 3319 0.67 0.58-0.78 1.14E-07 1615 0.91 0.76-1.08 2.82E-01 3.86E-07 0.68 0.03 77.71 

16 rs4496151 20280791 T 3320 0.79 0.7-0.88 4.13E-05 1608 0.91 0.79-1.05 1.84E-01 1.01E-04 0.8 0.03 77.8 

18 rs1942526 53769875 G 3318 1.72 1.31-2.25 8.46E-05 1616 0.91 0.72-1.16 4.61E-01 8.20E-05 1.72 0.9 0 

18 rs1893469 53776497 G 3320 1.65 1.31-2.08 2.48E-05 1617 0.99 0.8-1.24 9.46E-01 2.38E-05 1.65 0.86 0 

19 rs11880417 33022748 G 3320 0.79 0.71-0.89 3.76E-05 1614 1.03 0.89-1.19 6.67E-01 3.77E-05 0.79 0.87 0 

19 rs4804925 35515227 G 3319 0.73 0.63-0.84 3.04E-05 1613 1.04 0.88-1.23 6.40E-01 3.09E-05 0.73 0.78 0 

19 rs444816 49130206 G 3320 1.22 1.09-1.37 5.66E-04 1613 0.94 0.82-1.08 4.07E-01 4.83E-04 1.22 0.5 0 

19 rs381872 49157996 A 3320 1.26 1.13-1.41 5.73E-05 1613 0.94 0.82-1.09 4.21E-01 4.80E-05 1.26 0.49 0 

19 rs383133 49158936 C 3316 1.33 1.17-1.51 1.24E-05 1615 0.91 0.78-1.08 2.84E-01 7.93E-06 1.34 0.39 0 

20 rs2295179 8626446 G 3320 0.8 0.71-0.9 1.63E-04 1611 0.89 0.76-1.04 1.39E-01 3.44E-04 0.81 0.05 74.18 

20 rs8123323 8643581 C 3320 0.78 0.69-0.88 4.50E-05 1614 0.93 0.79-1.09 3.71E-01 5.98E-05 0.78 0.24 28.98 

20 rs172038 22309396 G 3317 0.6 0.47-0.77 5.92E-05 1617 0.95 0.74-1.21 6.53E-01 6.02E-05 0.6 0.85 0 

20 rs199843 22313546 G 3316 0.59 0.46-0.76 3.80E-05 1617 1.00 0.78-1.28 9.88E-01 4.69E-05 0.6 0.38 0 

20 rs6022204 51052745 A 3320 0.52 0.37-0.71 5.23E-05 1614 0.87 0.64-1.17 3.53E-01 8.26E-05 0.53 0.25 23.44 
CHR = chromosome. BP = location in base pairs. A1 =  major allele. OR = odds ratio. CI = confidence int erval. Q = Q statistic. I 2 = I2 statistic. 
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Table A1 continued. 

 DISCOVERY MONICA/PAMELA COMBINED ANALYSIS 

CHR SNP BP A1 N OR 95%CI P N OR 95%CI P P-FIXED OR-FIXED Q I2 

20 rs2244665 53587166 G 3320 1.26 1.12-1.41 8.21E-05 1617 1.04 0.89-1.21 6.15E-01 8.13E-05 1.26 0.78 0 

20 rs682132 53605875 G 3317 0.77 0.69-0.86 5.32E-06 1593 1.01 0.87-1.16 9.19E-01 5.34E-06 0.77 0.98 0 

20 rs487331 53608771 T 3289 0.77 0.69-0.86 2.73E-06 1612 1.00 0.86-1.15 9.61E-01 2.76E-06 0.77 0.8 0 

20 rs555848 53613135 C 3315 0.77 0.69-0.86 3.48E-06 1615 1.04 0.9-1.2 6.40E-01 3.52E-06 0.77 0.79 0 
CHR = chromosome. BP = location in base pairs. A1 =  major allele. OR = odds ratio. CI = confidence int erval. Q = Q statistic. I 2 = I2 statistic. 

 

 

 



 

168 

 

Figure A5.2 Association plot of the genomic region around rs13353058. Showing both typed 
and imputed SNPs.  Observed (-logP) is the –log10 transformed P values for association with 
hypertension status in the discovery sample.  Recombination rate, represented by the blue line, is 
estimated from HapMap CEU samples.  The level of LD between rs13353058 and the surrounding 
SNPs, measured by r2, is indicated by the key with red meaning high LD.  The index SNP is shown 
as a purple diamond.  Key to symbols for functional annotation: triangle = framestop or splice, 
inverted triangle = nonsynonymous, square = synonymous or untranslated, star = conserved 
transcription factor binding site, square with diagonal lines = region is highly conserved in placental 
mammals, circle = none-of-the-above. LOC399815 = chromosome 10 open reading frame 88 
pseudogene. C10orf88 = chromosome 10 open reading frame 88. PSTK = phosphoseryl-tRNA 
kinase. ACADSB = acyl-CoA dehydrogenase, short/branched chain.  FAM24A = family with 
sequence similarity 24, member A. IKZF5 = IKAROS family zinc finger 5.   
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Figure A5.3 Association plot of the genomic region around rs10009111. Showing both typed 
and imputed SNPs.  Observed (-logP) is the –log10 transformed P values for association with 
hypertension status in the discovery sample.  Recombination rate, represented by the blue line, is 
estimated from HapMap CEU samples.  The level of LD between rs10009111 and the surrounding 
SNPs, measured by r2, is indicated by the key with red meaning high LD.  The index SNP is shown 
in purple.  Key to symbols for functional annotation: triangle = framestop or splice, inverted triangle 
= nonsynonymous, square = synonymous or untranslated, star = conserved transcription factor 
binding site, square with diagonal lines = region is highly conserved in placental mammals, circle = 
none-of-the-above. CLNK = cytokine-dependent hematopoietic cell linker. MIR572 = microRNA 
572. HS3ST1 = heparan sulfate (glucosamine) 3-O-sulfotransferase 1. 
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for normal immune function.  A commonly used CLNK synonym is MIST.  It is conserved 

in the chimpanzee, dog, mouse, and rat. 

ADAMTS-like 1 (ADAMTSL1) 

Located on chromosome 9p22.2-p22.1, rs2289006 is intronic to the ADAMTSL1 gene, 

which is a member of the ADAMTS family.  Figure A3 is an association plot of the 

genomic region around rs2289006.    ADAMTSL1 encodes a secreted protein which may 

have functions in the extracellular matrix.  It is conserved in the dog, cow, and mouse. 

Solute carrier family 4, sodium bicarbonate transpo rter, 

member 10 (SLC4A10) 

Three SNPs, rs2084543 (synonymous coding; Figure A4), rs9636284 (intronic; Figure 

A5), and rs16846179 (intronic; Figure A6), were in LD with each other (r2 = 0.85-0.88) in 

the SLC4A10 gene on chromosome 2q23-q24. SLC4A10 is an Na(+)-dependent Cl-/HCO3- 

exchanger; in an SLC4A10 deficient mouse model regulation of internal pH was 

compromised and the animals had small brain ventricles and increased seizure threshold 
309.  A mutation in SLC4A10 has been associated with mental retardation and complex 

partial epilepsy with progressive cognitive decline 310.  It is conserved in the chimpanzee, 

dog, cow, mouse, rat, and zebrafish.   

CKLF-like MARVEL transmembrane domain containing 7 

(CMTM7) 

The CMTM7 gene is one of several genes with hypertension-associated variants on 

chromosome 3 in the current study.  Two SNPs, rs9853991 and rs3888882, in LD (r2 = 

0.82) are intronic to CMTM7 which belongs to the chemokine-like factor gene superfamily.  

Figure A7 is an association plot of the genomic region around rs17798480, which is also 

intronic to CMTM7.    The protein that CMTM7 encodes is highly expressed in leukocytes; 

however its function is unknown.  The gene is conserved in the dog, cow, mouse, rat, 

chicken, and zebrafish.   



 

171 

 

Figure A3 Association plot of the genomic region ar ound rs2289006. Showing both typed and 
imputed SNPs.  Observed (-logP) is the –log10 transformed P values for association with 
hypertension status in the discovery sample.  Recombination rate, represented by the blue line, is 
estimated from HapMap CEU samples.  The level of LD between rs2289006 and the surrounding 
SNPs, measured by r2, is indicated by the key with red meaning high LD.  The index SNP is shown 
in purple.  Key to symbols for functional annotation: triangle = framestop or splice, inverted triangle 
= nonsynonymous, square = synonymous or untranslated, star = conserved transcription factor 
binding site, square with diagonal lines = region is highly conserved in placental mammals, circle = 
none-of-the-above. ADAMTSL1 = ADAMTS-like 1. FAM154A = family with sequence similarity 154, 
member A. PLIN2 = perilipin 2. RRAGA = Ras-related GTP binding A. HAUS6 = HAUS augmin-like 
complex, subunit 6. 
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Figure A4 Association plot of the genomic region ar ound rs2084543. Showing both typed and 
imputed SNPs.  Observed (-logP) is the –log10 transformed P values for association with 
hypertension status in the discovery sample.  Recombination rate, represented by the blue line, is 
estimated from HapMap CEU samples.  The level of LD between rs2084543 and the surrounding 
SNPs, measured by r2, is indicated by the key with red meaning high LD.  The index SNP is shown 
in purple.  Key to symbols for functional annotation: triangle = framestop or splice, inverted triangle 
= nonsynonymous, square = synonymous or untranslated, star = conserved transcription factor 
binding site, square with diagonal lines = region is highly conserved in placental mammals, circle = 
none-of-the-above. PSMD14 = proteasome (prosome, macropain) 26S subunit, non-ATPase, 14. 
SLC4A10 = solute carrier family 4, sodium bicarbonate transporter, member 10. DPP4 = dipeptidyl-
peptidase 4. GCG = glucagon.  IFIH1 = interferon induced with helicase C domain 1. TBR1 = T-
box, brain, 1. FAP = fibroblast activation protein, alpha. 
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Figure A5 Association plot of the genomic region ar ound rs9636284. Showing both typed and 
imputed SNPs.  Observed (-logP) is the –log10 transformed P values for association with 
hypertension status in the discovery sample.  Recombination rate, represented by the blue line, is 
estimated from HapMap CEU samples.  The level of LD between rs9636284 and the surrounding 
SNPs, measured by r2, is indicated by the key with red meaning high LD.  The index SNP is shown 
in purple.  Key to symbols for functional annotation: triangle = framestop or splice, inverted triangle 
= nonsynonymous, square = synonymous or untranslated, star = conserved transcription factor 
binding site, square with diagonal lines = region is highly conserved in placental mammals, circle = 
none-of-the-above. PSMD14 = proteasome (prosome, macropain) 26S subunit, non-ATPase, 14. 
SLC4A10 = solute carrier family 4, sodium bicarbonate transporter, member 10. DPP4 = dipeptidyl-
peptidase 4. GCG = glucagon.  IFIH1 = interferon induced with helicase C domain 1. TBR1 = T-
box, brain, 1. FAP = fibroblast activation protein, alpha. 
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Figure A6 Association plot of the genomic region ar ound rs16846179. Showing both typed 
and imputed SNPs.  Observed (-logP) is the –log10 transformed P values for association with 
hypertension status in the discovery sample.  Recombination rate, represented by the blue line, is 
estimated from HapMap CEU samples.  The level of LD between rs16846179 and the surrounding 
SNPs, measured by r2, is indicated by the key with red meaning high LD.  The index SNP is shown 
in purple.  Key to symbols for functional annotation: triangle = framestop or splice, inverted triangle 
= nonsynonymous, square = synonymous or untranslated, star = conserved transcription factor 
binding site, square with diagonal lines = region is highly conserved in placental mammals, circle = 
none-of-the-above. PSMD14 = proteasome (prosome, macropain) 26S subunit, non-ATPase, 14. 
SLC4A10 = solute carrier family 4, sodium bicarbonate transporter, member 10. DPP4 = dipeptidyl-
peptidase 4. GCG = glucagon.  IFIH1 = interferon induced with helicase C domain 1. TBR1 = T-
box, brain, 1. FAP = fibroblast activation protein, alpha. GCA = grancalcin, EF-hand calcium 
binding protein. KCNH7 = potassium voltage-gated channel, subfamily H (eag-related), member 7. 
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Figure A7 Association plot of the genomic region ar ound rs17798480. Showing both typed 
and imputed SNPs.  Observed (-logP) is the –log10 transformed P values for association with 
hypertension status in the discovery sample.  Recombination rate, represented by the blue line, is 
estimated from HapMap CEU samples.  The level of LD between rs17798480 and the surrounding 
SNPs, measured by r2, is indicated by the key with red meaning high LD. The index SNP is shown 
in purple.  Key to symbols for functional annotation: triangle = framestop or splice, inverted triangle 
= nonsynonymous, square = synonymous or untranslated, star = conserved transcription factor 
binding site, square with diagonal lines = region is highly conserved in placental mammals, circle = 
none-of-the-above. OSBPL10 = oxysterol binding protein-like 10. GPD1L = glycerol-3-phosphate 
dehydrogenase 1-like. CMTM8 = CKLF-like MARVEL transmembrane domain containing 8. 
CMTM7 = CKLF-like MARVEL transmembrane domain containing 7. DYNC1LI1 = dynein, 
cytoplasmic 1, light intermediate chain 1. CNOT10 = CCR4-NOT transcription complex, subunit 10. 
TRIM71 = tripartite motif-containing 71. ZNF860 = zinc finger protein 860. CMTM6 = CKLF-like 
MARVEL transmembrane domain containing 6.
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KIAA2018 

rs12636240 is intronic to the KIAA2018 gene on chromosome 3q13.2, but is in LD with 

SNPs in other genes: rs9865965 (r2 = 0.95) and rs9881563 (r2 = 1.00) which are intronic to 

NAA50; and rs9828099 (r2 = 0.95) and rs13061150 (r2 = 0.95) which are intronic to 

ATP6V1A.  Furthermore rs12636240 is in LD with non-synonymous coding SNPs in the 

region, untyped in the current study.  The KIAA2018 gene is protein coding but little 

further information is available.  It is conserved in the chimpanzee, dog, cow, mouse, rat, 

and chicken. 

N-alpha-acetyltransferase 50, NatE catalytic subuni t 

(NAA50) 

Two SNPs, rs9881563 and rs9865965, are intronic to the NAA50 gene on chromosome 

3q13.2 and are in LD with each other (r2 = 0.95).  They are also in LD with SNPs in 

KIAA2018 and ATP6V1A and with non-synonymous coding SNPs in the region, untyped in 

the current study.  The NAA50 gene encodes a protein whose probable function is as a 

catalytic component of the ARD1A-NARG1 complex.  A commonly used synonym is 

NAT13.  It is conserved in the chimpanzee, dog, cow, mouse, rat, chicken, zebrafish, fruit 

fly, mosquito, C.elegans, A.thaliana, and rice. 

ATPase, H+ transporting, lysosomal 70kDa, V1 subuni t A 

(ATP6V1A) 

Two SNPs, rs13061150 and rs9828099, are intronic to the ATP6V1A gene on chromosome 

3q13.2 and are in LD with each other (r2 = 1.00).  They are also in LD with SNPs in 

KIAA2018 and NAA50 and with non-synonymous coding SNPs in the region, untyped in 

the current study.  The ATP6V1A gene encodes a component of vacuolar ATPase (V-

ATPase), a multisubunit enzyme that mediates acidification of eukaryotic intracellular 

organelles. The protein encoded by ATP6V1A is expressed in all tissues, and has been 

found to be differentially expressed in both the Wernicke’s Area 311 and the dorsolateral 

prefrontal cortex 312 in patients with schizophrenia.  It is conserved in the chimpanzee, dog, 

cow, mouse, rat, chicken, zebrafish, fruit fly, mosquito, C.elegans, S.pombe, S.cerevisiae, 

K.lactis, M.grisea, N.crassa, A.thaliana, rice, and P.falciparum. 
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Transferrin (TF) 

The TF gene encodes transferrin, a glycoprotein that transports iron from the intestine, 

reticuloendothelial system, and liver parenchymal cells to all proliferating cells.  Located 

on chromosome 3, rs3811647 is intronic to TF and along with two other variants in TF and 

the HFE C282Y mutation explains 40% of the genetic variation in serum transferrin 313.  

Figure A8 is an association plot of the genomic region around rs3811647.  Variants in TF 

are associated with atransferrinemia, a rare autosomal recessive disorder characterised by 

iron loading and microcytic anaemia 314.  The gene is conserved in the dog, cow, mouse, 

rat, chicken, and zebrafish.  rs3811647 is in LD with rs6794945 (r2 = 0.86) which is 

intronic to the SRPRB gene. 

Signal recognition particle receptor, B subunit (SR PRB) 

rs6794945 is located on chromosome 3q22.1 in the SRPRB gene, whose encoded protein 

may be a component of the signal recognition particle receptor and moreover may play a 

role in the development of colon cancer 315.  A commonly used synonym of SRPRB is 

APMCF1, and it is located close to the TF gene (Figure A8).  There is also evidence that it 

participates in cell cycle regulation 316.  The gene is conserved in the dog, mouse, rat, 

zebrafish, fruit fly, mosquito, C.elegans, A.thaliana, rice, and P.falciparum.  rs6794945 is 

in LD with rs3811647 (r2 = 0.86) which is intronic to the TF gene. 

Leucine, glutamate and lysine rich 1 (LEKR1) 

Three SNPs associated with hypertension in the current study, rs7635876, rs1842840, and 

rs11715321, are intronic to the LEKR1 gene on chromosome 3q25.  rs1842840 and 

rs11715321 are in LD (r2 = 0.97).  A variant near LEKR1 was associated with birth weight 

in a recent meta-analysis of six GWAS 317.  The LEKR1 gene is conserved in the 

chimpanzee, dog, cow, rat, and chicken.   
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Figure A8 Association plot of the genomic region ar ound rs3811647. Showing both typed and 
imputed SNPs.  Observed (-logP) is the –log10 transformed P values for association with 
hypertension status in the discovery sample.  Recombination rate, represented by the blue line, is 
estimated from HapMap CEU samples.  The level of LD between rs3811647 and the surrounding 
SNPs, measured by r2, is indicated by the key with red meaning high LD. The index SNP is shown 
in purple.  Key to symbols for functional annotation: triangle = framestop or splice, inverted triangle 
= nonsynonymous, square = synonymous or untranslated, star = conserved transcription factor 
binding site, square with diagonal lines = region is highly conserved in placental mammals, circle = 
none-of-the-above. TMEM108 = transmembrane protein 108. CDV3 = CDV3 homolog (mouse). TF 
= transferrin. RAB6B = RAB6B, member RAS oncogene family. SLCO2A1 = solute carrier organic 
anion transporter family, member 2A1. RYK = RYK receptor-like tyrosine kinase. BFSP2 = beaded 
filament structural protein 2, phakinin. TOPBP1 = topoisomerase (DNA) II binding protein 1. 
SRPRB = signal recognition particle receptor, B subunit. C3orf36 = chromosome 3 open reading 
frame 36.
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B-cell scaffold protein with ankyrin repeats 1 (BAN K1) 

rs4482766 is located 18.9kb from the BANK1 gene on chromosome 4q24.  rs2866431 

(Figure A9), rs4487344 (Figure A10) and rs13124455 (Figure A11) are also near to 

BANK1.  The protein encoded by BANK1 functions in B-cell receptor-induced calcium 

mobilisation from intracellular stores.  In addition it can promote Lyn-mediated tyrosine 

phosphorylation of inositol 1,4,5-trisphosphate receptors.  Functional polymorphisms in 

BANK1 have been associated with systemic lupus erythematosus 318, rheumatoid arthritis 
319, and systemic sclerosis 320.  The gene is conserved in the chimpanzee, dog, cow, mouse, 

and rat. 

Polymerase (DNA-directed) sigma (POLS) 

rs106415 is located 35.7kb from the POLS gene on chromosome 5p15.  A common 

synonym for POLS is PAPD7.  The protein it encodes is a DNA polymerase that is 

probably involved in DNA repair, and may also be required for sister chromatid adhesion.  

The POLS gene is conserved in the dog, cow, mouse, rat, chicken, and zebrafish. 

Nipped-B homolog (Drosophila) (NIPBL) 

Two SNPs in the current study, rs292196 and rs16903459, were in LD (r2 = 0.82) and 

located in the NIPBL gene on chromosome 5p13.2.  NIPBL encodes the homolog of the 

Drosophila melanogaster Nipped-B gene product and fungal sister chromatid cohesion 2 

homolog –type sister chromatid cohesion proteins.  Figure A12 is an association plot of the 

genomic region around rs172384 which is also located close to NIPBL.  The Drosophila 

protein is involved in developmental regulation and it is homologous to a family of 

chromosomal adherins (involved in sister chromatid cohesion, chromosome condensation 

and DNA repair).  Mutations in NIPBL cause Cornelia de Lange syndrome 321, 322, a 

heterogeneous developmental disorder characterised by facial dysmorphism, delayed 

growth, cognitive retardation and other malformations.  The gene is conserved in the 

chimpanzee, dog, cow, mouse, rat, chicken, zebrafish, fruit fly, mosquito, A.thaliana, and 

rice.
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Figure A9 Association plot of the genomic region ar ound rs2866431. Showing both typed and 
imputed SNPs.  Observed (-logP) is the –log10 transformed P values for association with 
hypertension status in the discovery sample.  Recombination rate, represented by the blue line, is 
estimated from HapMap CEU samples.  The level of LD between rs2866431 and the surrounding 
SNPs, measured by r2, is indicated by the key with red meaning high LD. The index SNP is shown 
in purple.  Key to symbols for functional annotation: triangle = framestop or splice, inverted triangle 
= nonsynonymous, square = synonymous or untranslated, star = conserved transcription factor 
binding site, square with diagonal lines = region is highly conserved in placental mammals, circle = 
none-of-the-above. PPP3CA = protein phosphatase 3, catalytic subunit, alpha isozyme. BANK1 = 
B-cell scaffold protein with ankyrin repeats 1. 
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Figure A10 Association plot of the genomic region a round rs4487344. Showing both typed 
and imputed SNPs.  Observed (-logP) is the –log10 transformed P values for association with 
hypertension status in the discovery sample.  Recombination rate, represented by the blue line, is 
estimated from HapMap CEU samples.  The level of LD between rs4487344 and the surrounding 
SNPs, measured by r2, is indicated by the key with red meaning high LD. The index SNP is shown 
in purple.  Key to symbols for functional annotation: triangle = framestop or splice, inverted triangle 
= nonsynonymous, square = synonymous or untranslated, star = conserved transcription factor 
binding site, square with diagonal lines = region is highly conserved in placental mammals, circle = 
none-of-the-above. PPP3CA = protein phosphatase 3, catalytic subunit, alpha isozyme. BANK1 = 
B-cell scaffold protein with ankyrin repeats 1. 
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Figure A11 Association plot of the genomic region a round rs13124455. Showing both typed 
and imputed SNPs.  Observed (-logP) is the –log10 transformed P values for association with 
hypertension status in the discovery sample.  Recombination rate, represented by the blue line, is 
estimated from HapMap CEU samples.  The level of LD between rs13124455 and the surrounding 
SNPs, measured by r2, is indicated by the key with red meaning high LD. The index SNP is shown 
in purple.  Key to symbols for functional annotation: triangle = framestop or splice, inverted triangle 
= nonsynonymous, square = synonymous or untranslated, star = conserved transcription factor 
binding site, square with diagonal lines = region is highly conserved in placental mammals, circle = 
none-of-the-above. PPP3CA = protein phosphatase 3, catalytic subunit, alpha isozyme. BANK1 = 
B-cell scaffold protein with ankyrin repeats 1. 
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Figure A12 Association plot of the genomic region a round rs172384. Showing both typed and 
imputed SNPs.  Observed (-logP) is the –log10 transformed P values for association with 
hypertension status in the discovery sample.  Recombination rate, represented by the blue line, is 
estimated from HapMap CEU samples.  The level of LD between rs172384 and the surrounding 
SNPs, measured by r2, is indicated by the key with red meaning high LD. The index SNP is shown 
in purple.  Key to symbols for functional annotation: triangle = framestop or splice, inverted triangle 
= nonsynonymous, square = synonymous or untranslated, star = conserved transcription factor 
binding site, square with diagonal lines = region is highly conserved in placental mammals, circle = 
none-of-the-above. SLC1A3 = solute carrier family 1 (glial high affinity glutamate transporter), 
member 3. NIPBL = Nipped-B homolog (Drosophila). C5orf42 = chromosome 5 open reading frame 
42. NUP155 = nucleoporin 155kDa.
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S100 calcium binding protein Z (S100Z) 

rs2460498 is located 4.0kb upstream of the S100Z gene on chromosome 5q13.3.  S100Z 

encodes a member of the S100 protein family which is involved in calcium binding.  The 

gene is conserved in the chimpanzee, dog, cow, mouse, rat, chicken, and zebrafish.   

Supressor of Ty 3 homolog (S.cerevisiae) (SUPT3H) 

rs10948155 is located 89.0kb from the SUPT3H  gene on chromosome 6p21. 

Polymorphisms in and near SUPT3H have been associated with height 323, 324 and adult 

attention-deficit/hyperactivity disorder 325.   The protein it encodes is likely a 

transcriptional activator.  The SUPT3H gene is conserved in the chimpanzee, cow, mouse, 

chicken, and zebrafish. 

Thrombospondin 2 (THBS2) 

The gene that rs633668 is closest to, at 4kb downstream, is RP3-495K2.2 for which there is 

no information available.  However, rs633668 is approximately 142kb upstream from the 

THBS2 gene on chromosome 6q27, for which there is further information.  A commonly 

used synonym is TSP2.  Figure A13 is an association plot of the genomic region around 

rs633668. The protein encoded by THBS2 belongs to the thrombospondin family.  Studies 

in mice have shown that it functions as a potent inhibitor of tumour growth and 

angiogenesis 326 and that it may modulate the cell surface properties of mesenchymal cells 

and be involved in cell adhesion and migration 327.  Expression in humans has been 

correlated with microvessel counts in salivary gland carcinomas 328.  A variant in THBS2 

has been associated in Japanese samples with lumbar-disc herniation, a cause of lower 

back pain and unilateral leg pain 329.  Of greater relevance to the current study, other 

variants have been associated with risk of thoracic aortic aneurysm in hypertensive patients 
254 and premature MI 255.  However, a meta-analysis of all the evidence linking THBS2 

polymorphisms with MI found no association 330.  The THBS2 gene is conserved in the 

dog, cow, mouse, rat, chicken, and zebrafish.
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Figure A13 Association plot of the genomic region a round rs633668. Showing both typed and 
imputed SNPs.  Observed (-logP) is the –log10 transformed P values for association with 
hypertension status in the discovery sample.  Recombination rate, represented by the blue line, is 
estimated from HapMap CEU samples.  The level of LD between rs633668 and the surrounding 
SNPs could not be determined, hence all surrounding SNPs are grey. The index SNP is shown in 
purple.  Key to symbols for functional annotation: triangle = framestop or splice, inverted triangle = 
nonsynonymous, square = synonymous or untranslated, star = conserved transcription factor 
binding site, square with diagonal lines = region is highly conserved in placental mammals, circle = 
none-of-the-above. SMOC2 = SPARC related modular calcium binding 2. THBS2 = 
thrombospondin 2. WDR27 = WD repeat domain 27.
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Polycystic kidney and hepatic disease 1 (autosomal 

recessive)-like 1 (PKHD1L1) 

Three SNPs, rs964307 (non-synonymous coding), rs9297425 (intronic; Figure A14), and 

rs7015262 (intronic) are in LD with each other (r2 = 0.94-1.00) and located in the 

PKHD1L1 gene on chromosome 8q23.  PKHD1L1 may have a role in cellular immunity 

and mutations in its homolog, PKHD1, result in autosomal-recessive polycystic kidney 

disease 331.  The PKHD1L1 gene is conserved in the chimpanzee, dog, cow, mouse, and 

zebrafish. 

Tyrosinase-related protein 1 (TYRP1) 

rs12683218 is located in an intergenic region 121kb from the AL162422.1 gene for which 

there is no information available.  At a distance of approximately 268kb from rs12683218 

is the TYRP1 gene on chromosome 9p23.  The encoded protein is a melanosomal enzyme 

that has a role in the melanin biosynthetic pathway.  Figure A15 is an association plot of 

the genomic region around rs12683218. Defects in TYRP1 cause the autosomal recessive 

disorder Rufous oculocutaneous albinism 332, in which the biosynthesis of melanin pigment 

is reduced.  A SNP in TYRP1, rs1408799, has been associated with blue versus green eye 

colour 333 and melanoma risk 334, 335. The gene is conserved in the chimpanzee, dog, cow, 

mouse, rat, chicken, and zebrafish. 

Family with sequence similarity 76, member B (FAM76 B) 

rs1255182 is located 29.7kb from the FAM76B gene on chromosome 11q21.  rs3748256 is 

intronic to FAM76B and is in LD with SNPs in other genes: rs693364 (r2 = 0.96), 

rs10765777 (r2 = 0.93), and rs3808977 (r2 = 0.93) which are intronic to MTMR2; and 

rs1784135 (r2 = 1.00) which is intronic to CEP57; as well as other SNPs untyped in the 

current study.  The FAM76B gene is conserved in the chimpanzee, dog, cow, mouse, rat, 

chicken, zebrafish, mosquito, and C.elegans.  
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Figure A14 Association plot of the genomic region a round rs9297425. Showing both typed 
and imputed SNPs.  Observed (-logP) is the –log10 transformed P values for association with 
hypertension status in the discovery sample.  Recombination rate, represented by the blue line, is 
estimated from HapMap CEU samples.  The level of LD between rs9297425 and the surrounding 
SNPs, measured by r2, is indicated by the key with red meaning high LD.  The index SNP is shown 
in purple.  Key to symbols for functional annotation: triangle = framestop or splice, inverted triangle 
= nonsynonymous, square = synonymous or untranslated, star = conserved transcription factor 
binding site, square with diagonal lines = region is highly conserved in placental mammals, circle = 
none-of-the-above. TRHR = thyrotropin-releasing hormone receptor. NUDCD1 = NudC domain 
containing 1. PKHD1L1 = polycystic kidney and hepatic disease 1 (autosomal recessive)-like 1. 
GOLSYN = syntabulin (syntaxin-interacting). ENY2 = enhancer of yellow 2 homolog (Drosophila). 
EBAG9 = estrogen receptor binding site associated, antigen, 9. 
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Figure A15 Association plot of the genomic region a round rs12683218. Showing both typed 
and imputed SNPs.  Observed (-logP) is the –log10 transformed P values for association with 
hypertension status in the discovery sample.  Recombination rate, represented by the blue line, is 
estimated from HapMap CEU samples.  The level of LD between rs12683218 and the surrounding 
SNPs, measured by r2, is indicated by the key with red meaning high LD.  The index SNP is shown 
in purple.  Key to symbols for functional annotation: triangle = framestop or splice, inverted triangle 
= nonsynonymous, square = synonymous or untranslated, star = conserved transcription factor 
binding site, square with diagonal lines = region is highly conserved in placental mammals, circle = 
none-of-the-above. TYRP1 = tyrosinase-related protein 1. C9orf150 = chromosome 9 open reading 
frame 150.
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Centrosomal protein 57kDa (CEP57) 

rs1784135 is intronic to CEP57 on chromosome 11q21, and is in LD with rs693364 (r2 = 

0.96), rs10765777 (r2 = 0.93), and rs3808977 (r2 = 0.93) (all intronic to MTMR2), and 

rs3748256 (r2 = 1.00) (intronic to FAM76B), and other untyped SNPs.  CEP57 encodes the 

protein translokin which binds basic fibroblast growth factor and mediates its nuclear 

translocation and mitogenic activity. The gene is conserved in the chimpanzee, dog, cow, 

mouse, rat, chicken, and zebrafish. 

Myotubularin related protein 2 (MTMR2) 

Three hypertension associated polymorphisms in the current study, rs693364, rs10765777, 

and rs3808977, are in LD with each other (r2 = 0.96 – 1.00) and located in the MTMR2 

gene on chromosome 11q22.  They are in LD with rs3748256 in FAM76B (r2 = 0.93 – 

0.96) and rs1784135 in CEP57 (r2 = 0.93 – 0.96), and other untyped SNPs.   MTMR2 is a 

member of the myotubularin family, and the protein it encodes has phosphatase activity 

towards lipids with a phosphoinositol headgroup.  Mutations in MTMR2 cause Charcot-

Marie-Tooth disease type 4B 336, an autosomal recessive demyelinating peripheral 

neuropathy that can also result from mutations in MTMR13.  MTMR2 is conserved in the 

chimpanzee, dog, cow, mouse, rat, chicken, zebrafish, fruit fly, mosquito, A.thaliana, and 

rice. 

V-ets erythroblastosis virus E26 oncogene homolog 1  

(avian) (ETS1) 

rs11221390 is located 19.7kb from the ETS1 gene on chromosome 11q23-q24.   ETS1 

encodes the protein ETS1, one of the ETS transcription factors that regulate several genes 

and are involved in cell senescence and death, stem cell development, and tumorigenesis.  

Recent GWAS have discovered variants in ETS1 associated, at the level of genome-wide 

significance, with systemic lupus erythematosus 337, 338 and celiac disease 339.  It is 

conserved in the dog, cow, mouse, rat, chicken, and zebrafish. 
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CD163 molecule-like 1 (CD163L1) 

rs10431296 is located in the CD163L1 gene on chromosome 12p13.3.  The protein 

encoded by CD163L1 is a member of the scavenger receptor cysteine-rich (SRCR) 

superfamily.  Members of SRCR are mainly found in immune system related cells and are 

defined by a 100-110 amino acid SRCR domain, which possibly mediates protein-protein 

interaction and ligand binding.   

Ets variant 6 (ETV6) 

rs7961094 is located in the ETV6 gene on chromosome 12p13.  ETV6 encodes an ETS 

family transcription factor which is involved in protein-protein interactions and DNA 

binding.  Chromosomal rearrangements in ETV6 and fusions between it and other genes 

have been linked to malignant eosinophil proliferation 340, congenital fibrosarcoma 341, and 

acute myeloid leukaemia 342.  It is conserved in the chimpanzee, dog, cow, mouse, rat, 

chicken, and zebrafish.   

Transmembrane and tetratricopeptide repeat containi ng 2 

(TMTC2) 

Two SNPs, rs6539747 and rs7964484, are in LD (r2 = 0.85) and located in an intergenic 

region around 268-304kb from the RP11-87P13.1 gene.  The closest gene for which there 

is information available is the TMTC2 gene, approximately 400kb from rs7964484 on 

chromosome 12q21.31.  Figure A16 is an association plot of the genomic region around 

rs7964484.  It is conserved in the dog, cow, mouse, rat, chicken, zebrafish, fruit fly, 

mosquito, and C.elegans. 

Fatty acid binding protein 3, pseudogene 2 (FABP3P2 ) 

rs9533108 is located 303.5kb from the pseudogene FABP3P2 on chromosome 13q13-q14 

(Figure A17).  Recent GWAS have observed genome-wide significant associations 

between decreased bone mineral density and variants in TNFSF11 343, 344 and AKAP11 345 

on chromosome 13q14.11. 
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Figure A16 Association plot of the genomic region a round rs7964484. Showing both typed 
and imputed SNPs.  Observed (-logP) is the –log10 transformed P values for association with 
hypertension status in the discovery sample.  Recombination rate, represented by the blue line, is 
estimated from HapMap CEU samples.  The level of LD between rs7964484 and the surrounding 
SNPs, measured by r2, is indicated by the key with red meaning high LD.  The index SNP is shown 
in purple.  Key to symbols for functional annotation: triangle = framestop or splice, inverted triangle 
= nonsynonymous, square = synonymous or untranslated, star = conserved transcription factor 
binding site, square with diagonal lines = region is highly conserved in placental mammals, circle = 
none-of-the-above. TMTC2 = transmembrane and tetratricopeptide repeat containing 2. 
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Figure A17 Association plot of the genomic region a round rs9533108. Showing both typed 
and imputed SNPs.  Observed (-logP) is the –log10 transformed P values for association with 
hypertension status in the discovery sample.  Recombination rate, represented by the blue line, is 
estimated from HapMap CEU samples.  The level of LD between rs9533108 and the surrounding 
SNPs could not be determined, hence all surrounding SNPs are grey.  The index SNP is shown in 
purple.  Key to symbols for functional annotation: triangle = framestop or splice, inverted triangle = 
nonsynonymous, square = synonymous or untranslated, star = conserved transcription factor 
binding site, square with diagonal lines = region is highly conserved in placental mammals, circle = 
none-of-the-above. KIAA0564 = KIAA0564.  AKAP11 = A kinase (PRKA) anchor protein 11.  
TNFSF11 = tumor necrosis factor (ligand) superfamily, member 11. C13orf30 = chromosome 13 
open reading frame 30. EPSTI1 = epithelial stromal interaction 1 (breast). DGKH = diacylglycerol 
kinase, eta.
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Tumour necrosis factor (ligand) superfamily, member  11 

(TNFSF11) 

rs665657 is located 47.5kb from the TNFSF11 gene on chromosome 13q14.11.  A 

commonly used synonym for TNFSF11 is RANKL.  The genomic region around TNFSF11 

is shown in the association plots for rs9533108 (Figure A17) and rs9594746 (Figure A18).  

The encoded protein is a member of the tumour necrosis factor (TNF) cytokine family and 

is a key factor for osteoclast differentiation and activation.  Variants in TNFSF11 have 

been linked to decreased bone mineral density 343, 344 and osteopetrosis 346, a rare disease 

characterised by abnormally dense bone that can occur as a severe autosomal recessive 

form or a benign autosomal dominant form. 

Collagen, type IV, alpha 1 (COL4A1) 

rs529041 is located in the COL4A1 gene on chromosome 13q34.  Figure A19 is an 

association plot of the genomic region around rs529041.  The protein encoded by COL4A1 

is the major type IV alpha collagen chain of basement membranes.  Mutations in COL4A1 

have been implicated in porencephaly, a rare neurological disease characterised by 

degenerative cavities in the brain 347, 348; brain small vessel disease with haemorrhage 349 

and with Axenfeld-Rieger anomaly 350; heredity angiopathy with nephropathy, aneurysms, 

and muscle cramps 257; and arterial stiffness 256.  COL4A1 is conserved in the dog, cow, 

mouse, rat, chicken, and zebrafish.  

RGM domain family, member A (RGMA) 

rs17541566 is located 67kb from the AC091078.2 gene, for which no information is 

available.  The nearest gene that has further information is the RGMA, approximately 

360kb from rs17541566 on chromosome 15q26.1 (Figure A20).  The protein it encodes is a 

glycosylphosphatidylinositol-anchored glycoprotein that functions as an axon guidance 

protein in the developing and adult central nervous system. Furthermore it may act as a 

tumour suppressor in Hodgkin’s lymphoma 351 and colon cancer 352. The RGMA gene is 

conserved in the chimpanzee, dog, cow, mouse, rat, chicken, and zebrafish.
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Figure A18 Association plot of the genomic region a round rs9594746. Showing both typed 
and imputed SNPs.  Observed (-logP) is the –log10 transformed P values for association with 
hypertension status in the discovery sample.  Recombination rate, represented by the blue line, is 
estimated from HapMap CEU samples.  The level of LD between rs9594746 and the surrounding 
SNPs, measured by r2, is indicated by the key with red meaning high LD.  The index SNP is shown 
in purple.  Key to symbols for functional annotation: triangle = framestop or splice, inverted triangle 
= nonsynonymous, square = synonymous or untranslated, star = conserved transcription factor 
binding site, square with diagonal lines = region is highly conserved in placental mammals, circle = 
none-of-the-above. KIAA0564 = KIAA0564.  AKAP11 = A kinase (PRKA) anchor protein 11.  
TNFSF11 = tumor necrosis factor (ligand) superfamily, member 11. C13orf30 = chromosome 13 
open reading frame 30. EPSTI1 = epithelial stromal interaction 1 (breast). DGKH = diacylglycerol 
kinase, eta. 
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Figure A19 Association plot of the genomic region a round rs529041. Showing both typed and 
imputed SNPs.  Observed (-logP) is the –log10 transformed P values for association with 
hypertension status in the discovery sample.  Recombination rate, represented by the blue line, is 
estimated from HapMap CEU samples.  The level of LD between rs529041 and the surrounding 
SNPs, measured by r2, is indicated by the key with red meaning high LD.    The index SNP is 
shown in purple.  Key to symbols for functional annotation: triangle = framestop or splice, inverted 
triangle = nonsynonymous, square = synonymous or untranslated, star = conserved transcription 
factor binding site, square with diagonal lines = region is highly conserved in placental mammals, 
circle = none-of-the-above. IRS2 = insulin receptor substrate 2. COL4A1 = collagen, type IV, alpha 
1. RAB20 = RAB20, member RAS oncogene family. CARS2 = cysteinyl-tRNA synthetase 2, 
mitochondrial (putative). COL4A2 = collagen, type IV, alpha 2. CARKD = carbohydrate kinase 
domain containing. 
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Figure A20 Association plot of the genomic region a round rs17541566. Showing both typed 
and imputed SNPs.  Observed (-logP) is the –log10 transformed P values for association with 
hypertension status in the discovery sample.  Recombination rate, represented by the blue line, is 
estimated from HapMap CEU samples.  The level of LD between rs17541566 and the surrounding 
SNPs, measured by r2, is indicated by the key with red meaning high LD.   The index SNP is shown 
in purple.  Key to symbols for functional annotation: triangle = framestop or splice, inverted triangle 
= nonsynonymous, square = synonymous or untranslated, star = conserved transcription factor 
binding site, square with diagonal lines = region is highly conserved in placental mammals, circle = 
none-of-the-above. CHD2 = chromodomain helicase DNA binding protein 2. RGMA = RGM domain 
family, member A.
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Glutamate receptor, ionotropic, N-methyl D-aspartat e 2A 

(GRIN2A) 

rs9939858 is located 16kb from the AC007221.1 gene, for which no information is 

available.  The nearest gene that has further information is the GRIN2A, approximately 

169kb from rs9939858 on chromosome 16p13.2 (Figure A21).  A commonly used 

synonym is NR2A.  The encoded protein is an N-methyl-D-aspartate (NMDA) receptor, 

one of a class of ionotropic glutamate-gated ion channels that have a critical role in 

excitatory synaptic transmission and plasticity in the central nervous system.  Variants in 

GRIN2A have been linked to some aspects of memory and learning 353, 354, attention deficit 

hyperactivity disorder 355, schizophrenia 356, 357, depression 358, 359 and age of onset in 

Huntington disease 360-362.  The GRIN2A gene is conserved in the chimpanzee, dog, cow, 

mouse, rat, chicken, and zebrafish. 

Shisa homolog 0 (Xenopus laevis) (SHISA9) 

rs407146 is located in the SHISA9 gene on chromosome 16p13.12.  A commonly used 

synonym is CKAMP44.  The protein encoded modulates short-term plasticity at specific 

excitatory synapses 363.  A variant in the intergenic region of 16p13.12 has been associated 

with schizophrenia by genome-wide association 364.  SHISA9 is conserved in the 

chimpanzee, mouse, chicken, and zebrafish. 

Protein disulfide isomerase-like, testis expressed (PDILT) 

rs4496151 is located in the PDILT gene on chromosome 16p12.3, i.e. in the same region as 

UMOD.  The genomic region is shown in Figure A22, centred on rs13333226.  The protein 

encoded by PDILT is expressed solely in the testis and is thought to perform a specialised 

chaperone function involved in spermatogenesis 365.  PDILT is conserved in the 

chimpanzee, dog, cow, mouse, rat, chicken, and zebrafish.
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Figure A21 Association plot of the genomic region a round rs9939858. Showing both typed 
and imputed SNPs.  Observed (-logP) is the –log10 transformed P values for association with 
hypertension status in the discovery sample.  Recombination rate, represented by the blue line, is 
estimated from HapMap CEU samples.  The level of LD between rs9939858 and the surrounding 
SNPs, measured by r2, is indicated by the key with red meaning high LD. The index SNP is shown 
in purple.  Key to symbols for functional annotation: triangle = framestop or splice, inverted triangle 
= nonsynonymous, square = synonymous or untranslated, star = conserved transcription factor 
binding site, square with diagonal lines = region is highly conserved in placental mammals, circle = 
none-of-the-above. C16orf72 = chromosome 16 open reading frame 72. GRIN2A = glutamate 
receptor, ionotropic, N-methyl D-aspartate 2A. 
 

 

 



 

199 

 

 

 

 

Figure A22 Association plot of the genomic region a round rs13333226. Showing both typed 
and imputed SNPs.  Observed (-logP) is the –log10 transformed P values for association with 
hypertension status in the discovery sample.  Recombination rate, represented by the blue line, is 
estimated from HapMap CEU samples.  The level of LD between rs13333226 and the surrounding 
SNPs, measured by r2, is indicated by the key with red meaning high LD.   The index SNP is shown 
in purple.  Key to symbols for functional annotation: triangle = framestop or splice, inverted triangle 
= nonsynonymous, square = synonymous or untranslated, star = conserved transcription factor 
binding site, square with diagonal lines = region is highly conserved in placental mammals, circle = 
none-of-the-above. IQCK = IQ motif containing K. GPR139 = G protein-coupled receptor 139. GP2 
= glycoprotein 2 (zymogen granule membrane). ACSM5 = acyl-CoA synthetase medium-chain 
family member 5. ACSM2B = acyl-CoA synthetase medium-chain family member 2B. THUMPD1 = 
THUMP domain containing 1. GPRC5B = G protein-coupled receptor, family C, group 5, member 
B. UMOD = uromodulin. ACSM2A = acyl-CoA synthetase medium-chain family member 2A. 
ACSM1 = acyl-CoA synthetase medium-chain family member 1. ACSM3 = acyl-CoA synthetase 
medium-chain family member 3. PDILT = protein disulfide isomerase-like, testis expressed. ERI2 = 
ERI1 exoribonuclease family member 2.
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Neural precursor cell expressed, developmentally do wn-

regulated 4-like (NEDD4L) 

The gene that rs1893469 is closest to, at a distance of 61kb, is AC090324.1 for which there 

is no information available.  However, rs1893469 is approximately 87kb from the 

NEDD4L gene on chromosome 18q21 (Figure A23).  A commonly used synonym is 

KIAA0439.  The encoded protein is a regulator of the epithelial sodium channel 246, 247 and 

is therefore a determinant of sodium reabsorption in the distal nephron.  Of particular 

relevance to the current study, variants in NEDD4L have been associated with salt 

sensitivity 248, 249 and essential hypertension 250-253.  The NEDD4L gene is conserved in the 

chimpanzee, dog, cow, mouse, rat, chicken, zebrafish, mosquito, S.pombe, S.cerevisiae, 

K.lactis, E.gossypii, M.grisea, and N.crassa. 

Zinc finger protein 536 (ZNF536) 

rs4804925 is located 39.9kb from the ZNF536 gene on chromosome 19q12.  The protein 

encoded by ZNF536 is most abundant in the brain and regulates neuron differentiation 366.  

In a GWAS of Framingham Heart Study data, a variant in ZNF536 was associated with C-

reactive protein 367.  The gene is conserved in the chimpanzee, dog, cow, mouse, rat, 

chicken, and zebrafish. 

Zinc finger proteins 230, 225, 283, 221 (ZNF230, ZN F225, 

ZNF283, ZNF221) 

Two SNPs, rs381872 and rs383133, are intronic to zinc finger protein genes on 

chromosome 19q13.  Figure A24 is an association plot of the genomic region around 

rs383133.  The proteins encoded may be involved in transcriptional regulation, but there is 

little further information available about them or the distinctions between them.  A GWAS 

of childhood acute lymphoblastic leukemia observed an association with a polymorphism 

in ZNF230 at the level of genome-wide significance 368.  The ZNF230 gene may also be 

associated with azoospermia, a condition in which there is an absence of sperm in semen 
369.  The ZNF283 gene is conserved in the chimpanzee, dog, and cow.



 

201 

 

 

 

 

 

Figure A23 Association plot of the genomic region a round rs1893469. Showing both typed 
and imputed SNPs.  Observed (-logP) is the –log10 transformed P values for association with 
hypertension status in the discovery sample.  Recombination rate, represented by the blue line, is 
estimated from HapMap CEU samples.  The level of LD between rs1893469 and the surrounding 
SNPs, measured by r2, is indicated by the key with red meaning high LD. The index SNP is shown 
in purple.  Key to symbols for functional annotation: triangle = framestop or splice, inverted triangle 
= nonsynonymous, square = synonymous or untranslated, star = conserved transcription factor 
binding site, square with diagonal lines = region is highly conserved in placental mammals, circle = 
none-of-the-above. ONECUT2 = one cut homeobox 2. ATP8B1 = ATPase, aminophospholipid 
transporter, class I, type 8B, member 1.  NEDD4L = neural precursor cell expressed, 
developmentally down-regulated 4-like. FECH = ferrochelatase. MIR122 = microRNA 122. NARS = 
asparaginyl-tRNA synthetase. 
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Figure A24 Association plot of the genomic region a round rs383133. Showing both typed and 
imputed SNPs.  Observed (-logP) is the –log10 transformed P values for association with 
hypertension status in the discovery sample.  Recombination rate, represented by the blue line, is 
estimated from HapMap CEU samples.  The level of LD between rs383133 and the surrounding 
SNPs, measured by r2, is indicated by the key with red meaning high LD. The index SNP is shown 
in purple.  Key to symbols for functional annotation: triangle = framestop or splice, inverted triangle 
= nonsynonymous, square = synonymous or untranslated, star = conserved transcription factor 
binding site, square with diagonal lines = region is highly conserved in placental mammals, circle = 
none-of-the-above. LYPD3 = LY6/PLAUR domain containing 3. IRGQ = immunity-related GTPase 
family, Q. IRGC = immunity-related GTPase family, cinema. LYPD5 = LY6/PLAUR domain 
containing 5. ZNF45 = zinc finger protein 45. ZNF222 = zinc finger protein 222. ZNF234 = zinc 
finger protein 234. ZNF233 = zinc finger protein 233. ZNF285A = zinc finger protein 285A. PHLDB3 
= pleckstrin homology-like domain, family B, member 3. SRRM5 = serine/arginine repetitive matrix 
5. C19orf61 = chromosome 19 open reading frame 61. ZNF404 = zinc finger protein 404. ZNF155 
= zinc finger protein 155. ZNF224 = zinc finger protein 224. ZNF227 = zinc finger protein 227. 
ZFP112 = zinc finger protein 112 homolog (mouse). ETHE1 = ethylmalonic encephalopathy 1. 
ZNF428 = zinc finger protein 428. KCNN4 = potassium intermediate/small conductance calcium-
activated channel, subfamily N, member 4. ZNF221 = zinc finger protein 221. ZNF223 = zinc finger 
protein 223. ZNF226 = zinc finger protein 226. ZNF235 = zinc finger protein 235. ZNF229 = zinc 
finger protein 229.
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Phospholipase C, beta 1 (phosphoinositide-specific)  

(PLCB1) 

rs8123323 is located in the PLCB1 gene on chromosome 20p12.  The protein encoded by 

PLCB1 catalyses the generation of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol 

(DAG) from phosphatidylinositol 4,5-bisphosphate (IP2), necessary for the intracellular 

transduction of many extracellular signals.  Variants in PLCB1 have been associated with 

performance in cognitive tests by genome-wide association 370, 371.  The gene is conserved 

in the chimpanzee, dog, cow, mouse, rat, chicken, fruit fly, and mosquito. 

Teashirt zinc finger homeobox 2 (TSHZ2) 

rs6022204 is located in the TSHZ2 gene on chromosome 20q13.2.  The protein encoded by 

TSHZ2 is a transcriptional regulator involved in developmental processes.  A GWAS of 

erythrocyte phenotypes conducted by the CHARGE consortium observed an association 

between haemoglobin and a polymorphism in TSHZ2 that reached genome-wide 

significance 372.  The gene is conserved in the chimpanzee, dog, cow, mouse, chicken, and 

zebrafish.
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