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Abstract

The aim of this thesis is to explore and compare methods that can be used

for the purposes of finding possible genetic effects in the context of fine-scale

genotype-phenotype association studies. Fine-scale genetic association studies

present unique challenges for attempts at finding genetic effects, due to the strong

linkage that can exist between different variants and issues that exist as a result

of multiple testing. However, unlike Genome-Wide Association Studies (GWAS),

there is potential to use the information from haplotypes arising from areas of

low genetic recombination.

In order to test the effectiveness of approaches involved in fine-scale studies,

the PheGe-Sim (Phenotype Genotype Simulation) application has been developed

in order to simulate fine-scale phenotype-genotype data sets under a variety of

scenarios. The simulations are based upon the coalescent model with extensions

of population expansion, recombination, and finite sites mutations, that allow

for real data sets to be more closely mirrored. The simulated data sets are

subsequently used to assess the effectiveness of each of the methods that are used

in this thesis, in attempting to find the known simulated causal variants.

One of the methods suitable for use in fine-scale genetic association studies for

testing associations is Treescan (Templeton et al., 2005). Treescan is a method

that attempts to use relationships between closely related haplotypes in an at-

tempt to increase the power of finding genetic determinants of a phenotype. A

haplotype tree is constructed, and each branch can be sequentially tested for any

evidence of association from the resultant groups. To provide comparisons with

the Treescan method, similar methods to the Treescan approach using each SNP

(single nucleotide polymorphism) and haplotype have been implemented.
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As a result of the issues of multiple testing in the context of GWAS, Bald-

ing (2006) advocated the use of Bayes factors as an alternative to the standard

use of p-values for categorical data sets. In this thesis Bayes factors have been

formulated that are suitable for continuous phenotype data, and for the context

of fine-scale association studies. Bayes factors are used in a method that utilizes

the Treescan approach of assessing various groupings from a haplotype tree, with

the method being adapted to take advantage of the flexibility offered by Bayes

factors. Single SNP and haplotype approaches have also been programmed using

the same implementation of Bayes factors.

The PheGe-Find (Phenotype Genotype-Find) application has been developed

that implements the association methods when supplied with the appropriate

genotype and phenotype input files. In addition to testing the methods on simu-

lated data, the approaches are also tested on two real data sets. The first of these

concerns genotypes and phenotypes of the Drosophila Melanogaster fruit fly, that

has previously been assessed using the original Treescan approach of Templeton

et al. (2005). This allows for comparisons to be made between the different ap-

proaches upon a data set where there is strong evidence of a causal link between

the genotype and phenotypes concerned. A second data set of genetic variants

surrounding the human ADRA1A gene is also assessed for any potential causative

genetic effects on blood pressure and heart rate phenotype measurements.
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Chapter 1

Introduction

Fine-scale genetic association studies are an important component in finding ge-

netic variants that increase an individual’s risk of common complex diseases,

such as type 2 diabetes and Alzheimer’s disease. Once a genome-wide associa-

tion study (GWAS) has identified an area of the genome that is likely to contain

a causative genetic component, fine-scale mapping studies are required in order

to locate the specific mutation that is responsible for the increased risk, or the

cause of a change in some measurable component such as blood pressure or heart

rate. If a genetic variant is found that is associated with a condition, then this

could provide valuable information as to what biological features are involved in

its aetiology. This information could then be used in order to direct efforts at

attempting to develop treatments that could target the biological and genetic

component of common complex diseases (WTCCC, 2007).

1.1 Mendelian and Complex Diseases

The association of inherited genetic variants with an observable phenotypic trait

has been a key component in understanding the processes involved in genetics

since the late 19th century. As the understanding behind the processes involved

in inheritable diseases improved, the genetic variants that caused diseases were

1
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discovered. Initial experiments on fruit flies by Thomas Hunt Morgan led to

the discovery of the primary patterns of inheritance; namely dominant, recessive

and additive conditions of such traits as eye colour and wing length (Morgan

et al., 1915). Mendelian traits, those that are entirely controlled by the action

of a single gene, are now generally well characterized in many species through

use of methods such as linkage analysis within families of disease carriers. In

humans the genetic variants responsible for heritable Mendelian diseases have

been determined for several severe conditions, such as cystic fibrosis (Rommens

et al., 1989; Kerem et al., 1989) and Huntington’s Chorea (Huntington’s Disease

Collaborative Research Group, 1993).

The successful discovery of disease-causing genes in Mendelian disorders has

led to efforts to determine genetic factors involved in more complex diseases,

which are a result of both multiple genetic and environmental components and

hence have a more complicated inheritance pattern than Mendelian diseases. The

common disease-common variant (CDCV) hypothesis (Lander, 1996; Pritchard

and Cox, 2002) proposes that there will be multiple common genetic variants that

each confer a small increase in risk for common diseases, such as type 2 diabetes

or Alzheimer’s disease. Strong influences of environmental factors, and the late

onset of such conditions resulting in limited selection pressures, can make efforts

at finding the relatively small effects of contributing genetic factors difficult. This

can be illustrated in the case of type 2 diabetes where there are well-characterized

genetic effects (Sladek et al., 2007), however, there are also strong associations

between an individual’s diet and their risk of contracting the condition. There

are further difficulties in detecting genetic associations with complex diseases due

to the possibility of multiple variants in the genome interacting with each other

to contribute to a change in the risk of contracting the disease.

1.2 Genome-wide Association Studies

Genome-wide association studies for complex diseases have become increasingly

feasible, and as a result more popular, due to the accumulation of evidence about
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genetic variation that has been documented in the HapMap Database (Inter-

national HapMap Consortium, 2005) and the 1000 Genomes Project (The 1000

Genomes Project Consortium, 2010). A further practical consideration that has

facilitated more widespread use of GWAS is the substantial advancements that

have been made in genotyping technology. In particular, the development of DNA

microarrays that can accurately type single nucleotide polymorphisms (SNPs) at

previously discovered locations in the genome, has enabled the genotyping of

hundreds of thousands of genetic variants quickly, cheaply and with relative ease

compared to previously used technology.

The potential usage of one such microarray, the Affymetrix 500k, was illus-

trated in the influential genome-wide association study paper from the Wellcome

Trust Case Control Consortium (WTCCC, 2007). In this study genotypes of in-

dividuals with one of seven complex diseases were compared to a common control

group, to detect any associations between the genotypes and the disease under

consideration. The study reports successful discovery of highly significant asso-

ciations with six of the conditions, with significance for genome-wide association

being defined as a p-value of less than 5 × 10−7. As noted by the WTCCC,

the associations that have been found require validation in further studies before

there can be confidence in their association with the diseases. GWAS by Bar-

rett et al. (2009) for associations with type 1 diabetes and by Trégouët,D.A and

others (2009) for coronary artery disease, represent just two of the many such

studies that have attempted to follow up or replicate the results obtained by the

WTCCC.

For genome-wide association studies, it is unlikely that a true causative mu-

tation will be typed in a study, due to there being many more SNPs present in

the genome that will not have been typed. It is though hoped that a SNP will be

found that is highly correlated to a SNP that is indeed causative, due to linkage

disequilibrium between closely-spaced nucleotides. Fine-scale association stud-

ies are then used in an attempt to validate signals of association detected in a

GWAS, which can be achieved by typing additional SNPs in identified regions of

interest. Selected recent examples of the many such validation studies are Rung

et al. (2009) and Lowe et al. (2007), assessing variants for association with type

1 and type 2 diabetes respectively.
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Methods involved in fine-scale studies can be different to those used in GWAS,

for both biological and practical reasons. Unlike GWAS, in fine-scale studies there

is information that can be used advantageously about the haplotypes and the re-

lationships in their inheritance over short genetic distances. In practical terms,

simply due to there being fewer SNPs being considered, it is more feasible to con-

sider gene-gene and gene-environment interactions in a fine-scale study. There is,

however, the additional consideration of strong linkage existing between densely

typed SNPs, that will generally not be the case for SNPs in a GWAS. This infor-

mation can be useful in determining potential causative associations, although

this can also lead to difficulties in identifying which of the linked variants are in

fact causative for a phenotype. A further practical consideration with fine-scale

studies, is that it is time consuming and expensive to obtain customized genotyp-

ing at a fine-scale level, whereas a GWAS will tend to use a DNA microarray with

pre-determined SNPs to be typed. Irrespective of the approach used, if a SNP is

found to be causatively associated with a condition, then this can potentially be

used in efforts to develop more effective treatments for the condition.

The methods explored in this thesis are aimed at short gene segments in

strong linkage disequilibrium, which have been covered with a dense panel of

SNPs so as to capture a high percentage of the potential variants within a region

being considered. This data can arise through resequencing studies of candidate

genes identified in a GWAS, and will be referred to as fine-mapping approach. As

commented previously, a GWAS will often have been designed so as to genotype

at SNPs that can be used to capture the data represented at the variant itself, and

nearby SNPs that are correlated with it. Imputation of the untyped SNPs using

HapMap or 1000 Genomes data sets can then be used to obtain the likely alleles

at the untyped variants, using programs such as IMPUTE (Howie et al., 2009),

MACH (Li et al., 2010) or BIMBAM (Servin and Stephens, 2007). Although

these approaches can be accurate at imputing untyped variants, there will be

less accuracy at rare variants and SNPs that are separated by recombination

from those that have been typed. As the genotyping technology improves, it is

plausible that almost all genetic variation can be captured using genotyping chips

and the need for imputation will diminish. However, in such situations of dense

SNP coverage, multiple linked variants can all be apparently associated with a
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phenotype being considered. Although the variant with the strongest signal is the

most plausible candidate for true association, it is relevant to refine this further

into determining if other nearby low frequency variants are in fact worthwhile

candidates, and if there is the potential effect of one or more distinct signals

that can be masked by considering each SNP independently. In such situations,

there may be advantages of approaches that can test multiple variants together,

or methods that can take advantage of the specific linkage patterns within a

region of low recombination that can potentially be modelled using the ancestral

relationships between individuals.

The methods that can be used for fine-scale studies are discussed further in

section 1.5. However, first the theory of the coalescent is introduced, as this

can be used to simulate genetic data upon which the fine-scale methods can be

compared.

1.3 The Coalescent

In order to describe the genetic ancestry of individuals sampled from the present

day the coalescent theory has been developed. Originally suggested in a series of

papers by Kingman (1982a,b), the theory is a development of ideas about neutral

evolution in population genetics attributable to Wright (1931) and Fisher (1930)

in the Wright-Fisher model. A brief summary of the features of the coalescent

model follows. However, further details of the Wright-Fisher and coalescent mod-

els can be found in Hein et al. (2005) and Wakeley (2008).

The coalescent aims to describe relationships between subjects’ haplotypes

that exist at the present time, by hypothesizing that at some time in history

there is an ancestor common for a pair of individuals’ haplotypes. This con-

cept is extended for all individuals’ haplotypes, and subsequently for groups of

individuals, until a single most recent common ancestor to the entire sample of

haplotypes is obtained. Formulation of the coalescent theory provides statistical

distributions and properties of genetic data, that can subsequently be used for

simulating realistic data sets.
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Coalescent theory provides a mathematical framework for describing the ge-

netic ancestry of a set of individuals and relies upon a set of fundamental as-

sumptions (Hein et al., 2005). The first of these assumptions is that individuals

are haploid in nature. Although not literally true for humans, the pairs of N

individuals can be considered as 2N chromosomes or 2N haploid individuals to

a very good approximation.

A second assumption made in the coalescent process is that of discrete and

non-overlapping generations. This assumption is highly unrealistic, as for exam-

ple it is never going to be the case that all individuals in a human generation are

born and die at exactly the same time with a lifespan of approximately 25 years

per generation. The coalescent is however a method of generalizing to a large pop-

ulation over a considerable period of time, and it turns out that this assumption

is of minor relevance when these two factors are taken into consideration.

Arguably the most important of the assumptions of the coalescent process,

and one that can provoke much discussion, is that mutations that occur are selec-

tively neutral. This assumption is a key feature in the construction of methods

to simulate the coalescent, as it allows the coalescent structure and the mutation

pattern to effectively be treated as two independent processes. A justification

for this neutrality assumption is that most inheritable complex diseases, such

as Type 2 diabetes, are late onset and as such causative mutations are highly

unlikely to have strong selection pressures acting upon them.

The initial formulation of coalescent theory required the assumption of a con-

stant and finite population size, however subsequent developments in theory par-

ticularly by Donnelly and Tavaré (1995) have relaxed this assumption. Complex

arrangements of population expansion and sudden bottlenecks in population size

can be formulated, depending on the population ancestry that is required to be

modelled. The PheGe-Sim program that has been developed in chapter 2 incor-

porates the possibilities of the simplest scenarios of a constant population size,

or of a population that is exponentially increasing in size forward in time. More

complex models of population change over time can be accomplished using other

coalescent simulators. However, exploring the specifics of demographic history is

not of primary importance in this thesis.

It is also assumed in the coalescent that no geographical or social structures



CHAPTER 1. INTRODUCTION 7

exist in the population, i.e the population is randomly mating. As with the as-

sumption of discrete and non-overlapping generations, this is a highly unrealistic

assumption to make for humans. There are multiple ways in which this assump-

tion can be violated in practice, based upon common-sense arguments such as in

human populations there are inherent social and geographical restrictions that

have shaped the development and isolation of different populations and ethnic

groups over history. There are, however, methods of attempting to reconstruct

populations (demes) with migration activity between them, such as the finite

islands model. Features of migration models have not been incorporated into the

PheGe-Sim program, as methods of association will have difficulty in adequately

detecting and modelling these features. As such, even large scale association

studies tend to be based upon a single ethnic group or population, in attempts

to reduce the risk of inflated type-I error rates that can arise when population

structure is not taken into consideration.

A further assumption of coalescent theory, that has subsequently been relaxed,

is that the region of DNA under consideration is not affected by any recombina-

tion events. Hudson (1983) developed methods to include recombination in the

coalescent history, resulting in Ancestral Recombination Graphs (ARG) (Griffiths

and Marjoram, 1996). Methods such as this have been implemented in ms (Hud-

son, 2002) and msHot (Hellenthal and Stephens, 2007), that simulate genetic

samples with various scenarios of recombination and recombination hostspots.

The PheGe-Sim program of Chapter 2 also allows for the inclusion of recombi-

nation events, however, it does not include extensions to variable recombination

rates and recombination hotspots. Although accounting for recombination would

be potentially useful, it will be seen in Chapter 7 that realistic fine-scale genotype

data sets can be simulated without this feature.

1.4 Coalescent Simulation

Numerous simulators have been programmed that make use of the coalescent

theory in order to create samples of DNA sequences from a population, such as:

ms (Hudson, 2002), msHot (Hellenthal and Stephens, 2007) , CoaSim (Mailund

et al., 2005), SimCoal (Excoffier et al., 2000), Genome (Liang et al., 2007) and
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PheGe-Sim (Chapter 2). Table 1.1 details some of the features of these widely

used programs for generating haplotype samples.

Alternative approaches of simulating genetic data are also possible, other

than the backwards-in-time coalescent methods presented in table 1.1. Forward-

in-time simulators such as Fregene (Hoggart et al., 2007; Chadeau-Hyam et al.,

2008) are potentially more flexible but are substantially more computationally

intensive for large sample sizes. Approaches of simulating data based upon per-

muting HapMap data are also used in certain situations (Spencer et al., 2009).

The simulation of data in PheGe-Sim uses a backwards-in-time coalescent ap-

proach, although is not completely standard in its approach. This is because of

resampling haplotypes at an intermediate stage, a procedure that is more com-

putationally efficient. PheGe-Sim also integrates the mechanism of causative

mutations and the history of the sample at the same time, allowing for specifi-

cation of causative effects that are not independent of the history of the sample.

This can subsequently be used to inform an effect size based upon multiple mu-

tations and interactions that takes into account the history for finite-sites models

of mutations.

The programs of table 1.1 could in theory be adapted to be suitable for sim-

ulations of fine-scale genotypes and continuous phenotypes, however, they would

also have to be adapted to be suitable for integration with the methods used

for association detailed in Chapter 4. The Phege-Sim application of Chapter 2

has therefore been coded in R (R Development Core Team, 2006), specifically

to simulate fine-scale genotype-phenotype data and to be integrated with the

other applications used for genotype-phenotype association studies outlined in

this thesis.

In order to be suitable for generating fine-scale genetic data, the resulting

data set must display certain distinct patterns of linkage between the SNPs. In

GWAS, using a DNA microarray will provide a map of SNPs covering the whole

genome. However, this will not usually provide the dense coverage as required for

fine-scale analysis. Figure 1.1 illustrates the linkage pattern displayed within a

real data set (Chapter 6), and this can be seen to have a different range and spread

of colouring than can be achieved using any of the simulators that are primarily

intended for genome-wide simulation (appendix C.1). The specific details of the
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Figure 1.1: Example linkage plot from the data in Chapter 6.Each SNP involved
is represented by a separate row of the plot, and therefore each square represents
the linkage (correlation) between two SNPs. Increasing linkage is indicated by
darker reds, and areas of low linkage or low sample size are indicated by white or
blue squares respectively.

necessary parameters and features of PheGe-Sim that are required for the fine-

scale genotype simulation are discussed further in Chapters 2 and 7.

1.5 Fine-scale Association Study Methods

In both frequentist and Bayesian approaches to association testing, the appro-

priate choice of method to use depends upon whether the outcome of interest is

binary or continuous in nature. If the trait of interest is continuous, the simplest

test of association in an attempt to detect if there are differences in the phe-

notype between the genotype groupings is to use a straight-forward analysis of

variance (ANOVA) model. This approach is comparable to the proposed flexible

general model of the Bayesian analysis (section 3.3), whereby each genotype class

can have a different mean, but there is a common variance within each genotype

class. If the data is categorical, as opposed to continuous, logistic regression or

a standard χ2 test can be used to test for differences in proportions of cases and

controls, between the three genotype classes. The method suggested by Balding
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(a) Additive Regression (b) Armitage Trend test

Figure 1.2: Illustrations of additive models for both continuous data (a), and the
binary method of the Armitage Trend Test (b).

(2006) provides a Bayesian option for categorical analysis, and a modified version

of this is detailed in section 3.1.

If it is assumed that the effects of alleles at a SNP are to act in an additive

manner on a continuous outcome of interest, then a standard regression can be

used as shown in equation 1.1 and figure 1.2(a):

y = α + βx+ ε, (1.1)

where y is the phenotype response, α is the intercept of the regression equation,

β is the slope parameter of the regression equation, x is the genotype class (0

for AA, 1 for AB and 2 for BB) and ε is the residual error that is Normally

distributed with mean zero and variance σ2.

The Armitage trend test (Armitage, 1955) is a comparable method for detect-

ing additivity in binary data, where the outcome of interest is the proportion of

cases in each of the three genotype classes. The test can be implemented through

use of the R function prop.trend.test. An illustration of the approach is given in

figure 1.2(b), and the corresponding χ2 test statistic is calculated by equation

1.2:

χ2
G =

N [N(r1 + 2r2)−R(n1 + 2n2)]2

(N −R)R [N(n1 + 4n2)− (n1 + 2n2)2]
∼ χ2

1, (1.2)
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where, N = Total sum of cases and controls, R = number of cases, r1 = count

of the case heterozygote alleles, r2 = count of the case homozygote alleles, n1 =

number of AB cases and controls, n2 = number of BB cases and controls; with

χ2
G ∼ χ2

1 if there is no trend.

The additive model can be unsatisfactory in that, for a single SNP test, there

will only be three possible groupings of genotype and therefore only three pos-

sible points from which the coefficients of a regression line are to be calculated.

A further possible issue with this approach is that, used in isolation, tests for

additivity can have low power for detecting non-additive differences between the

genotypes such as may occur for dominant models, or models with three inde-

pendent genotype means. In an extreme (albeit unlikely) situation, a regression

approach for detecting additive effects would have no power to detect a true asso-

ciation if the heterozygote genotype grouping (AB) had a substantially different

mean phenotype measurement compared to two similar homozygote phenotype

means. Both general and additive tests should also be carried out to detect any

differences between the genotypes, although care must be taken to ensure that

issues of multiple testing involving non-independent tests are appropriately con-

sidered. Similarly, consideration must be given to the multiple testing issues in

the calculation of p-values for dominant or recessive models, which are essentially

the same as the calculation of p-values for the general model but constrained to

only two genotype classes. Additive (section 3.4) and dominant/recessive (sec-

tion 3.5) models can be fitted in the Bayesian setting for continuous data, along

with Bayes factors for combinations of two or more SNPs (sections 3.6, 3.7 and

3.8). All possible one and two SNP models can be compared in the Bayesian

framework, and although still to some extent subjective, there is explicit ac-

knowledgement of the role of prior beliefs about the proposed models that will

often nonetheless be inherently present in the frequentist approach. In addition,

if desired, a Bayes factor can also be calculated by producing a weighted average

of different models, with the weights being specified according to prior beliefs

about the different models.
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1.5.1 Haplotypes

In candidate-gene studies, or fine scale studies within several linked genes, there

is potential to use haplotypes as opposed to SNPs in efforts to find causative

mutations, as haplotypes are essentially the units of inheritance passed from one

generation to the next. There are various advantages and disadvantages to a

haplotype-based approach compared to assessing the affect of each SNP individ-

ually, an area which is explored in detail by both Clark (2004) and Schaid (2004).

An immediate problem is that haplotypes are generally not observed, and have

to be inferred to the correct alignment (phase) using the available genotype data

with a program such as PHASE (Stephens et al., 2001) or fastPHASE (Scheet

and Stephens, 2006) which implement a Bayesian approach to phase estimation.

Although these programs are accurate in areas of low recombination rate and

high SNP density (Scheet and Stephens, 2006; Marchini et al., 2006), phasing

will inevitably introduce an additional source of error that would not be present

in single SNP analysis. In strongly recombinant areas of the genome, there will be

errors in phasing haplotypes due to uncertainty in determining the correct order-

ing of sequences, although in these situations it can be easier to identify potential

individual causative variants. Figure 1.1 shows an example where there is a clear

recombination hotspot that separates the SNPs into two haplotype blocks, and if

this structure is ignored, then this can lead to a far greater number of haplotypes

than if the phase is inferred for each block separately. Further details about this

particular data set are given in Chapter 6.

It is, however, thought that there may be some advantages in using haplo-

types as opposed to assessing each SNP individually. This is due to the SNPs in a

block of DNA being correlated with each other, and so there may be interactions

between SNPs that are best captured when considered as one single haplotype.

The linkage between SNPs will also invalidate some of the correction methods for

multiple testing in single SNP analysis, as the assumption of independent tests

will not be valid. Methods that test the strength of association between each of

the observable haplotypes and a phenotype of interest have been developed, to

act in an analogous way to the single SNP methods that have been used. Such

methods will however lack any ability in determining which of the SNPs on a
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haplotype is crucial in determining a change in phenotypic score. The use of

haplotype-based methods is therefore potentially only useful when there are mul-

tiple causative SNPs upon a single haplotype, each of which could be individually

of small effect and thus missed in a single SNP-based analysis. Haplotype-based

analysis can subsequently be modified to take into account a proposed tree struc-

ture relating the haplotypes, and this method could be better placed to identify

groups of related haplotypes that are all associated with a change in phenotype

measurement. This method will also have the added advantage, in that the SNPs

that differentiate associated groups of haplotypes can be ascertained.

1.5.2 Phylogenetic methods and Treescanning

The structure of linkage present in small regions of chromosomes can be used

to an advantage in detecting causative associations through the use of phyloge-

netic models. There can also be advantages in the interpretation of any found

associations due to haplotypes forming a basic unit of inheritance (Drosophila

12 Genomes Consortium , 2007), although obtaining haplotypes for human pop-

ulations can present difficulties (Durrant and Morris, 2005). Single SNP tests

that ignore the correlations in alleles at different SNPs caused by shared ancestry

would be expected to be less powerful than methods that explicitly model those

correlations, for example by inferring aspects of the ancestral tree or graph that

relates the haplotypes. Such approaches potentially allow signals coming from

multiple correlated SNPs, occurring close to each other in the ancestry, to bolster

one another.

Taking account of the ancestral relationship of haplotypes can increase the

power of association studies (Eskin, 2008; Roeder et al., 2006), and numerous

methods have been proposed that aim to take advantage of the linkage. One

such method is that proposed by Durrant et al. (2004) in which a sliding window

approach is taken to define haplotype blocks that are then related via a clado-

gram, which is subsequently used to create tests for association with a phenotype.

Minichiello and Durbin (2006) take a related approach that estimates Ancestral

Recombination Graphs (ARGs) as opposed to cladograms to relate haplotypes.

Zöllner and Pritchard (2005) proposed a method that relies on an underlying
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Figure 1.3: Example of the use of Tree-Scanning; reproduced from the Treescan
Documentation (Templeton et al., 2005). Part IV shows two groups of haplotypes,
represented by ‘A’ and ‘B’, that have been determined to have significantly dif-
ferent phenotype means. In a second round of tests, illustrated by parts IV.1 to
IV.4, further groups of haplotypes are considered in an effort to determine if there
are additional significantly different phenotype groups, conditional on retaining
the differences found between groups ‘A’ and ‘B’.
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coalescent approach to relate individuals, in an attempt to increase the ability

to find causal variants by observing non-random clustering of haplotypes. This

approach can though be computationally expensive, a feature that Kimmel et al.

(2008) aim to overcome using their method that relies on no recombination events

and a finite sites model across each region being considered.

One of the phylogenetic methods that is assessed in this thesis through the

use of simulated data, is the Treescan method (Templeton et al., 2005). This

method is a development of the nested clade analysis method, also developed by

Templeton and colleagues in a series of articles (Templeton et al., 1987, 1988,

1992). The nested clade analysis method involves deriving a network of related

haplotypes, and then sequentially assessing for various groupings of haplotypes as

to whether there is any evidence of a difference in phenotype scores between the

clades (groups) using F-statistics. Treescan uses a similar method to the nested

clade analysis, however a key difference is that Treescan allows for the use of

diploid as opposed to haploid populations and is thus suitable for use on human

populations.

In situations of no recombination and infinite sites mutation, the Treescan

method will produce identical results to the single SNP analysis. There will how-

ever be an advantage of the Treescan approach in circumstances where a causative

mutation may only result in a change in phenotype score on a particular lineage,

and thus only on one haplotype carrying the causative form of the mutation.

In this situation grouping together individuals with the same DNA base as in a

single SNP analysis would lead to a reduction of power, as there would be no

separation of causative and non-causative mutations that can be achieved in the

Treescan analysis.

The first stage of a Treescan analysis is the construction of a haplotype tree,

by pruning a network of haplotypes if there is ambiguity in the branching struc-

ture, the specific details of which are described in section 4.2. The tree is then

partitioned sequentially at every branch, and an ANOVA carried out to compare

the phenotypes of the three resulting groups; namely AA, BB or AB from the top

image in figure 1.3. The p-values that result from the ANOVA must be corrected

in some way, to compensate for multiple testing and for the correlation between
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the different tests. Treescan obtains corrected p-values using a permutation ap-

proach, whereby the phenotype scores of the sample are randomly allocated to

each of the three groups, whilst preserving the initial number of samples in each.

A p-value is then obtained by taking the proportion of the F-statistics from the

ANOVA’s for each of the permuted data sets, that exceeds the original F-statistic

relating to the grouping of clades. Monotonicity is then enforced through succes-

sive maximization of the p-values, to ensure that a higher F-statistic results in a

lower permuted p-value.

Due to the correlation that exists between closely spaced SNPs on a haplotype,

the Treescan method may detect branches with a low p-value due to a ‘spill-over’

effect from a branch that is truly associated with the phenotype. To compensate

for this effect, Treescan performs a second stage of splitting the tree, conditional

on a branch that is found significant in the first round of tests. Figure 1.3

illustrates the second round of partitions that are assessed, after initially finding

the groupings A and B as significantly different, as adjudged by having a corrected

p-value of less than 0.05. All splits that satisfy this criteria from the first round

are then fixed, and a second stage of splitting conditional to this is implemented.

A decision can then be formed as to whether a haplotype is strongly associated

with the phenotype, by assessing the tables of first and second stage results (see

section 4.4).

The methods discussed so far are all in the frequentist setting and rely on the

use of p-values, which are corrected for instances of multiple testing. Although

there are valid criticisms that can be made regarding the frequentist approach

and its use of multiple-testing corrections, it is still useful for the context of

association studies. A SNP that has been found to be strongly associated with

a phenotype of interest by the use of p-values will also have a strong chance of

being found through the use of a properly calibrated Bayesian analysis. The use of

Bayes factors is though particularly appropriate for data in a genetic association

context, for the following key reasons:

1. In fine-scale association studies, there is a large number of hypothesis to

be tested as there are at least as many tests to be performed as there are

SNPs that have been typed in a study. This leads to issues in appropriately
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correcting for multiple testing, a situation that is even more crucial for

GWAS, where the number of tests can run into the millions.

2. It is possible to end up with rare groupings of genotypes that have large p-

values which are in fact a result of chance, due to there being low power to

detect such differences. Appropriate reporting and analysis of such SNPs

should take this into account. However, this situation is automatically

accounted for in the Bayes factors through the use of the priors, but can

often be neglected when assessing p-values. There are no known methods to

correcting reliably for this issue in the frequentist setting, and any sensible

approach will necessarily be introducing some form of subjective opinion as

to what sample size and power are suitable criteria to determine significance.

3. Multiple different models, such as additivity, dominance or recessive effects,

can be applied to the same SNP or combinations of SNPs. The weight of

evidence for all the possible models should be calculated and compared,

to ensure full exploration of a data set, as is the situation in the Bayes

factors context. In a frequentist approach, consideration should be given to

multiple testing issues for the non-independent tests of the different models.

4. In fine-scale studies in particular, SNPs may be highly correlated, and there

are no suitable methods of correcting p-value cut-offs for such data. The

linkage that occurs in data will also be a feature of the Bayesian analysis,

however as noted in the previous comment, the Bayesian approach can fully

explore all combinations of models and SNPs that are deemed appropriate

without fear of multiple testing issues, which are replaced by a priori models

of effect sizes and the number of causative SNPs.

5. There are no steadfast rules about what can be considered as ‘significance’

in reporting of a found association, and a criticism of the Bayes factor

method in that there is subjective use of priors can equally be applied to

the interpretation and reporting of results from p-values. The strength of

an association of a SNP with a trait will depend on many factors, and the

weight of evidence that is found for each possible model should be reported.

This is possible in a Bayesian approach, where the evidence can be presented
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in such a way that can convey the uncertainty in whether true associations

are present.

The following sections detail the approaches that could be applicable in the

calculation of Bayes factors, in addition to introducing the possibility of the

exactly computed Bayes factors that are used in the PheGe-Find application of

Chapter 4.

1.6 Bayesian Methods

The theory of Bayes factors was first developed by Jeffreys (1939), as a way

of quantifying the evidence in favour of competing models or hypotheses. The

methodology behind Bayes factors was re-introduced with the review paper of

Kass and Raftery (1995).

The Bayes factor for two competing models H0 and H1, are part of the fol-

lowing relationship:

Posterior Odds = Prior Odds×Bayes Factor. (1.3)

That is,
p(H1|y)

p(H0|y)
=
p(H1)

p(H0)
× p(y|H1)

p(y|H0)
, (1.4)

where y symbolizes the data, and the calculation of the marginal likelihoods

p(y|H1) and p(y|H0) that form the Bayes factor, requires calculation of the fol-

lowing integrals:

p(y|H0) =

∫
p(θ0|H0)p(y|θ0, H0)dθ0, (1.5)

and

p(y|H1) =

∫
p(θ1|H1)p(y|θ1, H1)dθ1, (1.6)

where θi are the parameters of model Hi, i = 0, 1.

The primary consideration in the use of Bayes factors is in evaluating the

integrals of equations 1.5 and 1.6. The posterior distributions for a Bayesian

analysis should be proper, i.e. integrate to 1, thus also ensuring that appropriate

comparisons between competing hypothesis can be made. To satisfy this criteria
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careful consideration must be made when deciding on the prior distributions that

are chosen, particularly if using non-conjugate priors.

The use of Bayes factors as a method of ranking associations has been in-

creasing in popularity in the context of genetic studies. However, the relation-

ship between p-values and Bayes factors is not straightforward as the interpre-

tation depends strongly on the sample size and minor allele frequency of each

test being considered (Wakefield, 2009). Methods providing a compromise on

the frequentist and Bayesian approaches have also been proposed such as treat-

ing Bayes factors as a test statistic and obtaining p-values by permutation, or

by calculation of a posterior probability of association (Stephens and Balding,

2009; Servin and Stephens, 2007). The Wellcome Trust Case Control Consor-

tium (2007) used Bayes factors for case-control studies with conjugate priors

developed in the SNPtest program (Marchini et al., 2007), and the Bayes factors

used have been useful in dealing with the uncertainty caused by imputed geno-

types. As GWAS studies of continuous phenotypes are increasingly being tested,

the Bayes factors have to be adapted to be suitable for this context, resulting in

increased difficulty in the choice and specification of suitable priors.

In some instances the integral can be calculated analytically, if suitable prior

distributions are chosen. The advantages of this approach is accuracy in the

answer, and in reduced computation time in comparison to numerical methods of

evaluating the integral. In order to use the analytic approach, conjugate priors

provide the most straightforward approach, to ensure that the posterior is of the

same form as the prior. In the examples in Chapter 3, a conjugate Normal Inverse

Chi-squared distribution (Gelman et al., 2004) is used for the prior for the mean

and variance.

If the integrals cannot be performed analytically, there are various alternative

methods that can be used. Laplace’ method can be employed in order to estimate

Bayes factors. An un-normalized posterior density is obtained, and then this

distribution is approximated with a Normal distribution by matching of the mean

and variance. The normalizing constant of the posterior distribution, that is

required for the calculation of the Bayes factors, is then approximated by the

normalizing constant of the matched Normal distribution. The Laplace approach

is also potentially useful for calculation of the Bayes factors for multiple tests
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of association, as the normalizing constant can be found relatively quickly and

easily.

Depending on the chosen prior and likelihood distributions the calculation of

the integrals for the competing models can be intractable, and the results have

to be approximated through methods such as Markov-Chain Monte Carlo and

importance sampling. Although a Monte Carlo approach can be useful in many

situations where the evaluation of the integrals is impossible analytically, for the

high dimensional SNP data the problems in high run time and in automating

the assessment of convergence make the use of these approaches less appealing in

this context.

As with all Bayesian analysis suitable parameters for the prior distribution

must be chosen, the choice of which is both a positive and a negative feature

of Bayesian analysis. In choosing a prior, information that is previously known

about a data set can be included in the analysis which can increase the power

of a study. However, if unsuitable priors have been chosen then incorrect or

misleading conclusions can be inferred. The various issues with selection of prior

parameters are documented further by Gelman et al. (2004). Further discussions

relating to the appropriate choice of prior parameters for the exactly computed

Bayes factors used in this thesis, are given separately for each of the data specific

Chapters (5, 6 and 7). BimBam (Servin and Stephens, 2007) is an application

that also uses exactly computed Bayes factors, but uses a different approach for

the prior distributions (section 4.4.1).

The exact analytic approach that has been chosen to calculate the integrals

in equations 1.5 and 1.6, requires the use of conjugate priors, so that the pos-

terior distribution of model parameters can be obtained easily, and integrated

in a relatively straightforward manner. Using exact evaluation of the integrals

will result in the most accurate answer if the assumptions underlying the chosen

distributions are valid, and will also be the quickest method to implement. This

approach is though restricted to the exponential family of models, as they have

suitable conjugate prior distributions. For the purposes of most continuous phe-

notype traits they will approximately follow, or can be transformed to represent,

a Normal distribution and so the exact analytic computed Bayes factors can be

used.



CHAPTER 1. INTRODUCTION 22

Table 1.2: Interpreting the strength of associations using Bayes factors, repre-
sented by B.

2logeB B Evidence against H0

0 to 2 1 to 3 Minimal
2 to 6 3 to 20 Positive
6 to 10 20 to 150 Strong
>10 >150 Very Strong

The relationship between p-values and Bayes factors is not straightforward,

and as much care must be taken in their interpretation as with their formula-

tion. In frequentist studies a significance level of 0.05 or 0.01 is used, and this is

corrected in some way to take into account multiple testing. In a Bayes factor

approach, there is a less rigid specification of a value that is required for ‘signifi-

cance’, however, table 1.2 presents a reproduction of approximate guidelines for

interpretation as specified by Kass and Raftery (1995).

The posterior odds that are obtained from the Bayes factors will be heav-

ily dependent on the choice of the prior odds of association for the test under

consideration, and this choice will depend on the situation being considered. For

example, in a GWAS it is unlikely that any one particular SNP will have an effect

on a trait of interest, however, for a candidate gene study it would be reasonable

to expect that there already exists some justification that there is an association

within the region being considered. A crucial element in the use of Bayes factors

is that this choice of prior odds is made by some careful reasoning, and is not

tailored to simply accommodate strong results being artificially found. The up-

side of choosing prior odds is that, unlike in the use of p-values, a Bayes factor

may be influenced less by small changes in the observable data.

1.7 Example Data Sets

Simulations of the coalescent will provide some impressions about the likely ef-

fectiveness of the methods that are assessed. However, they are also tested on

real data sets as there will inevitably be features of genetic data that are not
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replicated in the simulated data. Two data sets were available upon which to

test the methods used for association. The first of these data sets in Chapter

5 is that which was initially analyzed using the Nested Clade Analysis method

(Templeton et al., 1988), and subsequently in the Treescan (Templeton et al.,

2005) approach to provide comparisons between the two procedures. This data

set is relatively small and involves homozygous inbred Drosophila melanogaster

fruit flies, as opposed to human data which would involve heterozygous geno-

type groupings. The analysis of this data set will however provide useful initial

indications as to the similarities and differences of the methods assessed in this

thesis.

Data has also been made available from the PAMELA (Padmanabhan et al.,

2010) study relating to phenotype and genotype measurements of an Italian pop-

ulation that has not previously been analyzed using Treescan or Bayesian ap-

proaches. The available data set involves 70 SNPs relating to a gene that is

targeted by anti-hypertensive treatments, and so is a plausible candidate gene

for association with the measurements of heart rates and blood pressures that

have been recorded.

Both of the data sets have been analyzed using the interactive PheGe-Find ap-

plication, developed in Chapter 4, which has been created to allow for phenotype-

genotype data sets to be simply and quickly analyzed.

1.8 Overview of the Thesis

− Chapter 2 introduces the coalescent data simulation features that PheGe-

Sim uses in order to simulate data for fair comparison of the association

methods presented elsewhere in the thesis.

− Chapter 3 provides further details behind the methods used in the PheGe-

Find application, in particular detailing the formulations of the Bayes fac-

tors used throughout the thesis.

− Chapter 4 contains information on the features and methods that are present

in the PheGe-Find and PheGe-Sim applications.
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− Chapter 5 uses the methods of Chapter 3 on the Drosophila melanogaster

data set.

− Chapter 6 uses the methods of Chapter 3 on a data set involving heart rate

and blood pressure measurements.

− Chapter 7 uses the methods to simulate data as presented in Chapter 2, in

order to test the effectiveness of the various association study approaches

given in Chapters 5 and 6.

− Chapter 8 provides a summary, some conclusions, and potential further

work.

1.9 Aims of the Thesis

− To simulate data that can reasonably represent data sets arising in a fine-

scale genetic association study.

− To investigate the advantages and disadvantages of various approaches that

can be used in fine-scale genetic association studies, through the use of simu-

lated data sets. In particular, to compare the effectiveness of methods based

upon Treescan to those that test each SNP individually; and to assess the

potential benefits of using a Bayes factor approach compared to standard

frequentist p-values.

− To provide applications that can be used to implement the association study

methods for real data sets.

− To use the applications on real data sets to detect any associations present,

and to illustrate any deficiencies of the methods that are not apparent with

simulated data.



Chapter 2

PheGe-Sim

The PheGe-Sim application (figure 2.1) has been written in the R program-

ming language (version 2.4.1)1 in order to simulate data from the coalescent

process, and if specified, to apply the various association study methods to de-

tect causative loci. PheGe-Sim has been written as a function contained within

the Rpanel (Bowman et al., 2007) environment, which creates a windows-based

application that can be used to easily specify the many possible input variables.

For the variables that can be numerical, or take on a range of categorical values,

the simulator will check that the input is of the correct type and that it is consis-

tent with the other selected variable options. If an inappropriate input is entered

an error message such as that in figure 2.2 will be produced, suggesting what

inputs should be changed to allow the program to run. The following section

details the possible input variables, and the options that are permissible to be

entered for each.

1PheGe-Sim was initially programmed in R 2.4.1 and Rpanel (1.0-4) , but the code will also
run in the newest version of both R (2.10.1) and Rpanel (1.0-5). There are however minor
differences with the versions, as R 2.4.1 will run with the textentry boxes as they appear,
whereas R 2.10.1 requires a carriage return after changing any of the values for the change to
be recognized.

25
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Figure 2.1: PheGe-Sim simulator screen shot.

2.1 Input Options

• Number of simulations : {1,2,...} = Run and summarize results

(section A.4) for the chosen number of simulations.

• Nt : {5,6,...} = Number of terminal nodes of Ancestral Recombination

Graph (ARG) used to simulate genotypes (section 2.2).

• Beta.par : [0,∞) = The population size expansion parameter β, where

β = 2Nb is the scaled expansion rate, N is the effective population size,

and b is the expansion rate per generation.

• Theta : [1, ∞) = Mutation rate per 4N generations.

• Sample size : {50, 51, 52, ...} = The number of individuals with

genotypes and phenotypes that are to be sampled from the population.

• Newick options: {T,F} = Save different variations of Newick format files

(Felsenstein et al., 2010) of coalescent trees resulting from the simulated

ARG.
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Figure 2.2: Example of error message from PheGe-Sim.

• Number of Defective loci : {1,2,...} = Specify how many mutations

are selected to be causative in the simulations.

• Risk per mutation : (−∞,∞) = Specify the average increase in phe-

notypic measurement for each copy of a causative mutation. This is for the

heterozygote mean of an additive model, the value of dominant or recessive

models is therefore twice the specified value (section 2.6).

• Interaction Effects : (−∞,∞) = Specify any two-way interactions

between causative mutations, if it has been chosen to have more than one

defective locus. Alternatively, if it is chosen to have only one defective loci,

the single value entered for an interaction effect will represent an ‘excess

additive’ form of mutation (section 2.6).

• SDev per mutation : (0, ∞) = Specify a common standard deviation

for each genotype grouping.

• Fasta : {T,F} = Save the genotypes in the Fasta format (section A.1).

• Phylip : {T,F} = Save the genotypes in the Phylip format (section A.2).

• PED : {T,F} = Save the genotypes in a PED file format (section A.3).

Will also run the Haploview (Barrett et al., 2005) application to provide a

linkage plot of the simulated data set.

• Save Treeplot : {T,F} = Save the true coalescent plots and ARG used

to simulate data (section A.11).

• Infinite Sites : {T,F} = Use an infinite sites model for the mutations,

or a finite-sites model if unselected (section 2.4.1).
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• All Causative : {T,F} = Select whether or not a causative mutation is

causative in all positions that it occurs on the ARG (2.4.1).

• Gen options : {T,F} = Use Maximum Likelihood, Fitch algorithm or the

Parsimony method in the reconstruction of a haplotype tree (sections 4.2

and 4.3).

• Run Treescan : {T,F} = Runs the Treescan application and interprets

the results from the output (sections 1.5.2 and B.2).

• Bonferroni Test : {T,F} = Implements a test of association with the

Bonferroni correction on each SNP and interprets the results (section 4.4).

• Single SNP test : {T,F} = Runs a single SNP method that corrects

p-values in an analogous way to Treescan (section 4.4).

• Bay Factor Tree : {T,F} = Use the Bayes factors method on haplotype

groupings given by the Treescan method (section 1.5.2).

• Bay Factor SNP : {T,F} = Runs a single SNP method using Bayes

factors to test for associations (Chapter 3 and section 4.4).

• Haplo options : {T,F} = Runs the appropriate method using haplotypes

instead of SNPs to test for associations (section 4.4).

• Gamma options : (0, ∞) = The shape and scale parameter of the

Gamma distribution of the finite sites model (section 2.4.1).

• Recombination rate : [0,2] = Specify the recombination rate for the

ARG per 4N generations.

• BimBam SNP : {T,F} = Runs the single SNP BimBam (Servin and

Stephens, 2007) method (section 4.4.1).

• BimBam TSC : {T,F} = Runs the Treescan method using the Bayes

factors of BimBam (sections 1.5.2 and 4.4.1).

• Mutation Type : {A,D,R} = Specifies whether the simulated causative

variants act in an Additive, Dominant, or Recessive manner. A non-additive
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model for one causative site can be obtained using an additive model with

an interaction (section 2.6).

• Simulate all num : = Upon selection will start execution of the simula-

tions, or will notify of any errors in the specified entries.

2.2 Simulate ARG matrix

Input:

Recombination rate - ρ

Number of (terminal) nodes - n

Population expansion parameter - β

The first stage in simulating the coalescent process consists of generating a

vector representing the sequence of coalescent and recombination events that

occur, going back in time from the present. A time is simulated until either

a coalescent or recombination event occurs, based upon the number of nodes

that are currently remaining (k) and the recombination parameter (ρ). The

waiting time to a coalescent event is modeled with an exponential distribution

with parameter 1
2
k(k − 1) and the time till a recombination event is modelled

with an exponential distribution with parameter 1
2
ρk; therefore the waiting time

till an event of either type is modelled as an exponential with the sum of these

rates:

Exponential

(
k(k− 1)

2
+
ρ

2
k

)
. (2.1)

The type of event occurring is then chosen according a Bernoulli distribution

with probabilities given according to the values from each of the two indepen-

dent coalescent and recombination distributions. If the simulated event is of a

coalescence between two nodes, then the two nodes that coalesce are randomly

chosen from the available nodes at that stage in the simulation, as illustrated in

figure 2.3 where nodes 1 and 2 are chosen resulting in the creation of node 6. The

number of nodes present is reduced by one, i.e., k → k − 1, and so in figure 2.3

after the first coalescent event only the set of nodes {4,3,6,5} remains.
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Figure 2.3: Sequence of coalescent(C) and recombination(R) events and times.
The set of {t1,t2,t3,t4,t5,t6} represents the sum of the waiting times at each
event.

The next time till an event occurs is then generated, and if this event happens

to be a recombination event then the result is to increase the number of nodes

remaining by one, i.e., k → k + 1. The lineage on which recombination occurs is

chosen randomly from those that are present at that stage in the simulation, so

in figure 2.3 node 3 has been chosen thus resulting in the creation of branches 7

and 8. The position of the recombination event is chosen according to a Uniform

distribution covering the section of DNA. The process of sampling coalescent and

recombination events is then continued until all nodes have coalesced to a common

ancestor, so that k = 1, which in this example occurs at node 12, the most recent

common ancestor of this sample. Careful selection of (ρ) must be made to ensure

that the most recent common ancestor is reached within a ‘reasonable’ amount

of time, and is therefore restricted to an upper limit of two 4N recombination

units.

As the sequence of coalescent and recombination events is occurring, the evo-

lutionary time between events is stored. This results in the branch lengths of a

particular lineage being simply calculated from the differences in event times on

that lineage. In order to model the potential effect of a non-constant population

size (Hein et al., 2005), the branch lengths can be adjusted for exponentially
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increasing population size using:

tk =
1

β
log(1 + βt∗k), (2.2)

where tk represents the adjusted branch lengths, β is the scaled growth rate, and

t∗k are the branch lengths from a coalescent process with no population growth.

Output of:

ARG branch lengths - branch.length.ARG

ARG node labels - ARG.matrix

Sequence of coalescent and recombination events - ARG.matrix

2.3 Plotting the ARG

Inputs:

ARG branch lengths - branch.length.ARG

ARG node labels - ARG.matrix

Sequence of coalescent and recombination events - ARG.matrix

The ARG that has been generated in the previous section can be plotted,

with the aim being to produce the clearest plot possible by reducing the number

of lines that cross over as a result of recombination events. Although not of

primary concern to any of the results of the simulations, the methods involved

in determining the relationship between different lineages for the plot are closely

related to the format of the methods used to allocate the list of branches for each

terminal node. This information is then used once mutations have been added

to the branches in section 2.4 to determine the sequence of bases of each of the

sample haplotypes.

Figure 2.4 and table 2.1 represent the first three stages involved in plotting

the ARG that was illustrated in figure 2.3, and demonstrates the algorithm that

can be generalized for plotting any ARG. At the initial stage of the plotting

algorithm, none of the terminal nodes are fixed in position on the x-axis. A

coalescent event then occurs which fixes nodes 1 and 2 in position adjacent to
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(a) (b) (c)

Figure 2.4: First three stages involved in plotting the example ARG of figure 2.3.

each other, as illustrated in figure 2.4(a).

The second event that occurs, as shown in figure 2.4(b), is a recombination

on the lineage of node 3. A recombination event does not alter the ordering of

terminal nodes, but the spacing of the terminal nodes is adjusted so as to maintain

a clear appearance of the plot (2.4(c)). Information regarding the ancestry of the

terminal node 3 is retained, with it being either connected to lineage 7 for sites

to the left of the recombination breakpoint, or connected to lineage 8 for sites to

the right of the recombination position.

The next event that occurs is a coalescent event involving two nodes that

have been involved in events from earlier on in the plotting process. In this

case, the nodes that are joining together are the node labelled 6 resulting from

the first coalescent event, and the node labelled 8 that is the result of the first

Table 2.1: First three stages involved in plotting the example ARG of figure 2.3.
The ‘Fixed’ row refers to terminal nodes that have been fixed in a sequence, and
the ‘Current Nodes’ row illustrates the nodes that are remaining at each stage of
the plotting.

Stage in figure 2.4 - a b c

Fixed 1 2 1 2 1 2
Current Nodes 1 2 3 4 5 3 4 5 6 4 5 6 7 8 3 4 5 6



CHAPTER 2. PHEGE-SIM 33

(a) (b) (c)

Figure 2.5: Second stages involved in plotting the ARG of figure 2.3.

recombination event. The plotting algorithm attempts to minimize the number of

instances of lines crossing over to maintain the clearest plot, and so the sequence

of terminal nodes in figure 2.5(b) is chosen in preference to that of figure 2.5(a).

The fourth event in this example is that of a coalescence between nodes 4 and

7. The algorithm again checks for crossing over of branches, and subsequently

chooses the sequence of terminal nodes that minimizes the number of instances

of this happening. For this coalescent event, that results in the terminal node

sequence being that as shown in 2.6(a) as opposed to that of figure 2.5(c).

The penultimate event occurring in figure 2.6(b) is of a coalescence between

nodes 9 and 10, resulting in the creation of node 11. As the sequence of terminal

nodes have already been fixed for both nodes 9 and 10, the nodes are joined

together irrespective of whether there are any branches crossing over. This can

lead to the base of a plot being well structured but with the top of a plot being

cluttered because of many branches crossing over: as a greedy algorithm is being

used that decides upon the best configuration based only on the current level

Table 2.2: Second stages involved in plotting the ARG of figure 2.3.

Stage in figure 2.5 a b c

Fixed 1 2 3 1 2 3 3 1 2 4
Current Nodes 4 5 7 9 4 5 7 9 9 10 5
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(a) (b) (c)

Figure 2.6: Final three stages involved in plotting the ARG of figure 2.3.

in the process. This situation is however unlikely to occur in practice unless a

relatively large recombination rate is chosen in comparison to the rate of coales-

cence. Possible improvements could be made to the algorithm to improve the

appearance of plots in situations such as this, although the algorithm works suc-

cessfully in its current form for its primary function of determining the sequence

of branches for each terminal node.

The final event for this example, as illustrated in figure 2.6(c), is of the coa-

lescence of nodes 11 and 5. In this instance there is no preference for an ordering

of {4,3,1,2,5} or {5,4,3,1,2}, as neither alternative will result in branches crossing

over each other on the plot. The sequence of terminal nodes is therefore chosen

randomly from the two possibilities.

The resultant plot can then be saved to an appropriate file if the Save Treeplot

option is selected on the Rpanel simulator. The information regarding the se-

quences of internal nodes for each side of the recombination breakpoint are saved

Table 2.3: Final three stages involved in plotting the ARG of figure 2.3.

Stage in figure 2.6 a b c

Fixed 1 2 3 4 4 3 1 2 4 3 1 2 5
Current Nodes 9 10 5 11 5 12
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TN1 1 6 9 11
TN2 2 6 9 11
TN3 3 7 10 11
TN4 4 10 11 0
TN5 5 0 0 0


(a)


TN1 1 6 9 11
TN2 2 6 9 11
TN3 3 8 9 11
TN4 4 10 11 0
TN5 5 0 0 0


(b)

Figure 2.7: Matrices of terminal nodes (TN) for the left (a) and right (b) of the
recombination breakpoint.

in a series of matrices for each of the Terminal Nodes (TN). Continuing the ex-

ample ARG used previously, the saved matrices would take the form of that in

figure 2.7 for the left and right hand sides of the recombination event.

Outputs of:

Sequence of internal nodes - lineage.nodes.matrix

ARG plot - Saved to file

2.4 Assign Mutations onto the ARG

Inputs:

Branch Lengths - branch.length.ARG

Mutation Rate - θ

Number of defective Loci - defect.loci

Sequence of internal nodes - lineage.nodes.matrix

The ARG that has been created can now have the mutations that affect the

observed genotypes superimposed on it. This is possible due to the coalescent

theory allowing the evolutionary and mutation history to be separable from each

other, if the effects of mutations are assumed to be selectively neutral. Each

branch is treated independently, and the number of mutations that occur on

a branch is chosen according to a Poi(θt) distribution, where t represents the

branch length and θ represents the mutation rate. Continuing the example of the
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Figure 2.8: ARG with overlaid mutations, with red lines indicating mutations
occurring on sites to the left of the recombination breakpoint, and blue mutations
representing mutations that occur to the right of the site at which recombination
occurs.

ARG used in sections 2.2 and 2.3, the plot of an ARG overlaid with mutations

is shown in figure 2.8.

In order to allocate the positions of sites that mutate at each SNP on the

ARG, the randomly selected locations at which recombination events occur must

also be taken into consideration. For each mutation that occurs on the ARG,

the position of the site that the mutation represents is chosen according to the

regions that are possible on the branch under consideration. For example, in

figure 2.9(a) only sites to the left of the recombination breakpoint are possible

on branch 7, whereas the complete set of sites can mutate on branch 11 as this

occurs in the coalescent trees of both regions. This procedure ensures that all

mutations correspond to a change in the base at a selected site, except in cases of

trapped ancestral material, where branches of the ARG are not possible in any

of the coalescent trees and so do not contribute to the sample.

Each recombination event will result in a separate coalescent tree describing

a different region of a sequence of DNA bases. To ensure that a model of infi-

nite sites is possible, the number of sites in a region must be at least as large as

the number of mutations that are sampled to occur for that region. An initial

sequence length of 500 is used as this is assumed to be at a level far above that

of the number of SNPs in a fine-scale study. If a larger number of mutations are
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(a) Left hand side of recombina-
tion event

(b) Right hand side of recombina-
tion event

Figure 2.9: Mutations allocated to coalescent trees.

sampled than there are possible sites in a region, the region is simply extended in

size to accommodate the number of mutations. The recombination breakpoints

are then adjusted according to the new size of the regions. This procedure is pos-

sible as the distances between recombination breakpoints and SNPs are assumed

to be irrelevant in practice. Dealing with the recombination breakpoints in this

manner also prevents large numbers of simulations from being discarded for not

allowing the possibility of the specified number of mutations to occur within a

region.

The information regarding the terminal node sequences are determined for

each coalescent region separately, and the terminal node sequence for the entire

range of the ARG is obtained by simply joining these regions together. Figure 2.10

illustrates matrices that could result from the coalescent trees, with mutations

as in figures 2.9(a) and 2.9(b). Information from the stored matrices can also

be shown graphically (figures 2.10(d), 2.10(e) and 2.10(f)), using ‘lineplots’ that

illustrate the relative locations of mutations for each terminal node.

2.4.1 Finite Sites

Additional Input:

Infinite sites option - infinite.sites
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1 A G A A
2 A C A A
3 A C G G
4 A C G A
5 G C A A


(a) LHS


1 A A T T
2 A T T T
3 A A T C
4 A A G T
5 C A G T


(b) RHS


1 A G A A A A T T
2 A C A A A T T T
3 A C G G A A T C
4 A C G A A A G T
5 G C A A C A G T


(c) ALL

(d) LHS (e) RHS (f) ALL

Figure 2.10: phy.matrix for both left (a) and right (b) hand sides of the recom-
bination event. This results in the matrix phy.matrix.ARG (c) which covers the
full ARG. The recombination event in the region can be determined by the obser-
vation that there exists 4 haplotype configurations (AT, GT, GG, AG) between
the third snp of (a) and the third snp of (b). Figures (d) to (f) illustrate the ‘line
plots’ corresponding to (a) to (c).

The simulator allows the possibility of either a finite or infinite-sites model of

mutation to be implemented, since recurrent mutation may have a strong effect.

Figure 2.11(a) illustrates the model of infinite sites whereby each mutation is

constrained to occur only once on the ARG. A finite-sites model corresponding

to the same number of mutations on the tree, but where site number 74 has

mutated in two positions is illustrated in figure 2.11(b). In this case the effect of

the mutation on branch 10 is reversed by the mutation on branch 3, but is still

observable on branch 4. The program allows for the possibility of a mutation

to be completely removed by reverse mutations, however, a site that is allocated

to cause a change in phenotype measurement in section 2.6 must occur in two

forms. Although unlikely, the program also guards against all the sites affected by

mutations existing in only one form by discarding simulations where this occurs.
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(a) Infinite Sites (b) Finite Sites

Figure 2.11: Illustration of infinite and finite-sites models.

If the program consistently fails to complete due to the set of initial parameter

choices, the program will terminate and inform the user that a different set of

parameter values should be chosen.

It is ensured that there are only two bases present at each SNP, irrespective

of how many mutations at that position occur on the ARG, with the causative

form of the mutation always chosen to be the base that a mutation changes to

away from the ancestral base.

2.4.2 Gamma Model of Finite Sites

Additional Inputs:

Shape parameter of Gamma distribution - Γα

Scale parameter of Gamma distribution - Γβ

Ancestral Recombination Graph - ARG.matrix

Recombination breakpoints - break.points

The first stage of the finite sites model is to replicate the generation of muta-

tions according to the procedure of infinite sites as previously described in section

2.4.1. For each SNP that is sampled, the number of times that it occurs on the

ARG is randomly chosen based on a Gamma distribution with shape parameter

Γα and scale parameter Γβ. A Gamma distribution has been chosen as it is plau-

sible that there are a few sites that mutate many times, whereas at the majority
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(a) Gamma distributed rates, with
shape parameter of 1 and scale parame-
ter of 1

(b) Gamma distributed rates, with
shape parameter of 6 and scale parame-
ter of 0.5

Figure 2.12: An example from the discrete Gamma distribution for finite sites.

of locations there will only be a small number of mutations. To ensure that only

positive integers are selected, the sampled value from the Gamma distribution is

rounded up to the nearest integer value which results in discrete groups of the

sampled mutations, as illustrated in figure 2.12. Although the y axis scales are

different for both 2.12(a) and 2.12(b), it should be noted that in both cases the

total number of mutations involved is the same. It can also be the case that if

certain values of Γα and Γβ are chosen, the data can begin to resemble the infinite

sites model.

As this is a procedure involving random sampling it can, and indeed will, be

the case that the total number of mutations sampled to occur according to the

finite sites method exceeds the number of mutations that actually occur under

the infinite sites model in section 2.4. In order to deal with this situation, various

corrections are applied to the sampling of the number of mutations, so that the

correct mutation rate is retained and in order to obtain as close to the desired

finite sites distribution as possible. The steps taken are shown in the flow chart in

supplementary section A.10. In practice in the majority of situations, the steps

taken have minimal impact on the specified finite sites distribution.

The sites involved of each chosen mutation are then randomly ‘thrown’ onto
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the coalescent plot of the region involved, and subsequently the ARG, as shown

in figure 2.11(b).

Outputs of:

Ancestral Recombination graph with site positions - ARG.matrix

2.5 Collapsing the ARG

Inputs:

ARG branch lengths - branch.length.ARG

ARG node labels - ARG.matrix

The ARG, and therefore the matrix phy.matrix.ARG, that have been created

have to now be collapsed to a data structure containing only branches on which

mutations occur. The reasoning for this is that in an association study, using the

available data, an analyst would not be able to reconstruct ancestral events that

have no discernible effects on an individuals genotype. The only features that

would be observable are the unique haplotypes of a sample of individual’s and

their corresponding phenotypes. It would therefore be inappropriate to retain any

information from the construction of the data other than the unique haplotypes

and phenotypes of a simulated population, before analysis using the methods

detailed in the following chapter.

There are four situations that can occur in determining whether a branch

should be collapsed, applied separately to each of the coalescent regions of the

ARG. Three are given in figure 2.13, where each plot represents a section of the

ARG with potential configurations of mutations. The fourth condition is that of

a branch where no mutations occur at all, and as such the entire section would

be removed until there occurred further back in the tree a mutation structure

similar to one of the other three configurations.

The removal of branches from figure 2.13 results in the sections of trees being

reduced to that shown in figure 2.14. This procedure is applied to all branches

involved in each non-recombining region and, with the example data set used

throughout this chapter, would result in trees relating haplotypes given in figure
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(a) (b) (c)

Figure 2.13: Examples of the initial configuration of branches from the ARG
that can subsequently be collapsed due to some branches having no occurrences
of observable mutations, with the horizontal lines representing such mutations.

2.15.

The collapsed ARG is then used in order to generate the potential haplotypes

that can reasonably be sampled within the simulation, as any unobserved internal

nodes will be discounted. The information regarding the number of terminal

nodes on the un-collapsed tree carrying each of the collapsed trees nodes is also

used in determining the relative probabilities of selecting an individual haplotype

for the sample.

To create a sample ‘individual’ from a population, two haplotypes are ran-

domly selected, based on the assumptions discussed in section 1.3. Information

regarding the sample from a population is retained in the matrix c.p.details, which

is subsequently used in assigning phenotype scores for each sampled individual.

(a) (b) (c)

Figure 2.14: Examples of the new structures that result after collapsing branches
of the forms in figure 2.13.
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(a) Left of split collapsed (b) Right of split collapsed

Figure 2.15: Collapsed coalescent haplotype trees for the example data, for both
the left and right hand side of the recombination breakpoint.

Outputs:

Sampled individuals’ haplotypes - c.p.details

Collapsed matrix of haplotypes - phy.matrix.ARG

2.6 Assigning phenotype scores

Inputs:

Collapsed matrix of haplotypes - phy.matrix.ARG

Number of causative mutations - defect.loci

Causative effect per mutation - mut.par.rsk

Standard deviation of phenotype scores - sids.par.rsk

Types of mutation(s) - mut.type

Interaction effects between mutations - interact.effect

In PheGe-Sim, phenotype scores are assigned to an individual based upon a

range of parameters. The first of these is the choice of the number of causative

mutations (defect.loci) that will increase the mean phenotype of affected individ-

uals by effect sizes given by the parameter mut.par.rsk. If more than one mutation

is chosen as causative, there is the potential to specify that the mean effect size

of each mutation is different to obtain different patterns of phenotype measure-

ments. The phenotype of each sampled individual is chosen according to a normal

distribution, with the mean parameter fixed according to the causative mutations

that are present in that individual, whether any interactions are present, and the

specified mutation types. The standard deviation parameter is chosen to be the

same value for each distribution, and is specified by the sids.par.rsk parameter.
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(a) Recessive (b) Dominant

(c) Additive (d) Excess Additive

Figure 2.16: Models of phenotype measurements.

For each mutation that is chosen to be causative, the haplotypes that are

affected by the mutation are determined by following the structure of the coa-

lescent tree away from the root. If a model of finite sites is chosen, it may be

that a causative mutation is cancelled out in some of the haplotypes that would

otherwise have been affected. It is however ensured that at least one haplotype

will carry the causative form of the mutation. When using a finite-sites model

a choice can also be made with the All Causative parameter as to whether a

mutation is causative in all positions at which it occurs on a tree, or that it is

only causative on one specific branch of the ARG.

Another influencing factor on the phenotype scores is the choice of whether

a mutation is to act in an additive, dominant or recessive manner. In the simu-

lations, a recessive model requires the causative mutation to be present in both
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Figure 2.17: Example of the possible groups resulting from two causative SNPs
and their interaction. The two copies present for each individual are shown, with
‘1’ being the causative form for both of the two SNPs.

haplotypes of an individual to cause an increase in phenotype, whereas a dom-

inant model requires at least one copy to cause the relevant increase in score.

These definitions are chosen as the simulations work on the arbitrary assumption

that mutations cause an increase in scores as opposed to a decrease in scores.

The program will however operate under either condition.

If only one causative SNP is selected the interaction effects option can be

used to specify a model of the mutant homozygous group, containing the causative

form of the mutation, having an extra effect compared to the heterozygous group-

ing. For recessive models this will have no relevance and will only act as an

addition of phenotype measurement to the already specified mutation effect size.

However, in the case of a specified additive mutation the interaction will allow

for specification of models with non-perfect additivity, the type of model being

dependent on whether the interaction has a positive or negative value. A positive

interaction effect can specify an ‘excess additive’ model as shown in figure 2.16(d),

whereby the effect of having two copies of the causative mutation is stronger than

an additive presence of only one causative mutation (figure 2.16(c)). If on the

other hand the interaction is chosen to have a negative effect, the additive model
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will begin to resemble the phenotype pattern of the dominant model. If the in-

teraction is chosen to be larger than the original effect size, this can result in the

situation whereby the mean of the heterozygous grouping is higher than either

of the two homozygous groups.

If two or more mutations are chosen to be causative, then the program allows

for the effect of two-way interactions (i.e., epistasis) to exist if the causative forms

of both mutations are present. Interaction effects of up to the number of two-

way combinations involving the number of causative mutations can be specified,

with the allocation of effects to each being randomly chosen amongst the possible

combinations.

Outputs:

Sampled phenotypes for each individual - c.p.details

2.7 Output Files

PheGe-Sim creates various files and folders as determined by the choice of in-

put parameters, features previously described in section 2.1 and throughout this

chapter. In particular, for each of the association methods and tree construction

approaches, a folder will be created to contain the appropriate summary files of

that method.

In addition to the output files of the programs that are collected into relevant

folders, two output files are also created that collate together the details and

results of all the simulations. The sim results file summarizes information about

the effectiveness of each method that is being considered in terms of finding the

true causative mutations. An example of sim results is given in section A.4, where

it can be seen that for each simulation and method comparisons are made between

the true causative mutations and any mutations that have been ‘found’ by the

method. The left hand side of table 2.4 illustrates the criteria used for assessing

the effectiveness of each method in finding causative SNPs for the simulations

when the true causative mutations are known.

In addition to assessing whether causative SNPs have been found correctly

using the Treescan method, it is also tested as to whether Treescan correctly
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Table 2.4: Determining the criteria of found SNPs or branches.

Criteria SNP Branch

Found
As determined by the Frequentist (figure 4.6) or Bayesian

(figure 4.7) approach that is taken

Correct Find
A SNP that has been found
corresponds to the true
causative SNP.

A found haplotype/branch
contains the causative form of
a true causative SNP.

False +
(Type I error)

A found SNP is not any of the
true causative SNPs.

A found haplotype contains
no SNPs in their causative
form.

False −
(Type II error)

A true causative SNP has not
been found.

NA

Linked +
A SNP has been found that is
in perfect linkage with a true
causative SNP.

NA

finds branches containing the true causative SNP(s). The rationale for this is

that the tree construction method can suggest multiple site changes on the same

branch, and will therefore have to declare all of these SNPs as being ‘found’ if

that branch is significantly associated with the phenotype. This can result in a

high False Discovery Rate that is largely due to errors in the tree construction

method, and not necessarily errors in the Treescan method itself. The ‘branch’

correction method can therefore be used as a potentially fairer comparison in

terms of the False Discovery Rates. However, the downside of this approach is

that there is insufficient knowledge to ascertain specifically which of the SNPs

upon a haplotype are indeed causative. This approach is similar to the methods

employed when using the simple haplotype methods of association.

At the end of the sim results file, a summary of the performance of each

association method in finding true causative mutations over all the simulations is

also displayed. The False Discovery Rate (FDR), that can be used as an indicator

of what proportion of the mutations that are declared as significantly associated
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Table 2.5: Summary of output files and folders of PheGe-Sim. Items preceded
with † are common to PheGe-Sim and PheGe-Find, and are described in Chapter
4.

Location Description
Sim Out Directory containing output folders

Folders
PHYLIP PHYLIP format files of the unique genotypes
FASTA FASTA format files of the unique genotypes
†Bayes Factor TSC Treescan version of Bayes factors
†Bayes Factor SNP Single SNP (and haplotype) Bayes factor files
†Fitch Files Files involved in the Fitch tree construction from

PHYLIP
†Max L Files Files involved in the Maximum Likelihood construction

from PHYLIP
†Pars Files Files involved in the Maximum Parsimony Tree con-

struction from PHYLIP
Treeplot Files Plots of the ARG, coalescent and line plots.
†Treescan Input Files Input Treescan files for all the tree construction ap-

proaches
†Treescan Out Files Treescan Output files for all the tree construction ap-

proaches
StdNewick Out Files Newick output files for the true coalescent regions
Int.Newick Files Newick output files, with labeled internal nodes, for the

true coalescent regions
Observable Trees Collapsed haplotype trees of each coalescent region
†SingSNP Out Files Results files of the Single SNP (and haplotype) analysis

based on Treescan
†PED Files PED files and Haploview Linkage plots
Wkspc Folder R workspace of the key variables that have been saved

in the simulation
†Bonf Files Results files of the Bonferroni SNP (and haplotype)

analysis
†BIMBAM Output Files from BimBam relating to single SNP anal-

ysis
†BIMBAM.TSC Output Files from BimBam relating to Treescan based

analysis

Files
Sim Results.txt Text file summarizing results of the association ap-

proaches
details.txt Text file summarizing various features of the parameters

involved in the simulations
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are indeed truly associated with the phenotype, is also displayed in the sim results

file. The definition of the false discovery rate is:

FDR =
Sum of False Positives

Sum of False Positives + Sum of correctly found SNPs
. (2.3)

The second file specific to PheGe-Sim is the details file, an example of which

is given in section A.5. This file contains information about the causative sites

for each simulation, and the haplotypes that are affected as a result of carrying

the causative form of the mutation. A brief summary of the input parameters

that have been chosen for that simulation is also given at the end of the details

file. A brief summary of all the output files from the PheGe-Sim application is

given in table 2.5.



Chapter 3

Association Methods

The exactly computed Bayes factors that are used in the PheGe-Sim application

are discussed in the following sections, for the different models of mutation effects:

Additive, Dominance, Recessive and a General model. Section 3.1 introduces

the use of the exactly computed analytic Bayes factors in a similar manner to

that suggested by Balding (2006), for use in case-control studies. Sections 3.2

- 3.5 subsequently introduce the Bayes factors that have been developed and

implemented here for use with continuous phenotype measurements, in the case

of assessing only one SNP (or branch) with the outcome. The concepts that have

been applied for the single SNP/branch tests are then extended in sections 3.6

to 3.8, in order to accommodate the testing of multiple SNPs in combination.

3.1 Binary Data

In the supplementary information of ‘Bayesian approaches to single-SNP asso-

ciation’ (Balding, 2006), a Bayes factor approach was used as a method to find

causative SNPs in a case-control setting. The Bayes factors are used to test

for evidence of an association comparing the null model of no association (M0),

against the alternative (M1) that there are differences in the proportions of cases

and controls across the heterozygote and the two homozygote genotype classes.

The likelihood for the data (D) is specified in terms of the probability, θ, of an

50
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individual involved in the study being a case, in a binomial form:

P (D|θ) =

(
nA + nU
nA

)
θnA(1− θ)nU , (3.1)

where nA is the number of cases and nU is the number of controls. This applies

independently in the three genotypes, with a common θ under M0, and three

different θs under M1.

The approach taken by Balding is to use a Uniform prior for θ in (0,1), for

illustrative purposes and to ensure a proper posterior distribution. Alternatively

a Beta prior distribution can be used and, as it is conjugate to the likelihood, this

will also ensure that a proper Beta posterior distribution is obtained. One reason

for using the Beta in favour of the Uniform prior is that the resultant Bayes factor

may be less sensitive to small sample sizes of cases or controls at any one SNP,

depending on the choice of hyperparameters. Thus the prior is taken as:

p(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1, (3.2)

for the single θ in M0, and as a product of three such terms under M1.

The Beta prior of equation 3.2 is a generalization of the Uniform prior, which

can be obtained by setting both α and β equal to one. Initial impressions using

the data in Chapter 6 suggest that setting α and β to approximately five will

be effective in dampening down the stochastic effects when there is only a small

sample size available for the test under consideration. However, this can be quite

an informative prior for a low sample size and tests with lower values of α and β

may also be appropriate depending on the specific context of the outcome being

considered.

The posterior distribution using the Beta prior can be calculated analytically,

as follows:

p(θ|D) ∝ θnA(1− θ)nU θα−1(1− θ)β−1

= θnA+α−1(1− θ)nU+β−1

i.e. θ|D ∼ Be(α + nA, β + nU). (3.3)
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which applies to the global θ of M0. Integrating out the parameter θ to obtain

the marginal likelihood for the null model, M0, will result in:

P (D|M0) =

∫ 1

0

p(D|θ)p(θ)dθ = cB(α + nA, β + nU), (3.4)

where c is a constant. In a similar manner, assuming the groups are indepen-

dent, the marginal likelihood for an alternative model, M1, allowing for different

probabilities of being affected within each genotype class is:

P (D|M1) = cB(nA0 + α, nU0 + β)

×B(nA1 + α, nU1 + β)

×B(nA2 + α, nU2 + β), (3.5)

where the subscripts 0, 1 and 2 refer to the three genotype groups, and c is the

same constant as in (3.4). Therefore, the Bayes factor for the alternative model

compared to the null model in the case of binary data reduces to (3.5) divided

by (3.4). The posterior odds of the alternative model can then be obtained by

multiplying the Bayes factor by a suitable choice of prior odds.

3.2 Null Model

This section describes a null model for the case of continuous phenotype data,

where the null model involves a single parameter for describing the means of each

of the three genotype classes in the first round of tests. Subjects are assumed to

be independent, and the null model assumes a normal likelihood for the data, for

the phenotype of the ith subject:

yi ∼ N
(
µ , σ2

)
. (3.6)

Conjugate priors for the mean µ and the within group variance σ2 are assumed:

µ |σ2 ∼ N

(
µ0 ,

σ2

κ0

)
, (3.7)



CHAPTER 3. ASSOCIATION METHODS 53

σ2 ∼ Inv-χ2
(
ν0 , σ

2
0

)
, (3.8)

where µ0, κ0, ν0 and σ2
0 are hyperparameters.

The full joint distribution is obtained by multiplying the likelihood for the n

data points (the total number of subjects in all 3 genotype groups), by the prior

densities for µ and σ:

p(y , µ , σ2) = c (σ2)−
n
2 exp

(
−(n− 1)s2 + n(µ− ȳ)2

2σ2

)
× (σ2)−( ν02 +1)exp

(
−ν0σ

2
0

2σ2

)
× σ−1exp

(
−κ0(µ− µ0)2

2σ2

)
, (3.9)

where c is a constant that does not involve µ and σ, and takes the form:

c =

√
κ0√
2π

(ν0
2

)
ν0
2

Γ(ν0
2

)
(σ2

0)
ν0
2 (2π)−

n
2 . (3.10)

The resulting posterior distribution for µ and σ2 is a N-Invχ2(µn,
σ2
n

κn
; νn, σ

2
n) dis-

tribution (Gelman et al., 2004), due to the priors being conjugate, the form of

which is:

p(µ, σ2|y) ∝ σ−1(σ2)−( νn2 +1)exp

(
− 1

2σ2
[νnσ

2
n + κn(µn − µ)2]

)
, (3.11)

where

µn =
µ0κ0 + nȳ

κ0 + n
,

κn = κ0 + n,

νn = ν0 + n,

σ2
n =

ν0σ
2
0 +

∑n
i=1(yi − ȳ)2 + κ0n

κ0+n
(ȳ − µ0)2

νn
. (3.12)

To obtain the marginal likelihood for the null model, the unknown parameters
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µ and σ2 can be integrated out of the full density (3.9). This yields:

p(y) =

∫ ∞
0

∫ ∞
−∞

p(y |µ, σ2) p(µ, σ2) dµ dσ2

= c

∫ ∫
σ−1(σ2)−( νn2 +1) exp

(
− 1

2σ2
[νnσ

2
n + κn(µ− µn)2]

)
dµ dσ2

= c

∫
σ−1(σ2)−( νn2 +1) exp

(
− 1

2σ2
[νnσ

2
n]

)
×
{∫

exp

(
− 1

2σ2
[κn(µ− µn)2]

)
dµ

}
dσ2

= c

∫
(σ2)−( νn2 +1) exp

(
− 1

2σ2
[νnσ

2
n]

) √
2π
√
κn

dσ2. (3.13)

The resulting marginal likelihood for the data under the null model is therefore:

p(y|H0) =

√
κ0√
κn

(ν0
2

)
ν0
2

Γ(ν0
2

)
(σ2

0)
ν0
2 (2π)−

n
2

Γ(νn
2

)

(νn
2

)
νn
2 (σ2

n)
νn
2

. (3.14)

3.3 Alternative Model

The alternative model allows for each of the three groups to have separate means,

but a common variance for each group is assumed. Similar to the null model

scenario, the mean of each group is chosen to be normally distributed a priori,with

the within-group variance distributed according to an Inv-χ2 distribution. The

likelihoods are again taken to be normal. That is,

µA |σ2 ∼ N

(
µ1,

σ2

κ0

)
, yAi ∼ N(µA, σ

2),

µB |σ2 ∼ N

(
µ2,

σ2

κ0

)
, yBi ∼ N(µB, σ

2),

µC |σ2 ∼ N

(
µ3,

σ2

κ0

)
, yCi ∼ N(µC , σ

2),

σ2 ∼ Inv-χ2
(
ν0 , σ

2
0

)
, (3.15)

with all y’s independent (conditional on their group membership), and µ1, µ2,

µ3, κ0, ν0 and σ2
0 are hyperparameters.
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The full joint distribution p(µA , µB , µC , σ
2 , y) can be found by multiplying

the priors for the means and variance, by the likelihood of the data:

p(µA , µB , µC , σ
2 , y) = p(µA |σ2)p(y |µA , σ2)p(µB |σ2)p(y |µB , σ2)

× p(µC |σ2)p(y |µC , σ2)p(σ2). (3.16)

Hence the full distribution is:

p(µA, µB, µC , σ
2, y) = c2 exp

(
− 1

2σ2
[ν0σ

2
0]

)
× exp

(
− 1

2σ2

[
κ0(µA − µ1)2 + κ0(µB − µ2)2 + κ0(µC − µ3)2

])
× exp

(
− 1

2σ2

[ nA∑
i=1

(yi − ȳA)2 + nA(ȳA − µA)2

+

nB∑
i=1

(yi − ȳB)2 + nB(ȳB − µB)2

+

nC∑
i=1

(yi − ȳC)2 + nC(ȳC − µC)2
])

×σ−1σ−1σ−1(σ2)−
nA
2 (σ2)−

nB
2 (σ2)−

nC
2 (σ2)−( ν02 +1), (3.17)

where c2 is a constant that does not depend on µA, µB, µC or σ2 and takes the

form:

c2 =

√
κ0√
2π

√
κ0√
2π

√
κ0√
2π

(ν0
2

)
ν0
2

Γ
(
ν0
2

) (σ2
0)

ν0
2 (2π)−

nA
2 (2π)−

nB
2 (2π)−

nC
2 . (3.18)

However, since nA + nB + nC = n, equation 3.18 can be simplified as:

c2 =

(√
κ0√
2π

)3 (ν0
2

)
ν0
2

Γ
(
ν0
2

) (σ2
0)

ν0
2 (2π)−

n
2 . (3.19)

Bringing together the arguments of the exponentials in 3.17, and multiplying out

the squares, results in:

− 1

2σ2

[
ν0σ

2
0 + (nA − 1)s2

1 + κ0µ
2
A − 2κ0µAµ1 + κ0µ

2
1
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+ nAȳ
2
A − 2nAȳAµA + nAµ

2
A

+ (nB − 1)s2
2 + κ0µ

2
B − 2κ0µBµ2 + κ0µ

2
2

+ nB ȳ
2
B − 2nB ȳBµB + nBµ

2
B

+ (nC − 1)s2
3 + κ0µ

2
C − 2κ0µCµ3 + κ0µ

2
3

+ nC ȳ
2
C − 2nC ȳCµC + nCµ

2
C

]
. (3.20)

Collecting together the terms in µA and completing the square yields:

− 1

2σ2

[
(κ0 + nA)

(
µA −

µ1κ0 + nAȳA
κ0 + nA

)2

− (µ1κ0 + nAȳA)2

κ0 + nA

]
. (3.21)

Similar terms for µB and µC can be obtained. In a similar manner, the terms

that involve the prior means µ1, µ2 and µ3 can be treated separately from each

other. For example, the terms involving µ1 can be collected together with the

term nAȳ
2
A and a square completed, to yield:

1

2σ2

[
(µ1κ0 + nAȳA)2

κ0 + nA
− κ0µ

2
0 − nAȳ2

A

]
= − 1

2σ2

nAκ0(ȳA − µ1)2

κ0 + nA
. (3.22)

Bringing all this together results in:

p(µA, µB, µC , σ
2, y) = c2 σ

(−5−nA−nB−nC−ν0)

× exp

(
− 1

2σ2

[
ν0σ

2
0 + (nA − 1)s2

1 + (nB − 1)s2
2 + (nC − 1)s2

3

+
nAκ0(ȳA − µ1)2

κ0 + nA
+
nBκ0(ȳB − µ2)2

κ0 + nB
+
nCκ0(ȳC − µ3)2

κ0 + nC

+ (κ0 + nA)

(
µA −

µ1κ0 + nAȳA
κ0 + nA

)2

+ (κ0 + nB)

(
µB −

µ2κ0 + nB ȳB
κ0 + nB

)2

+ (κ0 + nC)

(
µC −

µ3κ0 + nC ȳC
κ0 + nC

)2
])

. (3.23)
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If we define:

µNA =
µ1κ0 + nAȳA
nA + κ0

, κNA = κ0 + nA,

µNB =
µ2κ0 + nB ȳB
nB + κ0

, κNB = κ0 + nB,

µNC =
µ3κ0 + nC ȳC
nC + κ0

, κNC = κ0 + nC ,

νnσ
2
n = ν0σ

2
0 + (nA − 1)s2

1 + (nB − 1)s2
2 + (nC − 1)s2

3

+
nAκ0(ȳA − µ1)2

κ0 + nA
+
nBκ0(ȳB − µ2)2

κ0 + nB
+
nCκ0(ȳC − µ3)2

κ0 + nC
,

then the full joint distribution can be written as:

p(µA, µB, µC , σ
2, y) =c2 σ

(−5−nA−nB−nC−ν0)

× exp
(
− 1

2σ2

[
νnσ

2
n + κNA(µA − µNA)2 + κNB(µB − µNB)2

+ κNC(µC − µNC)2
])
. (3.24)

Exploiting the normality of this expression in µA, µB and µC , and the inverse

chi-squared form in σ2, integration of (3.24) with respect to µA, µB, µC and σ2

gives the following marginal likelihood:

p(y|Halt) =

(√
κ0√
2π

)3 (ν0
2

)
ν0
2

Γ(ν0
2

)
(σ2

0)
ν0
2 (2π)−

n
2

×
√

2π
√
κNA

√
2π

√
κNB

√
2π

√
κNC

Γ(νn
2

)

(νn
2

)
νn
2 (σ2

n)
νn
2

. (3.25)

Therefore the Bayes factor representing the evidence in favour of the alternative

model (3.25) compared to the null model (3.14) is:

(√
κ0√
2π

)3 (
ν0
2

)
ν0
2

Γ(
ν0
2

)
(σ2

0)
ν0
2 (2π)−

n
2

√
2π√
κNA

√
2π√
κNB

√
2π√
κNC

Γ( νn
2

)

( νn
2

)
νn
2 σνnalt

√
κ0√
2π

(
ν0
2

)
ν0
2

Γ(
ν0
2

)
(σ2

0)
ν0
2 (2π)−

n
2

√
2π√
κN

Γ( νn
2

)

( νn
2

)
νn
2 σνnnull

, (3.26)

where σalt and σnull are the σn for the alternative and null models respectively.
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Hence,

p(y|Halt)

p(y|Hnull)
=

(
κ0√

κNA
√
κNB
√
κNC

1

σνnalt

)/(
1
√
κN

1

σνnnull

)
. (3.27)

3.4 Simple Additive Model

An additive model, for the one split or SNP being considered, can be considered

in addition to the general model that allows flexibility in having separate means

for each group. The following priors are assigned for the unknown means of the

homozygous genotype classes:

µA |σ2 ∼N

(
µ1,

σ2

κ0

)
,

µB |σ2 ∼N

(
µ2,

σ2

κ0

)
, (3.28)

and the corresponding likelihoods for an individual from the three possible groups

are:

yA ∼N
(
µA, σ

2
)
,

yAB ∼N
(

1
2
(µA + µB), σ2

)
,

yB ∼N
(
µB, σ

2
)
, (3.29)

where the heterozygote mean is half-way between the homozygote means. Thus

the full joint distribution is:

p(y, µA, µB, σ
2) = c3 exp

(
− 1

2σ2
[ν0σ

2
0]

)
× exp

(
− 1

2σ2

[
κ0(µA − µ1)2 + κ0(µB − µ2)2

])
× exp

(
− 1

2σ2

[ nA∑
i=1

(yi − ȳA)2 + nA(ȳA − µA)2

+

nAB∑
i=1

(yi − ȳAB)2 + nAB
(
ȳAB − 1

2
(µA + µB)

)2
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+

nB∑
i=1

(yi − ȳB)2 + nB(ȳB − µB)2

])
× σ−1σ−1(σ2)−

n
2 (σ2)−( ν02 +1), (3.30)

where n represents the total sample size and c3 is a constant that does not depend

on µA, µB, µC or σ2, taking the form:

c3 =

(√
κ0√
2π

)2 (ν0
2

)
ν0
2

Γ
(
ν0
2

) (σ2
0)

ν0
2 (2π)−

n
2 . (3.31)

Multiplying out the arguments to the exponentials leads to:

l ≡ −2σ2lnp = −2σ2lnc3 − 2σ2ln
(
σ−n−ν0−4

)
+ ν0σ

2
0

+
(
κ0 + nA + 1

4
nAB

)
µ2
A + 2

(
1
4
nAB

)
µAµB +

(
κ0 + nB + 1

4
nAB

)
µ2
B

− 2
(
κ0µ1 + nAȳA + 1

2
nAB ȳAB

)
µA − 2

(
κ0µ2 + nB ȳB + 1

2
nAB ȳAB

)
µB

+

nA∑
i=1

(yi − ȳA)2 + κ0µ
2
1 + nAȳ

2
A +

nAB∑
i=1

(yi − ȳAB)2 + nAB ȳ
2
AB

+

nB∑
i=1

(yi − ȳB)2 + κ0µ
2
2 + nB ȳ

2
B. (3.32)

This is a quadratic form in µA and µB, which implies that the density is

bivariate normal in these parameters, the mean of which is identical to the mode.

The mean can therefore be found by identifying the minimum of −2σ2lnp. First

the partial derivative, ∂l
∂µA

, is obtained:

∂l

∂µA
= 2µA

(
κ0 + nA + 1

4
nAB

)
+2µB

(
1
4
nAB

)
−2κ0µ1−2nAȳA−nAB ȳAB. (3.33)

Equating this to zero at (µ̂A, µ̂B) gives :

2µ̂A
(
κ0 + nA + 1

4
nAB

)
= 2κ0µ1 + 2nAȳA + nAB ȳAB − 2µ̂B

(
1
4
nAB

)
. (3.34)
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Solving for µ̂A:

µ̂A =
κ0µ1 + nAȳA + 1

2
nAB ȳAB − 1

4
µ̂BnAB

κ0 + nA + 1
4
nAB

. (3.35)

Similarly, the partial derivative , ∂l
∂µB

, set to zero results in the following estimate

for µB:

µ̂B =
κ0µ2 + nB ȳB + 1

2
nAB ȳAB − 1

4
µ̂AnAB

κ0 + nB + 1
4
nAB

. (3.36)

Solving these two simultaneous equations for µ̂A and µ̂B gives the estimator µ̂A

of µA:

µ̂A =
(κ0 + nB + 1

4
nAB)(κ0µ1 + nAȳA + 1

2
nAB ȳAB)− 1

4
nAB(κ0µ2 + nB ȳB + 1

2
nAB ȳAB)

(κ0 + nA + 1
4
nAB)(κ0 + nB + 1

4
nAB)− 1

16
n2
AB

.

(3.37)

Similarly the estimator µ̂B of µB is:

µ̂B =
(κ0 + nA + 1

4
nAB)(κ0µ2 + nB ȳB + 1

2
nAB ȳAB)− 1

4
nAB(κ0µ1 + nAȳA + 1

2
nAB ȳAB)

(κ0 + nA + 1
4
nAB)(κ0 + nB + 1

4
nAB)− 1

16
n2
AB

.

(3.38)

The standard form of a bivariate normal distribution is:

f(µA, µB) =
1

2π
√

det(Q)
exp

{
−1

2
(µA − µ̂A, µB − µ̂B)Q−1(µA − µ̂A, µB − µ̂B)T

}
,

(3.39)

where Q is the positive semi-definite and symmetric covariance matrix . There-

fore, comparing (3.32) to (3.39), the elements of Q−1 can be identified:

Q−1 =
1

σ2

(
κ0 + nA + 1

4
nAB

1
4
nAB

1
4
nAB κ0 + nB + 1

4
nAB

)
. (3.40)

The remaining terms in (3.32) are −2σ2lnc3, −2σ2ln (σ−n−ν0−4) and:

νnσ
2
n ≡ ν0σ

2
0 +

nA∑
i=1

(yi − ȳA)2 +

nAB∑
i=1

(yi − ȳAB)2 +

nB∑
i=1

(yi − ȳB)2
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+ k0µ
2
1 + nAȳ

2
A + k0µ

2
2 + nB ȳ

2
B + nAB ȳ

2
AB

− (κ0 + nA + 1
4
nAB)µ̂2

A − (κ0 + nB + 1
4
nAB)µ̂2

B

− 1
2
nABµ̂Aµ̂B, (3.41)

where νn is given by

νn = ν0 + nA + nAB + nB

= ν0 + n. (3.42)

Integration of (3.32) with respect to µA, µB and σ2, exploiting the bivariate

normal form in µA and µB, yields:

p(y |Hadd) =
κ0

2π

(
ν0
2

) ν0
2

Γ
(
ν0
2

) (σ2
0

) ν0
2 (2π)−

n
2

× 2π√(
κ0 + nA + 1

4
nAB

) (
κ0 + nB + 1

4
nAB

)
− 1

16
n2
AB

×
Γ
(
νn
2

)(
νn
2

) νn
2 σνnadd

. (3.43)

Therefore the Bayes factor for comparing the additive model to the null model

is:

p(y|Hadd)

p(y|Hnull)
=

 √
κ0√(

κ0 + nA + 1
4
nAB

) (
κ0 + nB + 1

4
nAB

)
− 1

16
n2
AB

1

(σadd)νn


÷
(

1
√
κn

1

(σnull)νn

)
. (3.44)

3.5 Dominant and Recessive Models

In the first round of association testing, dominant and recessive models can be

tested using the Bayes factors. The specification of both forms of models is es-

sentially the same as that for a general model, but where the phenotypes of the

heterozygote grouping (AB) are allocated to either of the homozygote groupings
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(AA or BB). Table 3.1 illustrates the definitions of dominant and recessive muta-

tions that are used, where AA.AB represents the combined phenotypes of groups

AA and AB, and similarly BB.AB represents the combined phenotypes of groups

BB and AB. As a dominant model for one allele is the same as a recessive model

for the other allele, it has been chosen to refer to a model as dominant or recessive

according to the group containing a higher phenotype mean.

Table 3.1: Dominant and recessive allocation.

Criterion 1 Criterion 2 Conclusion

BF(AA.AB) > BF(BB.AB) BB.AB > AA.AB Recessive in B

BF(AA.AB) ≤ BF(BB.AB) BB.AB > AA.AB Dominant in B

BF(AA.AB) > BF(BB.AB) BB.AB ≤ AA.AB Dominant in A

BF(AA.AB) ≤ BF(BB.AB) BB.AB ≤ AA.AB Recessive in A

If group A is being considered, the marginal likelihood resulting from the re-

cessive model is simply as in equation 3.45. This marginal likelihood is equivalent

to that for the dominant model of group B. That is,

p(y |HrecA) =

(√
κ0√
2π

)2 (ν0
2

)
ν0
2

Γ(ν0
2

)
(σ2

0)
ν0
2 (2π)−

n
2

√
2π

√
κNAA

√
2π

√
κNAB.BB

Γ(νn
2

)

(νn
2

)
νn
2 σνnrecA

.

(3.45)

This is derived by a very similar argument to that which led to expression (3.25),

with the difference being that two of the genotypes can be grouped together as

they are phenotypically indistinguishable in a dominant or a recessive model. In

an analogous manner, the marginal likelihood resulting for the dominant model

in A (or the recessive model for group B), can be found:

p(y |HdomA
) =

(√
κ0√
2π

)2 (ν0
2

)
ν0
2

Γ(ν0
2

)
(σ2

0)
ν0
2 (2π)−

n
2

√
2π

√
κNAA.AB

√
2π

√
κNBB

Γ(νn
2

)

(νn
2

)
νn
2 σνndomA

.

(3.46)

Information regarding the dominant or additive nature of the first-round split is
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stored, and used if required in the more complex second-round splits of section

3.8.

3.6 Alternative Model II

As the Bayes factors for different branches are correlated, some branches will

be declared as significant as a result of being close to a branch that carries a

true causative mutation. The same is also true if the SNPs are to be assessed

individually, ignoring the tree structure in the analysis. In order to compensate

for this, a further model can be proposed that can assess whether a branch is

declared significant, conditional on the split in data determined from another

branch.

The most basic model that could represent this conditional stage would be to

have a model with six groups representing the six combinations that could arise.

A Bayes factor can then be determined to assess the evidence in favour of the

six-group model, compared to that of the previous alternative of three groups.

The marginal likelihood of this model can be calculated in an analogous way to

that of the three group model, and this is implemented for all non-empty groups

that are present at a stage of splitting:

p(y |HAB1B2) =

(√
κ0√
2π

)6 (ν0
2
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2

Γ(ν0
2

)
(σ2

0)
ν0
2 (2π)−

n
2

×
√

2π
√
κNAA

√
2π

√
κNAB1

√
2π

√
κNAB2

√
2π

√
κNB1B1

√
2π

√
κNB2B2

√
2π

√
κNB1B2

×
Γ(νn

2
)

(νn
2

)
νn
2 σνnAB1B2

, (3.47)

where class B has been split into B1 and B2 at the second round (see figure 1.3).

This will result in a Bayes factor comparing the six-group model to that of the
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three-group model, which simplifies down to:

p(y |HAB1B2)

p(y |Hgen)
=

(
κ

3
2
0√

κNAA
√
κNAB1

√
κNAB2

√
κNB1B1

√
κNB2B2

√
κNB2B2

× 1

(σalt)νn

)

÷
(

1
√
κnA
√
κnB
√
κnC
× 1

(σgen)νn

)
(3.48)

In a similar manner, the comparison can be made between the additive or the

dominant/recessive model, according to which model performed best in the first

round of tests.

3.7 Complex Additive Model

A model for second or further stage splits can be calculated, if all the splits in-

volved are determined from the first round as having acted in an additive manner.

There is an option of either introducing a new mean for the cross-term at the

second-stage split, or assuming that the effect of the cross-term is an additive

effect of both groups. The second interpretation will be discussed here, as the

approach of adding a new mean for the cross-term will be dealt with in section 3.8.

In a similar approach to that used for the simple additive model of section 3.4,

each homozygous grouping can be given a Normal prior for the unknown mean.

The likelihood for the heterozygous groupings consisting of the cross terms of

those groups involved. Solving the system of equations for a second-stage split

will result in the following estimators of the means for the three possible groupings

involved.

µ̂A =
κ0µ1 + nAȳA + 1

2
nAB ȳAB + 1

2
nAC ȳAC − 1

4
nABµ̂B − 1

4
nAC µ̂C

κ0 + nA + 1
4
nAB + 1

4
nAC

,

µ̂B =
κ0µ1 + nB ȳB + 1

2
nAB ȳAB + 1

2
nBC ȳBC − 1

4
nABµ̂A − 1

4
nBC µ̂C
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4
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4
nBC

,

µ̂C =
κ0µ1 + nC ȳC + 1

2
nAC ȳAC + 1

2
nBC ȳBC − 1

4
nAC µ̂B − 1

4
nBC µ̂A

κ0 + nC + 1
4
nAC + 1

4
nBC

. (3.49)
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An example of a second round of testing has been given , however but the

pattern can be easily extended for further levels of splits as required. These

simultaneous equations can be solved for µ̂A, µ̂B and µ̂C using matrix algebra,

by finding the solution for X of the equation AX = b, where X = (µ̂A, µ̂B, µ̂C)T.

This can be done through the use of the solve function in R, where the relevant

matrices required for a two-split model are of the form:

b =



κ0µ1+nAȳA+ 1
2
nAB ȳAB+ 1

2
nAC ȳAC

κ0+nA+ 1
4
nAB+ 1

4
nAC

κ0µ2+nB ȳB+ 1
2
nAB ȳAB+ 1

2
nBC ȳBC

κ0+nB+ 1
4
nAB+ 1

4
nBC

κ0µ3+nC ȳC+ 1
2
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2
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4
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4
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(3.50)

and

A =
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 . (3.51)

To obtain a Bayes factor for the complex additive model, the marginal likeli-

hood can be obtained by integrating out the parameters in an analogous way to

the simple additive model, and compared to the highest marginal likelihood of

the models involved in the previous round of comparisons.

3.8 Complex Mixture Model

This section details how at second or higher-order splits, an alternative likelihood

is calculated for groupings that have been found to be mixtures of additive, dom-

inant, and recessive in the first round of tests. This ensures that fair comparisons

are made between each level of splits, by taking into account all the information

present in the data.

In order to retain information about the mutation mechanisms involved from
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(a) First round split(1) (b) First round split (2) (c) Second round split

(d) Dominant splits (e) A additive with C; B dominant over C

Figure 3.1: Significant splits (red) that have been found in the first round of the
procedure (a,b) and the resultant ‘strong’ (red) and ‘weak’ (blue) groupings to
be defined in the second round of tests (c). Figures (d) and (e) represent the
second-stage groupings of phenotypes, according to two possible combinations of
first round mutation models.

the first round of splits, a method has been developed that relies upon a concept

of ‘strong’ and ‘weak’ groupings of SNPs or haplotypes. In order for a grouping

to be considered ‘strong’, there must be a significant effect for that group with

regards to an increase in a phenotype measurement, as determined by a p-value

of less than 0.05 or a Bayes Factor of greater than 150. Equivalently, a grouping

is considered ‘weak’ if it is a group that contains the lowest phenotype mean from

the initial split considered.

Figure 3.1(c) illustrates the first possible combination of strong and weak

splits, as determined from a first round of tests (figures 3.1(a) and 3.1(b)). In

this instance, both the split at branches 1-6 and 2-6 have been determined to

be associated with the phenotype, with the ‘strong’ effect being apparent in both

the A and B groups of haplotypes. This situation could arise if there is a baseline

(wild-type) group where there is no apparent difference in phenotype scores, but

on two separate branches a mutation occurs that results in an increased pheno-

type measurement. The illustrations in 3.1(d) and 3.1(e) shows the groupings of

haplotypes that would be obtained for two possible combinations of additive and
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(a) First round split (1) (b) First round split (2) (c) Second round split

(d) Dominant splits (e) C additive with A; B dominant over A

Figure 3.2: Significant splits (red) that have been found in the first round of the
procedure (a,b) and the resultant ‘strong’ (red) and ‘weak’ (blue) groupings to
be defined in the second round of tests (c). Figures (d) and (e) represent the
second-stage groupings of phenotypes, according to two possible combinations of
first round mutation models.

dominant mutations.

A further combination of strong and weak groupings is given in figure 3.2.

This scenario could arise due to two causative mutations occurring on the same

lineage, having been derived from a wild-type group. The concept of weak and

strong groupings can once again be used to determine the clustering of groups.

However, in this case the sub-tree involving nodes {3,4,5,6,7,8} has been declared

as strong in one scenario, and weak in the other. The groupings that result from

such conditions are given for two scenarios of additive and dominant mutations

in figures 3.2(d) and 3.2(e).

The final combination of strong and weak classes can be shown in figure 3.3.

This situation is the reverse of the first scenario, in that here both haplotypes

1 and 2 are declared as strong in one of the first round splits, but weak in the

other. This situation would be likely to appear if mutations result in a decrease, as

opposed to an increase, of some phenotypic score. As with the previous examples,

the groupings that could result for selected scenarios can be illustrated for second-

round mutations following the pattern of figure 3.3(c).
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(a) First round split (1) (b) First round split (2) (c) Second round split

(d) Dominant splits (e) C additive with A; C dominant over B

Figure 3.3: Significant splits (red) that have been found in the first round of the
procedure (a,b) and the resultant ‘strong’ (red) and ‘weak’ (blue) groupings to
be defined in the second round of tests (c). Figures (d) and (e) represent the
second-stage groupings of phenotypes, according to two possible combinations of
first round mutation models.

Figure 3.4: Second stage SNP groups, with homoplasy being present.

For single SNP methods, the number of groupings can be different in compar-

ison to the Treescan approach at the second stage of splitting due to the presence

of homoplasy. For example, if there were the choice of bases {A,T} at the first

SNP, and at the second site there existed the sites {C,G}, then the nine possible

combinations of SNPs are as given in figure 3.4. It should be noted that the

method assumes that there are only two possible bases at each site, as is the

case for all the simulated and real data available. The approach could however

be extended to accommodate sites with three or four observable bases, although

this situation is less likely to occur in real data sets.
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However, if for the same two SNPs homoplasy was not present, then a situ-

ation analogous to that of the tree-based methods can be implemented whereby

only six possible combinations of bases could occur, as shown in table 3.5.

Figure 3.5: Second stage SNP groups, with homoplasy not being present.

3.9 Covariates

Although not included in the PheGe-Find application, covariates can also be

straightforwardly added to the Bayes factor methods. This could then be useful

for including non-genetic components into the Bayes factors, so that the genetic

and environmental effects can be assessed together. The simplest case of adding

one covariate to a single genetic group is briefly introduced.

The mean phenotype value is written as µA +αAx, where µA is the intercept,

x is the covariate and αA is the slope parameter. Both µA and αA are assigned

independent normal priors:

µA |σ2 ∼N

(
µ1,

σ2

κ0

)
,

αA |σ2 ∼N

(
α1,

σ2

κ0

)
. (3.52)

In this situation a common variance has been chosen for simplicity, with the

prior again being chosen as an inverse-chi-squared distribution. However, models

for unequal variances can also be introduced if required. It is also natural to set

α1 as zero in this context, as this would correspond to the prior belief that there

is no covariate effect. The likelihood for a single observation is given by:

yA ∼N
(
µA + (αAx), σ2

)
. (3.53)
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Assuming independence of the observations, the full joint distribution can

be obtained in a similar manner as to the previous models that have been dis-

cussed. The marginal likelihood of the covariate model can be obtained, and a

Bayes factor calculated for comparing this to an appropriate model not involv-

ing the covariate. Further details of the ‘Bayesian regression’ approach, and the

accompanying issues of model selection, can be found in Gelman et al. (2004).



Chapter 4

PheGe-Find

PheGe-Find is a program that has been written in R version 2.4.1 with the aim

being to implement various methods that can be applied for fine-scale association

studies. As with PheGe-Sim the program is contained within the Rpanel (Bow-

man et al., 2007) environment to allow for easy specification of the various input

options. Figure 4.1 illustrates a screen shot of the application with the various

input options that are possible.

PheGe-Find allows for the input of files containing the genotypes and phe-

notypes required for the association testing. These will be checked against each

other to ensure that they match, and the program will subsequently run using

only individuals with both genotype and phenotype measurements.

The methods of association implemented in PheGe-Find are the same as those

used upon simulated data in the PheGe-Sim application of Chapter 2. This is as

a result of the requirement that the detection of causative SNPs must be treated

independently from the simulation. As such none of the information relating

to the simulations can be used, aside from the genotypes and corresponding

phenotypes in the sample. The following section details the input options that

are specific to the use of real data in PheGe-Find. The input options for the

methods of association having previously been discussed in section 2.1.

71



CHAPTER 4. PHEGE-FIND 72

Figure 4.1: PheGe-Find screen shot.

4.1 Input Options

• fastphase: (String)) = The location of the output file from fastPHASE

(Scheet and Stephens, 2006) with the phased haplotypes of the genotype

data. PED, or BIMBAM format, files can also be used.

• Output dir : (String) = Location of the directory where output files

and plots are to be produced.

• Input dir : (String) = The location of the folder containing the external

applications that are required, namely Treescan, PHYLIP, BimBam and
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Haploview.

• Phenotype : (String) = Location of the file with Phenotype scores

(section A.8).

• Site Positions : (String) = (Optional) Location of the file with SNP

locations (section A.9).

• mu 0 : (−∞,∞), [D] = µ0 hyperparameter for the Bayes factor approach

(chapter 3).

• kappa 0 : (0,∞) = κ0 hyperparameter for the Bayes factor approach

(chapter 3).

• nu 0 : (4,∞) = ν0 hyperparameter for the Bayes factor approach (chapter

3).

• sigma2 0 : (0,∞), [D] = σ2
0 hyperparameter for the Bayes factor ap-

proach (chapter 3).

• Range options : (0,∞) = The range of values of the hyperparameters

to be assessed in the sensitivity analysis plots (section 7.2.5).

4.2 Reconstruction of a Tree Based upon the

Sequences

Inputs:

Sequences of SNPs in Phylip format

Although the methods involved in reconstructing phylogenetic trees are not of

primary importance in this thesis as the trees are primarily considered nuisance

parameters for the use of Treescan, the results of the Treescan-based methods

could potentially be dependent on the method of tree construction used. There

are numerous phylogenetic programs, applying a variety of methods, that could

be used for reconstruction of a phylogeny: such as PAUP* (Swofford, 2003), TCS
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(Clement et al., 2000) and PHYLIP (Felsenstein, 2005). The original Treescan

paper (Templeton et al., 2005) advocates the use of TCS, however this program

does not lend itself to the simulations since the output is a graphic, and is also

restricted in that only the Parsimony method of tree construction is possible.

In order to assess multiple methods of tree construction, and to be suitable for

automating in simulations, it was decided to use the PHYLIP package of meth-

ods. This package allows for the phylogeny to be reconstructed using any of

three commonly used methods: Maximum Parsimony, Maximum Likelihood and

a distance-based method using the Fitch-Margoliash algorithm (Fitch and Mar-

goliash, 1967).

Bayesian methods of reconstructing haplotype trees could also be imple-

mented, such as those advocated by the application MrBayes (Huelsenbeck and

Ronquist, 2001). However, there is a disadvantage with the Bayesian approach,

in terms of the long run time required for the convergence and sampling of an

MCMC chain used to approximate posterior densities of alternate trees, which

makes it less suitable for the simulations of Chapter 7. The increased difficulties

of interpreting MCMC output automatically, to assess whether convergence to

the posterior distribution has been obtained, is a further issue that makes this

approach less suitable for simulations and any form of automated use that could

be integrated into PheGe-Sim. The implementation of a Bayesian MCMC ap-

proach is though a feature that could plausibly obtain small improvements in the

results of the Treescan-based methods, although there would still be uncertainty

caused by recombination and the same mutation occurring on different lineages

(homoplasy), that would be difficult to resolve in any method of tree construction.

The resulting output files from the chosen PHYLIP application are then ma-

nipulated in R in order to get the information in a suitable form for the use in

Treescan and the Bayes factor version of Treescan. The aim in manipulating

the Newick (Felsenstein et al., 2010) format of trees returned by the PHYLIP

programs is to process the bifurcating trees to multifurcating trees, where each

branch involved corresponds to at least one mutation (the PHYLIP methods

returning branches unsupported by any mutation).

Details of the tree construction methods used are given in the following sec-

tions, with the approaches being chosen able to run within a reasonable time
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data sets of up to 2000 individuals. More in depth discussion of the methods

involved can however be found in Felsenstein (1988) and Chapter 16 of Balding

et al. (2001). In order to visualize the trees, the Newick code that is produced

can be viewed using the Treeview program (Page, 1996).

4.2.1 Parsimony Tree Construction

Uses the following application from the Phylip Package:

dnapars

The application dnapars of the PHYLIP package is used to implement the

method of maximum parsimony, whereby a tree is chosen that requires the lowest

number of mutations to describe the observable haplotypes. The method does

not however guarantee to find the globally shortest tree. In situations where there

are multiple configurations of tree structure and mutations that are equally fit in

describing the data, for simplicity it is chosen to only analyze a single best tree.

Details of the specific choices of inputs to dnapars are shown in figure B.1(a).

The parsimony method is generally fast to implement for reasonably sized

data sets and, if there is no recombination and an infinite sites model is to be

assumed, will always reconstruct the true underlying tree. The accuracy of the

method can however begin to deteriorate if the assumption of infinite sites is not

valid, as the true tree may no longer be consistent with the tree containing the

least number of mutations.

The output from dnapars details the estimated branch distances between

nodes, and also reconstructs unknown ancestral sequences. For the ancestral

sequences, it is however required to add arbitrary node labels to the tree as given

by the dnapars application. The methods of section 4.3 can then be applied

in order to reduce the stated output tree to a format that is compatible with

Treescan, whereby branches that are estimated to be of zero length are removed.

Outputs:

Parsimony output file saved to folder
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4.2.2 Maximum-Likelihood Tree Construction

Uses the following application from the Phylip Package:

dnaml

The maximum likelihood method of reconstructing an unknown phylogenetic

tree is applied through the use of the dnaml application of the PHYLIP package.

Further details of the methods used are detailed in Felsenstein and Churchill

(1996). The key aim of the method is to maximize the likelihood with respect

to three multi-dimensional parameters: the topology of the tree τ , the branch

lengths ν and a vector of evolutionary parameters θ. Assuming independent

evolution at different positions in the nucleotide sequence, the likelihood can be

written as follows:

f (X|τ,ν, θ) =
c∏
i=1

f (xi|τ,ν, θ) , (4.1)

where X is the full sequence data, and xi is the data at the i’th SNP (i = 1, . . . , c).

The dnaml program allows for the specification of various parameter choices,

with the specific choices that have been made illustrated in figure B.1(d). As

with the maximum parsimony method, the program can return reconstructed

hypothetical sequences for internal nodes and these can subsequently be used to

determine whether it is required to retain any unobserved internal nodes, which

the R code will arbitrarily label. Branches that are estimated to have a non-

significant length are removed according to the methods in section 4.3.

Outputs:

Maximum Likelihood output file saved to folder

4.2.3 Fitch-Margoliash Distance Tree Construction

Uses the following applications from the Phylip Package:

dnadist

fitch

A pairwise distance matrix between sampled haplotypes is computed using the
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PHYLIP application dnadist. The distances are calculated under the assumption

of a Jukes-Cantor (Jukes and Cantor, 1969) model of evolution, a Markov model

which assumes that there is an equal probability of changing from the current base

to any of the other three bases. More complicated models are though possible,

which could take advantage of there being different rates of mutations between

different types of bases. Equation 4.2 illustrates the formula used for calculating

a pairwise distance, where d is the estimated distance, and p is the proportion of

sites with different nucleotides:

d = −3
4

loge
(
1− 4

3
p
)
. (4.2)

The distance matrix is then used as an input for the fitch program, which con-

structs a tree using the weighted least squares method of the Fitch-Margoliash

(Fitch and Margoliash, 1967) algorithm which aims to minimize the sum of

squares:

SS =
∑
i

∑
j

(Dij − dij)2

D2
ij

(4.3)

where D is the observed distance between species i and j, and d is the expected

distance.

The output of the program details where branches have been estimated to have

zero length although, unlike the maximum likelihood and parsimony methods,

the fitch application does not indicate the reconstruction of unobserved internal

nodes. So, after the branches of estimated zero length have been collapsed,

the Fitch algorithm (Fitch, 1971) is used to reconstruct the likely sequences of

the non-terminal nodes. An example of a tree output from the Fitch program is

shown in figure 4.2. This can be represented in Newick format, where an arbitrary

root is taken and nodes are then grouped together inside brackets, until all the

nodes present are collected together inside one expression. For this example, the

corresponding Newick code with arbitrary branch lengths of one, is:

(1:1,2:1,(3:1,(5:1,4:1):1):1); (4.4)

where no internal nodes labels have been assigned.
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(a) First ‘sweep’ of the Fitch algorithm (b) Second ‘sweep’ of the Fitch algo-
rithm

Figure 4.2: Fitch algorithm, where unresolved sites are in red, and subsequently
resolved sites are coloured blue. Terminal nodes are fixed, as these are observed,
and are coloured black.

All internal nodes are then added to the Newick code, and the bases at each

site of these nodes are determined by application of the Fitch algorithm. Figure

4.2 represents the process for a single site, where the root has been chosen to be

the node labelled 7. The bases present at each of the internal nodes, 6,7 and 8, are

determined by the intersection of the sets of possible bases at nodes immediately

below it in the tree and the resulting base is illustrated below in figure 4.2. Node

8 however cannot be resolved, and so the algorithm then proceeds in reverse, as

in figure 4.2(b), which therefore assigns the state to be an ‘A’. This process is

repeated for all the SNPs of the terminal nodes, and ensures that the minimum

number of base changes occurs for the constructed tree, while reconstructing the

internal nodes. Branches are then removed according to the procedures of section

4.3, if the sequences at the nodes at both ends of the branch are identical. In the

example this results in the final Newick form:

(1:1,2:1,6:0,(3:1,7:0,(5:1,4:1,8:0):1):1); (4.5)

Outputs:

Fitch output file Saved to Fitch folder
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(a) (b)

Figure 4.3: Initial (a) and reconstructed tree (b), when the branch in red is
estimated as carrying no mutations.

4.3 Removal of Branches

Inputs:

Parsimony output file and estimated Parsimony tree

Maximum Likelihood output file and estimated Maximum Likelihood tree

Fitch output file and estimated Fitch tree

The following conditions are applied for each of the tree construction methods

to evaluate whether a branch is required or not, as it may be that an interior node

is predicted to have the same sequence as a terminal node. Each tree is refined

so that there is at least one mutation on every branch on the tree, as otherwise

multiple branches will result in the same test statistic value. It should also be

noted that for the purposes of Treescan it is only relevant whether a branch

length could be equal to zero or not as indicated by the presence or absence of a

mutation, and the actual distances involved are of no importance.

There is no known format for giving a coded representation of an ARG,

however the Newick format can be used for illustrating a haplotype tree with

multifurcating branches. The Newick code returned from each of the PHYLIP

programs can subsequently be altered by counting the number of internal and

external nodes present within each set of brackets. It is ensured that within each

set of brackets there is one node that is labelled as being internal, and that no

adjacent nodes are equal to each other as indicated by having the same real or

reconstructed sequence.



CHAPTER 4. PHEGE-FIND 80

Figure 4.3(a) relates to the situation whereby the internal node 8 is the same

as the terminal node 4. In this situation, the node labelled 8 is removed and

node 4 is relabelled as an internal node. This is illustrated in figure 4.3(b),and

the corresponding transformation of the Newick form is:

(1:1,2:1,6:0,(3:1,7:0,(5:1,4:1,8:0):1):1);→ (1:1,2:1,6:0,(3:1,7:0,(5:1,4:0):1):1);.

(4.6)

The second criterion to be assessed relating to whether to remove node labels

is if the initial tree structure is as indicated in figure 4.4(a), where the internal

node 8 is different from both of the terminal nodes 4 and 5, but is the same as

the internal node 7. If this combination arises, the effect is to remove node 8

and this results in a multifurcation at the internal node 7, an illustrated in figure

4.4(b). The corresponding transformation of the Newick code is:

(1:1,2:1,6:0,(3:1,7:0,(5:1,4:1,8:0):1):1);→ (1:1,2:1,6:0,(3:1,7:0,5:1,4:1):1);. (4.7)

A further criterion to be considered is given in figure 4.5(a). This details a

situation whereby the internal node 8 is equal to one of the terminal nodes, in

this case 4, and also to the internal node 7. This results in node 8 being removed,

and node 7 being replaced with node 4, leading to the tree in figure 4.5(b) and a

Newick code as shown in equation 4.8.

(1:1,2:1,6:0,(3:1,7:0,(5:1,4:1,8:0):1):1);→ (1:1,2:1,6:0,(3:1,5:1,4:0):1);. (4.8)

(a) (b)

Figure 4.4: Initial (a) and reconstructed tree (b), when the branch in red is
estimated as carrying no mutations.
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(a) (b)

Figure 4.5: Initial (a) and reconstructed tree (b), when the branches in red are
estimated as carrying no mutations.

The final possible consideration is where the internal node 8 is not equal to any

of the nodes that it is connected to. In this situation, the tree remains unchanged

as none of the branches can be collapsed. Each section of the haplotype tree is

assessed in turn using these criteria, working from the terminal nodes towards

the chosen root, as determined by the tree construction method. The resultant

haplotype tree that remains will be a multifurcating network of observable nodes

and hypothesized ancestral sequences, as is required for the Treescan-based meth-

ods. Information relating to the haplotypes of the nodes remaining in the tree is

retained, so that the SNPs that relate to each branch can be identified.

Outputs:

Collapsed Fitch tree - pentax.pars.fitch

Collapsed Parsimony tree - pentax.pars.pars

Collapsed Maximum Likelihood tree - pentax.pars.ml

4.4 Methods of Association

Inputs:

Observable haplotype sequences of SNPs

Number of permutations for p-value calculation - num.perm

There are numerous association methods that have been programmed for use

in both the PheGe-Sim and PheGe-Find programs, and these are illustrated in

table 4.1. The approach used for the standard Treescan method has previously
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Table 4.1: Methods used in the association studies of PheGe-Find and PheGe-
Sim.

Method Frame
Extra
Tests

Correction Comment

Tscan
Standard
Bayesian
Bimbam

Pars
Fitch
Max Lik

Snp
Branch

Treescan based methods are pro-
grammed to run under all combina-
tions of frame, extra tests and cor-
rection (resulting in a total of 18 dif-
ferent interpretations).

Single
SNP

Standard
Bayesian
Bimbam
Bonferroni

Snp

Single SNP methods can only assess
SNPs individually, or in combina-
tion with one or two others, before
the number of combinations becomes
prohibitive.

Single
Hap

Standard
Bayesian
(Bimbam)
Bonferroni

Branch

Haplotype methods have no ability
to detect which SNPs upon a haplo-
type confer an increased association,
unlike the Treescan based methods.

been described in section 1.5.2, and this is modified for the creation of the stan-

dard single SNP and standard single haplotype procedures. The flow chart of

figure 4.6 shows the steps taken in determining whether any significant groupings

have been found.

As each individual will contain two copies of a gene, there are three possible

combinations of bases that are possible, assuming that only two variants are

observable at each location. The combination of bases that an individual has is

determined for each site, and the phenotype score from that individual is then

assigned to the appropriate base grouping.

At this stage, the Bonferroni method and the single SNP version of Treescan

both calculate an F statistic from an ANOVA comparing the distributions of

1Only applies once for each causative SNP to ensure that there are fair comparisons between
simulations and to avoid declaring more correctly found haplotypes than there are causative
SNPs
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Figure 4.6: Flow chart of the decisions involved in frequentist methods. These are
chosen so as to mirror the steps taken in the Treescan procedure (figure 1.3), with
both first and second round tests of association being used. A SNP is declared as
‘found’ if it is found in the first round of tests, and all the other tables of second
stage splits.
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phenotypes in the three genotype classes. The Bonferroni method then simply

adjusts the significance level α from the ANOVA using the standard Bonferroni

correction for multiple testing, namely the equation αadj = 1 − α
n
, where n rep-

resents the total number of tests performed. Sites are subsequently adjudged to

be significantly associated with a change in phenotype if the p-value is less than

the adjusted significance level.

The Single SNP method adjusts the F-statistic by the use of the Boerwinkle-

Singh (Boerwinkle and Sing, 1986) corrected estimator, so as to remain consistent

with the methodology used in the Treescan program. This correction involves

adjusting the observed phenotype variance, by the number of genotype classes

present in that comparison:

s2
G =

k∑
i=1

ni(Ȳi − Ȳ )2

n
− k − 1

n

k∑
i=1

ni∑
j=1

(Yij − Ȳi)2

n− k
, (4.9)

where n is the total sample size, k is the number of genotypic classes with obser-

vations, Ȳ is the sample grand mean, ni is the number of individuals in the ith

genotypic class, and Yij is the phenotype of the jth individual with genotype i.

The final adjusted p-values from the single SNP method are then obtained

by the permutation and correction methods detailed in the Treescan approach

(section 1.5.2). As with the Treescan method, a SNP is adjudged to be signifi-

cantly associated with the phenotype if it is found as significant in the first table

of splits, and in all second round tables conditional on the other found SNPs (see

figure 4.6).

The method of using Bayes factors for assessing the differences of phenotypes

between the genotypes at each SNP will be discussed in detail in Chapter 3. In

contrast to the frequentist approaches, the Bayes factor versions computes all

second-round comparisons, as it may be that a combination of splits that are not

found significant in the first round may have a significant effect when considered

together. If second-round splits are also found as significant, then third-order

splits are considered using only the combinations of SNPs that are found as

significant in the previous round.

The set of all combinations in third and higher-order splits is not considered,

as the number of comparisons increases dramatically for higher-order splits. For



CHAPTER 4. PHEGE-FIND 85

Figure 4.7: Flow chart of the decisions involved in Bayesian methods. The ap-
proach aims to test all first round associations, and then testing subsets of the
splits that appear to be associated from the previous rounds of tests. At each
round of splits all the relevant tests of association are used, and the maximum
value is taken for use in determining if a SNP/split is declared to be found.
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example, for n SNPs a third round comparison would involve
(
n
3

)
comparisons,

and therefore a typical data set of 70 SNPs, such as the blood pressure data set

analyzed in Chapter 6, would involve 54, 740 comparisons at the third-level of

splitting. This would increase the computation time considerably, and is unlikely

to discover any SNPs that have not been indicated as significant to some extent

in the first or second-round splits.

In order for a SNP or branch to be declared as significant in a Bayes factor

approach, it has been decided that a Bayes factor of > 150 is required to obtain

‘very strong’ evidence against H0, according to the categories of table 1.2 (Kass

and Raftery, 1995). No choices are made for the prior odds of association, which

would vary in practice depending on the strength of prior knowledge available.

However, the choice of a region to use for a fine-scale study would in itself indicate

that there is a suggestion, from a GWAS or from previous studies, that a variant in

the region is to some extent associated with the phenotype. Figure 4.7 illustrates

the steps used in calculation of the Bayes factors. It can be seen that for the first

round of tests, a SNP or branch is to be designated as found if a Bayes factor is

obtained that is significantly larger than the overall null model. At the second

and subsequent level of splits, the Bayes factor is calculated according to the

comparison between the marginal likelihood of the current level, and the highest

marginal likelihood of the previous round of tests.

4.4.1 BimBam

BimBam (Bayesian IMputation Based Association Mapping, Servin and Stephens

(2007)) is a method that implements exactly computed Bayes factors for use

in phenotype-genotype association studies. Conceptually similar to the Bayes

factors used in PheGe-Find, there are however some differences in the approaches

that can have implications for the outcome and interpretation of the resulting

Bayes factors.

As with PheGe-Find (Chapter 3), BimBam uses conjugate priors for defining

the prior mean (µ) and the reciprocal of the variance (τ) of the phenotype data,
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that is assumed to be Normally distributed. These priors are of the form:

τ ∼Γ

(
κ

2
,
λ

2

)
, (4.10)

µ|τ ∼N
(

0,
σ2
µ

τ

)
, (4.11)

where κ, λ and σ2
µ are hyperparameters to be specified.

BimBam subsequently takes the limiting form of this distribution, that is

letting κ, λ → 0 and σ2
µ → ∞. Although this results in an improper prior

distribution, the posterior can be shown to be proper, with Bayes factors which

are reported as tending towards sensible limits. As a result of this, BimBam

requires the specification of two other hyperparameters, σa and σd, specifying

respectively a standard deviation of an effect size, and a measure of how close

the effect of a mutation is to being additive. A further prior choice is made

regarding a distribution concerning the number of SNPs that are likely to be

defined as causative, denoted by the distribution p(l), where l represents the

number of specified SNPs.

An advantage of the approach taken by BIMBAM is that the prior mean

and variance are not required to be specified, thus avoiding uncertainty about

what represents suitable information to assign these values. However, the lack

of specification can also be a negative feature, as if there are data available from

another source then this will not be able to be incorporated into the Bayes factors

of Bimbam. In real data sets there is likely to be some prior knowledge about

what range of values is expected for a given phenotype, and basing the prior

mean and variance on the sample of data is not always appropriate.

A further difference between the methods used in BIMBAM and those used

in this thesis is that BIMBAM requires specification of the distribution of SNPs

that are to be determined as causative. The prior used puts equal weight on

any choice of up to four causative SNPs, as it is stated that the alternative of

calculating each Bayes factor in comparison to a null model will lead to implicit

prior assumptions about the relative plausibility of each multiple SNP model.

However, the view taken in this thesis is that there is decreasing plausibility of

larger numbers of SNPs being associated with a phenotype, and that the effect of
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multiple SNPs should provide significant improvement on a simpler model with

only a single variant. This is possibly most relevant in the context of this thesis,

that is fine-scale studies as opposed to GWAS, as due to strong linkage between

variants there will be multiple correlated SNPs associated with a phenotype as

a result of one true signal. In this setting, it is preferable that strong evidence

is required to suggest that the apparent effects of multiple variants is not simply

the linked effects to the actual causative variant. An improvement suggested but

not implemented by the BIMBAM approach is to use a prior with decreasing

probability for larger numbers of causative SNPs. This is a possibility that needs

further work but that could potentially be useful for the situation of assessing

multiple linked SNPs.

As with the approach taken in this thesis, BIMBAM does not focus on the

specification of the prior odds of an association. The choice of the prior odds will

be context specific and, irrespective of the method that is chosen in calculation

of the Bayes factors, should be chosen with care dependent on prior knowledge

about the regions and variants being assessed.

4.5 PheGe-Find Output

In addition to the output files created for each of the methods of association

and tree construction that have been described previously, PheGe-Find also con-

structs three plots relating to the data. However, PheGe-Find does not create

the sim results and details files that were created in PheGe-Sim, as in real data

sets there will be no knowledge as to what are the ‘true’ causative mutations.

4.5.1 Linkage Plots

PheGe-Sim creates a PED file of the genotypes involved in a data set, which

is then used as an input for the Haploview (Barrett et al., 2005) application.

Haploview is automatically run through its command line options (section B.4),

and will produce a linkage plot of the genotypes involved. The statistics used to

illustrate the linkage between each pair of SNPs are D′ and the LOD (Log Odds)
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score. D′ is defined by:

D′ =

{
D

min(p1q2,p2q1)
if D ≥ 0,

D
−min(p1q1,p2q2)

if D < 0,
(4.12)

with perfect linkage corresponding to a D′ = 1, no linkage corresponds to D′ = 0,

and where:

D = p11p22 − p12p21 = p1q1, (4.13)

where the pij values are the proportions of each entry from the following:

SNP 2

allele 1 allele 2

SNP 1
allele 1 p11 p12 q1

allele 2 p21 p22 q1

p1 p2

The LOD score is calculated according to the following equation (Ott, 1999):

LOD = log10

maxrP(data|r)

P(data|r = 1
2
)

(4.14)

where r corresponds to the recombination fraction. The computation of this in

Haploview relies upon a two-marker EM algorithm for estimating the maximum

likelihood values required. Information regarding the D′ and LOD scores are then

visually summarized in Haploview according to the classifications of table 4.2.

Table 4.2: Key to colour combinations of linkage plots, reproduced from the help
files of Haploview (Barrett et al., 2005).

D′ < 1 D′ = 1
LOD < 2 white blue
LOD ≥ 2 shades of pink/red bright red



CHAPTER 4. PHEGE-FIND 90

4.5.2 Manhattan Plots of Results

PheGe-Sim produces ‘Manhattan’ plots summarizing the results of the single SNP

and Treescan analysis, for both the frequentist and Bayesian settings. Results

are displayed according to the maximum − log10 p-value (i.e. the minimum p-

value), or Bayes factor that has been observed in all the tests of association under

consideration, to ensure that the scales of each of the plots are comparable. The

logarithm of the p-values is taken to ensure that the results are strictly positive

on a scale of zero to infinity. Treescan results are displayed as the association

levels for each of the SNPs as opposed to branches, and as such there is liable

to be multiple ‘hits’ for each SNP under consideration. If a valid Site Positions

file has been specified, the results will be displayed according to the specified

locations of each SNP. If this information is not provided, the plot will use a

default spacing of one unit between each of the SNPs of the study.

4.5.3 Sensitivity Analysis

As with most Bayesian analysis, the Bayes factors that are to be developed in

Chapter 3 and have been used for the association studies, require the specification

of hyperparameters in the prior distribution. Having to make choices of prior dis-

tributions can be both a positive and negative feature of any analysis. However,

it would be hoped that any conclusions from a data set would not be substan-

tially altered by small changes in prior specifications. PheGe-Sim produces two

plots that can provide visual summaries of the sensitivity to these prior choices;

one of these corresponding to the prior for the mean of the data, and the other

corresponding to the prior on the within-group variance.

The normal-inverse-chi-squared distribution used for the specification of the

prior distribution (equation 3.11) consists of dependent normal and inverse-chi-

squared distributions. The normal distribution describes the mean of the data,

whereas the inverse-chi-squared distribution describes the variance.

The mean of the prior distribution for the phenotype mean, can be specified

by the µ0 parameter. As a default choice for this value, the mean of the sampled

data can be used, however, µ0 can ideally also be chosen according to the mean

of a suitably similar data set to the one being assessed.
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The choice of κ0 relates to the information on µ, with κ0 number of observa-

tions of mean µ0 and variance σ2. Choosing a large value of κ0 would imply that

there is a large degree of certainty about the mean of the data; and conversely

choosing κ0 as zero would imply that there is no knowledge of the potential mean

of the data set. A default value of 20 is chosen, which appears to be reasonable

in conveying a sufficient amount of confidence in the prior mean of the data. The

effect of κ0 on the Bayes factors is relatively minimal for reasonably sized data

sets (Chapter 6), but for small data sets it can have a stronger impact and lower

values may be more appropriate (Chapter 5). The mean and variance of the

inverse-chi-squared distribution for the within-group variance, are respectively:

E[σ2] =
ν0σ

2
0

ν0 − 2
(4.15)

and

Var[σ2] =
2ν0σ

4
0

(ν0 − 2)2(ν0 − 4)
. (4.16)

It can be seen that the hyperparameters of ν0 and σ2
0 are entangled, as they

both appear in the formulations of the mean and the variance of the variance

distribution. It should be noted that the mean is only defined if ν0 > 2, and

likewise the variance is only defined if ν0 > 4.

Analogous to the choice of κ0, the information on σ2 is equivalent to the

choice of the number of observations, ν0, with variance σ2
0. Distributions where

ν0 is less than 4, resulting in prior distributions with infinite variance, cause the

Bayes factors to be unstable and unreasonably high. An increase in ν0 above 4

results in a steady increase in the Bayes factor, assuming that the prior mean is

reasonably close to the mean of the sample data. It has therefore been chosen

that the default value of ν0 shall be 20, and the choice of σ2
0 shall be chosen as the

sample variance. If there is therefore a reason for increased confidence in prior

knowledge of the variance then ν0 can be increased to reflect this, and the prior

variance will become concentrated around σ2
0.

Using the sample mean and variance as default choices of priors can result

in the data artificially being used twice, and therefore may result in a misplaced

confidence in a lack of uncertainty relating to the estimates. As a starting point
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they can though be useful as the calculation of meaningful Bayes factors requires

the prior values to be reasonably consistent with the sample, as otherwise the

reported Bayes factors will be uniformly small. However, the use of previously

reported information relating to inform the hyperparameter choices should be

used whenever possible to avoid an overconfidence in the interpretation of results.



Chapter 5

Drosophila melanogaster Data

5.1 Background of Data

Drosophila melanogaster is a breed of fruit fly that has been extensively studied

in genetics since the beginning of the twentieth century, and studies by Thomas

Morgan of the phenotype characteristics of the fly formed the basis of many

aspects of modern genetics. The use of D. melanogaster in genetic studies sub-

sequently became popular due to the relative ease with which the flies could be

maintained, and due to the short life cycle and high breeding rate of the flies.

Further understanding of genetics led to the discovery that the DNA of the D.

melanogaster fruit fly contains four chromosomes, three autosomes and an X-Y

pair. The chromosome number is substantially smaller than that of mice and

humans and so the fruit-fly was one of the first organism to have its DNA fully

mapped, with the information currently being contained online in the FlyBase

database (FlyBase, 2010).

Although the chromosome number is substantially lower than that of humans,

there are some genes that are present in the fly that are directly related to an

equivalent human gene. One such gene is ADH, that is located on chromosome

2L of D. melanogaster and on chromosome 4q of human DNA. This gene is

responsible for the production of alcohol dehydrogenase, an enzyme involved in

the breakdown of alcohol, that in the fly is present as a result of its diet consisting

of rotting fruit. As humans also contain the ADH gene, numerous studies have

93
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Figure 5.1: Reconstructed haplotype tree using the parsimony method.

been conducted using D. melanogaster in an attempt to gain an insight into

potential risk factors of alcoholism. One such study was conducted by Aquadro

et al. (1986), to gain an understanding of the relationship between different strains

of the fly and the ADH gene as measured by the activity levels of the alcohol

dehydrogenase enzyme.

Aquadro et al. (1986) constructed a phylogenetic tree using parsimony meth-

ods to describe the relationship between the various strains of D. melanogaster

based on the ADH sequence data, and also found that there was an association

between a variant at one of the sites in the ADH gene and alcohol dehydrogenase

enzyme activity, when assessing each SNPs relationship with the phenotype indi-

vidually. Templeton et al. (1987) subsequently suggested using the reconstructed

tree implicitly in attempts to find associations, and this resulted in the nested-

clade analysis (NCA) method. The fruit flies involved in the Aquadro study

were bred to be homozygous for the ADH region. However, this is impossible

for human studies, and so Treescan was developed which takes into account the
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potentially heterozygous nature of most naturally occurring DNA. The Aquadro

data set was reanalyzed by Treescan to provide a valid comparison with the NCA

method, and in a similar way is being reanalyzed here to provide valid compar-

isons between the Bayes factors and frequentist-based methods.

The data available from D. melanogaster differs from the usual data sets

required for Treescan-based analysis in a variety of ways. The first difference is

that the D. melanogaster have been back-crossed so as to be homozygous, and so,

unlike for most human data sets, it is not possible to test for any additive, general

or recessive effects. As the flies are homozygous, there is also no requirement to

phase the data set. A second difference is that insertions and deletions (indels)

are present in the genotypes of the fruit flies, and these have been treated in

a similar way to the treatment of SNPs by simply coding whether the indel is

present or absent in a particular haplotype. There may be complex differences

in the biological mechanisms that result in SNPs or indels that are not being

accounted for in this approach. However, recoding in such a manner does not

change the analysis methods and therefore allows for valid comparisons with the

approach employed by Treescan (Templeton et al., 2005).

Figure 5.1 shows the haplotype tree relating the 48 D. melanogaster present

in the study, that has been reconstructed using the parsimony method as de-

tailed in Chapter 4. This corresponds exactly to the tree that was obtained by

Aquadro et al. (1986) and subsequently by Templeton et al. (2005), and infers

the same unobserved internal sequences that have been automatically labelled by

the PheGe-Sim application. Although of small size, the data can be shown to be

roughly normally distributed, as is required for some of the following analysis.

5.2 Linkage Plot

Figure 5.2 illustrates the linkage between the SNPs that are present in the D.

melanogaster data set. There does not appear to be any clear pattern from

the plot, although this is largely due to the relatively small data set in terms

of sample size (48) and the small number of variants (22). In particular, the

large number of blue squares illustrate regions where D′ = 1 and LOD < 2

and are generally a result of low sample size and therefore low power to detect
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Figure 5.2: Linkage plot for D. melanogaster data. The plot is predominately
blue due to evidence of linkage, but there being only a relatively small sample
size. See table 4.2 for the details of the colouring used in the plot.

linkage. It should be noted that there are small differences between the estimates

given by Haploview and those given in Aquadro et al. (1986), due to Haploview

using Hedrick’s (1987) estimator of D′, whereas Aquadro uses Lewontin’s (1964)

estimate of linkage disequilibrium.

5.3 Estimating Recombination Rates

& Hotspots

The interval program of the LDHat (McVean et al., 2002) package is a program

that estimates recombination rates based upon imputed phased haplotypes. Al-

though a newer version of the program has been written (rhomap), the interval

program was used so that results in Chapter 6 can be comparable with the current

estimates given in HapMap for human data. The application uses a composite

likelihood estimation of the recombination rate, as calculation of the likelihood

of the full data set is intractable. This method was first implemented by Hudson

(2001) but adapted to include the possibility of a finite-sites model of mutation

in the LDHat package. The inclusion of the possibility of a finite sites model

is particularly relevant, as recurrent mutation and recombination can plausibly
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Figure 5.3: Recombination estimates directly from D. melanogaster data.

result in identical sequences of DNA.

The composite likelihood scheme involves four key stages, the first of which

is to estimate the population mutation rate per site. All possible two-locus com-

binations of sites are then compared, and the likelihood of each comparison is

calculated. The overall population recombination rate for the data set is then

estimated by combining the pairwise comparisons. Further details of the scheme

are given in the methods section of the paper by McVean et al. (2002).

Due to the small number of variants and small sample size of the number of

flies under consideration, it is unlikely that clear estimates of recombination could

be estimated using this data set. This proves to be the case as illustrated in figure

5.3, with recombination estimates suggesting some evidence of recombination, but

with a large degree of uncertainty due to the small sample size. For the analysis

in the following sections it is assumed that the data can be treated as if from one

region of low recombination, because of the low sample size and relative simplicity

of the reconstructed haplotype tree of figure 5.1.
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(a)

(b)

Figure 5.4: D. melanogaster results, for the frequentist (a) and Bayesian (b)
versions of the single SNP method. Site locations are approximate, based upon
information in Aquadro et al. (1986).

5.4 Single SNP-based Analysis

Figure 5.4(a) illustrates the results from the single SNP method, with the un-

corrected p-values from ANOVA tests being displayed. Initially it seems that

there are three variants that are strongly associated with the phenotype, labelled

SNP-1,SNP-12 and SNP-2, with p-values extremely low for such a small sample

size (table 5.1). A Bonferroni correction for multiple testing would require that

the p-values are lower than 2.272 × 10−3 for the 22 variants considered, and as

such all three would be considered to be associated with the ADH phenotype. A

further two SNPs (labelled SNP-10 and SNP-13) are associated with p-values of

less than 0.05, which are not small enough to pass the Bonferroni-corrected level

of significance. The linkage plot of figure 5.2 shows that the three variants with

strong associations are also in strong linkage with each other, and so it may be

that not all three are indeed causative. According to the procedure used by the

single SNP method (figure 4.6), only SNP-1 would be declared to be significantly

associated with the phenotype as none of the other SNPs considered account for

any significant signal in addition to this SNP.

The results from the first round of association using Bayes factors are shown
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Table 5.1: Selected single SNP (top), Treescan (middle), and Haplotype (bottom)
results of analysis of D. melanogaster data. Note as homozygous bred there are
no heterozygous measurements
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SNP-1 16 25 7.8 3.5 2446.0 4.8× 10−16 0.00

SNP-12 18 23 7.5 3.4 1302.4 2.2× 10−13 0.00

SNP-2 19 22 7.2 3.5 277.1 5.7× 10−10 0.00

SNP-10 8 33 7.7 4.6 1.8 2.6× 10−4 0.00

SNP-13 8 33 3.2 5.7 0.7 5.9× 10−3 0.00

SNP-1 16 25 7.8 3.5 2446.0 4.8× 10−16 0.00

SNP-12 17 24 7.6 3.5 1323.9 1.0× 10−13 0.00

SNP-2 19 22 7.2 3.5 277.1 5.7× 10−10 0.00

SNP-10 8 33 7.7 4.6 1.8 2.6× 10−4 0.00

SNP-13 6 35 3.3 5.5 0.4 2.6× 10−4 0.00

HAP-23 2 39 8.6 5.0 0.3 0.034 0.21

HAP-2 5 36 3.2 5.5 0.4 0.036 0.21

in figure 5.4(b). The chosen hyperparameters are the defaults of PheGe-Sim,

namely: µ0 = 5.204, κ0 = 20, σ2
0 = 5.383, ν0 = 20. The values of κ0 and ν0 are

relatively high for this setting due to the small sample size, and therefore may

strongly affect the resultant Bayes factors, particularly as the mean and variance

have been set at the true levels of the sample. The Bayes factors do indeed

fluctuate to a reasonable extent depending on the combination of all four of the

hyperparameters, however, remain reassuringly high at the same variants largely

irrespective of the specific values that are chosen.

The pattern of association is similar to that for the frequentist approach,

although variants SNP-10 and SNP-13 have comparatively lower association in

the Bayesian setting1. The procedure used for Bayesian methods in determining

the number of SNPs associated with the phenotype (figure 4.7) would determine

that only variant SNP-1 is found to be associated, as at the second level of

1Note, however, unlike the p-values, the Bayes factors are not on the log scale.
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(a)

(b)

Figure 5.5: D. melanogaster results, for the frequentist (a) and Bayesian (b)
versions of Treescan. Site locations are approximate, based upon information in
Aquadro et al. (1986).

tests the addition of extra variants does not significantly improve the marginal

likelihood of the alternative model.

5.5 Treescan & Haplotype Analysis

Treescan-based analysis can be performed upon the D. melanogaster data and re-

sults are shown using the standard approach in figure 5.5(a), and for the Bayesian

alternative in figure 5.5(b), and are summarized in table 5.1. Unlike for most hu-

man data sets, there is no uncertainty in the haplotype reconstruction as the

haplotype have been explicitly observed due to the flies being bred to be ho-

mozygous. The patterns of association for both Bayesian and frequentist ap-

proaches are strikingly similar to those of the comparable single-SNP analysis,

due to there being only eight mutations occurring in more than one position on

the reconstructed maximum parsimony haplotype tree. The Manhattan plots

of figure 5.5 do however illustrate one of the potential problems with the use

of Treescan, namely that SNPs can result in being declared as both associated

and un-associated with the phenotype at different locations on the haplotype
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(a) D. melanogaster sensitivity to the µ0

and κ0 hyperparameters (SNP 1)
(b) D. melanogaster sensitivity to the µ0

and κ0 hyperparameters (SNP 6)

Figure 5.6: D. melanogaster sensitivity to hyperparameters.

tree. This is particularly true in this example, whereby the haplotype tree re-

construction has resulted in there being two instances SNP-12 occurring (table

5.1). Based upon this, it is not possible to determine whether a mutation is

indeed responsible for a change in phenotype measurement, and it can only be

declared as to the association of the specific haplotype with the phenotype. If it

is indeed SNPs or other variants as opposed to haplotypes that are the driving

force responsible for a phenotype, then the Treescan method fails to be useful in

comparison with the single SNP approaches for this particular data set.

Testing the associations of haplotypes with the phenotype when ignoring the

tree structure is also possible using the PheGe-Sim application, and the two

haplotypes with strongest associations are presented in table 5.1. It is apparent

that haplotype-based analysis for this particular data set is ineffectual, as a result

of there being only 25 unique haplotypes for the 41 flies involved and therefore

there is extremely low power to detect any differences that could exist. This

is apparent in both the Bayesian and Frequentist settings, assuming that the

p-value is corrected for multiple testing in an appropriate manner.
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(a) D. melanogaster sensitivity to the ν0
and σ2

0 hyperparameters (SNP 1)
(b) D. melanogaster sensitivity to the ν0
and σ2

0 hyperparameters (SNP 6)

Figure 5.7: D. melanogaster sensitivity to hyperparameters.

5.6 Sensitivity Analysis

The Bayes factors that have been presented are equivalent to the posterior odds

of association as they have not been adjusted by prior odds, and the sensitivity

of these Bayes factors to hyperparmeter choices can be explored. Figure 5.6(a)

represents the sensitivity of SNP-1 to the hyperparameters of the overall mean.

It can be seen that the Bayes factors that are obtained are highly sensitive to

the choice of both the µ0 and κ0 hyperparameters. The Bayes factors for this

example are extremely sensitive to the prior choices mainly because of the small

sample sizes involved, and so the choice of prior values in this situation can have

an unreasonably high impact on the resultant Bayes factors.

Figure 5.6(b) illustrates the sensitivity to the Bayes factors of SNP-6, a vari-

ant that appears to have little or no association with the ADH enzyme activity.

In this situation, unlike that for SNP-1, the choice of the mean related hyperpa-

rameters has only a marginal effect on the Bayes factors and that, irrespective of

the values that are chosen, the Bayes factors remain small. The plots of figure

5.6 are reassuring in that with reasonable choices of prior values apparent true

associations can be found, but irrespective of prior choices variants that show

little association in the sample data will not be mistakenly interpreted as being

in association with the phenotype.
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Careful consideration must also be made for the hyperparameters ν0 and σ2
0,

that are used for describing the prior variance. In order to produce reasonable

Bayes factors the choice of ν0 should be as low as possible, as a higher value

represents increased confidence in the prior distribution of the within-group vari-

ance. Figure 5.7(a) represents the sensitivity of the Bayes factors to the variance

hyperparameters for a SNP that appears to be associated with the phenotype.

It can be seen that the plot appears to consist of curved segments, with it being

suggested that an increase in Bayes factor would be obtained by using a lower

variance of the within-group variance. This is a result of the within-group vari-

ance being substantially lower than the between-group variance, which has been

used to fix the σ2
0 hyperparameter of this test. This is in itself an indication that

there may be a true effect at this SNP, however, the Bayes factors are generally

suggestive of an effect at most combinations of ν0 and σ2
0. Figure 5.7(b) illustrates

the sensitivity of the Bayes factors at a SNP with little apparent association with

the phenotype, and displays a pattern that is more centred on the overall variance

of the data than was displayed for SNP-1. Irrespective of the choices made for

the prior variance, the Bayes factors remain reassuringly low at this SNP.

5.7 Conclusions

The analysis presented of the ADH data set results in similar conclusions to those

previously reported by Templeton et al. (2005) and Aquadro et al. (1986). The

three SNPs that have been found to be strongly associated with the ADH pheno-

type are found irrespective of whether a single SNP-based or Treescan approach

is used, or whether the strength of association is tested using p-values or Bayes

factors. It is also observed that the use of haplotype-based analysis is inappro-

priate for this data set, due to the small sample size that results in low power at

detecting any potential associations.

The three SNPs that have been found to be associated with the phenotype

are, however, in strong linkage with each other, and so there may be only one

true causative variant. The most likely candidate for true association is the

variant with the strongest association, namely SNP-1. There are no significant

associations at the second round of splits in any of the forms of the analysis.
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However, this could potentially be a result of there being a small sample size and

therefore there is low power to detect multiple SNP effects.

Detailed differences between the Treescan and single SNP-based approaches

are difficult to ascertain for this data, as there are only a few instances of repeat

mutations on the reconstructed haplotype tree. It can be seen though that a

stronger effect of SNP-12 is found using the Treescan approach, however, figure

5.5 shows that this SNP also appears to be unassociated with the phenotype

at another location on the haplotype tree. The conclusion that can be made

regarding this situation is open to interpretation, and it can reasonably be argued

as a benefit or indeed a drawback of the Treescan method that the two instances

of the mutation have been differentiated in this way. The argument of it being

a drawback does though seem to be a more reasonable position, as a strong

association at this SNP is nonetheless found using both p-values and Bayes factors

when using a single SNP approach.

The comparison between the Treescan and single-variant approaches can also

be useful in illustrating the potential benefits of a Bayes factor approach over

the standard use of p-values. SNP-12 is found to have p-values differing by 220%

between the two approaches, even though there is only a small difference in the

allocation of phenotypes under the two scenarios. The Bayes factors, on the

other hand, are more robust to such small adjustments of the observed data,

and the Bayes factor only changes by 1.65% from 1302.4 to 1323.9. Although

the Bayes factors are indeed sensitive to the hyperparameter values used for the

prior distribution, the default choices of PheGe-Find have been demonstrated to

result in reasonable values.



Chapter 6

ADRA1A Data

6.1 Background of Data

The α1A adrenergic receptor gene (ADRA1A) is located on chromosome 8 of the

human genome, and is involved in the contraction (vasodilation) and expansion

(vasoconstriction) of blood vessels. As a result of these actions, the ADRA1A

gene has been targeted in the treatment of hypertension and benign prostatic

hyperplasia (BPH) through the use of alpha-adrenergic antagonist drugs such as

Prazosin (Mancia et al., 1980). The effect of these drugs in the treatment of

hypertension is that the drug inhibits the vasoconstriction effects of adrenaline

and noradrenaline, thus reducing blood pressure.

As a consequence of the use of drugs that target the ADRA1A gene having the

effect of reducing blood pressure, it is plausible that there may be genetic variants

in the region of this gene that are positively associated with hypertension/blood

pressure. A large collaborative GWAS attempting to find loci associated with

blood pressure (Newton-Cheh et al., 2009) explicitly examined the association of

common variants in the region of the ADRA1A gene due to the plausible associa-

tion. However, no results exceeded chance expectations. Other smaller fine-scale

studies (e.g. Gu et al. 2006) have, however, identified marginally significant, al-

beit of small effect size, associations with variants in the ADRA1A gene with the

outcome of hypertension.

105
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Figure 6.1: Correlation of systolic and diastolic blood pressure readings. The hy-
pertension classifications are illustrated on the plot with the following categories:
N (Green) = Normotensive, MI (Blue) = Mild Hypertensive, MO (Orange) =
Moderate Hypertensive, S (Red) = Severe Hypertensive.

The data available for analysis in this case study are the genotypes of indi-

viduals from the PAMELA (Pressioni Arteriose Monitorate E Loro Associazioni)

study, involving a random sample from the Monza region of northern Italy. In

addition to the genotypes, continuous phenotype measurements of resting Heart

Rates (HR), Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP)

have been recorded. The recorded blood pressure measurements are taken as

the average of three readings over the course of an appointment with a trained

physician, in order to try and reduce the within-patient variability of these mea-

surements. Each measurement can be shown to be approximately normally dis-

tributed, as required for the analysis that follows. Further details of the PAMELA

study and the data involved can be found in both Mancia et al. (1995) and Pad-

manabhan et al. (2010).

Individuals with missing/untyped genotypes were removed from the analysis,

and individuals were also removed from analysis where a phenotype measure-

ment had not been recorded. This resulted in a sample of 1895 individuals with
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(a) Correlation of diastolic BP and heart
rate

(b) Correlation of systolic BP and heart
rate

Figure 6.2: Correlation of blood pressure and heart rate measurements. The
five individuals with valid blood pressure readings but no available heart rate
information are omitted from the plots.

genotypes and both systolic and diastolic blood pressure readings, however, only

1890 of this sample also had a valid heart rate measurement collected. Each

individual had 70 SNPs genotyped, covering 132.045 kb of the region involving

the ADRA1A gene.

Figure 6.1 illustrates the relationship between systolic and diastolic blood

pressure readings for the available subjects. It can be seen that there is a rea-

sonably strong significant positive correlation between the two measurements

(r = 0.74, p-value < 2.2× 10−16), and therefore using a single measurement that

takes into account both the systolic and diastolic readings in combination may

be reasonable. The colouring of the points in figure 6.1 represents a hypertension

classification that is commonly used as a measure that combines the blood pres-

sure readings into discrete categories. The classification of hypertension is given

according to the World Health Organization Guidelines (1999) and Williams et al.

(2004).

The relationships between heart rates and the blood pressure measurements

is illustrated in figures 6.2(a) and 6.2(b). The correlations between HR and SBP

(r = 0.11, p-value = 1.0 × 10−6) and between HR and DBP (r = 0.16, p-value

= 9.6 × 10−13) are both significantly different from zero, albeit relatively low,

suggesting that combining these values into a single measurement may not be
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Figure 6.3: Linkage plot for individuals with systolic and diastolic readings.

appropriate. It is though evident from the plots that there is one individual,

coloured red, with an unusually high heart rate measurement that could be the

result of the data being incorrectly recorded. The analysis of this chapter assumes

that the value has been incorrectly recorded, although if this assumption is not

made and the data is analyzed including this point, the same general conclusions

can be made (results not shown).

6.2 Linkage Plot

Initial phasing of the data using fastPHASE (Scheet and Stephens, 2006) results

in 1252 haplotypes being estimated to cover the 132.045 kb of available DNA for

the systolic/diastolic BP data sets, and 1276 haplotypes being estimated for the

heart rate data set. This represents an unreasonably large number of haplotypes

for the 70 SNPs of the data set, and so the data should be further explored to

determine if there is an approach that can be taken to reduce the number of

unique haplotypes.

Figure 6.3 shows a linkage plot for the systolic and diastolic blood pressure

data sets. The linkage plot produced from omitting individuals who have sys-

tolic/diastolic measurements but no reading for heart rates is extremely similar

to this plot (figure not shown). The shading of the plot is the default of the

Haploview (Barrett et al., 2005) program, with the interpretation of the colours

the same as that which was discussed previously in section 4.5.1.
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Figure 6.4: Recombination estimates from HapMap, and the SNPs typed in the
study (red dots) and those in the HapMap CEU population (blue dots).

There appears to be two distinct high linkage regions shaded red, whilst link-

age between the blocks is low, as reflected in the predominantly white shading.

This would indicate that there are two haplotype blocks separated by a poten-

tial recombination hotspot (Gabriel et al., 2002). The association is not however

perfect within each haplotype block, suggesting that there may be other recom-

bination events occurring at a lower rate within these regions, or that there are

sites exhibiting a degree of homoplasy. For Treescan-based methods to be appro-

priate, haplotypes should be found for areas of high linkage between SNPs since

an underlying tree model of the haplotypes is assumed, and for this reason it is

important to determine where recombination hotspots may exist.

6.3 Estimating Recombination Rates

& Hotspots

6.3.1 HapMap

The PAMELA data does not include SNPs typed for all of the 237 SNPs that have

been defined in the HapMap project (International HapMap Consortium, 2005).
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Figure 6.5: Recombination estimates directly from data.

It is however hoped that most of the essential features of the ADRA1A region

can be captured by the 70 SNPs that are available in the data set. Figure 6.4

shows the pointwise recombination estimates given from the data in the HapMap

project (International HapMap Consortium, 2010), which were calculated using

the interval application from the LDHat (McVean et al., 2002) set of programs.

The 70 SNPs in the data set (red dots) seem to capture most of the main features

of the pattern of recombination, namely the three areas where there are peaks

of recombination rates. There is, however, inevitably some comparative lack of

detail, in particular there is a lack of information that could separate the two

distinct peaks between the positions at approximately 26732.950 and 26739.722

kb.

6.3.2 LDHat

The interval program is also used to obtain recombination estimates directly for

the 70 SNPs that were typed in this study. Due to the composite likelihood

method requiring products of 2-SNP likelihoods across all pairs of SNPs, there is

substantial computational time in estimating recombination rates between SNPs.
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Figure 6.6: Hotspot determination by sequenceLDhot.

In order to lower the time required, various lookup tables are provided in the

LDHat package which can be used instead of calculating a table for all pairwise

comparisons when the sample size is large. fastPHASE estimated 1252 possible

haplotypes when considering the full range of data, however, the largest lookup

table available is for a sample size of 192 haplotypes. Generating a lookup table

for this number of haplotypes would require an unreasonably long period of time,

and so alternative strategies of handling the large number of haplotypes must be

considered.

It has been chosen to sample the potential haplotypes according to their

frequency of occurring in the data set so that the lookup table provided by the

program can be used. Figure 6.5 shows the recombination estimates for the

ADRA1A region using the available SNP data. It can be seen that the main

features of the region are captured by the SNPs typed in the study, with the area

of high recombination being evident.

Although the outputs from LDHat and the Haploview map strongly indi-

cates that there is a recombination hotspot existing near SNPs rs4416829 and

rs1390512 (positions 26732.950 to 26739.722 kb), the existence and location of

any hotspot can be verified using the sequenceLDhot method (Fearnhead, 2006).
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sequenceLDhot explicitly determines the locations of recombination hotspots, by

using an approximate marginal likelihood method and performs likelihood ratio

tests for each possible hotspot position, details of the method of which can be

found in the paper of Fearnhead and Donnelly (2002). The results of applying

sequenceLDhot to the ADRA1A data set are shown graphically in figure 6.6,

where it can be seen that the recombination hotspot noticed previously is again

evident.

Figures 6.3-6.6 show that the position of the recombination hotspot that has

been identified covers SNPs at postions 37 and 38, and so the data is subsequently

split into two haplotype blocks of low recombination, from SNP positions 1 to 36

and from SNP 39 to 70. This results in the total number of unique haplotypes

reducing to 309 haplotypes for the systolic/diastolic data set, and 299 for the

heart rate data. A problem with the haplotype or Treescan approaches is however

illustrated, as it is not possible to include SNPs at positions 37 and 38 without

substantially increasing in the number of unique haplotypes, and thus lowering

the ability to detect any potential causative effects.

6.4 Categorized Analysis

In order to compare the analysis based upon the continuous measurements of sys-

tolic and diastolic blood pressure with the analysis performed by the WTCCC

(2007), the data is dichotomized into hypertensive and normotensive classes. The

classification of hypertension is given according to the World Health Organisa-

tion Guidelines World Health Organization (1999) and Williams et al. (2004),

whereby a subject is classified as hypertensive with either a systolic BP reading

of over 140, or a diastolic BP of over 90, or both. Figure 6.1 illustrates the hy-

pertension classifications. This results in 799 people in the study being classified

as hypertensive to some degree, and 1096 being classified as normotensive.

Hypertension is widely studied and is known to be a risk factor for a wide

range of conditions, such as stroke, cardiac failure and renal conditions (Korner,

2007). Although hypertension is widely used as a categorical variable, the fact

that hypertension is actually defined by two continuous measurements could lead

to a substantial loss of information when an individual is classified as either
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(a)

(b)

Figure 6.7: Single SNP analysis of the dichotomized hypertension data in fre-
quentist (a), and Bayesian (b), settings.

hypertensive or not. A further complication to the use of hypertension as a

categorical variable is the definition as to what constitutes hypertension, and

indeed this definition has differed slightly over time (Korner, 2007). It could be

argued that truly continuous variables should not be dichotomized (Senn, 1997),

however, a two-state classification can be useful in practice in providing guidelines

about levels of blood pressure that may be clinically significant.

In order to analyze the data in a categorical format, different methods are

required compared to the analysis of continuous data. Chi-squared analysis can

be used to calculate p-values to test for an association between the hypertension

status and the genotypes at each SNP, or in a manner analogous to the Treescan

method described in section 1.5.2. A Bayes factor equivalent to each of these

methods can also be performed. Section 3.1 gave details of the Bayes factors

that can be appropriate for analyzing categorical data. For the analysis that

has been done here, a prior sample size for the Beta distribution of 5 has been
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(a)

(b)

Figure 6.8: Treescan-based analysis of the dichotomized hypertension data in fre-
quentist (a), and Bayesian (b), settings, with the recombination hotspot indicated
by dashed lines.

chosen. If the Uniform prior distribution suggested by Balding (2006) is instead

used, this can result in some marginally higher Bayes factors, in particular for

the Treescan-based analysis. This is as a result of very small groups of data being

adjudged to be differentiated from the remaining data, whereas the the Beta prior

can dampen down such effects that may be unlikely to be true associations.

Figures 6.7 and 6.8 illustrate, respectively, the Single SNP and Treescan anal-

ysis of the data, after it has been categorized according to hypertension status.

The analysis that has been performed is for comparing the normotensive indi-

viduals to those with any degree of hypertension. Analysis can also be done

comparing the normotensive group to individuals with severe hypertension, in

order to find any differences between the two most extreme groups. Very similar

conclusions are reached when the data is coded in this way (results not shown).

It can be seen that irrespective of the choice of analysis, there is very little
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(a)

(b)

(c)

Figure 6.9: Standard single SNP tests for systolic (a), diastolic (b), and heart
rate (c) phenotypes.

suggestion that there are any associations between the genotypes and hyperten-

sion status. However, the dichotomizing of the data has resulted in a huge loss

of potentially useful information, and so any true associations between the geno-

type and the phenotypes may have been missed. The following sections treat the

outcomes as separate continuous measurements, and so may be more powerful at

finding any potential causative mutations.

6.5 Single SNP-based Analysis

The single SNP analysis method has the advantage over the Treescan-based anal-

ysis in that it does not require the data to be phased and does not have issues in



CHAPTER 6. ADRA1A DATA 116

(a)

(b)

(c)

Figure 6.10: Bayesian single SNP tests for systolic (a), diastolic (b), and heart
rate (c) phenotypes.

determining if there are recombination hotspots within the data. However, ignor-

ing the tree structure could result in alleles being incorrectly grouped together

if there is a large degree of homoplasy. Results of the frequentist single-SNP

based approach is given in figure 6.9, and the corresponding Bayesian single-SNP

analysis is illustrated in figure 6.10.

A Bonferroni correction to the 5% significance level applied to the 70 SNPs

observed in this data set results in a threshold of 7.14×10−4. This is considerably

higher than a typical threshold used in GWAS, such as the critical level of 5×10−7

used in the WTCCC(2007) study. The lowest p-value that was observed in either

of the three clinical measurements in the Bonferroni analysis was 0.0028, and this

is substantially higher than the required significance level of 7.14×10−4. As such,
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(a)

(b)

(c)

Figure 6.11: BimBam single SNP tests for systolic (a), diastolic (b), and heart
rate (c) phenotypes.

based upon a Bonferroni-corrected analysis, it would be concluded that none of

the SNPs have a significant effect on any of the three clinical measurements in

this data set.

As the uncorrected p-values for the single SNP analysis are identical to the p

values obtained for the Bonferroni analysis, the lowest p-value obtained is again

0.0028 for the SNP rs11782159. This SNP results in the lowest corrected p-value,

using the permutation procedure as detailed in sections 1.5.2 and 4.4, of 0.206.

As this corrected p-value is higher than the threshold of 0.05 that is required for

a SNP to be declared significant in this analysis, it would again be concluded

that none of the SNPs have a significant effect on any of the clinical responses

use in this data set.
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Applying the Bayes factor method to the equivalent groupings used in the

single SNP and Bonferroni-based methods, results in the 6 SNPs in table 6.1

being found that have a Bayes factor larger than 5. The Bayes factors have been

calculated based upon the default settings of the PheGe-Sim program, with the

hyperparameters being set according to the sample mean and variance of each

data set. It can be seen in table 6.1 that the size of the Bayes factor varies

considerably according to whether the additive, recessive/dominant or general

model is used. For example, for the SNP rs17055925, there would appear to be

very little effect if either the general or the recessive/dominant model is used, but

an additive model suggests that there is some slight evidence of an effect of the

SNP on the systolic blood pressure measurement. The means and size of each of

the groups is shown in table 6.1, and it can be seen that, although the difference

is small, there does seem to be an increasing blood pressure measurement with

each copy of the B allele. In practice, however, the differences in effect size are

likely to be too small to have any meaningful consideration in terms of the health

of an individual.

The Bayes factors of BimBam were also calculated for each SNP individually,

with the priors chosen being the default priors used by BimBam. Although

consistently lower, the pattern of results (figure 6.11) is similar to the Bayes

factors computed by PheGe-Find, with similar indications that there may be

small effects at some of the SNPs.

6.6 Treescan & Haplotype Analyses

Analyses based on the Treescan methods are carried out separately on the two

haplotype blocks of data; from SNPs rs4732845 (1) to rs11779546 (36), and from

SNPs rs4732908 (39) to rs537220 (70). A tree is constructed for each block, using

either the parsimony, fitch or maximum likelihood methods. The results are given

for the parsimony method in figures 6.12 and 6.13, although the use of either

of the other two construction methods gives comparable results. If there was

no recombination and the infinite-sites model assumption was true, the results

from the Treescan-based methods would be identical to the equivalent single

SNP method. However, the trees constructed show a high degree of homoplasy
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(a)

(b)

(c)

Figure 6.12: Standard Treescan results for systolic (a), diastolic (b), and heart
rate (c) phenotypes, with the recombination hotspot indicated by dashed lines.

with SNPs mutating in many positions on the tree, and this results in different

conclusions compared to the single SNP-based analysis. Only one of the three

SNPs found with a Bayes factor greater than 5 (or corrected p-value less than

0.05) was also found with comparable criteria in the single SNP analysis, albeit

with a stronger signal than was observed in the single SNP Bayes factor method.

The large number of repeat mutations on the reconstructed haplotype trees

make it difficult to ascertain which SNPs may indeed affect the phenotype re-

sponses. In addition, even if a SNP is adjudged to be associated with a response,

it can be difficult to determine if this is an artificial feature resulting from the

tree that was constructed. The strength of associations according to haplotype-

based methods can also be assessed. However, because of the large number of
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(a)

(b)

(c)

Figure 6.13: Bayes factor Treescan results for systolic (a), diastolic (b), and heart
rate (c) phenotypes, with the recombination hotspot indicated by dashed lines.

low frequency haplotypes, there is low power to detect any differences and as

such no strong effects are found. In the original Treescan paper, haplotypes

of frequency less than five were removed in an attempt to decrease the risk of

falsely reconstructing haplotype trees, and therefore increase the chance of find-

ing causative associations. Such analysis has been applied to the ADRA1A data

set, but there was also insufficient evidence of any associations based upon the

resultant p-values and Bayes factors (results not shown).
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(a) SNP rs4732853 (11) (b) SNP rs1048101 (23)

Figure 6.14: Sensitivity to hyperparameters of overall mean.

6.7 Sensitivity Analysis

The sensitivity of the Bayes factors to the prior hyperparameter choices should

be assessed, as it may be that the Bayes factors discussed above could be highly

dependent on these choices. The prior values that have been used in the analysis

are the default values of PheGe-Sim, however, sensible prior information from

other sources could also be used for this data set.

The parameter µ0 could be chosen according to guidelines about average val-

ues for the clinical measurement in question. For the systolic blood pressure a

value of 120 mmHg would be reasonable, as this is defined as being approximately

the upper level of the optimal category of systolic blood pressure (Williams et al.,

2004; World Health Organization, 1999). The choice of this value is however sub-

ject to debate as it is also known that the blood pressure of an individual will

be related to other non-controllable factors, such as age and gender. For similar

reasons to the systolic blood pressure measurements, the prior mean for a dias-

tolic blood pressure can be chosen to be the upper value of the optimal category

of 80 mmHg. Resting heart rate measurements will also be subject to various

uncontrollable factors, although a value of 70 bpm is reasonable as this represents

the approximate average reading of a healthy adult (British Heart Foundation,

2010; American Heart Association, 2010). Analysis has been carried out using
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(a) SNP rs4732853 (11) (b) SNP rs1048101 (23)

Figure 6.15: Sensitivity to hyperparameters of within-group variance.

these hyperparameter choices in place of the default setting for µ0 in PheGe-Sim,

and the patterns of association are similar for each of the SNPs being assessed.

There are, however, slight differences in the Bayes factors, with the Bayes factors

tending to be marginally lower than when using the values set according to the

summaries of the sampled data.

The effects of the µ0 and κ0 hyperparameters for the mean are assessed to-

gether in figure 6.14, for two SNPs and their association with the heart rate

phenotype. It is evident that the patterns of association are similar for both a

SNP that appears to have some association with the phenotype (6.14(a)); and for

a SNP with little apparent association (6.14(b)). It can be seen that the Bayes

factors are strongly affected by the µ0 parameter, and that choosing a prior value

far away from the mean of the data can result in a substantial reduction of the

Bayes factor. The hyperparameter κ0 has only a relatively small influence on the

Bayes factors, due to the large sample size of this data set.

Figure 6.15 illustrates the sensitivity of the Bayes factors to the ν0 and σ2
0

hyperparameters of the within-group variance σ2, for the same two SNPs as used

in figure 6.14. As the prior for the mean has been centred on the sample mean,

reducing the σ2
0 value indicates more confidence in the location of the distribution

and therefore results in higher Bayes factors. The ν0 parameter has a relatively

small effect, but increasing it will steadily increase the Bayes factors due to this
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indicating an increase in the belief about the accuracy of the prior distribution.

If, however, the prior mean of the data were to be far enough away from the true

data mean, then the Bayes factors would be increased by increasing the variance,

so that the true mean is covered by the prior distribution.



Chapter 7

Results from Simulated Data

In this Chapter, the PheGe-Sim application of Chapter 2 is used to simulate

genotype-phenotype data on which the methods of association detailed in Chapter

4 can be applied. In order to choose suitable parameters for the construction of

the simulated data, the data set of Chapter 6 can be used to provide reasonable

initial estimates. The details of the realism involved in the choices of coalescent

parameters is though not of primary concern, as the most important consideration

is that the generated data sets will display similar properties to that of real data

with appropriately determined phenotypes. The estimates from the real data are

therefore adjusted in an attempt to more closely mirror the true patterns of the

resultant linkage plots.

7.1 Parameter Estimates

The choice of parameters for the simulations are intended to reflect the real data

sets in Chapters 5 and 6, and as such, where possible, initial estimates are taken

from these data sets. It should however be considered that, for both the es-

timation of the mutation rate and the parameters of the gamma distribution,

estimates from the data are liable to underestimate the true values since they do

not take into account the potential homoplasy involved. The primary consider-

ation is to get a linkage plot that is similar in appearance to that of real data,

and for a similar number of segregating sites (approximately 40) to be involved

125
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for each variation in parameter choice.

7.1.1 Estimation of Mutation Rates

The choice of the mutation rate θ for use in the simulations is dependent on

the other input parameters that can be chosen, as a change in the finite-sites

distribution (section 7.1.3) or the rate of population expansion (section 7.1.4) will

necessitate a different mutation rate to obtain the same number of segregating

sites on average. The simulations are intended to generate approximately the

same number of segregating sites as the real data sets, whilst also displaying

similar patterns of linkage between these sites.

In order to estimate the mutation rate for each of the real data sets, the

Watterson estimator (Watterson, 1975) can be used;

θ̂W =
SN∑n−1
i=1

1
i

, (7.1)

where SN represents the number of segregating sites and
∑n−1

i=1
1
i

is the (n− 1)th

harmonic number. This can be implemented through the use of the theta.s func-

tion of the R package ape (Paradis et al., 2004). In Chapter 6 it is found that

there is strong evidence of a recombination hotspot existing in the ADRA1A data

set. To avoid a misrepresentative mutation rate for the simulation of one haplo-

type region of low recombination, the estimate is therefore obtained separately

for each haplotype block either side of the recombination hotspot. The estimators

Table 7.1: Mutation rate estimates. Simulated data results are averages over all
the 2400 simulations.

DataSource
Number
of Sites

Number
of unique
haplotypes

Mutation
Rate
Estimate

ADRA1A LHS 36 196 6.15
ADRA1A RHS 32 113 6.04
D. melanogaster 22 41 5.14
Simulated data 37.39 59.19 8.04
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for each of the real data sets are displayed in table 7.1.

The estimates of the mutation rates are however likely to be underestimates

of the true underlying mutation rates, as repeat mutations will not be accounted

for by the estimates from the Watterson’s estimator since it is derived assuming

an infinite sites model. This situation is demonstrated in the simulated data

sets, whereby a θ of 25 has been chosen to generate, in combination with the

other parameters, representative linkage plots. Table 7.1 shows that the average

estimate of the mutation rate by θ̂W is only 8.04, considerably less than the

true value of 25. The estimates from the simulated data are slightly higher than

those of the real data sets, but seem reasonable when evaluating the resultant

linkage plots. It can also be seen from table 7.1 that there are a larger number of

unique haplotypes than for the average of the simulated data. However, most of

these haplotypes are of low frequency, and so there will be low power to detect

differences between the phenotypes at these rare haplotypes.

7.1.2 Estimation of Recombination Rate

Estimation of the recombination rate ρ for the simulated data can be based

directly upon estimates that are obtained using the real data sets of Chapters 5

and 6. The LDhat application by McVean et al. (2002) can be used to provide

estimates of recombination rates for the D. melanogaster and ADRA1A data

sets. A brief description of the method is given in section 5.3, and the resultant

estimates obtained are displayed in table 7.2. Estimates were not obtained for the

Table 7.2: Recombination rate estimates. The ‘area’ is defined as the area un-
derneath the estimated recombination rate plots for each data set (Chapters 5
and 6), and the ‘length’ is the length of the region of data being considered.

Data Source Area Length Average
Estimate

ADRA1A LHS 35.09 78.67 0.45
ADRA1A RHS 15.95 43.7 0.36
D. melanogaster 20.98 11.85 1.77
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(a) ρ = 0 (b) ρ = 0.5 (c) ρ = 2

Figure 7.1: Simulated linkage plots for recombination rates of 0 (a), 0.5 (b) and
2 (c).)

simulated data set, as these rely on information being known about the relative

site locations of each SNP, which has not been simulated, although this could in

theory be done.

As noted in Chapter 6 and in the previous section, a recombination hotspot

between two haplotype blocks of low recombination is found to occur in the

ADRA1A data set. The simulations could be coded to mirror this effect by

allocating a single position to be the location at which a large proportion of the

recombination events occur. Although methodologically and computationally

feasible, this approach would require a high recombination rate in an attempt

to obtain the two near-independent haplotype blocks seen in the real data set.

This would result in a large increase in simulation time, since the time taken to

simulate even a single ARG substantially increases with a moderate increase in ρ.

The effect of this is very similar to that of just pasting together two independent

simulations as shown in section C.3. It was therefore decided to focus on creating

a single haplotype block with relatively low recombination occurring uniformly

along the gene segment. A recombination rate of 0.5 has been chosen to obtain,

on average, 3.33 recombination events for each simulation, in order to obtain

linkage consistent with the real data sets.

As with the estimation of θ discussed in section 7.1.1, the recombination esti-

mate can be misinterpreted in the presence of a finite-sites model of mutation, as

both features can result in the same apparent patterns of linkage. Figure 7.1 illus-

trates the linkage between sites that is obtained, using three different values of the

recombination parameter. As expected, it appears that there is some tendency

towards lower linkage between sites as the recombination parameter increases as
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(a) Gamma Left (b) Gamma Right

Figure 7.2: Estimated Gamma distributions fitted to the ADRA1A data of Chap-
ter 6; for the left (a) and right (b) of the recombination hotspot.

indicated by the increase in lighter coloured squares. The effect is however rela-

tively small, and section C.2 shows that recombination alone struggles to recreate

sufficiently realistic patterns of linkage.

7.1.3 Estimation of the Gamma Distribution

for Finite Sites

Approximate values of the shape (α) and rate (β) parameters of the Gamma

model for finite sites can be obtained directly from the real data sets of Chap-

ters 5 and 6. The number of repeat mutations that occur on each reconstructed

haplotype tree is counted, and the resultant distribution of the counts can be

used to estimate the required parameters of the Gamma distribution. As with

many of the other simulation parameters, the ADRA1A data set of Chapter 6

must be split into two haplotype blocks either side of the apparent recombination

hotspot. If the hotspot is ignored, the Gamma distribution becomes extremely

Table 7.3: Estimates of the parameters involved in the Gamma distribution for
finite sites. Simulated data results are averages over all the 2400 simulations.

Data Source Shape (α̂) Rate (1\β̂) Scale (β̂)
ADRA1A LHS 1.609 0.187 5.353
ADRA1A RHS 4.383 0.597 1.676

D. melanogaster 8.8 6.4 0.16
Simulated data 5.636 2.028 0.530
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(a) Infinite sites (b) Reasonable rate of homoplasy (c) Rate of homoplasy too high

Figure 7.3: Simulated linkage plots for finite sites, as the Gamma model changes.

right skewed, with an unrealistically high number of repeat mutations being es-

timated to occur on any reconstructed haplotype tree. Figures 7.2(a) and 7.2(b)

illustrate the distribution of mutation counts for the left and right-hand side of

the recombination hotspot. Two of the SNPs from the data set are omitted,

as their inclusion into either of the haplotype blocks results in the unrealistic

situation of upwards of 50 instances of repeat mutations at a single site.

The R function fitdistr by Venables and Ripley (2002) is used to obtain max-

imum likelihood estimates of the (α) and (β) parameters, and the fitted distribu-

tions are shown with the solid lines on figure 7.2. A similar process was employed

for the D. melanogaster data, although there are far fewer repeat mutations and

a substantially lower sample size. The estimated parameters for the real data

sets are given in table 7.3.

It can be seen that there is some difference between the shape and rate pa-

rameter estimates for either side of the recombination hotspot of the ADRA1A

data set. The accuracy of the method of obtaining estimates of the parameters

of the Gamma distribution through using the reconstructed haplotype trees can

be checked using the simulated data sets. For the simulated data sets, the α and

β parameters can be estimated using the same procedures as for the real data,

and the averages of these over all the simulations are displayed in table 7.3. It

can be seen that the estimates correspond closely to the values that were used

for the simulations, whereby the shape and rate parameters were specified as 5.5

and 0.5, respectively.

The usefulness of the Gamma model of finite sites can be seen when compar-

ing the linkage plots that can be obtained to those of an infinite sites model, as in
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(a) β = 0 (b) β = 10 (c) β = 50

Figure 7.4: Simulated coalescent trees for various rates of population expansion.
There are different scales on the y-axis for each of the plots, due to an increasing
level of population expansion resulting in the coalescence process completing
earlier. Changing the level of population expansion also changes the shape of
the plots, with an increasing level of expansion resulting in a smaller ratio of the
terminal and internal branch lengths.

figure 7.3. The model of infinite sites shown in figure 7.3(a) shows an overabun-

dance of blue squares in comparison to that of both haplotype block regions of

the ADRA1A data set. There is also a much more block-like structure imposed

upon the linkage, and there are very few squares that are intermediate shades of

red. The other extreme (figure 7.3(c)) is where the rate is too high resulting in

far too many light red and white coloured squares, suggesting that the gamma

distribution is set too high.

7.1.4 Estimation of the Population Expansion Parameter

The β parameter relating to a theoretical exponential population expansion can-

not simply be directly estimated from real data, and is therefore determined, in

combination with the other parameters, so that the simulated data most closely

matches the real data. It is likely that there are complicated demographic events

that have occurred in human history, such as migrations between populations

and bottlenecks of population size. Other simulators of the coalescent process

can accommodate such events, however, only a simple exponential population

expansion is assumed in these simulations.
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Figure 7.4 represents three realizations of the coalescent process (with no

recombination) for different values of the population expansion parameter. Figure

7.4(a) illustrates the extreme scenario of no population expansion occurring at

all, and it can be seen that the total length of the tree is dominated by long

ancestral branches. This results in many of the mutations occurring on these

branches and therefore there will be many mutations, particularly for an infinite

sites model, that are perfectly correlated with each other (figure 7.5(a)).

The other extreme situation is that of a high rate of population expansion,

as illustrated in the coalescent plot of figure 7.4(c) and the linkage plot of figure

7.5(c). It can be seen that the scale on the y-axis is shorter than for the situation

of no population expansion, reflecting the decreased time (in coalescent units)

that is taken to reach a most recent common ancestor. In addition, the terminal

branches are longer in comparison to the internal branches than is the case when

there is no population expansion. In an extreme scenario, the tree will become

more and more star-like as the population expansion parameter increases, until

all the lineages are effectively independent from each other. It can however be

seen from figure 7.5(c) that even this level of population expansion (β = 50)

results in SNPs becoming more independent from each other, as indicated by the

increasing prevalence of white coloured squares in the linkage plot. A further

consideration when increasing the value of β is that an increase in the mutation

rate, and possibly also the number of terminal nodes, will be required to obtain

approximately the same number of SNPs. For the examples in figure 7.4, table

7.4 shows different choices of the mutation rate θ, and number of terminal nodes

n, for the different β values.

Table 7.4: Adjustment of mutation rate and the number of terminal nodes for
different values of population expansion.

Figure β Mutation Rate (θ) Terminal Nodes (n)
7.4(a) 0 10 250
7.4(b) 10 25 250
7.4(c) 50 50 500

The coalescent tree of figure 7.4(b), and the linkage plot in figure 7.5(b),
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(a) β = 0 (b) β = 10 (c) β = 50

Figure 7.5: Simulated linkage plots for population expansion rates of 0 (a), 10
(b) and 50 (c).

illustrate a situation where the value of β has been set as 10. In this situation,

in combination with suitable choices for the other parameters, the linkage plot

most closely visually resembles that of the real ADRA1A data set of Chapter 6.

This can also be seen when comparing the proportions of each colour present in

the real and the simulated data sets.

7.1.5 Choice of Other Parameters

In order for the comparisons between the methods involved in finding causative

mutations to be fair, all the association methods and tree construction options

of Chapter 4 are tested on every simulated data set.

The choices as to how many causative mutations there are and their corre-

sponding effect size(s) are allowed to vary, with the effect size being given as a

percentage of the within group standard deviation, σ. The effect sizes chosen

represent mutations that are; 20%, 40%, 60% or 80% of the standard deviation.

The effect of two causative mutations is also explored, with the effect size of each

mutation being allocated to be the same. Under the finite-sites assumption, the

effect of the choice as to whether a mutation is causative in all parts of the tree

(AC), or only on a specific lineage (NAC), is also assessed. It would be expected

that Treescan-based methods would perform better than single-SNP type anal-

ysis in the NAC situation, but would perform worse if the AC assumption is

specified.

The realized number of segregating sites is a result of a complex relationship

between many of the parameter choices, including: the mutation rate, the rate

of population expansion, and the degree of homoplasy that has been specified.
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Table 7.5: Summary of simulation parameters.

Variable n θ β ρ Γα Γβ num.pop
Value 250 25 10 0.5 5.5 0.5 2000

where n = Number of terminal nodes, θ = Mutation rate, β = Population ex-
pansion parameter, ρ = Recombination rate, Γα = Shape parameter of Gamma
distribution, Γβ = Scale parameter of Gamma distribution, num.pop = Simulated
population size

In addition, there is also the stochastic variation between different runs of the

simulation. A change in any one of these parameters will require a change in

the others to obtain the same average total number of segregating sites, and so

the calibration of all the parameter choices must be made so as to obtain an

average number of mutating sites similar to that of the real data sets. This has

been achieved with the parameter choices used in the preceding sections, as the

average number of SNPs for all the simulations that have been performed is found

to be 37.39. This is slightly higher than the corresponding number of sites of the

real ADRA1A data set, which has 36 and 32 segregating sites for the left and

right hand sides of the recombination hotspot. However, this is, in part, due to

there also being a slightly higher rate of mutation in the simulated data (section

7.1.1).

An additional parameter, n, must also be specified. This parameter controls

the number of non-unique (in terms of distinct haplotypes) terminal nodes of

the ARG, and as such its specification depends on the combination of the other

chosen parameters. The resultant linkage patterns are however reasonably con-

stant at different values of n, as each additional terminal node will on average

account for only a relatively small increase in the total length of the ARG, since

it typically attaches close to the tips of the existing ARG if n is sufficiently large

and β is comparatively small. There will therefore only be a small chance of an

increased number of mutations occurring that could affect the linkage within the

haplotypes. For the simulations that follow a value for n of 250, in combination

with the other specified variables, results in reasonable patterns of linkage.
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To remain consistent with the ADRA1A data set a sample size of 2000 is

chosen for each of the simulations. Unlike the standard coalescent, whereby the

sample size is used to construct the ARG for each terminal node, the sample size

used in PheGe-Sim is used to sample the terminal nodes of the ARG according

to the frequency with which they occur. This is more efficient computationally as

less information is being retained in the construction of the ARG, in this case for

250 terminal nodes as opposed to the 2000 that the standard coalescent model

would require. The resultant linkage plots in this approach are largely unaffected

compared to the standard coalescent approach, as few mutations will be predicted

to occur on the short distances of additional terminal branches.

The sample size used will have an impact on the time taken to run the simula-

tions, particularly for the permutation procedure used in the single SNP method

of association. Changes of the sample size would require alterations of the other

parameters to obtain similar patterns of linkage, primarily altering the propor-

tion of blue squares in the linkage plots that can arise through small sample sizes

of particular SNP combinations. The power of all of the methods at detecting

causative mutations will clearly increase with an increase in sample size, and

correspondingly decrease with a reduction of sample size.

Table 7.5 summarizes the choices of parameters used for the simulations that

follow. As noted throughout this chapter, different combinations of parameters

could reasonably be used to obtain similar patterns of linkage. However, it will

been shown that the parameters that have been chosen provide a good description

of the real data.

7.1.6 Comparisons with Real Data

Although substantial efforts have been made in order to make the simulated data

as realistic as possible, there are inevitably some differences between the analysis

of the real and simulated data sets. The first difference is that the simulations

have used known haplotypes, whereas the real data required phasing of the geno-

types to obtain inferred haplotypes. The reasoning for the omission of phasing

the simulated genotypes in the simulations is that, as commented on previously in

section 1.5.1, the reconstruction of haplotypes is generally a reasonably accurate
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(a) (b) (c)

Figure 7.6: Simulated linkage plots for the final parameters chosen for the sim-
ulations (a); and the linkage plots of the LHS and RHS of the ADRA1A data
set.

procedure for tightly-linked SNPs. A more practical consideration in choosing not

to phase simulated data is that the haplotype-estimation procedure can involve

substantial computational time.

In addition to the assumption of perfectly phased haplotypes, there is also

the assumption in the simulated data that the boundaries between distinct hap-

lotype blocks have accurately been determined. In the real data set available to

this study, the recombination hotspot and block-like structure of the haplotypes

is clearly apparent, both visually in a linkage plot and through the criteria used

when applying the program SequenceLDhot (Fearnhead, 2006) in determining

hotspots. However, this will not always be the case for data sets, and in the

available data there is little indication as to how accurate the hotspot determi-

nation procedure could be. In a hypothetical situation, it can be seen that the

effect of joining together two entirely independent haplotype blocks will result in

linkage patterns similar to that of the true observed data (section C.3).

A pragmatic view is taken of the parameter choices, as the specific choice of

parameters is taken to be an issue that is not of interest in itself, but merely

useful as a mechanism for producing simulations that reflects some features of

Table 7.6: Summary of colours used in linkage plots.

D′ < 0.4 0.4 ≤ D′ < 0.7 0.7 ≤ D′ < 1 D′ = 1
LOD < 2 white white white blue
LOD ≥ 2 green orange pink red
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Figure 7.7: Percentages of each category of linkage for an example of ten simulated
data sets. The true proportions for the LHS and RHS of the recombination
hotspot are indicated at the LHS and RHS of the plot, respectively.

the real data. The linkage plot of figure 7.6(a) does however appear to support

the belief that features of the real data are indeed being captured, as visually at

least it appears that the simulated data set is similar in comparison to each of the

haplotype blocks of the ADRA1A data set. A summary of the proportion of each

colour present in the linkage plots can be obtained, and this can provide a further

illustration of the similarities between the real and simulated data sets. Figure

7.7 illustrates the comparison between the averages of each colour (table 7.6) for

each simulation, and the true proportion given in each haplotype block of the

ADRA1A data set. Although broadly similar, there are some differences between

the real and simulated data: most notably, in the simulations, the proportion

of the pink group tends to be underestimated and the proportion of the orange

group is slightly overestimated.
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Figure 7.8: Rpanel for illustrating simulation results.

7.2 Results of Simulations

The various association methods, and approaches in determining if a mutation

has been correctly identified, have been summarized through the use of another

interactive Rpanel, as shown in figure 7.8. The use of Rpanel in this setting

enables different approaches to be easily compared, and facilitates the collation

of results of simulations that have been run on multiple computers. Figure 7.9

shows the key used for plotting the results of each method, where the colouring,

line types and shape of the points have been chosen to represent the connections

between the different approaches.

In addition to the parameters chosen above, the results of each association

method is compared under four different criteria. In the plots of the results in

section 7.2, the models of causative mutations used for each of the plots is as

follows:

(a) Single ‘All Causative’ and Additive mutation

(b) Single ‘All Causative’ and Dominant mutation

(c) Single ‘Not All Causative’ and Additive mutation

(d) Single ‘Not All Causative’ and Dominant mutation

(e) Two ‘All Causative’ and Additive mutations
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Figure 7.9: Plotting key for the results of the simulations, where the abbreviations
used are: Tsc = Treescan, Pars = Parsimony, MaxL = Maximum Likelihood,
Fitc = Fitch, Bay = Bayes factor approach, BIM = Bimbam approach, SNP =
Single SNP method, Bonf = Bonferroni Correction, HAP = Haplotype association
method, (B) = the ’branch correction’ approach. Note that the found results for
both the ‘Treescan’ and the ‘Treescan branch’ approaches will be identical, and
thus only appear as one line in the relevant plots.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.10: Proportion of correctly found SNPs across the six causation models,
for the Treescan method when using the parsimony (circles), maximum likelihood
(squares) and fitch (triangles) methods.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.11: False discovery rates for found SNPs across the six causation models,
for the Treescan method when using the parsimony (circles), maximum likelihood
(squares) and fitch (triangles) methods.
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(f) Two ‘Not All Causative’and Additive mutations

Comparisons can be made across each of the different models of causative

mutations. As would be expected, the ability of the methods at finding causative

mutations increases according to the size of the causative mutation, and also

increases when a mutation is allocated to be causative at all locations at which

it appears on the ARG. In general, additive models appear to be easier to detect

than the dominant models, as a result of there being fewer sampled individuals

carrying both forms of a causative mutation. It is also true that, on average,

there is slightly more difficulty at detecting two causative mutations as compared

to the similar one causative mutation models.

The simulations were run on multiple computers using R version 2.9.1, along

with the PHYLIP, Treescan and BimBam applications. Each computer used for

the simulations were equipped with the Windows XP operating system, with

2.19GHz processor speed and 1GB of RAM. For each method and effect size

100 simulations were executed. The time taken for the simulations increased

according to the effect size and whether one or two causative mutations were

chosen, as this will cause more tests of two and three-way associations for both the

Bayesian and Frequentist approaches. The approximate time for single simulation

with all methods of association selected varied from about 30 minutes to 2 hours,

depending on the chosen simulation parameters.

7.2.1 Tree Construction Approaches

Figure 7.10 illustrates the results of the correctly found mutations for each of the

three construction methods applied to the original Treescan method. It can be

seen that there is very little difference in the chance of finding the true causative

mutations between the three phylogenetic methods for each of the six causation

models that are displayed. In order for a fair comparison between the methods,

the False Discovery Rates (FDRs) of each tree construction approach must also

be taken into consideration. As with the percentages of correctly found muta-

tions, the False Discovery Rates of each tree construction method are broadly

in agreement with each other; regardless of whether the ‘branch’ or the SNP

correction method is applied.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.12: Proportion of correctly found SNPs across the six causation models,
for Treescan Parsimony method (solid red line with circles), Bonferroni haplotype
(dashed green line with triangles) and ‘single’ haplotype methods (dashed purple
line with triangles).
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(a) (b)

(c) (d)

(e) (f)

Figure 7.13: False discovery rates for found SNPs across the six causation models,
for Treescan Parsimony method (solid red line with circles), Bonferroni haplotype
(dashed green line with triangles) and ‘single’ haplotype methods (dashed purple
line with triangles)
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As expected the FDR of the branch correction method is substantially lower

than that of the single SNP approach, due to multiple mutations occurring on

branches of the reconstructed haplotype trees. There is, however, the added

consideration that, for the branch correction method, there is no information

relating to which of the SNPs that occur on a branch is indeed causative.

7.2.2 Treescan and Haplotype Comparisons

The Treescan and haplotype-based analysis can be compared in the frequentist

setting, and the results are displayed in figure 7.12. The comparison is to a

parsimony-reconstructed tree (red circles), as the previous section illustrated that

the difference in phylogenetic approaches is small. The initial impression from

the plot is that the haplotype-based approaches are more powerful at finding

the true causative mutations for each of the simulation scenarios that have been

considered. This result is surprising in that it would be expected that the extra

information supplied by the reconstructed tree would provide more power for the

detection of causative mutations. It would however appear to be the case that

the tree-construction methods are reasonably poor at reconstructing the tree, as

a result of the recombination and homoplasy events that occur in the simulated

data. The False Discovery Rates attributable to the haplotype-based methods

are however generally higher than the comparable branch corrected Treescan

approach, apart from possibly for figures 7.13(b) and 7.13(d) representing the two

dominant models of inheritance, when it may be easier to detect differences using

the haplotype approaches. The FDR of the non-branch-corrected SNP assessment

from Treescan is unreasonably high for all the simulations, as a result of the trees

that have been reconstructed containing multiple SNPs on each branch making it

difficult to distinguish between potential causative and non-causative mutations.

Similar comparisons between the different approaches can also be obtained in

the Bayesian-based association methods (results not shown). The interpretation

of the results are similar to that of the frequentist approaches, with comparable

differences in both success and FDRs between the methods.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.14: Proportion of correctly found SNPs across the six causation mod-
els, for parsimony based Treescan (solid red line with circles), Bonferroni SNP
(solid green line with triangles) and single SNP methods (solid purple line with
triangles).
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(a) (b)

(c) (d)

(e) (f)

Figure 7.15: False discovery rates for found SNPs across the six causation mod-
els, for parsimony based Treescan (solid red line with circles), Bonferroni SNP
(solid green line with triangles) and single SNP methods (solid purple line with
triangles).
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7.2.3 Treescan and Single SNP Comparisons

Figure 7.14 illustrates comparisons that can be made between Treescan and the

single SNP correction methods in the frequentist setting. The initial impres-

sion from the plot is that the Bonferroni method is superior to all the other

approaches. However, figure 7.15 illustrates that there are exceptionally high

False Discovery Rates associated with the Bonferroni approach. Although the

Bonferroni approach is generally considered to be over-conservative in its cor-

rection levels when applied to GWAS, in the fine-scale context the reverse is

apparently true. This is due to the linkage that exists between SNPs resulting in

the ‘spill over’ effects of closely-linked SNPs also being strongly associated with

the phenotype of interest. However, unlike the other approaches being consid-

ered there is no natural extension of the Bonferroni correction that could allow for

the consecutive assessment of both SNPs individually and in combination. The

Bonferroni method therefore correctly finds many causative SNPs, but cannot

successfully separate the effects of a causative mutation from other closely linked

non-causative SNPs.

A second feature of the illustrated results is the differences between figures

7.14(a and b) and 7.14(c and d). The differences are largely due to the choice

of whether a mutation is causative in all locations that it occurs in the ARG,

or whether only one lineage is affected by the occurrence of a mutation resulting

in the causative form of a SNP. This approach is in some sense intended to

reflect the penetrance of a mutation, in that not all carriers of a causative form

of a mutation will necessarily have an increased phenotypic measurement. As

would be expected, the performances of each of the methods tends to be worse

in the situation of lower penetrance of the not-all-causative models. There are

though further comparisons to be made regarding the relative effectiveness of

each approach under the two simulated criteria.

In the situations of figures 7.14(a) and 7.14(b), where a mutation is causative

at all locations in an ARG, it can be seen that the single SNP-based methods

perform better than the Treescan approach in terms of finding the true causative

SNPs. It can also be seen from figures 7.15(a) and 7.15(b) that the lowest False

Discovery Rates are also obtained when using the single SNP-based approach.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.16: Proportion of correctly found SNPs across the six causation models,
for the single SNP (solid purple line with triangles), Bayes factor SNP (solid black
line with triangles) and BimBam SNP (solid blue line with triangles) methods.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.17: False discovery rates for found SNPs across the six causation models,
for the single SNP (solid purple line with triangles), Bayes factor SNP (solid black
line with triangles) and BimBam SNP (solid blue line with triangles) methods.
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In the alternative situation where a mutation is only causative at one lineage in

the ARG, it can be seen that the single SNP method performs worse than the

Treescan-based approaches. This would be expected, as the single SNP method

would be collating together individuals with causative and non-causative vari-

ants of the same mutation. Treescan would however construct a haplotype tree

that may be able to separate the same mutant allele into multiple mutations on

different branches. Differences in the groupings of phenotypes may therefore be

possible to detect, and thus the Treescan approach could be more powerful at

finding causative mutations in this situation.

The differences observed between the frequentist approaches are also observed

in the Bayesian setting, albeit with two slight differences. The first of these is

that of marginally higher success rate for the Bayes factor Treescan approach

as opposed to the frequentist method, however this is offset by there also being

slightly higher False Discovery Rates. This is likely in part due to the different

decision procedures used in the two approaches (as described previously in figures

4.6 and 4.7), as much as it is due to inherent differences in the Frequentist and

Bayesian models.

A second difference is that the Bayesian haplotype association method appears

to perform considerably worse than the frequentist Haplotype version. This is due

to the haplotype analyses resulting in rare groupings to be tested for association,

which can result by chance in low p-values. However, these will not be reflected

in large Bayes factors since the priors on the Bayes Factors can be used to reduce

the impact of such situations.

7.2.4 Frequentist and Bayesian Comparisons

Figures 7.16 and 7.17 show the comparisons between the single SNP-based meth-

ods, for the Bayesian and frequentist settings. The results appear to be broadly

similar to each other in all of the simulation settings. There is, however, an in-

dication that the Bayes factors methods are slightly better at finding causative

mutations; particularly for lower effect sizes.

The Bayes factors of Chapter 3 and those used by BimBam are both similar

in their design, although there are some differences in the prior specifications
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(a) Sensitivity of Bayes factors to the
hyperparameters of the overall mean

(b) Sensitivity of Bayes factors to the
hyperparameters of the within-group
variance

Figure 7.18: Sensitivity of simulations to prior choices of the Bayes factors.

that have been made in each approach. Despite this, the results obtained are

broadly similar for the success rate and for the FDR. There is some indication

that BimBam tends to perform better than the Bayes factor approach of PheGe-

Sim. However, as illustrated by figures 7.17(a) to 7.17(d) this is balanced by there

also being higher rates of False Discovery for the BimBam approach. In figures

7.17(e) and 7.17(f) there is a stronger suggestion that BimBam is preferable to

the Bayes factors of PheGe-Sim, which is as a result of the BimBam approach

being more willing to accept a model with two causative SNPs.

7.2.5 Sensitivity Analysis

Although in the PheGe-Sim program the results of the Bayes factors sensitivity

to hyperprior choices is not automatically explored, it is useful to produce the

sensitivity plots for some of the simulations where the true underlying effects are

known.

Figure 7.18(a) demonstrates the sensitivity of the Bayes factors in the simu-

lated data to the hyperparameters, for the prior of the mean for a SNP known to

be causative for the phenotype. It is apparent that the choice of µ0 has a substan-

tial effect on the resultant Bayes factor, although the Bayes factor remains high
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within a reasonable range about the sample mean of the data. In this situation

it appears that the prior sample size suggested by κ0 has relatively little impact

on the Bayes factors, as a result of the large sample size of 2000 being for the

simulations.

For the same true causative SNP, the effect of the ν0 and σ2
0 hyperparameters

are shown in figure 7.18(b). Changing the σ2
0 value corresponds to a reasonable

change in the Bayes factor, although the Bayes factor remains high throughout.

In a similar manner to the value of κ0, the effect of ν0 is relatively small due to

the large sample size that has been used.

The illustration of the sensitivity of the Bayes factors to the prior values for

the simulated data set is similar to that observed in the real data set of Chapter

6. As would be expected, a reduction of the sample size will result in there being

more effect of the priors on the Bayes factors, and this would be apparent if

chosen for the simulations, and is also shown in the small data set of chapter 5.

7.3 Conclusions

It has been shown that the simulation of data sets using PheGe-Sim can reason-

ably represent the real data set of Chapter 6. Fine adjustments could be made

to make the linkage plots of the simulated data more closely resemble that of the

ADRA1A data set. However, given that there will be fluctuations between real

data sets, the simulated data would appear to be within reasonable range of the

real data. If further data sets were to become available, reasonable ranges of the

parameter values (as opposed to just point estimates) could potentially be ascer-

tained, and the accuracy of the method of simulation could be more accurately

verified.

The results of the association methods in detecting causative mutations illus-

trates that there is no method that is most appropriate for all of the six choices

of scenarios. Each method considered has advantages and disadvantages, and the

eventual choice of which could be most useful would be dependent on the prior

beliefs in the various scenarios.

Methods that rely on the construction of haplotypes are accompanied by the

inherent problem that it is likely that it is SNPs as opposed to haplotypes that
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cause changes in phenotype measurement. Identification of haplotypes containing

a causative form of a mutation can be useful, however, if the causative SNP is

not identified then it would be more difficult to explain the underlying basis of

genetic conditions. However, imputation of SNPs that are not genotyped Servin

and Stephens (2007) based upon linkage with other SNPs, is a possible approach

that can be useful in identifying non-genotyped causal variants. In situations

of many low frequency haplotypes there will also be low power to detect any

potential genetic effects. Treescan analysis can allow for the identification of

the SNP upon a haplotype that causes a change in phenotype. However, in

the simulations performed it has been shown through the high FDR that this

approach can struggle to differentiate causative and non-causative mutations that

could be predicted to occur on the same branch of a haplotype tree.

Single SNP methods may have the advantage of identifying specific causative

mutations, however there are also potential problems with their use. The method

of applying a Bonferroni correction has been shown to be flawed for tightly-linked

SNPs, as it cannot differentiate between causative SNPs and those in strong

association. It could be argued that the causative SNP will be the one with the

highest strength of association as determined by the p-value. However, there is

no appropriate method of determining if more than one SNP results in a change

of phenotype. A single SNP permutation approach can be useful in determining

causative associations, however, the use of p-values limits the flexibility in testing

various models of association that can have an impact particularly at small effect

sizes. This is a real issue since most SNPs so far detected to be involved in

complex diseases appear to have relatively small effects.

The use of single SNP Bayes factors tests from Chapter 3, and also those of

BimBam, appear to be relatively successful at identifying true causative muta-

tions without also identifying large numbers of false positives. This is in part due

to two or more SNPs being tested together, and also due to it being possible to test

for multiple models of inheritance. However, for complex diseases it is plausible

that there is incomplete penetrance of causative mutations, as has been simu-

lated using the ‘Not All Causative’ setting. In this situation, a Treescan-based

approach can be useful at separating the causative and non-causative forms of

mutations. It seems, based upon the simulations, that single SNP and Bayesian
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based methods may be slightly preferable compared to the other approaches.

However, any differences in approaches should also be assessed using real data

sets, to assess any differences that are not apparent in the simulated data.

7.4 Conclusions

The primary conclusion that can be made regarding the data available on the

ADRA1A gene is that there are no strong associations present in the gene with

any of the phenotype measurements of heart rate or blood pressure. This conclu-

sion is similar to that made by the WTCCC’s (2007) GWAS, where the associa-

tion had been tested with the categorical outcome of hypertension. Newton-Cheh

et al. (2009) also found no significant effects with hypertension or blood pressure

readings, commenting on the lack of association at the ADRA1A gene in partic-

ular due to the region being known to be targeted by anti-hypertensive drugs.

There are numerous reasons why no strong associations have been identified, and

the explanation that there are indeed no true associations is entirely plausible.

However, it is also known that the phenotypes, of blood pressure in particular,

are notoriously difficult to measure accurately. This is as a result of the blood

pressure and heart rate of an individual being highly variable between measure-

ments, and even though the study protocol has tried to minimize the effects of

this a moderately sized genetic effect can be masked by this variability. Further

to this, there are known environmental effects on hypertension and blood pres-

sure, such as stress, diet and exercise (Korner, 2007), such that real but small

genetic effects can effectively be lost within a sea of noise. It is also feasible that

the ADRA1A gene interacts with other genes in some way, and assessment of an

effect in each gene individually does not yield sufficient information for positive

associations to be discovered.

Although no strong associations have been identified, the analysis in this

chapter can provide an insight into some of the various strengths and weaknesses

of the association methods under consideration that would not be possible using

only simulated data. Arguably the most relevant of these is the extra effort

required to construct a haplotype tree for the Treescan-based methods, with the

first related issue being that regions of low recombination must be identified
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prior to phasing of the haplotypes. If reasonable haplotype blocks have been

identified, then there is a further complication in the accuracy of the method

used in the construction of the haplotype tree. In this data set, irrespective of

the tree method used, there existed a large number of repeat mutations that

resulted in small and potentially unsuitable haplotype groupings. On balance,

for the PAMELA data, the potential benefits of a Treescan-based approach are

outweighed by the extra effort and difficulty required in running such an analysis.

In addition to the preference of using single SNP-based methods as opposed

to Treescan-based approaches, there is also some indication that the Bayes factor

approach may be more useful compared to the standard use of p-values. This is

particularly evident in the SNPs that do show some degree of association with

any of the phenotypes, in that the strength of a reported association can be

sensitive to the choice of the mutation model that has been used. A Bayes factor

approach can allow for selection over competing models, possibly by averaging

of the Bayes factors for each model, whereas in the frequentist approach this is

more difficult due to issues in dealing with adjustment of p-values as a result

of multiple testing considerations. The Bayes factors can also be useful in their

assessment of groups with small numbers of individuals, in that such associations

are unlikely to be over-interpreted, as the low power to detect associations will

be properly reflected in the size of the Bayes factor. Although the use of Bayes

factors requires the explicit specification of prior information, for this data set

these can be sensibly chosen, and when this is the case, they can have a relatively

minor impact on the results.



Chapter 8

Conclusions & Future Research

The objective of this thesis was to explore methods that can be used for fine-scale

phenotype-genotype association studies. This chapter will provide a summary of

the preceding chapters and the results that have been obtained, before describing

features of the thesis that could potentially be extended or improved upon.

Chapter 1 illustrates the historical context of genetic association studies, and

presents some of the specific challenges that are faced in the context of fine-scale

studies. The coalescent model is introduced as a tool that can be used for de-

veloping methods that are appropriate for both the simulation and analysis of

fine-scale genetic data sets. Methods that have been suggested for the specific

use in fine-scale studies were then introduced. In particular, haplotype-based

approaches and the Treescan method are discussed. The potential to implement

a Bayesian approach as an alternative to the commonly used frequentist method-

ology is then suggested, and possible advantages and disadvantages of such an

approach in the fine-scale genetic association context are discussed.

Chapter 2 then introduced the PheGe-Sim (Phenotype Genotype Simulation)

program that has been developed in the R language, to simulate data with some

of the specific features of fine-scale genotype-phenotype data sets. This program

extends the basic coalescent process, by allowing the possibility of recombination,

population expansion, and a finite-sites model of mutation to be modelled. It is

hoped that inclusion of such features will improve the accuracy of the simulated

data sets, when compared to the real data of Chapters 5 and 6 and fine-scale

157
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association study data sets in general. The procedures involved in allocating

mutations on to the Ancestral Recombination Graph are subsequently discussed,

in addition to the methods used for creating the haplotypes generated as a result

of the mutations.

The novel formulation of the Bayes factors used for PheGe-Sim and PheGe

Find is presented in Chapter 3. All the methods presented use conjugate prior

distributions to obtain exactly computed Bayes factors, which allows for fast

calculation of marginal likelihoods compared to some other possible approaches.

Methods of considering SNPs in combination with each other are also presented,

that retain information relating to the causation model involved.

The PheGe-Find (Phenotype Genotype - Find) application is introduced in

Chapter 4, in which different approaches that can be used for the association

studies are discussed. The methods used for association are also implemented

in the PheGe-Sim application, however, PheGe-Find is capable of reading in,

checking for inconsistencies, and analyzing real data sets from a variety of input

file formats. Methods of constructing the haplotype trees required by Treescan

are briefly explored, as well as the methods of determining if causative mutations

have been correctly found when using simulated data sets.

The association methods that are under consideration for the simulated data

are also used upon the real data sets of Chapters 5 and 6. The data of Chapter 5

represents data from the ADH gene of the Drosophila melanogaster fruit fly that

was initially analyzed by the Nested Clade Analysis (NCA) method, a precursor

to Treescan. As such, this data set can be used to compare the association

approaches upon data with previously detected genotype-phenotype associations.

The results from analysis of this data set are consistent with the original findings,

with strong associations being found at three of the sites being considered. Only

one of the SNPs is considered found after corrections for correlations between the

SNPs and for multiple testing. The similarity between the results confirms that

the Bayes factors approaches are at least broadly in agreement with the standard

frequentist approaches when considering data with strong phenotype-genotype

associations.

Chapter 6 used the association methods upon a human data set concerning

the ADRA1A gene and three separate phenotype measurements, and is a data set
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that has not previously been analyzed using either the Treescan or Bayesian-based

approaches. Some significant associations have been found using the frequentist

approach, however, these do not pass any of the correction criteria used to address

multiple testing. The related Bayes factors also suggest that there are no overly

strong associations between the SNPs and any of the recorded phenotype mea-

surements. This data set does though illustrate some of the potential drawbacks

of the haplotype and Treescan approaches, that are not apparent when using sim-

ulated data. In particular, the additional difficulties in phasing and constructing

haplotype trees were highlighted, issues that negate any benefit that Treescan

may have had when using the simulated data.

Chapter 7 presents the results of a simulation study, assessing both the accu-

racy of the simulated coalescent data and the relative strengths of the association

methods that have been considered. As would be expected, the conclusions that

can be made from the simulations depends heavily on the choice of parameters

that are used. However, some general conclusions can be obtained. It is shown

that the parameters used to obtain similar patterns of linkage to the real data for

the simulations are reasonably similar to those estimated from the real data sets.

It is also shown that without having the possibility of a finite-sites model and

recombination that is contained within PheGe-Sim, it is not possible to generate

suitably realistic data sets.

The first conclusion that can be made regarding the association approaches

on the simulated data, is that the method of using the Bonferroni-correction to

assess for significance is unsuitable in fine-scale studies. Although the Bonfer-

roni approach can detect many causative SNPs, there is no suitable procedure

in differentiating causative SNPs from those that are in strong linkage, and sim-

ilarly there is also no appropriate procedure for detection of multiple SNPs in

combination.

Haplotype and Treescan-based approaches are shown to be useful for detecting

SNPs that are not causative in all locations in which they occur. However, there

can also be high false discovery rates associated with these approaches under

certain scenarios. Single SNP methods seem to have a slight advantage over the

approaches using haplotypes, and the difference is particularly clear for SNPs that

are causative in all locations, where the single-SNP based methods are powerful
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at finding causative mutations while also being associated with low false discovery

rates. Imputation of un-genotyped SNPs can also potentially be useful to further

identify possible causative variants if they are in reasonable linkage with SNPs

that have been directly genotyped. The simulations also indicate that there may

be a slight advantage of using Bayes factors as opposed to the standard use of

p-values, however, there does not appear to be a large degree of difference in the

ability of the single SNP permutation method and the two formulations of Bayes

factors.

There are a variety of ways in which the research that has been presented

in this thesis can be extended, and to some extents improved. The first such

consideration is that all the models that have been presented, both Bayesian and

frequentist, have used normally distributed data. Although normality is usually

reasonable for natural data (or transformations of the data), the potential of

non-normal data sets could be further explored. As noted in section 3.9, there

is potential to include covariates into the Bayes factor procedures, and therefore

subsequently into the PheGe-Find program. This would be useful for considering

genetic and environment considerations together, however, would introduce issues

of model selection that would have to be addressed. The stepwise approach of

adding one SNP at a time has been shown to be useful for taking into account

the linkage between multiple SNPs. However, this procedure may not be as

appropriate for when there could be multiple potential covariates, and methods

such as the Lasso approach may be more suitable in such situations.

There is flexibility in the construction of PheGe-Sim such that many more

models of associations could be tested, with multiple effects and interactions.

Assessment of such models may provide further insight into the potential benefits

and drawbacks of the methods used, however, it is not known as to how realistic

the simulated causation models would be. If more data sets similar in size to the

data of Chapter 6 were to become available, the parameters of the simulations

could be adjusted to take account of the additional information.

A further improvement that could be made to the simulation of the coalescent

is to simulate the haplotype block structure, with regions of low recombination

separated by heavily recombining regions. In order to achieve this, the methods
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currently in use would have to be adapted to be more efficient in dealing with re-

combination events. However, as noted in section C.3, the rate of recombination

would have to be so high as to make the haplotype blocks close to being indepen-

dent. Improvements would also subsequently have to be made to the detection of

causative SNPs if a haplotype block structure was implemented, as the detection

of hotspots would also have to be automated and integrated into PheGe-Find.

Although there is some scope for improvement in aspects of the analysis that

has been presented, the methods of the PheGe-Sim and PheGe-Find applications

have been demonstrated to be useful in the context of fine-scale genetic associ-

ation studies; an area which will become ever more relevant as GWAS identify

further areas of interest, and as the SNP map of the human genome becomes ever

more detailed.



Appendix A

Supplementary Figures and File

Formats

A.1 Example Fasta Output

Example of output Fasta File format:

>Sequence1

AAAGGGCGGACCTATCTTGT

TGTTCTATCCAGGCGGGAAA

>Sequence2

AAAGGGCTGACCTATCTTGT

TGTTCTATCCAGTCGGGAAA

>Sequence3

GGGAAACTGCAGTAATTTTC

CTTTTAATGACGTCAAAGGG

Sequence1: Label of sequence, preceded by > character

Sequence itself can continue over as many lines as required, until a new sequence

label is introduced.
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A.2 Example PHYLIP output

Example of output Phylip file format:

4 40

Sequence1 AAAGGGCGGACCTATCTTGT

Sequence2 AAAGGGCTGACCTATCTTGT

Sequence3 GGGAAACTGCAGTAATTTTC

TGTTCTATCCAGGCGGGAAA

TGTTCTATCCAGTCGGGAAA

CTTTTAATGACGTCAAAGGG

4: Number of Sequences

40: Number of SNPs

Sequence1: Label of sequence. Will take the first ten characters (including spaces)

as the title of the sequence.

A.3 Example PED file format

Example of .Ped file format:

000001 000001 0 0 1 0 T A A A A A G G G A A G G T C C T C T G

000002 000002 0 0 1 0 A A A T A C G G G A G G T G C T T T T G

000003 000003 0 0 1 0 T A A A A C C G G G A G G G C T T C T G

Of the format:

000001 000001: Individual Name and Family Name (not relevant in this thesis)

0 0 1 0: Father ID, Mother ID, Sex, Affected Status

Base at SNP 1 on first haplotype,

Base at SNP 1 on second haplotype,

Base at SNP 2 on first haplotype,
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....,

(Note can be phased or unphased haplotypes)

A.4 Example Sim Results File

Sun Apr 18 16:09:37 2010 Order: --TSC.PARS-- --BF.PARS-- --Bay.SNP--

Sim_1 True: 121 |121 |121|

Found: 55,121,148,156,175|55,121,148,156,175|121|

Corr.Find: 121 |121 |121|

False +: 55,148,156,175 |55,148,156,175 | |

False -: | | |

Linked +: | | |

Sim_2 True: 397|397|397|

Found: 397| |397|

Corr.Find: 397| |397|

False +: | | |

False -: |397| |

Linked +: | | |

Number of correctly found mutations [Tsc Pars] 2/2 (100%)

Equivalent to 1 correctly found mutations per simulation (1 per sim

true number) False positive rate of 2 (4 Total), per simulation

False Discovery Rate 0.6666667

Number of correctly found mutations [Tsc Pars BRANCH] 2/2 (100%)

Equivalent to 1 correctly found mutations per simulation (1 per sim

true number) False positive rate of 0 (0 Total), per simulation

False Discovery Rate 0

Number of correctly found mutations [Bayes Factor Pars] 1/2 (50%)

Equivalent to 0.5 correctly found mutations per simulation (1 per
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sim true number) False positive rate of 2 (4 Total), per simulation

False Discovery Rate 0.8

Number of correctly found mutations [Bay Pars BRANCH] 1/2 (50%)

Equivalent to 0.5 correctly found mutations per simulation (1 per

sim true number) False positive rate of 0 (0 Total), per simulation

False Discovery Rate 0

Number of correctly found mutations [Bayes Factor SNP] 2/2 (100%)

Equivalent to 1 correctly found mutations per simulation (1 per sim

true number) False positive rate of 0 (0 Total), per simulation

False Discovery Rate 0

Sun Apr 18 16:11:40 2010

Of the form:

Summary of the chosen methods of association, and the order in which they

appear in the tables.

For each simulation and each causative method used, summaries are given as to

whether the simulated causative mutations have been found (see table 2.4).

For each method of association used, summaries are given of the found and false

discovery rates across all of the simulated data sets.

A.5 Example Details File

Sun Apr 18 16:06:50 2010

Sim_1

Selected causative Branches

431

Individuals at risk and defective mutations
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73 1

Observable Haplotypes

1 2 3 4 5 6 7 8 9 12 14 15 17 19 20 23 24 26 28 30 38 39 40 41

43 45 47 54 55 56 64 72 73 74 75 80 83 85 91 92 93 101 105 111

112 114 115 116 118 125 134 148 150 153 158 162 164 168 175 195

198 204 207 216 229

Caus.sites 121

-------------------------------------------------------------------------

Sun Apr 18 16:09:38 2010

Sim_2

Selected causative Branches

197 282

Individuals at risk and defective mutations

197 1

229 1

Observable Haplotypes

1 2 3 4 5 6 7 9 10 11 12 15 19 20 22 24 27 29 31 33 38 43 48 49

50 52 53 60 61 63 100 102 103 138 140 154 157 159 171 178 182

197 200 210 211 213 222 228 229 233

Caus.sites 397

-------------------------------------------------------------------------

Beta paramater = 10
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Number of defective loci = 1

Interaction effects = 0

Mutation Effects = 3

Number of non distinct haplotypes = 250

Number of individuals in population = 2000

Number of Simulations executed = 2

Standard deviations of genotypes = 5

Theta 25

Recombination Rate = 0.5

Mutation Types = A

Finite Sites

AC

Gamma Shape = 5.5

Gamma Scale = 0.5

Average Number of SNPS = 33

Sun Apr 18 16:11:40 2010

Selected causative branches: The branches of the ARG upon which causative

mutations occur.

Individuals at risk and defective mutations: Details of the haplotypes affected by

each of the simulated causative mutations.

Observable Haplotypes: The unique haplotypes occurring as a result of the sim-

ulated ARG.

Caus.sites: The site(s) that have been simulated to result in a change in pheno-

type measurements

A summary is then given recapping the parameters that have been chosen for

simulating the data.

A.6 Example Single SNP output File

Tue Jun 01 15:49:43 2010

SNP# F B-W P(F) PCorr PMon
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40 10.40165 0.22373 3e-05 0 0

271 4.25547 0.07794 0.01432 0.118 0.118

97 4.81562 0.04574 0.02832 0.35 0.35

197 2.64955 0.03956 0.07093 0.398 0.398

6 1.70707 0.01697 0.18166 0.698 0.698

398 0.6702 -0.00792 0.51172 0.976 0.976

136 0.34279 -0.0158 0.70983 0.992 0.992

273 0.16387 -0.0201 0.84886 0.994 0.994

337 0.15939 -0.02021 0.85267 0.98 0.994

342 0.051 -0.02282 0.95028 0.95 0.994

SNP# F B-W P(F) PCorr PMon

271 6.21732 0.30927 1e-05 0.154 0.154

197 3.95722 0.24607 0.00027 0.806 0.806

97 6.0167 0.23861 8e-05 0.842 0.842

6 3.72457 0.22689 0.00052 0.936 0.936

273 4.33676 0.19872 0.00063 0.998 0.998

136 4.29148 0.19604 0.00069 0.994 0.998

398 3.21859 0.18508 0.00214 0.996 0.998

337 3.1661 0.18074 0.00247 0.988 0.998

342 3.11869 0.17681 0.00282 0.94 0.998

Tue Jun 01 15:50:10 2010

SNP#: SNP site position label

F: F statistic as calculated from an ANOVA

B-W: The Boerwinkle-Singh Corrected Estimator

P(F): The p-value calculated from the standard ANOVA

PCorr: The p-value calculated from the permutation correction procedure, using

the Boerwinkle-Singh estimates

PMon: The enforced Monotonic p-values from the corrected p-values, ensuring
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that a higher B-W value does not result in a lower permutation corrected p-value,

as can happen by chance.

A.7 Example Bayes factor File

Tue Jun 01 15:50:10 2010

Bayes Factor Results, under the following prior choices

mu_0 = 0 , kappa_0 = 20 , nu_0 = 20 , sigma_sqrd_0 = 20

Split Null LogL R_D LogL Add LogL Alt LogL Bay Fac Group

40 -3209.8 -3203.4 -3205.9 -3203.1 830.49 3

271 -3209.8 -3209.2 -3211.9 -3209.5 1.9027 3

197 -3209.8 -3209.5 -3210.7 -3211 1.3606 3

6 -3209.8 -3210.5 -3211.9 -3211.8 0.48385 3

273 -3209.8 -3210.8 -3211.1 -3211.5 0.35874 3

337 -3209.8 -3211 -3211.5 -3212.2 0.29501 3

136 -3209.8 -3211.1 -3211.7 -3212.5 0.28668 3

97 -3209.8 .. .. -3211.2 0.25356 2

342 -3209.8 -3211.2 -3211.7 -3212.6 0.24555 3

398 -3209.8 -3211.8 -3211.5 -3212.8 0.18347 3

Split Level = 2

Split Null LogL Mix LogL Add LogL Alt LogL Bay Fac Groups

40,271 -3203.1 -3206.9 .. -3202.5 1.7454 6

40,273 -3203.1 -3205.9 .. -3203.6 0.57764 6

40,136 -3203.1 -3211.9 .. -3205.4 0.1033 6

40,6 -3203.1 .. .. -3208.7 0.003834 8

40,337 -3203.1 .. .. -3208.9 0.003102 8

40,197 -3203.1 .. .. -3209.3 0.0020395 8

40,342 -3203.1 .. .. -3210.5 0.00058009 8
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40,398 -3203.1 .. .. -3210.6 0.00053231 8

40,97 -3203.1 .. .. -3211.6 0.00020269 5

Best Model found

40

Tue Jun 01 15:50:14 2010

Date and time of start of simulation

Hyperparameter choices for the Bayes factors

Split: Branch(es) or SNP(s) under consideration

Null LogL: Null log marginal likelihood of the data set if in the first level of splits,

or the highest marginal from the previous round of splits if in the second round

of splits or higher.

R D LogL: The Dominant or Recessive log marginal likelihood (first round of

splits)

Mix LogL: The complex mixture marginal log Likelihood (second or higher level

of splits)

Add LogL: The additive log marginal likelihood

Alt LogL: The general alternative log marginal likelihood

Bay Fac: The Bayes factor calculated according to the highest possible log

marginal likelihood of the possible alternative models, compared to that of the

Null

Groups: The number of non-empty groups as a result of the splits

Date and time at the end of the simulation

A.8 Example Phenotype File

IID S_CLIN D_CLIN H_CLIN

640001 120 88 72

640003 118 68 66
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640004 168 98 72

640005 102 78 66

640007 146 92 68

640009 118 84 60

... ... ... ...

... ... ... ...

Tab delimited file with column names corresponding to:

IID: Individual Identification Labels. Should correspond to those used in the

genotype files.

S CLIN, D CLIN, H Clin: Names for each phenotype measurement. Will be used

in labelling the output files and plots of any analysis.

A.9 Example Position File

rs4732845 26652190

rs17055869 26653565

rs17055880 26655432

rs1472346 26657311

rs7821479 26657574

rs9314327 26659872

rs4732639 26661027

... ...

... ...

Tab delimited file, with the site name followed by the base position.

A.10 Gamma Correction

The process aims to match the specified finite sites distribution as closely as

possible, without impacting on the number and positions of the mutations that

have already occurred as a result of the mutation rate and other parameters.

In order to achieve this, the options displayed in the flow chart are taken in an
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Figure A.1: Flowchart of the decisions involved in allocating finite sites using the
Gamma distribution.

attempt to ensure that sampled values are not simply discarded if they represent

a potentially valid level but do not fit into the mutation structure that already

exists. In most situations where the initial parameters have been sensibly chosen,

the corrections applied will have minimal impact and the finite sites distribution

will be closely matched. In figure A.1, a ‘valid’ value is a number that is within

the range of those previously sampled up until that stage in the algorithm
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(a) Example ARG (b) ARG Line Plot

(c) Coalescent Plot A (d) Coalescent Plot B (e) Coalescent Plot C

Figure A.2: Example output plots.

A.11 Example Output Plots

Figure A.2(a) illustrates an Ancestral Recombination Graph that has been sim-

ulated according to the parameters used for the simulations in chapter 7. In ad-

dition to the ARG, the line plot of figure A.2(b) has also been produced, which

illustrates the terminal nodes carrying each mutation. In this example, there are

two recombination events that occur, resulting in the three separate coalescent

regions illustrated in figures A.2(c), A.2(d) and A.2(e). It can be seen in figures

A.2(d) and A.2(e) that the heights of the plots are lower than that of the ARG,

indicating that the most recent common ancestor for the set of terminal nodes

has been reached at an earlier time for this coalescent region. The differences in

coalescent structure as a result of the recombination events can also be clearly

seen across the three regions.
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(a) (b)

(c) (d)

Figure A.3: Reconstructed parsimony haplotype trees for the LHS (a) and RHS
(b) of the recombination hotspot of the ADRA1A data set, and two haplotype
trees reconstructed from simulated data (c,d)

A.12 Reconstructed Haplotype Trees

Figure A.3 illustrates reconstructed haplotype trees for both real and simulated

data sets. It can be seen that the trees for the real data sets appear to have more

haplotypes than for the simulated data, particularly in figure A.3(a) for the left

of the recombination hotspot. The sample size are, however, approximately the

same for the real and simulated data, and so the increase in the number of haplo-

types implies that these haplotypes exist at lower frequencies on average. This is

indeed the case with many of the haplotypes of the real data set being estimated

to occur at low frequencies, and so there will be a corresponding low power to

detect any associations for the mutations that define these rare haplotypes.
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Inputs to External Programs

B.1 PHYLIP Input Options

(a) dnapars (b) dnadist

(c) fitch (d) dnaml

Figure B.1: Inputs for the PHYLIP program that have been used as defaults
for PheGe-Sim and PheGe-Find. Details of the options can be found at:
http://evolution.genetics.washington.edu/phylip.html
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B.2 Treescan Options

system(paste(’"C:/Sim_Out/treescan.exe"’,

’"C:/Sim_Out/treescansim_pars"’,

"-b", "-f", "-k", "-p1000"), wait = TRUE, invisible = TRUE)

"C:/Sim Out/treescansim pars": Input Treescan file (Parsimony, Maximum

Likelihood or Fitch)

"C:/Sim Out/treescan.exe": Path of Treescan application

"-b": Forces the program to print the ANOVA tables to the log file

"-f": Results are sorted by the F statistic

"-k": Uses the Boerwinkle-Singh correction for the tests of association

"-p1000": Specifies 1000 permutations in order to calculate the p-values

B.3 BimBam

setwd("C:/Sim_Out")

system(paste("bimbam","-g","bimbam_tsc_geno.txt","-p",

"bimbam_pheno.PHENO",

"-pos","bimbam_pos.txt", "-o", "bimtest.out","-l 2","-sort"),

wait = TRUE, invisible = TRUE)

setwd("C:/Sim Out"): Set path of BimBam application and files.

"-g","bimbam tsc geno.txt": Specify BimBam genotype file

"-p","bimbam pheno.PHENO": Specify BimBam phenotype file

"-pos","bimbam pos.txt": Specify BimBam site locations file

"-o", "bimtest.out": Specify BimBam output folder

"-l 2": Calculates multi-SNP Bayes factors for all subsets of size 2

"-sort": Sort results according to the highest single SNP Bayes factor

B.4 Haploview

setwd("C:/Sim_Out")

Q.PED <- paste("-pedfile Sim_PED_", zorb, ".PED", sep = "")
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system(paste("java","-jar","Haploview.jar" , Q.PED,

"-nogui", "-png"), wait = TRUE, invisible = TRUE)

setwd("C:/Sim Out"): Set location of Haploview application and files.

Q.PED: Location of PED file for current simulation

"-nogui": Instructs Haploview not to open the Graphical User Interface

"-png": Produce the linkage plot in png file format



Appendix C

Additional Simulation Results

C.1 Linkage Plots from other Simulators

(a) ms (b) msHot

(c) Genome (d) SimCoal

Figure C.1: Examples of linkage plots from other coalescent simulators. Where
possible the parameters have been matched with those used for the parameters
for the simulations of Chapter 7.

There are numerous programs that simulate genotype data, and examples

of the resultant linkage plots are given in figure C.1. It was not possible to

generate data using the CoaSim application, as the program could not be used

on a Windows operating system, and there were unidentified problems associated

with its use under Linux.
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Figure C.1 illustrates that the simulators can generally recreate similar pat-

terns of linkage compared to that of real data. It is evident, however, that without

the use of a finite-sites model, there is an overabundance of blue and dark red

squares in the linkage plots. It appears to be the case that recombination alone

struggles to obtain sites displaying intermediate shades of red, as was displayed

in the linkage plots of the ADRA1A data set of Chapter 6 (figure 6.3).

C.2 Illustration of Linkage Plots without Finite

Sites

The apparent importance of including finite sites into the PheGe-Sim program

can be explored using the linkage plots under various scenarios where the finite

sites assumption is not used, and the other parameters are altered.

(a) β = 0 (b) β = 10 (c) β = 50

Figure C.2: Simulated linkage plots for various combinations of parameters
(infinite-sites).

Figure C.2 uses an infinite-sites model and no recombination, where each plot

corresponds to a different rate of population expansion, β. As a consequence

of the reduction in height of the trees as β increases, the mutation rates must

also be increased to obtain approximately the same total number of mutations

for each situation. It can be seen that there is a block-like structure to the

situation where β = 0, in that many sites appear to be perfectly correlated to

each other as indicated by the strong presence of blue and dark red squares.

This is a result of the ancestral branches being long in comparison to the more

recent branches, and so mutations will either be perfectly associated with either

a high frequency (dark red), or low frequency (blue). As the rate of population
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expansion increases, more mutations will only occur on terminal nodes and so

the haplotypes will exist in lower frequency, and as a consequence there will be

an increase of blue squares in the linkage plots. Figure C.3 illustrates a similar

setting, but where a recombination rate of 2 has been chosen. It can be seen that

there is a similar pattern of the linkage plots as observed previously, and that the

increased recombination rate does not appear to substantially alter the observed

linkage plots.

(a) β = 0 (b) β = 10 (c) β = 50

Figure C.3: Simulated linkage plots for various combinations of parameters (in-
finite sites, recombination rate = 2).

C.3 Two Independent Simulations

(a) Simulated (b) Real

Figure C.4: Simulated data of two independent ARGs, and the real data that it
is intended to mimic.

Figure C.4(a) represents a simulation of haplotypes from two independent

Ancestral Recombination Graphs that have subsequently been pasted together.

It can be seen that there are a few positions where linkage is apparent in between
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the two haplotype blocks, which are a result of chance. There does, however,

appear to be more instances of linkage being apparent in the real data set in

comparison to that of the simulated data, suggesting that the two haplotype

blocks may not be entirely independent from each other. Rates of recombination

in the simulations can be increased in an attempt to more closely the real data set.

However, in the current formulation of the program the run-time will dramatically

increase; and there also are memory limitations in the current formulation of the

application. There are areas in which the efficiency of the PheGe-Sim application

could potentially be improved, and with this increased efficiency larger regions

of genetic data containing haplotype blocks and recombination hotspots could

subsequently be simulated.

C.4 Code

The PheGe-Sim and PheGe-Find applications are available on request, along

with copies of the other applications that are required. These application run

on Windows XP, Vista and 7, although have only been extensively tested on

Windows XP. A ReadMe file accompanying the applications details the specific

procedures of running the code.
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