
 
 
 
 
 
Urban, Kovac (2010) 3D drift diffusion and 3D Monte Carlo simulation 
of on-current variability due to random dopants. PhD thesis. 
 
 
 
 
 
http://theses.gla.ac.uk/2309/
 
 
 
Copyright and moral rights for this thesis are retained by the author 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
This thesis cannot be reproduced or quoted extensively from without first 
obtaining permission in writing from the Author 
 
The content must not be changed in any way or sold commercially in any 
format or medium without the formal permission of the Author 
 
When referring to this work, full bibliographic details including the 
author, title, awarding institution and date of the thesis must be given 

 

Glasgow Theses Service 
http://theses.gla.ac.uk/ 

theses@gla.ac.uk 

http://theses.gla.ac.uk/2309/


University of Glasgow

3D Drift Diffusion and 3D Monte Carlo

simulation of On-Current variability due

to Random Dopants

by

Urban Kovac

A thesis submitted in fulfillment for the

degree of Doctor of Philosophy

in the

College of Science and Engineering, School of Engineering

Department of Electronics and Electrical Engineering

December 2010

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)


Abstract

In this work Random Discrete Dopant induced on-current variations have been stud-

ied using the Glasgow 3D atomistic drift/diffusion simulator and Monte Carlo simula-

tions. A methodology for incorporating quantum corrections into self-consistent atom-

istic Monte Carlo simulations via the density gradient effective potential is presented.

Quantum corrections based on the density gradient formalism are used to simultaneously

capture quantum confinement effects. The quantum corrections not only capture charge

confinement effects, but accurately represent the electron impurity interaction used in

previous ab initio atomistic MC simulations, showing agreement with bulk mobility sim-

ulation. The effect of quantum corrected transport variation in statistical atomistic MC

simulation is then investigated using a series of realistic scaled devices nMOSFETs tran-

sistors with channel lengths 35 nm, 25 nm, 18nm, 13 nm and 9 nm. Such simulations

result in an increased drain current variability when compared with drift diffusion sim-

ulation. The comprehensive statistical analysis of drain current variations is presented

separately for each scaled transistor. The investigation has shown increased current

variation compared with quantum corrected drift diffusion simulation and with previ-

ous classical MC results. Furthermore, it has been studied consistently the impact of

transport variability due to scattering from random discrete dopants on the on-current

variability in realistic nano CMOS transistors. For the first time, a hierarchic simulation

strategy to accurately transfer the increased on-current variability obtained from the ab

initio MC simulations to DD simulations is subsequently presented. The MC corrected

DD simulations are used to produce target ID−VG characteristics from which statistical

compact models are extracted for use in preliminary design kits at the early stage of new

technology development. The impact of transport variability on the accuracy of delay

simulation are investigated in detail. Accurate compact models extraction methodology

transferring results from accurate physical variability simulation into statistical compact

models suitable for statistical circuit simulation is presented. In order to examine te size

of this effect on circuits Monte Carlo SPICE simulations of inverter were carried out for

100 samples.
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Chapter 1

INTRODUCTION

Currently 45 nm and, very recently, 32 nm technology conventional Si MOSFETs are

present in personal computer devices [1]. The progressive scaling of CMOS transistors

to achieve faster devices and higher circuit density has fuelled the phenomenal success of

the semiconductor industry, as captured by Moore’s famous law [2, 3]. According to the

International Technology Roadmap for Semiconductors (ITRS), devices with channel

lengths of 17 nm are predicted to be in mass production around 2015 [4]. At such small

dimensions, physical variations introduced between devices due to the discreteness of

charge and granularity of matter will have significant effects on device characteristics

[5]. Such statistical variation is in addition to systematic on-wafer variation but, unlike

it, cannot be reduced by tightening process control.

It is widely recognised that increased statistical variability associated with reduced de-

vice dimensions is among the major challenges to the scaling of the next generation

CMOS transistors and their integration in digital circuits [6, 7]. Statistical variability

already critically effects SRAM scaling and introduces leakage and statistical timing is-

sues in digital logic circuits which increasingly lead to hard digital faults. Variability is

also the main factor restricting the scaling of the supply voltage, which contributes to

the looming power crisis. The power crisis refers to the increase of the power density on

chip that accompanies the increase of transistor density and that can not be alleviated

as device variation limits the ability to scale supply voltage.

Experimental evaluation of statistical variability is complicated by the number of inde-

pendent sources that contribute to it and by the contribution of additional systematic

1
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sources. Some of the most important sources of statistical variation include random dis-

crete dopants (RDD) [5, 8, 9], gate line edge roughness (LER) [10, 11], oxide-thickness

variations (OTV) [12–14], polysilicon gate granularity PSG [7, 15, 16], high-κ granu-

larity [17, 18] and metal gate granularity [19, 20]. In contrast, statistical simulation

studies of device parameter variation provides a valuable opportunity to investigate the

influence of individual sources of variability and to do so early in the design stage. Such

simulation studies can provide a vital description of the complex statistical distribution

of device parameters and help to estimate the first few moments of the distributions

as an industrial gold standard in order to be able to build reliable and stable future

technology generations of circuits and systems.

In conventional MOSFETs RDD variation is the dominant source of variability for near-

future scaling. LER becomes dominant in very short channel double gate devices with

undoped channels [10, 11]. OTV arises from the microscopic irregularity of Si/SiO2 and

gate/dielectric interfaces [12] and contributes to the local variations in surface rough-

ness scattering [13]. Localised states associated with the PSG grain boundaries and

corresponding carriers trapping result is surface potential pinning and localized thresh-

old voltage variation [7]. Similarly, high-κ insulator materials with different dielectric

constants due to crystalline grain orientation contributes to variations in the surface

potential which affects fluctuations in charge density and carrier transport at the inter-

face. Metal gate granularity results in carrier density and transport variations via local

variations in work-function [21].

A significant amount of work has been done in examining intrinsic parameter variability

experimentally and using numerical simulations in both idealised [5, 10, 13, 14, 22–24]

and more realistic devices [9, 25]. Several simulation techniques may be employed to

these ends, such as Drift Diffusion (DD), Monte Carlo (MC) and quantum transport

models. For many years drift diffusion simulations have been driving statistical variabil-

ity simulations. DD captures well the electrostatic impact of the statistical variability

sources and provides accurate and reliable results in respect of threshold voltage [26] and

leakage variability [27, 28]. However, for the estimation of on-current variability, DD

simulations are inaccurate and unreliable. DD cannot describe the nonequilibrium qua-

siballistic transport in modern nano CMOS transistors and, most importantly, variations

in transport due to scattering from the Coulomb potential of random configurations of

discrete dopants and from channel potential and quantisation variation associated with
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other variability sources. With respect to this, MC simulation is well suited to cap-

ture transport variation and resultant on-current variability. However, MC simulation

is computationally expensive and prohibitive for the simulation of a very large statisti-

cal ensemble of device characteristics required for compact model extraction and circuit

design analysis.

The focus of this work is to resolve transport variation in MC and accurately study on-

current variability induced by random discrete dopants in conventional CMOS devices.

This work then aims to bridge the gap between DD and MC simulation by establishing a

reliable framework for incorporating the accuracy of MC in transport simulation with the

efficiency of DD in resolving electrostatic variation. This will enable accurate statistical

scale device simulation of on-current variability in nano-scale MOSFETs and its transfer

to industry standard compact models.

1.1 Aims and objectives

Quantum corrections within DD are vital for the accurate simulation of nano-CMOS

transistors and for the accurate inclusion of discrete dopant effects, mediating the trap-

ping of carriers in the sharply resolved Coulomb wells of the individual impurities [29, 30].

The introduction of quantum corrections in MC simulation is similarly essential in order

to incorporate confinement effects in nano scale devices [31]. Efficient quantum me-

chanical corrections have been demonstrated previously in self-consistent ensemble MC

device simulation [32]. Previous MC simulation studies of RDD induced drain current

variability [33, 34] however omitted any such corrections relying upon a short-range cor-

rection to account for carrier-impurity interactions. A major aim of this work will be

the implementation of quantum corrections as a consistent approach to the treatment

of confinement effects and the resolution of scattering from random discrete dopants in

self-consistent ab initio MC simulations.

Further, a methodology to accurately propagate the MC simulated device variability into

compact models, which serve as a proxy between physical models and circuit simulations,

is required in order that the variability may be transferred to complex circuit analysis.

Due to the huge computational cost of MC simulation with respect to obtaining full

ID − VG characteristics for an ensemble of nanoscale devices, there is a need to develop
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a reliable simulation strategy to propagate on-current variability from MC into efficient

DD simulations. Based upon this methodology, sets of ID − VG characteristics may be

simulated which in turn serves as an input to statistical compact modelling.

In light of the above considerations, this work proposes to develop an economical and

computationally efficient hierarchical simulation strategy that allows the accurate on-

current variability resulting from self-consistent quantum corrected ab initio MC simula-

tion to be transferred into efficient statistical 3D DD simulations. MC will be limited to

device simulation above threshold, where DD omits additional variation from transport

effects. DD simulations subsequently calibrated through mobility model parameters to

be consistent with MC will then in turn be used to obtain full target ID − VG char-

acteristics for the extraction of statistical compact models, suitable for comprehensive

statistical circuit analysis. To the best of our knowledge, this represents the most com-

prehensive, efficient and accurate approach for predictive simulation of RDD variability

and its incorporation in industry standard compact models for use in statistical circuit

design.

1.2 Outline

This work is organised as follows. In chapter 2 the important device scaling challenges are

reviewed with focus on intrinsic parameter fluctuations. Furthermore, the classification

of variability is discussed with a brief description of the most important sources of

intrinsic parameter fluctuations. The hierarchy of the most comprehensive currently

available 3D tools for statistical simulation of variability in contemporary and future

nano-CMOS transistors, including DD and MC techniques, is presented. Finally, the

variability impact on circuits is briefly discussed.

Chapter 3 comprises a review of the DD and MC simulations techniques. A detailed

summary of the fundamentals and equations used by DD simulation with quantum

corrections is followed by a description of the Glasgow statistical 3D DD atomistic sim-

ulator with an emphasis on the implementation of the RDD. Furthermore, the mobility

models used by the 3D DD simulator are reviewed. DD simulations are chosen as the

benchmark for subsequent MC simulation. In the second part of chapter 3, the 3D

MC simulator is discussed in greater detailes. This is preceded by a brief discussion
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of the semi-classical carrier dynamics and semi-calssical Boltzmann Transport Equation

followed by a detailed description of the non-parabolic and ellipsoidal approximation

of the band structure, scattering mechanisms, carrier dynamics, and ab initio ionised

impurity scattering. The last section is dedicated to the calibration of bulk Si where

fundamental physical values and calibration parameters are summarised.

Chapter 4 presents details of the study of an accurate description of bulk carrier-ion

interactions via the density gradient effective quantum potential within finely discretized

3D self-consistent Monte Carlo simulation. Further, the density gradient method is

compared to previously reported methods based upon a classical potential with short-

range correction. The impact of individual acceptors on drain current variability is

examined in a variety of scaled bulk n-channel MOSFETs.

Chapter 5 describes an extensive statistical enhancement methodology for studying RDD

induced on-current variability in a range of well scaled MOSFETs. The accuracy of this

approach and its results are validated by a comprehensive statistical analysis. Results

are presented to devices with different channel lengths. A comprehensive statistical

model is built to accurately separate the impact of the random discrete dopants on the

drain current variations into their relative electrostatic and transport contributions.

Chapter 6 is dedicated to the detailed description of the hierarchic simulation method-

ology which propagates on-current variability obtained by MC simulation at high gate

bias at both low and high drain bias to the DD simulations by suitable calibration of

the DD mobility models. Furthermore, the complex compact model extraction strategy

is described. Based upon this overall simulation strategy, inverter circuit simulations

are carried out to demonstrate the impact of the proposed methodology on subsequent

circuit analysis.

Finally, the conclusions for this research project are drawn in Chapter 7, where sugges-

tions for future work are also made.



Chapter 2

VARIABILITY

Conventional silicon MOSFETs are still the workhorse of the semiconductor industry

and continue to drive CMOS technological advance. They have developed rapidly over

the last three decades following Moore’s law [2, 3] - the continuous developmental goal

the semiconductor industry. The corresponding scaling of the CMOS transistors to

smaller dimensions, allowing increased speed as well as higher density and lower cost

per function. However, the industry is now facing major technology and design chal-

lenges [35, 36], illustrated in figure 2.1 [37]. These challenges brought to an end the

period of so-called ”happy scaling”. Figure 2.1 illustrates the market bifurcation in the

cumulative interdependent challenges as a function of time and technology generation.

Currently, maximizing yield is the major challenge to chip fabrication and this is com-

prised of a series of independent challenges. Power consumption is one important factor,

subthreshold drain and gate leakage also affects CMOS scaling and integration since they

are linked closely to threshold voltage variability. Increasing CMOS device variability

has become one of the most acute problems facing the semiconductor manufacturing and

design industries at, and beyond, the 45 nm technology generation. New applications of

current and future technology generations necessitate a new set of performance metrics.

We will discuss briefly each challenge further.

Of the major design challenges that needed to be addressed, in the middle of this decade

was the high gate leakage current associated with the reduced oxide thickness required

to maintain electrostatic integrity and high gate capacitance [27, 28]. This leakage

6
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Figure 2.1: The major scalling challanges [37].

significantly impacts static power dissipation and is mitigated by introducing a high-

κ gate dielectric in place of the traditional SiO2 in the 45 nm technology generation

[38, 39]. This maintains gate capacitance while allowing a physically thicker dielectric

and resistance to tunnelling. Current leading high-κ materials are HfO2 [38] (εk ∼ 22

[40]) and HfSiOx [38] (εk ∼ 12 − 16). Additionally, polysilicon gate depletion reduces

the gate capacitance and significantly reduces on-current. This was initially combated

through increased poly doping to reduce depletion effects, but this is limited by the

solid solubility of the relevant dopants in silicon. Metal gates effectively remove gate

depletion and in combination with high-κ dielectrics are essential in next generation

devices [39, 41–43], demonstrating higher drive currents [44] and improved subthreshold

slope [39]. Strain engineering in order to obtain higher channel mobility to improve

device performance is also necessary in order to meet device requirements [44].

However, intrinsic device parameter fluctuations associated with the discreteness of

charge and granularity of matter have emerged in the past decade [5] as one of the

major challenges to scaling and integration for the present and next generation of nano-

CMOS transistors and circuits [6, 7, 36]. Statistical variability has a significant impact

on SRAM (Static Random Access Memory) scaling [45, 46] and the associated increase

in leakage current and timing has become a major issue in logic circuits with a detri-

mental effect on subsequent circuit performance [47]. Variability is also the main factor



Chapter 2. VARIABILITY 8

restricting the scaling of the supply voltage, which for the last four technology gener-

ations has remained virtually constant, adding to the looming power crisis [36]. The

2008 update of ITRS relaxed the speed of introducing new technology generations with

the current, 2009, edition extending the life for high performance planar bulk MOSFET

until the year 2015. A restricted set of ITRS 2009 device dimensions and design param-

eters forecast is listed in table 2.1. After 2015, an industry shift to ultra-thin body fully

depleted silicon on insulator (UTB FD SOI) CMOS with 11.7 nm final physical gate

length in 2019 is expected, which should be replaced latter by multi-gate (MG) CMOS

continuing through to the projected end of the current edition of the Roadmap in 2024

[4]. As this work focuses on the effects of variability, some time is devoted to describing

it in detail and in particular defining the difference between statistical and systematic

sources of variability. This is discussed next.

Year of Production
2010 2013 2015 2019 2024

MPU/ASIC Metal 1 (M1) 1/2 Pitch [nm] 45 27 21 13.4 7.5
Physical Gate Length [nm] 27 20 17 11.7 7.4

Equivalent Oxide Thickness [nm] 0.95 0.65 0.53 0.5∗ 0.5∗∗

Eletrical Equivalent Oxide Thickness [nm ] 1.26 0.95 0.82 0.9∗ 0.9∗∗

Channel Doping [1018cm−3] 4 5.7 7.5 0.1 0.1
Power Supply Voltage [V ] 0.97 0.87 0.81 0.71 0.6

Saturation Threshold Voltage Vt,sat[mV ] 289 295 302 235∗ 231∗∗

NMOS Drive Current Id,sat[µA/µm] 1200 1450 1680 1970∗ 2170∗∗

Equivalent injection velocity vinj107[cm/s] 0.77 0.84 0.98 1.41∗ 2.32∗∗

Intrinsic delay τ = CV/I[ps] 0.78 0.57 0.45 0.22∗ 0.13∗∗

Table 2.1: 2009 ITRS Roadmap. ∗ UTB FD device, ∗∗ MG device.

2.1 Variability Classicfication

Several approaches exist to categorise device variability. Bernstein et al. [6] categorised

the variability by means of the variability matrix, shown in figure 2.2. The spatial extent

to which device variability correlates defines the separation of the matrix rows. Global

variation refers to variation between wafers, from chip to chip on single wafer, and slow

variations across chip. Local variation refer to variations between adjacent devices in

a chip. The matrix columns separate process, operational environment and temporal

factors that influence device variation [6].
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Figure 2.2: The variability matrix in which the local random variability is a major
source of concern [6].

Further, Bernstein et al. separate device variability into intrinsic device variability

and extrinsic process variability [6]. Extrinsic process variability is associated with

the operating dynamics of contemporary changes in the fabrication process conditions.

Generally, it is present in different levels from lot to lot; from wafer to wafer within a

lot; across wafer; from chip to chip and across chip [6]. The main focus of this work is

not on extrinsic process variability but rather focuses on intrinsic statistical variability,

highlighted in the local row and process column in the variability matrix.

Intrinsic statistical device variability is introduced by the discreteness of matter and

charge and, unlike local systematic variation, cannot be eliminated by tightening of

process controls [5, 25]. Statistical variability may result in adjacent macroscopically

identical transistors having characteristics that are from opposite ends of some statistical

distribution. At the 45 nm technology generation the statistical variability account for

more than 50% of total variability [48, 49]. It is expected that the impact of statistical

variability will significantly increase in the following 32nm technology node [50] and on

future scaling and integration [51]

2.2 Sources of Intrinsic Device Parameter Variation

As transistors are scaled to nanometre dimensions, uncontrollable random variations in

their atomic structure independent of the quality of the fabrication process result in
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stochastic variations in their electrical characteristics. These atomic scale differences

make each device unique and effect their operation, leading to a distribution of key

device parameters such as threshold voltage and on/off current [5, 22, 25, 26]. Figure 2.3

[36] represents an idealised archetypal device, highlighting straight lithographic edges,

ideal material interfaces and continuous doping profiles. This is contrasted with a more

’realistic’ looking representation of a 20nm MOSFET in which there will be fewer than

50 Silicon atoms along the channel. The scale of the Silicon lattice is suggested in the

figure, lithographic gate edges show variation about a mean, material interfaces reveal

discontinuities on the order of the atomic separation and individual dopant atoms are

randomly distributed according to the nominal doping profile.

Figure 2.3: Traditional continuous device description (left), assuming a continuous
doping distributions and smooth boundaries and interfaces, compared with a realistic

atomistic description (right) highlighting discrete changes [36].

Continued scaling to sub10nm channel length MOSFETs is similarly illustrated in figure

2.4. In such devices, even at the high levels of doping required, there are few substrate

and source/drain dopants and variation in their position and number have the potential

to significantly effect individual device characteristics.

In addition, the gate oxide thickness has become equivalent to only few atomic layers

with a typical interface roughness on the order of 1/2 atomic layers. This will introduce

a localised variation in the oxide thickness resulting in each transistor having a micro-

scopically different oxide thickness or body thickness pattern in the case of SOI and

multigate device architectures [13]. The granularity of the photoresist, together with

other factors, will introduce unavoidable line edge roughness (LER) in the gate pattern
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Figure 2.4: Representation of a sub 10 nm MOSFET. There are only a handful of Si
atoms along the channel and variation in number/position of the few dopants expected

will be statistically significant [36].

definition and statistical variations in geometry between devices [10, 11, 52]. Granularity

of the poly-silicon gate [7] and, as devices move to high-κ/metal gate stacks in the 45

nm technology generation [1], the granularity of the high-κ dielectric [17, 40] and metal

gate [19–21, 53] become further prominent sources of statistical variability.

In current conventional bulk MOSFETs, statistical variation in random discrete dopants

within the channel plays the prominent role in device parameter variation, with simu-

lations at the 45 nm technology node demonstrating that RDD contributes 65% of the

total variability [54]. This could be overshadowed by line edge roughness in future tech-

nologies if LER cannot be scaled below the currently achievable magnitude and in novel

device architectures like SOI which tolerate low channel doping concentrations. Ran-

dom dopant fluctuations will however still play a role via variation in the source/drain

doping, correlated with the LER pattern, and play a significant role in RTS noise and

device performance degradation. As they currently represent the greatest source of con-

cern and are of great importance in future technologies, random discrete dopants are

the focus of the work in this thesis. As such, a description of RDD is given next.

2.2.1 Random Discrete Dopants

Random dopants are introduced predominantly by ion implantation and redistributed

during high temperature annealing. Figure 2.5 illustrates the dopant distribution ob-

tained by the atomistic process simulator DADOS by Synopsys [36]. Despite the high
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doping concentrations, nanoscale devices contains a few tens of dopants within the active

region. The distribution of RDD follows a Poisson distribution [55, 56]. This implies

that for an average of N dopants within an arbitrary volume, the number of dopants

varies with
√
N . According to the 2009 edition of the ITRS, the average number of

dopant atoms will decrease with scaling technology, however the ratio between the stan-

dard deviation and the average number of dopants within active region of device will

increase rapidly (1/
√
N ↑, if N ↓).

Figure 2.5: Kinetic Monte Carlo (KMC) simulation of RDD (DADOS, Synopsys).
The position of discrete random dopants obtained from the output of an atomic scale

process simulation [36].

The random position of each dopant atom creates a unique charge distribution within

each device and alters significantly a single device’s electrostatic operation and the trans-

port of carriers due to the associated fluctuations in the potential landscape. These

potential fluctuations are illustrated in Figure 2.6 which is the result of a drift diffusion

simulation of an atomistic doped 35 nm n-channel MOSFET. The variations result in

a significant distribution of threshold voltage compared with the threshold voltage of

the ideal device [5]. In such a potential landscape, current flows predominantly through

percolation paths formed by local potential energy minima between channel dopants.

Trapping and de-trapping of carriers at interface states has some probability of occur-

ring along such a percolation path, raising the local potential minima. This blocks the

current path, consequently having a greater impact than if current flowed uniformly

across the channel. This effect results in the observed very high amplitudes of random

telegraph signal (RTS) [57, 58].

The adverse effects of RDD variation on device parameter distributions in aggressively

scaled devices were predicted in the early seventies of the last century [55, 59] and have
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Figure 2.6: Typical 3D potential distribution reflecting the impact of random discrete
dopants in a typical 35 nm n-channel MOSFET [36].

been experimentally verified [8, 56, 60, 61]. A significant amount of work has been

done in examining the effects of random dopant variation on MOSFET characteristics

analytically [56, 62–65]. Initial simulation studies were performed in 2D [9, 66] and were

based upon a continuous doping profile [66, 67]. However, since the variation is inherently

three dimensional and discrete, 3D simulations with individual dopants were necessarily

developed [5, 22, 68]. Several methods for determining the random distribution of dopant

atoms within the simulated devices were also developed, varying from simple models

based upon assigning dopants directly to a mesh node, through assigning a dopant to

the underlying crystal lattice before applying a charge assignment scheme, to kinetic

Monte Carlo simulation of dopant implantation and diffusion [5, 23, 66, 69]. In order

to construct a reliable estimate of a particular parameter’s distribution, simulation of

a large statistical ensemble is required. This is computationally expensive and until

recently had restricted such simulation studies to relatively small samples of typically

200 microscopically different devices [26, 30]. Results of such studies revealed a lowering

of the average threshold voltage with respect to the ideal, uniform, device [5] and showed

that the threshold voltage distribution is close to normally distributed. Critically, it

has been shown that the effect of RDD on the standard deviation of threshold voltage

distribution increases with decreasing device dimensions [26]. This is as a result of the

above mentioned increased statistical variation in the number of dopants and of the size

of the impurity potential affecting a larger relative area of the active region within smaller
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devices. Further, it has been demonstrated that the position of the channel dopants plays

a key role in determining the magnitude of the threshold voltage variations [24, 70], with

dopants nearer the interface having significantly greater impact on device parameters

[71]. Transitioning to SOI [72] and FinFeT [73] devices will consequently reduce the

impact of RDD induced variation since such devices have superior electrostatic integrity

and tolerate low channel doping. However, the design implications of variability requires

an accurate knowledge of parameter distributions well into the tails and this demands the

simulation of a very large populations of devices. With modern computing facilities such

truly large scale statistical studies have become practical and have led to the simulation

study with sample size in the range of 105 [70, 74–77]. These studies revealed for the

first time that the distribution of the threshold voltage variations caused by random

dopants is not a Gaussian, revealing significant skew and kurtosis.

In addition to threshold voltage variation, on current variability has been investigated

experimentally [78] in which 44 pairs of n/p MOSFET were measured, and the standard

deviation of the saturation current was derived based on the α power law which states

that the saturation current is proportional to (VG − Vth)α. The constant α defines the

slope between the standard deviation of the threshold voltage and the standard deviation

of the saturation current. It was reported that the saturation current variability might

be reduced by minimising the threshold voltage variability [78].

As with simulation of threshold voltage variation above, drain current variation as-

sociated with RDD has been estimated via statistical drift diffusion simulations [26].

While DD accurately captures the electrostatic variation and its impact on device per-

formance arising from the variability sources discussed previously, thus accurately cap-

turing threshold voltage and off-current variation, it is insensitive to ’transport vari-

ation’ arising from differences in position dependent scattering from device to device.

The accurate investigation of drain current variation demands the accurate resolution

of transport variation. It is in this regard that Monte Carlo (MC) simulation capable

of capturing deterministic, position dependent scattering and associated transport vari-

ation is indispensable for a complete estimate of device parameter variation. Such ’ab

initio’ approaches to scattering in MC simulations have been presented, with the focus

on resolving the carrier-impurity interaction [33, 34, 79–81]. These models all attempt

to incorporate ionised impurity scattering directly via carrier propagation, removing the
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traditional stochastic ionised impurities scattering rate mechanism. Few, however, have

been applied to large scale statistical simulations.

One such statistical ’ab initio’ MC simulation of transport variation has been presented

in [33, 34] and applied to the study of RDD induced drain current variation in a series of

realistic scaled devices at both low and high drain bias. Results for each device dimension

consistently show a significant increase in the standard deviation of the drain current

distribution compared with DD estimates. This is shown in figure 2.7 [33]. Results were

consistent with previously published results [26] and those obtained using the commercial

simulator TMA MEDICI [82]. MC simulation highlighted the importance of transport

variation in estimating drain current variation, with the relative contribution of transport

variation to the total drain current variation, shown inset in figure 2.7, accounting for

as much as 60%.

Figure 2.7: Percentage drain current variation as a function of channel length from
DD simulation and frozen field and self-consistent ab initio MC. The contribution from

transport variation within MC is shown inset [33].

However, the results in [33, 34] were obtained in the absence of any quantum mechanical

corrections. Density gradient quantum corrections have however recently been included

in the self-consistent MC simulations of on-current variation in double gate MOSFETs

[32]. They are applied via a pre-defined correction to the classical potential derived from

drift diffusion simulation. It has been shown to accurately reproduce carrier densities in

inversion layers as well as the body thickness dependence of mobility in ulta-thin silicon

layers [83].
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2.2.2 Other Sources of Variability

Line edge roughness, illustrated in figure 2.8, caused by tolerances inherent to materials

and tools used in the lithography processes is yet another source of fluctuation that needs

close attention. It will be increasingly difficult to reduce LER below the current level

of approximately 5 nm, which is limited by the molecular dimensions in the photoresist

used in the 193 nm lithography systems, and therefore will be an increasingly important

source of intrinsic parameter fluctuations in the future [10, 11, 52].

Figure 2.8: Typical LER in photoresist (Sandia Labs.) [36].

The polycrystalline granular structure of the polysilicon gate (PSG), illustrated in figure

2.9, has also been identified as an important source of intrinsic parameter fluctuation

[7, 16]. Enhanced diffusion along the grain boundaries and localised penetration of

dopants through the gate oxide into the channel from the high doping regions in the

gate are potential sources of variability [15]. However, the most significant source of

fluctuations within polysilicon gates is likely to be Fermi level pinning at the boundaries

between grains due to the high density of defect states [84]. This pinning directly affects

the surface potential resulting in a local increase in the potential barrier coincident with

the grain boundary. The exact nature of grain boundary alignment above the channel

will then determine the effect on drain current.

The introduction of high-κ/metal gate technology improves the RDD-induced variability

due to the reduction in the equivalent oxide thickness and removal of the PSG effects.

However, at the same time it introduces high-κ granularity illustrated in figure 2.10 and

variability associated with work-function variation due to the metal gate granularity

illustrated in figure 2.11 [18]. In extremely scaled transistors, atomic scale interface
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Figure 2.9: An SEM micrograph of typical PSG [36].

roughness illustrated in figure 2.12 [13] and corresponding body thickness variations [85]

can become an additional important source of statistical variability.

Figure 2.10: Granularity in HfON high-κ dielectrics (Sematech) [18, 36].

2.3 Simulation of Intrinsic Variations

The requirement for statistical simulations transforms the traditional device simulation

problem into a four-dimensional space where the fourth dimension is considered as the
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Figure 2.11: Metal granularity causing gate work-function variation [36].

Figure 2.12: Scanning electron microscope image of interface roughness (IBM) [13,
36].

size of the statistical sample. This is in order to estimate the mean values, variance

and higher moments of the distribution of basic design parameters such as threshold

voltage, subthreshold slope, transconductance and on-current for the ensemble of mi-

croscopically different devices [86]. It must be emphasised that even the mean values

obtained from, for example, statistical atomistic simulations are not identical to the

values corresponding to continuous charge simulation [23].

In a typical modern chip there are over one billion transistors, hence there is a need to

assess up to 6σ or 7σ of the statistical distribution. This requires the simulation of a

large ensemble of devices in order to make reliable estimates of the distribution and to
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accurately infer the implications of sources of variability. It is important to understand

how large the statistical samples need to be in order to obtain sufficient accuracy of

the true distribution; how present tools might be used together to produce sufficient

accuracy for a single device and the number of results that properly examine the tails of

the distributions of a large ensemble of devices. It is recognised that this poses significant

simulation challenges and that the successful approach to this problem will make the

most efficient use of the currently available simulation tools.

A hierarchy of simulation techniques can be constructed according to their relative com-

putational complexity and accuracy [87, 88]. Compact model simulations are the most

efficient due to the phenomenological physical models employed, but can not be used

independently of other simulation methods for estimating the effects of device parameter

variation as the models are insensitive to microscopic device details. Compact model pa-

rameters may however be calibrated to describe individual random instances of a device

given device characteristics obtained from more comprehensive simulation techniques.

Drift Diffusion (DD) simulation is an example of one such technique. It solves an ap-

proximation of the Boltzmann Transport Equation (BTE) using the first two moments.

It is the most efficient method of 3D device simulation, capable of accurately describing

the electrostatic effects associated with discrete variations.

As such, DD is suitable to study threshold and sub-threshold variation as they are dom-

inated by device electrostatics. Including the third moment of the BTE, representing

energy conservation, results in the Hydrodynamic model. The solution of this model,

while computationally more demanding than DD, increases the accuracy of simulation

results in the drive-current regime due to the partial incorporation of non-equilibrium

velocity overshoot effects. While this extension is an improvement over DD it falls short

of an complete description of carrier transport, omitting possible carrier backscattering

and the effects of multiple independent scattering mechanisms. Ensemble Monte Carlo

(MC) simulation is a solution of the BTE via the direct simulation of carrier trans-

port in the presence of multiple scattering mechanisms and represents a considerable

increase in accuracy but also in computational effort compared to both the DD and

Hydrodynamic models. It can accurately describe non-local and non-equilibrium carrier

transport and so accurately estimate on-currents. The MC technique is described in

detail in section 3.2 and is used extensively within this work. While modifications of the

traditional, semi-classical, MC algorithm allow quantum mechanical tunnelling effects
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to be simulated, dedicated quantum modelling approaches to the solution of the cou-

pled Poisson Schrodinger, Wigner distribution function, and Non-Eequlibrium Green’s

Functions (NEGF) exist as advanced quantum transport models. Such quantum trans-

port modelling approaches are however computationally prohibitive for large devices and

large statistical ensembles.

DD simulation therefore represents the most efficient and flexible predictive technique

for the accurate estimation of threshold/sub-threshold device characteristics, while MC,

although slow, is the most efficient and accurate predictive method for estimating on-

current characteristics.

2.4 Variability Impact on Circuits

Statistical variability of transistor characteristics already critically affects SRAM scaling

[45, 46], and introduces leakage and timing issues in digital logic circuits [47]. Intrin-

sic parameter fluctuations crucially affect the yield and performance of SRAM circuits,

forcing the use of redundancy and flexible powering and are responsible for the different

stability and performance of SRAM cells. A schematic of an SRAM cell is shown in

figure 2.13 with the static transfer curves for an ensemble of 200 SRAM cells, consid-

ering parameter variations associated only with RDD, shown in figure 2.14. Accurate

investigation of the tails of key parameter distributions is of fundamental importance

to SRAM design as, due to the millions of cells in modern memory arrays, devices that

populate the tails are to be expected. Currently SRAM design tolerates devices within

7σ or 8σ of the mean, though a Gaussian distribution is typically assumed. Asymmetry

of distributions, already observed in very large scale statistical simulations, could very

strongly affect the outcome of SRAM design.

Compact models form a key design component and interface between technology and

design. The first step towards variability aware design is to develop statistical com-

pact modelling approaches that can reliably capture statistical variability information

and that will enable designers to confidently take full advantage of advanced technolo-

gies. Historically, the importance of device matching in the analogue domain drove the

statistical compact modelling efforts [89]. For a semiconductor technology to be econom-

ically viable in the analog domain the devices require well controlled variance behaviour.
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Figure 2.13: SRAM cell bias configuration for Static Noise Margin calculation. [45,
77].

Figure 2.14: Static transfer characteristics from an ensemble of 200 SRAM cells.
[45, 77].

CMOS digital logic circuits are by contrast more resistant to statistical device variation

[90], although it can cause concern in timing and power dissipation. However, the mag-

nitude of statistical parameter variation within the current device technology is now

such that it may introduce faults even in digital logic circuits. Consequently, accurate

statistical compact models able to capture the simulated or measured statistical device

variability are required since this is the only way to communicate this information to

designers.

Previous variability research using statistical compact models was restricted to identify

only variability associated with process variation [91]. In addition, most statistical com-

pact model approaches developed for the analog domain were based upon the assumption

that the compact model parameters were uncorrelated and normally distributed [92].



Chapter 2. VARIABILITY 22

Unfortunately, the current industrial standard compact models do not have natural pa-

rameters designed to incorporate seamlessly the truly statistical variability associated

with RDD, LER, PSG, metal gate and high-κ and other relevant variability sources.

Representative sets of current-voltage characteristics for each microscopically different

device from simulated ensembles are required in order to extract statistical compact

models [45, 93].

Based on the statistical compact model libraries built from the above mentioned di-

rect statistical compact modelling results, the impact of RDD variation on 6T and 8T

SRAM stability for the next generations of bulk CMOS technology can be investigated

[94]. Currently, 6T SRAM is the dominant SRAM cell architecture in SoC and mi-

croprocessors. The functionality of SRAM is determined by both static noise margin

(SNM) and the write noise margin (WNM). By using write assist technology [95], WNM

can be dramatically improved.

More and more, the strategic technology decisions that the industry will be making in

the future will be motivated by the desire to reduce statistical variability. SRAM is

the most sensitive IC component in respect of statistical variability and needs special

care and creative design solutions in order to take full advantage from scaling in present

and future technology generations. Statistical compact modelling plays a vital role in

variability aware design.

2.5 Summary

In this chapter the main sources of variability in modern nano-CMOS transistors, such

as RDD, LER, PSG, metal gate, and high-κ, were presented with regards to the most

comprehensive currently available 3D tool for statistical simulation of variability includ-

ing DD and Monte Carlo. DD results accurately reproduce the measured threshold

voltage variability in real devices. MC simulations with ab initio ionised impurity scat-

tering are needed to capture properly the transport variability introduced by the random

configuration of scatterers in the devices.

The useful life of bulk MOSFETs, from a statistical variability point of view, can be

extended below the 20 nm technology mark only if the LER and the equivalent ox-

ide thickness could be successfully scaled to the required values. The introduction of
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fully-depleted SOI MOSFETs, and perhaps FinFETs, will mainly be motivated by the

necessity to reduce the statistical variability. In SOI devices and FinFET technology

the statistical variability induced by RDD is suppressed since these technologies benefit

from undoped channels, have improved electrostatics integrity and better performance

compared with bulk MOSFET. This, however, might be jeopardised by other sources of

variability associated with the introduction of the high-κ/metal gate stack and increased

statistical reliability problems. It is vital to capture the simulated or measured statisti-

cal variability in statistical compact models since this is the only way to propagate this

information into subsequent circuit analysis.
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DEVICE SIMULATORS

In this chapter the DD and MC device simulators used in our studies are described,

paying particular attention to their abilities to resolve the discrete random dopant effects

in details that are the focus of this work. In the first section we briefly describe the

quantum corrected, atomistic 3D drift diffusion (DD) simulator, before describing the

quantum corrected, ab initio atomistic 3D Monte Carlo (MC) simulator in the second

section. Particular attention is payed to the ab initio treatment of ionised impurity

scattering within MC and of the implementation of quantum corrections therein.

3.1 The Drift Diffusion Simulator

3.1.1 Classical Drift Diffusion Simulations

The Glasgow atomistic 3D DD simulator has been developed over the course of ten

years with the specific aim of accurately estimating statistical device parameter varia-

tion in ultra-small semiconductor devices. It is a generalised, fully three dimensional

(3D) drft-diffusion device simulator tailored to accurately capture the effects of the in-

herently 3D statistical variations in a range of device structure. It has the capability

of simulating variation associated with Random Discrete Dopants (RDD), Line Edge

Roughness (LER), Oxide Thickness Variations (OTV), polysilicon granularity and ran-

dom grain orientation within high-k dielectrics within MOSFET, SOI MOSFET and DG

MOSFET devices [26, 29, 30]. It captures the electrostatic impact of the above sources

24
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of variation and results in accurate estimation of the statistical variability of threshold

voltage, subtreshold slope and off current [7, 10, 13, 22, 26], all of which are dominated

by device electrostatics.

The DD simulator numerically solves the fundamental system of drift-diffusion equations

governing the electrostatic behavior of semiconductor devices in [96]. This involves

the numerical solution of Poisson’s equation coupled with the solution of the current

continuity equation. Poisson’s equation may be stated as,

∇.ε∇ψ = −q(p− n+ND −NA) (3.1)

where ψ is the electrostatic potential which is unknown, ε is the position dependent

dielectric permittivity, q the electronic charge, n and p are the negative (electron) and

positive (hole) charge carrier densities obtained from the solution of the current con-

tinuity equation and ND and NA are the donor and acceptor doping concentrations.

Only unipolar MOSFETs are simulated, as an integral part of CMOS technology and

therefore one type of charge carrier is considered in the solution of the current continu-

ity. Additionally, generation and recombination are ignored as these play little role in

the MOSFET operation. Considering this, and from now on assuming electrons as the

majority charge carriers, current continutity is expressed as,

∇ · Jn = 0 (3.2)

with the current density Jn in the drift-diffusion approximation given by,

Jn = −qnµn∇ψ + qDn∇n (3.3)

where µn is the carrier mobility and Dn the diffusion constant. In all simulations Boltz-

mann statistics is considered leading to the Einstein relationship

Dn = µn
kBTn
q

(3.4)
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where kB is Boltzmann’s constant and Tn is the carrier temperature which is assumed

to be equal to the lattice temperature [97].

The electron and hole concentrations, n and p respectively, are given by a Maxwell-

Boltzmann distribution [98],

n = ni exp
(
−q(φn − ψ)

kBT

)
(3.5)

p = ni exp
(
q(φp − ψ)
kBT

)
(3.6)

where ni is the intrinsic carrier concentration and φn and φp are the electron and hole

quasi-fermi levels respectively. The dependence of the above carrier concentrations upon

the electrostatic potential ψ makes Poisson’s equation (3.1) non-linear.

3.1.2 Quantum Corrections

In modern, ultra-small, MOSFETs the large electric field normal to the interface in the

channel depletion layer results in a quantum well and inversion layer carrier confine-

ment. This quantum confinement alters the distribution of carriers, shifting the peak

concentration away from the interface and reducing the effective oxide capacitance. This

in combination with the energy quantisation has a significant impact on the device oper-

ation, increasing the threshold voltage and reducing the device performance, capturing

these effects is essential for the accuracy of the device simulator [5, 26, 31]. Quantum

effects are included within the 3D DD by means of the Density Gradient (DG) quantum

correction [99, 100], which has similarities with the Bohm interpretation of quantum

mechanics [101]. The DG approach can be as a correction to the classical potential

and can be derived from the modified Boltzmann Transport Equation using the Wigner

distribution function. It may be thought of as the inclusion of an additional driving

term for the carriers that is associated with the additional, quantum, potential. The

incorporation of DG modifies the carrier distribution so that, instead of being described

by the simple Maxwell-Boltzmann distribution (3.5), it must be obtained as the solution

of
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2bn
∇2√n√

n
= φn − ψ +

kBT

q
ln(

n

ni
) (3.7)

where the term bn = ~2/12qm∗n is a function of the carrier’s effective mass m∗n and is

treated as a fitting parameter. The additional driving term (at the left hand side of

equation (3.7)) modifies the classical current continuity equation (3.2) such that [102],

Jn = −qnµn∇ψeff + qDn∇n (3.8)

where the term ψeff represents the effective quantum-corrected potential, which is cal-

culated from (3.7) as

ψeff = ψ + 2bn
∇2√n√

n
= φn +

kBT

q
ln(

n

ni
) (3.9)

The additional driving term forces carriers away from the interface. The DG formalism

has been shown to accurately reproduce the carrier distribution for a range of confining

potential distributions when compared with fully quantum mechanical solutions [29,

68, 103] and accurately reproduce their impact of the quantum confinement on device

characteristics [26, 30, 104].

Another method widely used to include quantum corrections within device simulation is

the Effective Potential approach (EP) [105, 106]. In this case, the classical potential from

the solution of Poisson’s equation is convolved with an electron wavepacket to produce

a smoothed ’effective’ potential that has the desired effect of forcing carriers away from

sharp changes in the potential. It is implemented simply as a Gaussian smoothing

kernel applied over the classical potential. However, it suffers from the deficiency that

the calibration of the Gaussian, is somewhat empirical and has to be performed for each

individual device [105]. It has been also shown that the EP provides a less satisfactory fit

to the inversion layer distribution when compared with DG and fully quantum solutions

[104].
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3.1.3 Solution Methodology

In order to numerically solve the fundamental system of coupled partial differential equa-

tions 3.1, 3.2 and 3.7, the continuous equations need to be suitably discretized. Since

individual discrete dopant resolution requires regular dense meshes, cartesian grids on

a finite differences discretisation is adopted. This is also beneficial for avoiding self

force effect in the MC simulations that uses the same grid. To prevent the impact of

self-forces in particle propagation the use of orthogonal uniform meshes is necessary

[107–109] where the self-force is zero when the charge assignment and force interpola-

tion schemes are the same. The advantage of orthogonal uniform grids is the simple

calculation of the charge assignment and electric field interpolation obtained directly

from grid points. The treatment of self-forces on unstructured grids has been investi-

gated only by a few studies [107, 108] . In [108] reasonable results were obtained only

for equilateral triangular elements. The higher computational effort which is needed to

eliminate the self-forces on unstructured tetrahedral meshes has been investigated in the

study [107]. This study has shown that the accuracy of the interpolation of the electric

field is degraded on unstructured meshes. The complexity of the charge assignment and

electric field interpolation schemes in the unstructured nonuniform meshes has a higher

computational cost compared with orthogonal uniform meshes [107].

Following a finite differences discretisation method, the Poisson, DG and current con-

tinuity equations are rewritten in their integral forms and, in turn, the box volume

method is applied to obtain their full 3D discretization [110]. This leads to a large

system of nonlinear equations, since the Poisson and DG equations are nonlinear. The

Newton-Raphson method is introduced in order to linearize the system of equations

[110], enabling the solution via classical iterative matrix methods. The one dimensional

solution of this set of coupled equations was first presented by Scharfeteer-Gummel [111]

and this forms the basis of our solution.

Boundary conditions are applied to the discretized equation such that at the edge of

the simulation domain the normal derivative of the electrostatic potential is zero (Neu-

mann boundary condition). This ensures that the current flux through the edge of the

simulation domain is zero. This condition is default unless the boundary represents an

external contact, in which case a fixed value potential boundary condition is imposed
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(Dirichlet boundary condition). Similar boundary conditions are applied to the quan-

tum corrected carrier concentrations. A finite penetration of the carriers in the gate

insulator is assumed, which corresponds to a finite value of the normal derivative of the

carrier concentration at the interface [112]. Otherwise, the normal derivative of carrier

concentrations are assumed to be zero. To summarize the above, the Dirichlet boundary

conditions may be stated as

ψ|ΓS = 0,

ψ|ΓD = VD,

ψ|ΓG = VG +
kBT

q
ln(

NP

ND
),

ψ|ΓSUBS = −kBT
q

ln(
NAND

n2
i

) (3.10)

where ΓS is the area of the source ohmic contact, ΓD is the area of the drain ohmic

contact, ΓG is the area of the gate, ΓSUBS is the area of the back substrate contact, VG

is applied voltage between the source and gate contacts, VD is applied voltage between

the source and drain contacts, and finally NP is n+-polysilicon concentration in the

polysilicon gate. Neumann boundary conditions may be expressed as

∂ψ

∂~n
|ΓN = 0,

∂n

∂~n
|ΓN = 0,

∂Jn

∂~n
|ΓN = 0,

(3.11)

where ΓN is the edge of the simulation domain where the Neumann conidtions are

applied.

Following this method, the discretized system of simultaneous equations is solved via a

two step process that is iterated until convergence. Therefore, this process is a mod-

ified Gummel procedure [111] and can be described as follows. In the first step, the

electrostatic potential and the quantum corrected carrier densities are solved iteratively
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and self-consistently. A Red-Black Successive Over-Relaxation (SOR) method is used

where the damping parameter Ω (within the interval range 0 and 2) regulates the speed

of convergence. The convergence criteria for potential and current density is defined

as difference between two consecutive iterations of potential and carrier density. The

convergence is met for SOR method when difference is less than given tolerance level.

Solution of the linear discretized current continuity equation (3.2) follows using an ef-

ficient Bi-Conjugate Gradient Stabilized method. This process is repeated until the

current converges. The convergence requirements are met when the difference between

two consecutive iterations of Gummel cycle [111] is less than defined tolerance level.

3.1.3.1 Random Discrete Dopants

Here we describe the inclusion of RDD within the DD simulator as this forms an im-

portant part of this work. The creation of RDD distributions, the assignment of the

associated charge and the resolution of the classical Coulomb potential will be addressed.

With aggressive scaling to sub-nanometer dimensions, and simulation domains dis-

cretized on the order of inter-atomic separations, it becomes not only computationally

manageable but essential to consider the underlying crystal lattice comprising the de-

vice and the probability of random dopants positioned at its sites. The Silicon crystal

lattice is described by the diamond structure - a face centered cubic (fcc) lattice with a

basis of two silicon atoms. Thus the lattice may be equivalently described by a simple

cubic lattice with a basis of 8 silicon atoms with basis vectors (0, 0, 0), (0, 1
2 ,

1
2), (1

2 , 0,
1
2),

(1
2 ,

1
2 , 0), (1

4 ,
1
4 ,

1
4), (1

4 ,
3
4 ,

3
4), (3

4 ,
1
4 ,

3
4) and (3

4 ,
3
4 ,

1
4), normalised with respect to the silicon

lattice constant a = 0.543nm. The basis atoms are presented in figure 3.1. By starting

at a point within the simulation domain and translating over all lattice vectors and

subsequent basis vectors that fall within the domain, the entire Silicon lattice structure

of the transistor may be accurately traversed.

Having defined a means of traversing all silicon lattice sites, the next step in the RDD

generation process is to make a decision for each lattice site as whether or not to place

a dopant in it. This is determined by a rejection technique first described in [25] in

which the probability of a dopant occupying a lattice site is calculated based upon the

local continuous doping concentration typically obtained from TCAD simulation and

the site volume. This probability necessarily lies between 0 and 1. A random number
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Figure 3.1: Equivalent Silicon basis consisting of 8 silicon atoms within a cubic lattice
unit cell.

is then generated between 0 and 1 and a dopant is accepted at this site if this number

is smaller than the prior probability. The number of dopants generated following this

method follows a Poisson distribution with a mean equal to the expected number of

dopants consistent with a continuous charge density [87].

Since the lattice sites generally differ from the nodes of the discretization mesh, dopants

will in general lie between mesh points. The cloud-in-cell (CIC) [109] charge assignment

scheme is used to assign their charge to the mesh as it retains information for the actual

position of the within the mesh cell while localising the charge so that the discrete nature

of the dopant is retained an accurately as possible. In this scheme, the charge associated

with a single dopant is assigned to the surrounding eight mesh points. The ratio of the

charge assigned to each mesh point is inversely proportional to the distance between the

mesh point and dopant - thus the closest grid node acquires the largest fraction of the

dopant charge density.
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At this point it is important to clarify the role of the density gradient quantum cor-

rections for the accurate treatment of localised discrete dopants within DD simulations.

On a fine grained discretization mesh, the solution of Poisson’s equation with a dis-

crete dopant will result in a sharply resolved Coulomb potential well. The depth of this

well will increase with reduced mesh spacing approximating better singular point charge

Coulomb potential. The Boltzmann statistics 3.5 relates the carrier concentration to

the almost singular electrostatic potential around the dopants which results in artificial

carrier trapping on dopants which reduces the free carrier concentration and increases

resistance in simulations [30, 113]. Quantum confinement prevents this in reality. The

inclusion of the DG quantum corrections mediates the trapping of carriers in the sharply

resolved Coulomb wells of the individual impurities, yielding a quantum mechanically

consistent approach to resolving individual discrete dopants in atomistic drift diffusion

simulations [5, 29, 30]. A comparison between the classical and the quantum corrected

electron concentration surrounding a discrete impurity distribution is illustrated in fig-

ure 3.2 where the local reduction in carrier concentration in the DG case is clearly seen.

This also eliminates the mesh sensitivity of the solution.

3.1.4 Mobility Models

In order to solve the current continuity equation (3.2), the mobility µn, and by conse-

quence the diffusion constant Dn, must be specified. The mobility is defined generally

as a macroscopic constant of proportionality that relates the equilibrium carrier velocity

vn to a constant electric field E

vn = µnE (3.12)

The mobility however depends on the underlying doping concentration, temperature

and electric field. It is also in general not a scaler value, reflecting the anisotropy of the

discrete crystal lattice, and is properly expressed as a tensor. However, the anisotropy in

silicon at the temperatures concerned is small and may be neglected by taking a suitably

calibrated average scalar value. The dependence of doping concentration and electric

field are taken into account through the following empirical models [114].
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Figure 3.2: Electron Concentrations within a 200 × 25 × 25 nm resistor, showing
both the classical electron concentration due to Boltzmann statistics and the quan-
tum electron concentration generated by the inclusion of Density Gradient quantum

corrections.

3.1.4.1 Concentration Dependent Mobility

The experimentally mobility measurements show strong doping concentration depen-

dence [115]. A good fit to the measured data provides so-called ”min-max” expression:

µ0n(Ntotal) = µnmin +
µnmax − µnmin
1 + (NtotalNrefn

)αn
(3.13)

where Ntotal is the doping concentration, µnmin and µnmax are parameters specifying the

minimum and maximum of the range of experimental mobilities, Nrefn is a reference

concentration that affects the onset of the mobility degradation of high doping concen-

trations and αn is a fitting parameter describing the rate of degradation. A good fit is

shown in figure 3.3.
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Figure 3.3: Comparison of experimentally measured mobility [115] and empirical
mobility model (3.13) where Nrefn = 1.072 × 1017cm−3, µnmin

= 55.24cm2V−1s−1,
µnmax

= 1429.23cm2V−1s−1 and αn = 0.73 .

3.1.4.2 Field Dependent Mobility

Futher to the concentration mobility dependance, the carrier velocities in bulk saturates

with the increase of the electric field. The velocity saturation is typically modelled using

empirically fitted expression. One of the most popular expressions is given below

µn =
µ0n

[1 + (µ0nE‖n
vsatn

)βn ]
1
βn

(3.14)

where µ0n is the concentration dependent mobility obtained from equation (3.13), E‖n is

the electric field in the direction of the current flow, vsatn is the experimentally observed

saturation velocity and βn is a dimensionless fitting parameter. The fit with experi-

mentally observed velocities in undoped bulk silicon is shown in figure 3.4. However,

the mobility can vary due to the device orientation and under the influence of strain

[116, 117]. These effects are not directly accounted for in this model.
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Figure 3.4: Comparison of experimentally measured velocity-field characteristics
in undoped silicon at 300K with the empirical mobility model (3.14) where µ0n =
1410cm2V−1s−1, vsatn = 0.95 × 107cms−1, βn = 2 and subsequently the velocity is

obtained from (3.12) as v = E‖n

µn
.

In MOSFETs however, an additional field dependent mobility degredation factor asso-

ciated with the surface scattering of confined carriers from the rough interface along the

channel must be considered. This so-called vertical field dependent mobility is parame-

terised depending on the field component normal to the interface and is often modelled

using the expression as

µS,n = Gsurfn
µ0n√

1 + E⊥
Ecn

(3.15)

where µ0n is again the concentration dependent mobility obtained from equation (3.13),

Gsurf,n is a parameter between 0 and 1 that reflects the rate of surface roughness scat-

tering, E⊥ is the normal to the interface component of the electric field at the interface

and Ecn is a field fitting parameter.
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In device simulations, the concentration dependent mobility (3.13) is first determined

at each mesh point based on the local doping concentration assigned there. This is then

modified to account for the local vertical field dependence following equation (3.15)

before being modified again to account for the local lateral field dependence following

equation (3.14). The fields are determined from the current Poisson and density gradient

solution in order to maintain self-consistency.

3.1.4.3 Atomistic Mobility

The use of the mobility model described above becomes problematic in the presence

of RDD due to the large and localized charge densities associated with dopants and

the correspondingly large Coulomb fields in fine grained discretization meshes. The

unphysically large and localised charge densities result in discontinuous jumps in mobility

from the extremes of too high a mobility in regions where no doping is assigned, to

unphysically low mobility in regions where it is. Similarly, the large short-range field

surrounding dopants, even when applying quantum corrections, unphysically saturates

carrier velocities. A solution to this problem is to use in the atomistic simulations

mobility taken from a prior solution of an identical, but continuously doped, device at

equivalent bias conditions. The continuous doping solutions provide the mobility at

every mesh point for a simulation under specific bias conditions. These are stored as

separate mobility files which may be re-used in the simulation of microscopically different

devicies.

This highlights a major limitation of the DD simulations; that while the device elec-

trostatics may be accurately incorporated, the carrier transport models rely upon an

idealised local relation between the mobility and electric field. Therefore DD cannot

describe nonequilibrium transport phenomena to rapid electric field changes in time or

position as a result at which the carrier distribution may momentarily or locally be

driven out of equilibrium. Nonequilibrium, near ballistic transport however plays a very

important role in determining the performance of contemporary MOSFETs. This calls

upon the use of ensemble Monte Carlo (MC) simulations suitable to accurate physical

description of effects.
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3.2 Monte Carlo Simulator

The in house 3D Monte Carlo (MC) simulator has been developed over the course of

the last eight years with the specific goal of capturing carrier transport variability due

to random discrete doping configurations employing also efficient quantum corrections

techniques [32, 33, 118]. As the basis of this work, the 3D MC simulator is discussed in

detail in this section. A brief introduction to the MC method is first given before details

of band structure and scattering mechanisms specific to the simulator are presented.

3.2.1 Boltzman Transport Equation

3.2.1.1 Classical Boltzman Transport Equation

Monte Carlo device simulation seeks to solve the Boltzmann Transport Equation (BTE);

a general continuity equation that expresses the evolution of the carrier distribution func-

tion in six dimensional position-velocity phase space. The classical BTE is universally

derived from the Liouville-von Neumann master equation [119] under given approxima-

tions frequently presented in the following form

∂f

∂t
+ v · ∇rf +

F

m
· ∇vf =

(
δf

δt

)
Coll

(3.16)

f(r,k, t) is the carrier distribution function and is defined as the probability of finding

a carrier within δr of position r and with velocity within δv of v. The BTE describes

the time evolution of the distribution function due to the deterministic motion and

acceleration of carriers and due to the stochastic velocity changes due to collision events.

The deterministic motion is expressed in the second and third terms on the left hand side

of (3.16), frequently called drift terms, which respectively express the conservation of the

flux of particles with velocity v within an elemental volume in real space and a similar

flux of particles with acceleration F
m in an elemental volume in velocity space, where F

is external force. The right hand side of (3.16) is the general stochastic collision term

that describes all possible processes other than external fields that effects a particle’s

velocity. If the distribution function can be obtained, all quantities of interest ranging

from charge densities, energies and velocities to device terminal currents may be derived.
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3.2.1.2 Semi-Classical Carrier Dynamics

The detailed dynamics of particles within a semiconductor is inherently a many-body

problem and as such is impossible to solve directly for practical purposes. In order to

overcome this it is necessary to impose some simplifying assumptions. To reduce the

order of the problem, electron-electron interactions are ignored in the so-called ’indepen-

dent single electron’ approximation and only the interaction between a single electron

and an infinite and perfectly periodic, static, crystal lattice is considered. Solutions to

the following time independent Schrodinger equation are then sought [120]

[− ~2

2m0
∇2 + UC(r)]ψ = εψ (3.17)

where ψ is the independent electron wavefuntion, UC(r) is the crystal lattice potential

energy and m0 is the free electron mass. The periodicity of the crystal lattice is such

that UC(r) = UC(r + R), where R is any Bravais lattice vector. Quantum mechanical

solutions of (3.17) for the electron wavefunction exists in the form of Bloch waves [120].

These have the form of a plane wave multiplied by a function with the periodicity of the

Bravais lattice

ψnk = unk(r)eik·r (3.18)

where eik·r is a plane wave with electron wavevector k and unk(r) is the corresponding

Bloch function satisfying the periodic condition

unk(r) = unk(r + R) (3.19)

The subscript n denotes different solutions and is termed the band index. Inserting

equation (3.19) into (3.17) results in the following equation

[− ~2

2m0
(∇2 + 2ik · ∇ − k2) + UC(r)]unk(r) = εn(k)unk(r) (3.20)

The periodic boundary condition, spanning the finite volume of the crystal lattice unit

cell, allows the solution of the eigenvalue problem given the Hamiltonian in (3.20). The
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constraint of the solution to the finite volume leads to a set of discrete eigenvalues in

the wavevector k. For each wavevector there exists a family of eigenfunctions unk(r)

belonging to the eigenenergy values εn(k). This family of the quasi-continuous functions

εn(k) creates the so called band structure associated with the crystal lattice. Given the

band structure, the independent electron Hamiltonian may be written as

H(k(t), r(t)) = ε(k(t)) + eV (r(t)) (3.21)

The Hamiltonian is decomposed into two parts; the first part is the above band structure

while the second is the position dependent electrostatic potential V (r(t)). Both parts are

generally time dependent. From energy conservation, the following relation is obtained

[120]

dH(k(t), r(t))
dt

= [∇kε(k)]
dk

dt
+ [∇reV (r(t))]

dr(t)
dt

= 0 (3.22)

Analogously with the de Broglie relationship for free electrons, a crystal momentum P

associated with an electron with wavevector k may be defined as [120, 121]

P = ~k = m∗vg (3.23)

where m∗ is a mass-like term, not equal to the free electron mass, termed the effective

mass and vg is the electron’s velocity within the crystal and is defined analogously with

a group velocity as

vg =
dr(t)
dt

=
1
~
∇kε(k) (3.24)

Substituting (3.24) into (3.22) yields

vg ·
d(~k)
dt

+ [∇reV (r(t))] · vg = 0 (3.25)

from which the fundamental expression for the rate of change of momentum may be

obtained as [122]
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d(~k)
dt

= −∇reV (r(t)) (3.26)

This is recognisable as Newton’s law when considering an electron in an electric field

where now the crystal momentum replaces the electron’s real momentum. Equations

(3.24) and (3.26) then define the semi-classical equations of motion for the electron

within the crystal lattice.

3.2.1.3 Semi-Classical Boltzman Transport Equation

Substituting (3.24) and (3.26) into (3.16) results in the semi-classical BTE

∂f

∂t
+

1
~
∇kε(k) · ∇rf −

1
~
∇reV (r(t)) · ∇kf = C[f ] (3.27)

The collision term C[f ] expresses the net rate of change of f due to all possible scattering

processes that instantaneously alter the crystal momentum ~k. It may be expressed as

C[f ] =
∑
k′,l

[Sl(k′,k)f(c,k′, t)[1− f(r,k, t)]− Sl(k,k′)f(r,k, t)[1− f(r,k′, t)]] (3.28)

where Sl(k′,k) is the transition probability per unit time that a carrier in state k′

scatters into the new state k, where it is required that k is empty. Sl(k,k′) is similarly

the rate at which a carrier in state k scatters into state k′. The subscript l ranges

over all possible scattering mechanism and the terms [1− f(r,k, t)] and [1− f(r,k′, t)]

represent the probability of the respective states being empty.

The quantum mechanical nature of (3.27) is incorporated in two ways. Firstly in the use

of band structure to describe the interaction between electrons and the crystal lattice,

and secondly in the scattering rates as expressed through perturbation theory using

Fermi’s Golden Rule. The scattering rates will be discussed later in section 3.2.2.6. All

the above defines the semi-classical approach to transport within the BTE.

Monte Carlo simulation is a stochastic approach to the solution of the BTE (3.27) in

which the distribution function is evaluated by an iterative process of repeated carrier
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propagation and self-consistent scattering, representing the drift and collision terms

respectively. Propagation treats carriers as classical point particles, obeying newtonian

dynamics and defining an exact position and velocity in contrast with the uncertainty

principle. The stochastic nature of the solution enters through the evaluation of carrier

free flight times and in the evaluation of the scattering mechanisms included within 3.28.

The scattering rates are calculated within the Born-Openheimer approximation using

Fermi’s Golden Rule (see section 3.2.2.6) and, along with the band structure, exerting

the quantum mechanical nature of the problem.

The general MC method is presented as a flowchart in figure 3.5. Propagation and

scattering is punctuated with regular statistics gathering form which the distribution

function is estimated. The MC simulations can be performed in two regimes. The first

regime is called a ’frozen field’ approximation [123–125], which is valid for drain biases

typically lower than 50 mV [125]. The second regime is the self-consistent MC simulation

[126–128], as shown in figure 3.5, where the classical potential is updated at the end of

each field adjusting time step using new carrier concentrations in the Poisson’s equation

(3.1) in order to properly capture the changes in the electron distribution and velocity

at higher drain bias where the current and field are strongly coupled and the potential

must be regularly updated. For the purpose of this project, all MC simulations were

carried out self-consistently. Accuracy is obtained after averaging over a sufficiently

large number of iterations [129]. The proof that MC method leads to the distribution

function for a single particle obeying the BTE can be found in [130] where the BTE was

transformed into iteration of the path integral.

3.2.2 3D Monte Carlo Simulator

Having briefly outlined the basic theory behind Monte Carlo simulation including the

repeated propagation and scattering of carriers, in this section the details of the band

structure, scattering mechanisms and propagation methods specific to the Monte Carlo

simulator used will be presented.
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Figure 3.5: Monte Carlo flow chart.

3.2.2.1 Band Structure

According to equation (3.24), the band structure εn(k) must be defined in order to

describe carrier dynamics. The band structure is intimately linked to the periodic po-

tential of the crystal lattice such that the wave solutions of (3.20) are similarly periodic,

within the reciprocal space of the real space lattice [131]. This periodicity is expressed

analogously to the periodic potential as

εn(k) = εn(k + K) (3.29)

where K is a reciprocal lattice vector. All information regarding the band structure

is contained within the primitive (Wigner-Seitz) cell of the reciprocal lattice called the

first Brillouin zone (BZ) [120, 121]. This is shown for Silicon in figure 3.6. Due to

the symmetry of the BZ it is convenient to refer to only a unique volume within it,
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the irreducible wedge [132], when discussing the band structure in absence of strain.

The Silicon band structure is illustrated in figure 3.7 along the symmetry axes of the

irreducible wedge including a family of solutions, each defining a band. The band with

maxima at the Γ point, shown here with reference energy 0 eV, is the valence band

and represents bound states of electrons within the crystal lattice. At higher energy,

separated by the so-called band gap Eg of 1.12 eV [121], is the family of conduction

bands representing unbound electron states allowing conduction. As this work is only

concerned with the transport of unbound electrons, the conduction band will be focus

of the remainder of this discussion.

Figure 3.6: The first Brillouin zone of the Silicon lattice. Some important points
of high symmetry are shown X and L. The point X = 2π

a (1, 0, 0) lies on the surface
in center of BZ rectangular face along symmetry line ∆ = (1, 0, 0). The point L =
π
a (1, 1, 1) is located on the surface in the center of BZ hexagonal face along symmetry

line Λ = (1, 1, 1).The point Γ = (0, 0, 0) lies in the center of BZ.

The Conduction band minima is located at kmin = 2π
a (0, 0, 0.85) along the ∆ line near

the X point [133]. Due to the symmetry of the BZ, there are six equivalent X valley

minima. Higher energy minima are seen at the eight equivalent L points and at the

central Γ point [134]. As can be seen, the band structure is complicated and approxima-

tions are required in order to describe it. As the majority of conduction band electrons

reside near the band minima at room temperature, it is sufficient only to describe the

band structure locally about this point. This is the aim of the analytical band models
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Figure 3.7: Illustration of the real silicon band structure within the first BZ. Three
conduction band minima near points of high symmetry at X, Γ and L are highlighted

with their separations in energy from the valence band maxima.

described below. If the accurate dynamics of high energy electrons is required, a de-

scription of the full band structure is necessary which is significantly more complicated.

This relies upon the calculation and interpolation of the band structure discretised in

k-space and obtained from semi-empirical methods such as k ·p [135–139], pseudopoten-

tial [140–143] or tight-binding [144–146]. As this work does not focus on the transport

phenomena associated with high energy carriers an analytic band model is adopted for

efficiency.

3.2.2.2 Analytic Band Approximations

There are several analytic band approximations that may be employed, each involving

trades off between benefits and costs [129, 147]. Each approximates the conduction

band minima ε(kmin) near the X point, which can be expanded by a Taylor series in

the vicinity of kmin as [120]

ε(kmin + k) = ε(kmin) +∇kε(kmin) · k +
1
2
kT∇2

kε(kmin)k + · · · (3.30)
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Since the band reaches a local minima at kmin, ∇ε(kmin) vanishes. Equienergetic sur-

faces are then given by the third term of the expansion as 1
2kT∇2

kε(kmin)k which defines

the local curvature of the band edge at the minima. This curvature has a quadratic alge-

braic form where the expression ∇2
kε(kmin) represents a second rank tensor. By analogy

with the energy of a free electron with momentum P as ε = P 2

2m and the definition of

the crystal momentum in equation (3.23), associated terms define the effective mass as

the second rank tensor

m∗ = ~2[∇2
kε(k)]−1 = ~2[

∂2ε(k)
∂ki∂kj

]−1 (3.31)

The tensor components in (3.31) depend upon the chosen coordinate system in k space,

although the tensor may be diagonalised by a suitable rotation. This rotated k coordi-

nate system is called a principle coordinate system. In the principal coordinate system,

the effective mass tensor has the form of a diagonal matrix.

3.2.2.3 Spherical Parabolic Band

Given the diagonalised effective mass, the simplest approximation assumes identical mass

m∗ for all main diagonal elements. This removes any dependence of the orientation of

k with respect to the principal axis on the energy ε(k), and defines spherical equiener-

getic surfaces, giving rise to the spherical parabolic band approximation. Written with

reference to the local minima, this is given by

ε(k − kmin) = ε(k) =
~2|k|2

2m∗
(3.32)

analogous to the free electron energy. (3.32) is a first order approximation of the carrier

energy in the vicinity of the band minima and is widely used for the conduction band

at Γ point or for the split-off valence band when the approximation is sufficient for most

simulation [120].
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3.2.2.4 Ellipsoidal Parabolic Band

However, the above isotropic band approximation results in an isotropic description

of carrier dynamics that is only valid in Silicon at low electric fields and associated

carrier energies and in absence of strain. Anisotropic carrier dynamics is experimentally

observed though the velocity-field characteristics in response to electric field applied

along different crystallographic orientations [120, 129]. In order to capture this effect,

an anisotropic band structure is required instead of the spherical band approximation.

This anisotropy is obtained with a reference to the diagonalised effective mass tensor

now assuming different mass components on the main diagonal. In this case the band

structure, with reference to the local minima, can be represented as

ε(k − kmin) = ε(k) =
~2

2
[
k2
x

mx
+
k2
y

my
+
k2
z

mz
] (3.33)

Owing to the symmetry of the Silicon band structure, two of the mass components are

identical and (3.33) may be written as

ε(k − kmin) = ε(k) =
~2

2
[
k2
x

ml
+
k2
y + k2

z

mt
] (3.34)

where the effective mass has been separated into a longitudinal component ml and a

transverse component mt with respect to the axis of symmetry of the local minima where

it is assumed the longitudinal direction is aligned along the x direction in k space. This

describes an ellipsoidal equi-energetic surface and is a better approximation to the local

minima in the Silicon conduction band [129, 134, 147]. The introduced anisotropy to

the band structure more accurately recovers the conduction band transport in silicon

[148].

The introduction of this anisotropic band however complicates the calculation of carrier

scattering rates (see 3.2.2.6) owing to conservation of momentum that is now depen-

dent upon orientation. In order to simplify this, the anisotropic equi-energy surfaces

of the ellipsoidal band model are transformed into the isotropic equi-energy surfaces of

the spherical band model via the Herring-Vogt transformation (HVT) [147, 149]. The

transformed momentum space is defined by the following matrix equation [129]
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k∗ = Uk (3.35)

where k∗ is the transformed wave vector and U is the Herring-Vogt transformation

matrix

U =
√
m∗d


√

1
ml

0 0

0
√

1
mt

0

0 0
√

1
mt

 (3.36)

written in the valley frame of reference which is centred in the valley aligned along the

x axis in k space. m∗d represents the density of states effective mass obtained from the

relation m∗d = (mlm
2
t )

1/3 [129]. The components of transformed vector k∗ are written

in terms of the components of the original k vector as

k∗x =

√
m∗d
ml

kx, k
∗
y =

√
m∗d
mt

ky, k
∗
z =

√
m∗d
mt

kz (3.37)

and the energy is represented as in the case of an isotropic band as

ε(k∗) =
~2

2m∗d
k∗Tk∗ =

~2

2m∗d
(Uk)TUk =

~2

2m∗d
kTUTUk =

~2

2
[
k2
x

ml
+
k2
y + k2

z

mt
] = ε(k)

(3.38)

where (3.35) has been substituted for k∗. From (3.38) it is clear that the HVT preserves

the energy. Applying this transformation allows the treatment of the band as isotropic

in momentum space, given that the transformation is applied consistently to all other

vector quantities, while the inverse transformation returns the correct anisotropic result.

3.2.2.5 Ellipsoidal Nonparabolic Band

For energies above the conduction band minima the parabolic band approximation of the

above two models is inaccurate. The accuracy may be improved by accounting for the

variation in curvature of the band within the so-called nonparabolic band approximation.

The local conduction band minima may then be written as [129, 150]
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ε(k)(1 + αε(k)) = γ(k) =
~2

2
[
k2
x

ml
+
k2
y + k2

z

mt
] (3.39)

where α is the nonparabolicity parameter. ε(k) is explicitly given by

ε(k) =
−1 +

√
1 + 4αγ

2α
=

2γ
1 +
√

1 + 4αγ
(3.40)

Equation (3.40) is the classic solution of the quadratic equation (3.39) while the alge-

braic form of the second term reduces loss of precision in numerical calculation. The

nonparabolic model approximates the silicon conduction band minima accurately to

energies of around 200 meV [151].

Due to its simplicity and suitable accuracy within the range of energy important to this

work, the ellipsoidal nonparabolic model in conjunction with the Herring-Vogt transfor-

mation above is the approximation to the band structure used throughout. The entire

conduction band is then modelled as a set of discrete minima, each described by equation

(3.39).

3.2.2.6 Scattering Rate Calculation

Having described the implemented band structure that defines the semi-classical electron

transport governing the drift terms of BTE (3.27), it is left to describe the representation

of the collision term C[f ] (equation (3.28)) that comprises the right hand side.

Scattering between states occurs due to perturbations of the ideal periodic lattice po-

tential. It is typically treated via first order perturbation theory by considering the

effect of an additional scattering potential US(r) on the unperturbed Hamiltonian. The

transition rate from an initial state k to final state k
′

is determined from the scattering

matrix element, defined within the Born approximation as [120]

H
k
′
,k

=
1
Ω

∫ ∞
−∞

ψ∗
k
′US(r)ψkd

3r (3.41)

where Ω is the volume in real space, ψk is Bloch wave and ψ∗
k
′ is a conjugate Bloch

wave. The transition rate is thus obtained from Fermi’s Golden Rule as [120, 129]
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S(k,k
′
) =

2π
~
|H

k
′
,k
|2δ(ε(k′)− ε(k)±∆ε)δ

k
′
,k±β (3.42)

The above δ-function expresses conservation of energy given that an amount of energy

∆ε may in general be absorbed or emitted as a result of scattering, determined by

the plus and minus sign respectively. The Kronecker δ similarly expresses momentum

conservation where ~β is the change in momentum due to scattering and where plus

and minus represent absorption and emission respectively. The final scattering rate for

a given initial state k is then the sum of the above transition rates over all possible final

states, given as [120]

Γ(k) =
1

τ(k)
=
∑
k
′

S(k,k
′
)[1− f(k

′
)] (3.43)

where τ(k0), the reciprocal of the scattering rate, is the average time between collisions

and f(k
′
) is the probability that the final state k

′
is unoccupied.

At this point the band structure ε(k) again enters the discussion. As it determines

the energy-momentum relationship, it strongly effects the energy and momentum con-

servation in equation (3.42) and the number of allowed final states in the subsequent

summation in equation (3.43). The number of states within a given energy range at

a given energy per unit volume is termed the density of states and, for the ellipsoidal

nonparabolic band used here, is sufficiently well approximated for states with energy up

to 2 eV [120].

It is now left to detail the scattering mechanism included within this work.

3.2.2.7 Acoustic and Optical Phonon Scattering

Phonons are discrete coupled modes of oscillation of the crystal lattice, driven by the

thermal motion of its atoms, which are described by a plane wave propagating in the

periodic lattice with properties similar to the Bloch wave [120, 121]. Similar to the

electron band structure, phonon modes have unique energy-momentum relationships

(dispersion relations) that defines their interaction with carriers through energy and
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momentum conservation similarly to equation (3.42). There are a number of important

modes that are considered here:

Acoustic phonons are associated with oscillations of adjacent atoms in the same direc-

tions. In reality there are multiple branches representing longitudinal and transverse

wave solutions of the coupled modes with an anisotropic dependence on the momentum.

This anisotropy is small however and the acoustic modes are averaged into a single,

isotropic mode for efficient calculation. Only intravalley carrier scattering is considered

as the probability of large momentum transfers, necessary for intervalley transition, is

negligible. Acoustic phonons are treated inelastically following [120, 129, 147] in order

to properly account for energy relaxation at low energies and are described by a gen-

eral phonon dispersion given by [152]. Calibration of the scattering rate is obtained via

altering the acoustic deformation potential Ξac.

Optical phonons, by contrast, are associated with oscillations of adjacent atoms in oppo-

site directions. Both intravalley and intervalley scattering by optical phonons is consid-

ered. Following the common approach described in [129], three g-type and three f-type

intervalley optical phonon transitions are considered. Each optical phonon transition

is considered as a dispersionless mode due to the small range in phonon momentum

allowed in transitions and the relatively flat dispersion relation over the Brillouin Zone.

Calibration is achieved via their respective coupling constants. The calibration of the

phonon model is discussed later in section 3.2.2.11.

Ionised impurity scattering, relevant in modern highly doped devices, is included via

the Brooks-Herring formalism [153] including Ridley’s Third Body screening [154, 155].

This model effectively limits the scattering rate in regions of low screening and improves

the efficiency of the simulation, although it may be less accurate in regions of extremely

low screening where it asymptotically approaches the Conwell-Weisskopf model [156].

Additional scattering mechanisms such as carrier-carrier scattering, electron-plasmon

scattering and impact ionisation are not considered in this work. These mechanisms are

important for investigating the high energy electron distribution and energy exchange

and play little role in this work.
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3.2.2.8 Selection of Free Flight Time

The total scattering rate defines the average number of collisions per unit time and

is equal to the sum of all scattering rates associated with the individual mechanisms

considered

Γ(k) =
l∑

i=1

Γi(k) (3.44)

The reciprocal of the total scattering rate defines the the average free flight time between

collision

τ(k) =
1

Γ(k)
(3.45)

The free flight times are random but follow a probability distribution function F (t),

where F (t)dt defines the probability that a collision occurs between times t and t + dt

and is expressed as

F (t) = Γ(k)e−Γ(k)t (3.46)

Unfortunately, a direct evaluation of (3.46) for each electron at every time step is a

cumbersome and time-consuming task since the total scattering rate Γ(k) varies in the

time dependent upon carrier propagation. In order to overcome this, the total scattering

rate Γ(k) is replaced with a constant Γ0 = Γ(k) + Γself (k) where Γself (k) is the rate

associated with a fictitious scattering mechanism, termed self-scattering [157, 158], which

does not change the state of the electron. This simplifies the mathematics such that the

total scattering rate is now energy independent and allows (3.46) to be re-written as

F = Γ0e
−Γ0t (3.47)

Integrating the left hand side of (3.47) over the interval [0, tff ] gives the probability that

the electron undergoes its first collision at time tff and this may be used in connection
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with a uniformly distributed random number to sample the probability distribution

[120]. We have the following expression

P (x < r) =
∫ r

0
dx = Γ0

∫ tff

0
e−Γ0tdt = 1− e−Γ0tff (3.48)

where x is the uniformly distributed random variable in the intreval [0, 1], r is a random

number draw between [0, 1] from uniform distribution, expressing the probability that

the electron undergoes its first collision until time tff and P represents the probability

that the random variable x is less than the random number r. Therefore, the expression

rff = 1 − r defines the probability that electron survives without collision until time

tff and also is drawn from uniform distribution between 0 and 1. Thus, using this

formulation, the free flight can be generated by following formula

tff = − 1
Γ0

ln rff (3.49)

This method is commonly used for selecting free flight times and is the method adopted

in this work.

3.2.2.9 Selection of Scattering Events

Having determined the free flight time, it is necessary to select the appropriate scattering

mechanism responsible for its termination. The scattering mechanism selection must

properly account for the relative probabilities of each considered mechanism dependent

upon the carrier’s energy. The ith relative probability of the ith scattering mechanism

corresponds to the rate of this mechanism with respect to the constant Γ0. The condition

for selecting the ith scattering mechanism can be expressed as [120]

i−1∑
j=1

Γj(ε) ≤ rΓ0 ≤
i∑

j=1

Γj(ε) (3.50)

where r is a random number drawn from uniform distribution, 1 ≤ i ≤ l and the last

lth mechanism is reserved for the self-scattering Γself . The introduction of the self-

scattering rate into the selection process significantly enhances the efficiency and speed
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of the simulation [129]. Further enhancement of the selection process is achieved through

the construction of a scattering table, discretised over a range of energy limited to the

maximum expected energy. During the course of a simulation, selection of a scattering

mechanism is done with reference to this look-up table for a given carrier energy.

3.2.2.10 Carrier Dynamics

Having determined the new wavevector after a scattering event and generated the new

free flight, integration of the carrier’s equations of motion is performed. It is assumed

that the ellipsoidal equienergetic surfaces are transformed into spherical equienergetic

surfaces by (3.35) prior to the updating of the carrier momentum and coordinates. In

turn, the transformed wavevector is used to determine the new wavevector, the new

position vector and the new velocity vector of carrier. Following this and using (3.26)

and the Velocity-Verlet algorithm [109, 118], the wavector is updated as

kt+dt/2x = ktx −
e

~
∂V (rt)
∂x

dt

2

kt+dt/2y = kty −
e

~
∂V (rt)
∂y

dt

2

kt+dt/2z = ktz −
e

~
∂V (rt)
∂z

dt

2
(3.51)

where dt is a duration of the free flight. Thereafter, for nonparabolic band structure

defined by (3.39) the following relation for velocity at time t+ dt/2 can be obtained

vt+dt/2 =
~kt+dt/2

m∗d(1 + 2αε(kt+dt/2))
(3.52)

where kt+dt/2 is wavector in the spherical space obtained from the relation (3.51). Using

(3.24) and (3.52) the spatial coordinates of the electron at time t+ dt is updated as
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xt+dt = xt +
~kt+dt/2x

m∗d(1 + 2αε(kt+dt/2))
dt

yt+dt = yt +
~kt+dt/2y

m∗d(1 + 2αε(kt+dt/2))
dt

zt+dt = zt +
~kt+dt/2z

m∗d(1 + 2αε(kt+dt/2))
dt (3.53)

In turn, the new wavevecctor at time t+ dt may be expressed as

ktx = kt+dt/2x − e

~
∂V (rt+dt)

∂x

dt

2

kty = kt+dt/2y − e

~
∂V (rt+dt)

∂y

dt

2

ktz = kt+dt/2z − e

~
∂V (rt+dt)

∂z

dt

2
(3.54)

where rt+dt is given by (3.53). Finally, the new wavevector is transformed back to the

ellipsoidal form by using the inverse transformation to (3.35).

3.2.2.11 Bulk Calibration

Calibration of the phonon scattering rates specific to the band model adopted is neces-

sary to ensure good agreement with experimentally observed results. This was achieved

through initial bulk simulation and comparison with theoretical mobility field depen-

dence [159]. The acoustic phonon deformation potential was first calibrated at low

temperatures in order to freeze out the higher energy optical phonons. The simulation

temperature was gradually increased to bring in higher energy acoustic phonons which

were then calibrated. This was further refined with comparison to experimental velocity-

field measurements at both 77K and 300K and in different crystal orientations [148] in

which the dominant phonon was adjusted for a best fit. The final calibration is shown

in the reproduction of the velocity-field characteristics in silicon in figure 3.8. Recovery

of the anisotropic behaviour is noted.

The calibrated values of the acoustic phonon deformation potential and optical phonon

coupling constants are tabulated in table 3.1 and 3.2.
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Figure 3.8: The acoustic deformation potential as well as the optical phonon coupling
constants have been calibrated to reproduce the experimantally obtained anisotropic

bulk velocity-field characteristics of Silicon at 77K and 300K.

Reproduction of bulk concentration dependent mobility in Silicon using the Brooks-

Herring formalism is shown in figure 3.3 showing typical agreement with overestimation

at higher doping densities.

3.2.2.12 Ab Initio Ionized Impurity Scattering

This work is concerned with random dopant distributions in modern nano-scale MOS-

FETs and their impact on current variation through position dependent variation in

ionised impurity scattering. For such purpose, the treatment of ionised impurity scat-

tering via the above mentioned scattering rate is unsuitable as it is an inherently random

process defined within a conceptual homogeneously doped and infinite volume. Further,

it assumes a two-body interaction which ignores multi-ion contributions to the scatter-

ing potential [160] and treats scattering events as localised instantaneous interactions

rather than extended in the space and time. For these reasons it is unable to properly
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Figure 3.9: Simulated low field concentration dependent bulk electron mobility in
Silicon at 300 K using the Brooks-Herring scattering rate [153]. Comparison with

experimental data [115] is also shown.

account for transport variation due to the random configuration of a small number of

dopants [161]. The proper treatment of random dopant induced transport variations

requires the unique potential associated with 3D dopant configurations to be taken into

account and for a deterministic treatment of carrier interaction. This is achieved within

MC through an ab initio treatment of ionised impurity scattering [33, 161] in which the

carrier-impurity interaction is explicitly included within the propagation step. Ionised

impurity scattering rates are removed from the scattering rate table and transport varia-

tions are then naturally included via the real-space trajectories of electrons propagating

through the electric field associated with a random configuration of dopants. This ap-

proach additionally automatically accounts for multi-ion interactions, dynamic screening

and removes the necessity to make any assumptions about the local dependance of the

distribution and screening length [79].

Ab initio ionised impurity scattering has previously been introduced to the MC simulator

[33, 118] via the P 3M method [109, 161] which includes the full electron-ion interaction
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via the mesh based potential with an additional short range correction over neighbouring

particles. The mesh based solution of Poisson’s equation accurately recovers long range

interactions while the short range corrections account for the aliasing in the solution.

To suppress errors associated with the numerical integration of particle trajectories, and

to prevent the artificial carrier trapping in the case of an attractive impurity potential,

[33, 162, 163] the short range interaction was assumed not to follow the Coulomb law,

but instead a modified form which limited the interaction at close separation was used.

This modified force is an analytical model defined as

FSR =
qr

4πε(r2 + 1
2r

2
c )

3
2

(3.55)

where r is the carrier-impurity separation and rc defines a cut-off radius at which the

force reaches a maximum. FSR recovers the Coulomb law at large distances while limiting

the interaction at close-range [33, 161]. The accuracy of this method was demonstrated

with the reproduction of the concentration dependence of mobility in bulk silicon [33] in

which propagation within a large number of donor atoms was simulated. The number

of donors, around 15,000, were large enough to be self-averaging.

This previous work however omitted quantum corrections that are essential to the ac-

curate simulation of nano-scale devices. Such quantum corrections have since been

included within MC simulations via the density gradient framework in order to account

for the inversion layer carrier distribution [32]. This has been shown to be in excel-

lent agreement with the equivalent drift diffusion solution. Within this work, quantum

corrections are novelly applied to the impurity potential from the classical solution of

Poisson’s equation to unify ab initio scattering and quantum corrections. This will be

discussed in detail in the following chapter.
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BAND INDEPENDENT PARAMETER SYMBOL VALUE
Transverse sound velocity ut 5340 ms−1

Longitudinal sound velocity ul 9040 ms−1

Acoustic deformation potential Ξac 6.30 eV
Density ρ 2329 kgm−3

Static dielectric constant ε 11.90
X-Valley Parameters SYMBOL VALUE

Energy of band X relative to the valence band edge Eg 1.12 eV
Transverse effective mass mt 0.190 me

Longitudinal effective mass ml 0.916 me

Non-parabolicity parameter α 0.5 eV −1

Optical Coupling Constant
g1 phonon process DtKg1 0.500× 1010 eV m−1

g2 phonon process DtKg2 0.800× 1010 eV m−1

g3 phonon process DtKg3 3.000× 1010 eV m−1

f1 phonon process DtKf1 0.150× 1010 eV m−1

f2 phonon process DtKf2 3.400× 1010 eV m−1

f3 phonon process DtKf3 4.000× 1010 eV m−1

Optical Phonon Energies
g1 phonon process ~ωg1 1.206× 10−2 eV

g2 phonon process ~ωg2 1.853× 10−2 eV

g3 phonon process ~ωg3 6.300× 10−2 eV

f1 phonon process ~ωf1 1.896× 10−2 eV

f2 phonon process ~ωf2 4.740× 10−2 eV

f3 phonon process ~ωf3 5.903× 10−2 eV

Inter-valley Optical Coupling Constants
X � X DtKX�X 1.750× 1010 eV m−1

X � L DtKX�L 2.340× 1010 eV m−1

X � Γ DtKX�Γ 5.480× 1010 eV m−1

Inter-valley Optical Phonon Energies
X � X ~ωX�X 4.300× 10−2 eV

X � L ~ωX�L 3.716× 10−2 eV

X � Γ ~ωX�Γ 2.189× 10−2 eV

Table 3.1: Band independent parameters and calibrated values for the minimum
lying X-valley used in the MC simulation. These values govern the transport processes
effecting the majority of electrons in silicon and are used consistently throughout this

work.
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L-Valley and Γ-Valley Parameters SYMBOL VALUE
Bandgap L-Valley EgL 2.169 eV
Bandgap Γ-Valley EgΓ 3.495 eV

Transverse effective mass L-Valley mtL 0.126 me

Longitudinal effective mass L-Valley mlL 1.634 me

Transverse effective mass Γ-Valley mtΓ 1.000 me

Longitudinal effective mass Γ-Valley mlΓ 1.000 me

Non-parabolicity parameter L-Valley αL 0.3 eV −1

Non-parabolicity parameter Γ-Valley αΓ 0.0 eV −1

Inter-valley Optical Coupling Constants
L � L DtKL�L 2.630× 1010 eV m−1

L � Γ DtKL�Γ 2.090× 1010 eV m−1

Γ � Γ DtKΓ�Γ 2.990× 1010 eV m−1

Inter-valley Optical Phonon Energies
L � L ~ωL�L 3.887× 10−2 eV

X � Γ ~ωX�Γ 2.090× 10−2 eV

Γ � Γ ~ωΓ�Γ 2.568× 10−2 eV

Table 3.2: Parameters for the L and Γ valleys. Though present within the simulation,
little transport occurs in these valleys due to the large separation in energy from the

X-valley.
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ON-CURRENT VARIABILITY

DUE TO RANDOM DOPANT

DISTRIBUTIONS

Monte Carlo simulation with the careful inclusion of an ab initio treatment of ionized

impurity scattering has in the past been shown to accurately describe concentration de-

pendent bulk mobility [33], position dependent scattering in nano-scale devices [33, 79–

81] and the corresponding transport variation [33, 34]. Statistical device simulations

focusing on discrete dopant induced drain current variability has also since been re-

ported using such ab initio MC simulation and have been shown to capture significant

additional current variability when compared with equivalent statistical DD simulation

[33, 34]. The increased variation is associated with additional transport variation in MC,

due to position dependent impurity scattering, over and above the electrostatic varia-

tion captured in DD. It was therefore concluded that any complete study of variability

requires careful consideration of transport variation.

However,previous studies omitted quantum mechanical corrections that are vital for ac-

curate simulation of nano-scale devices. When such corrections are included, they can

accurately reproduced the impact of the quantum confinement on the inversion layer

carrier distribution. The difference between the classical and quantum mechanical in-

version layer distribution results in significant differences in the electrostatic screening

of discrete dopants. Specifically, the large interface carrier concentration in the classical

60
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case is more effective at screening impurity potentials compared to the more smeared

quantum carrier distribution. Significantly increased transport variation may therefore

be expected when quantum mechanical corrections are considered within ab initio MC,

owing to stronger scattering potentials. Quantum corrections have been applied accu-

rately to MC simulation recently [32] but have yet to be applied to and tested in respect

of ab initio impurity scattering in the presence of statistical dopant distributions.

Additionally the ab initio force resolution within the earlier classical version of the

Glasgow MC code was based upon a short-range correction to the mesh resolved Coulomb

potential. Although this correction was treated efficiently, it represents an additional

computational overhead. It has also conceptual problems at boundaries and interfaces

where image charge effects are present. It is also not possible to guarantee the short-

range force exactly matches the mesh-resolved force in the transition between the two

regimes and this results in an unsatisfactory discontinuity. In this chapter, a unique

method to overcome these limitations is presented by means of a solely mesh-based force

evaluation that captures ab initio carrier-impurity scattering in addition to quantum

confinement effects. This force is obtained from the self-consistent inclusion of the

Density Gradient (DG) effective quantum potential solution within MC.

This chapter is structured as follows. The quantum corrected MC methodology is dis-

cussed and verified in section 4.1, highlighting the use of the DG quantum potential

as applied to discrete dopant scattering. Section 4.2 details the implementation of this

new method for the simulation of on-current variability in a series of realistically scaled

devices. The developed approach is then applied to accurately study random discrete

dopant induced drain current variability in a series of realistic, well-scaled bulk MOS-

FETs with results presented in section 4.2 before conclusions are finally drawn.

4.1 Quantum Corrections in Monte Carlo

The most widely used alternative techniques to quantum corrections in MC simulations

are based upon the approximation to the Wigner transport equation [164, 165], effective

conduction band edge (ECBE) method [166], Effective Potential method [105, 106] and

self-consistent Schr”odinger-Poisson calculations [167].
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The Wigner transport equation, derived from the BTE, gives a quantum correction

term in the following form ψqc = − ~2

12m∗∇
2ln(n) [168], which is applied in 4.4. This

method has the capability to mimic tunneling effects [168]. The use of this approach in

MC simulation has shown a significant sensitivity to noise due to noise in the electron

concentration within the simulation domain which can be overcome by time averaging

and spatially smoothing [165, 169]. The need to calibrate the fitting parameter m∗ is

an other clear drawback of this approach. 2D MC simulations with this approach [170]

have shown good agreement with Posison-Schrodinger [169] and NEGF [171] results.

This method can be further extended from the Bohmian interpretation of quantum

mechanics [101] leading to the ECBE method [166] where the quantum potential is

given in the form ψq = ψcl + ~2

4m∗rkBT
[∇2ψq − 1

2kBT
(∇ψq)2]. The ECBE approach is

strongly non-linear due to term (∇ψq)2 which complicates the solution. This approach

has been successfully employed in 2D MC simulations [172, 173].

The Effective potential method smooths the classical potential using a Guassian kernel

[105], resulting in the reduction of the electron concentration in the inversion layer and

moving the charge away from the interface, both of which lead to current degradation

[174]. The smoothed conduction band edge is shifted further from Fermi energy which

results in the increase of threshold voltage [105], further, the inversion layer produces

the quantum capacitance. This method with Gaussian kernel has been used in 2D MC

simulation in [175] and 3D MC simulation in [105]. Alternatively, Pearson kernel can

be used in the smoothing procedure in place of a Gaussian and has been applied to MC

simulation in [176].

Another approach to quantum corrections is a self-consistent Schrodinger-Poisson solver

within MC simulation which accounts for the size quantization effects [167]. In order to

capture these effects the 1D Schrodinger equation is solved along the normal direction

to the interface as follows [167]

− ~2

2
∂

∂z
(

1
m∗z

∂

∂z
ψ) + Vp(z)ψ = εψ (4.1)

where Vp(z) is slowly varying potential along the normal direction to interface. The quan-

tum density nq(z) along the normal direction to interface is used to feed the Poisson equa-

tion in a self-consistent loop. The quantum potential term is ψq = −kBTzln(nq(z)) −
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Vp(z) + V0, and V0 = kBTzln(Neff ) + EF where Neff is effective density of states and

EF is Fermi level. From equation 4.1 the system of energy eigenvalues with wave eigen

functions is obtained and, in turn, they are used to calculate the quantum density as

follows [177] nq = 1
π (2m∗kBT

~ )2
∑

j |ψj |2F−1/2(EF−εjkBT
), where ψj is jth wave eigen func-

tion belonging to jth energy eigen value εj . The computational efficiency and accuracy

depends on the number of eigen values taken into account in the simulations. This

method does not need to calibrate the fitting parameter since it uses a physical value

for effective mass m∗. This is one clear difference from the Wigner transport and Ef-

fective potential method which both of are required the fitting parameters m∗, and a0,

respectively. This approach has been successfully used in 2D [167, 178] and 3D MC

simulations [179] capturing accurately the size quantization, but it poorly mimics the

tunneling effects [180].

The NEGF formalism represents the complex approach to the simulation of the quantum

transport [181]. In order to accurately capture the size of quantization and tunneling

effects the NEGF approach has to be self-consistently coupled with the Poisson equation.

The NEGF method provides the open boundary solution to the Schrodinger equation.

The methods to solving of NEFG and scattering mechanisms used in NEGF approach

are described in [181–184]. Within this work, NEGF approach is used to calibrate

and validate the above mentioned DG quantum corrected model [36] since DD and MC

simulation with quantum corrections by means of mentioned approaches cannot properly

capture the coherent quantum transport and tunneling effects [184].

The common drawback of the above mentioned methods are the considerable amount of

computational cost needed to be used [167]. This enormous computational inefficiency

prohibits the use of these methods for 3D to the large scale statistical simulations of

CMOS devices, particularly NEGF method and self-cosistent Poisson-Schrodinger solver.

For this reason DG quantum corrections are employed in the MC simulations in large

scale statistical simulations of CMOS devices, as the computational overhead associated

with them is considerably smaller.

4.1.1 Density Gradient Quantum Corrections in Monte Carlo

DG quantum corrections have been commonly included in DD simulators (see section

3.1.2) and accurately reproduce the carrier density in regions of strong confinement
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[26, 30]. Next to full scale quantum transport simulations, DG corrected statistical

DD simulation represents the most economic and accurate way to resolve the impact

of individual dopants [26]. Importantly, it also accurately reproduces the charge dis-

tribution around individual impurities [30], as shown in figure 4.1 in the extreme case

of an n-channel nanowire MOSFET with 3 × 3 nm2 cross section in the presence of a

single donor in the middle of the channel. DD simulation with DG quantum corrections

accurately reproduces the complex inversion layer charge distribution when compared

with NEGF simulations in the effective mass approximation [185]. Confinement effects

are clearly seen in figure 4.1 through the greatly reduced electron concentration at both

top and bottom interfaces. Figure 4.2 [102] shows that DG corrections also accurately

reproduce the complex inversion layer electron distribution over a range of gate biases,

again even in the presence of a strongly localized attractive impurity potential.

Figure 4.1: Agreement between NEGF and DD from (top) source to drain and (bot-
tom) top interface to bottom interface.

As mentioned in section 3.2.2.12, DG quantum corrections have been previously intro-

duced into self-consistent MC simulations of body thickness variation in double gate

devices and have accurately reproduced the electron distribution from identical DD sim-

ulation [32]. This was achieved by defining an effective quantum potential used to derive

the driving force in the MC particle propagation step. The effective quantum potential
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Figure 4.2: Comparison of the electron distribution within an n-channel nanowire
MOSFET obtained from NEGF and density gradient corrected DD for different gate
voltages [102] (mx = 0.1, my = mz = 0.22). Agreement is seen even around a strong

impurity potential.

was itself defined from a constant mesh-based correction applied to the classical potential

solution. The correction term ψqc was obtained as the difference between the effective

quantum and classical potentials from an equivalent prior DD solution, explicitly stated

as [180]

ψqc = ψDG − ψCL (4.2)

where ψDG is the effective quantum potential from DD solution with DG quantum

corrections as described in [32, 68, 100, 104] and ψCL is the classical potential consistent

with the quantum corrected solution. This approach to quantum corrections obtained

from DG effective potential is denoted as FQMC (Frozen Quantum Monte Carlo) [36].

When applied within self-consistent MC simulation, the quantum correction term up-

dates the classical potential obtained from solution of Poisson’s equation at each field

adjusting time step as follows

ψq = ψcl + ψqc (4.3)
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where ψcl is the classical potential solution within MC and ψq is a quantum corrected

potential. The driving force acting upon carriers is then defined in the usual way as

Fq = Fcl + Fqc = −(∇ψcl +∇ψqc) (4.4)

where Fq is a quantum force, which is divided into the classical Fcl and quantum cor-

rection Fqc forces. This method is more efficient than solving either 1D or 2D coupled

Poisson-Schrodinger equations [186], though it gives no information about sub-band

structure and 2D transport in the inversion layer.

The additional approach to DG quantum corrections that might be incorporated within

the 3D MC simulation is a fully self-consistent approach (Self-Consistent Quantum

Monte Carlo-SCQMC), which accounts for a certain degree of self-consistency between

transport, field and the quantum corrections, as shown in blue region of figure 4.3 [36].

In SCQMC the ψqc term is updated regularly during the course of the simulation by

solving the modified DG equation [187] for quantum density nq [36]

2bn
Sn

(
1

mnx

∂2Sn
∂x2

+
1

mny

∂2Sn
∂y2

+
1
mnz

∂2Sn
∂z2

) = φn − 〈ψ〉t +
kBT

q
ln(S2

n) (4.5)

where Sn =
√
nq/ni, φn is the quasi-Fermi level, 〈...〉t denotes a time averaged value,

the other symbols have their usual meaning. Time averaging of statistic is necessary

here due to the inherent noise of the MC carrier distribution. Equation 4.5 is discretized

using a finite box method; the corresponding system of equations is linearized and solved

using a Red-Black SOR iterative scheme. We assume a Maxwell-Boltzmann equation of

state [167], and φn might be updated as

φn = 〈ψcl + ψqc〉t −
kBT

q
ln(
〈nmc〉t
ni

) (4.6)

where nmc is the electron distribution obtained from MC simulation. A new quantum

correction term is obtained as

ψqc = φn +
kBT

q
ln(
〈nmc〉t
ni

)− 〈ψcl〉t (4.7)
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Figure 4.3: Flowchart showing the computational steps needed for FQMC (Frozen
Quantum Monte Carlo) and SCQMC (Self-Consistent Quantum Monte Carlo) [36].

The update of ψqc is coupled self-consistently with Poisson’s equation using similar ap-

proach as Schrodinger based quantum correction scheme in [167]. Due to high noise

sensitivity of the SCQMC approach during initial transient part of simulation the quan-

tum correction term is not updated.

The accurate implementation of boundary conditions (BCs) at Si/SiO2 interface and

source and drain regions is highly important [188, 189] as they account for a smooth

transition of the carrier density towards the interface and for the penetration of the

electrons wavefunction into the oxide layer [36, 188, 189]. In order to prevent incon-

sistencies which can disrupt simulation, the appropriate incorporation of BCs at the

Ohmic contacts in the source and drain regions is extremely crucial [36, 188]. The local

charge neutrality is managed by removing and replacing carriers after reaching contact

boundaries and the difference in φn between the source and drain contacts (the applied

drain bias) is maintained by this careful management of carriers in the contact regions.
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The classical approach of fixing the potential and carrier concentration (Dirichlet BCs)

at the Ohmic contacts results in significant depletion of carriers in the source and drain

regions, as shown in figure 4.4, since insufficient numbers of carriers are injected. This

treatment of BCs does not match the carrier distribution consistent with that introduced

by the quantum concentrations [36]. In order to fix this issue, Neumann BCs [112, 188]

are implemented at the Ohmic contact regions. In this treatment the quasi Fermi level

φn is fixed, while potential ψn and carrier concentration are altered so that it matches

the proper quantum carrier distribution, as illustrated at the left picture in figure 4.5.

The right picture in figure 4.5 shows and compares electron concentration distribution

obtained from different approaches to DG quantum corrections within MC simulation

in the middle of the channel of a double gate MOSFET at low drain voltage [188].

Figure 4.4: Electron density in the x-direction showing the depletion resulting from
the contacts being poorly maintained [188].

Figure 4.5: Electron density (left) in the x-direction with properly maintained con-
tacts as a result of the use of Neumann BCs [36, 188]. Electron density and Quantum
corrected potential in the z-direction (right) with Neumann BCs for double gate MOS-

FET [36, 188].

Within this work FQMC is used (red dashed line in figure 4.3) since the previously
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demonstrated good agreement between FQMC and SCQMC suggests that the self-

consistency of the quantum corrections is not vital [36, 190].

4.1.2 The Effective Density Gradient Quantum Potential

The effective quantum potential obtained from the density gradient solution surrounding

a single attractive impurity potential is shown in figure 4.6. Solutions corresponding to

cubic discretization meshes with different mesh spacings are shown. Compared to a

strong mesh spacing dependence of the classical Coulomb potential near a localized

impurity [26, 30], the effective DG quantum potential has only a weak mesh spacing

dependence and shows convergence of the potential solution for mesh spacings of 1 nm

and smaller.
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Figure 4.6: Comparison of analytic short-range correction applied in [33] to density
gradient solution around a point charge. It can be seen that a mesh spacing of 2
nm underestimates the potential while mesh spacings of 1 nm and below show better
agreement. The potential for a mesh spacing of 0.25 nm agrees very well, but has a
lower potential than that of 1 nm or 0.5 nm mesh. Mesh spacings of 1 nm or less are

good.
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Also shown in figure 4.6 is the analytic Coulomb potential and short-range correction

model applied within previous ab initio MC [33]. It is clear that the analytic short-range

model closely agrees with the converged DG effective quantum potential. The similarity

hints at the suitability to simultaneously include quantum corrections and short-range

electron-impurity interactions from the mesh resolved quantum potential when treating

ab initio impurity scattering in MC. This would provide an efficient and consistent mesh

based treatment that would automatically include confinement effects as well as ab initio

Coulomb interactions and would accurately define boundary and image-charge effects.

However, the application of this approach needs to be verified.

Validation of the effective quantum potential short-range interaction model follows two

stages, analogous to the previous verification of the analytic short-range model [33]. First

the Rutherford dependence of scattering angle upon impact parameter is reproduced

and, second, the bulk mobility dependence upon doping concentration is reproduced .

4.1.3 Rutherford Scattering

For the purposes of simulating Rutheford scattering, a sufficiently large circular simu-

lation domain is used such that the initial and final carrier velocities approximate the

asymptotic velocities before and after the collision. The simulation domain has a radius

of 5000 nm and a singly negative or positive ion, which represent the interactions with

an acceptor or donor respectively, is placed at its centre. The DG effective quantum

potential solution for such a point charge has been obtained on a 20 × 20 × 20nm3

mesh with uniform spacing of 0.5nm and boundary conditions set to match the analytic

short-range model in figure 4.6. Within this domain the interaction is obtained by in-

terpolating the mesh based solution, while outside the analytical short range model is

used, as shown in figure 4.7. The analytic model was chosen as it tends to the Coulomb

interaction at large separation but limits discontinuity in the force during the transition

between the two domains.

Electrons are considered with an initial energy of 40 meV and are set at the boundary

of the outer, circular, domain to cover a range in impact parameters of 200 nm. Having

been propagated within the analytic and mesh based potential and upon leaving the

simulation domain, the corresponding angle of deflection is determined. The resulting

scattering angle dependence is compared with the original analytic short-range model
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Figure 4.7: Picture shows transition from analytical to mesh interpolation for the
case of Density Gradient potential.

and the exact Rutherford model in figure 4.8 for the cases of a positive and negative

central ion.

Figure 4.8: Comparison of scattering angle dependence upon impact parameter us-
ing analytical short-range model and mesh-based interpolation from density gradient

solution.

Close agreement between the new effective quantum potential and the old analytical

short-range model is obtained. The good agreement between the new model and the
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old one gives confidence as bulk concentration dependent mobility was well reproduced

with the old model. Additionally, in both models the scattering angle closely agrees

with Rutherford’s result over the complete range of impact parameters in the case of a

repulsive interaction with a negative ion. For attractive interactions, significant under-

estimation of the scattering angle is seen at small impact parameters. This is as a result

of the limited interaction at close range that reduces the artificial carrier trapping in DD

and MC simulations. This reduced interaction also results in more accurate integration

of the equation of motion of carriers in attractive potentials by reducing the variation

of the field over each propagation step. It is clear that the ab initio interaction with

a single charge is well reproduced when using the mesh resolved DG effective quantum

potential, so long as the mesh spacing is of the order of 1nm or below.

4.1.4 The Concentration Dependent Bulk Mobility

The second stage in the validation involves the reproduction of experimental concentra-

tion dependent bulk mobility. This was previously achieved through the simulation of

a series of atomistically doped resistor structures [33]. These covered a wide range of

doping concentrations in simulation domains containing approximately 15,000 discrete

dopants to ensure self-averaging and bulk-like properties. However, such simulations

using the effective quantum potential are limited by practicality to small, highly doped

simulation domains due to the upper limit of 1nm on the mesh spacing.

Following the methodology described in [33] self-consistent simulations of a series of

atomistic N+NN+ resistors, illustrated in figure 4.9, with bulk doping of 2×1018 cm−3,

5×1018 cm−3 and 8×1018 cm−3 have been performed. These doping concentrations are

relevant to the channel doping in modern nanoscale bulk MOSFETs. These resistors are

simulated with contact regions with doping of 1019 cm−3. The numerically affordable

volume of the simulation domain contains on average only 250, 625 and 1000 dopant

atoms for each level of doping.

Drift diffusion simulations with density gradient quantum corrections were initially per-

formed for each resistor in order to obtain the quantum correction term necessary for

MC simulation. A bias was applied across each resistor such that a field of approxi-

mately 1kV/cm accelerated carriers in the central region. The DD simulation results
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Figure 4.9: Schematic 3D atomistic simulation structure for recovery of bulk mobility.
The central doped region (three cases : 2 × 1018 cm−3, 5 × 1018 cm−3 and 8 × 1018

cm−3), length Xbulk = 200 nm, is the concentration under investigation and is situated
between two more heavily doped contact regions (1019 cm−3), length Xctc = 10 nm.

were transferred into the 3D MC simulator and the quantum corrected MC simulation

with ab initio impurity scattering were performed.

The classical electrostatic potential obtained from DD is compared with the effective

DG quantum potential for one such simulated structure in figure 4.10. It can be clearly

seen that the effective quantum potential reduces the peaks associated with the donor

impurities and limit their interaction with electrons as expected.

Figure 4.10: Classical (top) and effective quantum (bottom) potential in an atomistic
resistor with central doping of 2× 1018cm−3.

Due to the small number of dopant atoms in each simulated device, bulk mobility was

estimated by averaging 10 different MC simulations with unique random dopant config-

urations for each level of ’bulk’ doping. Values for the average field and average velocity

within the central region were extracted for each device over the range of ’bulk’ doping
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concentrations. The average mobility was obtained as the ratio of velocity and field of

different of doping levels using equation (3.12).

The simulated mobility is plotted in figure 4.11 and compared with experimental data

and ab initio results [33] obtained using the short-range correction approach. Good

agreement is achieved with experimental data and with the trend of the prior simulation

results. The simulated mobility shows the correct trend of a reduction in mobility with

increasing doping concentration. This gives confidence in the DG effective potential

approach for treating position dependent scattering from discrete random dopants. Still

the estimated mobility does not fall off rapidly enough with increasing doping concentra-

tion when compared with experimental data. This may be associated with the limited

size of the simulated structures restricting the number of dopant atoms and making the

comparison with bulk properties difficult.

Figure 4.11: Simulated bulk mobility at 2× 1018cm−3 using the mesh-based effective
quantum potential from density gradient. Agreement with experimental data [115] is

seen and extends the original ab initio 3D MC Classical results of [33].

This simulation of bulk concentration dependent mobility is limited by the size of the

solution domain it is practical to simulate. Accurate results require as large a solution

domain as possible in order to include as many dopants as possible to recover the self-

averaged scattering that defines the bulk problem. The solution domain here has been

chosen to maximise the number of dopants and the carrier trajectory in order to best

approximate a bulk material. However, it is noted that the cross section of the simulated

resistors is therefore limited to only 20× 20 nm2. As seen from the simulated results of
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Rutherford scattering using both classical short-range corrected and quantum potentials,

the scattering angle of attractive interactions is significantly underestimated for impact

parameters below around 5nm. Concentration dependent mobility was nonetheless well

reproduced with the classical potential and short-range corrections up to concentrations

of 1× 1018 cm−3 [33], suggesting that the longer interactions were dominant. The same

would be expected here, except that such long range interactions are almost ruled out in

two of the three dimensions by the solution domain. Additionally, the imposed Neumann

boundary conditions will effect the local Coulomb potential near the boundaries. Despite

this, mobility results are close to experimental results and prior classical simulation.

Taken together with the agreement of the simulated Rutherford scattering, this provides

additional credibility to the quantum potential interaction.
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4.2 Drain Current Variability Simulation strategy

4.2.1 Scaled Devices Simulation Strategy

Having been satisfied that the unified quantum potential approach to ionized impurity

scattering accurately reproduces experimental bulk mobility in the doping concentration

range of interest, we apply it to the ab initio MC simulations of random dopant induced

drain current variability in a series of realistically well-scaled n-channel bulk MOSFETs.

The scaling process was based on a 35-nm MOSFET reported by Toshiba in 2001 [191].

The continuous doping profile was obtained from carefully calibrated and comprehensive

process simulation using Taurus Process [192]. This device was scaled to gate lengths

of 25, 18, 13, and 9 nm,as shown in figure 4.12. The scaling process carefully followed

the prescription of the ITRS [193] in order to meet the requirements for oxide thickness,

junction depth, doping, and supply voltage. The resulting realistically well-scaled devices

have been used in previous DD simulation studies and are described in detail elsewhere

[26]. The corresponding basic device parameters including the channel length, equivalent

oxide thickness and junction depths xj of the extensions are summarized in table 4.1

[26]. The comparison betweeen experimental and simulated ID − VG characteristics at

VG = 850mV is presented in 4.13 [26].

Figure 4.12: Examples of realistic conventional MOSFETs scaled from a template
35 nm device according to the ITRS requirements for the 90 nm, 65 nm, 45 nm, 32
nm and 22 nm technology generations, obtained from process simulation with Taurus

Process [36].

Channel Length [nm] 35 25 18 13 9
Equivalent Oxide Thickness [nm] 0.88 0.65 0.5 0.43 0.35

Junction depth, xj [nm] 20 13 9 8 6

Table 4.1: Table of Device Design Characteristics including channel lengths, EOT
and junction depth [26].

For each of the scaled devices described above, ensembles of 50 atomistic devices with

randomly configured substrate doping were generated. For the purpose of this work, the
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Figure 4.13: Simulated ID − VG characteristic of the well scaled devices at drain
voltages and measured ID − VG characteristics of the 35 nm MOSFET [26].

effect of variation within the channel doping was of key interest and so in all simulated

devices the source/drain doping was treated as continuous.

Simulations were performed at a high gate bias of 0.80V and at both low and high drain

biases of 0.01V and 0.80V respectively. An initial DD solution with DG quantum cor-

rections was performed to obtain the quantum correction term, defined as the difference

between the classical quantum potential, applied throughout MC simulation (see section

4.1). The DD solution was also used as an initial solution from which the MC proceeded.

A uniformly doped reference device was similarly simulated for each ensemble to allow

the percentage variation in drain current to be determined as follows

∆IiD =
IiD − IuD
IuD

× 100% (4.8)

where IiD DD is the drain-current obtained from simulation of the ith atomistic device

and IuD denotes the drain-current obtained from simulation of the uniformly doped de-

vice.

Self-consistent 3D MC simulations were then performed for the same ensembles of de-

vices, including the continuously doped reference devices. As described above in section

4.1, the quantum correction was applied to the classical potential solution at every time

step in order to recover a quantum corrected mesh potential. Interpolation of the field

derived from this potential was used as the sole driving force within MC simulation in

order to account for both confinement effects and the full electron-acceptor interaction.
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Ridley’s third-body interference scattering rate [154, 155] was applied for the simulation

of the continuously doped reference devices and for the continuously doped source/drain

regions in the atomistic ensembles.

The variation in drain-current for each device in each ensemble, estimated from MC

with respect to the uniformly doped reference devices, is then determined identically to

the DD case using 4.8.

The standard deviation of the drain-current variation for physical and percentage values

obtained from both DD and MC simulations were then determined for each of the scaled

devices at each drain bias. The comprehensive statistical analysis of on current variations

is reported in the next chapter.

4.2.2 DD and MC Results and Discussion

4.2.2.1 Random Discrete Dopants Effects on Potential Distribution

Potential distributions illustrative of the self-consistent 3D MC simulation are shown

for the 35 nm devices with the greatest and least currents within the ensemble in figure

4.14. Individual acceptors are represented by blue spheres and the localised reduction

in potential is evident around them. The variation in potential within the peak of

the inversion layer is illustrated using the 2D surface plot accompanying each figure.

Similar potential profiles for the 18-nm and 9-nm devices are shown in figures 4.15 and

4.16 respectively.

4.2.2.2 Random Discrete Dopants Effects on Electron and Current Density

Distribution

Figure 4.17 shows the simulated electron concentration from source to drain (left-right)

and the corresponding current density within the peak of the inversion layer from MC

simulation. The reduction in electron concentration principally around acceptors and

otherwise extended throughout the channel is seen in the low current device (right) when

compared with the highest current device (left) where few acceptors are present. The

electron concentration within channel of the highest current device is on average ten

times higher than in the low current case.
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Figure 4.14: Potential distribution within the channel and substrate for 35 nm atom-
istic devices with (left) highest, and (right) lowest current. Variation in the channel

potential due to the unique atomistic dopant distributions is clearly seen.

Figure 4.15: Potential distribution within the channel and substrate for 18 nm atom-
istic devices with with (left) highest, and (right) lowest current.

The literature has shown [33, 194] that acceptors lying near the source/channel edge

play a significant role in current reduction due to the increased scattering of low energy

carriers there. The potential variations within the inversion layer of the lowest current

device, presented at the top of the right picture in figure 4.14, clearly shows a crowd

of dopants near the source region. This line of dopants across the width of the device

efficiently impede current flow and is responsible for the greatly reduced current. The

effect however is extended, reaching out with the screened impurity potential. In par-

ticular, the acceptors near the source and lying close to the inversion layer backscatter

electrons into the source region and impact on the current far greater than the localised
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Figure 4.16: Potential distribution within the channel and substrate for 9 nm atom-
istic devices with (left) highest, and (right) lowest current.

0.04 0.28 0.52

18.45 19.45 20.45

Figure 4.17: Electron concentration (top) [log10(cm−3)] and current density (bottom)
[mAµm−2] within the inversion layer of devices with the highest (left) and lowest (right)

current. Clearly seen are the effects of individual acceptors.

potential reduction. In this case the positioning of the dopants as well as their number

effect the current in MC. This is contrasted with the lack of acceptors near the source

within the high current device which creates large ’un-doped’ regions. The impact of

this on current flow can be seen through the greatly increased current density in figure

4.17. Local reductions in current density associated with individual acceptors can still

be seen.

Figures 4.18 and 4.19 similarly show results for the 18-nm and 9-nm devices. Within

the 18-nm device, current is largely impeded within the lowest current device by a

number of acceptors directly within the peak inversion layer concentration. They are

responsible for a large potential barrier in figure 4.15 and the associated reduction in

electron concentration is clearly seen in figure 4.18. Current is then forced to flow
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through a greatly narrowed channel. Similar observations are made in the 18-nm device

with highest current, but in this case the acceptors that effect the current are somewhat

displaced from the peak inversion layer concentration and their effect on the potential

barrier, electron concentration and, ultimately, current is reduced.

Figure 4.18: Electron concentration (top) [log10(cm−3)] and current density (bottom)
[mAµm−2] within the inversion layer of devices with the highest (left) and lowest (right)

current. Clearly seen are the effects of individual acceptors.

Figure 4.19: Electron concentration (top) [log10(cm−3)] and current density (bottom)
[mAµm−2] within the inversion layer of devices with the highest (left) and lowest (right)

current.
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4.3 Conclusions

An efficient method to unify quantum corrections with an accurate description of bulk

carrier-ion interactions via the density gradient quantum potential has been presented for

use within finely discretized 3D selfconsistent Monte Carlo simulation. The carrier-ion

treatment was shown to be analogous to previously reported methods based upon a clas-

sical potential with short-range correction and yielded consistent results. The method

was applied to realistically study random dopant induced drain current variations in a

series of scaled devices, highlighting additional variation due to reduced screening when

quantum effects are taken into account.

The impact of individual acceptors within the channel is clearly demonstrated through

reduced carrier concentration and modulated current density. This effect is more evident

in quantum corrected simulations compared with previous classical results. The effect

of quantum corrections increases the current variation in both DD and MC. This is

attributed to reduced screening of the channel impurities due in part to reduced inversion

layer density compared with classical simulations and importantly to the inherently

reduced screening density associated with the density gradient solution surrounding a

point charge. The reduced screening significantly effects ionized impurity scattering

and thus transport variation. This is seen in the significant increase in variation from

quantum corrected MC compared with classical results [33].



Chapter 5

DRAIN CURRENT

VARIABILITY: STATISTICAL

ANALYSIS

The first section of this chapter discusses the comprehensive statistical analysis of the

results from the simulation of the MOSFET set describe in chapter 4. In the second

section the comprehensive statistical results of on current variability of scaled devices

is presented. The following section presents the summary of drain current variability

results. The fourth section describes theoretical models which separate the overall drain

current variations into the electrostatic and transport variation components. Finally,

the conclusions are drawn in the last section.

5.1 Statistical Analysis Strategy

The comprehensive statistical analysis strategy is applied separately to each scaled device

at both high and low drain bias. Initially, the statistical analysis is performed at low

drain bias and divided into the following steps: In the first step, we investigate the basic

statistical parameters such as mean, standard deviation, skew and kurtosis. Secondly,

we introduce the statistical confidential intervals to assess the accuracy of simulation

results, and, finally, we perform one graphical and two analytical normality tests.

83
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The same analysis is carried out at high drain conditions. The statistical analysis of

each device concludes with the statistical investigation of the percentage drain current

variations.

5.1.1 Basic Statistics

We start with a basic statistical parameters calculation. The mean (µ) and standard

deviation (σ) values are computed with corresponding error terms. In order to better

define the distribution of drain current variations for both DD and MC results, the

higher moments of the distributions are calculated. Knowledge of the higher moments

is equivalent to more accurate knowledge of the distribution function and allows the

distribution function to be expressed in terms of these moments [195].

The skew (γ1) and kurtosis (γ2) [195] which are related to as the third and the fourth

order normalized moments of the distribution respectively are calculated. The skewness

gives indication of the extent of departure from symmetry. Its positive values indicate

that the distribution is shifted to the right of the mean, while its negative values imply

that the distribution is shifted left of the mean. The kurtosis provide indication for

the shape of distribution around its mode or peak. Positive values of kurtosis indicate

the more sharply peaked, so-called leptokurtic, distribution, while its negative values

imply the more flat-topped distributions, termed as platykurtic. A normal distribution

has zero skewness and a kurtosis of three which is sometimes normalized by subtracting

three, therefore, its value is zero, hereafter we will refer to its normalized value. The

skew and kurtosis of DD and MC results are compared with the moments of a univariate

standard normal distribution in order to find the resemblance between simulation results

and a normal distribution.

5.1.2 Confidence Intervals

Estimation of statistical parameters bears some amount of uncertainty which may be

expressed in terms of the sampling variance or the standard error of the estimator. For

this purpose, the construction of the confidence interval θ of a statistical parameter is

added to the comprehensive statistical analysis in order to indicate reliability. Within

this work, the statistical parameter θ is determined for the sample mean, sample standard
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deviation, sample skewness and sample kurtosis. The confidence interval of a given

statistical parameter provides additional information about the distribution function

since they rely only on the frequency theory of probability [196].

In practice, the construction of confidence intervals requires two quantities t0 and t1,

such that for all θ it holds that

P (t0 ≤ θ ≤ t1) = 1− α (5.1)

where α is the chosen significance level [196]. Within this work a value of α = 0.05

is used unless it is stated otherwise. This asserts that θ lies in the interval between t0

and t1, which are the lower and upper bound of a confidence interval for parameter θ,

respectively. The procedure for the construction of the standard approximate interval

that will be used for the comparison is described next.

The standard approximate interval may be expressed as

θ ∈ [θ̂ + σ̂z(α), θ̂ + σ̂z(1−α)] (5.2)

where θ is some real-valued parameter, θ̂ is its maximum likelihood estimate (MLE), σ̂

is the above mentioned uncertainty of θ̂ expressed as an estimate of its sample standard

deviation, z(α) is the 100.α percentile of the standard normal distribution, which for

α = 0.05 gives z(α) = −z(1−α) = −1.645.

It should be noted that the small sample size of 50 simulation results for each set may

cast doubt on the statistical analysis used to invoke asymptotic results [197, 198]. A

reliable analysis of the confidence intervals for the simulation results necessitates that

accurate statistical techniques are used, owing to the small sample sizes. To this end,

accurate nonparametric methods, which are capable of handling small sample sizes, are

used throughout this analysis and discussed next.

The confidence interval is constructed by using the concept of the bootstrap introduced

by Efron [199–201]. The bootstrap requires almost no assumptions about the statistical

cumulative distribution function of the simulation results and their estimated parame-

ters. This assigns the bootstrap to the family of nonparametric methods. The general
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concept may be briefly described with respect to the simulation results specific to this

work as follows.

It is assumed that the simulated drain current data are independent observations from

some unknown probability distribution denoted as F . F̂ may be estimated by an em-

pirical probability distribution giving a mass 1/n to each observed data point. For

example, we make 50 random draws with replacement from the sample of 50 simulated

drain currents and recompute the statistics of interest. In doing so the observations from

the simulation sample are randomly reassigned and, thereafter, a new estimate for the

statistics obtained. This process is repeated to yield a distribution in the original ob-

served statistic, collectively termed the bootstrap replication statistics [200]. Using the

above process, for each simulation sample a distribution size of 1000 for each statistic of

interest is obtained from which the nonparametric confidence intervals can be derived.

The nonparametric ABC method (”ABC” standing for approximate bootstrap confi-

dence intervals) [197] is deployed to obtain sufficient accurate nonparametric confidence

intervals. This method corrects the deficiency of the standard method, making the

nonparametric ABC intervals second-order accurate as well as second-order correct

[197, 198]. The nonparametric ABC algorithm is described in [197] and will not be

discussed here. Simultaneously with the calculation of the nonparametric confidence

interval the R\L ratio, defined as the ratio of the right side of the interval, measured

from the estimated parameter, to the left side, is calculated. The R\L ratio of the non-

parametric confidence interval is compared to the standard normal approximate which

produces symmetric confidence intervals. This gives some indication of the extent to

which the observed distribution of the simulation results differs from the normal distri-

bution.

5.1.3 Normality Tests

Firstly, the nonparametric confidence intervals might be used to assess the naive normal-

ity test which would determine whether the simulation results come from a univariate

normal distribution. Secondly, the proper tests for univariate normality of simulation

results are carried out using one graphical and two analytical tests. The general test of

normality may be described as follows.
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Let N denote the family of univariate normal distributions and F̂ represents the em-

pirical distribution of simulation results. The hypotheses of interest are H0 : F̂ ∈ N ,

the so-called null hypothesis, and H1 : F̂ /∈ N , termed the alternative hypothesis. Two

types of error can occur in statistical testing; a Type I error occurs if the null hypothesis

is rejected when in fact it is true, a Type II error occurs if the null hypothesis is not

rejected when in fact it is false. An upper bound on the probability of Type I error

is called α and denotes the significance level of a test. Within this work, we set the

significance level α = 0.05 for normality tests.

In order to test normality within the above confidence interval, the following hypothesis

structure is constructed. The null hypothesis is H0 : θ̂ = 0 and the alternative hypothesis

is H1 : θ̂ 6= 0, where θ̂ represents the sample estimated skew and kurtosis. The null

hypothesis states that if the skew and kurtosis of the simulated results is zero, the sample

data may have come from a normal distribution. The confidence interval 100.(1− α)%

defines the interval containing of all those value θ̂ for which the null hypothesis is not

rejected at given significance level of 100.α%. If the zero value of skewness and kurtosis

lies in the 95% confidence interval, then we accept the null hypothesis for both estimated

statistics.

For the graphical normality test the Q-Q plot is used, which is obtained as follows.

Firstly, the drain current values are ordered in ascending order such that I1
D < I2

D <

... < I50
D . Secondly, the proportions of observations that are the less than IiD is estimated

by (i− 0.5)/50, where 0.5 is subtracted to correct for continuity. These proportions are

assumed to be percentiles or probability levels for the cumulative standard normal distri-

bution. Subsequently, the corresponding theoretical quantiles of the normal distribution

are computed. Finally, we plot theoretical quantiles against ordered drain current val-

ues in order to construct the Q-Q plot. A linear plot indicates normal distribution of

observations and a nonlinear plot shows their non-normal distribution.

The graphical normality test using Q-Q plot is, however, subjective as the plot has to be

visually inspected in order to establish whether it is linear or not. In order to accurately

confirm the graphical and the confidence interval normality test, two further analytical

tests, the Shapiro-Wilk [203] and Jarque-Bera [204] tests, are preformed. In order to

accept or reject the null hypothesis in these tests the chosen α to p-value, which is the
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probability computed by the test, is compared. If the p-value is less than the chosen α

then the H0 is rejected otherwise it is accepted.

5.2 Results and Discussion Of On Current Variability of

Scaled Devices

Here we present the comprehensive statistical analysis of the simulation results for the

35 nm tansistor. To avoid repetition the equivalent analysis of the results for the 25 nm,

18 nm, 13 nm, and 9 nm transistors are given in appendices.

5.2.1 Descriptive Statistical Results at Low Drain Bias

For all devices, the DD simulations at low drain bias result in larger currents when

compared with the equivalent MC results. This is associated with calibration of the

mobility models within the DD to produce a physically realistic and optimally performing

device that mimics the effects of strain. The effect of strain and the corresponding

mobility enhancement are however not included within the MC simulation. The mean

current (µ) over the 50 atomistic DD devices is approximately 50% higher compared the

mean from MC. The values for the mean drain currents obtained from DD and MC at

low drain bias are 〈ID DD〉 = (9.17± 0.06)× 10−5Aµm−1 and 〈ID MC〉 = (6.1± 0.1)×

10−5Aµm−1, respectively. However, the standard deviation (σ) in the drain current is

of most interest in this study. The standard deviation associated with the DD simulated

ensemble is σID DD = (4.6± 0.5)× 10−6Aµm−1 while that from MC is nearly twice as

large, with a value of σID MC = (8.4± 0.8)× 10−6Aµm−1.

The higher DD on current value is due to the calibration of mobility models within the

DD simulator against real device data [191] in order to obtain the desired set of device

characteristics. The real device encompasses all physical phenomena including strain

but the DD simulator can mimic how strain affects the current through the mobility

models. The lower values of on-current produced by the MC simulator is due to the

omission of strain effects, as mentioned above. The impact of the simplest strain in MC

simulations can be included through the band structure via a lowering of the two-fold

valleys consistent with the application of strain and a recalibration of the deformation
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potentials. [117, 202]. These, in turn, affect the scattering (through shifts in band

energies and phonon scattering rates) and propagation (through the change in masses)

of electrons and ultimately the current.

MC captures significantly larger variation in the drain current compared with DD. This

additional variation is associated with variations in position dependent scattering be-

tween devices and is an effect in addition to the electrostatic modulation of carrier

density that is alone responsible for the variation in DD.

33 and 32 of the 50 devices from DD simulations and from MC simulations, respectively,

have drain current values within the range of σ from the mean. Almost all devices

from both DD and MC simulations lie within the range of 2σ, which corresponds ap-

proximately to a 95% confidence interval, while only two from DD and one from MC

simulations fall far outside the range of 2σ. Thus, both DD and MC results at low drain

bias show moderate variability across the sample.

It is noted however that since the values of drain currents obtained from DD signifi-

cantly differs from those of MC, the standard deviation normalised by their respective

mean values should be comapred. These values hereafter referred to as the coefficient of

variation, are obtained as CV = (σ \ µ)× 100%. The coefficient of variation for MC is

obtained as CV = 13.8%, while DD only has CV = 5.0%. CV coefficient indicates the

higher variations in MC results than in DD. This is important as it highlights the rela-

tive variability increase associated with transport variation over and above electrostatic

variation.

The distribution of DD results is negatively skewed (γ1 DD = −0.38) while the distri-

bution of MC data is positively skewed (γ1 MC = 0.06). Both distributions of DD and

MC results are platykurtic (γ2 DD = −0.27 and γ2 MC = −0.74). In both cases, the

skewness indicates little departure from symmetry and kurtosis shows small flat-topped

shape.

95% confidence intervals of mean, standard deviation, skewness and kurtosis of the drain

current obtained from both DD and MC simulations at low drain bias are presented in

table 5.1. The confidence interval of 〈ID MC〉 (µ in table) indicates very little departure

from asymmetry compared with the standard normal approximation since its R\L ratio

is close to one. The confidence interval of 〈ID DD〉 has modest asymmetry of the interval
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since R\L value is modestly less than one. Both DD and MC nonparametric confidence

intervals of their mean values show very little departure from the standard normal

approximation.

The confidence interval of σID MC (σ in table) indicates modest departure from the

asymmetry compared with the standard normal approximation. This is also seen in the

confidence interval of σID DD. The above mentioned indications and observations might

lead to the inference that the true population distributions for DD and MC simulation

results come from the normal distribution. From the table 5.1, it is clearly seen that the

zero value of skewness and kurtosis for both DD and MC simulation results lie within the

range of the 95% confidence interval. This is in favour of accepting the null hypothesis

for both skewness and kurtosis.

35 nm Device : Simulations at Low Drain Bias
DD MC

95% Confidence Interval R\L 95% Confidence Interval R\L
µ [Aµm−1] [9.04, 9.29]× 10−5 0.93 [5.85, 6.31]× 10−5 1.01
σ [Aµm−1] [3.81, 5.43]× 10−6 1.25 [7.17, 9.73]× 10−6 1.23

γ1 [−1.09, 0.45] 1.14 [−0.63, 0.82] 1.11
γ2 [−0.92, 0.62] 1.75 [−1.18,−0.03] 1.89

Table 5.1: 95% nonparameric ABC confidence interval of mean value, standard devi-
ation, skewness and kurtosis compute for 35 nm device at low drain bias.

Q-Q plots for DD and MC simulation results at low drain bias are illustrated in figure

5.1. In the DD plot (left) of figure 5.1, two outliers are evident at the low end of the

range. In the MC plot (right) of figure 5.1, one outlier is evident at the high end of the

range. Both plots are to a very good approximation linear, suggesting that the data

are normally distributed. However, the plots deviate from true linear behaviour due to

small sample size.

DD results have the Shapiro-Wilk test statistics W = 0.97 and its p-value = 0.28 while

the Jarque-Bera test statistics JB = 1.40 and its p-value= 0.50. For MC results, the

Shapiro-Wilk test statistics W = 0.98 and its p-value= 0.64 while the Jarque-Bera test

statistics JB = 1.31 and its p-value = 0.52. In all cases, the p-values are greater than

the chosen significance level α = 0.05 so we finally accept the null hypothesis that DD

and MC simulations results come from a normally distributed population.
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Figure 5.1: Q-Q plot for DD (left) and MC (right) simulation results at low drain
bias for the 35nm scaled device.

5.2.2 Descriptive Statistical Results at High Drain Bias

Analysis of the results at high drain bias follows analogously to those presented above

for low drain bias. In general it is noted that, for all devices, the DD simulations

at high drain bias result in larger currents when compared with the equivalent MC

results. This is again due to calibration of the DD mobility models and the desire to

reflect strain induced mobility enhancements not captured within the MC simulator.

The mean current associated with DD over the 50 devices is approximately 3.5 times

greater than that from MC, with values of 〈ID DD〉 = (3.78 ± 0.05) × 10−3Aµm−1 and

〈ID MC〉 = (1.03±0.02)×10−3Aµm−1, respectively. The standard deviation in the drain

current calculated from DD is σID DD = (3.2± 0.3)× 10−4Aµm−1, while that from MC

is σID MC = (1.4±0.1)×10−4Aµm−1. The coefficient of variation for MC is obtained as

CV = 13.3%, while DD only has CV = 8.6%. The CV coefficient indicates the higher

variations in MC results than in DD.

33 and 30 of the 50 devices from DD and MC simulations respectively have drain current

values within the range of σ from the mean. Almost all devices from both DD and MC

simulations lie within the range of 2σ, which corresponds approximately 95% confidence

interval, while only one from both DD and MC simulations fall far outside the range of

2σ. Thus, both DD and MC results at high drain bias show moderate variability across

the sample.
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Both DD and MC distribution of drain currents are negatively skewed (γ1 DD = −0.25

and γ1 MC = −0.26), and both distributions are platykurtic (γ2 DD = −0.48 and

γ2 MC = −0.35). In both cases, the skewness indicates little departure from symme-

try and kurtosis shows a small flat-topped shape.

Table 5.2 presented the confidence intervals of the estimated statistical parameters ob-

tained from DD and MC simulation results at high drain bias. The confidence intervals of

〈ID MC〉 and 〈ID DD〉 indicates very little departure from asymmetry compared with the

standard normal approximation since R\L ratio values are somewhat less than one. The

confidence intervals of σID MC and σID DD indicate moderate departure from asymme-

try compared with the standard normal approximation since R\L ratios are moderately

higher than one.

35 nm Device : Simulations at High Drain Bias
DD MC

95% Confidence Interval R\L 95% Confidence Interval R\L
µ [Aµm−1] [3.68, 3.86]× 10−3 0.95 [0.99, 1.06]× 10−3 0.95
σ [Aµm−1] [2.74, 3.83]× 10−4 1.37 [1.14, 1.62]× 10−4 1.32

γ1 [−1.06, 0.51] 0.92 [−1.06, 0.60] 1.11
γ2 [−1.11, 0.54] 1.96 [−0.95, 0.55] 1.88

Table 5.2: 95% nonparameric ABC confidence interval of mean value, standard devi-
ation, skewness and kurtosis compute for 35 nm device at high drain bias.

Further, the table 5.2 shows that the zero value of skewness and kurtosis of DD and

MC simulation results lie within the range of the 95% confidence interval. This leads

to acceptance of the null hypothesis of the confidence interval normality test for both

skewness and kurtosis. This in turn means that data may be drawn from a normally

distributed population.

Further, and analogous with the previous low bias case, the normality of data from DD

and MC simulation results at high drain bias was investigated using Q-Q plots. These

are illustrated in figure 5.2. In the DD (left) plot of figure 5.2, one outlier is evident

at the low end of the range while in the MC (right) plot one outlier is evident at the

high end and one at the low end of the range. Both plots are approximating linear,

suggesting that the data are normally distributed. The plots are not completely linear,

again due to small sample size.
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Figure 5.2: Q-Q plot for DD (left) and MC (right) simulation results at high drain
bias of 35nm device.

Table 5.3 presents the normality test results from the Shapiro-Wilk and Jarque-Bera

tests. DD results have the Shapiro-Wilk test statistics W = 0.9822 and its p-value =

0.6493 and the Jarque-Bera test statistics JB = 1.13848 and its p-value= 0.566. MC

results have the Shapiro-Wilk test statistics W = 0.9831 and its p-value= 0.6887 and

the Jarque-Bera test statistics JB = 0.9351 and its p-value= 0.6265. For all cases, the

p-values are greater than the chosen significance level α = 0.05 so we again accept the

null hypothesis that DD and MC simulations results come from a normally distributed

population.

35 nm Device : Simulations at High Drain Bias
Normality test

DD MC
Test Statistics p-value Test Statistics p-value

Shapiro-Wilk 0.98 0.65 0.98 0.69
Jarque-Bera 1.14 0.57 0.94 0.63

Table 5.3: Normality test for 35 nm device at high drain bias.

5.2.3 DD versus MC : Percentage Change in Current

The percentage change in current from the uniform device for both DD and MC at both

low and high drain biases is next determined. IuD DD in equation (4.8) is substituted

with the uniform drain current value 9.30× 10−5Aµm−1 obtained from DD simulation

at low drain bias, and with value 3.88×10−3Aµm−1 at high drain bias. Similarly IuD MC
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in equation (4.8) is substituted with the uniform drain current value 6.04× 10−5Aµm−1

obtained from MC simulation at low drain bias, and with value 1.12 × 10−3Aµm−1 at

high drain bias. From this it can be seen that DD simulation of the atomistic devices

results in an average current that is less than that obtained from the uniform device in

both cases, while MC simulation shows a reduction in the average current only at low

drain bias. Despite this difference, the variation in current between devices is largely

reproduced between both simulation models. This is clearly seen in the scatter plots,

presented in figure 5.3, of the percentage change in current with respect to the uniform

device for both DD and MC at both low and high drain bias for all 50 devices. Higher

correlation (ρ = 0.86) at high drain bias reflects the greater importance of electrostatic

effects, common to both MC and DD, while at low drain bias the lesser correlation

(ρ = 0.72) reflects the importance of transport variation imposed by the random dopants

that is alone captured within MC.

Figure 5.3: Scatter plots of percentage drain-current variation from MC simulation
against DD simulation, both including quantum corrections.The statistical ensemble is
shown along with a linear regression line.The correlation at high (red) and low (blue)

drain is seen.

29 of the 50 devices from MC simulation at low drain bias show reduced current while the

corresponding number of devices in DD simulation increases slightly to 31. 14 of the 50

devices from MC simulation at low drain bias show a greater, or approximately similar,

reduction in current compared with the device with maximum reduction in current from

corresponding DD simulation. Similarly, 19 of the 50 devices from MC simulation at low

drain bias show a greater, or approximately similar, increase in current compared with
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the device with maximum increase in current from DD simulation. The absolute value

of the largest increase in current in MC at low drain bias is seen to be modestly larger

(approximetly 24%) than the absolute value of the largest reductions in current seen in

MC, while the highest reductions in current in DD is moderately larger (approximately

85%) than the largest increase in current seen in DD. These indications result in the

larger percentage change in current variations in MC than DD. The standard deviation

of the percentage change in current variation calculated from DD at low drain bias is

σ∆ID DD = 4.91% while the standard deviation from MC is σ∆ID MC = 13.90%, as

illustrated in figure 5.3.

36 of the 50 devices from MC simulation at high drain bias show reduced current, while

the number of devices fairly decrease to 26 at low drain bias. 11 of the 50 devices

from MC simulation at high drain bias show greater or approximately similar reduction

in current compared with the device with maximum reduction in current from DD.

The increase in current in MC and DD simulations at high drain bias are seen to be

comparable. The absolute value of the largest reductions in current in MC at high drain

bias is seen to be significantly larger (approximately 126%) than the absolute value of

the largest increase in current seen in DD, while the highest reductions in current in MC

is moderately larger (approximetly 95%) than the largest increase in current seen in DD.

The higher variations in MC compared with DD can again be clearly seen. The standard

deviation of the percentage change in current variation calculated from DD at high drain

bias is σ∆ID DD = 8.33%, while standard deviation from MC is σ∆ID MC = 12.18%,

as presented in figure 5.3.

What is clear however, is that the magnitude of the MC percentage change in current

variation is larger than compared to DD at both low drain and high drain biases. The

MC percentage current variation in current at low drain bias is almost three times

larger than in DD, while at high drain bias the percentage current variation in MC is

only 50% larger than in DD. The significantly greater difference in standard deviation

at low drain bias compared to that at high drain bias comes from the larger contribution

from ionized impurity scattering at low drain bias. The different distribution of random

dopants within device may contribute similar electrostatic effects in current while their

impact on electron transport through ionized impurity scattering may vary dramatically

[33]. The effects of individual dopants on the device current will be discussed later.
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The comprehensive statistical analysis of the DD and MC simulation results for the 25

nm, 18 nm, 13 nm, and 9 nm are presented in appendices. In the next section, we

summarize the results of this analysis.

5.3 Summary of Drain Current Variations of Scaled De-

vices

5.3.1 Summary of Low Drain Bias Results

Statistical theory was used to comprehensively analyse the results of drain current fluc-

tuations obtained from DD and MC simulations. To begin the analysis, the drain current

data is presented as box plots for each of the five well scaled MOSFET separately for

each drain bias. The box plot displays the maximum value, upper quartile, median,

lower quartile and minimum value. The rectangular box of the plot has edges defined

by upper and lower quartile. This indicates where the middle 50% of results lie. The

horizontal line inside the box represents the median. Upper and lower edges of the

rectangular box continue with whiskers which represent the spread of the rest of values.

The symmetry of the distribution of results may be interpreted through the symmetry

about the median.

Box plots for each device at low drain bias are presented in figure 5.4. Standardized

values of drain currents are compared since the magnitude of the drain currents vary

significantly across device dimensions. The family of box plots presented in the left

picture of figure 5.4 shows that 18-nm DD simulation results are more spread out than

the rest. A substantial number of simulation results for DD simulation lie within the

box for the case of 13-nm and 25-nm device, since the length of their boxes are slightly

larger than other three boxes.

The box plots illustrated in the right picture of figure 5.4 indicates the larger spread

of MC simulation results at low drain bias for 25 nm device. MC results show higher

maximum values than DD. Both plots show that median values are nearly zero in all

cases. This indicates that simulation results are almost symmetric about the median.

These findings are in coincidence with the previous statistical analysis showing that

both DD and MC simulation results at low drain bias show very little departure from
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a normal distribution. Both plots suggest that simulation results might be drawn from

the normal distributed population.

9 13 18 25 35
Channel Length [nm]

-4

-3

-2

-1

0

1

2

3

S
ta

n
d

ar
d

iz
ed

 I
D

 D
D

Maximum

3
rd

 Quartile

Median

1
st
 Quartile

Minimum

DD LF

9 13 18 25 35
Channel Length [nm]

-4

-3

-2

-1

0

1

2

3

S
ta

n
d

ar
d

iz
ed

 I
D

 M
C

Maximum

3
rd

 Quartile

Median

1
st
 Quartile

Minimum

MC LF

Figure 5.4: Box plots of standardized drain current values obtained from both DD
(left) and MC (right) at low drain bias separately for each channel length.

The reliability of results was tested using the nonparametric confidence intervals. Fur-

ther, the three different normality tests of the simulation results for both DD and MC

simulations for each well scaled MOSFET suggest that data are drawn from normally

distributed populations.

Table 5.4 summarises the data that has been collected throughout this chapter in respect

of percentage change in drain current fluctuactions at low drain bias. It is clearly seen

that the random dopants are a very important source of fluctuations in nano-scaled

MOSFETs. It is also clear that MC simulations with ab initio impurity scattering show

greatly increased variation compared with equivalent DD simulations. This is of great

importance whenever accurate estimation of device parameter variation is required as

it shows that commonly used DD simulation significantly underestimates variation by

omission of transport variation.

Standard Deviation at Low Drian Bias
Channel Length

35 nm 25 nm 18 nm 13 nm 9 nm
σID DD

[%] 4.92 6.33 9.38 12.71 24.11
σID MC

[%] 13.91 17.34 26.57 24.49 50.60

Table 5.4: The standard deviation of the drain current variation obtained from both
DD and MC simulations at low drain bias.
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The dependence of the standard deviation of the percentage change in drain current

variation at low drain bias as a function of the channel length is presented in figure 5.5.

Also shown for comparison are results from equivalent classical DD and self-consistent

ab initio MC [33]. As it has been well observed before, variation increases consistently

with reduction in device size. As mentioned above, the drain current significantly varies

in magnitude from channel length to channel length. For this reason the coefficient

of variation is also shown in figure 5.5 and confirms the standard deviation results.

The plots of the coefficient of variation show a smoothly increasing trend in variations

with decreasing channel length. It also smoothes the kink seen at standard deviation

results for 13-nm device which might be caused by the presence of statistical noise in

the simulations results.
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Figure 5.5: Standard deviation of drain current variation at low drain bias from DD
and self-consistent MC.

In both classical and quantum MC simulations, with additional transport variation,

significantly more variations are seen compared with DD. This effect is more pronounced

in the larger devices where variations from MC are almost twice that seen in DD. With

reduced channel length, and increased lateral field within the channel, the effect of

transport variation compared with electrostatic variation is reduced due to increased

ballisticity, although it is still significant.
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5.3.2 Summary of High Drain Bias Results

Figure 5.6 shows the boxplots of the standardised drain current distribution at high

drain bias. Both DD and MC simulations indicate the largest spread in results for the

18-nm device. Median values are nearly zero for all cases, while several boxes show that

median lies a little off the middle of the box, indicating skew values that are modestly

off zero. This implies similar symmetry compared with normal distribution. The close

similarity of box lengths suggest that the most of results lie within middle 50% around

the median. As has been mentioned in the statistical analysis of the low drain bias

results, only a few devices fall far outside the region of 2σ. This implies compactness of

the results.
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Figure 5.6: Box plots of standardized drain current values obtained from both DD
(left) and MC (right) at high drain bias separately for each channel length..

The reliability of these results have been tested using the nonparametric intervals which

accounts for the problem of the small sample sizes. Three normality tests all suggest

that data come from a nearly normal distribution.

Standard Deviation at High Drian Bias
Channel Length

35 nm 25 nm 18 nm 13 nm 9 nm
σID DD

[%] 8.33 10.77 15.68 18.84 30.14
σID MC

[%] 12.18 15.05 25.37 29.49 46.16

Table 5.5: The standard deviation of the drain current variation obtained from both
DD and MC simulations at high drain bias.

Table 5.4 summarises the standard deviation of percentage change in drain current

fluctuactions at high drain bias which are shown in figure 5.7 for both classical and
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quantum DD and MC. The coefficient of variation of drain current is also presented in

this figure in the right graph. Again, variation increases with decreasing device size in

all cases, and in both classical and quantum simulations MC yields greater variability

than DD. Again the additional contribution from transport variation is comparatively

greater at larger channel lengths, though compared with the low drain bias simulations

the effect is somewhat reduced. This is attributed to the greater lateral field at high drain

bias which accelerates carriers and reduces the Coulomb interaction with impurities. At

smaller device dimensions, the screened potential associated with acceptors occupies

a larger fraction of the device width, resulting in increased sensitivity to number and

position of dopants within the source/channel where the lateral field is still modest.

9 13 18 25 35
Channel length [nm]

0

10

20

30

40

50

σ
I D

 [
%

]

MC density gradient

DD density gradient

MC classical
DD classical

V
D

 = 0.8 V

9 13 18 25 35
Channel length [nm]

0

10

20

30

40

50

co
ef

fi
ci

en
t 

o
f 

v
ar

ia
ti

o
n
 o

f 
I D

 [
%

]
MC density gradient

DD density gradient

MC classical
DD classical

V
D

 = 0.8 V

Figure 5.7: Standard deviation of drain current variation at high drain bias from DD
and self-consistent MC.

Scatter plots illustrated in figures 5.3, A.3, B.3, C.3 and D.3 show significant correlation

at both low and high drain bias, which is stronger at high drain. Reduced correlation

implies variation in position dependent scattering. At high drain bias, larger correlation

implies dominance of electrostatic effects. The near linear dependence of variations

between MC and DD at high drain hints at a proper statistical model of the electrostatic

and transport variation. This shall be discussed hereafter.

5.4 Electrostatic versus Transport Variations

In the previous sections, we have essentially constructed of two variables for the purpose

of better understanding drain current variations. We have constructed the variable of
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electrostatic variations and the variable of transport variations. Hereafter these terms

will be referred to as the electrostatic and transport variables.

The electrostatic variable is common to both DD and MC results. It is assumed that

DD simulation only captures this electrostatic variable, and that within MC the same

variable is well reproduced. That is to say that any effects associated with electrostatic

variation are similarly captured, whether simulation precedes via DD or MC. This as-

sumption may fail if dynamic screening of impurities by electrons in MC significantly

varies from the static screening within DD [33]. Following this, it is therefore assumed

that the electrostatic variable is entirely measured by σ∆ID DD.

The transport variable is alone a result of MC simulation and it is assumed that it is

not present in DD results. The transport variable is represented by the dynamic of

ensemble of electrons within MC simulation, scattered by Coulomb potentials of the

unique distribution of dopants within device. Although it is not directly measurable, its

effects on the percentage change in current variations are observable, and hence subject

to study.

The following additive model of the total variation in the percentage change in drain

current is introduced

total variations = electrostatic variations + transport variations (5.3)

where it is assumed that the total variation of the percentage change in drain current is

completely resolved by MC simulation and measured by σ∆ID MC . Previously presented

correlations between DD and MC results (see figures 5.3, A.3, B.3, C.3 and D.3) indicate

that the ratio of the electrostatic variations from DD simulation directly transforms to

MC simulation. In order to properly measure the σ of the transport variable it is

necessary to deploy an accurate statistical model.

Two concepts of the measurement of electrostatic and transport variables are proposed.

The first concept is referred as the absolute drain current variation model. The second

concept is referred to as the conditional drain current variation model. Each concept

will be discussed separately.
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5.4.1 The Absolute Model of Electrostatic and Transport Variations

The absolute drain current variation model may be expressed as

∆ID MC = m(∆ID DD) + ε (5.4)

where m(.) is an arbitrary function describing the relationship between the percentage

change in drain current variations obtained from MC and DD simulations. ε is the

random error within the model associated with the transport variable and shall be

discussed shortly. The high positive correlation between MC and DD results suggests

to substitute a linear function for m(.). The model may then be expressed as

∆ID MC = β0 + β1∆ID DD + ε (5.5)

where β0 and β1 are parameters of the new linear model. If the correlation between

MC and DD results is perfect, the drain current variations would lie on this line which

would be only shifted by the intercept parameter β0 from origin and have a slope β1.

Equation 5.5 is termed a linear regression model and is described in greater detailed in

[196]. The total variation of the percentage change in drain current by using this model

may be estimated as

V ar(∆ID MC) = V ar(β0 + β1∆ID DD + ε) = β2
1V ar(∆ID DD) + V ar(ε) (5.6)

where it is assumed, consistent with a linear regression model, that E[∆ID DDε] = 0

[196]. This means that the electrostatic variations represented by ∆ID DD are indepen-

dent of the transport variations ε. The variance of the constant parameter β0 is zero.

Equation 5.6 may then be rewritten as

σ2
∆ID MC︸ ︷︷ ︸

total variations

= β2
1σ

2
∆ID DD︸ ︷︷ ︸

electrostatic variations

+ σ2
ε︸︷︷︸

transport variations

(5.7)

from which the transport variations σ2
ε are
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σ2
ε = σ2

∆ID MC
− β2

1σ
2
∆ID DD

(5.8)

In order to determine the magnitude of the transport variation, the regression parameters

β0 and β1 need to be estimated. These parameters from equation 5.5 are generally

estimated using the familiar least square method [196]. After obtaining the regression

parameters, the percentage ratio of the electrostatic variation and transport variation

to the total variation may be computed as

absolute ratio of electrostatic variations =
β2

1σ
2
∆ID DD

σ2
∆ID MC

× 100% (5.9)

absolute ratio of transport variations =
σ2
ε

σ2
∆ID MC

× 100% (5.10)

Although the relationship may not be truly linear and that a nonlinear model might

fit the data better, the assessment of the linear model given by equation 5.5 indicates

enough statistical accuracy and reliability to allow its use.

5.4.2 The Conditional Model of Electrostatic and Transport Variations

Within the conditional drain current variation model, the common effects on the per-

centage change in drain current at both low and high drain bias are examined. The

main difference with the model above is the lack of assumption that electrostatic and

transport variations are independent. In the conditional model, endogeneity is assumed

between these two variables. A dummy variable that splits the random variable into

two terms, the first a dummy variable and the second a new random variable which is

now uncorrelated with electrostatic variable, is applied. The dummy variable may be

termed the fixed effect. Within this analysis, the fixed effect is related to the treatment

of the simulation in terms of the applied bias. The dummy variable accounts for specific

effects relating to the percentage change in current, subject whether the simulation is

performed at low or high drain bias.

In order to proceed, a sample of 100 observations of the percentage change in drain

current was compiled. This sample simply represents merging the high and low drain
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bias results for each device. Without loss of any generality, it is assumed that the first

50 of them belong to the simulations at high drain bias and the additional 50 from those

at low drain bias. The conditional variation model introduces a dummy variable into

equation (5.5) which may then be written as

∆ID MC = β1∆ID DD + γd+ ε (5.11)

Here γ is the regression coefficient consistent with the dummy variable d. As opposed

to equation (5.5), an intercept parameter β0 is omitted, since it will be collinear with d.

The dummy variable in equation (5.11) is expressed as

di =

 1 if ∆IiD is from high drain bias simulation

0 if ∆IiD is from low drain bias simulation
(5.12)

where ∆IiD is the percentage change in drain current for the ith device, where the first

50 have value di = 1 and the remaining 50 have value di = 0. The mean value of the

sample of di is µd = (50× 1 + 50× 0) \ 100 = 0.5 and the variance σ2
d has a value 0.25.

The variance of the total variation of percentage change in drain current is determined

in a similar fashion as in equation (5.6)

V ar(∆ID MC) = β2
1V ar(∆ID DD) + γ2V ar(d) + 2β1γCov(∆ID DD, d) + V ar(ε) (5.13)

where it is now assumed that E[ε|∆ID DD, d] = 0, which is an assumption of the multi-

variate linear regression. Therefore, the total variance can be expressed in a form

σ2
∆ID MC︸ ︷︷ ︸

total variations

= β2
1σ

2
∆ID DD︸ ︷︷ ︸

conditional electrostatic variations

+ γ2σ2
d + 2β1γCov(∆ID DD, d)︸ ︷︷ ︸

common effects

+ σ2
ε︸︷︷︸

conditional transport variations

(5.14)
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where Cov(∆ID DD, d) stands for the covariance between the percentage change in cur-

rent from DD simulation and the dummy variable. The term γ2σ2
d is specific to whether

or not the simulation was carried out at low or high drain bias. Even though, the vari-

ance of the dummy variable is fixed and its contribution to the total variation depends

upon the regression coefficient γ. The σ2
ε is naturally incorporated in the MC simulation

by its stochastic character.

The covariance term in the equation (5.14) is calculated as follows

Cov(∆ID DD, d) =
1

100

100∑
i=1

(∆IiD DD − 〈∆ID DD〉)(di −
1
2

) (5.15)

where the term ∆ID DD may be split into two terms. The first term is the percentage

change of drain current from high drain bias simulation, denoted ∆IHBD DD, while the

second term is related to simulation at low drain bias, denoted ∆ILBD DD. Equation

(5.15) may then be rewritten as

Cov(∆ID DD, d) =
1

100
[

50∑
i=1

∆Ii HBD DD − 〈∆ID DD〉)(di −
1
2

)

+
100∑
i=51

(∆Ii LBD DD − 〈∆ID DD〉)(di −
1
2

)] (5.16)

The values for the di variables can be substituted as defined above. Thus, we write

equation (5.16) as

Cov(∆ID DD, d) =
1

100
[

50∑
i=1

∆Ii HBD DD − 〈∆ID DD〉)
1
2

+
100∑
i=51

(∆Ii LBD DD − 〈∆ID DD〉)(−
1
2

)] (5.17)

and after the several algebraic operations, we have

Cov(∆ID DD, d) =
1

200
[

50∑
i=1

∆Ii HBD DD −
100∑
i=51

∆Ii LBD DD] (5.18)
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Finally, the covariance term might be expressed as follows

Cov(∆ID DD, d) =
1
4

[〈∆I HBD DD〉 − 〈∆I LBD DD〉] (5.19)

where terms 〈∆I HBD DD〉 and 〈∆I LBD DD〉 stand for the mean values of the percentage change

in drain current at high and low drain bias, respectively.

In a similar way, we can decompose the total variations as follows

σ2
total variations =

1
100

100∑
i=1

[∆IiD MC − 〈∆ID MC〉]2 (5.20)

where 〈∆ID MC〉 is the mean value of the percentage change in drain current across the

entire sample of MC simulations at both low and high drain bias and may be expressed

as

〈∆ID MC〉 =
1

100

100∑
i=1

∆IiD MC

=
1
2

[
1
50

50∑
i=1

∆Ii HBD MC +
1
50

100∑
i=51

∆Ii LBD MC ]

=
1
2

[〈∆IHBD MC〉+ 〈∆ILBD MC〉] (5.21)

where 〈∆IHBD MC〉 and 〈∆ILBD MC〉 are mean values of the MC simulation results at high

and low drain bias, respectively. Substituting from (5.21) into (5.20) will give us the

following decomposition of total variations
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σ2
total variations =

1
100

100∑
i=1

[∆IiD MC −
1
2

[〈∆IHBD MC〉+ 〈∆ILBD MC〉]]2

=
1
2

[
1
50

50∑
i=1

[∆Ii HBD MC −
1
2

[〈∆IHBD MC〉+ 〈∆ILBD MC〉]]2

+
1
50

100∑
i=51

[∆Ii LBD MC −
1
2

[〈∆IHBD MC〉+ 〈∆ILBD MC〉]]2

=
1
2

[
1
50

50∑
i=1

[∆Ii HBD MC − 〈∆IHBD MC〉]2

− 2
50

(
〈∆ILBD MC〉 − 〈∆IHBD MC〉

2
)

50∑
i=1

[∆Ii HBD MC − 〈∆IHBD MC〉]

+
1
50

50∑
i=1

(
〈∆ILBD MC〉 − 〈∆IHBD MC〉

2
)2

+
1
50

50∑
i=1

[∆Ii LBD MC − 〈∆ILBD MC〉]2

− 2
50

(
〈∆IHBD MC〉 − 〈∆ILBD MC〉

2
)

50∑
i=1

[∆Ii LBD MC − 〈∆ILBD MC〉]

+
1
50

50∑
i=1

(
〈∆IHBD MC〉 − 〈∆ILBD MC〉

2
)2]

=
1
2

[σ2 HB
∆ID MC

+ σ2 LB
∆ID MC

] + (
〈∆IHBD MC〉 − 〈∆ILBD MC〉

2
)2 (5.22)

where σ2 HB
∆ID MC

and σ2 LB
∆ID MC

are the variances of MC simulation results at high and

low drain bias, respectively. The remaining term represents the contribution to total

variations by merging two samples into one. In a similar way, the decomposition of

electrostatic variations into low and high drain bias parts may be obtained and may be

expressed as

σ2
∆ID DD

=
1

100

100∑
i=1

[∆IiD DD −
1
2

[〈∆IHBD DD〉+ 〈∆ILBD DD〉]]2

=
1
2

[
1
50

50∑
i=1

[∆Ii HBD DD −
1
2

[〈∆IHBD DD〉+ 〈∆ILBD DD〉]]2

=
1
2

[σ2 HB
∆ID DD

+ σ2 LB
∆ID DD

] + (
〈∆IHBD DD〉 − 〈∆ILBD DD〉

2
)2 (5.23)
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where σ2 HB
∆ID DD

and σ2 HB
∆ID MC

are the variances of DD simulation results at high and low

drain bias, respectively. Substituting (5.19), (5.22) and (5.23) into (5.14) will give the

decomposition of the transport variable as follows

σ2
ε︸︷︷︸

conditional transport variations

=
1
2

[σ2 HB
∆ID MC

− β2
1σ

2 HB
∆ID DD

]︸ ︷︷ ︸
high drain bias contributions to transport variations

+
1
2

[σ2 LB
∆ID MC

− β2
1σ

2 LB
∆ID DD

]︸ ︷︷ ︸
low drain bias contributions to transport variations

− 1
4

[γ2 + γβ1[〈∆I HBD DD〉 − 〈∆I LBD DD〉]]︸ ︷︷ ︸
common effects correction term of transport variations

+
1
4

[(〈∆IHBD MC〉 − 〈∆ILBD MC〉)2 − β2
1(〈∆IHBD DD〉 − 〈∆ILBD DD〉)2]︸ ︷︷ ︸

general correction term of transport variations

(5.24)

In order to compute the transport variations from equation (5.24), the regression param-

eters β1 and γ of equation (5.11) have to be determined. The regression parameters are

again estimated by the familiar least square method. Further, the conditional ratios of

electrostatic and transport variation are calculated in similar way as in equations (5.9)

and (5.10).

5.4.3 Results of Electrostatic versus Transport Variations

The parameters β0 and β1 of equation (5.5) were estimated using the ordinary least

square method. The parameters β1 and models were significant at significance level 0.001

for all well-scaled MOSFETs. Results of the regression models with error estimation are

presented in tables 5.6 and 5.7.

Scatter plots of the percentage drain current variation at both low and high drain bias are

shown for the 35 nm device in Figure 5.8 and 5.9 respectively. The plots show significant

correlation, with stronger correlation at high drain bias. The larger correlation implies

the dominance of electrostatic effects contributing to the drain current variation at

high drain. The near linear dependence between MC and DD at high drain hints at a
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Low Drian Bias: The Absolute Model
Channel Length

35 nm 25 nm 18 nm 13 nm 9 nm
β1 2.0 2.1 2.2 1.6 1.9

se β1 0.3 0.2 0.2 0.1 0.1
R2 0.53 0.57 0.61 0.69 0.88

F statistics 53.1 65.7 74.7 106.9 344.8

Table 5.6: Regression results at low drain bias obtained from the absolute model. se
is a standard error of the regression coefficient. R2 or coefficient of determination is a

measure of goodness-of-fit of linear regression.

High Drian Bias: The Absolute Model
Channel Length

35 nm 25 nm 18 nm 13 nm 9 nm
β1 1.3 1.3 1.4 1.4 1.5

se β1 0.1 0.1 0.1 0.1 0.1
R2 0.75 0.81 0.76 0.84 0.92

F statistics 142.6 209.8 152.8 244.0 545.3

Table 5.7: Regression results at high drain bias obtained from the absolute model. se
is a standard error of the regression coefficient. R2 or coefficient of determination is a

measure of goodness-of-fit of linear regression.

proper statistical model of the electrostatic and transport variables. The linear regression

lines following 5.5 are also shown in Figure 5.8 and 5.9. The average coefficient of

determination for all channel lengths is roughly 80% at high drain bias and 60% at low

drain bias respectively. The higher coefficient of determination at high drain bias is due

to the stronger correlation between MC and DD results. The regression lines in both

cases are presented along with 95% confidence intervals.
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Figure 5.8: MC v DD percentage drain-current variation for the 35nm device ensemble
at VD = 0.05 V. The linear regression and its 95% confidence intervals are shown.
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Figure 5.9: MC v DD percentage drain-current variation for the 35nm device ensemble
at VD = 1.0 V. The linear regression and its 95% confidence intervals are shown.

We estimate the 95% confidence interval of the β1 coefficient of 5.5 for all channel lengths

and for both low and high drain bias, the result of which is plotted in Figure 5.10. This

result is used to estimate the electrostatic contribution from DD in MC. The confidence

intervals are broader at low drain bias due to the greater influence of transport variation

in reducing the correlation between DD and MC.
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Figure 5.10: β1 parameter extracted from the absolute model 5.5 for each scaled
device and bias. 95% confidence intervals are shown.

Therefore the ratios of electrostatic and transport variations at low drain bias were de-

termined and are presented in table 5.8. Figure 5.11 shows the contribution of transport

variation to the total observed variation within MC at low drain bias. Again, results of

previous classical simulation are shown for comparison. At large channel lengths it is

seen that transport variations are comparable with electrostatic variations when quan-

tum corrections are included, while in comparable classical simulations it is seen that
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the electrostatic effects are responsible for a greater share of the variation. This is most

likely associated with increased screening of the discrete impurities by the inversion layer

electrons. Within classical simulations, the high interface field induces a very large car-

rier concentration which effectively screens local impurities. Within quantum corrected

simulation, the lower peak carrier concentration and its position away from the interface

allows for more penetration of above lying potential fluctuations and for less screening

within the inversion layer itself. In turn it is expected that more transport variation be

revealed in simulations in which the interaction potential is more pronounced.

Low Drian Bias: The Absolute Model
Channel Length

35 nm 25 nm 18 nm 13 nm 9 nm
Electrostatic variations[%] 52.5 57.8 60.9 69.0 87.8
Transport Variations [%] 47.5 42.2 39.1 31.0 12.2

Table 5.8: Ratios of electrostatic and transport variations at low drain bias obtained
from the absolute model.

There is also a clear trend towards reduced transport variation with reduced device di-

mensions when quantum corrections are considered, while classical simulations show a

general trend to increase. This is associated with the electrostatic reduction in carrier

density associated with comparatively larger screening length in QM simulations occu-

pying significantly larger areas of the active region of the devices. Thus electrostatic

effects become more important. However, in classical simulations the strongly screened

impurity potentials favour large angle scattering when carriers interact at short range.

In smaller devices this becomes more likely thus the increased importance of transport

variation.

Ratios of electrostatic and transport variations at high drain bias obtained from the

absolute model are presented in table 5.9. Figure 5.12 plots these values, again showing

results extracted from previous classical simulation. There can again be seen a general

trend in which the ratio of electrostatic variation increases with reduced device dimen-

sions and it can also be seen that electrostatic variation dominates over all devices. It

is clear that the contribution of transport variation at high drain bias is less than that

at low drain bias. It is also clear that reduced screening within the quantum corrected

simulation leads to significantly more transport variation than in the classical case.
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Figure 5.11: Electrostatic and transport variations at low drain bias estimated by
the absolute model for each channel length.

High Drian Bias: The Absolute Model
Channel Length

35 nm 25 nm 18 nm 13 nm 9 nm
Electrostatic variations [%] 74.8 81.4 76.1 83.6 91.9
Transport Variations [%] 25.2 18.6 23.9 16.4 8.1

Table 5.9: Ratios of electrostatic and transport variations at low drain bias obtained
from the absolute model.
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Figure 5.12: Electrostatic and transport variations at high drain bias estimated by
the absolute model for each channel length.
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Ratios of the electrostatic and transport variables at both low and high drain bias

obtained from the absolute model 5.5 are presented in Figure 5.13. A general trend

in which the ratio of electrostatic variation increases with reduced device dimensions is

clearly established. It is also clear that the relative contribution of transport variation

at high drain bias is less than that at low drain bias. The trend towards increased

electrostatic variability at smaller device dimensions at high drain bias is associated

with the increased ballisticity of these devices. High energy carriers, accelerated by the

large drain bias, strongly favour small angle scattering when interacting with impurities

and this does little to alter their momentum. Variation then becomes strongly effected

by carrier injection, limited by the potential profile at the source/channel edge, which

is purely an electrostatic effect.
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Figure 5.13: Percentage of total variation attributed to electrostatic effects as esti-
mated by the absolute model at low and high drain bias.

As the alternative model to the absolute model a nave approach can be used to esti-

mate the electrostatic and transport components. This nave approach assumes that DD

simulations account for the electrostatic variation and that this is identically recovered

within MC, so the percentage of the total variation observed in MC may be attributed in

part to electrostatic variation and in part to transport variation. Figure 5.14 shows the

contribution of transport variation to the total observed variation within MC at low and

high drain bias. Results of previous classical simulation [33] are shown for comparison.

The one major drawback of this approach is that it does not account for correlation

between the DD and MC results, which can affect on estimated ratio of electrostatic

and transport variation. The nave model overestimates significantly transport compo-

nents compared with absolute model due to the lack of correlation between DD and
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MC results. As mentioned before, the correlation coefficient changes the contribution of

electrostatic component to the overall variation in MC.

Figure 5.14: Percentage contribution of transport variation to the total variation in
MC at low and high drain bias.

The results of the conditional model shows that the mixed third and fourth terms in

equation (5.24) might be neglected. The conditional model can be approximated by the

absolute model results as follows. We substitute β1 into ((5.24) for the estimated values

of the absolute model. Thereafter the conditional variation may be expressed as

σ2
ε︸︷︷︸

conditional transport variations

=
1
2

[σ2 HB
∆ID MC

− β2 HB
1 σ2 HB

∆ID DD
]︸ ︷︷ ︸

high drain bias contributions to transport variations

+
1
2

[σ2 LB
∆ID MC

− β2 LB
1 σ2 LB

∆ID DD
]︸ ︷︷ ︸

low drain bias contributions to transport variations

(5.25)

Ratios values of this approximated model are presented in table 5.10 and illustrated in

figure 5.15 where they are again compared with the previous classical simulation. The

approximated conditional model clearly manifest the inclusion of quantum corrections

which lessen the contribution of transport variations with decreasing channel length.
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the Approximated Conditional Model
Channel Length

35 nm 25 nm 18 nm 13 nm 9 nm
Electrostatic variations [%] 62.2 67.9 68.2 77.6 89.7
Transport Variations [%] 37.8 32.1 31.8 22.4 10.3

Table 5.10: Ratios of electrostatic and transport variations at both high and low
drain bias obtained from the approximated conditional model.
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Figure 5.15: Electrostatic and transport variations at both low and high drain bias
estimated by the approximated conditional model for each channel length.

5.5 Conclusions

It is clearly demonstrated that DD simulation underestimates the magnitude of the real

current variation. The analysis has shown that transport variations play a significant

role in determining the total drain current variation at all bias conditions, although

as device dimensions are scaled it is clear that electrostatic effects have an increasing

contribution. Transport variations are significantly more important at low drain bias

owing to the inverse relationship between momentum transfer and incident carrier energy

for the impurity scattering process. Consequently, electrostatic effects, most noticeably

at the source p-n junction, significantly affect device current in this regime.

Two statistical models were constructed to accurately classify and assess the effects of the

random discrete dopants on drain current fluctuations into their relative electrostatic

and transport contributions. Their combined effects were estimated by absolute and
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conditional model assuming that DD simulation accounts for the entire electrostatic

variation and that this is identically recovered within MC. The percentage of the total

variation observed in MC may be attributed to in part electrostatic variation and in

part transport variation. This analysis was a significant improvement over the previous

estimation which did not account for the statistical dependence of the two sets of results.



Chapter 6

Hierarchical simulation of

statistical variability: from 3D

MC with ab initio ionised

impurity scattering to statistical

compact models

In the previous chapter, an efficient method to accurately capture quantum confinement

effects as well as ab initio ionized impurity scattering based on the density gradient

formalism was presented. This was then applied to study consistently the impact of

transport variability due to scattering from random discrete dopants on the on-current

variability in realistic nano CMOS transistors. Such simulations resulted in an increased

drain current variability when compared with drift diffusion simulation.

Following from that work in this chapter, an efficient three-stage hierarchical simulation

strategy is presented that propagates the increased on-current variability captured in

3D qunatum corrected ab initio MC into statistical 3D DD simulations that are in turn

used to obtain target ID − VG characteristics for the extraction of statistical compact

models. Such a method is critical for the accurate modeling-based evaluation of statis-

tical variability and its incorporation in statistical compact models, which is becoming

an essential component of the preliminary design kit (PDK) development.

117
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The first section describes the hierarchical simulation strategy that is further illustrated

in the second section using a statistical ensemble of 100 devices, the results of which

are presented with discussion. The benefits of this methodology are presented and

highlighted in the third section when applied to circuit simulation of an inverter, before

conclusions are drawn.

6.1 Hierarchic Simulation Methodology

The accurate modeling of statistical variability requires 3D simulation of a large ensemble

of microscopically different transistors [26], from which representative sets of current-

voltage characteristics are required in order to extract statistical compact models [45, 93].

The computational intensity of such a task favors the use DD simulations when studying

the impact of RDD [8, 9] which have been identified as the major source of variability

in bulk MOSFETs.

While DD simulations accurately capture the electrostatic impact of spatially resolved

sources of variability, and related threshold voltage and sub-threshold variation, they

underestimate variation associated with position dependent scattering from the corre-

sponding potential fluctuations [205]. Monte Carlo simulation that incorporates position

dependent scattering through real space trajectories of the particles within the resolved

fluctuating potential landscape has been shown in the chapter 4 to capture this ad-

ditional variation. However, MC simulations are so computationally expensive as to

be impractical for the simulation of a complete set of target device characteristics for

compact model extraction. In order to transfer the accurate information about current

variability using MC into industrial strength compact models, the use of intermediate

DD simulations are necessary in order to generate a full set of target ID−VG characteris-

tics for statistical compact model parameters extraction. To this end we have developed

a three-stage hierarchic simulation strategy, illustrated in figure 6.1 and discussed below.

6.1.1 Stage One: Initial Variability Estimation

In the first stage, quantum corrected DD simulations are performed at a high gate bias

and at both low and high drain biases for each device within the simulated statistical

ensemble. Further, a device-specific, mesh-based, quantum correction term defined as
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Figure 6.1: Flow chart depicting the three-stage hierarchic simulation strategy.
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the difference between the classical and effective quantum potential solutions, is obtained

from these initial DD results for use in self-consistent quantum corrected MC simulations.

MC simulations are then performed over the same ensemble and under the same bias

conditions as DD simulation, utilizing the DD results as the initial solution for MC. In

all cases a uniform device is similarly simulated as a reference from which to measure the

percentage drain current variation for each transistor within each simulated ensemble.

The percentage drain current variation may be expressed by equation (4.8). Results from

MC simulation include additional transport variation and yield a greater percentage

variation in drain current at both low and high drain bias.

6.1.2 Stage Two: Calibration of DD Variability

In chapter 4, it was shown that it may be possible to recover the total variations seen

in MC simulations by using properly calibrated DD simulations. The strong linear

dependence between DD and MC percentage drain current variations indicates that a

proper adjustment of the mobility values may lead to the desired magnitude of percent-

age drain current variation from DD simulations. This is exploited in the second stage,

during which DD simulations are calibrated device by device in order to obtain the same

percentage variation in current as observed in MC for that device. This calibration is

achieved through a self-consistent two-step iterative scheme in which low field mobility

parameters are modified in the first step to match variation at low drain bias, followed

by modification of saturation velocity to match variation at high drain bias.

Calibration of low-field mobility is achieved through adjustment of the parameter α

which is used to scale the concentration dependent mobility (see equation (3.13)), while

calibration of high-field mobility is similarly achieved through adjustment of the pa-

rameter β which is used to scale the saturation velocity in the lateral field dependent

mobility model (see equation (3.14)) [192]. Application of the adjusted mobility models

are here restricted to those regions in the device that are net p-type. This is because

the adjusted mobility models are intended to reflect the variation in transport arising

from variation in acceptor doping alone.
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Given initial values of α and β, quantum corrected atomistic DD simulation is performed

at low and high drain bias in order to extract the percentage current variation from

uniform simulation. New values of α and β may then be derived as follows

αk =
∆I∗LB MC

∆ILB DD
k−1

∆I∗HB MC

∆IHB DD
k−1

αk−1 (6.1)

βk =
∆I∗LB MC

∆ILB DD
k−1

∆I∗HB MC

∆IHB DD
k−1

βk−1 (6.2)

where ∆I∗LB MC and ∆I∗HB MC represent the desired percentage drain current variations

at low and high drian bias obtained from MC simulation and ∆ILB DD
k−1 and ∆ILB DD

k−1

are the percentage drain current variations at low and high drian bias obtained from

k − 1 loop of this two-step process. The new values are used as above and the process

is iterated until a single set of mobility model parameters provides the defined accuracy

at both low and high drain bias.

6.1.3 Stage Three: ’enhanced’ compact model extraction

Upon calibration, a set of unique parameters α and β exist for each device within the

original ensemble and allow matching of the percentage drain current variation for all

devices at both low and high drain bias for a single gate bias. Quantum corrected atom-

istic DD simulation of the device ensemble may then be performed over a range of gate

bias to obtain a complete set of ’enhanced’ ID − VG characteristics necessary for sta-

tistical compact model parameter extraction. Here the enhanced characteristics include

additional variation due to acceptor impurity scattering obtained from MC simulations.

Compact model parameter extraction using the enhanced characteristics then follows a

two-step procedure described in detail elsewhere [45]. In the first step, the complete set

of BSIM4v4 [206] model parameters using Synopsis tool Aurora [207] are extracted from

the simulated characteristics of transistors with continuous doping profiles and different

channel lengths and widths. These account for the long channel behaviour, threshold

voltage in the short channel regime and the behaviour of the drain current at high field.

The second step is carried out in two sub-extraction loops and is based on the enhanced

ID − VG characteristics of each device from the simulated statistical ensemble. In this
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step, seven key BSIM4v4 model parameters are chosen and extracted that from a device

operation point of view account for the effect of the unique distribution of dopants.

In the first sub-extraction loop, six of these parameters are extracted at low drain bias

to properly take into account threshold and subthreshold slope variations and mobility

variations. Firstly, V th0 is the long channel device threshold voltage at zero substrate

bias and is selected to take into account the threshold voltage variation induced by

RDD. As the second parameter is selected V off which is an empirical parameter that

describes the difference between the model VT values used in subtreshold and strong

inversion regime which has significant impact on subthreshold off-current variations. As

the third parameter N factor is extracted that accounts for the depletion capacitance

fluctuations due to unique distribution of random dopants and also maps subthreshold

slope variance. Rdsw is chosen as the fourth parameter and represents the basic S/D

resistance. This parameter is selected to properly deal with the variation of RDD in the

source/drain regions. Parameter u0 is extracted as the fifth parameter that represents

low field mobility which is selected to account for current factor variation. The intro-

duced extraction mechanism of u0 parameter takes into account the channel length, the

width and the oxide definition shape. As the sixth parameter, we extract M inv which

improves the accuracy of modelling transconductances in the moderate inversion regime.

The second extraction loop was performed for all seven parameters at high drain bias

to account for short channel effects related to DIBL and body biasing. The threshold

voltage is more sensitive as the channel length shrinks since the body bias less controls the

depletion region. The additional effect on the threshold voltage is DIBL that increases

with the drain bias. We introduce the extraction of Dsub as the seventh parameter

that calibrates the coefficient exponent of DIBL effect in the subthreshold region. After

the extraction process, we generated the ID − VG characteristics based on the results

from direct statistical compact modeling of both original and enhanced physical set of

characteristics using Spice simulator.

6.1.4 Application to 35nm device

To demonstrate the hierarchic simulation methodology, we study the RDD induced drain

current variability of a realistic 35-nm physical gate length high performance bulk nMOS-

FET with n+ polysilicon gate [191] described in detail in [26]. The continuous doping
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profile for the simulated device was obtained from carefully calibrated and comprehen-

sive process simulation using Taurus Process [192]. Calibration of the 3D atomistic DD

simulator then gave good agreement with both experimentally reported ID − VG char-

acteristics and those obtained from Taurus device simulation. The calibration is shown

in figure 6.2 in which the doping profile of the simulated device is also illustrated.

Figure 6.2: ID − VG characteristics of the 35-nm MOSFET are shown. The doping
profile of the device is shown inset.

ID−VG characteristics obtained from self consistent MC simulation of the same uniform

device are shown in figure 6.3 and show good agreement with 3D DD simulation. Within

self consistent MC the coupled non-linear Poisson and density gradient solution is applied

in the n+ polysicon gate in order to accurately account for polysilicon depletion in

response to variation in carrier density in the substrate. Within the substrate, the

solution to the linear Poisson equation is applied together with the quantum correction

as described in the previous chapter.

The above described three-stage hierarchy is applied to study on-current variation due

to substrate acceptor dopant distribution variation in an ensemble of 100 devices based
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Figure 6.3: ID − VG characteristics of the uniform 35-nm MOSFET obtained from
MC simulation are compared to ID−VG obtained from DD simulation at both low and

high drain bias.

upon the uniform device. Discrete dopant variation within the channel was studied as it

has been shown to have the greatest impact on variability at this device dimension. The

large computational resources required for self-consistent statistical 3D MC simulations

were provided based on the grid-computing methodology developed at the University of

Glasgow in the framework of the NanoCMOS project [208]. Application and discussion

of the three stages are given separately below.

6.1.4.1 First Stage: Results of initial distributions

DD simulation was initially performed at a high gate bias of 1.0 V and at both low and

high drain biases of 0.05 V and 1.0 V respectively, followed by equivalent self-consistent

MC simulation. The potential distributions of the devices with the highest and lowest

drain currents obtained from MC simulation of the statistical sample at VG = 1.0V and
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VD = 1.0V are presented in figure 6.4. The localised Coulomb potential associated with

each acceptor is clearly resolved.

Figure 6.4: Electrostatic potential distribution within the channel and substrate for
the 35-nm atomistic nMOSFETs with the highest (left) and lowest (right) currents.

The corresponding impact of the discrete impurities on the inversion layer electron con-

centration and current density is shown in figure 6.5. It is clear that in the lowest

current case a crowd of dopants near the source region considerably reduces the carrier

and current densities at the source, where the product of the local carrier concentration

and their injection velocity determines the magnitude of the current.

Figure 6.5: Electron concentration (top) and current density (bottom) within the
inversion layer of devices with the highest (left) and lowest (right) current. Clearly

seen are the effects of individual acceptors.

The correlation between the drain current obtained from the MC and the DD simula-

tions at both low and high drain bias is illustrated in figure 6.6. Significantly greater

variation resulting from MC simulation is observed in both cases. At low drain bias,
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the incorporation of transport variation in MC simulation results in an increase in the

standard deviation of the on-current of roughly 100% compared with the electrostatic

variation alone captured in the DD simulations. At high drain bias, the transport re-

lated increase in the variability is approximately 35%. A positive correlation between the

MC and DD data is also observed in both cases, with the data points almost contained

within a compact ellipse and well represented by a simple linear regression curve. The

correlation highlights the underlying shared electrostatic variation, while the spread and

the difference in the standard deviation at both low and high drain bias highlights the

differing contributions from ionized impurity scattering. At low drain bias, within the

Ohmic regime, scattering from acceptor impurities plays a dominant role and leads to

the greater observed increase in current variability. While at high drain bias, in the pres-

ence of high lateral fields, ballistic transport becomes more apparent and the dominance

of impurity scattering is reduced.
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Figure 6.6: Percentage drain-current variation from quantum corrected MC simula-
tion against quantum corrected DD simulation. Strong correlation at both low drain

bias (left) and at high drain bias (right) is seen.

6.1.4.2 Second Stage: Calibration of DD mobility

Device by device calibration of the mobility parameters within DD simulation followed

using the two-step iterative procedure outlined previously. Excellent agreement with

the on-current variability obtained from MC simulation was achieved, thus allowing

the simulation of enhanced ID − VG characteristics for each device. Current-voltage
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characteristics obtained from the DD simulation at both low and high drain bias, before

and after calibration to MC simulation, are shown in figures 6.7 and 6.8 respectively.

Despite the increased on current variability, the mean drain current is preserved in the

proposed calibration procedure, as shown in figure 6.9.
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Figure 6.7: Original ID − VG curves obtained from quantum corrected DD at both
low drain bias (left) and high drain bias (right).
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Figure 6.8: Enhanced ID − VG curves at both low drain bias (left) and high drain
bias (right) obtained from quantum corrected DD after calibration to MC simulation

at high gate.

Figure 6.10 shows the on-current distribution for both the original and enhanced DD

characteristics at high gate bias and both low and high drain bias. At both low and

high drain bias the enhanced on-current distribution is flat topped and skewed to lower

currents, while the original distributions has the sharper centralised peak. The enhanced

on-current distributions at both low and high drain bias have the greater standard
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Figure 6.9: The mean of original and Enhanced on-current at both low drain bias
(left) and high drain bias (right) obtained from original DD simulation and quantum

corrected DD after calibration to MC simulation at high gate.

deviation in the on-current distributions due to transferred transport variability into

the enhanced mobility models.
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Figure 6.10: Distribution of on-current at high gate voltage at both low drain bias
(left) and high drain bias (right) obtained from both original quantum corrected DD

and after calibration to MC simulation at high gate.

Figures 6.11 and 6.12 compare gate voltage dependence of the absolute and relative

standard deviations obtained from DD simulations before and after the calibration in

respect of the MC simulations. The increase in current variability due to transport

variability, inferred from the difference between the original and enhanced standard

deviations, is strongest at drive current conditions but reduces at low gate bias. The
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reduction at low drain bias is from more than 200% at VG = 1V to approximately 20%

at VG = 0.4V . The reduction is less dramatic at high drain bias.
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Figure 6.11: Standard deviation of drain-current variation as a function of gate volt-
age at both low and high drain and for both original and enhanced ID − VG curves.

Agreement is preserved towards the subthreshold regime.
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Figure 6.12: Coefficient of variation of drain current as a function of gate voltage
showing reduced variation at higher gate biases. Also seen is increased variation within

enhanced DD simulation..

The sub threshold region is relatively unaltered by the mobility calibration due to the

dominance of the electrostatics in device operation in this regime. This validates the use

of DD for threshold voltage variability analysis. The reduction in the relative importance

of transport variability at high drain bias compared to low drain bias is associated with

the reduced impact of ionised impurity scattering at high energies and an increase in

ballistic propagation of carriers.
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Table 6.1 compares the average values VT and the standard deviations at high and low

drain bias obtained from the DD simulation before and after the mobility calibration

to the MC results. The threshold voltage distribution for the original and enhanced

characteristics is shown in figure 6.13, illustrating that mobility calibration does not

significantly affect VT variability and again validating the use of DD to estimate VT

variation. This indicates that the enhanced model maintains the shape of the threshold

voltage distribution at both low and high drain bias. Further, it highlights the reliability

of the proposed hierarchic methodology in the subthreshold region.

Threshold Voltage
Low Drain Bias High Drain Bias

original enhanced original enhanced
µVT [mV ] 272 274 160 161
σVT [mV ] 37.4 41.3 40.1 42.5

Table 6.1: Mean and standard deviation of the threshold voltage at low and high
drain bias for both original and enhanced DD.
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Figure 6.13: Original and enhanced VT distribution at both low drain bias (left) and
high drain bias (right) obtained from both original quantum corrected DD and after

calibration to MC simulation at high gate.

The distributions of the key electrical parameters including the off current (Ioff), sub-

threshold slope and DIBL obtained from original and enhanced model at both low and

high drain bias are shown in figures 6.14, 6.15 and 6.16 respectively. These key figures

of merit demonstrate that the distributions of the enhanced model coincide well with

the original distributions. This indicates that the proposed hierarchic methodology does
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not significantly affect the key electrical parameters, supporting its use in statistical

compact modelling.
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Figure 6.14: Original and enhanced Ioff distribution at both low drain bias (left) and
high drain bias (right) obtained from both original quantum corrected DD and after

calibration to MC simulation at high gate.
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Figure 6.15: Original and enhanced subthreshold slope distribution at both low drain
bias (left) and high drain bias (right) obtained from both original quantum corrected

DD and after calibration to MC simulation at high gate.

6.1.4.3 Third Stage: compact model extraction

Following the methodology described in the previous section, statistical compact models

were extracted from the DD simulated statistical set of ID − VG characteristics both
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Figure 6.16: Original and enhanced DIBL distribution obtained from both original
quantum corrected DD and after calibration to MC simulation at high gate.

before and after the calibration to the MC simulation results. For each compact model,

the total relative RMS error of the extraction process was calculated. This was defined as

the sum of the squared relative differences between drain current data points obtained by

statistical 3D DD simulation and those obtained from Spice extracted compact models

across the range of gate biases at both low and high drain bias.

Figure 6.17 shows the distribution of the RMS error from the extraction process for both

the original and the enhanced ID−VG characteristics. The distribution of the RMS error

from compact model extraction for both cases shows similar, minimal error. The average

statistical compact model error and its standard deviation are larger when the transport

variability is taken into account compared to the reference DD simulations. This is

expected when identical compact model parameter sets are used to capture different

magnitudes of statistical variability. Still, the relatively tight error distribution of the

final statistical compact model set is sufficient not only for digital but also for analogue

applications.

The proposed statistical compact modelling approach accurately captures the correla-

tion among the key electrical parameters and BSIM4 parameters while commonly used

approaches to statistical compact model usually neglect the correlations among them

[209–211]. The left plot in figure 6.18 clearly shows the strong positive correlation be-

tween the threshold voltage obtained from physical ID−VG charcteristics (VT ) with the

extracted compact model parameter (Vth0) in both the original and enhanced models.
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Figure 6.17: Distribution of RMS error associated with compact model extraction
based upon the original ID−VG curves (left) and the enhanced ID−VG curves (right).

Similarly, the right plot in fugue 6.18 shows a strong negative correlation between the

key electrical parameter DIBL and the compact model parameter Dsub in both the

original and enhanced models. Both strong correlations indicates that the proposed

compact model extraction strategy preserves the physical meaning of parameters com-

pared with the results of the physical simulations. The maintenance of the correlation

between key electrical parameters and BSIM4 parameters may be employed as a golden

standard to generate an accurate statistical compact model based on the physical device

characteristics [209, 210].

The correlation matrix (6.3) shows significant correlations between the BSIM4 param-

eters. The lower-left of the matrix presents the correlation coefficient associated with

BSIM4 parameters extracted using the original DD device characteristics, while the

upper-right presents similar results based upon extraction from the ’enhanced’ charac-

teristics. The strong correlation between certain extracted parameters limits the use

of independent statistically generated compact model parameters. Such an independent

extraction strategy is based upon the assumption that the distribution of compact model

parameters is well approximated by uncorrelated normal distributions [212].
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Figure 6.18: Correlation between key electrical parameters VT (left) and DIBL
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and ’enhanced’ device characteristics. Correlation coefficient between VT and Vth0 are
ρorginal = 0.9229 and ρenhanced = 0.9332. Correlation coefficients between DIBL and

Dsub are ρorginal = −0.9534 and ρenhanced = −0.9299.



Vth0 0.1634 −0.6948 0.1572 0.2605 −0.3620 0.1576

0.1398 Rdsw 0.2329 0.8313 0.4904 0.6587 −0.2732

−0.7429 0.0167 Nfactor 0.2116 0.0835 0.5231 −0.2232

0.3523 0.7941 −0.1702 Voff 0.3227 0.5184 −0.2980

0.1343 −0.0791 0.1675 −0.1423 Minv 0.3981 −0.2610

0.0146 0.9014 0.1871 0.6628 0.1480 U0 −0.3777

0.1500 −0.5727 −0.3807 −0.3241 −0.5092 −0.7851 Dsub


(6.3)

However, the distributions of extracted BSIM4 parameters do not follow this assumption,

as shown at the figure 6.19 where the distributions of 7 BSIM4 parameters extracted

from both original and enhanced characteristics are seen to deviate from normality. It

is evident that the shape of the left tail changes in the case of V off , Rdsw, Nfactor,

Minv and U0 BSIM4 parameters, indicating that enhanced parameters are more skewed

to the left side of the mean. The enhanced model has an impact on changes in kurtosis

of Rdsw, Nfactor, and Minv distributions. Table 6.2 shows key statistical values for

both original and enhanced BSIM4 parameters. These results indicate that the enhanced

model significantly change the shapes of the distributions of BSIM4 parameters. This

manifests the significance of the proposed hierarchic extraction methodology in order to
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accurately propagate transport variability effects into statistical compact models since

it significantly affects the extracted parameters which transfers, in turn, those effects

into circuit simulations.

Vth0 [V ] Rdsw [Ω/µm] Nfactor
original enhanced original enhanced original enhanced

µ 0.1018 0.0980 129.8467 124.5187 1.8519 1.7617
σ 0.0327 0.0336 13.0756 18.0452 0.2598 0.2422
γ1 -0.1750 -0.2119 0.1348 -0.6048 1.4304 1.4058
γ2 -0.1286 -0.2061 1.1695 2.3448 2.3799 3.2633

Voff [V ] Minv U0
original enhanced original enhanced original enhanced

µ -0.0957 -0.0978 2.2172 1.8804 114.7911 97.8128
σ 0.0139 0.0128 0.4180 0.3327 19.3366 21.2811
γ1 0.2371 0.4119 0.5402 -0.6905 0.8527 0.3442
γ2 -0.2068 0.3618 0.4062 0.9181 1.2219 1.3040

Dsub
original enhanced

µ 0.0154 0.0153
σ 0.0013 0.0014
γ1 0.3352 0.2797
γ2 0.2739 0.3075

Table 6.2: Mean (µ), standard deviation (σ), skew (γ1) and kurtosis (γ2)of BSIM4
parameters for both original and enhanced statistical compact models.

The above comprehensive analysis of the compact model results indicates that BSIM4

parameters are nonnormally distributed which in turn has a practical impact on circuit

simulations. The violated normality assumption limits using the principal component

analysis (PCA) approach [210] as a tool for direct generation of BSIM4 parameters

used in large scale statistical circuit simulations. PCA provides the reconstruction of

BSIM4 parameters within twofold limits. Firstly, the PCA approach limits the shape

of distribution of the generated set of parameters which are constrained only to nor-

mally distributed shapes with preserving the first and second moment of distributions of

original samples. Secondly, PCA does not properly account for the tails of parameter’s

distributions which can be accurately capture by controlling higher moments of distri-

butions [213]. This necessitates the deployment of the correct statistical tools in order

to assess the accuracy in the tails of parameter’s distribution which might be captured

by the preserving the higher moments. This is not the primary purpose of this work,

though a detailed discussion of a statistically accurate reconstruction methodology of

statistical compact model parameters is presented in [213].
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Figure 6.19: Distribution of BSIM parameters associated with compact model ex-
traction based upon the original ID − VG curves (black) and the enhanced ID − VG

curves (blue).
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6.1.5 Simulation Strategy of the Variability in NANOCMOS Inverter

In order to determine the influence of the magnitude of the drain current variation

on nano CMOS circuit performance, a 45nm technology generation inverter, shown in

figure 6.20, is simulated. The inverter circuit simulations can be generally used as an

indicator to estimate digital chip performance [214]. The accurate direct statistical

compact modelling approach, discussed in the previous section, is used to investigate

the effects of input waveform on variation of delay and power dissipation of an inverter

simulation in detail under various input signal and load conditions. The input signal

slew rate also affects the current trajectories [215] and this is affected by the impact of

on-current variations on device characteristics which is strongly bias dependent as has

been shown in the previous section.

Figure 6.20: Schematic inverter circuit.

A minimum size nMOSFET with width ratio of 1 and a pMOSFET with width ratio of

2 are employed in the simulation study to emphasise the statistical variability induced

by RDD. The larger width of the pMOSFET is introduced to balance the transfer char-

acteristics of the inverter. The supply voltage is 1V. In order to demonstrate the effect

of slew rate on inverter simulations, an ideal 2GHz symmetric clock pulse with various

rise/fall times is used. There are two simulation experiments. The first experiment

considers the inverter simulations with various slew rates (2, 10, 20 and 50 ps) and with
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the 1 unit load of 0.105fF . The effect of various load capacitances (1, 2, 4 and 6 units)

on the variation of delay and power dissipation in the inverter simulations at given slew

rate 20 ps is investigated in the second simulation experiment.

The information obtained from the compact model extraction of statistical nMOSFET,

discussed in the previous section, has been implemented in the HSPICE inverter circuit

simulations. The pMOSFET device is defined using the compact model parameters

extracted from a uniform pMOSFET device. HSPICE simulations were carried out

for a statistical sample of 100 random inverter circuits. Comparison was then made

between the simulation of inverters obtained from the original and enhanced compact

model cards.

6.1.6 Results and Discussion

In the first inverter study, the effect of different input rise time conditions with load of

1 unit on the variation of the fall time propagation delay tdHL was investigated. The

mean values of tdHL as a function of the rise time are plotted in 6.21 for both original

and enhanced compact model cards. As expected, the mean values increase almost

linearly with the increase of the input rise time. Figure 6.21 shows that the higher

slew rate indicates longer delay since the transistor spends less time in strong inversion

region during the switching. The mean delays obtained from both original and enhance

compact model cards are almost identical. The same is clearly seen for mean values of

dissipated energy.

The normalized standard deviation σ/µ of tdHL under different input rise time slopes

with load of 1 unit are shown in figure 6.22. The values of σ/µ increases with increasing

input rise time, with the variation at 50 ps more than twice that at 2 ps. The difference

between the variation from original and enhanced models is seen to slightly fan out with

increasing input rise time.

The normalized standard deviation σ/µ of tdHL and E versus different loads under a 20

ps input rise time slope is illustrated in figure 6.23. The normalized standard deviation

decreases with increasing load. Loads of 4 and 6 units are almost identical, inidcating

that σ/µ is almost saturated for higher loads. This indicates that increasing load ca-

pacitance will improve the variability behavior since it will push the switch trajectory
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Figure 6.21: Statistical analysis of mean values of tdHL (left) and dissipated energy
E (right) versus different input rise times.Mean values of both original and enhanced

compact model cards are compared.
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input rise times.Mean values of both original and enhanced compact model cards are

compared.
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up to the high gate bias regime. Using a load of 1 unit as an example, the normalized

standard deviation of tdHL of the enhanced model is reduced from 16% to roughly 13%

for the original model. The spread between σ/µ of tdHL of the enhanced and original

models is approximately 30% for all load capacitances. This inidicates that the enhanced

model shows 30% higher variability than original. This proves that statical variability

of on-current plays crucial role in changes of device switch trajectory.
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Figure 6.23: Statistical analysis of Normalized values of σ/µ of tdHL various load
capacitances for 20 ps input rise time. Normalized values of σ/µ of both original and

enhanced compact model cards are compared.

Generally, the power dissipation in digital circuits can be divided into static, dynamic

and short circuit [216] dissipation. Static dissipation is calculated in off condition in

which the subthreshold and gate leakage current flow through the supply. Dynamic

dissipation depends on the size of the capacitive component of the load while the short

circuit dissipation is caused by existence of a DC path for the current flowing from

supply to ground during the switching. Since the input rise time determines the amount

of time in which the inverter stays at short circuit state, it significantly affects the on

power dissipation variation. Variation in the energy dissipation in our case is mostly

introduced by short-circuit and dynamic dissipation since subthreshold and gate leakage

dissipation is negligible.

Figure 6.24 shows the mean values of total energy dissipation during a full input cycle

under different input rise time slopes with a load of 1 at both original and enhanced

compact model cards. The average energy dissipation is practically the same for both

cases and increase with increasing input rise time.
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Figure 6.24: Statistical analysis of mean values of dissipated energy E versus different
input rise times.Mean values of both original and enhanced compact model cards are

compared.

The normalized standard deviation σ/µ of the energy dissipation from both the original

and the enhanced model versus different input rise time slopes with load of 1 is illustrated

in figure 6.25. The σ/µ increases with increasing input rise time for both the original and

enhanced models. The difference between values of σ/µ for both original and enhanced

models increases with increasing input rise time.
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Figure 6.25: Statistical analysis of Normalized values of σ/µ of dissipated energy E
versus different input rise times.Mean values of both original and enhanced compact

model cards are compared.

The normalized standard deviation σ/µ of the energy dissipation versus different loads

under 20 ps input rise time slope are illustrated in figure 6.26. As expected, the maximum
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σ/µ of energy dissipation in both cases occurred at the lowest load of 1 unit which

represents the worst-case energy variation in reality. Higher variations can be clearly

seen in lower loads, while in higher loads variations becomes almost load independent.

0.105 0.210 0.420 0.630
Load Capacitance [fF]

0.01

0.02

0.04

0.06

0.08

σ
E

n
er

g
y
 /

 µ
E

n
er

g
y

original

enhanced

Input rise time 20 ps

Figure 6.26: Statistical analysis of Normalized values of σ/µ of E various load ca-
pacitances for 20 ps input rise time. Normalized values of σ/µ of both original and

enhanced compact model cards are compared.

6.2 Conclusions

Significantly larger RDD induced drain current variability was observed in the simu-

lation of a 35-nm bulk nMOSFET using quantum corrected MC when compared with

equivalent DD simulation. The increased transport related variability was successfully

transferred to DD simulations by a self-consistent calibration of the mobility models at

low and high drain bias. This enabled the efficient simulation of enhanced target de-

vice characteristics for the statistical ensemble from which accurate statistical compact

models were extracted.

This provides an accurate compact models extraction methodology transferring results

from accurate physical variability simulation into statistical compact models suitable for

statistical circuit simulation. This hierarchic strategy can be used for reliable statistical

standard cell characterisation that is still a research hotspot.
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Conlucsion

An efficient hierarchic simulation methodology that accurately models MOSFETs, sub-

ject to intrinsic parameter variations, over a complete range of bias conditions and

enables the transfer of statistical parameter distributions to compact models and subse-

quent statistical circuit analysis has been developed and demonstrated.

The proposed methodology combines for the first time the accuracy of Monte Carlo

(MC) simulation at high gate bias with the efficiency of Drift Diffusion (DD) simulation

at low gate bias. It has been shown that quantum corrected ’atomistic’ MC simulations

with the inclusion of ab initio scattering from discrete random dopants, capture signifi-

cant additional on-current variation compared with DD. This is due to the inclusion of

transport variation from position dependent scattering not captured in DD simulation,

which resolves well only the electrostatic operation of devices and accurately models the

sub-threshold regime. Self consistent recalibration of DD mobility models on an indi-

vidual device basis to match the MC results allows this increased on-current variations

to be incorporated in DD. It was shown that such recalibration have little impact on

the subthreshold distribution, highlighting the success of our approach to incorporate

transport variation effects in DD. Complete sets of ’enhanced’ DD ID − VG character-

istics were then simulated from which compact model extraction was performed. The

incorporation of additional, physically based, on-current variation in industry standard

compact models and subsequent statistical circuit analysis was the major motivation

and success of this work.

143



Chapter 7. CONCLUSION 144

This work focused on random discrete dopant (RDD) induced drain current variation

as this is currently the major source of intrinsic device variability in conventional MOS-

FETs. RDD induced transport variation may be introduced in ab initio MC directly via

the carrier-impurity interaction resolved through the real space trajectories of the MC

carriers in the Coulomb potential landscape of the individual impurities. This has been

described in the past but was reliant upon an analytical short range correction to the

mesh resolved force and had not been applied to quantum corrected MC simulation us-

ing the density gradient algorithm. Here, the use of the density gradient (DG) effective

quantum potential to include both quantum confinement effects and the carrier-impurity

interaction in a consistent and efficient manner was presented. The introduction of the

carrier-impurity interaction mediated via the mesh resolved DG quantum potential was

introduced in chapter 4 and validated by comparison with Rutherford scattering. The

simulated scattering angle dependence upon impact parameter showed good agreement

with the analytical Rutherford result and with simulated scattering using the previously

used short-range correction model. The comparison in both cases strongly suggested

the suitability of the DG resolved interaction in self-consistent ab initio MC simula-

tion. Further validation was provided through simulation of the doping concentration

dependence of bulk mobility.

Having successfully demonstrated the accuracy of utilising the DG effective quantum

potential for ab initio ionised impurity scattering, the effects of random discrete dopant

fluctuation on on-current variation in a series of well scaled contemporary n-MOSFETs

were comprehensively studied following a series of statistical simulations at both low and

high drain bias. In all cases, increased on-current variation associated with additional

transport variation in MC was observed compared with DD. Additional variation in

comparison to classical MC, due to reduced screening when quantum effects are taken

into account, was highlighted. The relative importance of transport and electrostatic

variation at each device dimension was inferred, highlighting the importance of transport

variation at low drain bias and the electrostatic influence in the near-ballistic regime at

high drain bias.

A comprehensive statistical analysis of the on-current distributions obtained from MC

and DD was described in Chapter 5 and applied separately to the above results obtained

at low and high drain bias for each of the device dimensions. In addition to basic statis-

tical measures, such as the mean, standard deviation, skew and kurtosis, the statistical
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confidence intervals were introduced to assess the simulation accuracy. Results were

scrutinised using one graphical and two analytical normality tests. The statistical con-

fidence intervals indicated moderate departure from normality. The normal behaviour

of both DD and MC simulation results was confirmed for each of the scaled device. It

should be noted that the Jarque-Bera test has two significant drawbacks that may affect

results. Firstly, the asymptotic distribution of Jarque-Bera test statistics holds only for

very large samples, clearly not the case for the sample sizes of 50 used here. Secondly,

the test uses the empirical skewness and kurtosis which are subjected to sampling errors.

With respect to this, we have applied Shapiro-Wilk test which belongs among the most

reliable test for normality of small and medium sample size. Both tests provided only

one of piece of evidence of normality test. Additional simulation results would be needed

for more accurate analysis.

Two statistical models were constructed based on a regression analysis in order to ac-

curately classify and assess the effects of the random discrete dopants on drain current

fluctuations into their relative electrostatic and transport contributions. It was assumed

that DD simulation accounts for the entire electrostatic variation and that this is identi-

cally recovered within MC. The analysis also took into account the statistical dependence

of DD and MC results. The proposed models were specifically designed to distinguish

the electrostatic and transport variability contributions from simulation results. Both

models highlighted the ratio of transport variability to the overall on-current variabil-

ity. They both showed that the ratio of transport variability decreases with decreasing

channel length. Both models indicated that the presence of quantum corrections had

a significant impact on the transport variability in longer channel devices, while the

electrostatic effects were dominant at smaller channel lengths.

The novel incorporation of the additional transport variation observed in MC into ef-

ficient DD simulation was discussed in Chaper 6. This was achieved through a self-

consistent calibration of the DD mobility models, on an individual device basis, at low

and high drain bias but at a single, high, gate bias. This then allowed the efficient

simulation of accurate ’enhanced’ device characteristic followed by the extraction of

statistical compact models. This forms the three-stage hierarchic simulation strategy

adopted for the remainder of the work presented.

Again, RDD induced drain current variation within a realistic 35nm nMOSFET was used
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to illustrate the developed technique. Simulations were performed for an ensemble of 100

randomly generated devices at a high gate bias of 1.0 V and low and high drain biases of

0.05 V and 1.0 V respectively. Following DD mobility calibration, the enhanced ID−VG

curves resulted in increased drain current variability compared with the original DD

results, as expected. The threshold voltage distribution for the original and enhanced

characteristics however remained unchanged, indicating that mobility calibration did not

significantly affect VT variability and validating the use of DD to estimate VT variation.

The BSIM4 statistical compact modelling approach was presented and used to extract

compact model parameters obtained from the enhanced ID−VG characteristics. A strong

correlation between the key electrical parameters and compact model parameters in both

the original and enhanced models indicated that the proposed compact model extraction

strategy preserves the physical meaning of those parameters. It was found, however,

that the enhanced model significantly altered the shapes of the distributions of BSIM4

parameters due to the inclusion of transport variability. This highlights the fundamental

importance of this hierarchic extraction methodology. The propagation of transport

variability into statistical compact models significantly affects the extracted parameters

which transfers, in turn, those effects into circuit simulations. This methodology provides

an accurate framework allowing to transfer transport variability from the level of physical

simulations via compact model extraction to transistor-level circuit simulation.

7.1 Future Work

Extension of this work to include other sources of ab initio scattering and the continued

investigation of parameter fluctuation would be useful in order to further establish the

relative importance of transport and electrostatic variation in each case. Within this

work ab initio ionised impurity scattering has been successfully implemented using the

density gradient effective quantum potential. A natural extension would be the inclusion

of ab initio surface roughness scattering in order to account for transport variations as-

sociated with the random pattern of the interface in individual transistors. Additionally,

the employment of high-κ metal gate might be useful extension of this work, since its

variations in the local dielectric value introduces the surface potential variation which

can make the certain impact on carrier’s transport through channel.



Appendix A

Statistical Analysis of Drain

Current Variability : 25 nm

MOSFET

A.1 Descriptive Statistical Results at Low Drain Bias

The basic measures of descriptive statistics for the drain current variation obtained from

DD and MC simulations at low drain bias and for the scaled 25nm device are presented

in table A.2. In all cases the DD simulations result in larger currents when compared

with the equivalent MC results, the mean DD current being approximately twice that of

MC. However, a higher standard deviation from MC simulation is evident and indicates

that data are more spread out than DD results.

25 nm Device : Simulations at Low Drain Bias
DD MC

µ [Aµm−1] (1.60± 0.01)× 10−4 (8.2± 0.2)× 10−5

σ [Aµm−1] (1.0± 0.1)× 10−5 (1.6± 0.2)× 10−5

γ1 −0.16 0.00
γ2 −0.53 0.41

Table A.1: The values of the mean, standard deviation, skewness and kurtosis of
drain currents results obtained from both DD and MC simulations at low drain bias of

25 nm device.
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31 and 37 of the 50 devices from DD and MC simulations respectively have drain current

values within the range of σ from the mean. Almost all devices from both DD and MC

simulations lie within the range of 2σ, with only two from DD and one from MC falling

far outside that range. Thus, both DD and MC results at low drain bias show fair

variability across the sample.

The coefficient of variation for MC is obtained as CV = 19.3%, while DD only has

CV = 6.5%. CV coefficient indicates the higher variations in MC results than in DD.

Both DD and MC results are negatively skewed. DD results are platykurtic, while MC

results are leptokurtic. The skewness indicates little departure from symmetry in both

DD and MC results. The distribution of DD results has moderate flat-topped shape,

while the distribution of MC results shows a sharper peak than normal distribution.

Table A.2 presents the confidence intervals of the above estimated statistical parame-

ters. The confidence intervals of 〈ID MC〉 and 〈ID DD〉 indicate almost coincidence with

a symmetric standard normal approximation since R\L ratio values are almost one.

The confidence intervals of σID MC and σID DD indicate moderate departure from the

asymmetry compared with the standard normal approximation since R\L ratios are

moderately higher than one.

25 nm Device : Simulations at Low Drain Bias
DD MC

95% Confidence Interval R\L 95% Confidence Interval R\L
µ [Aµm−1] [1.57, 1.63]× 10−4 0.97 [7.74, 8.60]× 10−5 0.99
σ [Aµm−1] [0.88, 1.23]× 10−5 1.30 [1.27, 1.93]× 10−5 1.32

γ1 [−0.96, 0.60] 0.94 [−1.09, 1.10] 1.01
γ2 [−1.07, 0.19] 1.65 [−0.44, 1.48] 1.79

Table A.2: 95% nonparameric ABC confidence interval of mean value, standard de-
viation, skewness and kurtosis compute for 25 nm device at low drain bias.

Further, table A.2 shows that the zero values of skewness and kurtosis of DD and MC

simulation results lie within the range of the 95% confidence interval. This leads to

acceptance of the null hypothesis of the confidence interval normality test for both

skewness and kurtosis which means that data might be drawn from normal distributed

population.

Additionally, Q-Q plots of the simulation results, shown for both DD and MC in figure

A.1, are approximating linear, supporting the suggestion that the data are normally
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distributed. In the DD (left) plot, two outliers are evident at the low end of the range

with one at the high end. In the MC (right) plot, two outliers are evident at the low

end of the range while two are seen at the high end.
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Figure A.1: Q-Q plot for DD (left) and MC (right) simulation results at low drain
bias of 25 nm device.

Table A.3 presents the normality test results. For all cases, the p-values are greater

than the chosen significance level α = 0.05 so the null hypothesis that DD and MC

simulations results come from a normally distributed population is accepted.

25 nm Device : Simulations at Low Drain Bias
Normality test

DD MC
Test Statistics p-value Test Statistics p-value

Shapiro-Wilk 0.98 0.37 0.99 0.91
Jarque-Bera 0.94 0.63 0.13 0.94

Table A.3: Normality test for 25 nm device at low drain bias.

A.2 Descriptive Statistical Results at High Drain Bias

The basic statistic of drain current values obtained from DD and MC simulations at

high drain bias are presented in table A.4 For all devices, the DD simulations at high

drain bias result in larger currents when compared with the equivalent MC results, and

the mean current over the 50 devices is an additional approximately 4.5 times over the

mean from MC.
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25 nm Device : Simulations at High Drain Bias
DD MC

µ [Aµm−1] (6.05± 0.09)× 10−3 (1.32± 0.03)× 10−3

σ [Aµm−1] (6.8± 0.7)× 10−4 (2.1± 0.2)× 10−4

γ1 −0.04 0.01
γ2 −0.57 −0.10

Table A.4: The values of the mean, standard deviation, skewness and kurtosis of
drain currents results obtained from both DD and MC simulations at high drain bias

of 25 nm device.

33 and 34 of the 50 devices from DD and MC have the drain current value within σ of

the mean. Almost all devices in each case lie within the range of 2σ, while only three

from DD simulations and one from MC simulations fall far outside this range. Thus,

both DD and MC results at high drain bias show moderate variability across the sample.

The values of standard deviation are presented in table A.4.The coefficient of variation

for MC is obtained as CV = 15.7%, while DD only has CV = 11.1%. Despite the fact

that the standard deviation of DD results is larger than MC results the CV coefficient

indicates the higher variations in MC results than in DD.

Further, table A.4 shows that the DD results are negatively skewed while MC results

showsa positive value of skew. Both DD and MC results are platykurtic. The skewness

indicates almost the same symmetry as normal distribution. The distribution of DD

results has a moderate flat-topped shape while the distribution of MC results shows

very little departure of the peak shape from a normal distribution.

Table A.5 presented the confidence intervals of the above estimated statistical param-

eters. The confidence intervals of 〈ID MC〉 and 〈ID DD〉 are almost identical with a

standard normal approximation since R\L ratio values is nearly one. The confidence

intervals of σID MC and σID DD indicate moderate departure from the asymmetry com-

pared with the standard normal approximation since R\L ratios are moderately higher

than one.

Further, the table A.5 shows that the zero values of skewness and kurtosis of DD and

MC simulation results lie within the range of the 95% confidence interval. The null

hypothesis of the confidence interval normality test for both skewness and kurtosis is

then again accepted. Therefore, as with previous observations, the data might be drawn

from normally distributed population.
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25 nm Device : Simulations at High Drain Bias
DD MC

95% Confidence Interval R\L 95% Confidence Interval R\L
µ [Aµm−1] [5.86, 6.24]× 10−3 0.99 [1.27, 1.38]× 10−3 1.00
σ [Aµm−1] [5.71, 7.91]× 10−4 1.21 [1.71, 2.48]× 10−4 1.20

γ1 [−0.83, 0.73] 0.96 [−0.95, 0.86] 0.89
γ2 [−1.04, 0.08] 0.96 [−0.76, 0.75] 1.74

Table A.5: 95% nonparameric ABC confidence interval of mean value, standard de-
viation, skewness and kurtosis compute for 25 nm device at high drain bias.

Q-Q plots for simulation results at high drain bias are plotted in figure A.2. In the DD

(left) plot, one outlier is evident at the high end of the range and two are at the low

end. In the MC (right) plot, five outliers are evident at the high end of the range and

three are at the low end of the range. Both plots are approximating linear, suggesting

that the data are normally distributed. The plots are not completely linear due to small

sample size.
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Figure A.2: Q-Q plot for DD (left) and MC (right) simulation results at high drain
bias of 35nm device.

Table A.6 finally presents results for the normality test. For all cases, the p-values are

greater than the chosen significance level α = 0.05 so, again, the null hypothesis that DD

and MC simulations results come from a normally distributed population is accepted.
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25 nm Device : Simulations at High Drain Bias
Normality test

DD MC
Test Statistics p-value Test Statistics p-value

Shapiro-Wilk 0.99 0.78 0.98 0.66
Jarque-Bera 0.83 0.66 0.09 0.96

Table A.6: Normality test for 25 nm device at high drain bias.

A.3 DD versus MC : Percentage Change in Current

The uniform drain current values are presented in table A.7. From this it can be seen

that both atomistic DD and MC simulations result in a reduction in average current

compared with uniform cases.

25 nm Device
Uniform Drain Currents

Low Drain Bias High Drain Bias
IuD DD [Aµm−1] 1.65× 10−4 6.28× 10−3

IuD MC [Aµm−1] 9.07× 10−5 1.38× 10−3

Table A.7: Uniform currents obtained from DD and MC simulations of 25 nm device.

Scatter plots of the percentage change in current for both DD and MC at both low and

high drain bias and for all 50 devices are presented in figure A.3. Higher correlation

(ρ = 0.90) at high drain highlights the importance of electrostatic effects, while at

low drain the lesser correlation (ρ = 0.76) stress the increased relative importance of

transport variations.

37 of the 50 devices from MC simulation at low drain bias show reduced current while

the number of devices slightly decrease to 32 in DD simulation at low drain bias. 20

of the 50 devices from MC simulation at low drain bias show greater or approximately

similar reduction in current as the device with maximum reduction in current from DD

simulation at low drain bias. 6 of the 50 devices from MC simulation at low drain bias

show greater or approximately similar increase in current as the device with maximum

increase in current from DD simulation at low drain bias. The absolute value of the

largest increase in current in MC at low drain bias is seen to be fairly lesser (approximetly

53%) than the absolute value of the largest reductions in current seen in MC. The highest

reductions in current in DD is moderately larger (approximetly 90%) than the largest

increase in current seen in DD.
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Figure A.3: Scatter plots of percentage drain-current variation from MC simulation
against DD simulation, both including quantum corrections.The statistical ensemble is
shown along with a linear regression line.The correlation at high (red) and low (blue)

drain is seen.

Further, the standard deviation of the percentage change in current variation calculated

from DD at low drain bias is σ∆ID DD = 6.33%, while standard deviation from MC is

σ∆ID MC = 17.34%, as illustrated in figure A.3.

30 of the 50 devices from MC simulation at high drain bias show reduced current while

the number of devices fairly increases to 32 devices from DD at high drain bias. 4 of

the 50 devices from MC simulation at high drain bias show greater or approximately

similar reduction in current as the device with maximum reduction in current from

DD simulation at high drain bias. 4 of the 50 devices from MC simulation at high

drain bias show greater or approximately similar increase in current as the device with

maximum increase in current from DD simulation at high drain bias. The absolute

value of the largest reductions in current in MC at high drain bias is seen to be fairly

larger (approximately 58%) than the absolute value of the largest increase in current

seen in MC. The highest reductions in current in DD at high drain bias is moderate

larger (approximetly 47%) than the largest increase in current seen in DD. The higher

variations in MC over DD can again be clearly seen.

The standard deviation of the percentage change in current variation calculated from

DD at high drain bias is σ∆ID DD = 10.77% while standard deviation from MC is

σ∆ID MC = 15.05%, as presented in figure A.3.

The magnitude of the MC percentage change in current variations is larger than com-

pared with DD at both low drain and high drain biases. The percentage current variation
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in MC simulation at low drain bias is almost three times larger than in DD, while at

high drain bias MC percentage current variation is only approximately 50% larger than

in DD.



Appendix B

Statistical Analysis of Drain

Current Variability : 18 nm

MOSFET

B.1 Descriptive Statistical Results at Low Drain Bias

The basic measures of descriptive statistics for the drain current variation obtained from

DD and MC simulations at low drain bias and for the scaled 18nm device are presented in

table B.1. In all cases the DD simulations at low drain bias result in larger currents when

compared with the equivalent MC results, the mean DD current being approximately

2.5 times that of MC.

18 nm Device : Simulations at Low Drain Bias
DD MC

µ [Aµm−1] (2.37± 0.03)× 10−4 (9.1± 0.3)× 10−5

σ [Aµm−1] (2.3± 0.2)× 10−5 (2.2± 0.2)× 10−5

γ1 −0.51 −0.03
γ2 0.72 −0.05

Table B.1: The values of the mean, standard deviation, skewness and kurtosis of
drain currents results obtained from both DD and MC simulations at low drain bias of

18 nm device.

33 and 37 of the 50 devices from DD and MC simulations respectively have drain current

values within σ of the mean. Almost all devices from both DD and MC simulations
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lie within the range of 2σ, while only three from DD simulations and two from MC

simulations fall far outside the range of 2σ. Thus, both DD and MC results at low drain

bias show fair variability across the sample.

The values of standard deviation are also presented in table B.1. The coefficient of

variation of MC results is CV = 24.6%, while for DD results it is have CV = 9.6%.

Despite the fact that the standard deviation of DD results is larger than MC results,

the CV coefficient indicates that again there are higher variations in MC results than

in DD.

Both DD and MC results are negatively skewed. DD results are leptokurtic while MC

results are platykurtic. The skew of MC results indicates little departure from symmetry,

while DD results shows modest asymmetry from the normal distribution. The distribu-

tion of DD results has a moderately sharper peak than normal distribution, while MC

results shows a peak with similar shape as normal distribution.

Table B.2 presents the confidence intervals of the above estimated statistical parame-

ters. The confidence intervals of 〈ID MC〉 indicate almost coincidence with the symmetric

standard normal approximation since R\L ratio values are almost one, while 〈ID DD〉

confidence interval indicate modest asymmetry from standard normal approximation

since R\L ratio values is less than one. The confidence interval of σID MC shows mod-

est asymmetry, while the interval of σID DD indicates moderate departure from the

asymmetry compared with the standard normal approximation.

18 nm Device : Simulations at Low Drain Bias
DD MC

95% Confidence Interval R\L 95% Confidence Interval R\L
µ [Aµm−1] [2.30, 2.43]× 10−4 0.90 [8.43, 9.66]× 10−5 0.99
σ [Aµm−1] [1.86, 2.90]× 10−5 1.64 [1.82, 2.66]× 10−5 1.17

γ1 [−1.55, 0.64] 1.06 [−0.94, 0.86] 0.98
γ2 [−0.63, 2.35] 1.56 [−0.76, 0.82] 1.65

Table B.2: 95% nonparameric ABC confidence interval of mean value, standard de-
viation, skewness and kurtosis compute for 18 nm device at low drain bias.

Table B.2 also shows that all zero values of skewness and kurtosis lie within the range

of the 95% confidence interval. The null hypothesis of the confidence interval normality

test is therefore accepted for both simulated distributions.
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Further, Q-Q plots relevant to the above data are shown in figure B.1. In DD (left) plot,

one outlier is evident at both the low and high end of the range. In the MC (right) plot,

five outliers are evident at the high end of the range, while only two are at the low end.

Both plots are approximating linear, suggesting that the data are normally distributed.
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Figure B.1: Q-Q plot for DD (left) and MC (right) simulation results at low drain
bias of 18 nm device.

Table B.3 presents the normality test results. For all cases, the p-values are greater

than the chosen significance level α = 0.05 so the null hypothesis that DD and MC

simulations results come from a normally distributed population is accepted.

18 nm Device : Simulations at Low Drain Bias
Normality test

DD MC
Test Statistics p-value Test Statistics p-value

Shapiro-Wilk 0.98 0.58 0.99 0.90
Jarque-Bera 2.62 0.27 0.064 0.97

Table B.3: Normality test for 18 nm device at low drain bias.

B.2 Descriptive Statistical Results at High Drain Bias

The mean, standard deviation, skew and kurtosis of both DD and MC simulated distri-

butions are presented again for the 18nm device, but this time for high drain bias, in

table B.4 For all devices, the DD simulations at high drain bias result in larger currents

compared with equivalent MC results, the DD mean being approximately 4.5 times that

of MC.
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18 nm Device : Simulations at High Drain Bias
DD MC

µ [Aµm−1] (8.5± 0.2)× 10−3 (1.80± 0.07)× 10−3

σ [Aµm−1] (1.4± 0.1)× 10−3 (4.6± 0.5)× 10−4

γ1 −0.19 −0.13
γ2 0.39 0.09

Table B.4: The values of the mean, standard deviation, skewness and kurtosis of
drain currents results obtained from both DD and MC simulations at high drain bias

of 18 nm device.

33 and 34 of the 50 devices from DD and MC simulations, respectively, have the drain

current value within the range of σ from the mean. Almost all devices from both DD

and MC simulations lie within the range of 2σ, while only two from both DD and MC

simulations fall far outside the 2σ range.

Assessing the standard deviation, MC results are distributed with a coefficient of varia-

tion CV = 25.8%, while DD only has CV = 15.9%. This implies that MC results shows

approximately 1.6 times higher variations than DD.

Further, table B.4 shows both DD and MC results are negatively skewed. The skew

indicates modest asymmetry compared with normal distribution. Both DD and MC

results are leptokurtic. The distribution of DD results has sharper peak than the normal

distribution, while the distribution of MC results shows nearly the same shape of peak

compared with normal.

Table B.5 presents the confidence intervals associated with the above estimates. The

confidence intervals of 〈ID MC〉 and 〈ID DD〉 are nearly symmetric. The confidence inter-

vals of σID MC and σID DD indicate moderate departure from the asymmetry compared

with the standard normal approximation since R\L ratios are moderately higher than

one.

18 nm Device : Simulations at High Drain Bias
DD MC

95% Confidence Interval R\L 95% Confidence Interval R\L
µ [Aµm−1] [8.16, 8.90]× 10−3 0.96 [1.67, 1.92]× 10−3 0.97
σ [Aµm−1] [1.11, 1.68]× 10−3 1.44 [3.78, 5.59]× 10−4 1.25

γ1 [−1.31, 0.90] 0.96 [−1.03, 0.92] 1.16
γ2 [−0.57, 1.72] 1.83 [−0.66, 1.07] 1.75

Table B.5: 95% nonparameric ABC confidence interval of mean value, standard de-
viation, skewness and kurtosis compute for 18 nm device at high drain bias.
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Further, table B.5 shows that the zero values of skewness and kurtosis of DD and MC

simulation results lie within the range of the 95% confidence interval. This implies the

acceptance of the null hypothesis, and therefore, data might be drawn from normal

distributed population.

Q-Q plots for both DD and MC simulation results at high drain bias are plotted in figure

B.2. The DD (left) plot shows one outlier at the low end of the range, while two lie at

the high end. In the MC (right) plot, two outliers are evident at the low end while only

one is seen at the high end. Both plots are approximately linear, suggesting that the

data are normally distributed.

-3 -2 -1 0 1 2 3
Normal theoretical quantiles

4.0×10
-3

6.0×10
-3

8.0×10
-3

1.0×10
-2

1.2×10
-2

I D
 D

D
 [

A
/µ

m
-1

]

18nm DD HF

-3 -2 -1 0 1 2 3
Normal theoretical quantiles

1.0×10
-3

1.5×10
-3

2.0×10
-3

2.5×10
-3

3.0×10
-3

I D
 M

C
 [

A
/µ

m
-1

]

18nm MC HF

Figure B.2: Q-Q plot for DD (left) and MC (right) simulation results at high drain
bias of 18nm device.

Table B.6 presents results of the normality test and implies that in all cases the null

hypothesis is accepted. This means that simulation results come from a normally dis-

tributed population.

18 nm Device : Simulations at High Drain Bias
Normality test

DD MC
Test Statistics p-value Test Statistics p-value

Shapiro-Wilk 0.99 0.97 0.99 0.90
Jarque-Bera 0.39 0.82 0.13 0.94

Table B.6: Normality test for 18 nm device at high drain bias.
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B.3 DD versus MC : Percentage Change in Current

The uniform drain current values are presented in table B.7. From this it can be seen

that atomistic DD simulations result in an average currents that is less than the uniform

cases at both low and high drain bias. The average atomistic current over MC simulation

is slightly less than the uniform case at high drain bias. This contrasts with the low

drain case where the average current in atomistic MC is larger than uniform case.

18 nm Device
Uniform Drain Currents

Low Drain Bias High Drain Bias
IuD DD [Aµm−1] 2.42× 10−4 8.67× 10−3

IuD MC [Aµm−1] 8.40× 10−5 1.83× 10−3

Table B.7: Uniform currents obtained from DD and MC simulations of 18 nm device.

Scatter plots of the percentage change in current from the uniform device for both DD

and MC at both low and high drain bias for all 50 devices are presented in figure B.3.

Higher correlation (ρ = 0.87) at high drain highlights the importance of electrostatic

effects, while at low drain the lesser correlation (ρ = 0.78) highlights the importance of

transport variations.

Figure B.3: Scatter plots of percentage drain-current variation from MC simulation
against DD simulation, both including quantum corrections.The statistical ensemble is
shown along with a linear regression line.The correlation at high (red) and low (blue)

drain is seen.

20 of the 50 devices from MC simulation at low drain bias show reduced current while the

number of devices increases to 29 in DD simulation at low drain bias. 5 of the 50 devices

from MC simulation at low drain bias show greater or approximately similar reduction
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in current as the device with maximum reduction in current from DD simulation at low

drain bias. 20 of the 50 devices from MC simulation at low drain bias show greater

or approximately similar increase in current as the device with maximum increase in

current from DD simulation at low drain bias. The absolute value of the largest increase

in current in MC at low drain bias is seen to be modestly larger (approximetly 21%)

than the absolute value of the largest reductions in current seen in MC. The highest

reductions in current in DD is moderately larger (approximetly 74%) than he largest

increase in current seen in DD.

Further, the standard deviation of the percentage change in current variation calculated

from DD at low drain bias is σ∆ID DD = 9.38%, while standard deviation from MC is

σ∆ID MC = 26.57%, as illustrated in figure B.3.

24 of the 50 devices from MC simulation at high drain bias show reduced current while

the number of devices fairly increases to 26 devices from DD at high drain bias. 4 of

the 50 devices from MC simulation at high drain bias show greater or approximately

similar reduction in current as the device with maximum reduction in current from DD

simulation at high drain bias. 7 of the 50 devices from MC simulation at high drain bias

show greater or approximately similar increase in current as the device with maximum

increase in current from DD simulation at high drain bias. The absolute value of the

largest reductions in current in MC at high drain bias is seen to be almost the same as

the absolute value of the largest increase in current seen in MC. The highest reductions

in current in DD at high drain bias is modestly larger (approximetly 28%) than the

largest increase in current seen in DD.

The standard deviation of the percentage change in current variation calculated from

DD at high drain bias is σ∆ID DD = 15.68% while standard deviation from MC is

σ∆ID MC = 25.37%, as presented in figure B.3.

The magnitude of the MC percentage change in current variations is larger than com-

pared to DD at both low drain and high drain biases. The MC percentage current

variation in current at low drain bias is almost three times larger than in DD, while at

high drain bias MC percentage current variation is only approximately 61% larger than

in DD.



Appendix C

Statistical Analysis of Drain

Current Variability : 13 nm

MOSFET

C.1 Descriptive Statistical Results at Low Drain Bias

The basic measures of descriptive statistics for the drain current variation obtained from

DD and MC simulations at low drain bias and for the scaled 13nm device are presented

in table C.1. In all cases the DD simulations at low drain bias result in larger currents

when compared with the equivalent MC results, the mean current being approximately

4 times of MC.

13 nm Device : Simulations at Low Drain Bias
DD MC

µ [Aµm−1] (3.05± 0.06)× 10−4 (7.7± 0.3)× 10−5

σ [Aµm−1] (3.9± 0.4)× 10−5 (2.2± 0.2)× 10−5

γ1 −0.40 0.22
γ2 −0.34 −0.07

Table C.1: The values of the mean, standard deviation, skewness and kurtosis of
drain currents results obtained from both DD and MC simulations at low drain bias of

13 nm device.

32 and 34 of the 50 devices from DD and MC simulations, respectively, have drain current

values within σ of the mean. Almost all devices from both DD and MC simulations lie
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within the range of 2σ, while only two from both DD and MC simulations fall far outside

this range.

The standard deviation of the drain current variation is presented in table C.1. The

coefficient of variation of MC results is CV = 28.9%, while DD results only have CV =

12.8%. Despite the fact that the standard deviation of DD results is larger than MC

results, the CV coefficient of MC results is more than 2 times than of DD. This implies

significantly higher variability in MC results than in DD.

DD results are shifted to the left of the mean, while MC results are skewed to the

right. The skewness indicates modest departure from symmetry in both DD and MC

results. Both DD and MC results are platykurtic. The distribution of DD results has

a moderately flat-topped shape, while the distribution of MC results shows a similarly

shaped peak as a normal distribution.

Table C.2 presents the confidence intervals of the above estimated statistical parameters.

The confidence intervals of 〈ID MC〉 and 〈ID DD〉 are almost symmetric while those of

σID MC and σID DD indicate moderate departure from the asymmetry compared with

the standard normal approximation since R\L ratios are moderately higher than one.

13 nm Device : Simulations at Low Drain Bias
DD MC

95% Confidence Interval R\L 95% Confidence Interval R\L
µ [Aµm−1] [2.94, 3.16]× 10−4 0.92 [7.10, 8.32]× 10−5 1.05
σ [Aµm−1] [3.29, 4.66]× 10−5 1.26 [1.85, 2.70]× 10−5 1.41

γ1 [−1.10, 0.43] 1.14 [−0.72, 1.17] 1.03
γ2 [−0.96, 0.56] 1.85 [−0.81, 1.07] 1.80

Table C.2: 95% nonparameric ABC confidence interval of mean value, standard de-
viation, skewness and kurtosis compute for 13 nm device at low drain bias.

Further, table C.2 shows that the zero values of skewness and kurtosis lie within the

range of the 95% confidence interval. The null hypothesis of the confidence interval

normality test is therefor accepted. This implies that the results might be drawn from

normally distributed population.

Q-Q plots of both DD and MC simulation results at low drain bias are plotted in figure

C.1. In the DD (left) plot, two outliers are evident at the low end of the range while

three lie at the high end. In the MC (right) plot, two outliers are evident at the high
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end of the range while only one lies at the low end. Both plots are approximately linear,

suggesting that the data are normally distributed.
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Figure C.1: Q-Q plot for DD (left) and MC (right) simulation results at low drain
bias of 13nm device.

Table C.3 presents the normality test results. For all cases, the p-values are greater

than the chosen significance level α = 0.05 so the null hypothesis that DD and MC

simulations results come from a normally distributed population is accepted.

13 nm Device : Simulations at Low Drain Bias
Normality test

DD MC
Test Statistics p-value Test Statistics p-value

Shapiro-Wilk 0.98 0.44 0.98 0.71
Jarque-Bera 1.60 0.45 0.41 0.82

Table C.3: Normality test for 13 nm device at low drain bias.

C.2 Descriptive Statistical Results at High Drain Bias

Similarly, statistical estimators of the variation at high drain bias is presented in table

C.4. In all cases the DD simulations result in larger currents when compared with

equivalent MC results, the DD mean being approximately 4.5 times that of MC.

33 and 35 of the 50 devices from DD and MC simulations, respectively, have drain current

values within σ of the mean. Almost all devices from both DD and MC simulations lie

within the range of 2σ, while only one from DD fall far outside this range.
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13 nm Device : Simulations at High Drain Bias
DD MC

µ [Aµm−1] (1.11± 0.03)× 10−2 (1.70± 0.07)× 10−3

σ [Aµm−1] (2.0± 0.2)× 10−3 (4.6± 0.5)× 10−4

γ1 −0.25 −0.08
γ2 −0.67 −0.68

Table C.4: The values of the mean, standard deviation, skewness and kurtosis of
drain currents results obtained from both DD and MC simulations at high drain bias

of 13 nm device.

The values of the coefficient of variation are presented in table C.4. MC results in

CV = 27.4%, while DD only has CV = 18.5%. MC results indicates almost 50% higher

variability than in DD.

Further, table C.4 shows that both DD and MC results are shifted to the left of the

mean. The skewness indicates modest departure from symmetry compared with a normal

distribution. Both DD and MC results are platykurtic showing moderate flat-topped

shape compared with a normal distribution.

Table C.5 presented the confidence intervals for the above statistical parameters. The

confidence intervals of 〈ID MC〉 and 〈ID DD〉 are almost identical with the standard

normal approximation since R\L ratio values are nearly one. The confidence intervals

of σID MC and σID DD indicate modest departure from the asymmetry compared with

the standard normal approximation.

13 nm Device : Simulations at High Drain Bias
DD MC

95% Confidence Interval R\L 95% Confidence Interval R\L
µ [Aµm−1] [1.05, 1.16]× 10−2 0.95 [1.57, 1.82]× 10−3 0.98
σ [Aµm−1] [1.73, 2.37]× 10−3 1.18 [3.92, 5.36]× 10−4 1.14

γ1 [−0.90, 0.52] 1.15 [−0.78, 0.66] 1.04
γ2 [−1.12,−0.05] 1.73 [−1.11,−0.13] 1.63

Table C.5: 95% nonparameric ABC confidence interval of mean value, standard de-
viation, skewness and kurtosis compute for 13 nm device at high drain bias.

Table C.5 shows that the zero values of skewness from DD and MC results lie within

the range of the 95% confidence interval, while the zero value of kurtosis falls outside

this interval. We only accept the null hypothesis of the confidence interval normality

test for skewness, while for kurtosis the null hypothesis is rejected. Further analysis is

necessary to verify if simulation results are drawn from normal distributed population.
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Q-Q plots for DD and MC results are plotted in figure C.2. In the DD (left) plot, one

outlier is evident at the low end of the range, while two lie at the high end. In the

MC (right) plot, three outliers are evident at the high end of the range, while two are

at the low. Both plots are approximating linear, suggesting that the data are normally

distributed.
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Figure C.2: Q-Q plot for DD (left) and MC (right) simulation results at high drain
bias of 13nm device.

Table C.6 presents the normality test results for the above statistical parameters. The

results indicate that DD and MC results may be drawn from normally distributed pop-

ulation.

13 nm Device : Simulations at High Drain Bias
Normality test

DD MC
Test Statistics p-value Test Statistics p-value

Shapiro-Wilk 0.98 0.39 0.98 0.59
Jarque-Bera 1.59 0.45 1.17 0.56

Table C.6: Normality test for 13 nm device at high drain bias.

C.3 DD versus MC : Percentage Change in Current

The uniform drain current values are presented in table C.7. The atomistic DD sim-

ulations at low drain bias result in an average current lesser than the uniform case,

while at high drain bias they result in an average current larger than uniform. Similarly,
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the atomistic MC simulations at low drain result in an average currents lesser than the

uniform, while at high drain bias they result in an average current larger than uniform.

13 nm Device
Uniform Drain Currents

Low Drain Bias High Drain Bias
IuD DD [Aµm−1] 3.10× 10−4 1.09× 10−2

IuD MC [Aµm−1] 9.08× 10−5 1.57× 10−3

Table C.7: Uniform currents obtained from DD and MC simulations of 13 nm device.

Scatter plots of the percentage change in current relative to the uniform device for both

DD and MC at both low and high drain bias for all 50 devices are presented in figure C.3.

Higher correlation (ρ = 0.91) at high drain highlights the importance of electrostatic

effects. The value of the correlation at low drain (ρ = 0.83) is nearly equal to the value

at high drain bias which shows that the ballistic transport becomes more apparent in a

smaller devices.

Figure C.3: Scatter plots of percentage drain-current variation from MC simulation
against DD simulation, both including quantum corrections.The statistical ensemble is
shown along with a linear regression line.The correlation at high (red) and low (blue)

drain is seen.

35 of the 50 devices from MC simulation at low drain bias show reduced current while

the number of devices slightly decreases to 27 in DD simulation at low drain bias. 13

of the 50 devices from MC simulation at low drain bias show greater or approximately

similar reduction in current as the device with maximum reduction in current from DD

simulation. 3 of the 50 devices from MC simulation at low drain bias show greater

or approximately similar increase in current as the device with maximum increase in

current from DD. The absolute value of the largest reduction in current in MC at low
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drain bias is seen to be moderately larger (approximetly 35%) than the absolute value

of the largest increase in current seen in MC. The highest reductions in current in DD

is moderately larger (approximetly 55%) than he largest increase in current seen in DD.

Further, the standard deviation of the percentage change in current calculated from

DD at low drain bias is σ∆ID DD = 12.71%, while standard deviation from MC is

σ∆ID MC = 24.49%, as illustrated in figure C.3.

20 of the 50 devices from MC simulation at high drain bias show reduced current while

the number of devices modestly increases to 25 devices from DD at high drain bias. 4

of the 50 devices from MC simulation at high drain bias show greater or approximately

similar reduction in current as the device with maximum reduction in current from

DD simulation at high drain bias. 9 of the 50 devices from MC simulation at high

drain bias show greater or approximately similar increase in current as the device with

the maximum increase in current from DD simulation. The absolute value of the largest

reduction in current in MC at high drain bias is seen to be modestly lesser (approximately

20%) than the absolute value of the largest increase in current seen in MC. The highest

reductions in current in DD at high drain bias is comparable to the largest increase in

current seen in DD. IThe higher variations in MC compared with DD can again clearly

be seen.

The standard deviation of the percentage change in current variation calculated from

DD at high drain bias is σ∆ID DD = 18.84% while standard deviation from MC is

σ∆ID MC = 29.49%, as presented in figure C.3.

The magnitude of the MC current variations is larger than DD at both low drain and

high drain biases, almost two times larger than in DD at low drain, while approximately

only 56% larger than DD at high drain.



Appendix D

Statistical Analysis of Drain

Current Variability : 9 nm

MOSFET

D.1 Descriptive Statistical Results at Low Drain Bias

The basic measures of descriptive statistics for the drain current variation obtained from

DD and MC simulations at low drain bias and for the 9nm device are presented in table

D.1. In all cases the DD simulations result in larger currents when compared with the

equivalent MC results, with the mean current being approximately 5 times that of MC.

9 nm Device : Simulations at Low Drain Bias
DD MC

µ [Aµm−1] (3.0± 0.1)× 10−4 (5.6± 0.4)× 10−5

σ [Aµm−1] (7.5± 0.8)× 10−5 (3.1± 0.3)× 10−5

γ1 −0.27 0.35
γ2 −0.33 −0.21

Table D.1: The values of the mean, standard deviation, skewness and kurtosis of
drain currents results obtained from both DD and MC simulations at low drain bias of

9 nm device.

33 and 35 of the 50 devices from DD and MC simulations, respectively, have drain

current values within the range of σ from the mean. Almost all devices from both DD

and MC simulations lie within the range of 2σ, with only one from DD simulations
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and three from MC simulations falling far outside that range. Thus, both DD and MC

results at low drain bias show fair variability across the sample.

The values of standard deviation are presented in table B.1. The coefficient of variation

of MC results is CV = 55.7%, while DD results only have CV = 25.1%. The CV

coefficient of MC results is thus 2 times greater than DD which means MC results show

significantly greater variability.

DD results are shifted to the left of the mean, while MC results are skewed to the right.

The skewness indicates modest departure from symmetry in both DD and MC results

while both DD and MC results are also platykurtic.

Table D.2 presents the associated confidence intervals. The confidence intervals of

〈ID MC〉 and 〈ID DD〉 show nearly coincidence with symmetric standard normal ap-

proximation, while for σID MC and σID DD they indicate moderate departure.

9 nm Device : Simulations at Low Drain Bias
DD MC

95% Confidence Interval R\L 95% Confidence Interval R\L
µ [Aµm−1] [2.79, 3.20]× 10−4 0.95 [4.78, 6.50]× 10−5 1.07
σ [Aµm−1] [6.28, 8.91]× 10−5 1.21 [2.59, 3.71]× 10−5 1.20

γ1 [−1.03, 0.55] 1.05 [−0.49, 1.07] 0.87
γ2 [−0.98, 0.64] 1.88 [−0.87, 0.68] 1.78

Table D.2: 95% nonparameric ABC confidence interval of mean value, standard de-
viation, skewness and kurtosis compute for 9 nm device at low drain bias.

Further, the table D.2 shows that the zero values of skewness and kurtosis of DD and MC

simulation results lie within the range of the 95% confidence interval. This implies that

the null hypothesis of normality test is accepted. Results at low drain bias simulation

of 9 nm device might be drawn from normal distribution.

Q-Q plots for the simulation results at low drain bias are plotted in figure D.1. In the

DD (left) plot, one outlier is evident at both the low and high end of the range. In the

MC (right) plot, three outliers are evident at the high end. Both plots are once again

approximately linear, suggesting that the data are normally distributed.

Table D.3 present results of the normality test. In all cases, the p-values are greater

than the chosen significance level α = 0.05 so the null hypothesis that DD and MC

simulations results come from a normally distributed population is accepted.
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Figure D.1: Q-Q plot for DD (left) and MC (right) simulation results at low drain
bias of 9nm device.

9 nm Device : Simulations at Low Drain Bias
Normality test

DD MC
Test Statistics p-value Test Statistics p-value

Shapiro-Wilk 0.98 0.64 0.97 0.32
Jarque-Bera 0.95 0.62 1.16 0.56

Table D.3: Normality test for 9 nm device at low drain bias.

D.2 Descriptive Statistical Results at High Drain Bias

The basic statistics of drain current variation from both DD and MC simulation at

high drain bias are presented in table D.4 In all cases the DD simulations result in

larger currents when compared with the equivalent MC results, with the mean current

approximately 7.5 times that of MC.

9 nm Device : Simulations at High Drain Bias
DD MC

µ [Aµm−1] (1.20± 0.05)× 10−2 (1.6± 0.1)× 10−3

σ [Aµm−1] (3.6± 0.4)× 10−3 (6.9± 0.7)× 10−4

γ1 −0.08 0.19
γ2 −0.38 −0.72

Table D.4: The values of the mean, standard deviation, skewness and kurtosis of
drain currents results obtained from both DD and MC simulations at high drain bias

of 9 nm device.
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33 and 34 of the 50 devices from DD and MC, respectively, have drain current values

within σ of the mean. Almost all devices from DD and MC simulations lie within the

range of 2σ, with only one from DD simulations falling far outside this range.

The standard deviation of the device distribution are presented in table D.4. MC results

have a coefficient of variation of CV = 42.8%, while DD only has CV = 29.9%. MC

results thus show significantly higher variation.

Further, table D.4 shows that DD results are negatively skewed, while MC results are

shifted to the right of the mean. The skewness indicates almost the same symmetry

as normal distribution. Both DD and MC results are platykurtic showing moderate

flat-topped shape compared with a normal distribution.

Table D.5 presents the confidence intervals. The confidence intervals of 〈ID MC〉 and

〈ID DD〉 are nearly the same as the standard normal approximation since R\L ratio

values are almost one. The confidence intervals of σID MC and σID DD indicate moderate

departure from the asymmetry compared with the standard normal approximation.

9 nm Device : Simulations at High Drain Bias
DD MC

95% Confidence Interval R\L 95% Confidence Interval R\L
µ [Aµm−1] [1.10, 1.29]× 10−2 0.98 [1.43, 1.81]× 10−3 1.04
σ [Aµm−1] [3.02, 4.26]× 10−3 1.33 [5.87, 7.99]× 10−4 1.16

γ1 [−1.02, 0.68] 0.79 [−0.63, 0.81] 0.77
γ2 [−1.07, 0.72] 1.95 [−1.14,−0.10] 1.77

Table D.5: 95% nonparameric ABC confidence interval of mean value, standard de-
viation, skewness and kurtosis compute for 9 nm device at high drain bias.

Further, the table D.5 shows that the zero values of skewness of DD and MC simulation

results lie within the range of the 95% confidence interval, while the zero value of kurtosis

lies within the range only for DD results. The null hypothesis of the confidence interval

normality test is therefore accepted for skewness, while the null hypothesis of kurtosis

is only accepted for DD results. This implies that further analysis is needed.

Q-Q plots for DD and MC simulation results are plotted in figure D.2. In the DD (left)

plot no outliers are evident. In the MC (right) plot one outlier is evident at the low end

of the range. Both plots are approximately linear, suggesting that the data is normally

distributed.
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Figure D.2: Q-Q plot for DD (left) and MC (right) simulation results at high drain
bias of 9nm device.

Table D.6 presents the normality test results for the above statistical properties. In

all cases, the p-values are greater than the chosen significance level α = 0.05 so the

null hypothesis that DD and MC simulations results come from a normally distributed

population is accepted.

9 nm Device : Simulations at High Drain Bias
Normality test

DD MC
Test Statistics p-value Test Statistics p-value

Shapiro-Wilk 0.98 0.76 0.97 0.29
Jarque-Bera 0.49 0.78 1.50 0.47

Table D.6: Normality test for 9 nm device at high drain bias.

D.3 DD versus MC : Percentage Change in Current

The uniform drain current values are presented in table D.7. The atomistic DD simula-

tions at low drain bias result in an average current lesser than the uniform case, while

at high drain bias they result in an average current larger than uniform. The atomistic

MC simulations at low drain result in an average currents less than the uniform cases,

while at high drain bias they result in an average current larger than uniform.

Scatter plots of the percentage change in current relative to the uniform device at both

low and high drain bias for all 50 devices are presented in figure A.3. Higher correlation
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9 nm Device
Uniform Drain Currents

Low Drain Bias High Drain Bias
IuD DD [Aµm−1] 3.13× 10−4 1.19× 10−2

IuD MC [Aµm−1] 6.18× 10−5 1.50× 10−3

Table D.7: Uniform currents obtained from DD and MC simulations of 9 nm device.

(ρ = 0.96) at high drain highlights the importance of electrostatic effects. The value of

the correlation at low drain (ρ = 0.94) is almost the same as the value at high drain

bias. This implies the importance of ballistic transport in such small devices.

Figure D.3: Scatter plots of percentage drain-current variation from MC simulation
against DD simulation, both including quantum corrections.The statistical ensemble is
shown along with a linear regression line.The correlation at high (red) and low (blue)

drain is seen.

30 of the 50 devices from MC simulation at low drain bias show reduced current while

the number of devices slightly decrease to 29 in DD simulation at low drain bias. 9

of the 50 devices from MC simulation at low drain bias show greater or approximately

similar reduction in current as the device with maximum reduction in current from DD

simulation at low drain bias. 7 of the 50 devices from MC simulation at low drain bias

show greater or approximately similar increase in current as the device with maximum

increase in current from DD simulation at low drain bias. The absolute value of the

largest increase in current in MC at low drain bias is seen to be modestly larger (ap-

proximetly 17%) than the absolute value of the largest reductions in current seen in MC.

The highest reductions in current in DD is moderately larger (approximetly 45%) than

he largest increase in current seen in DD.
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Further, the standard deviation of the percentage change in current variation calculated

from DD at low drain bias is σ∆ID DD = 24.11%, while standard deviation from MC is

σ∆ID MC = 50.16%, as illustrated in figure D.3.

23 of the 50 devices from MC simulation at high drain bias show reduced current while

the number of devices fairly increases to 24 devices from DD at high drain bias. 2 of

the 50 devices from MC simulation at high drain bias show greater or approximately

similar reduction in current as the device with maximum reduction in current from DD

simulation at high drain bias. 10 of the 50 devices from MC simulation at high drain bias

show greater or approximately similar increase in current as the device with maximum

increase in current from DD simulation at high drain bias. The absolute value of the

largest reductions in current in MC at high drain bias is seen to be almost the same as

the absolute value of the largest increase in current seen in MC. The highest reductions

in current in DD at high drain bias is moderate larger (approximetly 36%) than the

largest increase in current seen in DD.

The standard deviation of the percentage change in current variation calculated from

DD at high drain bias is σ∆ID DD = 30.14% while standard deviation from MC is

σ∆ID MC = 46.16%, as presented in figure D.3.

The magnitude of the MC percentage change in current variations is larger than com-

pared to DD at both low drain and high drain biases. The MC percentage current

variation in current at low drain bias is almost two times larger than in DD, while at

high drain bias MC percentage current variation is only approximately 50% larger than

in DD.
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