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Abstract 
 
 
 
 
 
 

3D rapid prototyping is a useful tool for the production of 3D models of the human skull 

taken from cone beam computed tomography scans. Although the accuracy of these 

models is acceptable the dentition is distorted. The aim of the study is to replace the 

inaccurately reproduced dental arch of a 3D printed skull model with accurate, correctly 

proportioned plaster teeth, obtained from a dental impression. 

 

6 dried human skulls were scanned using a Faro laser arm scanner. Impressions of the 

dentition were taken using silicone impression material. Plaster dental casts were produced 

using dental stone. Following removal of the inaccurate dentition from the 3D printed skull 

model, the corresponding plaster dental cast was attached to the 3D printed skull model 

using a custom designed technique. The six modified 3D printed skull models with 

replaced dentition were laser scanned using a Faro arm. VRmesh software was used to 

superimpose the  laser scanned skull images. 
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INTRODUCTION 
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1.1  Introduction 

 

 
 

Orthognathic surgery planning has been routinely carried out on various types of dental 

articulators. From a simple hinge articulator where a straightforward single jaw movement 

is required with no vertical height change, to a more complicated bi-maxillary procedure 

which involves altering both jaws. Bi-maxillary planning procedures are carried out using 

a semi adjustable articulator and its corresponding facebow. These procedures can involve 

maxillary impaction or down grafting, together with advancement or retraction of the 

mandible in order to achieve best occlusion and correction of facial deformity. A facebow 

registration is used to transfer the patients‟ maxillary occlusal plane to the semi adjustable 

articulator. However, there are inaccuracies when planning orthognathic surgery prediction 

on semi adjustable articulators. Semi adjustable articulators are primarily used for making 

dentures for which they are suitable and if the maxillary occlusal plane is altered, as the 

teeth are being placed in modelling wax, this does not affect the function of the denture 

constructed. However, it is documented by Walker et al (2008) that if the maxillary 

occlusal plane is altered during orthognathic surgery planning cases, then this has a 

signification effect on the outcome for the patient. Walker et al (2008) also highlighted the 

importance of accurately recording the maxillary occlusal plane in relation to the base of 

the skull for orthognathic planning. He stated that it is in this area that most inaccuracies 

occur when using semi adjustable articulator systems for orthognathic surgery prediction.  

 

It is my aim to investigate the use of 3Dimentional (3D) printed skull models in the search 

for a more accurate process for carrying out orthognathic surgery prediction. However, at 

present there are some drawbacks to using 3D printed skull models for orthognathic 

predicted surgery. Inaccurate reproduction of the occlusal planes of the teeth is due to CT 
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scans being influenced by metallic dental restorations that cause various artefacts. In 

addition, the teeth themselves do not replicate accurately due to their enamel and dentine 

composition. 

 

My goal is to find a way of replacing the inaccurate dentition on the 3D printed skull 

model with plaster casts of the patients‟ dentition. This process will require the plaster 

casts to be accurately placed into position to emulate the same anatomical position as the 

patients‟ natural dentition. If this can be achieved, it will allow surgeons and technologists 

to see increased anatomical structure and allow accurate estimation of impaction, using 

anatomical points of reference. Surgeons will be able to visualise and measure autorotation 

of the mandible and adapt bone plates and fixing devices prior to surgery. A further benefit 

of the 3D printed skull models is that they provide an accurate indication of size when a 

bone graft is required. Irrespective of the quality of 3D visual models on a computer screen 

surgeons still favour hands on models to plan and simulate procedures pre-operatively.  In 

conclusion, having a 3D printed skull model of the patient allows the surgeon many more 

advantages than are available at present. 
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Background of the limitations of facebow and 

articulator systems for orthognathic model 

surgery. 
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2.1   Background 

Orthognathic surgery planning is a method used by surgeons to plan the repositioning of 

patients with skeletal jaw deformities. Facial deformity can vary from patient to patient. 

Some can be complex congenital deformities that the patient has had since birth, where 

part of their skeletal shape has not developed properly prior to being born. Others are 

dento-facial, which tend to develop as the patient grows into adulthood and the skeletal 

relationship changes. Patients with skeletal problems would normally be referred by a 

doctor or dentist to a specialist clinic to be diagnosed and treated for their condition. This 

would very often involve an operation in order to improve their skeletal relationship. The 

patient would have photographs, X-rays, dental impressions and a wax wafer occlusal bite 

of their dentition taken in order to develop a treatment plan for the correction of the 

skeletal deformity. The dental impressions are cast in plaster to give an exact copy of the 

patients‟ dental relationship. These plaster casts are then mounted on an apparatus which 

artificially simulates the patients‟ jaw relationship. The apparatus commonly used for 

planning the correction of these procedures is a Dental Articulator. The plaster models of 

the patient‟s dental arches are attached to the articulator and occluded using a wax wafer 

bite registration taken from the patient.  

 

2.2   Articulators 

There are various dental articulators that can be used for this process. Much depends on the 

specific nature of the patients‟ deformity. If a patient requires a single jaw procedure, 

either a set back or advancement to the maxilla or mandible, where there is no change to 

the facial height of the patient i.e. the patient‟s face will not be made longer or shorter, then 

a simple hinge articulator is used. (Figure.2.1) A simple hinge articulator is a basic but 

useful style of articulator for this purpose. 
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                                     Figure.2.1 Simple hinge articulator. 

 If the facial height has to be altered or the maxilla and mandible are being repositioned 

then a semi-adjustable articulator and its corresponding facebow are utilised. (Figure.2.2), 

(Figure.2.3) 

 

 

 

 

 

 

                                 Figure.2.2  Semi-adjustable articulator. 

 

 

. 

 

 

 

 

 

                                 Figure.2.3 The facebow. 

 

This particular type of articulator involves recording anatomical reference points of the 

patient, e.g. auditory meatus, nasion, condyles, orbitale and the maxillary occlusal plane of 
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the dentition. A facebow is used for this purpose and the reference points are recorded by 

devices attached to the facebow. The facebow is then attached to the semi-adjustable 

articulator. A maxillary plaster cast, made from impressions taken of the patients‟ 

dentition, is then mounted onto the semi-adjustable articulator using the reference points 

taken by the facebow to replicating the position of the natural maxilla. The mandibular cast 

is attached onto the semi-adjustable articulator using the wax bite record of the patient in 

occlusion. It should be noted that there are different types of facebow and articulator 

systems that can be used to record the maxillary position and some are more accurate than 

others. However, all articulators have varying degrees of inaccuracy owing to the fact that 

facebows are average value. This means for patients with non-average facial settings, 

including the majority of orthognathic surgery patients, semi-adjustable articulators are not 

suitable. These findings have been well documented in the literature. Walker et al (2008) 

has provided a new facebow (Figure.2.4) and orthognathic articulator (Figure.2.5) which 

greatly reduces the inaccuracy of transferring the position of the natural maxilla onto an 

articulator. 

 

 

 

 

 

 

                                 Figure.2.4 The new Orthognathic facebow. 
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             Figure.2.5 The Orthognathic articulator. 

This concept works by adjusting the arms of the orthognathic articulator to accommodate 

the orthognathic facebow. With other facebows and semi-adjustable articulators the 

opposite occurs and the facebows are designed to fit the articulators. Walkers‟ system also 

takes into account patients with asymmetry problems by using anatomical references 

indicators which can be adjusted to replicate the patient‟s dental facial condition. Whilst 

Walker (2008) has greatly improved levels of accuracy for transferring the position of the 

maxillary cast to an articulator, there are still inaccuracy problems in this new technique 

due to soft tissue coverage of reference areas. 

2.3  Orthognathic planning procedure 

Once the models are articulated the surgeon supplies a prediction sheet indicating what 

will be required and a record of anatomical areas is also made - namely the patients chin 

point, the centre lines of the teeth and any asymmetry of the face or mandible. 

Cephalometric analysis (Figure.2.6) of the patient is carried out by the surgeon. This is 

done by cutting and sectioning X-rays and repositioning them to give the best possible 

skeletal profile for the patient. 
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               Figure.2.6  Cephalograph. 

There are computer software packages that can carry out this prediction and calculate the 

movements involved. These, together with the articulated dental casts help to plan for the 

best predicted outcome for the patient. In order to replicate the patients‟ current dental 

relationship the dental casts are attached to the articulator using dental plaster and 

reference points are marked onto the articulating plaster. The maxillary cast is then 

detached and moved into its predicted position before being reattached to the articulating 

plaster using modelling wax. Comparing the original reference marks on the articulating 

plaster with the final placement of the maxilla provides a plan of the movements which 

will be required in theatre. In the same way the mandibular cast is moved to line up with 

the maxillary cast to achieve the best occlusion before being reattached to the articulating 

plaster. A registration of this new relationship of the maxilla to mandible is taken at incisal 

and cusp level using a clear self-curing acrylic resin (Figure.2.7). This registration is the 

template the surgeon will use to reposition the patients‟ new skeletal relationship in theatre. 

Prior to fitting the final clear acrylic wafer, the surgeon must firstly move the maxilla; to 

do this an intermediate wafer is required. This is made in a different coloured self curing 

acrylic resin to distinguish it from the final inter-occlusal wafer. 
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            Figure.2.7  Inter-Occlusal wafers, final (left) and intermediate (right). 

In order to make the intermediate wafer the mandibular cast is moved back to the original 

position and reattached to the articulating plaster. The maxillary plaster cast remains in its 

new final position and the coloured self curing acrylic wafer is made by rotating the 

mandible to occlude with the maxilla. This coloured wafer is the template the surgeon will 

use to reposition the patient‟s maxilla. It should be made clear that when simulating the 

new skeletal position on the articulator, the final skeletal position is recorded first and the 

clear self cure acrylic wafer made; this is done so that there is no damage to the incisal and 

occlusal areas of the model. Then the intermediate position is simulated on the articulator 

and the coloured intermediate wafer is constructed. The opposite happens in theatre, the 

intermediate position is achieved first, then the final position.  Once the patients‟ maxilla is 

moved into its new position, it is secured using bone plates and screws. The patients‟ 

mandible is then sectioned and moved into line with the final clear self cure acrylic wafer 

and is fixed using bone plates and screws. The patients‟ dentition is held together in this 

wafer in order to hold the new skeletal position. 

   

 2.4   3Dimentional printed skull models 

With the introduction of Rapid Prototyping (R.P.) from digital images, medical anatomical 

models are being used more and more as an aid for surgical planning. They allow 

preoperative simulation for surgeons via virtual images on the screen and in the form of 3D 
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printed skull models. The information taken from Cone Beam Computed Tomography 

(CBCT), Magnetic Resonance Imaging (MRI) and Ultra Sound scans allows the 

production of 3D skull models using 3D rapid printing machines. (Figure.2.8)  

 

 

   

 

 

 

 

                                  Figure.2.8  Rapid prototype 3D printer. 

For orthognathic surgery planning these 3D printed skull models are of great value as they 

allow the surgeon to see all the anatomical areas and provide a greater understanding of 

what to expect when in theatre. In addition, the 3D printed models (Figure2.9) allow for 

preoperative contouring of bone plates, indicate the size of bone graft which will be 

required and display what will happen should the mandible auto-rotate. 

 

 

 

 

 

 

 

          Figure.2.9  3D model made from volumetric CT image data. 

At present the surgeon has lateral cephalographs, X-rays and dental casts of the dentition 

and alveolar areas on which to plan their surgery. The inclusion of this new level of 
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technology would greatly enhance and improve planning, save on theatre time and help to 

explain the procedure to patients. Another added feature is their use as a teaching aid.  

 

At present, a 3D printed skull model replicates well, the hard tissue areas of the skull due 

to the bone density being captured in the CT scanned image.  The same cannot be said for 

the dentition which is made up of different tissue to bone. The dentition produces various 

inaccuracies due to its enamel and dentine composition, dental restorations and orthodontic 

attachments. These errors are consistent when using either a multi-slice CT or CBCT 

scanner. CBCT scanning is recommended for orthognathic planning, due to the fact that it 

exposes the patient to lower levels of radiation, Swennen et al (2007). In this study it is my 

aim to create a 3D printed skull model from a CBCT scan and successfully remove the 

inaccurate dentition, replacing it with a maxillary dental casts made from impressions 

taken directly from the natural teeth. If successful the adapted 3D printed skull model 

would allow surgeons preoperative simulation and planning opportunities but with the 

added advantage of having dimensionally accurate dentition. It is hoped that with the new 

dentition in position, orthognathic surgery planning could be carried out using 3D printed 

skull models rather than by using facebows and dental articulators with their limitations 

and inaccuracies. 
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Literature Review 
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There is a considerable array of literature available which offer opinions on the use of 

articulators and facebow systems for Orthognathic model surgery planning. Orthognathic 

model surgery planning is routinely carried out on semi-adjustable articulators; the 

maxillary dental arch is transferred to the articulator using a facebow registration of 

anatomical points on the patient‟s face. The facebow recording relates the maxillary cast to 

the upper arm of the semi-adjustable articulator using three points of reference, the 

condyles or the auditory meateae, the maxillary occlusal plane and orbitale. These 

recordings were assumed to reproduce the patients‟ maxillary relationship with the 

mandibular condyles. Ellis et al (1992) and Gateno et al (2001) both point out that semi 

adjustable articulators were never designed for use in Orthognathic model surgery 

planning. They both recognised that the upper arm of the semi-adjustable articulator is 

universally accepted to replicate the Frankfort horizontal plane. However, Gateno indicated 

that when taking a facebow recording the condylar rods were aligned to the centre of the 

condyle and the orbital pointer was aligned to orbitale, those points recorded a plane 

known as the axis-orbital plane which was approximately 13 degrees steeper than the 

Frankfort horizontal plane. Therefore there was a disparity between the planes which 

introduced an error when mounting the maxillary cast onto the semi-adjustable articulator. 

 

3.1   Facebow registration 

Ferrario et al (2002) had similar findings when he assessed the reliability of facebow 

transfer. Ellis et al (1992) carried out a study on the accuracy of facebow transfer on 25 

patients using a Hanau facebow and semi-adjustable articulator. The aim was to test the 

accuracy of transferring the facebow recordings from the patients onto the semi-adjustable 

articulators and compare the mounted maxillary casts with the planes identified on the 

cephalograms with particular attention being given to the maxillary occlusal plane angle. If 
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the maxillary occlusal plane angle is not replicated accurately on the semi-adjustable 

articulator then any subsequent model planning carried out on the mounted casts would be 

incorrect and would produce an inexact inter-occlusal wafer position, therefore affecting 

the final outcome in the operating theatre. The results of the study showed that the 

maxillary occlusal plane angle differed by 7 degrees on average from that identified from 

the cephalogram. With the exception of two cases, the maxillary occlusal plane angle was 

steeper on the semi-adjustable articulator than that taken from the cephalogram. Ellis et al 

(1992) stated, that in order to correct this inaccuracy, the maxillary occlusal plane angle 

should be observed when the maxillary cast was on the bite fork prior to it being attached 

to the semi-adjustable articulator. If the maxillary occlusal plane angle was different to that 

taken from the cephalogram, the facebow should be rotated up or down until the maxillary 

occlusal plane angle was similar to the cephalogram prior to mounting the cast onto the 

semi-adjustable articulator.  

 

Gonzalez and Kingery (1968) detected errors in facebow transfer. A study was carried out 

on 21 patients, cephalograms and facebows were taken and used to measure 3 different 

planes of reference which were then measured against the Frankfort horizontal plane, the 

maxillary ridge plane, the occlusal plane and the axis orbital plane. The results indicated 

that none of the true planes were maintained when the maxillary cast was transferred to the 

semi-adjustable articulator. However, the axis orbital plane had the least amount of error 

with the maxillary occlusal plane having the worst. Semi-adjustable articulators have been 

engineered with the upper horizontal arm representing the Frankfort horizontal plane, 

however, not every patient has a horizontal Frankfort plane as highlighted by Downs 

(1956) (Figure.3.1) Therefore inaccuracies will be a common issue when using the 

currently available facebows and semi-adjustable articulators.  
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 Figure.3.1  Variations of Frankfort Horizontal plane. Discrepancies   

                 highlighted by Downs (1956). 

 

 

3.2   Potential solutions to facebow inaccuracy 

 Gonzalez and Kingery (1968) recommended that a compensation for this error could be 

achieved in one of two ways. The orbital pointer could be placed 7mm below orbitale 

during the facebow registration or the orbital pointer be placed 7mm above the orbital 

indicator of the semi-adjustable articulator when mounting the casts. The latter method was 

suggested also by Stade et al (1982). Gonzalez and Kingery (1968) pointed out that this 

would put the arbitrary condylar axis point and the orbital pin on approximately the same 

level as a horizontal plane. This reference would then be transferred from the patient to the 

semi-adjustable articulator providing a more reliable reference transfer, as the orbital 

indicator and the condylar axis were then related to a horizontal plane on the semi-

adjustable articulator, providing improved accuracy for the transfer of the maxillary cast. It 

has been emphasised that the effect of a 7mm shift of the orbital pointer was still an 

unknown factor and the figure was an average and if greater accuracy was needed then an 

actual measurement of the distance of the condylar axis point to the Frankfort horizontal 

plane should be used. Pitchford et al (1991) and Bailey and Nowlin (1984) suggested that 

the orbital pin height be increased to 18mm and 16mm above the orbital indicator. 

Interestingly it appeared that there was some debate between authors as to how much 
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compensation should be carried out prior to the mounting of the maxillary cast onto the 

semi-adjustable articulator. However, they were unanimous that there was an error when 

transferring the facebow to the semi-adjustable articulator.     

 

Sharifi et al (2008) stated in such cases where there was a discrepancy between the 

maxillary occlusal plane angle on the cast and the upper arm of the semi-adjustable 

articulator this would result in inaccuracies between the patients‟ maxillary occlusal plane 

angle and the Frankfort horizontal plane. Sharifi et al recognised that this could cause 

problems when impacting the maxilla in model surgery. This would lead to a false 

prediction and depending on the difference in the maxillary occlusal angle, would require a 

greater degree of maxillary impaction than was predicted on the semi-adjustable 

articulator. It has been pointed out that it would be good practice to check with the lateral 

cephalogram as to the accuracy of the maxillary occlusal plane when mounting the cast 

onto the semi-adjustable articulator, a method described also by Ellis et al (1992). 

 

3.3   Orthognathic surgery planning systems 

Bamber et al (2001) carried out a validation of the two most popular orthognathic model 

surgery techniques in the United Kingdom, the Lockwood keyspacer technique (Figure. 

3.2) and the Eastman anatomically oriented technique (Figure.3.3). 
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         Figure.3.2 Lockwood Technique.                Figure.3.3 Eastman Technique.                

The Lockwood keyspacer technique involves inserting a thin layer of plaster or a plastic 

keyspacer between upper and lower models; they are usually 7mm in thickness and shaped 

to the angle of the trimmed dental model base. The spacers are held in place using elastics, 

plastic locks and in some cases magnets. This technique was first used on simple hinge 

articulators; however, the system has been enhanced with the use of facebow registration 

and anatomical articulators.  

 

The Eastman anatomically orientated model surgery technique uses a facebow recording 

taken in a supine centric relationship. This involves the patient lying flat on their back with 

their face upwards. The facebow position is transferred onto the semi adjustable articulator 

and then the models are articulated. Horizontal and vertical lines are drawn on the 

mounting plaster to register the pre-operative positions of the maxilla and mandible.  

 

The purpose of this study was to determine the accuracy of the positioning of the maxillary 

cast in relation to a prescribed treatment plan. The results found that the Lockwood 

keyspacer technique disadvantaged patients with a steep occlusal-Frankfort plane angle 
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who required a large vertical impaction. This was due to the keyspacer mounting plaster 

being too thick (7mm). When a large impaction was required the keyspacer mounting 

plaster would be rendered inadequate which would then require the maxillary model to be 

trimmed. This would affect the thickness of the cast and would also result in the angles 

parallel sides being lost. The angles parallel sides are ideal for detecting any unwanted 

rotation of the maxillary cast. The Eastman technique does not have angle trimmed edges 

therefore was in danger of „building in‟ unwanted rotations. The Eastman technique uses 

wax to hold the post-operative position which could contract on cooling again altering the 

position of the plaster segments allowing dimensional inaccuracy to occur. Bamber et al 

(2001) concluded that both surgery planning systems failed to carry out the prescribed 

treatment plans accurately. However the statistical report showed the errors in the 

Lockwood technique to be higher in the vertical and anterior-posterior planes than the 

Eastman technique, but Lockwood was better in the medio-lateral plane.  

 

3.4   Orthognathic articulators and facebows  

It would appear that inaccuracies were evident when using a facebow and a semi-

adjustable articulator system for Orthognathic prediction surgery. The need for an 

improvement in accuracy of facebow transfer, better designed articulators for orthognathic 

model surgery planning purposes and the use of 3D skull models would seem to hold the 

key to a more accurate prediction for Orthognathic planning. Walker et al (2008), Sharifi et 

al (2008), Ellis et al (1992), Pitchford et al (1991), Bailey and Nowlin (1984), Stade et al 

(1982) and Gonzalez and Kingery (1968) have all recognised inaccuracy occurring during 

transfer of the maxillary model with the facebow at a fixed maxillary occlusal plane angle. 

Walker et al (2008) emphasised the importance of having the maxillary cast accurately 

mounted on the semi adjustable articulator, similar to the patients‟ maxilla relative to the 

base of the skull. The reason for this required accuracy was to enhance the precision of the 
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model surgery planning. Walkers‟ facebow technique involved recording the patient 

natural head posture using a facebow with a spirit level attached, instead of with an orbital 

pointer. This worked by having the patient sitting upright in a chair two metres away from 

a full length mirror. A line three millimetres thick runs vertically down the mirrors full 

length. The patients are instructed to look into their own eyes in the mirror, making sure 

the vertical line on the mirror is centred on the reflected image. This is consistent with the 

system Moorrees and Keen adopted for measuring the natural head position, (1958). 

 

Walker compared his new facebow technique with the conventional methods of facebow 

recording. Six patients were recruited, lateral cephalograms were taken as well as two 

facebow recordings, one using the condyles and an orbital pointer to record left orbitale, 

the other method used the condyles and a spirit level to record the natural head position in 

a horizontal plane. All casts were mounted on a semi-adjustable articulator. A flat plate 

was placed across the maxillary occlusal plane of each mounted cast and the angle 

measured with a protractor. The results were compared to lateral cephalograms to check 

the accuracy of the maxillary occlusal plane angle. The results showed obvious differences 

between the two methods. The casts mounted using the spirit level systems were within 1º 

of the patients‟ maxillary occlusal plane angle, whereas, the cast mounted with an orbital 

pointer were -10.75º and 11.5º. It was therefore evident that the spirit level facebow 

system, where the patients natural head position was recorded, was a more accurate system 

for mounting the patient‟s maxillary occlusal plane angle onto the semi-adjustable 

articulator.  

 

Walker et al (2008) explained the need for an orthognathic articulator to carry out accurate 

surgery prediction as semi-adjustable articulators were designed for constructing dental 

prostheses and have arbitrary settings which do not take into account patients with 
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asymmetry problems. Walker et al (2008) designed an orthognathic articulator that worked 

together with an orthognathic facebow that was engineered to accommodate patients with 

large and significant asymmetry. The orthognathic articulators design requirements were 

such that the condylar components were adjustable in the vertical, anterior-posterior and 

lateral direction. In addition, the condylar components were also able to rotate about a 

vertical axis. It was also desirable to replicate the movements of the mandible by having 

the lower model section of the articulated cast move as opposed to the upper cast on other 

articulators.  

 

In Walkers‟ study the orthognathic facebow was used to record the maxillary positions of 

twelve patients. Six had significant jaw asymmetry and six did not. The facebows were 

taken using a centred circular spirit level to record the natural head position. Linear spirit 

levels were centred on each condylar rod, to ensure the lateral condylar rods were 

horizontal. After removal from the patient, the facebow was adjusted by reducing the 

condylar connectors laterally by 10mm on each side, to compensate for the thickness of 

soft tissue over the condylar head. The facebow was then located on the orthognathic 

articulator.  

 

The results obtained confirmed that the articulator did not show significant difference for 

asymmetrical and non-asymmetrical patients. When comparing the maxillary occlusal 

plane angle on the articulator to the posterio-anterior cephalogram there were no 

significance clinical differences. From this study it would appear that Walker et al (2008) 

has made considerable advancements in eliminating the errors previously associated with 

facebow and articulators for Orthognathic planning. However, Gold and Setchell (1983) 

suggested that some of the gross error in facebow transfer is due to poor understanding and 

insufficient practice by the individual operating the facebow.  It is therefore paramount that 
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further studies be carried out on larger groups of patients using different operators to 

determine how different operators affected the accuracy of Walker‟s orthognathic facebow 

and articulator system. Other factors that could affect the results of future studies was 

Walker‟s 10mm reduction in the inter-condular rods distance to compensate for the 

thickness of soft tissue at the condyles head which would not be standard for all patients 

and could lead to error. The technique does not use skeletal registration; the planning 

system uses dental registrations for its prediction, which could be limiting when other 

skeletal factors have to be addressed.   

 

3.5   Construction of 3D Models 

Winder and Bibb (2005) stated that the construction of a 3D model requires a number of 

steps. A high quality volumetric 3D image of the anatomy to be modelled is required. This 

is processed to separate the region of interest from the surrounding tissues. Data 

interpolation is required to convert the image data volume into an isotropic data set for 

mathematical modelling. The information (data) taken by the CT scanner is converted into 

a different format to enable the 3D modelling computer program to produce the 3D model. 

It was pointed out by the authors that in order to carry out these steps the operator requires 

significant expertise and knowledge of medical imaging, 3D model processing, computer 

assisted design, manufacturing software and engineering processes. These 

recommendations were made also by L.C. Hieu et al (2005) and D.T. Pham and R.S. Gault 

(1997).  

 

3.5.1  Models constructed using additive technology 

Winder and Bibb (2005) explained that there are many types of rapid prototyping 

processes available, however the two main processes used in medicine are 

Stereolithography (Figure.3.4) and Fused Deposition modelling (F.D.M.) (Figure.3.5). 
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        Figure.3.4  Stereolithography Modelling process.  

In Stereolithography the raw data from the CT scan is in a DICOM format (Digital Image 

Communications in Medicine) and it is converted into an S.T.L. (Single Tessellation 

Language) format prior to feeding the information into the rapid prototyping machine. This 

slice data is then fed into the computerised rapid prototyping machine which consists of a 

bath of photosensitive resin, a model building platform and a ultra-violet laser for curing 

the resin. A mirror which is computer controlled is used to guide the laser onto the surface 

of the resin where it is then hardened. This process continues on a slice by slice basis until 

the model is complete. The layers are cured and bonded together to form a solid object, 

building from below to above. The resin platform is then lowered into the resin bath and a 

new layer of resin is wiped across the previous hardened surface using a wiper blade. This 

next layer is then exposed to the ultra violet laser and cured. This process is continued until 

the model is completed. It is then taken to the ultra-violet cabinet and cured for a further 

period of time. 
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     Figure.3.5  Fused Deposition Modelling process. 

Fused Deposition Modelling uses a similar technique, by building the model layer by layer. 

The main difference is that the layers are deposited as a thermoplastic material that is 

extruded from a fine nozzle not unlike an electric glue gun. Acrylonitrile Butadiene 

Styrene (A.B.S.) is the most widely used material for building models in this fashion as it 

has good dimensional stability; it is rigid and relatively inexpensive. The model is 

constructed by extruding the heated A.B.S. from a fine nozzle onto a foam surface 

following a path guided by the model data. When a layer has been deposited, the nozzle is 

raised on top of the previous layer, where the next layer will be deposited. This is repeated 

until the model is completed. Support structures are needed for the constructed models and 

are added at the design stage; they are made of a different thermoplastic material to the 

model and are applied from a second nozzle; this is to allow support for the over-hanging 

areas of the model. These structures are then removed once complete curing of the model 

has taken place. There are however support structures that are made of a soluble material 

which would dissolve when immersed in a water bath. This process would obviously save 

on construction time and reduce the risk of any possible damage that might be encountered 

when removing these structures by hand. Winder and Bibb (2005) indicated other features 

that would speed up model production using this form of prototyping such as multiheaded 

jets as opposed to a single headed jet. This enables models to be constructed more rapidly 

and therefore saves time and expense.  
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           Figure.3.6  Selective Laser Sintering Modelling process.  

Selective Laser Sintering (Figure.3.6) is a rapid prototyping technique similar to 

Stereolithography which uses commercially small powders of plastic, metal, ceramic or 

glass which are cured with an infra-red laser. The main benefit of using this method is that 

it does not require any support structures because the part being constructed is surrounded 

by unsintered powder at all times.  

 

 

 

 

 

 

      Figure.3.7 Laminate Object Manufacture modelling process.  

Laminate Object Manufacture modelling (Figure.3.7) systems build models from layers of 

paper that have a heat activated adhesive on one side. Sheets are piled up one at a time as a 

laser cuts the outline shape. A heated roller is used to compress and activate the adhesive 

of each sheet bonding them together. The platform moves down once the cutting is 

complete to allow a fresh sheet to be rolled into place, the platform is returned to a layer 

below the previous position and the process starts again until the model is complete. The 

surplus material acts as a support for the model structure and is carefully removed once 
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construction is complete. This type of prototyping is very cost effective, but there are 

difficulties with internal voids and cavities which are often present in human structures. 

 

 3.5.2   Models constructed using subtracting technology 

Another rapid prototyping system is computer controlled milling; but this technique has its 

limitations. Computerised controlled milling reduces a block of material to a model on a 

layer by layer basis, the main drawback being when a model has internal features or 

complex surfaces facing a number of different directions e.g. in a skull. Consequently 

computer controlled milling is not an ideal method for skull manufacture.  

 

Winder and Bibb (2005) discussed problems associated with medical rapid prototyping and 

indicated that the imported image was the main factor for model inaccuracy. They stated 

that CT data did not have the same distortion as Magnetic Resonance imaging and models 

produced from this source had proved to be more dimensionally accurate. CT data contain 

a number of pixel images of slices through a human body. The pixel size and slice 

thickness are the key ingredients in establishing the size and scale of the data. This is 

calculated by dividing the field of view by the number of pixels. The field of view was 

determined by the radiographer at the time of scanning. Failure to have these calculated 

would result in an inaccurate model. A typical number of pixels in the x and y axis is 

512x512 or 1024x1024. 
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  Figure.3.8 The effects of gantry tilt on the image, 15º gantry tilt on the left   

         picture and the same skull with 0º gantry tilt right. 

  

Numerical error in these parameters will produce inaccuracies when the data is being 

translated from one format to another, resulting in a wrongly scaled model. Errors in slice  

thickness would lead to incorrect scaling of the third dimensions again leading to distortion 

of the model. It is also important to have the correct gantry position prior to CT scanning 

(Figure.3.8); failure to do so results in distortion of the image data and leads to 

misalignment of the slices again producing an inaccurate model. Other problems are the 

various artefacts that could cause difficulty when producing a 3D model. Metal artefacts 

are usually found in the maxilla and mandible areas due to dental fillings and other metal 

restorations as well as plates and screws. (Figure.3.9) 
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    Figure.3.9  Artefacts due to dental restoration and               

  orthodontic brackets. 

 

These artefacts produced scatter rays around the maxilla and mandible. The scatter rays 

can be removed slice by slice with editing of the original CT scan image. Movement 

artefact occurs when a patient is restless at the time of image acquisition. The size of 

movement during the scan shows up as movement artefact on the model giving an obvious 

error in model dimensions. It is therefore important to have a satisfactory quality of data to 

ensure accuracy of the model being produced. Image threshold artefacts occur where the 

bone is particularly thin and when the model is constructed small holes appear. Bone has a 

CT number range from approximately 200 to 2000 Hounsfield units; this range was unique 

to bone within the human body. When thresholding the CT data with conversion software, 

a new CT number value is determined and if different from the original range, this can 

cause thin bony areas to be lost when the 3D model is produced. The authors conclude that 

image sources should be reviewed thoroughly, before image transfer and processing, 

because they influence greatly the quality for building and producing the model. 

 

Choi et al (2002) analysed the errors in medical rapid prototyping. They used a dry human 

skull and made 3D virtual and rapid prototype models. Both the skull and models were 
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measured using several anatomical landmarks to test for the accuracy of the models. Table 

3.1 and 3.2 The landmarks were chosen as they are well understood and are widely used in 

clinical medicine and dentistry. They could be identified on bony surfaces and were easy to 

recognise and produce; this has helped to eliminate errors in the measuring process. Linear 

measurements were used and classified into two groups, internal measurements and 

external measurements. Callipers were used to record the linear distance between two 

landmarks on the skulls and a distance measuring function was used for the 3D virtual 

model using the measuring function of Magicview software programme (Materialise 

Belgium) to measure the same 2D linear distance points as for the skull models. Table 3.3 

The authors compared their findings to others who had carried out similar studies; Lill et al 

(1992) who produced a model from CT data by milling hardened polyurethane foam. Klein 

et al (1992) and Barker et al (1994) used stereolithographic models. Kragskov et al (1996) 

carried out a study on patients with four different syndromes. Since the patients‟ bones 

could not be directly measured accurately they compared the 3D visual models and the 

stereolithographic models. The results showed that Choi et al (2002) achieved better 

accuracy and stability in their method for producing rapid prototype models than the other 

quoted authors. The authors stated that using thinner layers when constructing rapid 

prototype models would increase the accuracy. They also reported that the CT scanning 

stage was of great importance as this influenced the direct accuracy of the rapid prototype 

model. Other factors which affected the accuracy were artefact, gantry tilt, patient 

movement, field of view, pixel dimensions (512 x 512). The authors mentioned the 

conversion from DICOM to S.T.L. file format as a possible avenue for error and they 

highlighted their concerns for rapid prototype manufactures. The interpolation software 

can have problems in its ability to deal with geometric incompleteness and surface 

smoothing. 
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       Table 3.1 List of landmarks used for measurement which are co-ordinate dependant they are marked when the Frankfort horizontal plane of the     

                       skull is positioned parallel to the horizontal.
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Table 3.2  Landmarks and distances measured for compairing the dimentions of the dry      

      skull, the 3D visual model and the Rapid prototype model: Frontal view(A) Skull 

      base (B) Sagital view (C) and mandible (D). 
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                Table 3.3  Comparison of other research on rapid prototype skull. 
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The interpolation software will estimate the increased pixel size of the raw data to fit the 

3D image prior to producing a rapid prototype model which can contribute to dimensional 

error. Errors can also occur in the production of a rapid prototype model which included 

residual polymerisation, removal of support structures, laser diameter, laser path and 

finishing of the rapid prototype model. 

 

Choi et al (2002) concluded that measurement error is inevitable including human error 

due to landmark location and digitisation. Incorrect calibration of measuring instruments 

can also affect the outcome.  

 

3.6  Use of 3D models in medicine 

Alberti (1980) was probably the first to recognise the possibility of producing 3D models 

from Computed Tomography scans. This process has developed and advanced over the 

years and it is now possible to create rapid prototype medical models from Computed 

Tomography Scans, Magnetic Resonance Imaging and in some cases Ultrasound. Medical 

Rapid Prototyping (MRP) in medicine is becoming more popular due to the reduction in 

cost to produce these models. They are widely used in a number of specialties, for example 

Orthopaedics, Neurosurgery and Maxillofacial surgery, Winder and Bibb (2005). MRP 

helps the surgeon to pre plan surgical procedures, these procedures can help explain the 

opperation to the patient, improve diagnostic ability and it acts as a guide for the surgeon 

during the operation helping to reduce theatre time, Terai et al (1999), Guyuron and Ross 

(1989). 

 

There are different methods for obtaining 3D models of patients‟ skeletal structures. 

Winder and Bibb (2005) gave an account of their combined 17 years of experience
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working with MRP technology. MRP is defined as the manufacture of dimensionally 

accurate physical models of human anatomy. These models have been used more 

extensively in the medical specialties of Orthopaedics and Neurosurgery. The source of 

image data for the creation of a 3D medical model is typically from CT scans; however, 

M.R.I. and Ultra sound has also been used. 

 

The technology for producing 3D models has been available since the late 1980‟s, but due 

to production costs they have only been used in complex cases. Over time the cost of this 

sophisticated computer software has become more affordable and this has allowed this type 

of technology to be more widely available. The improvements in medical imaging 

technology, 3D image processing and the involvement of engineering technology methods 

have made it clear that this type of technology can only be of benefit to the surgeon and to 

the patient. 

 

Winder and Bibb (2005) conducted a European multicentre study. A questionnaire was 

sent out to members of the Phidias network, which was established in 1998. Their goal was 

to demonstrate the value and usefulness of individual anatomical models for complex 

surgical procedures. The 172 responses indicated the range of applications for 3D printed 

models which included, the following: to aid the insertion production of surgical implants, 

to improve surgical planning, to act as orienteering aids during surgery, to act as a 

diagnostic aid, to provide preoperative simulation, to show patients what can be achieved 

prior to surgery as well as to prepare templates prior to resection. They also included the 

use of 3D models for the diagnosis of the extent of tumours (19.2%), congenital deformity 

(20%), post-traumatic deformity (15%), dento-facial problems (28.9%) and others (16%).  
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Petzold et al (1999) used over 200 medical rapid prototype models for aiding the 

correction of facial Craniosynostosis, Aperts syndrome, Otomandibular dysostosis, 

Hemifacial microsomia and Traumatology. The authors claimed that surgeons would be 

able to practise on the model with their usual surgical tools which allowed for the rehearsal 

of different surgical approaches. As a result of this tactile opportunity with the model it 

was suggested that this out-weighs the visualised model on the screen monitor, due to its 

ability to “touch and comprehend” allowing the surgeon to carry out a realistic simulation. 

Petzold et al (1999) claimed “The 3D model was often superior to a mere 3D visualisation 

because it enabled the surgeon to answer important questions during surgical simulation 

that defined the intervention strategy and minimised the need for ad-hoc decisions to 

circumvent unexpected intra operative problems.” 

 

3.7   Use of 3D models in Orthognathic Surgery 

MRP, is relatively new in the field of orthognathic surgery planning; 3D printed skull 

models were described as far back as 1989 by Guyuron and Ross. They described their 

experience of using pre-surgical skull models for the planning of accurate cranio-

maxillofacial surgery on 22 patients. The authors believed that due to the expense of 

producing these models they should be used primarily in cases with complex asymmetric, 

maxillofacial and craniofacial disharmonies. Guyuron and Ross (1989) explained the 

advantages of using 3D printed models, to outline the anatomy of the surgical site and how 

this could help to avoid unexpected problems. It could reduce the operation time by 

allowing surgeons to practise and produce a plan for eliminating difficulties prior to 

surgery. The authors also indicated that attachments could be prefabricated, e.g. bone 

plates, condylar prostheses and reconstruction plates prior to surgery, thus saving time and 

money. In addition, the omission of the overlying soft tissue resulted in greater skeletal 
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exposure allowing the possibility of model surgery to be performed more accurately. 

However, it was noted that this would not necessarily correct soft tissue changes when 

there are asymmetric movements. The authors claimed that in dealing with bone tumours, 

3D printed skull models were an ideal tool. A 3D printed skull model detailed the 

approximate extent of the tumour and could enable the surgeon to plan reconstructive 

measures preoperatively. The authors concluded that it would be unwise for trainee 

surgeons to perform a difficult surgical procedure without practicing the procedure 

preoperatively on the 3D printed skull models of the patient concerned. In addition, rather 

than practising procedures on normal cadaver skulls which did not represent the true 

craniofacial deformity of the patient, the surgery could now be performed and practised on 

the actual patients‟ model skulls. Guyuron and Ross (1989) stated that follow up skull 

models served as a comparative reference study for any growth changes that took place 

postoperatively, but this would require further CT scanning. 

 

Guyuron and Ross (1989) also described the drawbacks of 3D printed skull models, for 

example their inability to predict how the soft tissue would respond after the correction of 

skeletal unbalance. Another concern was the level of radiation exposure which was greater 

than in routine radiograph due to acquiring information from the CT for the construction of 

a 3D model.  

 

Karcher (1992) used a technique involving titanium mini-screws being inserted into the 

patient as points of reference to enable plaster dental casts to be inserted into a 3D model. 

The screws were inserted under local anaesthetic and then a CT scan was taken using 

1.5mm slice thickness with the titanium screws in position. The Zygomatic-alveolar crest 

and the nasal aperture were the preferred sites for screw attachment. The titanium mini-

screws had no artefact in the 3D visualisation of the patients CT data, therefore they were 
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ideal as a marker for this purpose. The CT data was converted to produce a life size model 

of the patients‟ skull from a milling technique known as a “Styrodur” model. The milled 

model was attached to a platform prior to removal of the 3D milled models dentition. A 

splint was constructed with the upper and lower indentations marks with 3 strong metal 

wires, the ends of which were positioned in the middle of the cross on the screw. The 

plaster dental models were placed into the prepared splint and located using a device that is 

fixed to the three reference points (titanium mini screws) with two further arms fixed to the 

supraorbital rims of the patient.(Figure.3.10),(Figure 3.11) and (Figure. 3.12). 

 

 

 

 

 

 

 

     Figure.3.10  The transfer device, with two arms for supraorbital fixation   

               and three arms for fixing to the reference screws. 

 

 

 

 

 

 

 

 

   Figure.3.11 The transfer device detached from the main platform ready  

                  for use. 
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 Figure.3.12  New maxillary position attached to the transfer device. 

With the reference arms clamped in their positions, the device was removed from the 

patient and transferred to the milled model attached to the platform for positioning of the 

plaster dental arches. The wires on the occlusal splint are located on the mini-screws on the 

milled model. Once the position was achieved the device was removed. The milled model 

was then used to predict the new maxillary position. The device was sterilised and used to 

reposition the patients‟ maxilla in theatre. The teeth of the maxilla were positioned onto the 

bite arm. The arms of the device were secured to the reference points (titanium mini screws 

and supraorbital rims) the maxilla was placed into its new position and held with mini 

plates and screws. The device was removed and the mandible was osteotomised and fixed 

to the maxilla to the desired occlusion. The author declared that the mini screws on the 

milled model were within 1mm of accuracy to those on the patient. He stated that the 

patients‟ anatomy was successfully transferred to the milled model as the technique was 

confirmed during surgery. Karcher (1992) highlighted that more complicated movements 

involve more precise planning, as opposed to conventional methods. Simple movements 

can be planned using cephalometric analysis and plaster models. The author claimed that a 

3D visualisation or an individual 3D model of the patient, where the dentition is involved, 

is useless unless the correct proportional dentition is integrated. The author stated that the 

transfer device was highly accurate; but there was no real evidence of the level or measure 

of this accuracy other than the titanium mini screws being out of alignment by 1mm. The 
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author admitted the operation is prolonged due to the use of the transfer device. This is 

unfortunate as 3D models should shorten theatre time due to the preplanning that can be 

carried out prior to surgery. 

 

Fuhrman et al (1994) developed a technique to attach dental casts onto a 3D-CT milled 

model of a patient with an asymmetric deformity. The skull model was milled using a 

milling technique as described by Lambrecht and Brix (1990). The dental casts were 

replaced on the milled model. Reference points were marked anatomically using a template 

(Figure.3.13) to ensure the vertical, sagital and transverse dimensions of the casts in the 

model skull were correct. 

 

 

 

 

 

       

 

            Figure.3.13 Specialised transfer template. 

The mandibular section of the skull model had wires of fixed length passing through the 

condyle and coronoid process to attach it to the base of the skull. (Figure.3.14). 
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                    Figure.3.14  Wire attachments at condyles and coronoid process. 

A second set of models were mounted on a semi-adjustable articulator after facebow 

transfer. To improve accuracy during the model surgery on the articulator, cephalometric 

distances between the maxillary and the mandibular planes to the occlusal plane were 

transferred to the cast models. Surgical plans were carried out on both the articulator and in 

the skull model. A Le Fort 1 osteotomy was carried out, with a 1mm advancement of the 

maxilla, impaction on the left side 3mm, downward movement on the right side by 3mm 

with a rotation to correct the dental alveolus to the skeletal midline. They compared the 

adapted milled model to the conventional surgical plan carried out on the semi-adjustable 

articulator. 

 

The authors declared that the 3D model surgery with integrated models have a number of 

advantages as follows;  

 3D visualisation and tactile feedback.  

 Assessment of the planned osteotomy.  

 Assessment of the most optimal segment displacement. 

 Assessment of dento-alveolar symmetry. 

 Gaps at osteotomy sites with regard to bone grafting. 

 Preparation of fixation devices.  
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Fuhrman et al (1994) continued by declaring that 3D models with integrated cast models of 

the dentition were a valuable tool for detailed treatment planning and improving the 

orthognathic prognosis. The present system of orthognathic planning is largely limited to 

only the dento-alveolar dental area. The authors conceded that the relationship of dento-

alveolar structures to the skeletal base could be exactly predicted using Cephalometric 

distances between the maxillary and mandibular planes. They also added that a more 

accurate transfer of the cast models to the 3D skull model could be obtained by using a 

facebow transfer. The facebow would have a degree of unpredictability as a result of the 

variable overlying soft tissue thickness; however, it would provide a greater degree of 

accuracy, due to the location of anatomical points of reference. Fuhrman et al (1994) 

concluded that orthognathic planning prediction was enhanced by using 3D skull models 

for the correction of complex facial structures where conventional treatment planning with 

semi-adjustable articulators had failed to give the same quantity of information. 

Studies such as Lill et al (1992) for milled models, Barker et al (1994) and Klein et al 

(1996) for stereolithographic models and Kragskov et al (1996) for C.T. data and 3D 

models showed that the difference between the 3D model and the skull is approximately 

1%, which is well inside the parameters for clinical use. The authors stated that the 

accuracy depends on the technique for positioning the plaster casts into the 3D models. 

They also highlighted that others have integrated dental casts into the 3D milled models 

however there was no mention of the accuracy of their procedure. The authors concluded 

by recommending the use of facebow transfer of the casts into a 3D model together with 

cephalometric analysis to check for positional accuracy. 

 

Sailer et al (1998) used conventional radiographs, linear CT scans, 3D CT images and 

twenty one rapid prototype models to pre-plan operations. The authors pointed out that 

rapid prototyping models only become cost efficient when they are used as a tool leading 
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to improvement in the quality of treatment, either by allowing more precise surgical 

planning, the construction of templates and for implants, or by reducing the operation time. 

These points were also made by L.C. Hieu et al (2005) who continued that for research 

purposes it was important to build up a collection of rapid prototype models of rare cranio-

maxillofacial deformities. The authors claimed that studying the models when handling 

them helped to give more direct information than when simply viewed with the 3D C.T. 

scanned images.  

 

Santler et al (1998) gave an account of 10 years experience with 541 3D skull models from 

346 patients, 187 male and 159 female. Their ages varied from 1 month to 83 years. The 

authors stated that for diagnostic purposes each model provided additional 3D information. 

Prior to surgery precise measurements of distances, angles and the localisation of 

important structures could be mapped out exactly. Some of this information could be 

achieved visually from the CT scan on the screen, however, after viewing this information 

a decision should then be made regarding the necessity for construction of a 3D model. 

Other applications for 3D models were for analysis of asymmetry, simulation surgery for 

complex cases, reconstruction of bone defects, for providing information to patients for 

consent purposes, education of students in surgery simulation and also in the scientific 

field. Due to the reduction in cost, 3D skull models were now being used in different areas, 

e.g. cleft lip and palate patients where growth studies using 3D skull models were used to 

monitor treated cases and for orthognathic surgery, where a comparison of pre and post-

operative positions would be viewed in 3D. The authors mentioned that for surgery 

simulations of complex cases, simulation should be performed on the 3D skull model prior 

to the final surgery. The authors claimed that due to the fact that the resolution of CT 

scanning is not set high enough to shape the teeth accurately on the 3D skull model, in all 
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cases where occlusion plays a role, plaster models were or should be inserted into the 3D 

skull model.  

 

Santler et al (1998) commented on how excellent 3D skull models were for planning when 

the new plaster dentition had been fitted; but at no stage was information provided 

regarding how this procedure was carried out or how accurate the position of the plaster 

dental arches were on the 3D printed skull model. Santler et al (1998) introduced a new 

non-invasive method of reproducing the teeth of a 3D skull models with plaster dental 

casts. The procedure was tested on eight 3D milled models scanned from a plastic human 

skull. An inter-occlusal splint was made on plaster models and mounted in centric 

occlusion on the SAM articulator. Indentations of the occlusion were present on both sides 

of the splint. A prototype clamping fork was constructed and fixed onto three hemispheres 

of 18mm in diameter. The hemispheres were made of acrylic resin with plaster added to 

achieve radio opacity. This device was then attached to the inter-occlusal splint 

(Figure.3.15) and (Figure.3.16). 

 

 

 

 

 

 

           Figure.3.15 Hemisphere splint positioned in plastic skull. 
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          Figure.3.16  The scan with positioned hemispheres. 

The authors claimed that due to the fact that the hemispheres were far enough away from 

the teeth, approximately 1cm, there would be no interference with artefact from any dental 

restorations when the technique is used in patient cases. Prior to CT scanning, five 

additional hemispheres were added to the malar and frontal bones on the plastic skull; 

these references were used to gauge the accuracy of the 3D models produced. The inter-

occlusal splint was then placed into the plastic skulls dentition during the CT scanning to 

reduce movement artefact. The CT scanned data reproduced the hemispheres in the image 

as semi circles of different size. This enabled the contouring of the image to be more 

visible prior to model production. Five models were produced with a 3mm scan feed 

thickness, another three were made with 2mm, 4mm and 6mm scan feeds. The 

hemispheres on the 3D skull were measured prior to replacing the dental arches with 

plaster casts with an electronic gauge. The hemispheres appeared as a smooth surface on 

the 3D model and the clamping fork was fixed onto them. The clamping fork allowed 

reproducible opening and clamping. (Figure.3.17) 
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      Figure.3.17  The clamping fork engaging the radio-opaque    

                           hemispheres. 

 

The clamping fork was fixed to three hemispheres of the 3D model and to the skull to mark 

the position of the splint. After the clamping fork was opened, the 3D dental arch was 

removed and replaced with plaster models using the hemisphere splint. Electronic gauges 

were then used to measure the accuracy using the hemispheres as markers. The authors 

declared that for the 3D models made with a CT scan feed of 2mm and 3mm the 

hemispheres on the 3D models were easily defined and the error was less than or equal to 

1mm in all directions. They stated that the mean value of 0.44mm and 0.52mm was 

excellent for replacing the teeth. The scan feed for 4mm and 6mm 3D models showed the 

hemispheres were irregular in shape indicating the higher the scan feed the more inaccurate 

the milled 3D model becomes in all directions. Table 3.4 Statistical analysis of the data 

showed accuracy with scan distances of 2mm and 3mm (P=0.925) where as significant 

differences are found between 2mm and 6mm (P=0.009), 3mm and 4mm (P=0.014), 3mm 

and 6mm (P=0.005) and almost significant differences between 2mm and 4mm (P=0.056)  

In Chart 3.1 the small box plots for 2mm and 3mm scan feeds illustrates excellent results 

for reproduction of the hemispheres. The larger box plots for 4mm and 6mm scan feeds 

illustrate that the larger the scan feed, the greater reduction in precision of the hemispheres.
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               Table 3.4 Measurements on models with different scan feeds. 
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            Chart 3.1 Box plot diagram showing the results with the different scan feeds. 
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The author concluded that the clamping fork, when positioned onto the hemispheres 

attached on the splint, allowed for the accurate position of the plaster cast dentition on the 

3D model. However, the clamping fork will only fit when correctly positioned onto the 

hemispheres on the 3D model. This technique has certain problems, first, the precise 

accuracy of the prototype clamping fork and how it operates. Secondly, if the technique 

was to be carried out on patients, the positioning of hemispheres on the malar and frontal 

bones would not be guaranteed due to soft tissue movement of these areas. The eight 

models were all taken from the one plastic skull. To make this technique more robust a 

larger sample size and range of different skull shapes should have been scanned.  

 

Terai et al (1999) investigated the errors that were present when dental casts were 

integrated into a 3D model skull. The authors claimed that the accuracy of the 3D models 

had yet to be established and stated that errors could be produced from the following; 

 During CT scanning and data collection. 

 During the conversion process of the CT data to allow for model production. 

 Due to errors during model fabrication and the errors occurring during replacement 

of the 3D dental arches with plaster dental casts.  

Before obtaining a CT scan, three ceramic chips measuring 3mm in diameter were pasted 

at 3 reference points on the face of the patient. On the upper model Nasion (N) and Nasion-

Orbitale (N-Or) and in the mandible, the mandibular plane and Menton (Me). A bite fork 

was used to record the occlusion with a material not mentioned by the authors. The bite 

plate was held between the upper and lower teeth during CT scanning to maintain the same 

mouth opening as the bite fork produced. The CT scans were obtained with a 2mm slice 

thickness with an exposure time of 3 seconds. This size of slice thickness however does not 

follow the opinions of previous authors as they state that the thinner the slice thickness the 

more accurate the 3D model will be. The processing of the data was carried out on an 
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“Endoplan” workstation where the bone data of each slice of CT image was traced with a 

computer. The contour of the bone tissue including the three ceramic chips were traced on 

the CT image of each slice to enabled the ceramic markers to appear on the 3D model. 

Thin areas of bone that had shown partial volume effect or artefact from the CT image 

were traced manually. These slices were interpolated at 0.5mm intervals for model 

production using a 5 axis milling machine to make a solid 3D model. Once the 3D 

dentition was removed from the 3D model, the plaster dentition was integrated using a 

facebow transfer system. To validate the accuracy, two cephalograms were compared, one 

from the patient and one from the 3D model. For this to take place the model was coated 

with a mixture of iohexol and common paste in a 1:1 ratio to allow good exposure of the 

3D model when obtaining the cephalogram. Both cephalograms were traced on the same 

paper with the base point and plane of each jaw being fixed. The points and planes were 

shown in angular and linear format and measurements were made using a protractor, 

callipers and a ruler measuring to the nearest ½º or 0.1mm. (Figure.3.18) and 

(Figure.3.19). The results of the study are shown in Table 3.5. 

 

 

 

 

 

 

 

     

                   Figure.3.18  Cephalometric analysis of the patient and 3D model. Nasion (N)-                   

                  Nasion Orbitale (Or) plane, Nasion (N)-Point of Upper Incisal      

                                        (P.U.I. plane, occlusal plane of the upper model, Mandibular  

       plane, Pogonion (Pog)-Point of Lower Incisal (P.L.I.) plane and   

       the occlusal plane for the lower model.  
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                                    Figure.3.19  Points used in the study. 

The measurement error for the (N-Or) to (N) point of upper incisor (P.U.I.) was 0.17º, (N-

Or) to the occlusal plane 1º and between the point of the upper incisor (P.U.I.) was 

1.23mm. In the lower the error for the mandibular plane Pogonion (Pog) to the point of 

lower incisor (P.L.I.) was 1º and mandibular plane to occlusal plane was 1.33º. The error 

between the P.L.I.‟s was 1.73mm. Case number two, was a 26 year old woman with 

Angles class 3 mandibular prognathism and an overjet of -8.5mm with a 3.5mm overbite. 

The measurement error after comparison between the patient and the replicated dentition in 

the 3D model was (N-Or) to (N-P.U.I.) 0.83º. For (N-Or) to the occlusal plane was 1º and 

between the (P.U.I.) was 2.80mm. In the lower jaw the measurement error of the 

mandibular plane to (Pog) to (P.L.I.) was 0.00º. The mandibular plane to the occlusal plane 

was 2.00º and the error between the (P.L.I.) was 1.13mm. Case number three, was a 36 

year old woman who had an asymmetric lower arch, with an overjet of 3mm and overbite 

of 3.5mm. The error between the patient and replaced 3D dentition in the 3D model was 

(N-Or) to (N-P.U.I.) 4.00º and for (N-Or) to the occlusal plane was 6.50º, the error 

between the P.U.I.‟s was 6.40mm. In the lower the error between mandibular plane to 
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(Pog-P.L.I.) was 5.00º. For mandibular plane to occlusal plane the error was 8.67º and 

between the P.L.I.‟s  
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      Table 3.5 Errors between Patient and model on Cephalometric analysis.
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was 4.20mm. The results of case three showed such large errors that the cast had to be 

repositioned on the 3D model and re-measured. The repositioning of the cast improved the 

accuracy to less than 3.00º in the angular measurements and less than 2.00mm in the linear 

measurements. A possible cause for this could be the width of the reference points on the 

facial skin and movement of the soft tissue. 

 

Terai et al (1999) claimed that to evaluate the accuracy of 3D models, comparisons have to 

be carried out between dry skulls and the 3D models of the dry skulls. Lateral 

cephalographs would not measure discrepancies in the medio-lateral direction which is 

important to evaluate. 

  

Swennen et al (2007) presented on the use of a new 3D splint and double CT scan 

procedure to obtain an accurate virtual model of the skull with correct dental arches. The 

technique involves CT scanning of a patient wearing a splint which contains gutta percha 

markers followed by scanning the splint separately on dental casts. The two CT scans were 

mapped together by lining up the radio-opaque gutta percha markers on the two images 

virtually on the computer screen. The study was carried out on ten adult cadaver skulls 

with intact dentition. Impressions were taken with wax bites and plaster models were 

produced. Twelve gutta percha markers were placed into the splint, (Figure.3.20) The 

markers were 1.5mm approximately in diameter. Each skull was scanned with the 3D 

splint in position. Plaster dental casts were then scanned with the same 3D splint 

(Figure.3.21) and (Figure.3.22). 
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          Figure. 3.20  3D splint with gutta percha markers. 

 

 

 

 

 

 

 

 Figure.3.21  Skull with 3D splint.     Figure.3.22  Dental casts with 3D splint. 

        

The skulls were scanned with a slice thickness of 1mm; the dental casts were scanned at a 

slice thickness of 0.3mm. The CT data was then imported into viewing software. The 3D 

splint was used for registering and mapping the 2 CT scans  using the gutta percha markers 

as a guide. This procedure allowed for a virtual 3D model of the skull with detailed 

dentition. In order to evaluate the accuracy of the process measurements were carried out 

for the distances between the gutta percha markers after registration.  
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The chosen markers used in each procedure ranged from 9 to 12mm with a mean of 9.7 ± 

1.34. This was due to markers being disallowed as they touched the teeth and were 

engulfed by image artefact. The registration error ranged from 0.034mm to 0.3485mm. The 

overall mean registration error was 0.1355mm ± 0.0323mm. With a method error of 

registration 0.0564mm 95%  confidence interval of 0.0491mm to 0.0622mm. The authors 

explained that the mean registration error and method error were very low and indicates 

many advantages of the double CT scanning technique. This included accurate integration 

of the dental casts into the virtual skull, detailed dental surfaces due to high resolution 

scanning of the plaster dental casts, reliability of 3D cephalometric landmarks, the ease and 

cost of producing a 3D splint for accurate segmenting of the dental arches and the ease of 

implementing the technique clinically. The authors highlighted some disadvantages 

regarding streak artefact not being totally eliminated from the soft tissue areas, the 3D 

splint anterior extension needs to be carefully constructed in order to avoid disrupting the 

formation of the lips and a good relationship with the radiological department is important 

for correct procedure in double CT scanning technique. The authors stated that the major 

drawback of virtual planning for orthognathic surgery is the inaccurate visualisation of the 

dental surfaces especially at inter-occlusal areas; this is due to low resolution CT scanning. 

The authors concluded that plaster model surgery is still necessary to establish the 

appropriate occlusion for surgical splints but the virtual planning of orthognathic cases will 

probably replace the conventional method of using dental casts. They stated that the use of 

Cone Beam CT scanners will become more widespread and commercially available as they 

have lower levels of radiation exposure and allow for vertical scanning of patients. The one 

drawback of carrying out orthognathic surgery planning virtually is that surgeons do not 

get the 3D skull model in their hand as previously described by many authors. The ability 

to have a tactile approach allowed the surgeon to gauge what tasks and obstacles would be 

expected during the operation. They concluded that this type of technique could be the 
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future for orthognathic surgery if more improvements in scanning and software design can 

be achieved.         

 

Malivi et al (2007) also assessed the usefulness of bio-modelling with the intention of 

using them for orthognathic surgery planning. 12 patients were selected and a CT scan was 

taken in addition to routine preoperative cephalograms. The CT scan information was 

processed using MIMICS 9.22 software (Materialises‟ Interactive Medical Image Control 

System) to allow the fabrication of the 3D skull model. The skull model was produced in a 

Z Corporation Spectrum Z510 3D colour printer using a powder deposition modelling 

technique. The authors however discovered that due to the preoperative brackets on the 

teeth, interference occurred with the CT scan causing artefacts in both the maxillary and 

mandibular arches, which reduced the level of accuracy of the skull model. Added to this 

problem the teeth had different radiological densities to bone due to their composition and 

this also decreased the accuracy of the dentition. To increase the detail of the dental 

anatomy Malivi et al (2007) removed the dental arches of the 3D skull models and 

replaced them with orthodontic dental casts. The temporomandibular joints of the patients‟ 

3D model were held in position in the glenoid fossa using a Kirschner wire. This ensured 

they maintained the correct condylar position for the patient prior to any osteotomy cuts, 

therefore avoiding any condylar malpositioning. For the purpose of this study, the major 

omission by the authors was their failure to specify their technique for replacing the 

dentition and to state the levels of accuracy which were obtained when the dentitions were 

switched. Malivi et al (2007) explains the orthognathic plans for their patients using 3D 

skull models and inter-occlusal wafers produced from articulated casts on a semi-

adjustable articulator. The authors do not explain why they did not construct the inter-

occlusal wafers from the newly replaced dentition on the 3D skull model. The authors 

concluded that operating on a 3D skull model could reflect the same scenario as in theatre 
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and 3D skull models are invaluable for allowing hands on experience prior to surgery. 

They also stated that regardless of how good 3D visual graphics are on the computer 

screen, a 3D skull model is an invaluable tool for surgical training as it allows surgeons to 

become acquainted with the anatomy of the region.  
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4 

Technique for replacing the maxillary 

dentition of a 3 dimensional printed skull 

model (Materials and Methods) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



59 

 

 

4.1   Introduction 

Three dimensional rapid prototyping is a useful means for the production of 3D models of 

the human skull taken from cone beam computed tomography scans. Although the 

accuracy of these models are acceptable, the dentition is often distorted. The aim of this 

study was to investigate methods to replace the inaccurately reproduced dental arches of a 

3D printed skull model with accurate, correctly proportioned plaster teeth obtained from 

dental impressions of the natural dental arches. The intention is to use these adapted 3D 

printed skull models for pre-operative treatment planning and the construction of intra-

operative occlusal repositioning wafers for patients with dento-facial deformities. 

 

During the duration of this study several unsuccessful prototype methods were attempted 

before a satisfactory technique was determined. The various prototypes will be discussed 

briefly in this chapter.  

 

4.2   Evolution of the final technique 

 

4.2.1   Using a facebow to locate the plaster dentition onto the 3D  

   printed skull model 

 
The concept behind this first system was the use of a Kavo facebow (Abacus, U.K.) to 

record anatomical reference points on the human skull in order to make use of these as 

reference points to place the plaster dentition onto the 3D printed skull model (Figure 4.1).  

The reason for the Kavo facebow was the additional anatomical points which can be 

recorded; a typical facebow will record only three anatomical points of reference.  
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However, the Kavo facebow allows registration of five anatomical references points- 

nasion, external auditory meateae, maxillary occlusal plane, orbitale and by adding 

condylar extension, this also enabled registration of the condyles. 

  

Prior to CBCT scanning, in order to assess how accurately the plaster cast dentition was 

replaced on the 3D printed skull model, spherical titanium ball markers (Spheric trafalgar 

Ashington, U.K.), 1mm in diameter, were secured to the human skull dentition. The balls 

were positioned on the labial and buccal surfaces of the anterior and posterior teeth.  

Impressions were taken of the human skulls‟ dentition with the balls in situ and a dental 

cast was produced. An acrylic occlusal wafer was constructed incorporating the incisal and 

occlusal surfaces of the maxillary teeth. This was placed onto the bite fork of the facebow 

to register the maxillary occlusal plane from the human skulls‟ dentition together with the 

other previously mentioned anatomical reference points. The human skull was then CBCT 

scanned and a 3D printed skull model constructed. 

 

 

 

 

 

 

                                    Figure 4.1  Kavo facebow registration of anatomical points. 

 

The idea was to remove the dentition from the 3D printed skull models and to transfer the 

maxillary plaster dentition using the acrylic occlusal wafer and the anatomical references 

of the facebow as locators. The plaster dentition was then secured using modelling wax.  
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Although the technique showed it was feasible to locate the plaster dentition on the skull 

model, there were a number of difficulties with this technique. The main difficulty was that 

the facebow system could not be used if soft tissue were present, as it would be, in the case 

of patients. For this reason it was decided to abandon the idea and look for an alternative 

method for placing the plaster dentition onto the skull model. It was also interesting to note 

that the titanium balls had increased in size and the 3D printed skull model was larger than 

the corresponding human skull. The dentition of the 3D printed skull model was also seen 

to be visually larger 

 

. 4.2.2   Using an intra oral splint for dentition transfer 

 
The second method investigated replacing the inaccurate 3D printed skull model dentition 

using an intra oral splint and spherical titanium ball markers which were placed onto the 

teeth (Figure 4.2). 

 

 

 

 

 

                                         Figure 4.2 Titanium markers positioned on 3D models dentition. 

 

After the spherical titanium ball markers were positioned on the teeth, impressions were 

taken of the human skull‟s dentition and plaster dental casts were produced. A 1mm 

transparent polyvinyl blank was pressure formed over the dentition of the cast models in 

order to create a dental splint. The 3D printed skull model was then constructed with the 

spherical titanium ball markers in situ. The dentition of the 3D printed skull model was 
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then cut away to the apical level of the titanium spheres.The polyvinyl splint was also 

trimmed to the apical level of the titanium sphere markers. The apical level of the titanium 

spheres were utilized as location points to allow the splint to be relocated; dental stone was 

injected into the polyvinyl pressure formed splint and allowed to set. The polyvinyl splint 

was then removed (Figure 4.3). 

 

 

 

 

 

 

        Figure 4.3  Injected dental stone after removal of polyvinyl splint. 

This technique raised two areas of concern. Firstly, the adapted polyvinyl splint did not fit 

as accurately as anticipated and secondly it was difficult to inject the dental plaster into the 

polyvinyl splint as it did not flow into all the incisal edges and occlusal surfaces of the 

teeth. This resulted in large voids at the incisal and occlusal levels after the splint had been 

removed. Based on these previous attempts a new technique was developed in an attempt 

to overcome the difficulties associated with the previous methods. 

 

4.2.3   Using gutta percha as a locating aid 

 
The third method involved placing a gutta percha location marker onto the labial surface of 

the human skulls‟ dentition. It was hoped that the gutta percha would not magnify in the 

same manner as the previously used titanium balls (Figure 4.4). 

 

 

 

 

 

                                Figure 4.4 3D maxillary process with orthodontic brackets    

  and gutta percha. 
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Impressions were taken of the dental arches in the human skull with the gutta percha in 

position and dental casts were then produced. Pressure formed splints were then 

constructed encompassing the dentition and gutcha percha of the plaster model (Figure 

4.5).  The splint was carefully removed from the model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                 Figure 4.5  Plaster model with pressure formed splint. 

 

   

On examining the 3D printed skull model it was obvious that the gutta percha had in fact 

magnified during the skull production process. It appeared that anything attached to the 

dentition that was radio opaque would increase in size (Figure 4.6). Due to this 

magnification it was concluded that attaching gutta percha markers directly onto the tooth 

surfaces proved to be an unsatisfactory technique.  

 

   

 

 

 

 

 

                               Figure 4.6   Magnified 3D dentition with gutta percha. 
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4.3   Pilot study to investigate the amount of magnification of the 

   dentition of a 3D printed skull model 

 
The aim of this study was to investigate the level of magnification of the dentition on the 

3D printed skull model. From the previous methods detailed above it was clear that the 

main problem was magnification of the dental arches. Thought was then given as to how to 

turn this magnification to a useful advantage. In order to quantify the amount of 

magnification various dental and skeletal linear measurements were taken of both the 

human skull and its replicate 3D printed skull model Table 4.1 to 4.3. The human skull was  

scanned at 0.4mm voxel size and printed as indicated above to produce the 3D printed 

skull model. The measurements were taken using digital callipers (Halfords, Glasgow, 

U.K.) on 2 separate occasions, four weeks apart.
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                   Table 4.1 Measurements for the vertical dimension of the upper facial skeleton and various   

            mandibular  lengths. 

Measurement 

Upper facial skeleton 

Nasion -  Anterior nasal spine 

Left frontal notch -  Left orbital border of zygomatic bone 

Right frontal notch -   Right orbital border of zygomatic 
bone 

Widest dimensions of nasal cavity 

Left frontozygomatic suture - right frontozygomatic suture 

 

Mandible 

Left tip of coronoid process -  Right tip of coronoid 
process 

Left angle of mandible -  Left tip of coronoid process 

Right angle of mandible - Right tip of coronoid process 

Prominant point mental protuberance -  Right angle of 
the mandible 

Prominant point mental protuberance - Left angle of the 
mandible 
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                         Table 4.2 Measurements for the transverse dimensions at the level of the canines, first molars and  

                                 third molars.  

 

 

 

Measurement 

Maxilla 

Left canine distal - Right canine distal 

Left 1st molar distal buccal cusp -  Right 1st molar distal 
buccal cusp 

Left 3rd molar distal buccal cusp -  Right 3rd molar distal 
buccal cusp 

  

Mandible 

Left canine distal -  Right canine distal 

Left 1st molar distal buccal cusp - Right 1st molar distal 
buccal cusp 

Left 3rd molar distal buccal cusp - Right 3rd molar distal 
buccal cusp 
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            Table 4.3 Measurements for the dentition 

 

Tooth Measurement 

  

  Right central incisor Mesio-distal width 

  Crown height 

  Thickness at incisal tip 

  Left central incisor Mesio-distal width 

  Crown height 

  Thickness at incisal tip 

  Right canine Mesio-distal width 

  Crown height 

  Thickness at incisal tip 

  Left canine Mesio-distal width 

  Crown height 

  Thickness at incisal tip 

  Right 1st premolar Mesio-distal width 

  Crown height 

  Width of occlusal surface 

  Left 1st premolar Mesio-distal width 

  Crown height 

  Width of occlusal surface 

  Right 1st molar Mesio-distal width 

  Crown height 

  Width of occlusal surface 

  Left 1st molar Mesio-distal width 

  Crown height 

  Width of occlusal surface 
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4.4   Final method for replacing the inaccurate dentition in a 3D  

   skull model 
 

As a result of the previous studies the following technique was felt to be the most 

promising method of replacing the dental arches on a 3D printed skull model. A silicon 

impression of the human skulls‟ dentition was taken using Metrosil (Metrodent Limited, 

Huddersfield, England) (Figure 4.7).    

 

 

 

 

 

 

 

  Figure 4.7 Impressions taken of dentition. 

Casts of the dentition were produced using class IV dental stone (Shera Hard Rock - Shera, 

Werkstoff, Technologie GmbH & Co, Germany). The cast models were used to produce 

pressure formed splints (Figure 4.8). 

 

 

 

 

 

 

 

 

 
                                      Figure 4.8 Cast model of human dentition. 

 

A pressure forming machine, Erkodent Erkopress Es-200E (Abacus, U.K.) pressure formed 

a 1mm thick, 120mm diameter polyvinyl translucent disc (Abacus, U.K.) onto the dental 
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casts (Figure 4.9). The transparent disc was heated at 160º for 50 seconds at 40 pounds per 

square inch of pressure. 

 

 

 

 

 

 

 

 

 
                                      Figure 4.9 Pressure forming machine. 

The polyvinyl translucent pressure formed discs were removed from the models and 

trimmed (Figure 4.10).   

 

 

 

 

 

 

 

 
                                       Figure 4.10 Polyvinyl splint and model. 

 
The human skulls were scanned using the i-CAT scanner (Image Diagnostic Technology) 

and scanned for 20 seconds at 0.4 voxels (Figure 4.11).     

            

            

            

            

            

    

   Figure 4.11 CBCT scanner. 
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      Figure 4.12 DICOM image of the skull. 

 
This CBCT i-CAT scanned image was produced in a DICOM (digital image 

communication in medicine) file language (Figure 4.12), this file format was then 

converted into an STL (Single Tessellation Language) file format for rapid prototyping 

using Maxilim software (Medicim, Belgium). This allowed the information to be utilised 

by the 3D rapid prototyping machine in order to build, layer by layer 3D copies of the 

human skulls (Figure 4.13). 

 
   

 

 

 

       Figure 4.13 3D skull model of human skull. 

The 3D skulls were made in a Z Corp 310 Plus rapid prototyping printer (Burlington, 

U.S.A.) using powder-binder technology which was invented and patented by the 

Massachusetts Institute of Technology. It took several hours for the skulls to be 

constructed as they were built on a 1mm thickness layer by layer basis (Figure 4.14). 
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          Figure 4.14 3D rapid prototype printer. 

Once the 3D skull model had been printed it was attached onto a custom made platform 

consisting of a flat base (135mm x 127mm) and vertical column (122mm in length and 

15mm x 15mm square). Two self tapping screws (Bills Tool Store, Barrowlands, Glasgow) 

were used to attach the base to the vertical column at 90º. A custom made  halo frame was 

connected to the vertical column with two self tapping screws (Figure 4.15). This enabled 

the 3D skull model to be held securely using four locking pins that were attached to the 

halo frame. 

 

 

 

 

 

 

              Figure 4.15 Platform for attaching skull. 

Flo-Form (Bentley Chemicals Ltd, Worcestershire, England) a thermoplastic material was 

attached to the 3D skull model to enable it to be located and mounted onto the halo frame 

and to prevent damage to the skull model (Figure 4.16). 
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             Figure 4.16 Thermoplastic material to protect skull. 

Two locating plates (Synthes, Germany) were applied bilaterally onto the zygomatic 

buttress and to the pyriform aperture using 1.7mm screws (Synthes, Germany). Four self 

tapping screws were used for each plate (Figure 4.17).  

 

 

 

  

 

 

 
   Figure 4.17 Locating plates and screws. 

 

The 3D maxillary dento alveolar process was marked out using a pencil (W.H. Smiths, 

Glasgow) prior to being cut using a hack saw with a fret blade (Abacus). This permitted 

the 3D skull models‟ maxillary dento alveolar process to be removed from the base of the 

3D skull model (Figure 4.18).  
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                             Figure 4.18 Maxillary dento alveolar process detached from the 

                                                             skull. 

The 3D skull models‟ maxillary dento alveolar process were placed in the transfer jig 

(Dentsply, U.K.). The transfer jig had locking nuts to ensure the vertical height did not 

change (Figure 4.19). 

 

 

 

 

 

 
          Figure 4.19 Transfer jig and locking nuts. 

 

The 3D skull models‟ maxillary dento alveolar process was positioned and held in the 

transfer jig using a silicone compound (Coltène/Whaledent AG, Altstätten, Switzerland) 

(Figure 4.20). 

 

 

 

 

 

 

 

 

                                    Figure 4.20 3D skull models maxillary dento alveolar process  

            positioned in the transfer jig. 
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A dimensionally stable impression compound, (Alginot™ Kerr Corporation, Romulus 

U.S.A.) was applied to the dentition of the 3D skull models‟ maxillary dento alveolar 

process and to the top of the jig. This allowed an imprint of the 3D skull models‟ dentition 

to be recorded within the impression compound inside the transfer jig (Figure 4.21). 

 

 

 

 

 

 

 

                                          Figure 4.21 Impression material applied to 3D skull models 

                 dentition. 

 

The previously made 1mm polyvinyl transparent pressure formed splint of the natural 

skulls‟ dentition was placed into the impression of the 3D skull models‟ maxillary 

dentition. The interior surface of the splint was in proportion to the natural skulls dentition 

however the exterior surface was magnified and it was this magnification which allowed 

the splint to fit into the impression of the 3D printed skull models‟ maxillary dentition. 

(Figures 4.22 and 4.23). 

 

 

 

 

 

      Figure 4.22 1mm polyvinyl splint. 
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                                        Figure 4.23 Polyvinyl splint placed into 3D skull models   

               impression. 

 

Class (IV) dental stone was poured into the internal fitting surface of the splint. The 3D 

skull models‟ maxillary dentition was then removed (Figure 4.24). 

 

 

 

 

 

 
         Figure 4.24 Removal of 3D skull models dentition and    

            replacement with plaster model. 

 

Cold cure acrylic (Metrodent, U.K) was applied to the plaster model to adhere it to the 3D 

skull models‟ maxillary alveolar process. The jig was closed and bolted to ensure the 

vertical dimension was maintained until the dental plaster was set (Figure 4.25). 

 

 

 

 

 

                        

                      Figure 4.25 The closed jig with plaster dentition transferred. 
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The jig was opened and the polyvinyl splint with dental plaster dentition was attached to 

the 3D skull models‟ maxillary alveolar process (Figures 4.26). 

 

 

 

 

 

 

 

 

 

 

 

 

                                   Figure 4.26 The new transferred dentition on the 3D maxillary 

                                                       process. 

 

The polyvinyl splint was carefully removed from the cast dental plaster dentition. (Figure 

4.27). 

 

 

 

 

 

 

 

 

                                 Figure 4.27 Removal of the polyvinyl splint. 

The new dentition was then reattached to the skull using the locating plates and screws 

which had previously been adapted prior to the separation of the maxilla (Figure 4.28). 
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                                            Figure 4.28 The 3D skull model with plaster dentition attached. 

 

 

4.5.1    Assessment of the accuracy of replacing the dentition on 3D 

    printed skull models 

 
In order to determine the accuracy with which the plaster dentition was replaced onto the 

3D printed skull model, both the natural skull and reconstructed 3D printed skull model 

were scanned using a FARO laser scanner (Scantec, Coventry, U.K.) (Figure 4.29).  The 

scanner allowed 3D surface capture with an accuracy level of 0.025mm according to the 

manufactures specifications. 

 

 

 

 

 

 

               Figure 4.29 The Faro laser arm scanning a skull. 

The data obtained from the scans was then imported in STL format into VRmesh software 

(Seattle City, U.S.A.). The computer software was capable of generating the x, y and z co-

ordinates of a specific point or operator defined landmark. It also allowed the laser scanned 
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images of both the reconstructed 3D printed skull model and the human skull to be 

superimposed onto each other using specific anatomical regions.  

 

4.5.2   Digitisation of anatomical landmarks 

The landmarks on the dentition and the vault are detailed in (Figure 4.30), (Figure 4.31) 

and Table 4.4. For each case the 3D printed skull model and the human skull were digitised 

twice, one week apart; this produced 4 sets of 3D coordinates of the 13 landmarks.   

 

1. The first set of digitised landmarks of 3D printed skull model against the first set of 

digitised landmarks of the human skull (Printed 1 / Human 1). 

2. The first set of digitised landmarks of 3D printed skull model against the second set 

of digitised landmarks of the human skull (Printed 1 / Human 2). 

3. The second set of digitised landmarks of 3D printed skull model against the first set 

of digitised landmarks of the human skull (Printed 2 / Human 1). 

4. The second set of digitised landmarks of 3D printed skull model against the second 

set of digitised landmarks of the human skull (Printed 2 / Human 2). 
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               Table 4.4 Show the landmarks on the dentition and the vault used for superimposition and measurement. 

 

 

Point Landmark definition 

  

1 Upper right first permanent molar cusp mesiobuccal cusp tip. 

2 Upper right permanent canine tip. 

3 Upper right central incisor mid point of incisal edge.  

4 Upper left central incisor mid point of incisal edge. 

5 Upper right permanent canine tip. 

6 Upper left first permanent molar cusp mesiobuccal cusp tip. 

7 Right Articular tubercle. 

8 Left Articular Tubercle. 

9 Right most inferior part of the infra orbital margin. 

10 Left most inferior part of the infra orbital margin. 

11 Right most lateral point of the supra orbital margin. 

12 Nasion. 

13 Left most lateral point of the supra orbital margin. 
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                                           Figure 4.30 Landmarks on the natural dentition to be digitised. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 Figure 4.31 Landmarks on the human vault  to be digitised. 
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4.6   Data analysis 

In order to determine the error involved in producing and landmarking the plaster 

dentition, the 6 landmarks from the laser scanned human skull dentition were 

superimposed on the 6 landmarks of the laser scanned plaster dentition using Procrustes 

superimposition (Dryden and Mardia, 1998). Procrustes superimposition allowed the 3D 

configuration of 2 shapes to be superimposed on the geometric centre of each shape known 

as the centroid. This allowed each shape being superimposed to correspond to the other 

using the best possible alignment. The mean distance between the landmarks was 

calculated. The same method of superimposition was carried out for the laser scanned 

human skull vaults and 3D printed skull model vaults using the 7 landmarks. The mean 

distance between the landmarks provided information on the printing and landmarking 

error associated with producing the 3D printed models. The final superimposition was 

based on all 13 digitised landmarks. The mean distance between the 6 landmarks on the 

dentition was calculated as well as the mean distance between the 7 vault landmarks.   
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5.1   The magnitude of method error of 3D printed skull models 

            Skeletal 

  
Table 5.1 shows the differences in measurements between the human skull and the 3D 

printed skull model.  The actual mean measurements of separate readings are also shown 

together with the standard deviation. 

 

The differences in all the measurements were negative which indicated that the 3D printed 

skull model was larger than the human skull. The difference in the vertical dimension of 

the upper facial skeleton as measured from nasion to anterior nasal spine, left frontal notch 

to left orbit and right frontal notch to right orbit were 0.25mm, 0.33mm and 0.01mm 

respectively. The transverse differences measured at the widest point of the nasal cavity 

and from left frontozygomatic suture to right frontozygomatic suture were 0.37mm and 

0.33mm respectively. 

 

Table 5.1 also shows the differences between the human skull mandible and the 3D printed 

skull model mandible. The difference in vertical height of the ramus as indicated by left 

angle of mandible to left tip of coronoid process and  right angle of mandible to right tip of 

coronoid process was 0.69mm and 1.03mm respectively. The length of the body of the 

mandible, left angle to left mental protuberance and right angle to right protuberance was 

0.67mm and 0.40mm respectively. 

 

5.2   Arch width 

Table 5.2 shows the differences in measurements between the transverse dimensions at the 

level of the canines, first molars and third molars of the human skull and the 3D printed 

model skull. The negative values indicate that the transverse measurements of the 3D 
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                   Tables 5.1 Shows the differences in measurements between the human skull and the 3D printed skull model. The actual mean          

                                    measurements of separate readings are also shown together with the standard deviation. 

Measurement Human skull 
3D printed 

skull model   

Upper facial skeleton Mean S.D. Mean S.D. 
Difference 

between means 

Nasion -  Anterior nasal spine 51.6 0.2 51.8 0.2 -0.25 

Left frontal notch -  Left orbital border of zygomatic bone 37.0 0.1 37.3 0.2 -0.33 

Right frontal notch -   Right orbital border of zygomatic bone 37.5 0.1 37.5 0.2 -0.01 

Widest dimensions of nasal cavity 21.9 0.0 22.3 0.0 -0.37 

Left frontozygomatic suture - right frontozygomatic suture 95.3 0.2 95.6 0.3 -0.33 

      

Mandible      

Left tip of coronoid process -  Right tip of coronoid process 96.5 0.3 96.6 0.2 -0.09 

Left angle of mandible -  Left tip of coronoid process 64.7 0.2 65.4 0.1 -0.69 

Right angle of mandible - Right tip of coronoid process 64.7 0.2 65.7 0.2 -1.03 

Prominant point mental protuberance -  Right angle of the mandible 85.8 0.2 86.2 0.1 -0.40 

Prominant point mental protuberance - Left angle of the mandible 85.5 0.2 86.2 0.1 -0.67 
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      Tables 5.2 Shows the differences in transverse measurements between the human skull and the 3D printed skull model.               

           The actual mean measurements of separate readings are also shown together with the standard deviation.

  Measurement Human skull  
3D printed 

skull model 
 

Maxilla Mean S.D. Mean S.D. 
Difference 

between means 

Left canine distal - Right canine distal 37.8 0.2 38.7 0.1 -0.9 

Left 1st molar distal buccal cusp -  Right 1st molar distal buccal cusp 56.4 0.1 57.4 0.1 -1.0 

Left 3rd molar distal buccal cusp -  Right 3rd molar distal buccal cusp 65.2 0.1 65.6 0.1 -0.4 

       

Mandible      

Left canine distal -  Right canine distal 29.4 0.1 30.2 0.1 -0.8 

Left 1st molar distal buccal cusp - Right 1st molar distal buccal cusp 53.4 0.1 54.1 0.1 -0.7 

Left 3rd molar distal buccal cusp - Right 3rd molar distal buccal cusp 63.1 0.1 63.4 0.1 -0.2 
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printed skull model were larger than the human skull. The discrepancy ranged from 0.2mm 

to 1.0mm. There was a tendancy for a larger difference towards the front of the mouth. 

 

5.3   Dental 

Table 5.3 shows the differences in measurements between the dental dimensions of the 

incisors, canines, premolars and molars of the human skull and the 3D printed model skull. 

The negative values indicate that the dentition of the 3D printed skull model was larger 

than the human skull.   

 

The upper left and right central incisors are larger mesio-distally, labio-palatally and had 

longer crown lengths in the 3D printed model. This difference was largest in the labio-

palatal direction than any of the other dimensions. The differences ranged from 0.3mm to 

1.5mm. The upper canines were larger in all three dimensions with the differences ranging 

from 0.4mm to 0.8mm. The first premolars were again larger in all dimensions but showed 

the largest differences of any of the other teeth measured, ranging from 0.6mm to 1.5mm. 

The first permanent molars were similar to the first premolar in size differences in the three 

directions measured, ranging from 0.3mm to 1.5mm. 
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     Tables 5.3 Shows the differences in measurements between the human skull dentition    

                      and the 3D printed skull model dentition. The actual mean measurements             

           of separate readings are also shown together with the standard deviation. 

 

 

 

 

 

 

 

 

 

 

 

Tooth Measurement Human skull 
3D printed 

skull model 
 

  
Mean S.D. Mean S.D. 

Difference 
between 
means 

  Right central 
incisor Mesio-distal width 8.5 0.1 8.8 0.2 -0.3 

  Crown height 11.2 0.1 11.6 0.2 -0.5 

  Thickness at incisal tip 3.0 0.1 4.5 0.3 -1.5 

  Left central 
incisor Mesio-distal width 8.3 0.1 9.1 0.2 -0.8 

  Crown height 11.2 0.1 11.7 0.1 -0.5 

  Thickness at incisal tip 2.8 0.1 4.3 0.2 -1.4 

  Right canine Mesio-distal width 6.7 0.1 7.4 0.1 -0.7 

  Crown height 11.8 0.1 12.6 0.3 -0.8 

  Thickness at incisal tip 3.7 0.1 4.5 0.1 -0.7 

  Left canine Mesio-distal width 6.9 0.1 7.5 0.1 -0.6 

  Crown height 10.1 0.1 10.6 0.2 -0.5 

  Thickness at incisal tip 5.1 0.1 5.5 0.2 -0.4 

  Right 1st 
premolar Mesio-distal width 6.9 0.1 7.5 0.1 -0.6 

  Crown height 9.6 0.2 10.6 0.1 -1.0 

  Width of occlusal surface 8.7 0.3 9.6 0.2 -1.0 

  Left 1st 
premolar Mesio-distal width 7.1 0.1 8.7 0.1 -1.5 

  Crown height 9.0 0.1 10.4 0.2 -1.4 

  Width of occlusal surface 9.2 0.1 10.2 0.1 -1.1 

  Right 1st 
molar Mesio-distal width 9.4 0.1 10.2 0.2 -0.8 

  Crown height 8.8 0.1 9.7 0.1 -0.9 

  Width of occlusal surface 10.5 0.2 11.6 0.1 -1.1 

  Left 1st 
molar Mesio-distal width 9.3 0.1 9.7 0.1 -0.3 

  Crown height 8.5 0.2 9.5 0.1 -0.9 

  Width of occlusal surface 10.3 0.1 11.8 0.1 -1.5 
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5.4   Superimposition of landmarks of the human skull and 3D   

   printed skull models 

 

The human skull and 3D printed skull with plaster dentition landmarks were superimposed 

using Procrustes registration on the structures below,  

 The dentition only (6 landmarks) – human skull dentition and plaster dentition. 

 The vault of the skull (7 landmarks) – human skull vault and vault of 3D printed 

skull. 

 The dentition and the vault of the skull (13 landmarks) – both entire models. 

Each superimposition was carried out separately and the mean error between the landmarks 

recorded, Chart 5.1 shows the results of the superimpositions. The blue circles on the 

horizontal line marked dentition represent the mean error between the 6 landmarks of 

human skull dentition and 6 landmarks on the plaster dentition following superimposition. 

The overall mean error was 0.55mm ± 0.37mm. 

 

The blue circles on the horizontal line marked vault represent the mean error between the 7 

landmarks of human skull vault and 7 landmarks on the 3D printed skull vault following 

superimposition. The overall mean error was 0.72mm ± 0.26mm. 

 

Superimposition of the entire human skull and 3D printed skull model with plaster teeth 

based on the 13 landmarks was performed and the mean distances of the 7 landmarks of 

the vault (red circles / vault) and 6 landmarks on the dentition (red circles / dentition) were 

measured. This overall superimposition produced higher error measurements; the overall 

mean error for the dentition was 0.74mm ± 0.37mm and 0.83mm ± 0.27mm for the vaults. 
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             Chart 5.1   Blue circles represent the mean error between the landmarks of human skull dentition & vault and landmarks on the plaster dentition       

                               & 3D printed skull vault following superimposition. Red circles represent mean error between the landmarks of the dentition and      

                               vault when all 13 landmarks are used.  Vertical columns represent the number of skulls; horizontal rows represent the    

                               superimposition sequence of the skulls.
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The difference between the blue and red circles reflects the error in placing the dentition 

onto the 3D skull model given the fact that the vaults do not align perfectly. This is shown 

in Table 5.4 for the vaults and Table 5.5 for the dentition. The overall error of placement of 

plaster dentition onto the 3D printed skull model was 0.19 mm ±0.08mm. The overall error 

of alignment between the human skull and the 3D printed skull model was 0.11 mm 

±0.07mm.   

 

As well as superimposing the landmarks it was also possible to superimpose the laser 

scanned images of each of the human skull over the 3D printed model. The models were 

aligned using initial rigid registration followed by mesh alignment using the iterative 

closest point (ICP) algorithm; only the vaults were used for superimposition. Figures 5.1 to 

5.6 shows the parameters of the value indicator set between 1mm and -1mm. The green 

coloured parts of the images are aligned to within 0.11mm. For example skull 5 (Figure 

5.5) shows that the frontal bones, infraorbital rims and superior parts of the zygoma are 

well aligned (green), but the dentitions do not align to that level of accuracy. In fact the red 

colour indicates the site and amount of error, with more error at the back of the dentition 

and a slight lateral displacement on the buccal aspect of the left dentition.
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            Table 5.4 Shows the difference (mm) between the mean vault landmark measurements when superimposed on the  

                            vaults only (7 landmarks) and on the mean full vault and dentition landmark (13 landmarks).   

Superimposition sequence 
Skull Number 

Mean S.D. 
1 2 3 4 5 6 

         

Human 2 / Printed 2 0.14 0.07 0.19 0.07 0.03 0.13 0.10 0.06 

         

Human 2 / Printed 1 0.16 0.12 0.15 0.09 0.03 0.33 0.15 0.10 

         

Human 1 / Printed 2 0.08 0.02 0.10 0.15 0.05 0.13 0.09 0.05 

         

Human 1 / Printed 1 0.09 0.05 0.12 0.21 0.02 0.13 0.10 0.07 
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         Table 5.5 Shows the difference (mm) between the mean dentition landmark measurements when superimposed on  

                 the dentition only (6 landmarks) and on the mean full vault and dentition landmark (13 landmarks).   

Superimposition sequence 
Skull Number 

Mean S.D. 
1 2 3 4 5 6 

         

Human 2 / Printed 2 0.27 0.12 0.29 0.21 0.02 0.16 0.18 0.10 

         

Human 2 / Printed 1 0.20 0.23 0.29 0.21 0.02 0.25 0.20 0.09 

         

Human 1 / Printed 2 0.26 0.12 0.30 0.18 0.14 0.09 0.18 0.08 

         

Human 1 / Printed 1 0.18 0.14 0.29 0.27 0.14 0.15 0.19 0.07 
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          Figure 5.1  Human skull 1 mesh superimposed on the vault only     

      of the 3D skull printed model with plaster teeth mesh  

      using VRmesh. The distance between the meshes is  

      indicated by the colour. 
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      Figure 5.2  Human skull 2 mesh superimposed on the vault only of the 

3D skull printed model with plaster teeth mesh using 

VRmesh. The distance between the meshes is indicated by 

the colour. 
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     Figure 5.3 Human skull 3 mesh superimposed on the vault only of the 

3D skull printed model with plaster teeth mesh using 

VRmesh. The distance between the meshes is indicated by 

the colour. 
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      Figure 5.4 Human skull 4 mesh superimposed on the vault only of the 

3D skull printed model with plaster teeth mesh using 

VRmesh. The distance between the meshes is indicated by 

the colour. 
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     Figure 5.5 Human skull 5 mesh superimposed on the vault only of the 

3D skull printed model with plaster teeth mesh using 

VRmesh. The distance between the meshes is indicated by 

the colour. 
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     Figure 5.6  Human skull 6 mesh superimposed on the vault only of the 

3D skull printed model with plaster teeth mesh using 

VRmesh. The distance between the meshes is indicated by 

the colour. 
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Discussion and Conclusions 
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6.1  Discussion 

 
The aim of this project was to determine the accuracy with which the distorted dentition 

produced on a 3D printed skull model could be replaced using a novel method. The 

technique involved the replacement of the dental arch of a 3D printed skull model with a 

dental plaster cast taken from a direct impression of the human skulls‟ dentition. This 

would provide an alternative method to conventional orthognathic model planning prior to 

final orthognathic surgery wafer construction. At present orthognathic surgery planning 

relies on using a facebow registration to transfer the maxillary position relative to the base 

of the skull onto a semi-adjustable articulator. The inherent inaccuracies of the present 

system have been well documented (Walker et al., 2008; Sharifi et al., 2008; Ellis et al., 

1992; Pitchford et al., 1991; Bailey and Nowlin, 1984; Stade et al., 1982; Gonzalez and 

Kingery, 1968). 

 

The distortion of the dentition as a result of the CBCT scanning is well known and is 

mainly due to beam hardening. The artefact occurs because the high density metal absorbs 

the lower energy photons while the higher energy photons pass through to the detectors 

which results in the beam becoming 'harder' and streaked (Barrett and Keat, 2005). In order 

to replace this distorted dentition, the degree of distortion needs to be calculated and 

known. The dentition of the 3D printed skull model has been shown to exhibit a degree of 

magnification that occurs firstly as a result of the CBCT scan but also possibly in 

association with the printing process. Comparing dental dimensions for the 3D printed 

skull model with those from the corresponding human skull showed a significant degree of 

magnification ranging from 0.5mm to 1.0mm. Unfortunately the degree of magnification 

was not uniform in all directions. This may have been due to the CBCT scanning process, 

due to the direction the model was printed or a combination of both. The scans were 

carried out in 0.4mm slice thicknesses and the model was printed in 1mm thick layers.  
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Depending on which way the model was printed the underlying print resolution would 

determine the accuracy of the final model. 

 

6.2   Errors of the method 

6.2.1   Dental Impressions 

The first stage of the technique involved obtaining a replicate model of the upper human 

teeth using a silicone impression material to produce a negative copy and then dental stone 

was used to produce the positive cast. This was then used to produce a splint, which was 

constructed for transferring the plaster dentition onto the 3D printed skull model. A hard 

polyvinyl splint of 1mm thickness was made for the transfer of the plaster dentition onto 

the 3D printed skull model. The initial pilot study showed that the degree of magnification 

of the 3D printed skull dentition was approximately 1.0mm and therefore the 1.0mm splint 

would compensate.   

 

By taking an impression of the 3D printed skull model dentition and placing the 1.0mm 

splint into the impression and then pouring plaster into the splint, to produce an accurate 

dentition, the magnification of the 3D printed model could be compensated. 

 

To access the error at this stage, a comparison of the landmarked laser scanned data from 

the plaster dentition, obtained via the splint and from the landmarked natural skulls‟ 

dentition, could be made. The results showed that the mean error was 0.55mm. Therefore 

the process of producing a replicate dentition relied on the internal surface of the splint 

being 1.0mm thick. This assumed that the magnification error was uniformly 1.0mm across 

the surfaces of all the teeth. The results show that this is not the case but could vary from 

0.3mm up to 1.5mm; unfortunately it would be difficult, if not impossible, to construct a 

non-uniform thickness splint. 
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6.2.2  3D printed skull models 

As a result of this study it was discovered that the 3D printed skull model was larger than 

the respective human skull with an overall mean error of 0.42mm. However, for skull 

models used routinely in medicine this margin of error would be clinically acceptable.  

 

The 3D printed skull models for this project were made from a non-robust gypsum powder 

material which proved to be brittle and fragile (Figure 6.1). Due to the skulls‟ material 

fabric, any abrasion of the skull could lead to a loss of dimensional accuracy therefore 

great care had to be taken when carrying out the transfer process. An alternative method of 

model construction was to use either a Stereolithographic model or fused deposition 

modelling. Stereolithographic models are made by using a bath of photosensitive resin and 

an ultra-violet laser for curing the resin however; this is a costly process and is not likely to 

be used routinely in orthognathic surgery planning (Figure 6.2). Fused deposition models 

are made from an Acrylonitrile Butadiene Styrene (A.B.S.) material; this is a thermoplastic 

material which is extruded from a fine nozzle not unlike an electric glue gun. This 

technique has been widely used for building 3D skull models because of its good 

dimensional stability, rigidity and relatively low cost (Figure 6.3). The use of a robust 3D 

skull model could enhance the quality of the repositioning of the maxillary process after 

the dentition has been replaced and as a result the locating plates and screws would 

probably be more accurately sited without any abrasion to the 3D printed skull models 

surface or screw holes. 
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                Figure 6.1 Gypsum powder model.         Figure 6.2 Stereolithography model. 

 

 

 

 

 

                                             Figure 6.3 Fused deposition model. 

 

6.2.3  Locating plates and screws 

The locating plates were positioned and removed in sequence; this was carried out in order 

to allow correct alignment of the dentoalveolar maxillary process, when reattaching it to 

the 3D printed skull model after replacement of the incorrect dentition had taken place. 

Although the locating plates were placed and removed in sequence, the self tapping 

surgical screws were not removed or replaced in sequence. This highlighted a margin for 

error when replacing the maxillary process to the 3D printed skull model as the alignment 

could be marginally different when it was re-attached. 

 

A better solution would be to remove and replace the surgical screws in sequence in a 

similar manner as for the locating plates. Implementing this procedure with the self tapping 

surgical screws would help to enhance the accuracy of the reattachment of the 

A.B.S. 

Material 

Gypsum 

powder 

material 

Photosensitive 

resin 
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dentoalveolar maxillary process with the replaced dentition. The use of a torque wrench to 

measure the amount of pressure applied to the screw might also be an advantage.  

 

6.2.4  The transfer jig 

The transfer jig was a device which aided transfer of the dentition onto the 3D printed skull 

model. It had three fixed vertical height parallel columns, which ensured that when the 

dentition was transferred from the 3D printed skull models‟ maxillary process and replaced 

with the plaster dentition, the vertical dimension was maintained. A potential improvement 

for the transfer technique would be the use of a more rigid, less compressive impression 

material rather than silicone putty. As the transfer jig is closed, a force is applied which 

could result in the splint being compressed into the flexible silicone impression material 

causing the splint to alter. In addition to this is the inherent flexibility of the splint and the 

contraction and expansion of the plaster when it is poured onto its interior surface could 

cause further inaccuracies.   

 

A possible solution would be to secure the splint into position in the silicone impression 

using adhesive. This would ensure the splint remains in position but this solution could 

also prove to be problematic as it might not deal with the compression forces when the 

transfer jig is closed. The flexibility of the splint could be reduced by leaving the splint on 

the original model it is fabricated on, the splint could be trimmed with the original model 

in situ, thus omitting any further mixing of dental plaster; however there would still be the 

issue of flexibility of the impression material. Using less flexible materials may benefit the 

method of dentition transfer. 
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6.3  Measuring the accuracy of plaster dentition replacement 

In order to investigate the true level of accuracy for the replacement of the plaster dentition 

in relation to the human skull, laser scans were taken of both the 3D printed skull models 

with plaster dentition and the human skulls. Laser scanning was favoured over a co-

ordinate measuring machine to indicate the level of accuracy obtained because  co-ordinate 

measuring involves a touch probe that has to be physically guided to certain selected points 

on the skull to register x, y and z co-ordinate landmarks.   

 

Laser scanning the images was deemed to be more useful since x, y and z co-ordinates can 

be obtained and in addition a 3D topographical image can also be generated. The image is 

made up of millions of points either in the form of a point cloud or a polygonal mesh. The 

use of a mesh effectively aligns millions of individual points; the mesh can be landmarked 

and aligned using a mesh editing CAD/CAM software – VRmesh. Co-ordinate landmark 

points were chosen on the images that were recognisable on both human skulls and the 3D 

printed skulls models in order to superimpose the images. This software programme was 

designed to use a rigid registration based on corresponding landmarks and an iterative 

closest point (I.C.P.) algorithm for mesh alignment. This is where two similar shapes are 

aligned and superimposed over each other to the best possible fit. The distance between the 

meshes indicates the “closeness” of fit. Additionally VRmesh provides a colour indication 

of the levels of accuracy obtained. 

 

6.4  Results 

The mean dentition placement error was 0.19mm with a mean placement error for the skull 

vault of 0.11mm. However, the mean mapping and digitisation error was 0.55 mm for the 

dentition and 0.72mm for the vault. These results suggest that errors in the mapping and 
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the digitisation of the landmark points are much greater than the errors of the dentition 

placement technique. Therefore if digitisation and mapping of the landmarks could be 

improved then this should have a significant effect on the precision of this technique. With 

the present levels of accuracy preliminary studies have shown that this replacement 

technique could be clinically acceptable. Future plans should include repeating and 

analysing the digitisation using more accurate landmark points and carrying out an 

operator error study of dental arch placement using different operators.  

 

 6.5  Future developments 

This preliminary research has shown that it has been possible to replace the dentition from 

a 3D skull model which would allow the skull to be used for the pre-planning of 

orthognathic surgical cases. However, the level of accuracy obtained would need to be 

measured against the accuracy of current techniques involving facebows and articulator 

systems to provide verification that 3D skull models were a more effective means for 

carrying out complex orthognathic surgery cases. 

  

The sample size used for this project was relatively small and it was performed on human 

skulls. Further projects involving patients, which included clinical cases of varying 

complexity, would be required to investigate the benefits obtained comparing this with  

current methods for pre-surgical orthognathic planning. The planning of mandibular 

asymmetric surgical cases is already being carried out in this way to good effect. Printed 

skull models are likely to have great advantages over current methods of planning the 

correction of asymmetry cases. For example, the ability to measure the extent of a condylar 

shave required and visualise its effect on the surrounding skeletal areas prior to entering 

the operating theatre, would be very helpful for this type of deformity.  
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With the evolvement of this technology the surgeon is offered more information when 

repositioning the jaws in relation to the skeletal profile than can be obtained from dental 

articulators that operate only on the dental arch. Technology needs to develop and improve 

with enhancements in the conversion software and faster applications would be essential. 

This would lead the way for virtual orthognathic planning on a visual monitor (Swennan et 

al., 2009) with the ability to produce a computer milled surgical wafer to use as a template 

for repositioning the jaws in theatre. However, there are still benefits from a hand held 3D 

skull model which allow surgeons to have a tactile approach prior to surgical procedures, 

which might eliminate surprises in theatre. Additional benefits would be the saving of 

theatre time, allowing bone plates to be shaped prior to the operation and templates to be 

created for bone grafts. The 3D skull models would also be a visual educational input for 

training clinical staff and would be a help to explaining to patients the procedures that were 

to be performed. 

 

At present the cost of producing a 3D skull model is expensive when compared to the 

techniques currently available; they also rely on experienced personnel to operate the 

necessary equipment for their production. It should also be noted that the cost of this 

technology is reducing, making it more affordable for larger specialist units to purchase.  

Smaller units and departments could liaise with larger ones to make use of this technology 

more cost effectively and this would add another dimension to improving the accuracy of 

surgery. Continuing research has to be undertaken at various stages of this process in order 

to offer the appropriate levels of accuracy for pre-planning orthognathic surgery.  

 

The current level of accuracy for replacing the maxillary dentition on the 6 skull models 

has been encouraging; however, since this study was carried out, the technique for 

replacement of the dentition has been enhanced, but this has not yet been proven. Further 
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study is needed to prove that these enhancement techniques will in fact led to improved 

accuracy.   

 

Maxilim conversion software was used in this study to convert the DICOM files into an 

STL format. However, there are other conversion software packages available and research 

is required to compare the accuracy of the skull models produced using these different 

programmes. It has also been stated in this study that there are a number of methods for 

producing 3D skull models and research work is needed to prove which materials and 

production methods would best suit the requirements for orthognathic surgery planning. 

 

Now that an accurate dentition can be satisfactorily located on the 3D printed skull model, 

the next step is to investigate how these models can be put to best use in orthognathic 

surgery planning. In order to do this a platform for mounting the 3D printed skull model 

requires to be designed and fabricated. The platform would be essential to hold the skull 

securely, whilst allowing movement of both dental arches with appropriate measuring 

gauges registering vertical, horizontal and rotational movements of both dentitions. A 

suitable prototype is presently being constructed but further development in this area is 

required. 

 

6.6  CONCLUSION  

An accurate and valid method has been described for the transfer of the dentition onto a 3D 

printed skull model. It also transfers a portion of the alveolus and shows the changed 

position of the bone structures at the time of osteotomy and it allows preplanning of the 

bone graft required with inferior maxillary repositioning. The precise position is enhanced 

by the ability to shape the plates and position screws prior to surgery and this should 

shorten theatre time. 
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     Glossary 

 
Articulator.                A mechanical device to which plaster casts of the upper and 

              lower dental arches are attached and which   

              artificially reproduces recorded positions of the              

               mandible in relation to the maxilla. 

Facebow.                 An instrument used to record the transverse horizontal axis 

    (hinge axis) of the mandible and relating this  

               recording to the maxilla to facilitate.                         

                                     anatomical mounting of the maxillary cast to the  

    articulator. 

Frankfort horizontal plane.   A plane passing through the left orbitale (most inferior 

    point of the orbit) and the highest point of each external 

    auditory meatus. 

Axis orbital plane.                 An imaginary line joining orbitale and the axis of  

    mandibular rotation. 

Skull model.                       Replica of the human skull constructed from volumeric CT 

    scan data. 

3D                                          Three dimensional. 

 

MRI                                        Magnetic Resonance Imaging. 

 

CBCT                                     Cone beam computed tomography scan. 

 

DICOM                                  Digital image communications in medicine. 

 

STL                                         Single tessellation language. 

 

 


