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ABSTRACT 

 

Animals often respond differently to the same environmental cues. Where behavioural responses 

differ consistently between individuals over time or contexts, this is “personality”. In wild 

animals, personality is linked to variation in fitness and survival. Predictions on the behavioural 

mechanisms underlying this variation come from captive studies, on the often untested 

assumption that captive behaviour reveals how animals would behave in the wild. In chapter 2, 

using blue tits (Cyanistes caeruleus) I tested first whether behaviour in captivity predicted 

foraging behaviour in the wild. I measured the personality traits neophobia (latency to feed in 

novel scenarios) and exploratory tendency, first by relatively standard captive protocols and 

second, using an electronic monitoring system at feeding stations, by novel wild methods. As 

predicted, analogous traits correlated across contexts. Moreover, neophobia and exploratory 

tendency were uncorrelated within individuals in both contexts, in contrast to many other species. 

In captive studies, personality types also respond differently to changing environmental cues, or 

“environmental sensitivity”: neophobic and non-exploratory types adjust behaviour whilst 

neophilic and exploratory types maintain foraging routines. In chapter 3, I tested this second 

captive prediction in the wild, defining environmental sensitivity in the wild by changes in feeder 

use with varying air temperature or food supply. Neophobic and, contrary to expectation, 

exploratory blue tits were most environmentally sensitive. By contrast, neophilic and non-

exploratory birds visited feeders at a fixed level independent of temperature and continued to visit 

feeders for a prolonged period even after they were emptied. Age and body size also influenced 

environmental sensitivity, suggesting learning and dominance interactions modify the expression 

of personality in the wild. From potential behavioural costs, in chapter 4 I turned to the 

physiological costs of personality. Variation in metabolic rate and stress metabolism may be 

proximate mechanisms for personality. Whilst these physiological traits are linked to oxidative 

stress directly, with pro-oxidants that damage body tissue a by-product of metabolism, few 

studies link personality to oxidative stress. I found that oxidative profile (pro-oxidants, 

antioxidants, oxidative stress and oxidative damage) and hence physiological costs differed not 
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only within traits but also related differently to neophobia and object exploration in captive-bred 

greenfinches (Carduelis chloris). Finally, variation in response to environmental cues may reflect 

differences in learning between individuals, as perhaps illustrated by age differences in 

environmental sensitivity (Chapter 3). In chapters 5 and 6, I investigated whether learning that a 

feeding site is temporally stable could cause changes in response to food appearance (“local 

cues”) when foraging. I predicted that birds would re-find food by spatial rather than local cues in 

these scenarios, as appearance can change hence local cues become unreliable over time. In 

chapter 5, I carried out an associative learning test to test this prediction in captive-bred 

greenfinches. Within a simple foraging scenario, the prediction was upheld: greenfinches 

favoured local cues in situations where the temporal stability of food was unknown, but switched 

to spatial cues when temporal stability was learnt through repeated encounters. In chapter 6 

though, four of five wild bird species foraging at temporally stable bird feeders continued to 

respond to local cues, selecting feeders on the basis of colour. Most species were biased toward 

red feeders, and also responded to social cues when finding feeders: foraging strategies better 

suited to finding ephemeral food than re-finding temporally stable feeding sites. I suggest that 

wild birds use information on temporal stability from the broader environment (i.e. natural 

ephemeral food beyond temporally stable artificial feeders). This illustrates how animals may not 

necessarily forage in the wild as we would expect within specific contexts. Throughout this thesis 

therefore, my findings illustrate the importance of testing predictions generated from captive 

behaviour in the wild. Moreover, identifying variation in both the foraging strategies and 

physiological costs to individual variation in behaviour, this thesis provides new insight into the 

adaptive significance of animal personality. 
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CHAPTER 1 
 

GENERAL INTRODUCTION 

 

1.1 PRIMER 
 

The question of how animals adapt to an environment that is constantly changing is at the 

heart of evolutionary theory (Darwin, 1859; MacAuthur and Pianka, 1966; Maynard 

Smith, 1982). Describing life in the intertidal zone, perhaps the archetype of variability, 

Scapini (1988) observed that “stable, predictable environments tend to produce 

homogenous behaviour while rapidly changing, unpredictable environments tend to 

induce learning and plasticity”. Thus, animals that are more behaviourally plastic and 

learn may be expected to cope better in a highly variable environment than animals that 

are behaviourally fixed and do not learn (Klopfer and MacArthur, 1960). In a more stable 

environment though, where a stereotyped response will suffice, behavioural plasticity and 

learning may be a “luxury” (Dall and Johnstone, 2002) or even maladaptive (DeWitt et 

al., 1998). It is predicted therefore that species evolve a level of behavioural plasticity and 

consequently learning that corresponds positively to the variability of their environment 

(DeWitt and Scheiner, 2004). Equipped with a range of potential responses, to then 

respond adaptively to particular environmental cues animals must make a trade-off 

between the current costs and benefits of responding in alternate ways (Maynard Smith, 

1982).   

Response to an environmental cue may therefore be limited both by phylogenetic 

constraints (i.e. a species’ innate plasticity) and also an individual’s past opportunity to 

learn about that particular cue (Caro and Bateson, 1986). We can infer the selective 

pressures favouring plasticity by comparing the response of different species to the same 

environmental cues (see Fig. 1-1a). For example generalist species such as the song 

sparrow (Melospiza melodia) must constantly find new food types as they move through 

environments and seasons: this may explain why song sparrows respond less 
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“neophobically” toward novel foods or feeding environments than specialist swamp 

sparrows  whose  diet  and  habitat  is  constant  Melospiza georgiana;  Greenberg, 1989).  

 
Figure 1-1 Behavioural reaction norm plots to illustrate sources of variation in behavioural 
plasticity, modified from Komers (1997). Reaction norms are linear functions relating the change 
in a trait to an environmental gradient (Via et al., 1995). (a) The degree of behavioural plasticity 
(i.e. range of behaviours exhibited) as a function of environmental variability, with 1 low and 2 
high variability. The steeper the line, the greater the behavioural variation, hence the line is most 
plastic and dashed line most stereotyped. The lines may represent different species (e.g. the line a 
generalist and dashed line a specialist; Greenberg, 1990), conspecifics differing in experience 
(e.g. the line predator-naive sticklebacks, Gasterosteus aculeatus, and dashed line predator-
experienced sticklebacks, Bell and Sih 2007) or conspecifics differing in genotype (e.g. the line 
slow-exploring great tits, Parus major, and the dashed line fast-exploring great tits; Marchetti and 
Drent 2000). (b) Behavioural plasticity as a function of age. In this scenario, the costs of plasticity 
(or benefits of stereotypy) may be lower in adults and/or certain responses may be acquired by 
learning (Caro and Bateson, 1986). If the cost-benefit trade-off favours lower plasticity though 
(Bell and Sih 2007), by learning not to express certain responses the inverse curve is possible. In 
chapter 3, I compare individuals’ behavioural reactions norms in response to variation in air 
temperature. 
 

 

Populations subject to different selection pressures may also be compared.  For example, 

populations of house sparrow (Passer domesticus) in the act of invading new 

environments have lower neophobia than settled populations (Martin and Fitzgerald, 

1995). However, variation between house sparrows may also reflect learning: invaders 

may be adapting by learning new food types and residents may have learnt to recognise 

what food is good. To further partition variation into innate and learnt components, we 

can compare naive individuals before and after experiencing environmental cues (Bell 

and Sih, 2007) or juveniles to adults (Exnerova et al., 2010; see Fig 1-1b). Finally, by 

comparing responses within individuals as contexts (functional categories, e.g. foraging, 

anti-predator) or situations (time points or gradients - e.g. temperature, predation risk - 

within contexts) change, I can infer the motivation or experience equated in a given trade-
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off. For example, on encountering a competitor the variety of aggressive responses in 

sticklebacks and, on encountering a potential mate, courting behaviours in pipefish 

(Sygnathus typhle) are reduced in the presence of predators (Bell and Sih, 2007) or as 

predation risk increases (Berglund 1993). Therefore a cost of aggression and courtship 

respectively is increased predation risk. 

A striking observation from such studies though, is that a proportion of 

behavioural variation between individuals cannot be explained by an individual’s species, 

experience, context or situation. Moreover, differences between otherwise similar 

conspecifics, in for example aggression (aggressive - passive; Huntingford, 1976), 

activity level (active-inactive; Sih et al., 1992), sociality (sociable - antisocial; Cote and 

Clobert, 2007), exploratory tendency (fast - slow or high - low; Verbeek et al., 1994) and 

“boldness” (latency to feed in novel or risky environments; Clark and Ehlinger, 1987, 

Wilson et al., 1993, van Oers et al., 2004) often persist across situations or contexts (for 

review: Sih et al., 2004). This “intra-individual consistency and inter-individual 

variation” (Schuett and Dall, 2009) is often referred to as “personality” (Gosling, 2001). 

Heritability in personality traits (Dingemanse et al., 2002, Drent et al., 2003, van Oers et 

al., 2004) and differences in fitness or survival between personality types (Biro and 

Stamps, 2008) suggest that personality may be substrate from which innate behavioural 

plasticity evolves. 

In this thesis, I will examine within and between-individual variation in response 

to environmental cues, with two key aims. First: to identify and assess the consequences 

of behavioural consistency, i.e. personality, for animals within captive and wild 

environments. And second: to examine the role of learning and memory in individual 

response to a temporally stable foraging situation. 

 

1.2 PERSONALITY: WITHIN-INDIVIDUAL CONSISTENCY AND BETWEEN-INDIVIDUAL 

VARIATION IN RESPONSE TO ENVIRONMENTAL CUES 
 

Personality is defined as between-individual differences but within-individual 

consistency in behaviour across situations or contexts. It constitutes limited behavioural 

plasticity, such that behaviour may be relatively adaptive within some contexts but 

suboptimal in others (see Fig. 1-2). Personality research represents a break with tradition: 

animals are compared not by their proximity to a postulated behavioural optimum but 

instead by their differences in behaviour (Sih et al., 2004). Such differences, falling into 

five general categories: activity, exploration, boldness, aggression and sociability (Reale, 
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2007) appear ubiquitous to animal life, described in animals as diverse as humans (Nettle, 

2006) and invertebrates (reviewed in: Gosling and John, 1999). 

 
Figure 1-2 Plots describing the personality trait exploratory tendency (modified from Sih et al., 
2004). (a) A plasticity plot representing individual change in exploration level across 
environments. Each line represents an individual, with the intercept at each environment (A or B) 
their exploration level within that environment. The optimal level of exploration is indicated by 
stars (high in A, low in B). Individuals alter their level of exploration according to environment, 
but not to the optimum level. Rank-order differences in exploratory tendency are largely 
maintained across environments (e.g. the blue individual has higher exploratory tendency than the 
red individual in both environments). Often, individuals at the “slow” end of personality traits 
(i.e. passive, inactive, shy or, here, less exploratory types) change behaviour more or faster in 
response to environmental change than fast (aggressive, active, bold, exploratory) types, i.e. they 
are more “environmentally sensitive” . For example, the less exploratory red individual changes 
exploration level more (has a steeper slope) than the more exploratory blue individual. (b) 
Personality types adjust their behaviour in accordance with environment: the points represent 
individuals, the dashed line a scenario where exploration level is independent of the environment, 
and the line the actual relationship between exploration levels across environments. Again, the 
red individual is more environmentally sensitive than the blue individual, so has closer to the 
optimum level of exploration (indicated by the star) in each environment. 
 

 

Changing predation risk (Bell and Sih, 2007, Fraser et al., 2001, Reale and Festa-

Bianchet, 2003), food availability (Dingemanse et al., 2004) and habitat quality for 

breeding (Quinn et al., 2009) have all been shown to differentially affect survival or 

reproduction between personality types in the wild. Furthermore, an increasing number of 

studies show that personality traits may be heritable (Benus et al., 1991, Dingemanse et 

al., 2002, van Oers et al., 2004b, Brown et al., 2007, Quinn et al., 2009) and linked to 

particular genes (Fidler et al., 2007, Korsten et al., 2010). Personality variation may 

therefore reflect ecologically relevant variation within populations, maintained by 

differential selection across environments or time (Dingemanse et al., 2007, Dingemanse 
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et al., 2004, Bell, 2005). Moreover, the existence of alternative phenotypes that differ in 

their performance of ecological functions such as foraging are a route by which allopatric 

or indeed, via niche specialisation, sympatric speciation may occur (Darwin, 1859; 

Maynard-Smith, 1966; West-Eberhart, 1989, 2003).  

 

1.2.1 PROACTIVE-REACTIVE PERSONALITY 
 

As a description of consistent behaviour differences across contexts or situations, the 

term personality is often used interchangeably with temperament (Fairbanks, 1993, 

Gosling, 1998), coping style (Benus et al., 1991, Verbeek et al., 1996, Koolhaas et al., 

1999) or behavioural syndrome (Sih et al., 2004). Whilst these are largely analogous, the 

definition of behavioural syndromes and coping styles place particular emphasis on the 

existence of “suites of correlated behaviours”, i.e. correlations between different 

personality traits across contexts or situations (Sih et al., 2004). Personality traits are 

often highly correlated within individuals, for example activity with exploration 

(Dingemanse et al., 2007, Martin and Reale, 2008), exploration with sociability 

(Nomakuchi et al., 2009, Pike et al., 2008) or boldness with aggression (Bourne and 

Sammons, 2008, Bell, 2005, Johnson and Sih, 2005). A commonly described trait 

correlation is the “proactive-reactive” syndrome, which encompasses boldness, 

aggression and exploration (Koolhaas et al., 1999, Carere et al., 2005). 

Such correlations imply proximate links between traits, via genetic linkage or 

shared physiology (Verbeek et al., 1994). However, correlations can also occur when two 

traits are not mechanistically connected but rather subject to the same selection pressures 

(Bell and Sih, 2007, Dingemanse et al., 2007). This is evident when selection pressures 

are removed or altered and traits become uncoupled (Bell and Sih, 2007; Ruiz-Gomez et 

al., 2008; see also chapter 4).  

Two traits which are often correlated are neophobia and exploration. Neophobia 

and exploration are both responses to novelty. In birds, neophobia is measured as the 

latency to return to a desired resource, for example food, in the presence of a novel object 

(Greenberg, 1983; van Oers et al., 2004, van Oers et al., 2005b). Literally “fear of the 

new”, the object is assumed to generate a trade-off between desires to avoid unknown 

risks associated with the object but to obtain the resource (Richard et al., 2008). Hence: 

an individual’s position on the neophobia axis reflects their trade-off between these costs 

and benefits. Exploration is the tendency to engage with novelty per se. Novelty may be 

introduced in the form of a new environment ("spatial exploration", Verbeek et al., 1994) 
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or a novel object within a familiar environment ("object exploration", Mettke-Hofmann et 

al., 2002). Food is not presented in exploration trials, so the motivation is assumed to be 

information gathering (Mettke-Hofmann et al., 2002). The costs of exploration may be 

the time, energy and attention diverted from other activities or risks, or indeed the 

potential (unknown) dangers of the novel object or environment itself (Johnston, 1982). 

The latency to enter (Mettke-Hofmann et al., 2009) or explore all parts of a novel 

environment (e.g. Verbeek et al., 1994), activity (e.g. Dingemanse et al., 2002) or space 

use within novel environments (e.g. Minderman et al., 2009), and latency to approach or 

time spent in contact with novel objects (e.g. Mettke-Hofmann et al., 2002) are all assays 

of exploratory tendency.  

In the great tit, a positive correlation between neophobia and exploration appears 

to be under genetic control (van Oers et al., 2004a). Indeed in a range of species “novelty 

seeking” behaviour may be linked to polymorphisms within a single gene: the dopamine 

receptor D4 (DRD4), referred to colloquially as the “curiosity gene” (Schinka et al., 

2002, Korsten et al., 2010, Fidler et al., 2007). As such, the personality traits neophobia 

and exploration may be alternate measures of a single proactive-reactive syndrome, 

measured in different (familiar versus novel) environments. However two lines of 

evidence suggest that these are distinct personality traits subject to different motivations 

and selection processes. First, comparing neophobia and object exploration in a broad 

range of parrot species Mettke-Hofmann and colleagues (2002) found different ecological 

correlates to the two traits. Exploration was fastest in species that may benefit most from 

information gathering, for example those inhabiting relatively changeable (e.g. forest 

edge) versus homogeneous habitats (see also Tebbich et al. 2009). Conversely, neophobia 

appeared related to dietary risk: novel insects are potentially noxious, and insectivorous 

species were more neophobic than leaf-eating species. Similarly, amongst tit species 

innate neophobia, measured in naive hand-raised juveniles, correlates to body size: it is 

suggested that this reflects the proportional risks of ingesting toxins (Exnerova et al., 

2010). 

Second, in physiological studies neophobia appears related to physiological stress 

responsiveness, i.e. reactivity of the hypothalamic-pituitary-adrenal axis ("HPA" axis, 

hypothalamic-pituitary-interrenal axis in fish; Koolhaas et al., 1999, Cockrem, 2007), 

whilst exploration does not. An animal’s HPA axis is activated in response to 

environmental stressors (Cockrem and Silverin, 2002). This causes an increase in 

circulating gluccocorticoids (stress hormones), which in turn cause secretion of glucose 

into the plasma, stimulating the metabolism to allow rapid behavioural reactions to 

environmental stressors (Cockrem, 2007, von Holst, 1998). In birds for example, the 
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main gluccocorticoid stress hormone is corticosterone ("CORT", Cockrem, 2007), and 

elevated CORT is associated with stressors such as sight of a predator (Cockrem and 

Silverin, 2002) and low food availability (Muller et al., 2007). Accordingly, CORT 

stimulates behavioural responses such as the fleeing (Cockrem, 2007) or increased 

foraging effort (Rich and Romero, 2005). However a behavioural response does not 

necessarily indicate a CORT response (Muller et al., 2006). Encountering novel objects 

either with or without food nearby can both elicit avoidance behaviours in birds. In the 

few studies that have compared the level of CORT before and after presentation of a 

novel object though, with food approaching the novel object appears to be 

physiologically stressful (Richard et al., 2008) but in a neutral location it is not (Mettke-

Hofmann et al., 2006, but see Apfelbeck and Raess, 2008). Therefore it appears that only 

neophobia elicits a physiological stress response. 

An aim of this thesis was to test whether neophobia and exploration in blue tits 

(Cyanistes caeruleus; chapter 2) and greenfinches (Carduelis chloris; chapter 4) are 

distinct personality traits or part of a single proactive-reactive trait. In chapter 4, I 

investigated also whether these traits correlated together or were independent predictors 

of individual oxidative stress or oxidative damage, potential physiological costs of 

personality (see 1.2.3). 

 

1.2.2 ECOLOGICAL RELEVANCE OF PERSONALITY 
 

The field of behavioural ecology has traditionally drawn inspiration from the behaviour 

of animals in the wild (for review: Krebs and Davies, 1997). Cognitive ecologists for 

example, who examine adaptation at the level of psychology and neurology (Real, 1993; 

Healy et al., 2005), have been inspired by observations of the remarkable abilities of 

storing animals such as the coal tit (Periparus ater) and marsh tit (Parus palustris), which 

hide and then are able to retrieve often hundreds of food items about their environment 

days or even months later (Clayton, 1995). How they perform this feat has been the 

subject of captive study for over twenty years, with these food storers and non-storing 

congeners compared in memory, brain morphology and cue selection (for review see: 

Healy et al., 2005).  

In contrast, the field of animal personality has stemmed from side observations on 

captive animals. The existence of consistent behavioural differences between individuals 

was recognized in fields such as animal husbandry (Metcalfe et al., 1989; Cutts et al., 
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1998, Koolhaas et al., 1999) and behavioural genetics (Benus et al., 1987, Benus et al., 

1991) long before the term “animal personality” (Buss, 1991) was coined. It was 

seemingly counterintuitive examples of consistency however, for example aggression in 

bold sticklebacks (Gasterosteus aculeatus, Huntingford, 1976), persistent foraging under 

predation risk in salamander larvae (Ambystoma barbouri; Sih et al., 1988), or 

correlations between aggression and sexual cannibalism in the fishing spider (Dolomides 

triton; Arnqvist and Henriksson, 1997) that first sparked interest in behavioural 

ecologists, and the beginnings of this new field. 

Until recently, the emphasis of animal personality research has been on 

establishing the existence of personality in non-human animals (for review: Gosling and 

John, 1999), with some work on the proximate mechanisms underlying personality 

variation (for review: Dingemanse and Reale, 2005). By comparison, studies on ultimate, 

adaptive explanation for personality variation are relatively few (Dingemanse and Reale, 

2005). A collection of recent theoretical (Wolf et al., 2007, Wolf et al., 2008, Dall et al., 

2004, Stamps, 2003, McNamara et al., 2009) and field studies (Dingemanse et al., 2004, 

Dingemanse and Reale, 2005, Fraser et al., 2001, Boon et al., 2008, Reale and Festa-

Bianchet, 2003) on fitness and survival have begun to redress this balance. However the 

behavioural mechanisms which manifest in fitness and survival differences are still 

predicted from captive studies, on the assumption that behaviour in captivity will reflect 

behaviour in the wild (e.g. Dingemanse et al., 2004). In the few studies that compare 

behaviour across captive and wild contexts in a like-for-like manner, support for this 

assumption is mixed (Wilson and McLaughlin, 2007, Dingemanse and de Goede, 2004, 

van Overveld and Matthysen, 2010, Briffa et al., 2008). Moreover, as correlations 

between personality traits are often highly context specific (Dingemanse et al., 2007, Bell 

and Sih, 2007), without examining behaviour in the wild we cannot establish whether or 

indeed which of correlated traits explain variation in fitness or survival (Hollander et al., 

2008). 

More recent studies have sought to give ecological relevance to behaviours in 

captivity. Captive studies relating personality to changes in perceived predation risk for 

example are an important step in linking captive to wild behaviour. By introducing a pike 

(Esox lucius) to predator-naive captive sticklebacks (Gasterosteus aculeatus), Bell and 

Sih (2007) were able to examine the effects of both predation and predation experience 

on population level variation in personality in sticklebacks, and found differences pre- 

and post-predator experience that mirrored variation between wild predator-experienced 

and predator-naive populations (Bell, 2005, Dingemanse et al., 2007). Qualitative 
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responses to predators too are important, and the captive environment enables controlled 

study of changes in behaviour (Jones et al., 2008). Quinn and Cresswell (2005) for 

example, utilised the captive environment to subtly manipulate predator exposure in wild 

caught chaffinches (Fringilla coelebs). Hawk attack was simulated by gliding a model 

hawk over the caged bird, either to one side (low predation risk) or directly above (high 

predation risk). A general switch from freeze to flee responses with increasing predator 

proximity could be explained by the value of these responses in each context. At the 

individual level though, personality types differed in the optimality of their response 

across contexts, illustrating a mechanism by which behavioural consistency may result in 

differential selection on animals living under different levels of predation risk. 

However in the wild, animals are subject to and learn about different and 

constantly changing environmental conditions. This diversity of conditions can never 

truly be replicated in captivity. A collection of recent studies investigating both behaviour 

and survival in the wild are an important step toward understanding the ecological 

relevance of personality (Boon et al., 2008, Reale and Festa-Bianchet, 2003, Fraser et al., 

2001). An aim of this thesis (chapter 2) was to test first the assumption that neophobia 

and exploratory tendency in captivity corresponds to neophobia and exploratory tendency 

in the wild. 

 

1.2.3 PHYSIOLOGICAL COSTS OF PERSONALITY 
 

Oxidative stress is an imbalance between pro-oxidants, which react with and damage 

body tissue, and antioxidants, which neutralize pro-oxidants, in favour of pro-oxidants 

(Finkel and Holbrook, 2000, Costantini and Verhulst, 2009). As pro-oxidants are 

primarily a metabolism by-product, a physiological cost of increases in activity or 

physiological stress, which both stimulate the metabolism, can be increased oxidative 

stress or damage (Finkel and Holbrook, 2000).  Animals face many taxing periods in life 

when stress and activity levels and consequently oxidative stress are enhanced, such as 

migration (Costantini et al., 2007) and reproduction (Wiersma et al., 2004). However, 

research on laboratory animals (Careau et al., 2009), particularly lines selected for 

specific personality types (Groothuis et al., 2008, Veenema et al., 2003, Martins et al., 

2007, Overli et al., 2007, Richard et al., 2008, Saint-Dizier et al., 2008, Costantini et al., 

2008), and also farm animals selected for certain behavioural tendencies (Cutts et al., 

2001, Cutts et al., 2002b, Cutts et al., 1998, Fraisse and Cockrem, 2006, Koolhaas et al., 
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1999) suggest personality may represent consistent differences in metabolic rate or stress 

responsiveness, and hence possibly also oxidative costs (Costantini et al., 2008).  

First, personality may relate to systematic variation in basal or standard metabolic 

rate ("BMR" or "SMR", Careau et al., 2008). The trait aggression for example is 

positively associated with SMR in salmonid fish species, with aggressive types shown to 

have higher SMR than passive types (Cutts et al., 2002a, Cutts et al., 2002b, Cutts et al., 

1998). In this case, a higher SMR explains aggression by allowing greater energetic 

expenditure in agonistic encounters. With the trait exploration though, within muroid 

rodents it appears that exploratory types have lower BMR than less exploratory types 

(Careau et al., 2009). Muroid rodents with low BMR also have delayed reproduction: 

apportioning energy into exploration in lieu of reproduction, for these animals 

exploratory tendency may be selected in food-poor environments where it is beneficial to 

acquire resources prior to breeding (Careau et al., 2009). With metabolic rate therefore, 

the physiological costs of personality may differ between personality traits or species, and 

are contingent on the environment in which the animal lives (Stamps, 2007, Biro and 

Stamps, 2008). In general, in food-rich environments, personality types with high 

metabolic rates may thrive and out-compete others by monopolizing food (Cutts et al., 

2002a, Dingemanse et al., 2004) or investing more into reproduction (Careau et al., 

2009). In food-poor environments though, these energetically costly behaviours cannot be 

sustained, and personality types with lower metabolic rates may cope best (Stamps, 2007, 

Dingemanse et al., 2004).  

Second, the personality traits boldness and aggression are linked to variation in 

physiological stress responsiveness, i.e. reactivity of the HPA axis (Koolhaas et al., 1999, 

Cockrem, 2007, von Holst, 1998). HPA axis reactivity has been shown to be higher in 

shy or passive than bold or aggressive mammals (Veenema et al., 2004, Ruis et al., 2000, 

Cavigelli and McClintock, 2003, Martin & Réale, 2008; Cavigelli et al., 2009) birds 

(Carere et al., 2003, Martins et al., 2007, Richard et al., 2008, for review: Cockrem, 2007) 

and fish (Hoglund et al., 2008, Brelin et al., 2008). Eliciting rapid behavioural responses 

to stressors, stress responses can clearly be beneficial in the short term (Korte et al., 

2005). In the long term though, high or chronic stress responsiveness is costly: stress 

responses are an investment of time and energy and gluccocorticoids themselves suppress 

immune function (Koolhaas, 2008, Korte et al., 2005). Despite these costs, high stress 

responsiveness may be beneficial in environments where the dangers of excessive 

aggression or risk-taking by insensitivity to stressors can outweigh these physiological 

costs (Korte et al., 2005, Bell and Sih, 2007, Natoli et al., 2005). Like metabolic rate, the 
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costs of personalities with high versus low stress responsiveness will depend on the 

environment in which the animal lives. 

As pro-oxidants are mostly a metabolism by-product, personality types with 

higher metabolic rate and/or higher stress responsiveness may be expected to suffer 

worse oxidative stress. However, whether personality relates to oxidative stress has only 

been studied once: in a study comparing aggressive strains of mice (Mus musculus with 

short attack latencies, i.e. “SAL” mice) to passive strains (long attack latency, i.e. “LAL” 

mice), Costantini and colleagues (2008) found higher antioxidant capacity in LAL than 

SAL mice. Despite greater antioxidant capacity LAL mice did not have lower oxidative 

stress than SAL mice, so the authors suggest that higher antioxidant capacity may conceal 

the production (and neutralization) of more pro-oxidants. Whilst no greater oxidative 

stress was evident therefore, this up-regulation of the antioxidant system may itself be 

costly and, as noted by the authors, LAL mice have generally a shorter lifespan than SAL 

mice (Ewalds-Kwist and Selander, 1996). Whilst stress responsiveness is the most likely 

explanation for the oxidative profile variation in this case (SAL mice would be expected 

to have higher pro-oxidant than LAL mice if metabolic rate was the cause), in other 

studies there is indirect evidence of a cumulative oxidative cost to personality types with 

higher metabolic rate. For example, within the “activity” personality trait, active (hence 

most metabolically active) types have shortest lifespan (for review: Biro and Stamps, 

2008). An aim of this thesis was to explore relationships between oxidative profile and 

personality in the European greenfinch (Carduelis chloris; chapter 4). 

 

1.3 RESPONDING TO CHANGING ENVIRONMENTAL CUES 
 

The natural environment is constantly changing. One strategy for coping with 

uncertainty is to reduce it, by learning about changing environmental cues. Shepard’s law 

states that, with experience of a conditioned stimulus (e.g. food) at two or more points 

along an environmental gradient (e.g. plant density), an animal will weight its response to 

a novel point by its expectation of how the conditioned stimulus and environmental 

gradient relate (Shepard, 1987). Therefore by sampling for food at two points along 

visual (e.g. food colour), temporal or spatial gradients, a forager may “be a statistician” 

(Pyke, 1984) and predict the appearance of as yet un-encountered foods, rates of turnover 

and broader spatial distributions (Church and Gibbon, 1982; Cheng et al., 1999; Cheng 

and Spetch, 2002). By sampling more points along these gradients, an individual’s 

“information state” (Mitchell, 1989) is further refined, and their ability to predict the 
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environment improved (Dall and Cuthill, 1997). Therefore variation in behaviour 

between individuals may reflect differences in opportunity for learning, for example 

experience of particular environmental stimuli or with age, hence total experience. 

However, learning comes at a cost (Johnston, 1982). To learn animals must gather 

information (i.e. sample), the time, energy and attention required for which is diverted 

from other activities, such as foraging, mating and avoiding predators (Johnston, 1982). 

Moreover, where information is incomplete, animals may change their behaviour in ways 

that are not adaptive (i.e. make “mistakes”; Johnston, 1982; West-Eberhart, 2003). It is 

predicted therefore that behavioural plasticity via learning, and its accompanying sensory 

and cognitive machinery, is selected only in more variable environments where the 

benefits of “keeping pace” outweigh these costs (Mangel, 1990; Bergman and Feldman, 

1995; Stephens, 1989). For example interspecific variation in exploratory tendency may 

reflect differential benefits of learning about environmental change and hence 

information gathering between for example generalist and specialist species (e.g. 

Greenberg, 1995) or animals in complex (forest edge) versus homogeneous habitats 

(Mettke-Hofmann et al., 2002, Tebbich et al., 2009). 

 

1.3.1 ENVIRONMENTAL SENSITIVITY 
 

The process of responding to environmental change via learning requires behavioural 

plasticity, i.e. an ability to modify behaviour. Intriguingly, behavioural plasticity may 

vary not only between but also within species: personality types differ in their response to 

environmental cues but also their propensity to modify behaviour as environmental cues 

change (Dingemanse et al., 2010). For example, trained to navigate a maze to find food, 

passive mice adjusted their behaviour in response to a change in maze structure more 

quickly than aggressive mice (Benus et al., 1987). This responsiveness to change, termed 

“environmental sensitivity” (Koolhaas et al., 1999; Boyce and Ellis 2005), is often greater 

or faster at the “slow” (passive, neophobic, non-exploratory) than the “fast” (aggressive, 

neophilic, exploratory) extremes of personality traits (Benus et al., 1987, Benus et al., 

1988, Benus et al., 1990, Verbeek et al., 1994, Marchetti and Drent, 2000, Koolhaas et 

al., 1999, Jones and Godin, 2010, see Fig. 1-2). With traits such as exploration therefore, 

this seems contrary to expectation, as between-species variation in exploratory tendency 

is predicted to enable greater behavioural flexibility via information gathering. Within 

species though, “fast” exploration may not necessarily indicate a greater tendency but 
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rather qualitatively different approach to information gathering and learning (Van 

Overveld and Matthyssen, 2009). 

 In captive studies on great tits for example, fast-exploring great tits continued to 

visit former feeding sites for a prolonged period after food is withdrawn (Marchetti and 

Drent, 2000). In contrast, slow-explorers quickly shifted their search for food toward new 

parts of the aviary (Marchetti and Drent, 2000). Therefore slow explorers were defined as 

more environmentally sensitive (i.e. they responded more quickly), and it appears that 

this environmental sensitivity is based on a faster learnt association between the feeding 

site and unprofitability. Similar captive examples of routine-formation in fast types are 

found in rodents (Benus et al., 1987). From these studies, it is predicted that fast-

explorers may form similarly fixed foraging routines in the wild. However, investigating 

a population of wild great tits, Overveld and Matthyssen ( 2009) found that the abrupt 

removal of an artificial feeding site stimulated fast explorers to move to new foraging 

areas whilst slow explorers remained within the vicinity of the old feeding site (Overveld 

& Matthysen, 2009). As the great tits in that study did not differ in feeding range size 

after that manipulation, the authors suggest the movement reflected not differences in 

propensity toward information gathering but rather variation in the way individuals used 

information: fast explorers relied on old information, returning to formerly encountered 

feeding sites (thus explaining the sudden distant movement). In contrast, slow explorers 

relied on current information, remaining able to forage within the site by having updated 

their information on alternate food sources despite the availability of food at feeders. This 

example illustrates two important points. First, again, that the ecological significance of 

personality variation cannot be fully understood without examining behaviour in the wild. 

And second, that measuring environmental sensitivity may be equally as important to 

understanding the adaptive significance of personality as measuring personality traits per 

se. In chapter 5, I investigate the relationship between environmental sensitivity and 

neophobia and exploratory tendency in wild blue tits. 

 

1.3.1 CUE SELECTION: MEASURING PERCEPTION OF ENVIRONMENTAL PREDICTABILITY 
 

Cue selection is the process of recognising, learning or remembering a particular aspect 

of a multimodal stimulus. Broadly, two types of cue may be used to re-find food in a 

fixed location: spatial cues and local cues. Spatial cues are geometric relationships 

between a food location and more permanent landmarks (Cheng 1999; Collett, 1987) or 
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the broader environment (the “cognitive map”; O’Keefe and Nadel, 1978). Local cues are 

associatively learnt aspects of the food or feeding site itself, for example its colour, 

pattern, texture or odour. When the distribution of food is ephemeral, local cues can be 

learnt to increase foraging efficiency (the ‘search image’: Tinbergen, 1960; Dawkins 

1971; Lawrence 1986). However, local cues generally change over time more quickly 

than permanent spatial features, for example the appearance, taste and smell of a fruit 

alter as it ripens but the position of the fruit tree does not. Therefore, spatial cues are 

more reliable than local cues when relocating temporally stable food sources. This 

generates a prediction: where animals perceive the environment to be temporally stable, 

they should favour spatial over local cues. 

Preferences for spatial or local cues, and accordingly perception of temporal 

stability, may be inferred by first training animals to first locate food by a compound cue 

(e.g. a colour marker in a set location) and then dissociating the local and spatial cues 

(moving the colour marker to a new location) to see to which an animal attends first. By 

such dissociation tasks, ecologically pertinent differences between species in cue 

selection arise. For example food-storing birds, which hide and must relocate food 

throughout the winter, often hold spatial biases whilst closely related non-storers use both 

cues equally (Clayton and Krebs, 1994, Brodbeck, 1994, Brodbeck and Shettleworth, 

1995, but see Hodgson and Healy, 2005, LaDage et al., 2009). As the location of stored 

food does not change over time, a stereotyped spatial response may be adaptive in storers 

(Krebs, 1990).  

However, it could equally be inferred that the use of both cues by non-storers 

represents adaptation toward greater plasticity in cue use. Non-storers (most birds) feed 

on ephemeral food (e.g. insects, fruit) that may vary widely in distribution from scattered 

to clumped, i.e. more or less temporally stable. Therefore innate plasticity coupled with 

an ability to learn about environmental predictability may be advantageous in these 

species. Odling-Smee and Braithwaite demonstrated innate plasticity coupled with learnt 

cue prioritization in sticklebacks: sticklebacks from ponds use both cue types to navigate 

a maze to find food. Conversely, sticklebacks from streams are biased toward spatial 

cues, perhaps because the turbidity of the water renders local cues less reliable (Odling-

Smee and Braithwaite, 2003). Most cue selection research has focused on species such as 

storers that are expected to have special learning abilities. Whether non-storers equipped 

with a prior expectation of temporal stability use spatial cues in place of local cues has 

not been tested. The aim of chapters 5 and 6 was to test this hypothesis, first in a 

controlled captive foraging scenario (Chapter 5) and then in the wild (Chapter 6). 
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1.4 AIMS OF THE THESIS 
 

The thesis is divided into two parts. In chapters 2, 3 and 4 I investigate personality, 

examining variation in foraging behaviour between personality types in wild blue tits 

(Cyanistes caeruleus; chapters 2 and 3) and physiological costs of personality in captive-

bred greenfinches (Carduelis chloris; chapter 4). In chapters 5 and 6, I then investigate 

cue selection in temporally stable environments, first in captivity with greenfinches and 

then in the wild with five common garden passerines.  

 

1.4.1 THE BLUE TIT 
 

For wild studies on personality (chapters 4 and 5), my study species was the blue tit 

(Cyanistes caeruleus, formally Parus caeruleus). The blue tit is a small (c. 11g) 

insectivorous passerine of the Paridae family. Breeding readily in nest boxes, it has 

become a model species for studies on sexual selection (e.g. Hunt et al., 1998, Hadfield, 

2006), breeding phenology (Liedvogel et al., 2009, Sanz et al., 2002) and provisioning 

behaviour (Tripet et al., 2002, Arnold et al., 2010). Personality research though has 

generally focused on the blue tit’s congener, the great tit (Parus major; for review: 

Groothuis and Carere, 2005). I opted to study personality in blue tit for three reasons. 

First, blue tits are more numerous than great tits at my study site: they outnumbered great 

tits by a ratio of 2:1 in the 2007-2008 season (mist-netted individuals at artificial feeders: 

113:61) and 3:1 in the 2008-9 season (58:19). 

Second, in 37 great tits that I personality tested in captivity, participation in trials 

was low. In the neophobia trial, 23 great tits could not be classified for neophobia, i.e. 

failed to approach the food bowl at least once in the presence and once in the absence of a 

novel object over two attempts. This is compared to just 5 out of 125 blue tits. In the first 

of two exploration trials, which was used to classify “exploratory tendency”, activity was 

much lower in the great tit (median number of movements and IQR: 12, 163) than the 

blue tit (182.5, 300.8; see Appendix I). For drawing comparisons between captive and 

wild behaviour therefore, blue tits were more often successfully classified for neophobia 

and presented a greater range of exploration types than did great tits. 

Finally a collection of recent studies on the genetics and ontogeny of behaviour 

(Hansen and Slagsvold, 2007, Nilsson et al., 2009, Exnerova et al., 2010, Arnold et al., 
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2007, Liedvogel et al., 2009, Exnerova et al., 2003) suggest that blue tits may differ 

consistently in behaviour within natural contexts. As such, thus are a good study species 

for personality research. Three studies propose genetic variation in behaviour. First, 

natural variation in the Clock gene, which in humans is associated with the personality 

trait “agreeableness” (Terraciano et al., 2008), influences timing of reproduction in 

female blue tits (Johnsen et al., 2007, Liedvogel et al., 2009). Blue tits may therefore vary 

consistently in their responsiveness to environmental cues such as day length. Second, 

blue tits have heritable differences in resting metabolic rate (Nilsson et al., 2009). 

Variation in metabolic rate is associated with personality in a range of species and may be 

a mechanism underlying personality variation (Careau et al., 2008). Third, blue tits 

exhibit an innate aversion toward red aposematic (as opposed to brown palatable) insects 

(Exnerova et al., 2010, Exnerova et al., 2003). If variation in this trait exists, individuals 

may differ in the personality trait: neophobia. 

Two studies imply ontogeny-based variation in behaviour. Within my study 

population Arnold et al. (2007) have identified affects of nestling nutrition on the 

development of “bold” personality types (fast object exploration). Specifically, 

individuals supplemented with taurine, an amino acid found within the nestling diet in 

spiders (Ramsay & Houston, 2003), developed bolder personality types than controls. As 

a high proportion of spiders relative to moth larvae, the main constituent of the nestling 

diet, could represent a poor foraging environment, the authors suggest early nutrition 

could then predispose individuals toward boldness as an aid to foraging in a poor 

foraging environment. Second, Hansen and Slagsvold (2004) demonstrated that early 

social environment predisposed individuals toward later aggressive tendency. When great 

tit nestlings, which share a similar ecological niche but are competitively dominant over 

blue tits, were cross-fostered into blue tit nests or vice versa, in adulthood their nest-mate 

blue tits were less aggressive toward conspecific immigrants (unfamiliar and generally 

subordinate birds) than controls (Hansen and Slagsvold, 2004). 

That personality has not otherwise been studied in blue tits is surprising as, 

whether a variable of interest or as noise to control, studies on mate or territory quality 

often demonstrate that their behaviour is repeatable and independent of environmental 

conditions. For example provisioning rate (Biard et al., 2005), provisioning quality 

(Banbura et al., 1994), nest building behaviour (Mennerat et al., 2009) and, perhaps 

consequently, offspring quality (Pryzbylo et al., 2001) have all been shown to be 

repeatable and independent of habitat (hence food and nest material availability) in blue 
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tits. Over-winter repeatability in body mass (Payne and Payne, 1989) also hints at 

behavioural consistency. 

I studied a population of blue tits wintering in oak dominated woodland on the 

east bank of Loch Lomond, UK (56°08’N 4°37’W). Captive behavioural studies on these 

birds were conducted in aviary facilities at the Scottish Centre for Ecology and the 

Natural Environment (SCENE). Wild behavioural data was collected using an electronic 

monitoring system: birds were fitted with leg-ring mounted passive integrated 

transponders (“PIT tags”) and artificial feeding stations were fitted with PIT tag antennae 

to record feeder use during various manipulations. 

 

1.4.2 THE GREENFINCH 
 

For captive studies on the physiological costs of personality (Chapter 4) and cue selection 

(chapter 5), my study species was the European greenfinch (Carduelis chloris). The 

greenfinch is a predominantly granivorous finch from the Cardueline family (Newton, 

1972). Greenfinches are often used as a physiological model for the costs of behavioural 

variation. Notable examples are the relative costs of mass gain with social status (Hake et 

al., 1996) or infection status to social status or predator escape performance (Lindstrom et 

al., 2003; Lindstrom, 2004). In greenfinches, condition indices such as body mass, 

metabolic rate and antioxidant capacity often prove consistent within individuals over 

months (Horak et al., 2002; Sepp et al., 2010). To maintain such differences between 

individuals, or perhaps as a consequence of them, greenfinches may also differ 

consistently in behaviour, i.e. exhibit personality. In a pilot study, I demonstrated that the 

personality trait neophobia was repeatable within individuals and consistent over a four 

month period (Appendix II). Therefore, greenfinches are a good model for studying the 

physiological consequences of personality (chapter 4). 

In the early literature of interspecific variation in cue selection, the greenfinch was 

also used as a non-storing, “non-tit” control to demonstrate the special spatial-learning 

ability of tits (Hilton and Krebs, 1990). Comparative studies on hippocampus size too, the 

brain region associated with spatial learning, contrast the relatively small hippocampus of 

greenfinches (amongst other passerines) to the large hippocampuses of storing tits (Krebs 

et al., 1989). Not adapted to relocate food-stores therefore, the greenfinch has a long 

tradition of being the model of a species expected not to use spatial cues. Outside of the 
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breeding season however, the greenfinches naturally ephemeral food varies greatly in 

abundance: abundant ephemeral food (e.g. ripened crops) may be regarded and hence 

located, for a period, as temporally stable food sources (Humber et al., 2009). As such, I 

predicted that greenfinches may be particularly sensitive to temporal stability in feeding 

opportunities, but use spatial cues only in temporally stable contexts (Chapter 5). 

 

1.4.3 THESIS STRUCTURE 
 

 

Chapters 2, 3 and 4 investigate the consequences of personality for individuals within 

captive and wild environments. Chapters 5 and 6 deal with the use of local cues (colour 

cues) in temporally stable contexts, first in captive greenfinches and second in a five wild 

passerines. The chapters and their aims are described below. 

 

Chapter 2: Personality in captivity reflects personality in the wild 

 

The aim of chapter 2 was to test whether personality traits measured in captivity reflect 

variation between individuals in wild behaviour. I used a population of wintering blue tits 

as the focal species, and investigated the personality traits: neophobia and exploratory 

tendency. 

• Examine effects of environmental conditions, body condition, sex and age on 

behaviour in captivity 

• Test whether neophobia and spatial exploration are personality traits in blue tits 

• Test whether blue tits exhibit a proactive-reactive behavioural syndrome 

• Test whether personality traits measured in captivity predict analogous wild traits 

 

 

Chapter 3: Personality predicts environmental sensitivity in the wild 

 

Having validated that captive personality tests assay variation in wild behaviour in 

chapter 2, in chapter 3 I investigate the key prediction from other captive studies (Benus 

et al., 1990, Marchetti and Drent, 2000) that personality predicts environmental 

sensitivity. I measured environmental sensitivity in two ways. First, I measured 

environmental sensitivity to temperature as the tendency to reduce feeder use in response 
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to natural increases in temperature. Second, I measured environmental sensitivity to food 

availability as latency to abandon unrewarding feeding sites. 

• Identify population level response to changes in temperature and food supply 

• Examine whether average feeder use differs between personality types, ages or sexes 

or with body size 

• Determine whether average feeder use, sex, age or body size affects tendency to 

respond to changes in temperature or food supply 

• Assess whether personality types differ in environmental sensitivity to temperature 

and food supply 

 

Chapter 4: Personality types differ in oxidative profile 

  

Chapter 4 explores the physiological consequences of different personality traits within a 

stable environment. In captive bred greenfinches, I measured two personality traits: 

neophobia and object exploration, which I then related to various measures of oxidative 

profile. Specifically, I: 

• Test whether neophobia and object exploration are personality traits in greenfinches 

• Test whether greenfinches exhibit a proactive-reactive behavioural syndrome 

• Determine whether oxidative profile measures are correlated within individuals 

• Assess whether body mass and sex affects personality and/or oxidative profile 

measures 

• Asssess whether personality affects oxidative profile measures 

 

 

Chapter 5: Context specific preferences for local or spatial cues in the European 

greenfinch  

 

In chapter 5, using captive bred greenfinches I test whether individuals respond to 

perceived changes in the temporal stability of a simple foraging situation by switching 

from local cues to spatial cues. Specifically, I: 

• Examine whether greenfinches exhibit cue biases in temporally unstable contexts 

• Determine whether cue switching was a dependent on time or repeated encounters 

with the foraging situation 

• Assess whether greenfinches are able to learn spatial cues in the absence of local cues 
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Chapter 6: Use of colour cues by wild birds in a stable foraging location  

 

The aim of chapter 6 was to test the prediction generated by the captive study in chapter 5 

that birds should disregard local cues when foraging in a temporally stable foraging 

situation. The temporally stable foraging situations were sets of feeders of different 

colours installed in urban parks. I compare visitation to feeders by five common garden 

passerines between colours on the assumption that colour biases would be evident only if 

the situation was perceived to be temporally unstable. 

• Describe affects of time of day and temperature on artificial feeder use 

• Infer mechanisms underlying colour biases 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 
 

CHAPTER 2 
 

PERSONALITY IN CAPTIVITY REFLECTS PERSONALITY IN THE WILD 

 

 

2.1 ABSTRACT 
 

To investigate the ecological significance of personality, researchers generally measure 

behavioural traits in captivity. Whether behaviour in captivity is analogous to behaviour 

in the wild however, is seldom tested. I compared individual behaviour between captivity 

and the wild in blue tits (Cyanistes caeruleus). Over two winters, blue tits (N = 125) were 

briefly brought into captivity to measure exploratory tendency and neophobia using 

variants of standard personality assays. Each was then released, fitted with a Passive 

Integrated Transponder (PIT) tag. Using an electronic monitoring system, individuals’ 

use of feeders was then recorded as they foraged in the wild. I used variation in the 

discovery of new feeders to score 91 birds for exploratory tendency in the wild. At eight 

permanent feeding stations, 78 birds were assayed for neophobia in the wild. Behavioural 

variation between individuals in the captive personality trials was independent of 

permanent (e.g. sex) and non-permanent (e.g. condition or weather at capture) sources of 

between-individual variation at capture. Individual behaviour in both captive and wild 

trials was repeatable, therefore exploratory tendency and neophobia constituted 

personality traits in the blue tit. Exploratory tendency and neophobia were not correlated 

with each other, either in the captive or wild context. Therefore they are independent 

traits in blue tits, in contrast to many species. Finally, exploratory tendency and 

neophobia measured in captivity positively predicted the analogous traits measured in the 

wild. Reflecting differences in the use of feeding opportunities, personality in captivity 

therefore revealed relevant differences in foraging behaviour between individuals.   
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2.2 INTRODUCTION 
 

Confronted with the same environmental or behavioural stimuli, even within a 

homogenous captive environment, individuals of the same species often differ markedly 

in their behaviour (Verbeek et al., 1996, Gosling, 2001).  Notable axes of variation are 

aggression (aggressive - passive; Huntingford, 1976), activity (active-inactive; Sih et al., 

1992), sociality (sociable - antisocial; Cote and Clobert, 2007), exploratory tendency (fast 

- slow explorer; Verbeek et al., 1994) and risk-responsiveness (risk-prone-risk-averse, 

neophobic-neophilic or bold-shy; Clark and Ehlinger, 1987, Wilson et al., 1993, van Oers 

et al., 2004).Where differences in behaviour between individuals are stable across a range 

of situations or contexts, we refer to this variation as “personality” (Gosling, 2001). 

Heritability in personality traits (Dingemanse et al., 2002, Drent et al., 2003, van Oers et 

al., 2004) and differences in fitness or survival between personality types (Fraser et al., 

2001, Dingemanse et al., 2004, Bell, 2005) suggest that personality may reflect 

ecologically significant variation between individuals.  

Few studies measure personality in the wild (but see Coleman and Wilson, 1998, 

Reale et al., 2000, Reale and Festa-Bianchet, 2003, Hollander et al., 2008). To investigate 

the ecological significance of personality, researchers generally measure behaviour in 

captivity and compare the distribution or fitness of individuals in the wild thereafter 

(Dingemanse et al., 2004, Bell, 2005). Studying behaviour in captivity has numerous 

advantages, notably allowing researchers to control the conditions under which all 

individuals are tested (Campbell et al., 2009). However, classifying personality in 

captivity may be misleading for two reasons. First, behaviour changes as wild individuals 

adapt to the captive environment (Butler et al. 2006). Where there are systematic 

differences in the rate of acclimation between personality types therefore, testing in 

captivity may exaggerate or even generate behavioural differences between personality 

types. For example, risk-averse or “shy” individuals take longer to recover from handling 

or capture stress and also to eat in a novel environment than risk-prone or “bold” 

individuals (van Oers et al., 2004, van Oers et al., 2005b, Wilson et al., 1993). As food is 

usually withdrawn prior to personality trials and often returned within trials to stimulate 

behaviour, residual stress, hunger or condition may then motivate shy but not bold 

individuals to a greater extent in captivity than in the wild. Therefore, it is important to 
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test that behavioural differences between personality types extend beyond the captive 

environment.   

 Second, classifying behaviour in captivity may be misleading because behaviour 

is often highly context specific. Isolation from the appropriate context may suppress or 

subvert personality traits in captivity. For example, studies carried out in captivity, in 

artificially constructed dominance interactions, find no linear relationship between rank 

and exploratory tendency in great tits (Parus major), and an overall a negative correlation 

between these traits (Verbeek et al., 1999). However in the wild, this relationship is only 

negative between non-territorial juvenile males, and in contests between territorial males 

on neutral ground, fast-explorers dominate slow explorers (Dingemanse and de Goede, 

2004). Indeed, within their own territory, males were dominant regardless of personality, 

so the absence of a territorial context in captivity may limit my ability to predict the 

ecological significance of captive personality traits. Another important contextual 

difference may be social isolation in captivity, as numerous studies suggest individuals 

modify their risk-taking behaviour in relation to the presence and identity of conspecifics 

(van Oers et al., 2005b, Boogert et al., 2006, StoI waset al., 2006, Apfelbeck and Raess, 

2008, Pike et al., 2008). The relationship between different behavioural traits may also be 

context dependent. Bell and Sih (2007), for example find that aggression and risk-taking 

in a predator-naïve population of sticklebacks correlate only after exposure to a predator, 

suggesting that the absence of the predator-prey context affects captive personality trait 

estimates. Without comparing behaviour in captivity to behaviour in the wild therefore, it 

is impossible to assess whether or indeed which personality traits directly contribute to 

fitness differences observed between personality types.   

I investigated individual variation in exploratory tendency and neophobia (risk-

responsiveness toward novel objects) in a population of blue tits (Cyanistes caeruleus). 

To measure this variation, I used variants of two classic behavioural assays in captivity 

and developed versions of these for use in the wild: Verbeek et al.’s (1994) exploration 

test and Greenberg’s (1983) novel object test. Verbeek et al.’s (1994) exploration test 

assigns exploratory tendency by movement in a novel captive environment. Whilst it is 

difficult to quantify movement per se in the wild, we may compare the movement of 

individuals by their presence at certain targets. Dingemanse et al. (2003), for example, 

have used the distance between the origin and endpoint of post-natal dispersal as a 

measure of differences in dispersal behaviour in the great tit. Here, I used presence or 

absence at new feeding sites, introduced within a network of established feeding stations, 

as a measure of exploratory tendency during foraging. Greenberg’s (1983) novel object 



33 
 

test assigns “neophobia”, the aversion to the unfamiliar, by the latency to return to a 

known resource, for example a food bowl or nest site, in the presence of a novel object 

(see also van Oers et al., 2004, van Oers et al., 2005b). The novel object appears to 

generate a motivational conflict between desires to obtain the resource and to avoid any 

unknown risks associated with the novel object (Richard et al., 2008). This test is often 

used in the wild, where novel objects are introduced to familiar feeding sites, but usually 

for unmarked individuals (Webster and Lefebvre, 2000, Webster and Lefebvre, 2001, 

Echeverria et al., 2006). Using variants of these established tests, exploratory tendency 

and neophobia in species from a variety of taxa are often, but not universally, correlated 

(but see Clark and Ehlinger, 1987, Wilson et al., 1993, Mettke-Hofmann et al., 2002, 

Coleman and Wilson, 1998). My aims were threefold: first, to determine whether 

variation between individuals in these trials was consistent and repeatable, and hence 

whether exploratory tendency and neophobia constitute personality traits in the blue tit. 

Second, as trait correlations may differ between contexts, to assess whether neophobia 

and exploratory tendency are themselves correlated in either captivity or the wild.  And 

third, to compare exploratory tendency and neophobia measured in captivity with the 

analogous traits measured in the wild for the same, marked individuals.  

 

2.3 METHODS 
 

Studies were conducted between 2007 and 2009 in oak dominated woodland on 

the east bank of Loch Lomond, UK (56°08’N 4°37’W). In October 2007, I first 

established eight feeding stations at approximately 500m intervals. These feeding stations 

were removed at the end of Feburary 2008 and reinstalled in the same positions between 

October 2008 and February 2009.  Each feeding station consisted of two tubular 

Defender™ feeders (35cm height, 7cm diameter) hung above one another from a bracket 

on an oak trunk, at approximately 2m and 3m above ground level respectively. The 

feeders were stocked with peanut granules, and covered with a tube of grey laminated 

paper to disguise cues about the amount of food available. There was one small feeding 

hole, so only one bird could feed at a time. I attached a wooden rectangular perch (8cm x 

5cm) under this hole, onto which I laid flat a rectangular metal hoop antenna (8cm x 5cm; 

TROVAN®, United Kingdom). Between November and February, I captured birds as 

they approached the feeding stations, using mist-nets. I mist-netted three times at each 

feeding station in the 2007-8 season, and twice the 2008-9 season, generally between 
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dawn and noon, to ensure equal disturbance at each site. One hundred and twenty-five 

blue tits were trapped over this time (4-17 per site in 2007-8, 2-10 per site in 2008-9), and 

taken into captivity for personality trait testing. On first capture, each bird was fitted with 

a unique Passively Integrated Transponder (“PIT” tag; 11.5 mm x 2.1 mm, <0.1g, Trovan 

Unique™) attached to a plastic leg ring with Araldite™ glue (as Macleod et al., 2005). 

The PIT tag weighs less than 1% of the body mass of a blue tit hence is unlikely to affect 

individual behaviour. On entering the electromagnetic field generated within the antenna 

loop, the PIT tag produces an amplitude modulated code signal. Using an electronic 

monitoring system (Trovan™ LID665) I was able to identify individual birds as they 

used the feeders, from which I derived my wild measures of personality traits. In 2007-8, 

wild exploration trials were carried out between 1st February 2008 and 28th February 

2008 and wild neophobia trials between 19th December 2007 and 28th February 2008. In 

2008-9, both trials ran between the 11th January 2009 and 28th February. A total of 91 

birds were detected at feeders in the wild: 61 in 2007-8 and 30 in 2008-9.   

 

2.3.1 PERSONALITY TRIALS IN CAPTIVITY   
 

Birds arrived in captivity generally between 10:00 and 12:00, within 15 minutes journey 

time from their capture site. They were housed indoors, at a temperature of 17°C±1°C 

and, to conduct all tests within the captive period whilst standardising captive conditions 

across birds, a longer than natural 12:12 hour light:dark regime. Each bird was housed 

individually in a 150cm x 50cm x 50cm cage. Peanut granules, Haiths’ Prosecto™ 

insectivorous mix and water were provided ad libitum, along with around ten Tenebrio 

molitor and two Galleria mellonella larvae per day. All birds were observed eating within 

10 minutes of arrival in captivity. They were then left undisturbed for a minimum of 2 

hours. An exploration trial was run after this period, followed by a further hour without 

disturbance. Neophobia trials ran between 13:00 and 17:00 on day 1 and were repeated 

between 08:00 and 11:00 on day 2. Following trials on day 2 in 2007-8, birds were blood 

sampled and then released at the site of capture at least one hour before sunset.  In 2008-

9, after blood sampling they were kept undisturbed in captivity for a further night, and 

released after a second exploration trial on the morning of day 3.   
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2.3.1.1 Exploratory tendency in captivity   
 

The exploration trial was conducted within what would become the home cage of the 

focal bird (Fig. 2-1). Each cage contained six perches, three in each half, that were 

covered with plastic plant vines to increase habitat complexity. The cage bottom was 

lined with white paper. On arrival into captivity, the bird was introduced to one side of 

the cage only, selected at random, the other blocked off by an opaque metal divider. I 

anticipated that the two hours in the cage prior to testing would create a “familiar” and, 

behind the divider, a “novel” environment. To assay exploratory tendency and not 

neophobia, the arrangement of plastic plants and perches was the same in each cage half, 

so that the novel environment was novel only in that it was unexplored. Prior to the trial, 

the food bowl and any spilt food were removed from the cage to motivate birds toward 

foraging activity. After thirty minutes, the water bowl was also removed. After a further 

thirty minutes, the observer removed the cage divider, stepped behind a screen, and 

observed the focal bird through a small hole for 10 minutes. Unlike other exploration 

trials (e.g. Verbeek et al., 1994), individuals had the option of remaining within the 

familiar environment. I allowed this option to help distinguish activity due to exploration 

from activity due to escape behaviours in the novel environment, as the birds had only 

been in captivity for a short period prior to testing (Mettke-Hofmann et al., 2009). A 

movement was defined as a hop or flight between two perches and/or the floor, the cage 

wall or the front and rear of the cage. The number of movements in each side of the cage 

was recorded, with the endpoint of each movement defining the side of the cage: novel or 

familiar. After the test, food and water were returned and the bird was allowed free access 

to the entire cage.    

In 2008-9, birds underwent a second exploration trial, on day 3. On arrival into 

captivity, birds were randomly allotted to a cage lined either with white paper (as in 

2007-8) or brown paper. The arrangement and size of perches and artificial plant material 

were similar between these cage types, but different leaf shapes were used in the brown 

versus white-lined cages. My aim was to create two similar but distinct environments 

and, controlling for cage order and bird identity, there was no difference in activity (LME 

t43 = -0.14, p = 0.89) or exploration (t43 = 0.49, p = 0.63) between brown versus white-

lined cage types. Trials were conducted as 2007-8 for days 1 and 2. After collecting a 

blood sample on day 2 (when birds in 2007-8 were released), I then moved each bird to 

one half of a new home cage, of the other cage type. They were left undisturbed until the 
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following morning, when exploration trials began one hour after the lights were switched 

on.  

I accounted for differences in overall activity level between birds by deducting the 

number of movements in the familiar environment from the number in the novel 

environment. This residual activity in the novel environment from the first exploration 

trial was my measure of exploratory tendency. I used the number of movements in the 

trial rather than latency to first enter the novel environment (as used in Verbeek et al. 

1994) because here 56 birds entered then exited immediately as the divider was removed, 

and this appeared to reflect an escape or startle response toward the removal of the 

divider rather than exploration (K.H. pers. obs.). To investigate whether activity in 

general or activity specifically in the novel environment then correlated with captive 

neophobia or with exploration in the wild, I conducted separate analyses using the total 

number of movements in the first exploration trial as a measure of activity during the 

captive exploration trial. Four birds were excluded from the first exploration trial due to 

accidental disturbance immediately prior to testing, and three (including one of the 

above) from the second exploration trial.  Exploratory tendency (Shapiro–Wilks test: 

W120 = 0.94, p < 0.0001) and activity during the exploration trial (W120 = 0.95, p < 

0.0001) were leptokurtic and it was not possible to normalise their distributions.   
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(a) 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

 

Figure 2-1 Apparatus used during the captive exploration trials. (a) Photo of cage set up. (d) 
Schematic of cage set up; the food was removed 1hr and water bowl 30min before the start of the 
trial, via the door.  
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2.3.1.2 Neophobia in captivity   
 

The neophobia trial had two phases: a novel object phase and a disturbance control phase. 

Each bird took part in one trial on day 1 and another (with a different novel object) on 

day 2. Food and water were removed for thirty minutes prior to each phase. In the novel 

object phase, the observer then returned the food bowl with one of two novel objects 

placed inside. The objects were a luminous pink plastic frog and a half of a purple rubber 

ball, of similar size (fig. 2-2). The latency to approach the familiar food bowl was 

recorded. The object was then removed and the water returned.   

Independent of differences in response toward a novel object, individuals may 

also differ in their motivation to feed, or their response to disturbance by the observer 

returning the food bowl to the cage (van Oers et al., 2005b). To control for this, I also 

measured latency to feed by the same procedure but without a novel object, returning the 

familiar food bowl only. This disturbance control phase was performed either one hour 

before or one hour after each novel object phase. The order of novel object and 

disturbance control phases was randomized on each day. One bird was excluded from one 

trial in the disturbance control phase due to a disruption during the trial. Of 79 birds, one 

bird did not approach within 10 minutes in either phase, and was excluded from analyses. 

A further 3 birds did not approach during the novel object phase, 1 bird during the 

disturbance control phase, 9 birds in only one trial of the novel object phase and 3 in only 

one trial of the disturbance control phase. Birds which participated in both replicates 

performed consistently between day 1 and day 2 in disturbance control (LME with order 

of trials as a random effect: F1, 117 = 3.27, p = < 0.0001) and novel object phases (F1, 106 = 

2.3, p = < 0.0001) so a mean was calculated per phase per individual. Birds that 

approached the food bowl in only one trial of a phase were given the latency of that trial 

rather than a mean.   

Neophobia was defined as the latency to feed in the presence of a novel object. In 

the wild neophobia trials (see below), birds were not disturbed as the novel object was 

introduced – i.e. pure neophobia was measured. Therefore, to discount the affect of 

disturbance from neophobia in captivity, I deducted mean latency in the control 

disturbance phase from mean latency in the novel object phase. As such, the 4 birds that 

did not approach in either trial of one phase were also excluded from the analyses. Mean 

risk responsiveness was leptokurtic (Shapiro–Wilks test: W78 = 0.89, p = <0.0001) and it 

was not possible to normalise this distribution.   
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(a) 

 

 

(b) 

 

 

Figure 2-2 The apparatus used for captive neophobia trial. (a) A photo of the novel objects used 
in the captive neophobia trial: A: half a purple rubber ball, B: a plastic pink frog. (b) A photo of a 
blue tit approaching the novel object in a food bowl. 
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2.3.1.3 Between-individual sources of variation 
 

To accurately measure repeatability of behaviour in captivity, and hence define 

personality traits, we must first eliminate or control for covariance between behaviour 

and permanent (e.g. sex) or non-permanent (e.g. condition) differences between 

individuals that may also generate consistent individual differences in behaviour.   

Permanent variables (that would not change within a field season) were wing 

length, age and sex. Wing length was used as a measure of overall body size; wing length 

was not measured in one bird. Age (juvenile/adult) was determined from plumage traits 

(Jenni & Winkler 1994); there were 67 juveniles and 58 adults. Sex was determined using 

a molecular technique from a blood sample taken at the end of day 2 in captivity (Arnold 

et al. 2007); there were 32 females and 86 males, and 7 birds were not sexed. Whilst 

dominance in Parids is highly context specific (Dingemanse & de Goede 2004), in 

general smaller, juvenile and female Parids are subordinate at feeders. As such, they may 

be more likely to take risks during foraging, and hence be faster to explore or less 

neophobic than larger birds, adults or males respectively.   

Non-permanent variables were a combination of morphometric and environmental 

variables collated at capture.  Morphometric measures reflecting an individual’s current 

state were body mass and condition. Condition was calculated as the residual of body 

mass at capture regressed on tarsus length (Linden et al., 1992); a condition measure was 

not obtained in one bird.  Environmental variables that would affect opportunity for 

foraging immediately prior to entering captivity and hence starvation risk were day 

length, rainfall (mm) and minimum and maximum temperature for the day of, and day 

prior to, capture. Weather data were collated from Met office records for Glasgow 

Bishopton. Together, these variables should reflect or affect an individual’s perceived 

starvation risk on entry at capture, and hence may have short term affects on individual 

behaviour in captivity.   
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2.3.2 PERSONALITY TRIALS IN THE WILD   
 

2.3.2.1 Exploratory tendency in the wild   
 

In the wild exploration trial, birds were scored for whether or not they discovered new 

feeders installed within the study site. In each of nine consecutive replicates in 2007-8, 

and 16 consecutive replicates in 2008-9, a new feeder was installed an average of 160 

meters (range: 110m-260m) from one of the eight established feeding stations (Fig. 2-3). 

To avoid influencing concurrent neophobia trials, it was located such that the two closest 

feeding stations were out-with experimental manipulations. The feeder was positioned 

1.5m from the nearest mature oak on a 1.5m high pole. The location was otherwise 

selected at random, but in 2008-9 chosen such that each permanent feeding station was 

closest to the new feeder on two occasions during the season, about a month apart; an 

arrangement used in the calculation of repeatability of wild exploratory tendency (see 

statistical methods). It was installed before sunrise, left undisturbed for three days, and 

then removed after sunset. I used PIT tag records from established feeding stations to 

deduce which individuals were identifiable (i.e. had not lost their PIT tags) in the wild 

during a replicate. As birds were added to the study as the season progressed, replication 

was uneven between individuals. For each replicate in which a bird participated, it was 

scored 0 or 1 for discovering the new feeder, using PIT tag records. Ninety-one birds 

were detected in the wild and included in on average 10 replicates of this trial (range 2-

16). Exploratory tendency was then defined by the number of new feeders an individual 

did discover relative to the number it could have discovered (i.e. the number of replicates 

in which it participated).   

Difference in site coverage by individuals may have affected the probability that 

they discovered new feeders, so at the end of the field season, I used PIT tag records to 

deduce which permanent feeders each bird had used. On average, birds used 1.8 of the 

eight permanent feeding stations (range 1-4). To account for differences in the distance 

birds would have to travel to discover each new feeder, I then calculated the distance 

between the nearest of these permanent feeders and the position of the new feeder in each 

replicate for each bird. These variables were included in the analyses of wild exploratory 

tendency (see 2.3.4).   
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Figure 2-3 Satellite image of the field site, modified from GoogleEarth™ 
(www.googleearth.com). White squares indicate the positions of the eight permanent feeding 
stations. To assay wild exploration behaviour, individual were compared for their discovery of 
short term (3 day) feeding stations installed 110-260m from these permanent feeding stations. 
The area marked in white around each permanent feeding station shows the area considered when 
installing these short term feeding stations, limited by natural (e.g. loch edge) and artificial 
boundaries (e.g. roads). The white arrow indicates the position of the SCENE, where captive 
personality assays were conducted.  
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2.3.2.2 Neophobia in the wild   
 

In the wild neophobia trial, birds were scored for the latency to return to an established 

feeding station following introduction of a “novel object”: a colourful feeder cover, 

substituted for the familiar grey cover (Fig. 2-4). Installed at least three months prior to 

the study the eight “familiar” feeding stations, each with two tubular feeders with grey 

covers, were analogous to the familiar food bowl in the captive trials. In 2007-8, for three 

days prior to an experimental manipulation, I used PIT tag records to establish which 

individuals used and hence were familiar with the grey feeders at a given site. On the 

fourth day, between 12:00 and 16:30 (but on one occasion at 18:30), one of the grey 

covers was substituted for a coloured cover (blue, green, red or yellow). This cover was 

left on for 3 or 4 days then the grey cover was returned. In 2008-9, the coloured cover 

was left on for 1 day, starting between 12:00 and 15:00, so in both years PIT tag data was 

censored at 24 hours after presentation of the coloured feeder cover. In each year, this 

process was repeated four times at each site a minimum of 10 days apart, twice 

modifying the upper feeder and twice the lower feeder. The four colours were presented 

in a different order and combination of positions (upper or lower) at each site.  Using a 

subset of data from 2007-8, I compared the number of PIT tag records in the first hour 

after introduction of the novel cover to the mean of the same hour in the three previous 

control days, and found a significant reduction in use of the novel feeder relative to the 

control (Mann-Whitney U test: U24 = -2.34, p = 0.03). Therefore, at the population level, 

the novel feeder cover elicited a neophobic response.   

After introduction of a novel cover, for each bird, I used PIT tag records to count 

the number of visits to the control feeder before the first visit to the novel feeder. The PIT 

tag readers recorded the time a bird was first detected on the feeder and then whether it 

was still present at 2 seconds intervals until not detected. As such, a visit was defined as a 

record separated from previous or subsequent records by more than 3 seconds. Birds that 

used the novel coloured feeder first, i.e. immediately on returning to the feeding station, 

were given a count of zero. Birds which encountered the same colour at more than one 

site were included only in their first experience of that colour.   

A limitation of my method is that I do not know whether a long latency to use the 

novel feeder reflected aversion to the feeder or simply absence from a site. Therefore I 

calculated the average foraging bout length using PIT tag records from experimental 

periods in 2007-8 as follows: the median interval between an individual’s feeding station 
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visits was two minutes, with an upper inter-quartile limit of 14 minutes. A feeding bout 

was then defined as a period of feeding station use bounded by periods of 14 or more 

minutes with no records of that bird. Using this definition, across birds the median 

feeding bout length at a feeding station was 42 minutes. Birds that took longer than this 

average feeding bout of 42 minutes to use a novel feeder after first returning to a feeding 

station were assumed to have left the site and were excluded from that replicate. 

Compared to birds taking under 42 minutes, these excluded birds were not particularly 

neophobic (or neophilic) in captivity (Mann-Whitney U test: U97 = 330, p = 0.22). Under 

this criterion, I obtained wild neophobia scores from seventy-eight birds, 53 from 2007-8 

and 25 from 2008-9, with an average of 2 replicates per bird (range: 1 – 4). Seventy-five 

of these 78 birds had a captive neophobia score.  
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(a)  

 

(b) 

 

 

Figure 2-4 The apparatus used for the wild neophobia trials. (a) A photo of a blue tit feeding on 
the novel feeder (newly covered with a novel green cover). (b) Schematic of the experimental set 
up used to assay neophobia at the permanent feeding stations. 
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2.3.3 ETHICAL NOTE 
 

All work was carried out in accordance with ASAB/ABS’s guidelines for the treatment of 

animals in research. Work was under license of the UK Home Office and subject to 

ethical review by WALTHAM® Centre for Pet Nutrition and the University of Glasgow. 

Captive studies were completed and feeders removed 2 months before the first record of 

nest building in the area. Whilst I routinely weighed the birds prior to release to ensure 

they had not lost more than 10% body mass in captivity, there was on average a body 

mass gain (2.97% ± 7.3%). Following release at the site of capture, 108 out of the 125 

birds were later recorded using the feeders or re-trapped in the area. Permission for 

holding birds in captivity and for using PIT Tags was obtained from Scottish Natural 

Heritage and the British Trust for Ornithology respectively.   

 

2.3.4 STATISTICAL METHODS   
 

Analyses were carried out using R 2.9.1 (R development core team, 2009).  There were 

no differences in behavioural data between years so data was pooled across years. 

 

2.3.4.1 Defining personality traits in captivity   
 

I first determined whether permanent (sex, age and wing length) or non-permanent (body 

mass or condition, and weather and day length) between-individual variation at capture 

explained a significant proportion of variation in behaviour in each captive personality 

trial replicate. Captive personality traits were not normally distributed so I used 

nonparametric Mann-Whitney U-tests or Kendall rank sum correlations. I applied a 

Bonferonni correction for multiple comparisons, with a p-value of less than 0.004 for 

significance.   

Consistency across days was analysed using a mixed model, with trial order as a 

random effect. I then calculated repeatability of captive personality measures using the 

mean squares from an analysis of variance, with the repeated measures of neophobia or 

exploratory tendency as the dependent variable and individual identity as the independent 

variable, following Lessells & Boag (1987). Repeatability is the proportion of variation in 
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a trait that is explained by differences between individuals, thus larger values reflect 

greater within individual consistency.   

 

2.3.4.2 Defining personality traits in the wild 
 

Personality traits were measured repeatedly in the wild (up to 16 replicates of the 

exploration trial and up to 4 replicates of the neophobia trial per individual). In all 

analyses using wild data therefore, I accounted for repeated measures by using 

Generalized Linear Mixed Models (GLMMs), with a wild personality trait as the 

dependent variable and individual identity as a random factor. Wild exploratory tendency 

was binary (discovered versus not discovered) and wild neophobia a count (visits to the 

control feeder), thus GLMMs used either a binomial or Poisson error structure 

respectively. In this and all subsequent analyses of wild personality traits, I also included 

two variables with each wild personality trait to control for experimental variation 

between replicates. First, in the exploration trial, feeder discovery may depend on the 

distance between an individual’s nearest permanent feeding station and a given new 

feeder. Similarly, feeder discovery may be affected by the number of permanent feeding 

stations an individual used (i.e. their coverage of the study site). Therefore, distance and 

the number of sites used were included as covariates in all analyses of wild exploratory 

tendency. Second, in the neophobia trial, the latency to approach a novel feeder may 

depend on colour or height biases. Therefore feeder colour and feeder position (upper or 

lower) were included as fixed main effects and an interaction (colour x position) in all 

analyses of wild neophobia.   

Analyses of repeatability used only birds that participated in more than one 

replicate of a trial. Repeatability of wild personality traits was calculated using the 

variance component estimates for individual identity from these GLMMs, following 

Lessels & Boag (see also 1987, Quinn and Cresswell, 2005). The significance of 

repeatability estimates was determined using a likelihood ratio (LRT) chi-square test 

between the GLMM including and a GLMM excluding individual identity.  

In the exploration trial, variation in feeder discovery was low, with only 47 of 91 

birds discovering any new feeders. As such, high repeatability would be misleading, 

resulting from all individuals scoring mostly “0”s rather than consistent individual 

variation (i.e. between birds with mostly “1”s and birds with mostly “0”s). Feeder 

discovery (and hence behavioural variation) was highest amongst individuals using the 
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closest permanent feeding station to the new feeder within a given replicate. In 2009, I 

conducted two replicates of the exploration trial within the vicinity of each permanent 

feeding station, around a month apart (see methods: exploratory tendency in the wild). To 

analyse repeatability therefore, I limited the data for each 2008-9 replicate to only birds 

that were using the nearest permanent feeding station and that took part in both replicates 

at that permanent feeding station (i.e. were PIT-tagged and not currently in captivity). 

Permanent feeding station identity was then included in the GLMM as a fixed effect and 

repeatability calculated using the variance component from individual identity nested 

within permanent feeding station as a random factor.  

 

2.3.4.3 Correlations between traits   
 

For analyses on captive traits, I performed a Kendall rank sum correlation. For analysis of 

wild traits, I constructed a GLMM with wild neophobia as the dependent variable. To 

generate a single measure of wild exploratory tendency per bird for the independent 

variable, which accounted for unequal replication between individuals, I created a two-

vector variable with the number of feeders an individual discovered over the number of 

replicates in which it took part as the binomial denominator. To generate a single measure 

of distance between new and permanent feeding stations per individual, I took the mean 

distance across replicates. Along with feeder colour and position, the number of sites an 

individual used and this mean distance were included in the GLMM, as covariates. To 

test the significance of wild exploratory tendency as an explanation for variation in wild 

neophobia, I performed an LRT chi-square test between the GLMM including and a 

GLMM excluding wild exploratory tendency.  

 

2.3.4.4 Correlations between captive- and wild personality traits   
 

GLMMs were similar to those used when calculating repeatability of wild traits (see 

above). I tested whether captive personality measures explained a significant proportion 

of variation in wild behaviour by adding the analogous captive personality measure to 

these GLMMs as an independent variable, and performing a LRT chi-square test between 

the GLMM including and a GLMM excluding that independent variable.  
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2.4 RESULTS   
 

2.4.1 DEFINITION OF THE CAPTIVE EXPLORATION TRAIT   
 

I observed considerable behavioural variation among birds during the 10 minute trials. 

The number of movements ranged from zero to 605 (novel side: median = 132, IQR = 

123; familiar side: median = 113, IQR = 118). In the second trial, birds were significantly 

more active (paired Mann-Whitney U test: U43 151, p < 0.0001). However, exploratory 

tendency (activity in the novel environment minus activity in the familiar environment) 

did not differ between trials (paired Mann-Whitney U test: U43 501, p = 0.95).   

Exploration scores did not differ between sexes or ages, (all p > 0.42), therefore 

data were pooled to analyse other sources of between-individual variation. With the 

Bonferroni correction threshold p-value of 0.004, all other morphometric and 

environmental variables were non-significant. Therefore consistency and repeatability of 

these traits were calculated on actual scores. Controlling for trial order, exploratory 

tendency (LME: F1, 43 1.7, p = 0.04) and activity in the exploration trial (F1, 43 = 3.39, p = 

0.0001) were consistent across replicates. Exploratory tendency across day 1 and day 3 

(F1, 43 1.71, p = 0.04, r = 0.27) and activity during the exploration trials were significantly 

repeatable (F1, 43 2.56, p = 0.001, r = 0.42).   

 

2.4.2 DEFINITION OF THE CAPTIVE NEOPHOBIA TRAIT   
 

I observed considerable individual variation during the 10 minute trials. Latencies to 

return to the food bowl in the novel object phase (median = 23s, IQR = 95.8s) or 

disturbance phase (median = 9s, IQR = 32s) varied between 1 and 590 seconds. Mean 

latency in the novel object phase was significantly greater than in disturbance phase, 

indicating that the presence of the novel object modified behaviour (paired Mann-

Whitney U test: U119 = 5023, p = 0.0006). 

 Neophobia scores did not differ between sexes or ages (all p > 0.11), therefore 

data were pooled to analyse other sources of between-individual variation. As with the 

exploration score, all other morphometric or environmental variables were non-

significant (all p > 0.1). Therefore consistency and repeatability of this trait was 

calculated on actual scores. Controlling for trial order,  the neophobia score (novel object 
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phase latency minus disturbance phase latency) calculated for each day was consistent 

across days (LME: F1, 103 = 1.77, p = 0.002). Neophobia across day 1 and day 2 was 

significantly repeatable (ANOVA: F1, 103 1.77, p = 0.002, r = 0.28).  

 

2.4.3 DEFINITION OF WILD PERSONALITY TRAITS 
 

In the wild exploration trial, individual discovery of feeders across two replicates 

conducted by a given permanent feeding station was near significantly repeatable (i.e. 

individuals generally found both feeders or neither feeder; GLMM: LRT χ2 5.29, p = 

0.07, N = 23 birds, r = 0.16).In the wild neophobia trial, individual latency to approach 

the novel feeder was significantly repeatable (GLMM: LRT χ2 = 126.83, p < 0.0001, N = 

43 birds, r = 0.55).   

 

2.4.4 CORRELATIONS BETWEEN TRAITS WITHIN CONTEXTS   
 

In captivity, neophobia did not correlate with exploratory tendency (Kendall rank 

correlation: tau = -0.62, N = 115, p = 0.54; see Fig. 2-5a) or activity in the captive 

exploration trial (Kendall rank correlation: tau = -0.74, N = 115, p = 0.46). Similarly, in 

the wild, the proportion of feeders discovered in the exploration trial did not predict an 

individual’s neophobia (GLMM: LRT χ2 = 0.66, N = 78 birds, p = 0.72; see Fig. 2-5b).   

 

2.4.5 CORRELATIONS BETWEEN CAPTIVE AND WILD MEASURES   
 

Wild exploratory tendency had a significant positive relationship with captive exploratory 

tendency (GLMM: LRT χ2 = 3.889, N = 91 birds, p = 0.04; see Fig. 2-6a). There was no 

relationship between activity in the captive exploration trial and wild exploratory 

tendency (GLMM: LRT χ2 = 0.002, N = 91 birds, p = 0.97; see Fig. 2-6b) thus the 

relationship between captive and wild traits relates specifically to activity in the novel 

environment, i.e. exploratory tendency. Wild neophobia had a significant positive 

relationship with captive neophobia (GLMM: LRT χ2 = 48.28, N = 75, p < 0.0001; see 

Fig. 2-6c).  



51 
 

 

 
Figure 2-5 Plots of the relationship between the traits exploratory tendency and neophobia. (a) 
Plot of captive exploratory tendency (no. of movements in novel environment minus no. of 
movements in familiar environment) and captive neophobia (mean novel object phase latency 
minus mean disturbance control phase latency). N = 115 birds. (b) Plot of wild exploratory 
tendency (expressed as proportion of feeders discovered) and wild neophobic (no. of visits to 
familiar feeder before first visit to novel feeder); individuals are represented one to four times and 
where multiple data points occur on the same point this is indicated by point size. N = 78 birds. 
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Figure 2-6 Plots of the relationships between captive and wild personality measures. (a) 
Relationship between captive exploratory tendency (no. of movements in novel environment 
minus no. of movements in familiar environment) and wild exploratory tendency (proportion of 
feeders discovered). The line is fitted from a linear regression; no. of replicates of the wild 
exploration trial per bird is indicated by the point size. N= 91 birds. (b) Plot of activity in the 
captive exploration trial (no. of movements in novel environment plus no. of movements in 
familiar environment) and wild exploratory tendency (expressed as proportion of feeders 
discovered); no. of replicates of the wild exploration trial per bird is indicated by the point size. N 
= 91 birds. (c) Relationship between captive neophobia (mean novel object phase latency minus 
mean disturbance control phase latency) and wild neophobia (no. of visits to familiar feeder 
before first visit to novel feeder), the line is fitted from a Poisson regression; individuals are 
represented one to four times. N = 75 birds. 
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2.5 DISCUSSION 
 

In this study, I showed that personality traits measured in captivity were a reflection of 

behavioural differences between individuals foraging in the wild. First, variation between 

blue tits in exploratory tendency and neophobia were repeatable in captivity, and 

analogous traits repeatable in the wild. Second, captive measures of exploratory tendency 

and neophobia were not correlated within individuals, and this was also true of the 

analogous wild traits. Finally, captive measures of exploratory tendency and neophobia 

then predicted the analogous wild measures of these traits. Birds that were relatively 

exploratory in captivity were also more likely to find new feeders in the wild and vice 

versa. Similarly, an individual’s neophobia measured in captivity correlated positively 

with its latency to approach novel colour feeders in the wild. As my wild measures of 

personality relate to differences in the use of feeding opportunities, the traits I have 

measured in captivity appear to represent ecologically relevant differences between 

individuals.   

Whilst many studies use behaviour in captivity to explain differences in fitness 

observed between individuals in the wild, few directly compare behaviour between 

captivity and the wild, as I have done. Referring to captive studies on great tits for 

example, Dingemanse et al. (2004) suggest lower survival of slow than fast exploring 

females in food poor winters relate to differences in propensity to capitalise upon patchily 

distributed food. In captive studies, fast exploring great tits are quicker to form foraging 

routines, more aggressive, and more likely to use social cues than slow explorers: all 

attributes that support monopolisation of clumped resources (Verbeek et al., 1996, 

Verbeek et al., 1994, Marchetti and Drent, 2000). From captive studies, it appears likely 

that exploratory tendency also reflects differences between individuals in information-

gathering: when returned to formally novel environments, search behaviour is often then 

directed toward locations or cues that were associated with food during the preceding 

novel environment trials (Mettke-Hofmann and Gwinner, 2004). My findings 

complement these captive observations as here, exploratory tendency in captivity 

appeared connected to the ability or propensity to seek out new feeding sites in the wild. 

In particular, the absence of correlation between activity during the exploration trial and 

feeder discovery in the wild suggests that it was attention to the novel environment 

specifically, where new information may be gathered, rather than activity per se that 

affected feeder discovery.   
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I also demonstrated that neophobia measured in captivity reflected differences in 

neophobia in the wild. Neophobia in free-living birds is associated with reactions to other 

novel foraging situations, for example dietary conservatism toward new food types or 

propensity to innovate to obtain food in a novel foraging task (Webster and Lefebvre, 

2001, Thomas et al., 2003). As such, the ecological significance of my trait may be as a 

measure of propensity to approach and hence learn about new feeding opportunities. 

However, if exposure to the novel object elicits a physiological stress response, i.e. a 

release of the stress hormone corticosterone, it may also be a measure of response to 

stressors in general. Whether novel objects elicit a physiological stress response however 

is so far tested only in Japanese quail (Coturnix japonica), which do show an elevation in 

corticosterone (Richard et al., 2008), and starlings (Sturnus vulgaris), which do not 

(compared to a disturbance control; Apfelbeck and Raess, 2008). That great tits 

(Groothuis and Carere, 2005) and the blue tits in my study exhibit a behavioural aversion 

toward novel objects suggests the object may cause a stress response. Indeed, in great tits, 

individual corticosterone responses derived from a handling trial predict behavioural 

responses in novel object trials, suggesting similar physiological mechanisms may 

underlie the response to handling and novel objects (Groothuis and Carere, 2005). 

However, stereotypical stress behaviours are not necessarily evidence of physiological 

stress, for example blue tits disturbed at the nest prior to trapping exhibit aggressive 

behaviour and alarm call, yet show no greater corticosterone response than birds trapped 

unawares (Muller et al., 2006). Therefore, I should be cautious of assuming neophobia is 

a measure of response to stressors in general. To assess the ecological significance of the 

neophobia trait, future work should be addressed at investigating both whether the novel 

object trial elicits a physiological stress response, and also comparing neophobia with 

measures of risk-responsiveness toward different potential stressors.   

That I did not find a correlation between exploratory tendency and neophobia in 

this population of blue tits, either in captivity or in the wild, was surprising. Exploratory 

tendency and neophobia or risk-taking are positively correlated in species from a variety 

of taxa, and in the closely related great tit this appears to be under genetic control (van 

Oers et al., 2005a). In these species, neophobia and exploratory tendency may be two 

measures of a single approach-avoidance trait, with risk-prone, fast exploring or 

“proactive” individuals at one extreme and risk-averse, slow exploring “reactive” 

individuals at the other. In other words, Verbeek et al.’s (1994) novel environment trial 

and Greenberg’s (1983) novel object trial may be regarded as approach-avoidance in a 

novel and a familiar environment respectively (Clark and Ehlinger, 1987, Wilson et al., 
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1993, Johnson and Sih, 2007). Though my captive methods differ slightly from those 

employed by Verbeek et al. (1994) the lack of proactive-reactive personality trait is 

unlikely to be an artefact of methodology, as I have tested a small sample of great tits 

using my protocol and found the correlation anticipated (K.A. Herborn & K.E. Arnold, 

unpublished data). Whilst the contrast to great tits is surprising, divergences in trait 

correlations between closely related species (Mettke-Hofmann and Gwinner, 2004, 

Mettke-Hofmann et al., 2002) and even populations of the same species (Bell, 2005, 

Dingemanse et al., 2007) can be explained by different selection pressures. Consequently, 

I suggest the traits I have assayed in the blue tit are distinct, and hence the ecological 

significance of each trait should be considered independently.   

Differences between individuals, such as body condition or weather at capture, 

did not explain a significant proportion of the variation in captive behaviour. This 

contradicted out prediction that variables increasing starvation risk, such as short day 

length and poor weather (and hence reduced recent foraging opportunity) would lessen 

neophobia or increase propensity to explore in the short term. In the wild, Parids modify 

behaviour rapidly in response to environmental conditions, for example attuning foraging 

behaviour and hence body fat to changes in starvation and predation risk (Macleod et al., 

2005). That behaviour in the captive personality trials was consistent between the first 

and subsequent days in captivity suggests the birds may equally adjust their perception of 

starvation risk rapidly to the conditions and availability of food in the captive 

environment. The absence of state effects is consistent with previous work on wild great 

tits (Hollander et al., 2008), and encouraging for studies seeking to compare personality 

between individuals drawn from different times or environments.   

In conclusion, personality measures drawn in captivity revealed differences 

between individuals in their natural foraging behaviour. In directly comparing individuals 

between captivity and the wild, this study on blue tits joins few similar in situ versus ex 

situ studies of personality (birds: Hollander et al., 2008, fish: Wilson and McLaughlin, 

2007, Coleman and Wilson, 1998, Brown et al., 2005, molluscs: Briffa et al., 2008). As 

such, it is an important validation of research based purely on captive measures of 

personality.  Moreover, it lends weight to the growing evidence that wild animals have 

personality traits that are expressed consistently across contexts. 
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CHAPTER 3 

PERSONALITY PREDICTS ENVIRONMENTAL SENSITIVITY IN THE WILD 

 

3.1 ABSTRACT 
 

Personality traits are behavioural differences between individuals that are consistent 

across time or contexts. In captive studies, personality often co-varies with tendency 

toward routine-formation: some personality types appear to remain behaviourally flexible 

and others become relatively fixed within the same context. If flexibility constitutes 

‘environmental sensitivity’, i.e. the tendency to modify behaviour in response to 

environmental change, this would explain differential fitness of personality types in 

unpredictable environments. Here, I tested whether personality predicted variation in 

environmental sensitivity in wild blue tits Cyanistes caeruleus. In captivity, birds were 

scored for two personality traits: exploration and neophobia. Within individuals, these 

traits were consistent but not correlated. On release, birds were fitted with transponders to 

electronically monitor artificial feeder use in the rural woodland. First, I investigated 

environmental sensitivity to temperature change, measuring individual use of feeders 

throughout winter. Second, I investigated environmental sensitivity to changes in food 

supply, recording visitation to emptied feeders. At the population level, feeder use 

declined with increasing temperature and increasing days after food withdrawal. 

However, individuals differed in these responses. Environmental sensitivity toward 

temperature correlated with personality, but not following traditional predictions: highly 

exploratory bird responded flexibly to temperature, as did the most neophobic birds. 

Conversely, non-exploratory and neophilic birds used feeders at a fixed level regardless 

of temperature. Similarly, exploratory and neophobic individuals were most 

environmentally sensitive to changes in food supply, breaking foraging routines fastest 

after food withdrawal. Environmental sensitivity to temperature but not food supply also 

increased with age and body size, suggesting dominance interactions and learning modify 

expression of personality in competitive (full feeders) but not non-competitive contexts 

(empty feeders). Overall, personality traits may reflect significant differences in the way 

individuals prospect for or use information on their environments and hence cope with 

environmental change. 
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3.2 INTRODUCTION 
 

Environmental sensitivity is the tendency to modify behaviour in response to 

environmental change (Boyce and Ellis 2005; Koolhaas et al., 1999). It constitutes an 

ability (sensory and/or cognitive) to detect variation in the environment coupled with 

learnt or innate preferences for higher quality or less risky options (Sih et al., 2004). 

Species-level environmental sensitivity reflects adaptation to the ecologically salient cues 

for that species (e.g. Mettke-Hofmann et al., 2002, Endler et al., 2001). If individuals of 

the same species differ in environmental sensitivity though, where choice exists they may 

differ also in their ability to make adaptive discriminations between for example food 

types, habitats or mates (Sih et al., 2004).  

Individuals of the same species often differ in their tendency to approach novel 

objects or predators, explore new environments, or interact socially or aggressively with 

conspecifics (Gosling, 2001). Where such differences are consistent within individuals 

over time or contexts, this is “personality” (Gosling, 2001, Verbeek et al., 1999, Wilson 

et al., 1993). In some contexts, such consistency appears sub-optimal, for example 

individuals that are risk-prone in harsh environments where risk taking is essential are 

also risk-prone in benign environments where they are excessive (Bell and Sih, 2007, 

Johnson and Sih, 2007). However, these apparently maladaptive responses may in fact 

reflect an adaptive trade-off, between a generally appropriate response and the costs of 

responding with infinite plasticity (DeWitt et al., 1998, Ellis et al., 2006). Intriguingly, it 

appears the balance of this trade-off between consistency and plasticity may differ 

between personality types (Briffa et al., 2008; Biro et al., 2010). Terminology describing 

extremes of personality traits differ between studies but broadly, individuals that are 

“slow” to approach novel or confrontational stimuli are often also quicker to adjust 

behavioural routines in response to environmental change than “fast” individuals, which 

tend toward routine-formation (Benus et al., 1987, Benus et al., 1988, Verbeek et al., 

1994, Marchetti and Drent, 2000, Koolhaas et al., 1999, Jones and Godin, 2010). 

Therefore it is suggested that slow (i.e. shy, neophobic, non-exploratory and/or passive) 

personality types may respond more quickly to environmental change than fast (i.e. bold, 

neophilic, exploratory and/or aggressive) types (Dall, 2004, Wolf et al., 2008). For 

example, passive mice (slow to attack competitors) adjusted their activity levels more 

rapidly in response to a change in light-dark regime than aggressive mice (Benus et al., 

1988). Similarly captive fast-exploring great tits (Parus major) continued to visit emptied 

feeders whilst emptying stimulated slow-explorers to extend their search to new sites 
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(Marchetti and Drent, 2000; but see van Overveld and Matthysen, 2010). If plasticity 

does allow greater environmental sensitivity, environmental sensitivity may then explain 

the observed variation in coping ability within unpredictable environments between 

personality types in the wild (Dingemanse et al., 2004): slow individuals may respond to 

change more quickly than fast individuals. 

Predictions on the ecological significance of personality come largely from 

laboratory studies, where personality traits are generally measured. To be ecologically 

relevant however, such predictions must be tested in the wild (Herborn et al., 2010, 

Minderman et al., 2009). I used two approaches to test the prediction that personality co-

varies with environmental sensitivity in wild blue tits. First, I used the reaction norms 

approach to investigate environmental sensitivity toward temperature change. Reaction 

norms are linear functions describing the change in a phenotypic trait across an 

environmental gradient for a given individual or genotype (Via et al., 1995). Where the 

trait is behavioural, the intercept of the slope represents the behaviour of the individual in 

the average environment, and the slope the plasticity of their response to the 

environmental change. In behavioural studies these slopes and intercepts, also called best 

linear unbiased predictors or “BLUPs”, can be extracted to compare individual response 

across discreet gradients such as predator presence (Quinn and Cresswell, 2005) social 

context (Frost et al., 2007) or food availability (van Overveld and Matthysen, 2010), or 

continuous gradients such as climate (Reed et al., 2009) or population size (Bonte et al., 

2007). Here, I investigated response by blue tits (Cyanistes caeruleus) to variable winter 

temperature in terms of artificial feeding station use. Second, at the same feeding stations, 

I performed a manipulation to investigate individual response to changes in food supply. 

After 5 months of provisioning, I withdrew the food supply and measured visitation to the 

emptied feeders over the following days, defining environmental sensitivity by the speed 

of feeder abandonment. My aim in both studies was to determine whether environmental 

sensitivity correlated with two captive classified personality traits: exploratory tendency 

and neophobia. Exploratory tendency and neophobia describe responses to novelty, 

toward new environments and novel objects placed near familiar food respectively 

(Verbeek et al., 1994, Greenberg, 1995). Previously, using the same individuals, I 

demonstrated that an individual’s exploratory tendency and neophobia in captivity 

predicted analogous behaviours in the wild (Herborn et al., 2010). In many species, these 

traits are positively correlated and considered aspects of a single proactive-reactive trait, 

with exploratory and neophilic individuals at the fast extreme (Brelin et al., 2008, Benus 

et al., 1991, Carere et al., 2005, Reale and Festa-Bianchet, 2003, Bourne and Sammons, 
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2008). However, this is not the case for blue tits (Herborn et al., 2010), so I considered 

relationships between personality and wild behaviour independently. First, I investigated 

whether the following predicted measures of average feeder use: personality, sex, age and 

body size. Sex, age and body size are correlates of competitive ability (Dingemanse and 

de Goede, 2004, Braillet et al., 2002) and hence starvation risk (Krams et al., 2010) in 

Parids. I investigated correlates of feeder use because artificial feeding stations are often 

used to conduct personality studies in the wild (Echeverria et al., 2006, Humber et al., 

2009, van Overveld and Matthysen, 2010, Dingemanse and de Goede, 2004, Herborn et 

al., 2010). As such, systematic variation in feeder use between personality types could 

bias our interpretation of the ecological significance of captive-classified personality 

traits. Second, I investigated whether individual feeder use, age, sex, body size or 

personality predicted environmental sensitivity to temperature or food supply in the wild. 

Based on studies of rodents and great tits in captivity, I predicted that neophobic and non-

exploratory individuals would be most environmentally sensitive. 

 

3.3 METHODS   
 

I monitored feeder use in wild blue tits over two winters, between 2007 and 2009. 

I collected data at eight artificial feeding stations, which were spaced at approximately 

500m intervals through deciduous woodland on the east bank of Loch Lomond, UK 

(56°08’N 4°37’W, see Fig. 2-3). These feeding stations were installed in the same 

positions in October of each year and continually baited with peanut granules until the 

end of February. Each consisted of two opaque tubular Defender™ feeders (35cm height, 

7cm diameter) hung from the same bracket on an oak trunk at approximately 2 and 3m 

above ground level respectively. There was one small feeding hole on each feeder, onto 

which I attached an 8cm x 5cm wooden rectangular perch to hold a metal hoop antenna 

of the same dimensions (TROVAN®, United Kingdom). I mist-netted three times at each 

feeding station in the 2007-8 season, and twice the 2008-9 season, capturing 125 blue tits 

(4-17 per site in 2007-8, 2-10 per site in 2008-9). On first capture, I fitted each bird with a 

leg-ring mounted Passively Integrated Transponder ("PIT" tag; 11.5 mm x 2.1 mm, 

<0.1g, Trovan Unique™; as Herborn et al., 2010). Within the electromagnetic field of the 

antenna, the PIT tag produces an amplitude modulated code signal, allowing 

identification of birds on the feeders by an electronic monitoring system (Trovan™ 

LID665). I also measured wing length and determined age (juvenile/adult) from plumage 
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traits (Jenni & Winkler 1994). Up to 12 birds per mist-netting day were then taken into 

captivity for personality testing (see below). They were returned to their site of capture 

after 2 or, in 2009, 3 days, and feeder use recorded intermittently by moving the 

electronic monitoring system between feeding stations thereafter. The temperature 

response data was collected between 22/12/07 and 25/02/08 and 12/01/09 and 26/02/09. 

The feeder abandonment study was conducted at the end of the 2008-9 season between 

02/03/09 and 07/03/09.  

 

3.3.1 PERSONALITY TRIALS 
 

Personality tests were conducted over two days in captivity. For husbandry and detailed 

methods, see Herborn et al. (2010). Briefly, trials were conducted within the home cage 

of the focal bird (150cm x 50cm x 50cm). On arrival in captivity, they were enclosed 

within one half of the cage, and left undisturbed to feed for at least 2 hours. The first trial 

was the exploration trial, in which I measured behavioural response to the “novel” half of 

the cage (see below). After this trial, birds had access to the entire cage. Neophobia trials 

ran between 13:00 and 17:00 on day 1, following at least one hour without disturbance 

after the exploration trial, and were repeated between 08:00 and 11:00 on day 2. In 2007-

8, following trials on day 2, birds were blood sampled as part of a separate study and for 

genetic sexing and then released at the site of capture at least one hour before sunset.  In 

2008-9, birds were released after a second exploration trial on the morning of a third day 

in captivity, to test repeatability of that trait.   

 

3.3.1.1 Exploratory tendency   
 

On arrival into captivity, birds were enclosed within one half of the home cage, and left 

undisturbed for at least two hours. I anticipated this time would create a “familiar” and, 

behind the cage divider, a “novel” environment. Each half of the cage contained three 

perches, which were covered with plastic plant vines to increase habitat complexity. To 

assay exploration independently of neophobia, the dimensions and arrangement of 

perches in each cage half was the same, so that the environment was novel only in that it 

was unexplored. To motivate birds toward foraging activity, the food bowl was removed 

one hour and water bowl 30 minutes prior to the trial. To start the trial, the observer 
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removed the cage divider, stepped behind a screen, and observed the focal bird through a 

small hole for 10 minutes. Unlike other exploration trials (e.g. Verbeek et al., 1994), I 

therefore allowed birds the option of remaining within the familiar environment. This 

helps distinguish exploration from activity due to escape behaviours in the novel 

environment (Mettke-Hofmann et al., 2009). In the trial, a movement was defined as a 

hop or flight between two perches and/or the floor, the cage wall or the front and rear of 

the cage. I recorded the number of movements, and the endpoint of each movement: 

novel or familiar. After the test, food and water were returned and the bird was allowed 

free access to the entire cage.    

I defined exploration as the number of movements in the novel environment 

minus the number in the familiar environment. I have previously demonstrated that this 

trait is repeatable within individuals in captivity (Herborn et al., 2010). To determine 

whether activity per se, or specifically activity within the novel environment, i.e. 

exploratory tendency, predicted behaviour in the wild, I also calculated the total activity 

in the trial (novel and familiar environments summed). Derived from the same data, 

exploration and total activity were not independent thus were analysed separately (see 

statistical methods). 

 

3.3.1.2 Neophobia   
 

To motivate birds toward foraging behaviour, the food and water bowls were removed 

from the cage for 30 minutes prior to the trial. To start the trial, the observer then returned 

the food bowl with one of two similarly sized novel objects placed inside: a luminous 

pink plastic frog and a half of a purple rubber ball (see Fig. 2-2). The latency to approach 

the familiar food bowl was recorded. After 10 minutes, the object was removed and the 

water returned. Birds underwent one trial on day one and a second on day two in 

captivity, with the order of objects randomised per bird.  

Independent of differences in neophobia, individuals may also differ in their 

motivation to feed, or their response to disturbance by the observer (van Oers et al., 

2005a). To isolate neophobia, I recorded latency to feed by the same procedure but 

without a novel object, returning the familiar food bowl only. This disturbance control 

phase was performed either one hour before or one hour after each novel object phase. 

The order of novel object and disturbance control phases was randomized on each day. 

Neophobia was then calculated as mean latency in the novel object phases minus mean 
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latency in the disturbance control phases. Previously, I demonstrated that latency within 

these phases and neophobia calculated for each day separately were both repeatable 

across days (Herborn et al., 2010).  

 

3.3.2 ENVIRONMENTAL SENSITIVITY TO TEMPERATURE IN THE WILD 
 

For each bird, I extracted two values from the PIT tag data: average feeder use 

and change in feeder use in response to air temperature. Starvation risk decreases with 

increasing air temperature and there are physical costs to carrying fat (Hake, 1996). As 

such, I predicted that feeder use should be high when it is cold and low when it is warm. 

Here I first identified whether average feeder use varied with personality, age, sex and 

body size. I then used change in feeder use with maximum daily temperature as my 

measure of environmental sensitivity and assessed whether variation in this response 

could be explained by personality, average feeder use, age, sex or body size. 

 

3.3.2.1 Data collection 
 

Feeder use was measured in the first four hours following sunrise. I collected between 8 

and 14 mornings of feeder use data at each of eight feeding stations per year. PIT tag 

readers were set to record the time at which an individual first landed on a feeder and 

whether they were still present at two second intervals thereafter. From this data, I 

extracted the number of detections of each bird to a given feeding station within each 

recording day, reflecting the total time that bird spent on the feeders. Birds were scored if 

they were detected using the focal feeding station at least once on a given day, indicating 

that they were foraging in the vicinity. Feeder use was measured in tandem with a wild 

neophobia study in which, on four occasions, the appearance of one of the two feeders at 

a station was slightly modified for up to three days (see Herborn et al., 2010; Chapter 2). 

The effects of this modification appear short lived, with birds generally returning to the 

modified feeder within 42 minutes. However, to minimise carry-over effects there was at 

minimum a 6 day interval between those experimental manipulations and records 

collected here. Thirty-three percent of birds used more than one of the 8 permanent 

feeding stations within the same field season (average 1.8, range 1 – 4), either regularly 

or by switching within the season. In those birds, low feeder use at the focal feeding 

station could reflect time divided between the focal feeding station and another currently 
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not connected to the electronic monitoring system. Therefore records were excluded 

when a bird was detected feeding at another feeding station two days either side of a 

given record. Birds were only included in the study if they were recorded at least four 

times at feeders within the same winter. Of these birds, there were on average 5.7 records 

per bird within each season (range: 4 – 10). To study population level responses to 

temperature (see statistical methods) birds PIT-tagged in 2007-8 that returned to the field 

site in 2008-9 were included as a new individual, but excluded in their second year from 

analyses of individual level responses to temperature.  

To identify correlations between feeder use and air temperature, maximum daily 

temperature was collated from Met office records for Glasgow Bishopton (23km south; 

www.metoffic.gov). Maximum daily temperature ranged between -5.7°C and 12.4°C 

during the study period, with an average within day variation of 6°C. Rainfall (mm) and 

maximum temperature on the day prior to capture may affect an individual’s condition 

and hence motivation to forage during the feeder records, and day length the opportunity 

for foraging later within that day. These variables were also collated and controlled for in 

analyses (see statistical methods).   

 From the feeder use data, I derived two measures per individual (see statistical 

methods): average feeder use and environmental sensitivity to temperature, which was 

the change in feeder use with temperature.  

 

3.3.2.2 Statistical methods 
 

Analyses were carried out using R 2.9.1 (R development core team, 2009).  I calculated 

population level response to temperature, and then identified correlates of individual 

variation in first average feeder use and then environmental sensitivity to temperature. 

There were no differences in captive behavioural data between years so data was pooled 

across years. 

To identify the population level response to temperature, I used a linear mixed 

model (LMM) with feeder use records from individuals as the dependent variable. Each 

bird contributed between 4 and 10 records to the feeder use data, so individual identity 

was specified as a random effect. However these records were collected under different 

maximum daily temperatures, ranging between 1.5°C and 12.2°C. To account for the 

variation in the temperature range under which each individual was measured, I 
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employed within-subject centring to partition the effect of temperature into within and 

between-subject components. The mean temperature under which an individual was 

measured was calculated and entered as the main fixed effect (between-subject 

component). The maximum daily temperature associated with each record of that 

individual was then deducted from this mean and specified with individual identity as a 

random effect, thus each individual’s change in behaviour was defined by a random slope 

within the LMM (within-subject component). Finally, I added day length and maximum 

temperature and rainfall in the day proceeding records as covariates, as these may also 

affect individual condition and hence propensity to use feeders within records (Dall et al., 

2004). Feeder use was log transformed to normalise the residuals of the LMM. 

To assess whether individuals differed in average feeder use or in environmental 

sensitivity to temperature, I used a reaction norms approach (see Dingemanse et al., 2010, 

van de Pol and Wright, 2009). The random intercept per individual from the population 

level LMM represents the behaviour of the individual in the average environment, and 

the random slope their change in behaviour in response to temperature. To determine 

whether individuals differed in average feeder use or environmental sensitivity to 

temperature, I used likelihood ratio tests (LRT) to compare the maximal LMM to one 

excluding random slopes or random intercepts respectively. 

To identify sources of variation in individual level response to temperature, I 

constructed general linear models (GLMs) with the random intercepts (i.e. average feeder 

use) or random slopes (i.e. environmental sensitivity to temperature) extracted from the 

population level LMM as dependent variables. To identify first correlates of average 

feeder use, I constructed a GLM with average feeder use as the dependent variable and 

age, sex, wing length, exploratory tendency and neophobia as the independent variables. 

Age, sex and wing length were included to account for affects of dominance interactions 

at feeders on behaviour, as small birds, females and juveniles are generally subordinate in 

Parids (Dingemanse and de Goede, 2004, Braillet et al., 2002), and age also as a measure 

of foraging experience. Wing length was dependent on an additive relationship between 

sex and age (linear regression, LM: F2, 52 = 4.4, P = 0.017) so “corrected wing length” 

refers to wing length as the residual of a LM of wing length against sex and age. As the 

slope generally increases with the intercept (Crawley, 2007), to identify correlates of 

environmental sensitivity I constructed a similar model but with random intercept, 

average feeder use, as a sixth dependent variable. To test whether behaviour related to 

activity in the novel environment specifically or to total activity within the exploration 
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trial, I constructed a separate model with the same variables but substituting exploratory 

tendency for total activity. The initial models included all two-way interactions, and were 

simplified by stepwise backwards regression, using a threshold p-value of 0.05, until only 

significant interactions or main effects (significant or non) remained. 

 

3.3.3 ENVIRONMENTAL SENSITIVITY TO FOOD SUPPLY IN THE WILD 
 

Natural food is ephemeral and the ability to respond quickly to sudden changes in food 

availability may equip individuals to cope better within unpredictable environments 

(Wolf et al., 2008). As a second measure of environmental sensitivity therefore, I 

compared individuals for their response to the withdrawal of food from the eight 

permanent feeding stations. Variation in the propensity to abandon sites after three days 

was my measure of environmental sensitivity to food supply, with birds that had stopped 

visiting the feeding stations within this time regarded most environmentally sensitive to 

food supply. I also compared individuals after one and five days to investigate this 

response in more detail. As with the test of environmental sensitivity to temperature, I 

also investigated the effect of average feeder use (measured on a day prior to food 

withdrawal), sex, age and wing length on response to food withdrawal. 

 

3.3.3.1 Data collection 
 

Two days prior to manipulating food supply, I used PIT tag records to determine which 

birds were present at each of the 8 feeding stations. Birds were included in the study if 

they were recorded at a given feeding station on the day of the manipulation at least once 

prior to and once after emptying the feeders, hence experienced the change in food 

supply. Twenty-six blue tits fitted these criteria. The manipulation was carried out in two 

blocks, at 4 feeding stations on 02/03/09 and the remaining 4 on 03/03/09. PIT-tag 

readers were installed within 30 mins of sunrise on those days and removed after sunset. I 

emptied the feeders between 09:20 and 10:40. The PIT-tag readers were rotated between 

the two sets of feeding stations for 6 days after the first manipulation, reinstalled within 

30 mins of sunrise and removed at sunset on each occasion. From these records, I 

extracted the number of visits by each bird to each feeding station on the day of the 

manipulation and after three and five days. PIT-tag readers were set to record the time at 
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which an individual first landed on a feeder and whether they were still present at two 

second intervals thereafter. Therefore a visit was defined as a record separated from other 

records by more than three seconds. However in birds that visited more than once on day 

one, the median interval between visits was 3.44 mins and mean 17.30 mins, indicating 

that in general, birds that visited on multiple occasions returned to the site intermittently 

between long absences from the site (range of intervals: 4 seconds to 3.5 hours). 

 
3.3.3.2 Statistical methods 
 

The manipulation was staggered over two days, but starting date did not explain variation 

in feeder use prior to the trial (GLM with quasi-Poisson errors: t1, 24 = 1.26, P = 0.22) on 

day 1 (t1, 24 = 0.88, P = 0.39), day 3 (t1, 24 = -0.49, P = 0.63) or day 5 (GLM with binomial 

errors: z1, 24 = -0.72, P = 0.47) so the data was pooled. I used GLMs to first investigate 

relationships between personality traits and feeder use prior to the manipulation or on day 

5. For feeder use prior to the manipulation, visitation was treated as a count, and I used a 

quasi-Poisson error structure to account for over-dispersion. On day 5, most birds did not 

visit or visited only once (see results), so visitation was treated as a binary variable 

(visited, did not), and I used a binomial error structure. To investigate relationships 

between exploratory tendency and visitation on days 1 and 3, I used generalized linear 

mixed models (GLMMs). The dependent variable, feeder use, was measured as a count 

so models had a Poisson error structure. Personality traits and day (day 1 or day 3) were 

my main independent variables. I included wing length as a covariate and sex and age as 

fixed factors to control for variation in feeder access and foraging experience, as in the 

temperature response analyses. Within this subset of birds, wing length was independent 

of sex and age so actual wing lengths were used in the analyses. I included feeder 

visitation two days prior to the manipulation as a covariate to control for individual 

differences in “prior feeder use”, analogous to the random intercepts in the temperature 

response analyses. Finally, to avoid over-parameterising the models I include only the 

interactions between personality traits and day, as I was interested in changes in visitation 

behaviour between personality types over days. I simplified the models by stepwise 

backwards regression, using a threshold p-value of 0.05, until only significant 

interactions or main effects (significant or non) remained. As in the previous analysis, I 

ran a separate model with exploration substituted for activity in the exploration trial. Nine 

individuals had been taken into overnight captivity for personality testing once previous, 
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in winter 2007-8. In case personality scores were affected by over-year familiarity with 

the aviary set up, I re-ran GLMMs excluding these individuals.  

 

3.3.4 ETHICAL NOTE 
 

All work was licensed by the UK Home Office, with permission for taking birds in 

captivity and for using PIT Tags obtained from Scottish Natural Heritage and the British 

Trust for Ornithology respectively. Studies were carried out in accordance with 

ASAB/ABS’s guidelines for the treatment of animals in research, and subject to ethical 

review by WALTHAM® Centre for Pet Nutrition and the University of Glasgow. Whilst 

in captivity, no bird lost (or gained) more than 10% body mass, and there was on average 

a body mass gain (2.97% ± 7.3%). Following release, 108 out of the 125 birds were later 

identified in the wild via PIT tag records or re-trapping. 

 

3.4 RESULTS 
 

3.4.1 ENVIRONMENTAL SENSITIVITY TO TEMPERATURE 
 

At the population level, feeder use declined with increasing maximum daily temperature 

(see Table 3-1, Fig. 3-1a). However, removal of the random slope term significantly 

reduced the fit of the model (LRT χ2 = 13.42, N birds = 82, P = 0.001), indicating that 

individual birds differed in their temperature response. Removal of the random intercept 

term also significantly reduced the fit of the model (LRT χ2 = 209.9, N birds = 82, P < 

0.0001), so the average feeder use also differed between birds. There was a correlation of 

0.17 between random intercept and random slope, such that birds with higher random 

intercepts (i.e. greater feeder use) responded less to changes in temperature (i.e. had 

shallower slopes; Fig. 3-1b). Therefore, as well as a variable of interest, average feeder 

use was included in individual level models to control for variation in the slope. 

Average feeder use did not correlate with age, sex, corrected wing length, 

neophobia, exploratory tendency or, in equivalent models substituting exploratory 

tendency for activity in the exploration trial, activity (see Fig. 3-2). Individual level 

environmental sensitivity was predicted by a significant additive relationship between 

age, wing length, neophobia and exploratory tendency: large, adult, neophobic and highly 
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exploratory birds were most responsive to temperature (i.e. had more negative random 

slopes; see Table 3-2 and Fig. 3-3). Sex did not predict environmental sensitivity (Fig. 3-

3e). In equivalent models substituting exploratory tendency for activity in the exploration 

trial, activity did not explain a significant proportion of variation in environmental 

sensitivity (from a GLM with wing length, neophobia and age as significant main effects: 

activity:  t1, 53 = -0.76, P = 0.45; see Fig. 3-3f). 

 

3.4.2 ENVIRONMENTAL SENSITIVITY TO A MANIPULATION OF FOOD SUPPLY 
 

Prior feeder use (measured 2 days prior to the manipulation) was not related to 

exploratory tendency (GLM with quasi-Poisson errors: t1, 24 = 0.92, P = 0.37) or 

neophobia (t1, 24 = -1.68, P = 0.11). After the manipulation of the food supply, at the 

population level, feeder visitation declined from a median of 3 visits per individual per 

feeding station per day (range 1 – 27) on day 1 to zero (range 0 – 8) on day 3. Thirteen 

individuals did not visit on day 3. A significant interaction between exploratory tendency 

and days indicates that exploratory individuals visited the emptied feeding stations more 

frequently than less exploratory individuals on day 1, but that more exploratory 

individuals visited less than less exploratory individuals on day 3  (Table 3-3, Fig. 3-4a). 

As my measure of environmental sensitivity was propensity to stop visiting feeders by 

day 3, exploratory individuals were regarded most environmentally sensitive. There was 

no interaction between day and neophobia, but neophilic individuals visited more than 

neophobic individuals overall across days 1 and 3, so neophobic individuals were 

regarded most environmentally sensitive (Table 3-3, Fig. 3-4b). Sex, age and wing length 

did not predict environmental sensitivity to food supply (Table 3-3). The results were 

unchanged by re-analysing the data excluding birds that had been taken into captivity 

once previously, in the winter of 2007-8 (from a GLMM including age, sex, wing length 

and prior feeder use as fixed effects, exploration x day: z1,15 = -3.29, P = 0.005, effect ± 

s.e. = -0.04 ±0.012; neophobia: z1,12 = -2.38, P = 0.035, effect ± s.e. = -0.02 ±0.007). In 

analyses substituting exploration for activity in the exploration trial, there was no 

interaction between day and activity (z1, 21 = -0.84; P = 0.4) and the main effect was non-

significant following removal of the interaction term (z1, 19 = 0.52, P = 0.61; see Fig. 3-

4c). On day 5, only 4 of the 26 birds visited the emptied feeding stations. Visitation on 

day 5 was independent of exploratory tendency (GLM with binomial errors: z1, 24 = -0.3, 

P = 0.76) and neophobia (z1, 24 = -0.12, P = 0.9). 
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Table 3-1 Results from LMM of population level feeder use in response to environmental 
variables 
Predictors t (d.f.) P-value R (S.E.) 

Mean-centred temperature -2.33 (80) 0.024 -0.0839 (0.036) 

Maximum temperature in previous day -2.47 (527) 0.014 -0.0199 (0.008) 

Rain fall (mm) in previous day -3.35 (527) 0.0009 -0.0105 (0.003) 

Day length -5.13 (527) < 0.0001 -0.00003 (0.000005) 

The results are of a LMM with log feeder visitation as the dependent variable and random 
intercepts and slopes with mean-centred temperature for each bird; n feeder use records = 614 and 
n birds = 82 

 

 

 

 

 

 

 

Table 3-2 Results of a GLM of individual level environmental sensitivity to temperature (i.e. 
individual changes in feeder use with temperature) 
Predictors t (d.f.) P-value R (S.E.) 

Average feeder use 0.82 (49) 0.42 0.0079 (0.0097) 

Age 3.2 (49) 0.002 0.0228 (0.007) 

Sex 1.12 (49) 0.27 0.0094 (0.0084) 

Corrected wing length -2.07 (49) 0.044 -0.0045 (0.0022) 

Neophobia -2.09 (49) 0.042 -0.0006 (0.0003) 

Exploratory tendency -2.54 (49) 0.014 -0.0001 (0.0004) 

The dependent variable environmental sensitivity and independent variable feeder use are BLUPs 
extracted from the LMM on Table 3-1; n = 56 birds. 
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Table 3-3 Results from GLMM on individual variation in visitation to feeding stations in 1 and 3 
days after they were emptied. Environmental sensitivity was defined as the propensity to cease 
visitation by day 3 
Predictors z (d.f.) P-value R (S.E.) 

Prior feeder use 3.881 (18) 0.0001 0.013 (0.003) 

Age 0.705 (18) 0.48 0.278 (0.394) 

Sex -0.927 (18) 0.35 -0.4 (0.432) 

Wing length -0.932 (18) 0.35 -0.127 (0.137) 

Neophobia -2.6 (18) 0.009 -0.004 (0.005) 

Exploratory tendency x day -4.82 (22) <0.0001 -0.01 (0.002) 

The results are of a model with feeder visitation as the dependent variable, individual identity 
specified as a random effect, and a Poisson error structure; n visitation records = 52, n birds = 26 
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Figure 3-1 Plots of population level and individual level reponse to temperature in terms of 
feeder visitation and average feeder use. (a) Individual and population level response to 
increasing maximum daily temperature. The mean temperature an individual experienced was 
centred on zero (dashed line). The temperature on each day that an individual was measured for 
feeder use is expressed in degrees above or below this mean per individual, on the x axis. The 
grey lines are the slope of feeder use against mean centred temperature for each individual and a 
black line the population slope to mean centred temperature across individuals. (b) Relationship 
between individual environmental sensitivity to temperature (i.e. random slopes extracted from 
LMM of feeder use and temperature) and average feeder use (i.e. random intercept), illustrated 
with a regression line. 
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Figure 3-2 Individual level plots of non-significant relationships between average feeder use (i.e. 
random intercept extracted from LMM of feeder use and temperature) and (a) corrected wing 
length, (b) age, (c) neophobia, (d) exploratory tendency, (e) sex and (f) activity in the exploration 
trial. 
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Figure 3-3 Individual level relationships between environmental sensitivity to temperature (i.e. 
random slope extracted from LMM of feeder use and temperature) and (a) corrected wing length, 
(b) age, (c) neophobia, (d) exploratory tendency, (e) sex and (f) activity in the exploration trial. 
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Figure 3-4 Relationships between visits to emptied feeding stations and (a) exploratory tendency, 
(b) neophobia and (c) activity in the exploration trial on the day of the food supply manipulation 
(day 1: filled circles) and after 3 days (day 3: crosses). An interaction between day and 
exploratory tendency is illustrated by the use of lines and dashed lines for days 1 and 3 
respectively. I interpret high environmental sensitivity to food supply as a greater tendency to 
reduce feeder use by day 3, whether overall (i.e. neophobic birds were more environmentally 
sensitive than neophilic birds) or in contrast to day 1 (i.e. more exploratory birds were more 
environmentally sensitive than less exploratory birds).  
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3.5 DISCUSSION 
 

This is one of only two studies (the other: Overveld and Matthyssen, 2009) so far to 

examine variation in behaviour between personality types, rather than survival or fitness, 

in response to environmental change in the wild. Such studies of environmental 

sensitivity are important to understanding the ecological significance of personality traits 

(Sih et al., 2004). At the population level, feeder visitation dropped off with increasing 

temperature and with days following food withdrawal. However, these responses differed 

between birds: some showed a steep decline whilst other used feeders at a fixed level 

independent of temperature and then continued to visit feeders for several days after they 

were emptied. Neophobic and, contrary to expectation from captive studies (e.g. Benus et 

al., 1988, Benus et al., 1990, Marchetti and Drent, 2000), exploratory individuals were 

most environmentally sensitive to temperature and food supply. In contrast, neophilic and 

non-exploratory birds were relatively fixed in their level of feeder use despite changing 

temperature, and continued to visit the emptied feeders for a longer period. Therefore 

personality traits relating to novelty did represent systematic variation in environmental 

sensitivity. Also, birds with longer wings and adults were more sensitive to temperature, 

but not food supply, than small and juvenile birds. Relating to the use of a real feeding 

opportunity, personality traits may represent major differences in the way individuals 

prospect for and use information on their environments and hence respond to 

environmental change. 

Plasticity in foraging behaviour could stem either from feed-forward mechanisms, 

whereby individuals respond to internal cues such as hunger or body condition, or feed-

back mechanisms, using environmental cues to respond pre-emptively (Krebs and Davis, 

1997). In the environmental sensitivity to temperature analysis, I controlled for 

environmental variables (rain fall and temperature the day before measurement) that may 

affect body condition on entering feeder use trials, thus have assayed specifically the 

latter: sensitivity to feed-back from the environment. I identified no correlates of the rate 

of average feeder use, and average feeder use did not affect environmental sensitivity to 

temperature, so my results are not simply an artefact of differences in feeder use between 

personality types, ages or body sizes (Crawley, 2007). Indeed, contrary to expectation 

(but consistent with Dingemanse and de Goede, 2004), neither average feeder use from 

the temperature analysis nor the records of prior feeder use from the food withdrawal 
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experiment: two measures of feeder dependency, correlated to personality. In captive 

studies, neophilic individuals generally form foraging routines at reliable feeding sites 

more quickly than neophobic individuals, often at the cost of discovering (and dividing 

time between) new feeding opportunities elsewhere (e.g. Benus et al., 1988, Benus et al., 

1990, Verbeek et al., 1994, Marchetti and Drent, 2000). I predicted personality may 

similarly co-vary with feeder use in the wild. That such systematic differences were not 

identified is encouraging for studies using artificial feeding sites to assay behaviour in the 

wild, where variation in tendency toward feeder use per se could then bias results. I also 

found no interaction between neophobia and exploration in my study, which is consistent 

with the independence of these traits in blue tits and further proof of consistency between 

captive and wild behaviour in this species (Herborn et al., 2010). 

Neophobic birds were more environmentally sensitive to both temperature and 

food supply than neophilic birds. This is in keeping with the expectation from other 

species that slow individuals are more plastic in their behaviour than fast individuals 

(Verbeek et al., 1994, Marchetti and Drent, 2000, Koolhaas et al., 1999). In both the 

captive and wild contexts, neophobic blue tits adjusted their use of known feeding sites 

(the food bowl or feeding station) in relation to environmental change (a novel object, 

temperature or food availability), so reactions toward novel objects may be a general 

measure of responsiveness to environmental stimuli. Often, neophobic individuals are 

fast to learn negative changes in familiar situations (Exnerova et al., 2010; Marchetti and 

Drent, 2000) but slow to learn positive associations in novel situations (Webster and 

Lefebvre, 2001, Thomas et al., 2003). They may therefore be more sensitive to negative 

than positive experiences, here for example perhaps prior experience of condition loss 

with low temperature. In a study on blue tits from the same population, Arnold et al. 

(2007) showed that nestling diets associated with poor foraging environment (i.e. rich in 

spiders relative to caterpillars) were associated with development of neophilic 

personality. The authors suggest this may equip birds to “take risks” on fledging into an 

impoverished environment. Taking these studies on blue tits together, variation in 

neophobia in this species may constitute different strategies (plastic versus fixed) for 

coping with detrimental environmental change. 

Birds with high exploratory tendency were more environmentally sensitive to 

both temperature and food supply than birds with lower exploratory tendency. This 

appears contradictory to Marchetti and Drent’s (2000) study on captive great tits, in 

which slow explorers were flexible and fast explorers routine-formers (see also Benus et 

al., 1988). However in that study, exploration was measured as the latency to approach all 
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parts of a novel environment, whereby fast birds may be considered “superficial” and 

slow birds “thorough”. Using the same experimental set up and species, van Overveld 

and Matthysen (2010) measured instead activity (number of hops or flights) in a two 

minute period. Corroborating my study, Overveld and Matthysen then showed that fast 

explorers were quickest to break unrewarding foraging routines in the wild. Similarly, 

Dingemanse et al. (2003) found that fast-exploring juvenile great tits, classified by 

activity scores, travelled further from the familiar environment (hence foraging routines) 

during post-natal dispersal. What comparison of these studies shows is that interpretation 

of “exploratory tendency” is dependent on the method by which exploration is scored. It 

may also be important to incorporate space use with activity. In one of few studies on 

environmental sensitivity, on wild starlings (Sturnus vulgaris) Minderman et al. (2009) 

used a trial analogous to the great tit studies but classified the behaviour with a principle 

components analysis (PCA), thus separated out axes describing separately activity (in 

their terms “speed of exploration”) and space use (time spent on perches versus the 

ground). On reintroduction to that formally novel environment, only space use predicted 

individual response to an environmental change (an escape hatch), which they suggest is 

another measure of environmental sensitivity. In my trial, I allowed birds the option to 

avoid exploration altogether, by providing access to a familiar environment throughout. I 

then weighted activity in the novel environment by activity in a familiar environment, 

creating a score that combined space use with activity. Previously, using the same 

individuals, I showed that exploration in captivity positively predicted the birds’ 

propensity to find new, short-lived feeding sites in the wild, whilst total activity 

(movement in novel and familiar environments combined) did not (Herborn et al., 2010). 

Similarly, here total activity did not predict environmental sensitivity toward either 

temperature or food supply. Therefore blue tits that were relatively active specifically 

within novel environments are more flexible foragers than less exploratory birds, both in 

their propensity to seek out or use new feeding sites and, here, in their use of known 

feeding sites. 

When I experimentally manipulated food supply, I found a positive relationship 

between exploratory tendency and feeder visitation immediately after the loss of the food 

supply (day 1). This represents a change in behaviour as, consistent with other studies 

(Dingemanse and de Goede, 2004; van Overveld and Matthysen, 2010) personality types 

did not differ in feeder use prior to the manipulation. However, by day 3, only the less 

exploratory individuals continued to visit the feeders. This is in contrast to the results 

with neophobia, whereby neophobic individuals visited at a higher rate on both days, in 
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line with the expectation of routine-formation (Marchetti and Drent, 2000). This suggests 

that exploration predicts the rate at which unprofitable feeding opportunities are 

abandoned. In Overveld & Matthysen’s (2009) study on great tits, the abrupt removal of 

an artificial feeding site stimulated fast explorers to move to new areas whilst slow 

explorers remained within the vicinity of the old feeding site. As the great tits in that 

study did not differ in feeding range size, the authors suggest that response may reflect 

differences in the way individuals combine past and current information: fast explorers 

returned to former, distant profitable feeding sites, whilst slow explorers continued to 

update their information on the currently unprofitable site. My finding is consistent with 

that study, and suggests some generality of the exploration trait between closely related 

species.  

An alternative explanation for environmental sensitivity in exploratory blue tits 

though may be variation in response toward social rather than other environmental cues. 

Whilst slow individuals in many species appear more sensitive to changes in 

environmental stimuli than fast individuals, social stimuli may be an exception. 

Individuals that are fast in one personality trait often react more quickly to competitive 

(Verbeek et al., 1996) and social signals (Marchetti and Drent, 2000, but see Frost et al., 

2007) than slow individuals and take longer to recover from social defeat (von Holst, 

1998, Carere et al., 2001). Therefore exploratory blue tits may be more sensitive to 

competition than less exploratory individuals, hence avoid feeders where possible (i.e. 

except when temperatures are very low), but also more sensitive to social signals, hence 

avoid feeders when conspecifics are absent (i.e. when feeders were empty). I have not 

investigated sociability or aggression in the blue tit, thus cannot distinguish these 

alternative explanations. 

Finally, I discovered that small and juvenile birds were less environmentally 

sensitive to temperature than large and adult birds. This observation is consistent with 

intraspecific variation in starvation risk: small and juvenile birds have low resource 

holding potential (Dingemanse and de Goede, 2004, Braillet et al., 2002), thus may feed 

with opportunity (i.e. low feeder use by competitors) as much as necessity (i.e. low 

temperatures), obscuring trends with temperature. In support of this interpretation, I 

found no affect of age or wing length in the food withdrawal experiment when feeder use 

hence competition was lower. However, the relationship between age and wing length in 

the temperature study was additive, suggesting age made an independent contribution to 

the observed variation in environmental sensitivity. Environmental change is only a 

useful cue if it predicts the future, by covariance between phenotype and fitness (Van 
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Noordwijk and Muller, 1993). By survival through one or more previous winters, adults 

may learn this covariance, through experience of the association between mass gain 

(feeder use) and condition under a wide range of temperatures. Inter-year environmental 

sensitivity toward temperature is evident also in studies comparing plasticity across 

breeding attempts: the extent to which blue tits and great tits respond to spring 

temperature as a cue to breed is dependent on their prior experience of breeding under 

higher or lower spring temperatures (Nussey et al., 2005) or food supply (Grieco et al., 

2002). Nussey et al. (2005) also observed that plasticity in breeding behaviour was 

heritable in a population of great tits, and that it had increased within the population by 

selection in the previous 32 years. Current global temperature change is associated with 

shifts in the breeding phenology of many species, in some cases threatening to mismatch 

the timing of interdependent species, such as Parids and their moth larvae prey (Both et 

al., 2009, Visser et al., 2004). Therefore studies such as ours, which investigate individual 

level plasticity, are important to assessing the capacity of populations not only to survive 

short term environmental change but also to evolve in response to long term 

environmental change (Visser, 2008). 
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CHAPTER 4 

 

PERSONALITY TYPES DIFFER IN OXIDATIVE PROFILE 

 

4.1 ABSTRACT 
 

Oxidative stress occurs when pro-oxidants, which damage body tissue, exceed the 

antioxidants that counteract them. I predicted that individuals differing consistently in 

behaviour, i.e. “personality”, would differ also in their oxidative profile (pro-oxidants, 

antioxidants, oxidative stress and oxidative damage), for example due to differences in 

physical activity or responsiveness to stress. The personality traits measured, neophobia 

(latency to approach food near novel objects) and object exploration (latency to approach 

novel objects), were consistent within individuals and uncorrelated. Measures of 

oxidative profile: antioxidant capacity (“OXY”), pro-oxidant level (reactive oxygen 

metabolites, “ROMs”), oxidative stress (“OS”, ratio of ROMs to OXY) and an end-

product of oxidative damage: malondialdehyde (MDA), were uncorrelated. Object 

exploration and neophobia related positively and additively to OXY: neophilic or fast-

exploring birds had higher OXY than neophobic or slow-exploring birds. ROMs and OS 

related only to neophobia: neophilic birds had lower ROMs and lower OS than neophobic 

birds. Variation in MDA was described by an additive quadratic and linear relationship 

with neophobia and object exploration respectively: fast-exploring and extremely 

neophilic or neophobic birds had lower MDA than birds with other combinations of 

traits. From these results, I draw three conclusions. First, personality types differ in 

oxidative profile. Second, though physiological differences between personality types 

(e.g. metabolic rate, stress responsiveness) generally range along a linear continuum, the 

physiological costs may not. For example, MDA differed between extreme neophilic or 

neophobic birds and intermediates. Finally, relationships with oxidative profile differed 

between neophobia and object exploration. Understanding how oxidative profile and thus 

physiological costs vary within and between personality traits may explain how 

differences in personality trait correlations, “behavioural syndromes”, arise between 

populations. 
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4.2 INTRODUCTION 
 

Oxidative stress occurs when pro-oxidants, which are produced during normal 

metabolism and damage the body tissue, exceed antioxidant capacity which counteracts 

pro-oxidants (Finkel and Holbrook, 2000). Costs, in tissue damage and also investment 

into cellular repair and replacement, accrue under oxidative stress. As such, intraspecific 

variation in “oxidative profile” (pro-oxidants, antioxidants, oxidative stress and oxidative 

damage) often then predicts variation in health and longevity (Harman, 1956, Hulbert et 

al., 2007, Costantini, 2008). An individual’s metabolic rate, and thus rate of pro-oxidant 

production, is context dependent (Ferguson et al., 2008, Alonso-Alvarez et al., 2004). 

However within contexts, individuals of the same mass are expected to have the same 

metabolic rate yet often differ still (Careau et al., 2008, Krol and Speakman, 2003, 

Careau et al., 2009). Such context-independent variation in metabolic rate may be 

explained by a phenomenon widely observed across animal taxa: “personality” (Careau et 

al., 2008). 

Personality traits are differences in behaviour between conspecifics that are 

consistent across time or contexts (Gosling, 2001). For example, some individuals are 

consistently fast to approach novel stimuli, competitors or environments (i.e. neophilic, 

aggressive and fast-exploring) whilst others are consistently neophobic, passive and slow-

exploring (Wilson et al., 1994). To respond quickly and actively, “fast” personality types 

may have a generally higher metabolic rate than “slow” types (“performance” or 

“sustained maximal limit” model; e.g. Drent and Daan, 1980), or channel more energy 

toward these activities from a limited energy budget (the “allocation” model; 

e.g.Wiersma et al., 2005, Wiersma et al., 2004, Wiersma and Verhulst, 2005, Cutts et al., 

2002). Differing systematically in metabolic rate therefore, I predicted that personality 

types would differ also in oxidative profile. 

Few studies investigate the relationship between oxidative profile and personality 

explicitly. An exception is recent work by Costantini and colleagues (2008a), which 

showed that mice from strains characterised by long attack latency (“LAL”, i.e. passive 

personality types) had higher antioxidant capacity than mice from strains with relatively 

short attack latencies (“SAL”, i.e. aggressive personality types). However, several lines 

of evidence support this relationship indirectly. First, longevity varies with personality 

(Cavigelli et al., 2003; Ewalds-Kwist & Selander, 1996; Dingemanse et al., 2004; 
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Cavigelli et al., 2009), suggesting a cumulative cost to personality. In LAL-SAL mice for 

example, young LAL mice have higher antioxidant capacity than SAL mice yet no lower 

oxidative stress, and ultimately shorter life spans (Costantini et al., 2008; Ewald-Kwist & 

Selander 1996). To achieve the same level of oxidative stress therefore, young LAL mice 

may up-regulate their antioxidant system, an additional investment that may be costly in 

later life (Costantini et al., 2008a). Cumulative effects of personality are also observed in 

the “activity” personality trait, where most active (hence most metabolically active) 

individuals have shortest lifespan, a finding consistent across a broad taxonomic range 

(Biro and Stamps, 2008). Specifically, we could therefore predict that fast personality 

types suffer higher oxidative damage than slow personality types. 

Second, in species with well defined personality types, individuals that are fast to 

engage with novel or threatening stimuli often have lower gluccocorticoid (stress 

hormone) levels than their slower counterparts, including for example SAL versus LAL 

mice (Mus musculus; Veenema et al., 2003), “proactive” (neophilic/aggressive/fast-

exploring) versus “reactive” great tits (Parus major; Carere et al., 2003), docile versus 

non-docile chipmunks (Tamias striatus; Martin and Reale, 2008), neophilic versus 

neophobic rats (Rattus norvegicus; Cavigelli and McClintock, 2003) and zebra finches 

(Taeniopygia guttata; Martins et al. 2007), and less versus more environmentally 

sensitive rainbow trout (Oncorhynchus mykiss; Hoglund et al., 2008). Gluccocorticoids 

stimulate the metabolism to facilitate rapid behavioural responses, such as the fight or 

flight response (Cockrem, 2007). Thus slow personality types, that have consistently 

higher or more reactive stress responses, may then be expected to suffer higher oxidative 

stress than fast types, diverting more energy away from other activities into stress 

responses. Interestingly, dietary supplementation of poultry over days to achieve chronic 

levels of the gluccocorticoid corticosterone (“CORT”, the avian stress hormone) raises 

lipid peroxidation (a measure of oxidative damage; Lin et al., 2004b), but acute exposure 

to CORT, via injection, does not (Lin et al., 2004a). With chronic exposure perhaps akin 

to persistent differences in stress reactivity as predicted by personality, and a single acute 

exposure analogous to short term fluctuations in stress that may be experienced by any 

individual (for review: Cockrem, 2007), this provides experimental support for stress 

responsiveness as a mechanism for personality differences in oxidative stress. 

In this study, I investigated personality and oxidative profile in captive-bred 

European greenfinches (Carduelis chloris). First, I measured differences between hungry 

individuals in their latency to approach novel objects placed near food. Here, the object 

may generate a motivational conflict between hunger and the desire to avoid the unknown 
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(potentially risky) object, or “neophobia” (Mettke-Hofmann et al., 2002). Latency to 

approach in those trials may also be motivated by the novel object itself, however, for 

information gathering. To distinguish the affects of neophobia and information gathering 

on oxidative profile I also measured latency to approach novel objects in the absence of 

food, or “object exploration” (Mettke-Hofmann et al., 2002). Specifically I had three 

aims. First: to determine whether differences between individuals in neophobia and 

exploration were consistent and repeatable, and hence constituted personality traits in 

greenfinches. I also tested whether neophobia and exploration were correlated within 

individuals. Personality traits are often highly correlated within individuals. For example, 

a commonly described trait correlation is the “proactive-reactive” or “fast-slow” 

syndrome, which encompasses boldness or neophobia, aggression and exploration 

(Koolhaas et al., 1999, Carere et al., 2005). Such correlations imply proximate links 

between traits, via genetic linkage or shared physiology (Verbeek et al., 1994), hence 

perhaps oxidative profile. However, correlations can also occur when two traits are not 

mechanistically connected but rather subject to the same selection pressures (Bell and 

Sih, 2007, Dingemanse et al., 2007). Second: to investigate how measures of oxidative 

profile related to one another. My measure of pro-oxidant status and oxidative damage 

were an intermediate step and end-product of the lipid peroxidation cascade respectively: 

reactive oxygen metabolites (ROMs) and malondialdehyde (MDA). I measured anti-

oxidant capacity (OXY) as the capacity of the plasma to resist oxidation by a pro-oxidant, 

hypochlorous acid. Oxidative stress (OS) was then defined as the ratio of ROMs to OXY 

x 1000 (Costantini and Dell'Omo, 2006). Across individuals (regardless of personality), 

body mass may also affect pro-oxidant production, as very high and very low mass are 

both associated with increased oxidative stress  (Wiersma et al., 2004, Costantini et al., 

2007, Larcombe et al., 2010). Therefore I also investigated affects of body mass on 

oxidative profile. Finally: to determine whether neophobia or exploration co-varied with 

oxidative profile, and consequently whether personality types may differ in their 

oxidative costs. 

 

4.3 METHODS 
 

The study utilised 22 birds from a colony of captive bred greenfinches, 13 males and 9 

females. Birds were sourced from several private breeders, but all were aged between 15 

and 17 months and had been in the colony for at least seven months. Birds were kept 
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singly, in 120 x 50 x 50 cages, but in auditory and visual contact. Out-with trials, birds 

had ad libitim access to Haith’s™ greenfinch mix and water, and were provided with 10 

defrosted frozen garden peas per day.  During personality trials screens were positioned 

to shield the focal individual from visual contact with other birds. All work was carried 

out in accordance with ASAB/ABS’s guidelines for the treatment of animals in research, 

and subject to ethical review by WALTHAM® Centre for Pet Nutrition and the 

University of Glasgow. No birds became ill or died during this experiment. Neophobia 

trials were conducted between 26/08/08 and 04/09/08 and exploration trials between 

05/09/08 and 08/09/08. 

 

4.3.1 PERSONALITY TRIALS 
 

4.3.1.1 Neophobia 
 

Each bird took part in four neophobia trials across an eight day period.  Each trial had 

two phases: a novel object phase and a disturbance phase. Prior to a phase, the food bowl 

and any spilt food were removed from the cage to motivate birds toward foraging 

activity. After 30 mins, the water bowl was also removed. After a further 30 mins (1h in 

total without food), the food bowl was returned to the cage and the latency to approach 

recorded. In the disturbance phase, just the food bowl was returned. In the novel object 

phase, the food bowl also contained one of four novel objects: a red, blue, green or 

yellow plastic cookie-cutter of approximately 3cm x 2cm x 1cm. Birds that did not 

approach within 30 mins were given a maximum latency of 1800 seconds. Phases were 

alternated each day; the first phase a bird received was randomized. Bird identity 

explained a marginally significant proportion of the variation in approach latency during 

disturbance phases (Linear mixed model, LME, with trial order as random factor: F1,63 = 

1.71, P = 0.05) and a significant proportion of variation in the novel object phases (LME, 

with object identity nested in trial order as a random factor: F1,51 = 6.76, P < 0.0001). 

Therefore birds were consistently fast or slow within phases. Independent of response 

toward the novel object, individuals may also differ in their motivation to feed or 

tolerance of disturbance by the observer returning the food bowl. This is why I conducted 

the disturbance phases: for each object I regressed novel object phase latencies against 

disturbance phase latencies (Boogert et al., 2006), after first log-transforming both 

latencies to meet the assumptions of normality and homogeneity of variance. The 
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residuals of these models for each bird, converted to z scores, provided 4 measures of 

neophobia for each bird, one per object. 

 
4.3.1.2 Object exploration 
 

Each bird took part in two object exploration trials, conducted on consecutive days. The 

home cage contained six perches, three in each half. Prior to a test, the food and water 

bowls were removed as per the neophobia trial. To start the trial, the observer placed one 

of two novel objects onto the centre of the furthest left perch, stepped behind a screen, 

and observed the focal bird through a small hole for 30 mins. The novel objects were a 

bundle of white cotton bud sticks tied together with white string, and two interlocking 

transparent colourless rings. The order of objects was randomised per bird. The latency to 

first land on the object perch was recorded. After 30 mins, the object was removed and 

the food and water bowls returned. Therefore each individual had two object exploration 

latencies. Controlling for trial order and object identity, individual identity explained a 

significant proportion of variation in the exploration trials (LME with object identity 

nested within trial order as random factors: F22, 18 3.26, p 0.007), so individuals were 

consistently fast or slow to approach independent of learning affects between trials or the 

order in which objects were encountered. 

 

4.3.2 OXIDATIVE PROFILE 
 

Oxidative profile measures were derived from a blood sample of up to 300µl collected on 

30/10/2008, taken within 3 minutes of capture from the home cage by venepuncture of 

the wing vein. The plasma was immediately separated from the red blood cells by 

centrifuging for 5 minutes at 14,000g, and was then frozen at -80°C until analysis. ROMs 

were measured by the d-ROMs test and OXY by the Oxy-Adsorbent test (Diacron, 

Grosseto, Italy, as Costantini et al., 2007). MDA was measured using H.P.L.C. (as Young 

and Trimble, 1991). Body mass (g) was recorded immediately after blood sampling.  
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4.3.2.1 OXY analysis 
 

OXY was measured as the capacity of the plasma to withstand oxidation by hypochlorous 

acid (HOCl). The plasma sample was defrosted at room temperature and then a 2µl of the 

sample or 2µl of a HOCl calibrator were each diluted 1:99 with distilled water (dH20). A 

200µl chromagen solution of 0.01 mol1-1acetic acid/sodium acetate buffer (pH 4.8) and 

N,N-diethyl-phenylenediamine was combined with 5µl of the diluted plasma, calibrator 

or dH2O (control), and then incubated at 37°C for 10 minutes. Finally 2µl of the 

calibrator was added to each sample. Alkyl-substituted aromatic amine in the chromogen 

solution are oxidized by HOCl remaining in the sample (i.e. not quenched by plasma 

OXY), and produce a pink derivative, the intensity of which is measured at 490mm using 

a microplate spectrometer (Multiskan Spectrum, Thermo Scientific). OXY concentration 

is inversely proportional to the intensity of the pink, and was expressed as the µmol of 

HOCl/ml of sample, calculated as follows: 

OXY =    Absorbance dH2O  -  Absorbance sample     x calibrator concentration 

    Absorbance dH2O - Absorbance calibrator 

 

4.3.2.2 ROM analysis 
 

ROMs were measured as the pro-oxidant capacity of the plasma equivalent to mM 

hydrogen peroxide (H2O2). ROMs are expressed as Carratelli Units (CARR U), with 1 

CARR U equivalent to the pro-oxidant capacity of 0.08mg H2O2. The HOCl calibrator 

and the above chromagen solution were combined in a 1:100 ratio. 4µl of the diluted 

plasma, calibrator or dH2O were then added to the mixture and incubated at 37°C for 30 

minutes. Colour intensity was measured at 490nm using the microplate 

spectrophotometer (Multiskan Spectrum, Thermo Scientific). The process cleaves 

hydrogenperoxides in the sample into two free radicals. These free radicals then react 

with alkly-substituted aromatic amine in the chromagen solution and produce a pink 

colour with intensity directly proportional to the hydroperoxide (pro-oxidant) content of 

the sample. The ROM concentration is then expressed as CARR U, according to the 

following equation: 

CARR U =  Absorbance sample     x calibrator concentration 

    Absorbance calibrator 
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4.3.2.4 MDA analysis 
 

MDA, an indicator of lipid peroxidation and oxidative stress, was measured by reaction with 

thiobarbituric acid, following Young and Trimble (1991). A solution of thiobarbituric acid 

(0.44 M, 100µl) and phosphoric acid (1.22M, 100µl) was added to a test tube containing 

50µl plasma from a bird, 50µl of a malonaldehyde bis(dimethyl acetyl) standard (Sigma 

Aldrich) or 50µl of dH2O (control). For one bird where only 45µl of plasma were 

available 5µl of distilled water were added for consistent volume and MDA concentration 

later proportionally scaled to the sample size. A nitrogen blanket was added to create an 

inert atmosphere around the solution, and test tubes sealed, vortexed and then incubated 

for one hour at 70°C. After cooling in a water bath at room temperature, I pipetted 200µl 

of the mixture into a centrifuge tube that contained sodium hydroxide (1 M, 100µl). 

Methanol (500µl) was added and samples were vortexed. Finally, samples were 

centrifuged (10 minutes, 4010rpm). I used a Summit HPLC system (Dionex, Idstein, 

Germany) with Chromeleon software (Dionex) and an acclaim 120 C18 5µl column 

(Dionex) and guard to measure fluorescence (excitation 532nm and emission 553nm) of 

this supernatant. The mobile phase (40:60 methanol:phosphate buffer; 40mM, pH 6.5) 

had a flow rate of 1ml min-1.  

 

4.3.3 STATISTICAL METHODS 
 

Analyses were carried out using R version 2.9.1 (R Core Development Team, 2009). 

There were no significant sex differences in oxidative profile measures (ANOVA: ROMs 

F1, 20 = 0.32, P = 0.58; OXY F1, 20 = 0.17, P = 0.68; MDA F1, 20 = 0.87, P = 0.36), 

neophobia (F1, 20 = 0.77, P = 0.39) or exploration (F1, 20 = 3.56, P = 0.08). There were 

also no differences between birds sourced from different breeders, a proxy of unknown 

pedigree and early life conditions (ANOVA: ROMs F6, 15 = 0.58, P = 0.74; OXY F6, 15 = 

2.18, P = 0.1; MDA F1, 20 = 0.62, P = 0.71; neophobia F6, 15 = 0.39, P = 0.88; exploration 

F1, 20 = 1.84, P = 0.16). Therefore data were pooled across sexes and breeders. 

Relationships within and between oxidative profile measures and personality traits were 

analysed using general linear models (GLMs). To identify relationships between 

oxidative profile and personality, I first constructed GLMs with each measure of 

oxidative profile as the dependent variable and either neophobia or exploration as the 
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dependent variable. I specified both linear and quadratic expressions of the personality 

traits, to examine whether oxidative profile differed between the linear ends of the trait 

continua (neophobic versus neophilic or fast versus slow explorers) or instead between 

intermediate and extreme (neophobic and neophilic or fast and slow-exploring) 

personality types. To identify higher order interactions, I then constructed a GLM for 

each oxidative profile measure with all two way interactions between linear and quadratic 

expressions of both personality traits as the dependent variables. These models were 

simplified by backwards stepwise regression, removing non-significant (P > 0.05) 

interactions and then main effects in turn until only significant (P < 0.05) or no 

independent variables remained. All oxidative profile measures and body mass were log-

transformed to normalise the residuals of these models. 

 

4.4 RESULTS 

4.4.1 INDIVIDUAL VARIATION IN PERSONALITY 
 

In the neophobia trial, mean latency to approach the food bowl was significantly greater 

when a novel object was present than absent (paired Wilcoxon rank sum test: V = 351, N1 

= N2 = 22, P = 0.0001), thus the presence of the object modified behaviour, i.e. induced 

neophobia. Individual neophobia was significantly repeatable (ANOVA: r = 0.57, F 21, 66 

= 3.6, P < 0.0001), so individuals differed consistently in their latency to approach food 

near novel objects. Therefore I used a mean z value per individual as the neophobia score 

for remaining analyses. 

In the object exploration trial, I measured latency to approach novel objects in the 

absence of food. Individual latency was significantly repeatable over two trials (ANOVA: 

r = 0.47, F21, 22 = 2.69, P = 0.013). Therefore I used a mean latency per individual as the 

object exploration score for remaining analyses. There were no linear (GLM: F1, 19 = 

0.57, P = 0.46) or quadratic relationships (GLM: F2, 18 = 0.29, P = 0.76) between 

individual neophobia and object exploration. 
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4.4.2 INDIVIDUAL VARIATION IN OXIDATIVE PROFILE 
 

Variation in the time of blood sampling (10:00 – 16:00) did not affect OXY (GLM: t1, 20 

= 0.66, P = 0.51), ROMs (t1, 20 = 0.56, P = 0.58) or MDA (t1, 20 = -1.46, P = 0.16), nor 

did the duration of handling at capture prior to blood sampling (up to 3 minutes; OXY t1, 

20 = 0.32, P = 0.75; ROMs t1, 20 = 0.22, P = 0.83; MDA t1, 20 = 1.52, P = 0.15). ROMs 

were independent of OXY (GLM: t1, 20 = 1.3, P = 0.22). MDA was independent of ROMs 

(t1, 20 = 0.35, P = 0.73), OXY (t1, 20 = 0.51, P = 0.62) or OS (t1, 20 = 0.23, P = 0.82). 

ROMs (GLM: F1, 20 = 2.12, P = 0.12), OXY (F1, 20 = 2.68, P = 0.12), OS (F1, 20 = 0.03, P = 

0.87) and MDA (F1, 20 = 0, P = 0.95) were all independent of body mass. 

 

4.4.3 RELATIONSHIPS BETWEEN PERSONALITY AND OXIDATIVE PROFILE 
 

I identified linear relationships between neophobia and three aspects of oxidative profile: 

neophilic birds had significantly lower ROMs (t1, 20 = 2.57, P = 0.018; Fig. 4-1a), higher 

OXY (t1, 20 = -2.25, P = 0.036; see Fig. 4-1b) and lower OS (t1, 20 = 3.17, P = 0.005; Fig. 

4-1c) than neophobic birds. There was no linear or quadratic relationship between 

neophobia and MDA in analyses including only neophobia as an independent variable 

(Fig. 4-1d). 

I identified no relationship between object exploration and ROMs (t1, 20 = 0.88; P 

= 0.39; Fig. 4-2a). There was a marginal relationship between object exploration and 

OXY, indicating that fast-explorers had higher OXY than slow-explorers (t1, 20 = -2.09, P 

= 0.05; Fig 4-2b). There were no relationships between object exploration and OS (Fig. 4-

2c). There was a significant linear relationship (t1, 20 = 2.17, P = 0.04) but also quadratic 

relationship between exploration and MDA (t2, 19 = -2.28, P = 0.034; Fig. 4-2d): fast-

explorers had lower MDA than slow-explorers, but both fast- and slow-explorers had 

lower MDA than intermediate individuals. 

In GLMs starting with all two-way interactions between both neophobia and 

object exploration as the independent variables, results pertaining to ROMs and OS were 

unchanged. In another GLM, I identified additive relationships between object 

exploration and neophobia together and OXY. This suggests that, though both traits had 

significant relationships with OXY in single trait analysis, the relationship of each trait to 

OXY was independent (F2, 19 = 4.5, P = 0.025). Variation in MDA was best explained by 
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an additive relationship between the linear expression of object exploration and the 

quadratic expression of neophobia (F2, 19 = 4.06, P = 0.034): birds that were fast-

exploring and extremely neophilic or neophobic had lower MDA than birds that were 

slow-exploring or were intermediate in their neophobia scores. 
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Figure 4-1 Relationships between oxidative profile and neophobia. Significant relationships from 
analyses with only neophobia as a dependent variable are represented with lines, and from 
analyses including object exploration as a covariate with dashed lines. (a) Neophilic birds had 
higher ROMs, (b) lower OXY and consequently (c) higher OS than neophobic birds. (d) 
Neophobia only significantly related to MDA in analyses including object exploration as a 
covariate, where the relationship with MDA was quadratic.  
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Figure 4-2 Relationships between oxidative profile and object exploration. Significant 
relationships from analyses with only object exploration as a dependent variable are represented 
with lines, and from analyses including neophobia as a covariate with dashed lines. (a) 
Exploration did not correlate with ROMs. (b) There was a negative relationship between object 
exploration and OXY (marginal in analyses excluding neophobia and significant in analyses 
including neophobia as a covariate), such that fast explorers had higher OXY than slow explorers. 
(c) There was no relationship between exploration and OS. (d) Fast and slow explorers had lower 
MDA than intermediates (i.e. a quadratic relationship) and, in analyses including neophobia as a 
covariate, fast-explorers had lower MDA than slow-explorers.  
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4.5 DISCUSSION 
 

Neophobia and object exploration were consistent within individuals across days, thus 

constitute personality traits in the greenfinch. Both traits related to oxidative profile. Most 

relationships were linear, suggesting higher oxidative costs at the “slow” 

(neophobic/slow-exploring) than the “fast” extreme: neophilic birds had higher OXY, 

lower ROMs and consequently lower OS than neophobic birds; fast-explorers had higher 

OXY and lower MDA than slow-explorers. However there were also quadratic 

relationships between MDA and personality: the extremes (neophilic and neophobic birds 

and, in single trait analyses, very fast and slow explorers) had lower MDA than 

intermediate responders. Whilst the relationships between neophobia or object 

exploration and OXY or MDA appear similar, there was no correlation between the 

personality traits, and they contributed additively to variation in OXY and MDA. 

Therefore, neophobia and object exploration were independent, and oxidative profile 

differed both within and between personality traits. I found no relationship between body 

mass and oxidative profile. Interestingly, I found no direct relationship between ROMs 

and OXY nor, though ROMs are a step in the lipid peroxidation chain that produces 

MDA, between OS and MDA. 

This study confirmed my prediction that personality types would differ in 

oxidative profile. Measuring multiple aspects of oxidative profile, as I have done, is 

critical to drawing inference on variation in oxidative profile (Costantini and Verhulst 

2009, Monaghan et al. 2009). For example, the fast ends of both trait axes (neophilic 

birds and fast-explorers) had higher OXY than the slow extremes. Alone, this would 

suggest superior or up-regulated plasma antioxidant capacity in “fast” personality types. 

With ROMs however, it is apparent that whilst neophilic birds do have lower OS than 

neophobic birds, fast-explorers achieve only the same plasma oxidative balance as slow-

explorers. Costantini and colleagues (2008) found that passive strains of mice, like fast-

exploring greenfinches, had higher OXY than aggressive strains yet equivalent OS. 

Passive mice also have shorter life spans (Ewalds-Kwist and Selander 1996) and are more 

physiologically stress-responsive than aggressive mice (Veenema et al. 2003). Unifying 

these studies, Costantini and colleagues (2008) suggest the apparent antioxidant surplus 

may in fact be a buffer against short term, stress-induced increases in free radical 

production. Accordingly, short life span is suggested as the cumulative cost of this up-

regulation. From my results on OXY and ROMs, I may similarly predict short life span in 

fast-exploring greenfinches. Life span has also been shown to vary with personality in 
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wild animals (Dingemanse et al. 2004), and direct behavioural mechanisms for this 

variation, such as risk-taking propensity (e.g. Bell and Sih 2000) and ability to control 

sparse resources (Dingemanse and de Goede 2004), have recently received considerable 

attention. Less common studies on potential cumulative, physiological costs, through 

variation in oxidative profile (e.g. Costantini et al., 2008) or physiological stress 

responsiveness (e.g. Cavigelli et al., 2009), are an intriguing new angle on the survival 

costs to personality. 

Interestingly, despite equivalent OS amongst exploration types, I found that fast-

explorers had lower MDA than slow-explorers. Similarly, I found a positive relationship 

between neophobia and OS but a quadratic relationship with MDA, such that neophobic 

birds with highest OS in fact had lower MDA than intermediate responders. These 

apparent discrepancies illustrate both the complexity of the antioxidant systems and, 

again, the importance of combining multiple measures of oxidative profile in their 

interpretation. Assays of “total antioxidant capacity”, such as the OXY-Adsorbent test, 

are often conducted 1) on plasma samples, and 2) in aqueous solution (Bartosz, 2010). As 

such, important lipid-soluble antioxidants such as α – Tocopherol (vitamin E) and 

Ubiquinol (coenzyme Q) that occur mostly in the cell-membranes are underestimated by 

these methods. Contrasting my results on OS with MDA therefore, I suggest there may be 

further personality variation in cell-membrane antioxidant capacity. Specifically: a 

greater cell-membrane capacity in fast than slow-explorers and in neophilic and 

neophobic extremes than intermediate responders. 

The relationship between neophobia and MDA raises a further interesting point: 

physiological differences between personality types generally range along a linear 

continuum, for example in several species, from low to high stress responsiveness 

(baseline and/or elevated gluccocorticoid level) with increasing neophobia (for review: 

Cockrem 2007). However my results demonstrate that the physiological costs of 

personality may not be linear: intermediately neophobic birds higher MDA than neophilic 

and neophobic extremes. This quadratic relationship may be explained by differential 

budgeting into antioxidant defences: OXY was higher in neophilic birds, therefore 

neophobic birds may either benefit from investing less energy into plasma antioxidant 

systems or by investing instead into e.g. plasma-membrane antioxidant systems, not 

measured in the OXY assay. Indeed, these traits may constitute two-dimensional 

continuum in greenfinches, with general “responsiveness” to novel objects (whether 

neophilic or neophobic) a shared mechanism differentiating oxidative profile (i.e. plasma 

or plasma-membrane antioxidant systems) between extremes and (less responsive) 
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intermediates. It is a common assumption of personality research that responsiveness to 

stimuli falls along a single-dimensional continuum, with fast and slow individuals at each 

end of the trait axes. Comparing the same trait across contexts, however, variance in 

behaviour is often lower in intermediates than extremes, suggesting lower responsiveness 

to environmental stimuli (Coleman and Wilson 1998, Magnhagen and Staffan 2005, Vas 

et al. 2008). Indeed in wild great tits (Parus major) survival and reproductive success 

also vary less with environmental variation in intermediates than extremes (Dingemanse 

et al. 2004). Whilst the physiology of fast and slow personality types are often well 

characterized by selection line studies (e.g. Carere et al. 2003, Cavigelli and McClintock 

2003, Martins et al. 2007, Veenema et al. 2003), these results suggest that the physiology 

of intermediate personality types warrant further investigation.  

That neophobia and object exploration, latency to approach novel objects in the 

presence and the absence of food respectively, were not correlated was surprising given 

the similarity of the two behavioural assays. However, comparing responses to novel 

objects in feeding and neutral contexts in a broad range of parrot species, Mettke-

Hofmann and colleagues (2002) found no general correlation between neophobia and 

object exploration. Moreover, the expression of each trait correlated to different 

ecological variables: exploration was fastest in species that appeared to benefit most from 

information gathering, that inhabited relatively changeable (e.g. forest edge) versus 

homogeneous habitats and cryptic versus conspicuous prey (e.g. buds versus 

fruit/flowers). Conversely, neophobia appeared related to dietary risk: novel insects are 

potentially noxious, and insectivorous species were more neophobic than leaf-eating 

species. In physiological studies too, neophobia appears related to risk sensitivity. In the 

few studies that have compared the level of CORT before and after presentation of a 

novel object, presenting a novel object with food appears to stimulate a CORT response 

(Richard et al., 2008) whilst presenting the novel object in a neutral location does not 

(Mettke-Hofmann et al., 2006, but see Apfelbeck and Raess, 2008). Given the differences 

in oxidative profile between the neophobia and object exploration traits, I predict that 

whilst both trials presented an opportunity for information gathering, only the neophobia 

trial elicited a stress response, hence assayed individuals for stress responsiveness. 

Overall though, I found that oxidative profile related differently to different personality 

traits. It is also important to note that there were additive relationships between traits in 

explaining oxidative profile, for example slow-exploring intermediately neophobic birds 

had higher MDA than slow-exploring but extremely neophobic or neophilic birds. 

Correlations between different personality traits, or “behavioural syndromes”, often vary 



96 
 

across wild populations of the same species (Sih et al., 2004). This variation may be 

produced by differences in selection pressures on combinations of traits, such as 

predation risk between populations (Bell, 2005, Bell and Sih, 2007, Dingemanse et al., 

2007). Understanding how oxidative profile and thus physiological costs vary within and 

between personality traits may therefore provide new insight into the selection 

mechanisms differentiating behavioural syndromes between populations. 

Finally, as metabolic rate increases with body size across species (Lovegrove, 

2000), I expected OS, ROMs and MDA to increase with body size within greenfinches. 

In line with a number of within-species studies on metabolic rate though (for review: 

Careau et al., 2008), I found no relationship. However, the metabolic demands on the 

study animals were low: temperature was ambient, food abundant and activity (in cages) 

limited. It is notable that MDA levels in these captive birds were around half that found 

in wild-caught greenfinches (0.66 ± 0.33 nmol MDA/mL plasma compared to 1.23 ± 0.68 

nmol MDA/mL plasma; Horak et al., 2006). Wild birds may differ substantially from 

caged birds in the demands on their antioxidant systems. For example, one prolonged (> 

1h) flight in homing pigeons can cause an immediate depletion of serum antioxidants 

(Costantini et al., 2008b). Wild (active) birds may also differ in their efficiency at 

meeting such demands. For example previously “unfit” captive budgerigars 

(Melopsittacus undulatus) showed reduced MDA following weeks of regular flight 

training (Larcombe et al., 2010). The lack of direct correlation between OXY, ROMs and 

MDA may similarly be explained by undemanding living conditions: in humans, lipid 

peroxidation and plasma antioxidant levels are often uncorrelated in healthy subjects, but 

correlated in subjects under heightened physiological demands, for example negatively in 

individuals with pathological diseases but increasingly positively in subjects in an 

exercise studies (Dotan et al., 2004). However, variation in oxidative profile between 

personality types suggests that, even within benign, homogenous captive environments, 

physiological demands may differ between personality types. Wild animals face many 

physiologically taxing periods when oxidative stress is enhanced, such as growth 

(Alonso-Alvarez et al., 2006), migration (Costantini et al., 2007) and reproduction 

(Wiersma et al., 2004). If variation in oxidative profile between personality types is 

apparent in wild animals too, personality types may differ in the extent or manner in 

which they respond to these challenges. 
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CHAPTER 5 

 

CONTEXT-DEPENDENT PREFERENCES FOR LOCAL OR SPATIAL 

CUES IN THE EUROPEAN GREENFINCH 

 

 

5.1 ABSTRACT 
 

Using local cues such as colour or shape to identify ephemeral food can increase foraging 

efficiency. The visual appearance of food may change over time, however, therefore 

animals should use spatial cues to re-find food that occurs in a temporally stable position.  

tested this hypothesis by measuring the cue preferences of captive greenfinches Carduelis 

chloris when relocating food hidden in a foraging tray. In these standardised associative 

learning trials, greenfinches favoured local cues when returning to a foraging context that 

they had encountered before only once (“one-trial test”) but switched to spatial cues when 

they had encountered that scenario on ten previous occasions (“repeated-trial test”).  

suggest that repeated encounters generated a context in which individuals had a prior 

expectation of temporal stability, and hence context-dependent cue selection. Next,  

trained birds to find food in the absence of local cues but tested them in the presence of 

visual distracters. Birds were able to learn spatial cues after one encounter, but only when 

visual distracters were identical in colouration to the spatial cue. When a colourful 

distracter was present in the test phase, cue selection was random. Unlike the first one-

trial test though, birds were not biased toward this colourful visual distracter. Together, 

these results suggest that greenfinches are able to learn both cues, local cue biases 

represent learning, not simply distraction, and spatial cues are favoured over local cues 

only in temporally stable contexts.  
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5.2 INTRODUCTION 
 

The distribution of food in the natural environment is generally ephemeral. As birds are 

predominantly visual foragers, learning about the appearance of food types (generating a 

‘search image’: Tinbergen, 1960; Dawkins 1971; Lawrence 1986) can increase their 

efficiency at locating such food before it decays, moves or is depleted. Also, by 

generalising amongst experiences of similarly coloured (Gamberale and Tullberg 1996; 

Baddeley et al. 2007) or patterned (Swaddle, Che and Clelland, 2004) food types object-

specific or “local cue” learning can aid birds in recognising potential in unfamiliar (e.g. 

seasonal or patchily distributed) food types. Where food occurs reliably in a particular 

position though, it may also be located by learning spatial relationships with landmarks in 

the broader environment (e.g. trees, rivers, houses; Cheng 1988; Collett et al., 1986; 

O’Keefe and Nadel, 1978). When the position of food is temporally stable, local cues 

(aspects of food or feeding site appearance) are generally less permanent than spatial 

cues. In spatiotemporally stable circumstances therefore, a more reliable strategy may be 

to relocate food by spatial rather than local cues (Bennett, 1993). 

The question of whether expectation of temporal stability in food location 

influences cue selection has often been tested using food storing or “caching” species. 

Food storing species hide food about their environment and then retrieve it later when 

seasonal food is scarce (Sherry, 1984): tendencies which make them a useful model for 

testing hypotheses on spatial memory. In a one-trial memory task where either a spatial or 

a local cue may be used to relocate food, these storers tend to favour the spatial cue 

whilst closely related non-storing species use both cue types equally (Clayton and Krebs 

1994; Brodbeck 1994; Brodbeck and Shettleworth 1995; but see Hodgson and Healy 

2005; LaDage et al. 2009). To relocate caches over long periods, during which local cues 

to their location may change, it is suggested that storers may be under particular selection 

pressure (compared to non-storers) to remember spatial information. However, tests of 

whether storers have superior spatial memory retention to non-storers, the central tenet of 

the “adaptively specialised memory hypothesis” (Krebs, 1990), are inconclusive (e.g. 

Shettleworth et al., 1990; Hilton and Krebs, 1990; Healy and Krebs, 1992; Healy, 1995) 

and some authors suggest that it is not memory but rather cue prioritisation that differs 

between species (Shettleworth and Westwood, 2002; Shettleworth, 2003). For example, 

when spatial cues prove unreliable, storers often attend to local cues as a second choice 
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(Brodbeck 1994; Brodbeck and Shettleworth 1995; Clayton and Krebs 1994). This raises 

an interesting, and untested point: if non-storing species have equivalent memory 

capacity for spatial cues to storers (at least within days: Krebs et al., 1990; Hilton and 

Krebs, 1990; Krebs and Healy, 1995) then do they prioritise spatial cues when the 

location of food is perceived to be temporally stable? Foraging on ephemeral food, the 

tendency to use both cue types equally in one-trial memory tasks may reflect selective 

pressure toward information gathering (Humber et al., 2009), as local cues may be useful 

when ephemeral food is scattered but spatial cues when it is clumped. 

A prior expectation of temporal stability in a feeding site may materialise if 

individuals repeatedly return to a site to resample the distribution of food, and find that it 

is unchanged (McNamara and Houston 1980). For example, the great tit (Parus major), a 

non-storer, shows equivalent retention times for local and spatial memories (Healy 1995) 

thus may draw on either at long intervals, but if allowed to encounter a stable distribution 

of food repeatedly over a long interval, then prefer spatial over local cues (Hodgson and 

Healy 2005). Similarly, pine siskins (Carduelis pinus) generally use spatial position 

rather than colour to distinguish between repeatedly encountered well, medium or poorly 

stocked feeders in the wild (Humber et al. 2009). However, no study has yet compared 

cue selection between scenarios encountered once and repeatedly to assess whether 

spatial biases in these species represents a change in tactic with a prior expectation of 

temporal stability in food location. 

The aim of this study was to test whether repeated encounters with an invariant 

foraging scenario would cause a non-storing species, the European greenfinch (Carduelis 

chloris), to favour spatial cues over local cues. A limitation of previous studies on cue 

selection, raised by LaDage and colleagues (2009), is that stimulus design may generate 

biases toward particular cue types by rendering some easier to learn than others 

(Shettleworth, 2005) or by “overshadowing” other available cues (Cheng, 2008; Cheng et 

al., 2007; Gray et al., 2005). Noting that previous studies often used a local cue that may 

be regarded more complex than the spatial cue (e.g. trial-specific complex patterns for 

local cues versus few spatial locations used across trials: Brodbeck et al., 1994; Clayton 

and Krebs, 1994), LaDage and colleagues (2009) attempted to provide local and spatial 

cues of equivalent complexity, using single blocks of colour for local cues. These simple 

local cues were favoured over spatial cues by the mountain chickadee (Poecile gambeli), 

a storer. Here I attempt to eliminate cue perceptual salience as an explanation for cue 

selection by using an invariant situation for both a one-trial and repeated-trial associative 

learning test. Examining the change in behaviour within an invariant foraging scenario, 
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rather than initial response to the stimuli, I examine specifically the affect of perception 

of temporal stability. I also conducted two trials to examine the mechanisms underlying 

cue selection within the one-trial tests. First, in the “one-trial spatial test”, I tested 

whether greenfinches were able to learn spatial cues in the absence of local cues. And 

second, in the “one-trial distraction test”, I tested whether their propensity to use spatial 

cues was affected by the presence of conspicuous visual distracters, as the local cue in the 

one-trial test may then similarly distract birds from spatial cues in the one-trial test.  

 

5.3 METHODS 
 

The study utilised a colony of 27 captive bred greenfinches aged between 15 and 17 

months. Birds were sourced from several private breeders but were housed in one room 

for at least 7 months prior to trials. Each bird was housed individually, in a 120cm x 

50cm x 50cm cage. All but the front panel of the cage were opaque, and screens were 

erected for an hour prior to and during trials to remove opportunity for the focal bird to 

copy the cue selections of other birds. As greenfinches are social outside of the breeding 

season however, they were kept in auditory contact and cages were positioned to allow 

visual contact outside of trials. Except during trials, birds had ad libitim access to 

Haith’s™ greenfinch mix and water, and were provided with 10 defrosted frozen garden 

peas per day (but up to 14 during training, see below). The study was conducted from the 

26th August to the 19th October 2008, throughout which the room was maintained at a 

temperature range of 16°C to18°C with a 14:10 hour light:dark regime. All work was 

carried out in accordance with ASAB/ABS’s guidelines for the treatment of animals in 

research, and subject to ethical review by WALTHAM® Centre for Pet Nutrition and the 

University of Glasgow. No bird became ill or died during this experiment. 

 

5.3.1 TRAINING FOR CUE SELECTION TRIALS 
 

My aim was to investigate whether individuals favoured local or spatial cues when 

relocating food. I used methods for studying cognition in small passerines established by 

Hodgson and Healy (2005). Briefly, in their home cage, each bird was trained to forage 

for food in a 24cm x 20cm white plastic ice cube tray. The tray had two rows of seven 

square wells that were approximately 2cm in depth and of 2.5cm diameter (see Fig. 5-1). 
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During the trials the birds were required to remove a cotton wool ball of approximately 1 

gram that plugged a well to find a food reward (3 garden peas) hidden beneath (as 

Donaldson, 2009). This relatively simple learning scenario was adopted after pilot trials 

indicated that finches have a more limited cognitive and/or motivational capacity than 

Parids (Hodgson and Healy, 2005, Arnold et al., 2007). 

Birds were trained to use this apparatus over 12 days, during which they 

underwent one training session in the morning, between 8:00 and 12:00 and a second 

between 13:00 and 17:00. On days 1-3, birds were familiarised with feeding from the 

tray: the tray was presented with a garden pea in each of seven wells and birds were left 

undisturbed to eat for one hour. For the remaining training, the food bowl was removed 

for one hour prior to each training session to motivate the birds toward foraging. On 

training days 4-6, the tray was then returned with seven peas randomly distributed 

amongst the wells and three cotton wool balls placed loosely on top. This habituated the 

birds to eating in the presence of the cotton wool balls; all birds had done so by day 6. On 

days 7-9, a cotton wool ball was placed over seven wells. There was an empty well or no 

well above, below and to the side of each covered well (i.e. cotton wool balls covered 

positions 1, 3, 5, 7, 9, 11 and 13, or 2, 4, 6, 8, 10, 12 and 14, randomised across 

replicates; see Fig. 5-1a). There was a reward in every covered well, and this familiarised 

the birds with manipulating the cotton wool balls to access food; all birds had opened at 

least one well by day 9. On days 10-12, again seven wells were covered but three were 

rewarded with two garden peas and four empty (see Fig. 5-1a). I covered empty along 

with rewarded wells to encourage the birds to search for food in preparation for trials; 

three birds failed my learning criterion of opening at least one rewarding and one empty 

well in the same training session and were excluded from the cue selection trial. To 

maintain training throughout the study, this final phase was run daily for birds that were 

not involved in trials on a particular day. Eight (out of ten) females and 16 (out of 17) 

males completed the training, and were entered into the cue-selection trials. 

 During training, I made two observations on well-opening behaviour that 

informed my experimental design for the cue selection trials. First, during the final phase 

of training (days 10 – 12) when, as in the trials, some rewarding and some unrewarding 

wells would be encountered (Fig 5-1a), the number of wells opened per bird per replicate 

ranged between 0 and all 7 (mean = 4.3). Birds did not significantly increase (or 

decrease) their propensity to open wells as the training phase progressed (Linear Mixed 

Model with bird identity as a random effect: t119 = 1.78, P = 0.08), so this variation did 

not relate to improvement across trials. Calculating repeatability (r) of the wells opened 
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per individual per replicate, using the mean squares from an analysis of variance 

(ANOVA) as Lessells and Boag (1987), I found that the 24 birds which passed training 

exhibited consistent and repeatable differences in well-opening tendency, i.e. some 

always opened more and some fewer (ANOVA: F1, 120 = 4.87; P = < 0.0001, r = 0.66). 

Second, during days 10 – 12 of training, the mean proportion of birds opening first a well 

on the left or right did not differ from the random expectation of 50:50 (G-test: G1 = 0.24, 

P = 0.62) and the mean proportion opening first wells on the ends (wells 1, 7, 8 or 14) 

versus middle of the tray (wells 2, 3, 4, 5, 6, 9, 10, 11, 12, 13; Fig 5-1a) did not differ 

from the random expectation of 29:71 (G1 = 2.12, P = 0.15). Therefore the position of the 

first well opened was random. However the subsequent wells opened were generally 

those closest to the first well (K.H., pers. obs.). These observations necessitated 

simplification of the foraging task in the trials down from seven to at most three covered 

wells, and restriction of analyses to the first selected well only (see below). 

 

5.3.2 STUDY 1: CUE SELECTION IN THE ONE-TRIAL VERSUS REPEATED-TRIAL TEST 
 

The primary aim of this study was to identify preferences for local or spatial cues in a 

foraging context that had been encountered only once and in a similar context that had 

been encountered repeatedly. 

Each test had two phases: a learning phase and a test phase. In the learning phase, 

after 1 hour without food the focal bird was presented with a tray with one well covered 

by a coloured cotton wool ball (dyed red, green, blue or yellow; Fig 5-1b). This well 

contained a reward, and all other wells were empty and uncovered. Once opened, the bird 

was allowed to eat from the well for 15 seconds, generally eating less than one pea, 

before the tray was removed. In the one-trial test, birds proceeded directly to the test 

phase. In the repeated-trial test, birds received 10 consecutive presentations of the 

learning phase on one day, with the same configuration of colour and position, prior to 

the test phase. I used only one well during training because birds differed in their 

propensity to open wells (see above); otherwise, birds consistently opening more or fewer 

of any additional (empty) wells across these 10 presentations would enter trials with 

different levels of information on the distribution of food elsewhere in the tray.  In the 

test phase, each bird was presented with a tray in which three wells were covered by 

cotton wool balls: a white cotton wool ball covered the correct well from the learning 

phase (i.e. correct position: the “spatial cue”), a cotton wool ball of the same colour as in 
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the learning phase but placed over a novel well (i.e. correct colour: the “local cue”) and a 

third novel well was also covered with a white cotton wool ball (i.e. wrong colour, wrong 

position: a “distracter”; Fig. 5-1c). The conformation of the three wells was the same for 

all individuals within each replicate and was randomised across replicates. Only three 

wells were covered to allow at least one well space between covered wells whilst 

permitting some flexibility in the conformation of rewarding wells, as during training, 

birds tended to open adjacent wells (see above) so may be attracted to wells that were 

closer together. All wells were unrewarded in the test phase so that odour cues could not 

be used. The first well opened were noted. Each bird took part in four one-trial tests and 

four repeated-trial tests. Within trials each replicate used a different colour but the same 

four colours were used in both trials so that cue colour could not explain differences 

between trials. The order of trials and colours were both randomised for each bird. Each 

bird took part in only one test (one-trial or repeated-trial) per day. I took two measures to 

limit the possibility of carry-overs in cue learning (and hence biases) between trials. First 

at the end of each trial, to re-train the birds that the white and coloured cotton wool balls 

which covered empty wells in the test phase could be rewarding in future trials, when 

returning the food bowl I also presented the birds with a tray with two covered rewarded 

wells, one white and one of the test colour. This tray was left in the cage for an hour, 

during which time birds unanimously opened both wells. Second, the colours of local 

cues and wells used for spatial cue position were systematically randomised to differ 

between trials on consecutive days. Therefore specific colours or positions would not be 

informative in consecutive trials. 

Differences in cue selection between the one-trial and repeated-trial tests may 

relate to repeated encounters prior to testing or equally to the longer time interval 

between the first learning phase and the test phase in the repeated-trial test. To determine 

which was most important, I calculated the mean time to complete the repeated-trial 

across birds, which was 31 minutes. On the two days following the one-trial and repeated 

trial tests, on two occasions (one per day), each bird then underwent a training phase and 

test phase separated by this interval, hence forth the “one-trial duration test”. Colours 

used were blue and yellow, the order of which was randomised per bird. 

 

5.3.3 STUDY 2: SPATIAL CUE USE IN THE ABSENCE OF LOCAL CUES 
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In the one-trial test, the presence of a local cue may affect a bird’s ability to learning 

spatial cues by creating a distraction. Therefore I carried out two tests to investigate 

spatial cue use in the absence of local cues. These trials used the same general format as 

the one-trial test. In the first trial, during the training phase only one well was covered by 

a white cotton wool ball, under which was the pea reward (Fig. 5-1d). In the test phase, 

three wells were covered by white cotton wool balls, one in the correct position and two 

in novel, randomly selected positions (Fig. 5-1e). Thus, if birds learned the spatial 

location, they would open the correct well more often than the chance expectation of one 

in three occasions. This was the “one-trial spatial test”. For the second trial, again only 

one white cotton wool ball was used to cover a well in the training phase. In the test 

phase, I again placed a white cotton wool ball in the correct position, but one white and 

one coloured distracter in the test phase (Fig. 5-1f). This was the “one-trial distraction 

test”. The colours chosen for the short term distraction trial were green and red. The 

colour of the distracter did not affect cue selection (G-test: G2 = 0.009, p = 1). Each bird 

underwent two one-trial spatial tests and two one-trial distraction tests, with trials and 

(for the distraction trial) colours presented in a random order across four consecutive 

days. A bias toward the spatial cue was again tested using deviations from a two to one 

chance expectation. 

 

5.3.4 STATISTICAL METHODS  
 

In study one, for each trial I compared the distribution of selections using the G-

test (Sokal and Rohlf, 1994; Hodgson and Healy 2005) or, where expected values were 

below 5, a fisher exact test with values rounded to the nearest integer. Seven birds failed 

one of the four replicates of the one-trial test, i.e. did not open a well within the 30 minute 

test phase. Similarly five birds, including four of those which failed one one-trial 

replicate, failed one of the four replicates of the repeated trial test, i.e. did not open a well 

within 30 minutes of either a learning phase or test phase. To avoid pseudoreplication (up 

to four replicates per bird per test) and also account for this variation in trial numbers, 

rather than the sum of selections for each cue type across birds I used the sum of the 

proportion of selections per cue type per bird. The resulting distribution, which then 

summed to the number of birds, was compared to the expected random distribution of 

1:1:1. I repeated analyses including only those birds which completed all replicates 

within a test, i.e. for 17 birds in the one-trial test and 19 birds in the repeated trial test. To 
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avoid psuedoreplication in that restricted analysis, I calculated the average distribution of 

cue selections across replicates for each test. Finally, using only those 17/19 birds that 

completed all replicates within a test, I compared the two average distributions directly, 

to identify whether cue selection differed between the one-trial and repeated-trial tests. 

In study two, in both the one-trial spatial test and one-trial distraction test there 

were only two outcomes in the test phase: distracter or spatial cue, which at random 

would be selected in a 2:1 ratio (i.e. two distracters and one correct position). To avoid 

pseudoreplication, I calculated the average distribution of cue selections across replicates 

of the two tests. I used a binomial test to compare these observed distributions to the 

expected 2:1 ratio of distracters to spatial cues.  
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Figure 5-1 Diagrams of example layouts for the tray used during training and cue selection trials. 
(a) Days 10 – 12 of training to use the apparatus. (b) The training phase of study one and (c) the 
test phase of study one. (d) The training phase of study two. (e) The test phase study one’s one-
trial spatial test. (f) The test phase of study one’s one-trial distraction test. Each numbered box 
represents a well on the ice cube tray, with wells 1 and 8 nearest the back of the cage and wells 7 
and 14 nearest the front. Circles represent cotton wool balls plugging wells, with coloured cotton 
wool balls (blue, green, red or yellow) shown in dark grey. Cotton wool balls labelled R 
concealed a well containing a food reward and E an empty well. Cotton wool balls labelled S are 
spatial cues, L are local cues and D distracters; S, L and D wells were all unrewarded. 
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5.4 RESULTS 
 

5.4.1 STUDY 1: CUE SELECTION IN THE ONE-TRIAL VERSUS REPEATED-TRIAL TEST 
 

There was no difference in the distribution of selections between sexes in either the one-

trial test or repeated-trial test (for both, Fisher’s Exact test P = 1), so data was pooled 

across sexes. There was no difference in the cue selection distribution across the four 

replicates of the one-trial test (Fisher’s exact test: P = 0.15) or repeated-trial test (Fisher’s 

exact test: P = 0.76; see Fig. 5-2). In both the one-trial (G test: one-trial: G2 = 11.13; p = 

0.004) and repeated-trial tests (G2 = 6.06, p = 0.048), the distribution of choices differed 

significantly from random (see Fig. 5-3). When birds that had failed one replicate of the 

one-trial test were excluded, results were similar (G test: one-trial: G2 = 8.21; P = 0.016). 

When birds that failed one replicate of the repeated trial test, the distributions of 

selections was no-longer significantly different to random (G2 = 4.74, P = 0.09). Overall 

however, comparing the distribution of selections between the one-trial and repeated-trial 

test, there was a significantly change from a predominantly colour cue biased search in 

the one-trial test to a predominantly spatial cue biased search in the repeated trial test 

(Fisher’s exact test: P = 0.0002). In the one-trial duration test, however, the distribution 

of cue selections was not significantly different to random (G2 0.51, P = 0.77), thus the 

spatial cue bias in the repeated-trial test related to the repeated encounters with the tray 

prior to testing rather than the longer duration of the repeated-trial than one-trial test. 

 

5.4.2 STUDY 2: SPATIAL CUE USE IN THE ABSENCE OF LOCAL CUES 
 

In the one-trial spatial test, there were three white cotton wool balls with one in the 

correct spatial location and two distracters (i.e. no coloured local cue). In this test birds 

used the spatial cue more often than expected by chance (binomial test: P = 0.048; see 

Fig. 5-4). Therefore, greenfinches appear capable of learning spatial cues after one 

encounter with a simple foraging context. 

In the one-trial distraction test, there were two white cotton wool balls, one in the 

correct spatial location and one in a novel location (a distracter) and one coloured cotton 

wool ball in a novel location (a coloured distracter). In contrast to the one-trial spatial test 

with only white distracters, the distribution of selections in the presence of a coloured 
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visual distracter was not significantly different to random (binomial test: P = 0.67; see 

Fig. 5-4). As the one-trial spatial and distraction tests differed only in the test phase, the 

presence of uninformative visual stimulus appears to affect the propensity to use spatial 

cues that have been learnt. However, unlike the first one-trial test, birds were not biased 

toward the visual distracter over the spatial cue thus were visually-biased only when an 

informative local cue was available.  
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Figure 5-2 Distribution of cues selected in study one for all birds across the four replicates of the 
(a) one-trial test and (b) repeated trial test. Local cues are represented with pale grey bars and 
denoted L, spatial cues medium grey and denoted S and distracters dark grey and denoted D 
 

 

Figure 5-3 Summed proportion of cue selections across birds in study one for the (a) one-trial test 
and (b) repeated-trial test. Local cues are represented with pale grey bars and denoted L, spatial 
cues medium grey bars and denoted S and distracters dark grey bars and denoted D. The dashed 
line at 0.33 represents random choice.  
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Figure 5-4 Average distribution of cue selections across birds in study two for the (a) one-
trial spatial test and (b) one-trial distraction test. Spatial cues are represented with pale grey bars 
and denoted S and distracters dark grey bars and denoted D. Dashed lines at 0.33 and 0.667 
represent random choice of spatial cues and distracters respectively (i.e. 1 : 2 ratio of spatial cues 
to distracters). 
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5.5 DISCUSSION 
 

Here, I demonstrated that greenfinches favoured local over spatial cues in a one-trial test, 

but spatial cues in a repeated-trial version of the same test. This cue-switch was 

dependent on repeated encounters with a foraging scenario prior to testing, as cue 

selection after a single encounter and an absence equivalent to the duration of the 

repeated-trial test was random. Therefore, I have evidence that cue selection altered when 

individuals had experience of a temporally stable foraging context. I then established that 

greenfinches were able to learn spatial cues in the absence of local cues (one-trial spatial 

test), but only in a visually simple foraging environment. Birds did not use this spatial 

learning when confronted with a visual distracter (one-trial distraction test). However, 

they were not biased toward the visual distracter, thus the bias toward the local cue in the 

first one-trial test reflects associative learning rather than simply distraction. 

In the one-trial test, greenfinches differed from other non-storers tested by similar 

methods (Clayton and Krebs 1994; Brodbeck 1994; Brodbeck and Shettleworth 1995) in 

expressing a bias toward local cues, rather than equal use of local and spatial cues. There 

are two explanations for this result. First, as discussed in the introduction, this may be an 

artefact of stimulus design, as cues which are simpler to distinguish from alternatives are 

easier to learn (the “cue complexity hypothesis”: LaDage et al. 2009). For example the 

propensity to use spatial cues in both black-capped chickadees (Poecile atricapilla) and 

dark-eyed juncos (Junco hyemalis) declines with increasing proximity of distracters to 

cues (Shettleworth and Westwood, 2002). In my experiment, the local cue was a uniform, 

conspicuous colour (a coloured cotton wool ball on white background): attributes which 

enhance the rate or accuracy of learning in birds (Ruxton et al. 2004). This may therefore 

have rendered the local cue significantly simpler to learn than the spatial cue, giving the 

local cue greater perceptual salience than the spatial cue (Shettleworth, 2005). 

Alternatively, however, the local cue may have greater functional salience than the spatial 

cue. As an aid to detecting new rather than relocating old (possibly exhausted) feeding 

sites, being “visually-oriented” may be an adaptation in the greenfinch toward a generally 

unpredictable distribution of food. Indeed, their sensitivity to uninformative visual 

distracters could equally be interpreted as responsiveness toward local information per se. 

Across species, reactions toward uninformative visual stimuli appear also to relate to the 

temporal stability of prey. The presence of visual distracters for example is more 

detrimental to spatial learning in non-storers than storers (McGregor and Healy 1999). 

This susceptibility to distraction may therefore be an adaptive response bias, as an aid to 



112 
 

prospecting for alternative food types. For example frugivory in parrots is associated with 

increased exploration of novel visual stimuli, which may in turn aid the discovery of 

previously un-encountered (e.g. seasonal) fruit (Mettke-Hofmann et al 2005).  Therefore, 

when not equipped with information about the temporal stability of the feeding situation 

(i.e. in the one-trial tests), I suggest that responses to uninformative visual stimuli as well 

as informative local cues may both be evidence of a local cue biased foraging strategy in 

the greenfinch.  

Using spatial cues may incur a search cost, if the signalled food decays or is 

depleted prior to using that spatial cue. These costs are mitigated when individuals have a 

prior expectation that food will 1) be temporally stable and/or that 2) searching without 

spatial information will be less efficient than searching with spatial information. In 

storing species, these prior expectations may be innate, evolving along with the 

propensity to store (Krebs 1990). In species with generally ephemeral food such as the 

greenfinch, however, this information must be acquired through experience. There are a 

number of examples where increasing the costs of alternative search strategies causes 

individuals to favour spatial cues. For example, increasing the energetic costs of a 

random search strategy, by weighting down flaps that conceal food, causes an increase in 

spatial cue use by zebra finches (Taeniopygia guttata; Sanford and Clayton 2008). Spatial 

cues are also particularly useful when local search strategies are unreliable. For example, 

in contrast with sticklebacks (Gasterosteus aculeatus) from ponds, fish from streams 

favour spatial cues (e.g. current direction, body orientation) over local landmarks when 

navigating a maze to find food, presumably because the turbid stream disturbs and thus 

renders local cues unreliable during learning (Odling-Smee and Braithwaite 2003). Here, 

greenfinches favoured spatial over local cues only in the repeated-trial test, where they 

were able first to generate a prior expectation that the foraging situation was temporally 

stable. I suggest that the preference for spatial cues reflects an innate prior expectation 

that local cues become less reliable over time. 

There are a number of limitations that must be noted when considering the results 

of this and similar studies. First, due to variation between individuals in tendency to open 

wells, and also a tendency for birds to open wells in a non-random manner (selecting 

neighbouring wells as a second choice), I was limited to a very simple experimental 

design. Though a cue-shift was still evident, selection of local or spatial cues from a 

larger array of alternatives would provide more convincing evidence of cue-shifting 

behaviour. Second, during training birds were introduced to only white cotton wool balls, 

which (on days 10 to 12) were occasionally rewarding and occasionally not. This training 
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phase was necessary to equip birds with an expectation of unpredictability in reward in 

trials, with the aim of encouraging accurate (cue-based) foraging. However, it is possible 

that the birds developed an expectation that “white” was an unreliable cue, which may 

also explain (or contribute to) the lower use of spatial than local cues summed over study 

one. Similarly, positive experiences with coloured (in training phases) but not white 

cotton wool balls in study one may have carry-over effects in study two. These 

possibilities cannot be excluded. However, there was no evidence of temporal variation in 

the distribution of cue selections across days: as coloured cues would prove as 

“unreliable” as white cues as trials progressed, I would expect these in particular to be 

used less in latter trials. Moreover, I used different colours and positions to signal reward 

during training on subsequent days, which can reduce carry-over effects. For example, in 

starlings (Sturnus vulgaris) the sudden disappearance of high quality food types causes a 

shift in behaviour toward reduced foraging on lower quality food and increased 

prospecting (“successive negative contrast”, Freidin et al., 2009). However, when 

equipped with a cue (a differentially coloured feeder) to signal higher quality food, the 

disappearance of the food (and cue) elicits a lower SNC response. Here, I anticipated that 

the change in cue colour and spatial position between trials (i.e. disappearance of 

previously used cues) would reduce carry-over between trials. Finally, I re-trained birds 

to expect food under both coloured and white cotton wool balls at the end of each trial, 

though whether this was successful cannot be tested. 

In summary, this is the first study to explicitly compare cue selection between a 

one-trial and repeated-trial test in birds. As predicted, propensity to use spatial cues was 

dependent on first gaining experience of the temporal stability of the foraging context, 

through repeated encounters. Greenfinches were also unusual amongst non-storers 

(Clayton and Krebs 1994; Brodbeck 1994; Brodbeck and Shettleworth 1995) in 

expressing a bias toward local cues in one-trial tests, rather than equal use of spatial and 

local cues. Through a series of trials, I was able also to demonstrate that this bias was an 

associatively learnt, rather than a result of inability to learn spatial cues and/or mere 

attraction toward distracting visual stimuli. In the wild, the natural food of the 

greenfinches is short-lived and highly variable in distribution (Newton, 1972). The ability 

to learn both local and spatial cues on first encounter with foraging situations, and to opt 

for spatial cues within temporally stable contexts, may reflect adaptation toward 

information gathering and flexibility for species foraging on ephemeral food (Humber et 

al., 2009).  
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CHAPTER 6 
 

WILD BIRDS EXHIBIT COLOUR BIASES IN TEMPORALLY STABLE 

FORAGING LOCATIONS 
 

 

6.1 ABSTRACT 
 

Birds are predominantly visual foragers and colour cues may play an important role when 

locating food. However, the colour of a natural object changes over time so colour cues 

may be perceived unreliable, hence disregarded, when re-locating food in temporally 

stable feeding locations such as bird feeders. Here, I tested this at eight urban sites 

located in parks in the city of Glagow, UK. When simultaneously presented with feeders 

coloured red, blue, green or yellow, the great tit (Parus major), long tailed tit (Aegithalos 

caudatus) and robin (Erithacus rubecula) were all biased toward red feeders. In great tits 

and long tailed tits, this appeared to be a conspicuousness bias: red feeders were favoured 

specifically over green on a background of predominantly green foliage. Robins exhibited 

a bias against blue feeders and coal tits (Periparus ater) against yellow feeders. The blue 

tit (Cyanistes caeruleus) showed no colour bias: blue tit feeder selection was instead 

influenced by the position of feeders and presence of con- and heterospecifics. Feeder use 

in those species that showed colour biases was generally lower than in blue tits and varied 

over time and with the weather. Rather than becoming dependent on artificial feeding 

sites therefore, I suggest these birds utilise feeders as part of a larger foraging range. As 

such, a perception of temporal instability in food position (i.e. experience with natural 

ephemeral food) in the broader environment may generate a context-independent bias 

toward local rather than spatial cues in colour-biased birds. As three species were biased 

toward red feeders, particularly over green and blue, and aversions toward yellow were 

evident, red bird feeders may attract the greatest number and diversity of garden birds. 
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6.2 INTRODUCTION 

 

“Bird-gardening”, the design of gardens and parks to attract or accommodate birds, is a 

popular hobby in Britain: up to 75% of households actively encourage birds by 

provisioning food (Cowie and Hinsley, 1988). As domestic gardens in England and 

Wales cover more than four times the area of English nature reserves, this is a 

considerable resource for wintering birds (Cannon et al., 2005). Gardens and other urban 

green spaces also improve quality of life and foster environmental awareness in urban 

populations, engaging people with nature (Cannon, 1999). Therefore increasing the 

attractiveness of gardens and parks to birds may be of benefit to both birds and gardeners 

(Brittingham and Temple, 1992; Cannon, 1999). Bird feeders are designed to be 

aesthetically pleasing, whether blending in subtly or as decorative ornaments in 

themselves. However, wintering birds are often nomadic or short-term immigrants 

(Cramp and Perrins, 1994): feeder design could be further employed to actively attract 

these passers-by. One visual feature, colour, has dramatically influenced nectar-feeder 

design in the US, where red feeders that mimic the colours of hummingbird-pollinated 

flowers dominate the market. Surprisingly, no research is yet published on the affect of 

feeder colour on feeder use in European passerines. This was the objective of this study. 

Food (hence feeder) colour may influence foraging behaviour in several ways. 

First, colours which contrast strongly with the background are simply more conspicuous 

to birds than less contrasting colours (Wyszechi and Stiles, 2000). In nature therefore, red 

feeders may elicit stronger reactions (whether attractions: Osorio et al., 1999, Schmidt et 

al., 2004; or aversions: Gamberale-Stille and Guilford, 2003) than green feeders by 

contrasting more against predominantly green foliage (Burns and Dalen, 2002). Second, 

biases toward detecting particular colours can be acquired when food is ephemeral: over 

repeated encounters birds learn to hone in on distinctive features of food such as colour to 

increase foraging efficiency (the ‘search image’: Tinbergen, 1960; Dawkins 1971; 

Lawrence 1986). Third, naive (hand-raised) birds often exhibit spontaneous biases toward 

or against particular colours (see Roper and Cook, 1989). Together these acquired or 

innate colour biases can then influence decisions on encountering unfamiliar food types 

(Miklosί et al., 2002): novel food coloured red, the colour of many bird-dispersed fruits 

but also noxious insects, can stimulate spontaneous attractions in frugivores but aversions 

in insectivores (Gamberale-Stille and Tullberg, 2001; Schmidt and Schaefer, 2004; 

Honkavaara et al., 2004; Moreby et al., 2006; Exnerová et al., 2006). Similarly, colours 
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that are rare in natural foods, such as blue, elicit “neophobic” aversions in many bird 

species (Gionfriddo and Best, 1996; Hartley et al., 1999, 2000; Miklosί et al., 2002). 

Where food occurs reliably in a particular position though, such as at feeders, it 

may also be located by learning spatial relationships with landmarks in the broader 

environment (e.g. trees, rivers, houses; Cheng 1988; Collett et al., 1986; O’Keefe and 

Nadel, 1978). Local (object-specific) cues such as colour are generally less permanent 

than spatial cues, for example a fruit’s colour changes as it ripens but the position of the 

fruit tree does not. As such, spatial cues may be perceived as more reliable hence superior 

to local cues in temporally stable foraging contexts (Bennett, 1993). From captive studies, 

there is considerable evidence that birds favour spatial over local cues when they have a 

learnt or innate expectation that the spatiotemporal distribution of food will be 

predictable (e.g. Clayton and Krebs 1994, Hodgson and Healy 2005, see Chapter 5). 

Noisy miners (Manorina melanocephala;) for example deplete nectar from flowers as 

they forage so use spatial cues to keep track of which visually similar flowers have 

already been visited (i.e. a “win-shift” strategy; Sulikowski and Burke, 2007, 2010). 

When searching for insects though, the distribution of which changes over time, they 

attend instead to local cues (i.e. forage spatially at random: Sulikowski and Burke, 2007, 

2010). Similarly across species, food-storing behaviour: the act of hiding food for later 

retrieval hence generation of temporally stable food distributions is associated with 

spatial cue biases: in one-trial associative learning tasks, with a choice of local cues (e.g. 

colour) or spatial cues to relocate food, food-storers generally favour spatial cues (e.g. 

black-capped chickadees, Poecile atricapilla; marsh tit, Parus palustris; European Jay, 

Garrulus glandarius; Brodbeck, 1994; Clayton and Krebs, 194; Brodbeck and 

Shettleworth, 1995; Humber et al., 2009; but see LaDage et al., 2009). In contrast, closely 

related species with ephemeral food use both cue types equally (e.g. blue tits, Cyanistes 

caeruleus; dark-eyed Junco, Junco hyemalis; jackdaw, Corvus monedula) or favour local 

cues (Carduelis chloris; chapter 5). As with the noisy miner, food-storers also use local 

cues when appropriate: when spatial cues prove unreliable, food-storers often attend to 

visual cues as a second choice (Brodbeck, 1994, Brodbeck and Shettleworth, 1995, 

Clayton and Krebs, 1994).  

This raises an interesting point: whilst the focus of these studies is often the 

special spatial abilities of nectar-eating or food-storing birds, a lack of cue bias in non-

storers may equally reflect adaptation toward a flexible foraging strategy. In winter, the 

diets of temperate bird species often change as natural insect food becomes less abundant 

and seed food more sporadic than in summer (see Cramp and Perrins, 1994). Temperate 
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bird species often expand foraging territories or become nomadic in winter: adaptations 

which increase the chance of finding this ephemeral food (Newton, 1972, see Cramp and 

Perrins, 1994). Similarly, under such unpredictability, selection may favour learning both 

spatial and local information, as local cues may be useful when ephemeral food is 

scattered but spatial cues when it is clumped (Humber et al., 2009). 

Bird feeders are an artificial, temporally stable foraging opportunity for wild birds 

(Humber et al., 2009). This poses an interesting question: do wild birds perceive feeders, 

filled with natural foods such as seeds, as ephemeral? Or do they learn that they are 

temporally stable? In the few studies that have investigated the subject, there is little 

evidence that birds become dependent on single artificial food sources. Brittingham and 

Temple (1992b) found that black-capped chickadees provisioned by feeders in a rural 

area continued to forage in a variety of locations elsewhere. Similarly blue tits (Cyanistes 

caeruleus) in rural areas have been shown to locate new feeding opportunities even when 

provisioned in fixed locations throughout the winter (Chapter 2) and in urban areas to 

provision their chicks with around 70% natural food (Cowie and Hinsley, 1988). On a 

broader scale, the numbers of birds using garden feeders generally mirrors national 

population trends but, in times of low natural food availability, exceeds them (Cannon et 

al., 2005; Chamberlain et al., 2005; 2007). Together, these studies suggest flexibility in 

the use of artificial food sources despite their constant availability. Brittingham and 

Temple (1992b) suggest this reflects adaptation toward naturally ephemeral food, hence 

continued prospecting of the environment even within temporally stable contexts. 

However, the use of alternate feeders could also be explained by costs to feeder use: 

feeders generate a clumped distribution of birds in urban environments, which enhances 

competition, predation risk and interactions with diseased birds (Dunkley and Cattet, 

2003). In this study, I will provide insight into whether urban birds perceive bird feeders 

as temporally unstable, as response to local cues (colour) suggests an ephemeral foraging 

strategy. 

 

Specifically, the aims of the study were to establish whether five common 

European garden passerines: the robin (Erithacus rubecula), great tit (Parus major), blue 

tit (Cyanistes caeruleus), coal tit (Periparus ater) and long tailed tit (Aegithalos 

caudatus) exhibit colour biases when locating feeders in a temporally stable foraging 

situation. The colours used were a green and blue chosen to match the colours most 

commonly available in bird feeders, and a red and yellow selected for similar brightness. 

Other potential sources of variation in feeder use (daily temperature, time, date) and 
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feeder selection (inter or intraspecific interactions, feeder position, feeder content) were 

identified and statistically or experimentally eliminated. By rotating colour feeders 

amongst positions within each of eight sites on a weekly basis, I was able also to assess 

whether colour biases had a permanent affect on feeder selection, or only when feeders 

are newly installed in a given location. 

 

6.3 METHODS 
 

6.3.1 STUDY SITES  
 

The study was conducted at eight sites through urban parks in central Glasgow, UK (see 

Fig. 6-1). Urban parks share a plant and bird community with local residential areas, thus 

species using feeders in parks are representative of those in urban gardens (Chamberlain 

et al., 2005). To capture wintering behaviour, when food is most commonly provisioned 

in gardens (Chamberlain et al., 2005), feeders were installed in 01/02/07 and observed 

until 20/03/07. 

In each site, I installed four hanging fat-block feeders (13cm x 13cm x 5cm). Such 

feeders are commonly used by Parids (Hinsley and Bellamy, 2005). A wooden dowel 

perch (length 16cm, diameter 9mm) was adhered to the base with solvent (Bostik™ “All 

Purpose”) to accommodate other passerines. The four feeders were painted: bottle green, 

navy blue, mustard yellow or deep red (B&Q™ “Colours” Non-drip Gloss paint). Green 

and blue colours were selected to match those commonly available for bird feeders; red 

and yellow colours were selected for a similar brightness, as perceived by humans, to 

reduce preferences based on achromatic variation. All feeders were then coated with 

transparent varnish (B&Q™ Quick Dry Gloss) to eliminate chemical or tactile 

differences between the paints that may affect feeder selection.  

To maximise species diversity at each site and also minimise ecological variation 

between feeders within sites, the four feeders were positioned in a row along a boundary 

between woodland or herbaceous plants and open ground (Cowie and Simons, 1991). The 

first four sites were established in location 1, 2, 3 and 4 on the 31/01/07; the second 4 sets 

were installed in locations 5, 6, 7a and 8 on the 01/02/07 (see Fig. 6-1). Site 7 was moved 

to site 7b on the 25/02/07 due to low attendance at site 7a. Each feeder was suspended 

from the branch of a tree using a metal cord at least 1.20m above the ground. The feeders 
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within each set were placed 4m to 8m apart: close enough to minimise ecological 

variation between feeders but far enough apart to reduce the chances of non-selective 

movement between feeders (i.e. landing on the nearest perch following inter- or intra-

specific displacement from a preferred feeder). Feeders at each site were positioned so 

that all could be observed simultaneously. 

Throughout the study period, I provisioned feeders with lard, de-husked 

sunflower seeds (Bill Oddie’s Bird Food Recipes™) and chopped peanuts (Pets at 

Home™ own brand), mixed in a 1:1:1 volume ratio. Feeders were emptied and re-filled 

with a fresh 8cm x 8cm x 2cm block of this mix every fourth day so that the lard could 

not become rancid, and were topped up on the afternoon prior to observation days (see 

below) to ensure equal food availability during data collection.  

The five study species were selected a posteri, having used the feeders regularly 

and at the majority of study sites. Feeders were also used by chaffinches (Fringilla 

coelebs; n = 20 observations), starlings (Sturnus vulgaris; n = 14 observations); 

blackbirds (Turdus merula; n = 9 observations) and greenfinches (Carduelis chloris; n = 

2 observations). However, observations of these species were sporadic and exclusive to 

one or a few sites thus these "non-focal" species were excluded from analyses. All birds 

were not ringed, so individual behaviour could not be scored. However, I selected sites at 

least 200m apart and in two clusters over 500m apart (see Fig. 6-1), so all sites were at 

minimum one robin territory apart (150m2; Tobias, 1997) and half the sites at least an 

average Parid foraging range apart (500m2; Sirwardena, 2006). By covering a large area, 

individual biases are less likely to be overrepresented (Crawley, 2002). 

 

6.3.2 DATA COLLECTION 
 

Colour biases were identified using timed observations of birds at feeders. Every minute, 

for 30 mins, I recorded the number of individuals of each species on each of the four 

feeders within a site. As individuals could not be recognised this was a measure of 

relative feeder use per species. If for example N = 30 for blue tits within a 30min 

observation this could mean the same individual fed for 30 mins or 30 individuals each 

fed for less than one minute. To separate position from colour biases, the positions of the 

four colours within each site were rotated every 7th day. To compare biases expressed 

when colour cues are novel in a given position with those where both colour and location 
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were stable each set of feeders was observed for 30 minutes on the mornings of both the 

1st and the 6th day following rotation, hence forth the “new” and “stable” feeder 

arrangements. As feeders were installed in two groups of four sites, four thirty minute 

observations were carried out per day, starting at sunrise, sunrise + 35 minutes, sunrise + 

70 minutes and sunrise + 105 minutes. The number and species of birds observed on each 

feeder were recorded each minute. In case feeder use varied with the time of day, the 

order of observation of sites 1-4 and 5-8 were systematically rotated each day.  

To identify temporal trends in feeder use, I used the cumulative total number of 

birds of a species per 30 min observation (first to fourth) for “within day” variation and 

per date for “across season” variation. Weather may also affect feeder use, for example 

feeder use in blue tits declines with increasing maximum daily temperature (Chapter 3) 

and in a range of species with increasing minimum weekly temperature (Chamberlain et 

al., 2005). Therefore the maximum temperature (°C) per observation day was collated 

from MET office reports (www.metoffice.gov.uk). Maximum temperature was 

independent of date (linear regression: F1, 30 = 2.47, P = 0.13). 

Finally, feeder selection may be influenced by the presence of con- and 

heterospecifics at feeders. For example, an individual may signal the location of the 

feeders to other birds or competitively exclude others from particular feeders (Cresswell 

et al., 2001; Krams, 2001). To investigate intra- and interspecific dynamics, I identified 

all occasions where two individuals of any species were observed within the same 

minute. If observed on the same feeder, these were scored 1, if not 0. Instances where 

more than two birds were present or where feeders were in use by non-focal species were 

excluded from this data. 

 

6.3.3 ETHICAL NOTE 
 

Care was taken to ensure that lard could not become rancid whilst in the feeders: it was 

mixed cold (rather than melted, which denatures preservatives), kept in a refrigerator 

until required or for a maximum of one week and replaced every fourth day in the field. 

On that day, I also wiped feeders down with a bird-safe disinfectant, as the congregation 

of birds at feeders has been implicated in disease transmission (Bradley and Altizer 

2006). There is little evidence that wild birds become dependent on single food sources 

(Brittingham and Temple, 1992). However after completion of the experiment, the 
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feeders were allowed to empty naturally for 5 days, with uneaten food replaced with 

equal volumes of fresh food on the 3rd day, so that individuals could make a gradual 

transition to alternate food sources. 

 

6.3.4 STATISTICAL METHODS 
 

I first identified intra- or interspecifc effects on feeder selection. For each species or 

species pair, influences on feeder selection were identified using a Wilcoxon signed rank 

test with a null mean expectation of 0.25 (i.e. 1 in 4 chance of occurring on the same 

feeder).  

I then investigated variation in feeder use with maximum temperature, within 

days (represented by observation order, i.e. 30 minute blocks since sunrise) and across 

the season (i.e. days since feeder installation). For each species, I constructed a 

generalized linear mixed model (GLMM) with the count of birds per observation as the 

dependent variable, hence a Poisson error structure, and a three way interaction between 

maximum temperature, observation order and date. To control for variation in feeder 

attendance between sites, site was specified as a random effect. I used stepwise 

backwards regression to simplify these models using a threshold p value of 0.05, until 

only main effects (significant or non-significant) and significant interactions remained. In 

28 of the 128 observations, no birds were observed (for a summary of observations per 

species see Table 6-1). As the aim of the study was to investigate feeder selection, for the 

remaining analyses all occasions where a particular species was not present within a 

given observation were excluded. These zero scores would be informative to feeder use 

patterns. Therefore, the main effects: maximum temperature, observation order and date 

were included as covariates in subsequent models to control for weather or temporal 

variation in feeder use, but their significance as main effects not tested. 

Finally, for each species I constructed a generalized linear mixed model (GLMM) 

to investigate feeder selection. The dependent variable was a count of the number of birds 

per colour per observation so I used a Poisson error structure. Feeder position nested 

within site was specified as a random effect. Feeder colour and feeder arrangement (new 

or stable) were my variables of interest: I specified an interaction between these 

variables. Maximum temperature, observation order (1 to 4, with observation 1 starting at 

sunrise and each subsequent observation 35min after), and date were covariates. To first 
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identify whether birds expressed biases toward particular positions within sites, I 

performed a likelihood ratio test (LRT) between this maximal model and a model with 

only site as a random effect. To assess whether colour biases differed between occasions 

when feeder were in new or stable locations, I then test the significance of removing the 

interaction between colour and observation with a likelihood ratio test (LRT) between the 

maximal model and a model including colour and observation type as main effects (i.e. 

an additive model). Finally, to test colour as a main effect, independent of observation 

type, I performed an LRT between this additive model and a model with all independent 

variables except colour. As intra and inter-specific dynamics affected feeder selection in 

the majority of species (see 6.4.1), I repeated these analyses but counting all records of 

the same species on a feeder simultaneously as one record and excluding all occasions 

where more than one bird (of the same or different species) was observed at a site 

simultaneously. 
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Figure 6-1 Map of the Glasgow urban parks study site. Study sites are marked with black open 
squares, numbers correspond to locations as follows: 1) Meadow bordered by road and public 
footpath; 2) Riverside beech and coniferous stand along public footpath; 3) Oak and birch 
woodland bordering grass along public footpath; 4) Oak stand bordering grass by car park; 5) 
Unenclosed apple orchard within residential area; 6) Herbaceous and deciduous woodland 
bordering grass along public footpath; 7a)  Deciduous woodland along public footpath; 
7b)Deciduous woodland bordering grass along public footpath (replacing 7a on 25/02/07 due to 
low attendance at site 7a); 8) Beech woodland along public footpath. Scale 1cm = 165m; 
modified from www.multimap.com 
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Table 6-1 Summary of observations per species over the study period. 
Species N N single observations single observations 

 

Blue tit 

Great tit 

Coal tit 

Long tailed tit 

Robin 

 

392 

137 

74 

99 

136 

 

240 

91 

51 

60 

88 

 

87 

48 

31 

30 

48 

 

86 

43 

24 

30 

42 

N is the total number of records of a species summed across observations; N single is the number 
of records taken when no other bird (same or different species) was present on the feeders within 
the same minute. Observations is the number of the 128 30min feeder observations in which a 
member of a given species was recorded; single observations is the number of observations in 
which a member of a given species was recorded at least once in a minute with no other birds 
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6.4 RESULTS  
 

6.4.1 INTRA AND INTERSPECIFIC DYNAMICS 

 

To assess the affect of intra and interspecific interactions on feeder selection, on all 

occasions where two birds were observed on feeders simultaneously I first tested whether 

they were observed significantly more often than expected on the same or different 

feeders (i.e. chance expectation of 0.25, with 4 feeders in each site). Three species: the 

blue tit, great tit and long tailed tit showed intraspecific interactions. The blue tit avoided 

conspecifics (V = 2754, p = <0.0001, µ 0.65, n = 78); the great tit (V = 221, p = 0.0096, µ 

0.57) and long tailed tit (V = 273, p = < 0.0001, µ 0.91, n = 23) occurred with 

conspecifics. Blue tits and robins were also more likely to feed apart than together (V = 

47, p=0.001, µ = 0.08, n = 24), but blue tits were observed more frequently than expected 

by chance on the same feeders as long tailed tits (V = 108, p = 0.035, µ 0.56, n = 16). No 

other interspecific interactions were identified. 

 

6.4.2 THE BLUE TIT 
 

Blue tit feeder use increased within days and also across the season, but was independent 

of daily maximum temperature (Table 6-2a). Feeder selection was not affected by colour, 

either in interaction with feeder arrangement (new or stable) or as a main effect (Table 6-

3a, Fig. 6-2a). Results were same when only single observations were analysed (Table 6-

3a), so colour biases were not masked by competitive exclusion forcing blue tits onto 

non-preferred feeders. Blue tits were biased toward particular positions within sites 

(Table 6-2a).  

 

6.4.3 THE GREAT TIT 
 

Like the blue tit, great tit feeder use increased within days and was independent of daily 

maximum temperature (Table 6-2b). However, in contrast to blue tits feeder use declined 

across the season. Great tits exhibited an overall bias toward red, and a significant 

interaction with feeder arrangement indicates that green feeders in particular were used 
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less when in new than stable locations (Table 6-3b; Figure 6-2b). Results were unchanged 

by analysing single observations, thus colour biases were not an artefact of individuals 

responding to social signals hence congregating on feeders with other great tits or long 

tailed tits. There was no position bias (Table 6-3b). 

 

6.4.4 THE COAL TIT 
 

There were no correlates of feeder use by coal tits (Table 6-2c). Overall, coal tits used 

yellow feeders less than all other colours, with no affect of feeder arrangement (new 

versus stable; Table 6-3c, Fig. 6-2c). However, this bias was lost when analyses were 

limited to single observations of birds. There was no position bias (Table 6-3c). 

 

6.4.5 THE LONG TAILED TIT 
 

Long tailed tit feeder use increased both across the season and with maximum 

temperature, and there was an interaction between these (Table 6-2d). Feeder use did not 

differ within days. Long tailed tits exhibited an overall bias toward red feeders and, like 

the great tit, a significant interaction with feeder arrangement indicates that green feeders 

were used less during new than stable location observations (Table 6-3d, Fig. 6-2d). 

Results were unchanged by analysing single observations. There was no position bias 

(Table 6-3d). 

 

6.4.6 THE ROBIN 
 

In contrast to the long tailed tit, a significant interaction between date and temperature 

indicates that robin feeder use decreased with across the season and with increasing 

maximum temperature, but was also independent of time of day (Table 6-2e). Robins 

exhibited an overall bias toward red, and a significant interaction with feeder arrangement 

indicates that blue feeders were used less during new than stable location observations 

(Table 6-3e, Fig. 6-2e). There was no position bias (Table 6-3e).  
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Table 6-2 Results from GLMMs on feeder use by each species during 30 minute observations in 
relation to observation order (i.e. starting sunrise, sunrise +35min, sunrise +70min and sunrise + 
105min), maximum temperature (°C) and date 
Species 

Predictors 

z (d.f.) P-value R (S.E.) 

 

(a) Blue tit 

Time of day 

Maximum temperature (°C) 

Date 

 

 

3.82 (116) 

-1.24 (116) 

5.7 (116) 

 

 

0.0001 

0.26 

< 0.0001 

 

 

0.175 (0.046) 

-0.029 (0.024) 

0.021 (0.004) 

(b) Great tit 

Time of day 

Maximum temperature (°C) 

Date 

 

2.94 (116) 

1.11 (116) 

-4.12 (116) 

 

0.003 

0.27 

< 0.0001 

 

0.231 (0.079) 

0.047 (0.042) 

-0.029 (0.007) 

(c) Coal tit 

Time of day 

Maximum temperature (°C) 

Date 

 

0.1 (116) 

1.55 (116) 

-0.28 (116) 

 

0.33 

0.12 

0.77 

 

0.104 (0.106) 

0.014 (0.009) 

-0.016 (0.056) 

(d) Long tailed tit 

Time of day 

Date x maximum temperature (°C) 

 

1.59 (115) 

-2.7 (115) 

 

0.11 

0.007 

 

0.149 (0.094) 

-0.011 (0.004) 

(e) Robin 

Time of day 

Date x maximum temperature (°C) 

 

-1.15 (115) 

2.57 (115) 

 

0.25 

0.01 

 

-0.094 (0.081) 

0.007 (0.003) 

The results are of models with feeder visitation as the dependent variable, site specified as a 
random effect, and a Poisson error structure 
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Table 6-3 Results on feeder selection by each species, from LRT between models including and 
excluding the listed predictor for single (maximum one bird recorded per minute) and all records   
Species Single records All records 

Predictors LRT χ2 P-value N LRT χ2 P-value N 

 

(a) Blue tit 

Colour x feeder arrangement 

Feeder position 

Colour 

  

(b) Great tit 

Colour x feeder arrangement 

Feeder position 

Colour 

 

 (c) Coal tit 

Colour x feeder arrangement 

Feeder position 

Colour  

 

(d) Long tailed tit 

Colour x feeder arrangement 

Feeder position 

Colour 

 

(e) Robin 

Colour x feeder arrangement 

Feeder position 

Colour 

 

 

1.202 

4.446 

5.824 

 

 

32.59 

1.257 

36.72 

 

 

1.809 

0.001 

4.077 

 

 

8.225 

0.672 

22.63 

 

 

6.247 

0.096 

11.9 

 

 

0.64 

0.14 

0.06 

 

 

< 0.0001 

0.26 

< 0.0001 

 

 

0.61 

0.98 

0.25 

 

 

0.042 

0.41 

< 0.0001 

 

 

0.1 

0.79 

0.008 

 

 

344 

344 

344 

 

 

176 

176 

176 

 

 

96 

96 

96 

 

 

80 

80 

80 

 

 

168 

168 

168 

 

 

1.711 

2.16 

7.395 

 

 

15.23 

< 0.0001 

29.18 

 

 

4.035 

0.153 

12.49 

 

 

10.08 

0.236 

24.21 

 

 

8.124 

0.636 

16.12 

 

 

0.75 

0.035 

0.12 

 

 

0.002 

1 

< 0.0001 

 

 

0.26 

0.7 

0.006 

 

 

0.018 

0.63 

< 0.0001 

 

 

0.044 

0.43 

0.001 

 

 

348 

348 

348 

 

 

192 

192 

192 

 

 

124 

124 

124 

 

 

80 

80 

80 

 

 

192 

192 

192 

The maximal model specified records per colour per observation as the dependent variable, 
colour x feeder arrangement, maximum temperature, observation order and date as covariates, 
position nested within site as a random effect. Results for colour x feeder arrangement or feeder 
position are obtained by comparing this model to models excluding these predictors. Results for 
colour are obtained by testing the significance of removing colour from a similar maximal model 
but with colour and feeder arrangement as main effects only. 
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Figure 6-2 Bar charts of the total records per species per colour summed across the study period. 
Colours are labelled beneath the bars with “N” denoting new feeder arrangement observations, 
conducted in the morning following feeder rotation, and “S” stable feeder arrangement 
observations, conducted six days after feeder rotation 
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6.5 DISCUSSION 
 

In this study, I sought to investigate whether colour affected feeder selection in five 

common garden passerines. I was particularly interested to see whether green, a colour 

which typifies European bird feeders, was attractive. Whilst four out of five species did 

show colour biases, which were independent of other influences on feeder selection such 

as position biases or (except for coal tit) the presence of con-and heterospecifics, none 

favoured green. Three species: the great tit, long tail tit and robin, were biased toward 

red. The great tit and long tailed tit were biased against green, the robin against blue and 

the coal tit (in total records) against yellow. As local cues such as colour become 

increasingly unreliable over time, I had predicted that birds would not respond to colour 

when foraging in temporally stable situations such as bird feeders. This prediction was 

only supported in the blue tit, whose feeder selection was influenced instead by feeder 

position and inter and intraspecific interactions. Therefore the results for four of five 

species contradict captive expectations that spatial cue use replaces local cue use in 

temporally stable locations (Chapter 5). Moreover, the lack of preference for green 

suggests that, in comparison with the US nectar-feeder market, European bird feeder 

design has responded more to aesthetic than functional demands. 

In keeping with previous avian colour preference studies (e.g. Burns and Dalen, 

2002; Schmidt et al., 2004; Exnerová et al., 2006), red appears to be a potent signal to 

foraging birds. Red has the greatest contrast against the predominantly green foliage of 

the backdrop, and green the least. Thus the bias toward red over green expressed by the 

great tit and long tail tit in novel observations may suggest reliance on local cues when 

locating feeders, with feeders relocated in order of conspicuousness (red > green) 

following feeder rotation. The alternative, an aversion to green itself, is unlikely. First, 

green feeders were used as often (great tits) or more often (long tailed tits) than blue or 

yellow feeders in stable observations. Second, a short-term neophobic aversion during 

novel observations is counterintuitive: studies on poultry suggest that birds are both slow 

to learn aversions toward green and quick to disregard this colour when other aspects of 

food such as palatability are informative (Rowe and Guilford, 1999; Rowe and Skelhorn, 

2004). As green is common in nature, this inability to form negative associations with 

green may be a safeguard against forming generally maladaptive aversions (Rowe and 

Skelhorn, 2006). 
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In robins, the bias toward red in novel observations came at the expense of blue. 

Blue is a rare colour in nature (Miklosί et al., 2002). Previous studies on robins suggest 

they are averse toward novel colours (Marples et al., 1998), so I attribute this bias to 

neophobia. If true, the robin would join a taxonomically disparate group of birds which 

show neophobic reactions toward blue (Gionfriddo and Best, 1996; Hartley et al., 1999, 

2000; Miklosί et al., 2002). The coal tit’s aversion toward yellow (when using total 

records) on the other hand was not consistent with neophobia: coal tits avoided yellow 

both in new and stable location observations. The possibility of an aversion toward 

yellow is quite intriguing: in omnivorous species such as Parids, base colour aversions 

are often latent unless coupled with other insect cues, such as shape or pyrozine odours, 

which may help distinguish palatable plant foods from aposematic insects (Gamberale-

Stille and Tullberg, 2001; Kelly and Marples, 2004; Lindström et al., 1999; Rowe and 

Skelhorn, 2004). Whilst I can suggest several negative associations between yellow and 

plants, synonymous for example with decaying leaves, or unripe fruits, Paridae also 

forage for yellow pollen and flower and leaf buds (see Hinsley and Bellamy, 2005). And 

whilst negative associations with yellow aposematic insects such as Vespidae wasps may 

be important in this predominantly insectivorous genus, the aversion toward red insects 

that is quite universal to the Paridae (Exnerová et al., 2006) did not cause aversions 

toward red feeders. 

It is notable that no species exhibiting a colour bias also exhibited position biases: 

position biases were evident only in blue tits. Position biases can reflect ecologically 

significant variation between foraging opportunities, for example both accessibility and 

exposure to predators can influence the foraging decisions of free-living birds (e.g. 

Hinsley et al., 1995; Avery et al., 1995; Hinsley, 2000; Allen and Harper, 2000; Walther 

and Gosler, 2001). Such attributes must be learnt in a site-specific manner, so I suggest 

that the position biases and lack of colour biases in blue tits reflects transition from a 

local to a spatial foraging strategy within the feeder context in blue tits, with site quality 

information encoded within spatial information. For the colour-biased species, a lack of 

position biases may also reflect generally equivalent ecological conditions within sites (as 

I had aimed to achieve). However, a lack of temporal trends within days (coal tits, long 

tailed tits) or decline in feeder use across the season (great tit, robin) coupled with 

generally low feeder use in these four species (Table 6-1) suggests that the feeding sites 

may constitute only a small part of the foraging range of these species. Therefore the 

colour biases may be a product of greater experience with natural, ephemeral food in the 

broader environment and hence perhaps a general perception of temporal instability in 
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food, hence use of local cues. Along with colour cues, another strategy for locating 

temporally unstable resources is via “public information”: social signals from other birds 

(for review: Krebs and Davis, 1997). That long tailed tits and robins were both more 

likely to occur with conspecifics and together than expected by chance provides further 

support for an ephemeral foraging strategy in these species.  

The existence of colour biases in wild birds raises a more general point. Most cue 

selection studies have been performed in captive environments, where careful 

manipulations to disentangle cue biases and the motivations underlying them are feasible 

(Healy and Hurly, 2004). However, to be ecologically relevant, cue selection must also be 

considered in the wild (Humber et al., 2009). In captivity, it is suggested that birds select 

cues in a context-specific manner, hence become biased toward spatial cues where 

resources prove temporally stable (Hodgson and Healy, 2002, Chapter 5). That great tits 

in particular, which have specifically been shown to favour spatial cues under stable 

foraging conditions in captivity, contradicts captive predictions (Hodgson and Healy, 

2002). In wild animals, experience may generate a general rather than context-specific 

perception of environmental stability. For example, sticklebacks (Gasterosteus aculeatus) 

from both ponds and streams are capable of learning either spatial cues (body orientation) 

or local cues (a plant situated to one side) when navigating a maze to find food (Odling-

Smee and Braithwaite, 2003). However in cue dissociation tasks, pond fish used both 

cues types whilst stream fish favoured spatial cues. It is suggested that the turbid stream 

environment rendered local cues unreliable during learning, and hence generated a 

general perception of unreliability in local cues within stream fish (Odling-Smee and 

Braithwaite, 2003). Therefore information that is useful (and hence reinforced) in the 

wild may not be that which we would expect animals to rely on within a given context. 

There is increasing evidence that environmental variation in early life shapes the kinds of 

behaviour (Braithwaite and Salvanes, 2005) and propensity toward learning in adulthood 

(Brydges et al., 2008). Perhaps experience of temporal instability in natural food (beyond 

the artificial feeding sites) generated general local cue biased searches rather than feeder 

context specific spatial biases. This supposition is supported by a field study on cue 

selection in pine siskins (Carduelis pinus; Humber et al., 2009). Pine siskins are nomadic 

foragers in winter (Herbers et al. 2004), but Humber and colleagues (2009) found that 

they were able to learn spatial cues when foraging at artificial feeders. In general, when 

the colours were rotated amongst positions, birds assorted used spatial cues (as predicted) 

to relocate high and avoid low quality feeders. However when the green feeder, which 

was most rewarding in training, was placed in the least rewarding position, birds 
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approached the best position and best colour equally. Therefore with general experience 

that green was rewarding in the majority of the study, such conflicting information may 

cause some individuals to revert to generally reliable local cues over context-specific 

spatial cues. 

The results of my study should be interpreted with caution. In particular, it suffers 

two limitations: first, in this experimental design, the four competing colours were 

presented simultaneously. As such, comparisons between colours were necessary to draw 

inferences on the mechanisms underlying biases, for example comparing green to red to 

suggest a conspicuousness bias. To identify colour biases or distinguish colour from 

contrast biases, pairs of colours or a levels of contrast should be compared explicitly, as 

for example Schmidt et al. (2004). Second, this study used observation data on unmarked 

individuals. If colour biases differ between individuals, unknown pseudoreplication may 

suggest generality from the biases of a dominant or resident minority. Worse, if colours 

are valued or feared to differing extents, colour biases may be obscured by the assortment 

of individuals of amongst colours of different “quality” on the basis of rank, as occurs in 

Parid foraging flocks (Lee et al., 2005). However, as results from single records were 

equivalent (except in coal tits) to total records, this second limitation is unlikely to affect 

interpretations. Moreover in the context of feeder design, I selected green and blue feeder 

to match those commonly available to buy. Therefore despite these limitations, I am able 

to recommend red feeders as the most attractive to wild birds. 
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CHAPTER 7 
 

GENERAL DISCUSSION 
 

 

For behavioural ecologists, personality represents a transformation in the way of thinking 

about adaptation, from an optimality approach (with behavioural variation suboptimal 

“noise” around an optimal mean response) to variation as the focus of interest and theory 

(Sih et al., 2004). Initially, the emphasis was on demonstrating the existence of 

personality in animals, with consistent behaviours described in species as diverse as the 

dumpling squid (Euprymna tasmanica; Sinn et al., 2008) to hyenas (Crocuta crocuta; 

Gosling, 1998), and a huge range of mammals, birds, fish, reptiles, amphibians and 

invertebrates in-between (Gosling, 2001). Having established its ubiquity, research now 

focuses on the adaptive significance of personality. Several recent theoretical studies 

suggest that personality persists by a trade-off between the costs and benefits of 

maintaining a high energy state (by being bold, active and aggressive to acquire resources 

at the risk of failing to acquire sufficient resources when food is scarce) versus a low 

energy state  (by being shy, inactive and passive and requiring fewer resources but being 

outcompeted when food is plentiful) in different environments (Careau et al., 2008, 

Stamps, 2007, Wolf et al., 2007, Biro and Stamps, 2008, Dall et al., 2004, McNamara et 

al., 2009). In support of these theories, personality has been linked to variation in life-

history traits such as growth and fecundity (for review, see: Biro and Stamps, 2008) and 

to survival between environments in which this trade-off differs (e.g. food-poor versus 

food-rich: Dingemanse et al., 2004, predator present versus predator absent: Bell, 2005). 

However, as outlined in chapter 2, there is a missing link in this study: the behavioural 

mechanisms underlying these fitness differences are predicted from behaviour in captive 

studies (e.g. Marchetti and Drent, 2000, Benus et al., 1987, Verbeek et al., 1999), but few 

studies test whether behaviour in captivity reflects behaviour in the wild (for review, see 

table 7-1). As outlined in chapter 3, predictions from captive behaviour do not always 

hold true in field studies (Dingemanse and de Goede, 2004, van Overveld and Matthysen, 

2010, Hollander et al., 2008). Therefore a key aim of this thesis was to test captive 

predictions on personality and also cue selection – my own and from the literature – in 

the wild. 
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Table 7-1 A summary of studies relating personality traits to behavioural variation in the wild. 
Behavioural variation denoted + indicates that the highest values (e.g. fastest, most active, largest) 
occur at the fast end of the trait axis, - at the slow end and 0 for no relationship. Traits, labelled 
with source terminology, are denoted f when measured in the field (the remainder in the 
laboratory). Wild behaviours denoted w are measured in the wild and denoted p are comparisons 
of individuals in captive drawn from ecologically distinct populations. 
Group Species Personality 

trait 
Behavioural variation  Source 

Birds Parus major 

 

Spatial exploration 

 

+ Post-natal dispersalwp 

+ feeding rangew 

0/+ Nest defencew 

+/- Dominancew 

Dingemanse et al. 2002 

van Overveld & Matthyssen 2009 

Hollander et al., 2008 

Dingemanse & deGoede 2004 

 Cyanistes caeruleus Neophobia 

 

Spatial exploration 

 

Neophobia 

Spatial exploration 

+ neophobiaw 

0 explorationw 

0 neophobiaw 

+/0 explorationw 

-environmental sensitivityw 

+environmental sensitivityw 

Herborn et al., 2010 

 

 

 

Chapter 3 

 

 Sturnus vulgaris 

Anser Anser 

Spatial exploration 

Aggressionf 

Socabilityf  

0/- range sizew  

+ Aggressionw 

+ Sociabilityw 

J. Minderman (pers. comm.) 

Kralj-Fišer et al., 2006 

Fish Gasterosteus aculeatus Boldness - Predator experiencep Bell 2005, Dingemanse et al. 2007 

 Brachyraphis episcope Boldness - Predator sensitivityw Brown, 2007 

 Pimephales promelas Boldness + boldnessw Pellegrini et al., 2010 

 Salvelinus fontinalis 

 

Rivulus hartii 

Spatial exploration 

Boldnessf 

Boldness 

+ prey-search patternw 

+ foraging movementw 

+ dispersalw 

Wilson & McLaughlin, 2007 

Farwell & McLaughlin, 2009 

Fraser et al., 2001 

Mammals Tamias sibiricus Spatial exploration + trappabilityw Boyer et al., 2010 

 Tamias striatus 

 

Docility 

Spatial exploration 

+ tolerance of humansw  

+ tolerance of humansw 

Martin & Reale,2008 

 Tamianscuirus hudsonicus Docility 

Activity 

Aggressiveness 

+ range sizew 

+trappabilityw 

0 range sizew 

+trappabilityw 

Boon et al. 2007 

 Ovis Canadensis Boldnessf 0 range sizew Reale et al. 2000 

Reptiles Lacerta vivipara Sociability - post-natal dispersalw Cote & Clobert 2007 

Molluscs Pagarus bernadus Startle response + startle responsew Briffa et al. 2008 
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7.2 SUMMARY OF PERSONALITY RESULTS 
 

A key prediction from captive studies is that personality types differ in their ability to 

cope with environmental change (Benus et al., 1987, Benus et al., 1988, Marchetti and 

Drent, 2000). It is predicted that slow personality types, i.e. less exploratory, neophobic 

and passive animals are more sensitive to environmental cues than fast types, and hence 

cope better in unpredictable environments (Benus et al., 1987, Dingemanse et al., 2004). 

Surprisingly therefore response to change, termed “environmental sensitivity” (Boyce 

and Ellis, 2005, Koolhaas et al., 1999), is seldom measured in captivity (Minderman et 

al., 2009, for review see Sih et al., 2004) let alone the wild (van Overveld and Matthysen, 

2010). The aims of chapters 2 and 3 of this thesis were to test whether captive personality 

traits reflected variation in wild behaviour amongst blue tits (Chapter 2), and 

consequently to examine whether personality types differed in environmental sensitivity 

in the wild (Chapter 3). 

In Chapter 2, I established a correlation between wild behaviour and two captive 

traits: neophobia and spatial exploration. One of few studies on the behaviour of 

personality types in the wild (see table 7-1), and fewer still comparing “like-for-like” by 

measuring analogous traits in both contexts, this is an important affirmation of captive 

personality research. Specifically, I found that birds classified as relatively exploratory in 

captivity were more likely to find new feeding opportunities in the wild and vice versa. 

Similarly, an individual’s neophobia in captivity correlated positively with their latency 

to approach novel objects (coloured feeder covers) at feeding stations in the wild. This is 

equivalent to work comparing prey search tactic in the wild to space use within novel 

aquaria environments in brook char (Salvelinus fontinalis) by Wilson and McLaughlin 

(2007). They found that brook char that used a sit-and-wait tactic in the wild were less 

exploratory and fish with active search tactics more exploratory in novel captive 

environments. In this example and my own, exploration behaviour may therefore 

represent ecologically significant differences in foraging strategy between individuals. 

My study is also comparable to work by Briffa and colleagues (2008) on hermit crabs 

(Pagurus bernhardus). Although in that case, Briffa and colleagues suggested 

consistency represented limited behavioural plasticity. By comparison, blue tit foraging 

strategies appear quite flexible, particularly in neophobic and fast-exploring birds 

(Chapter 3).  
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Having validated captive traits in Chapter 2, in Chapter 3 I used blue tits to ask 

the question: does personality represent systematic variation in environmental sensitivity? 

I examined responses to changes in two environmental cues: daily maximum temperature 

and food supply. At the population level, the use of artificial feeding stations declined 

with increasing air temperature, and visitation to those feeding stations petered out over 

five days after they were emptied. However, individuals differed in these responses: non-

exploratory and neophilic birds tended to use feeders at a fixed level regardless of 

temperature, and to continue to visit feeders three days after they were emptied. By 

comparison, exploratory and neophobic birds were flexible in their feeder use and 

abandoned empty feeding stations more quickly. In both instances therefore, exploratory 

and neophobic individuals may be regarded most environmentally sensitive. Intriguingly, 

in great tits (Appendix I) I found very similar results with environmental sensitivity to 

food supply, suggesting some generality in the ecological significance of the exploration 

trait amongst Parids. 

Beyond validating (or refuting) captive predictions, my findings in Chapter 3 are 

also important for understanding the maintenance of personality variation within 

populations. Personality is often thought to represent a trade-off between a generally 

appropriate response (i.e. consistency across contexts) and the costs of responding with 

infinite plasticity (DeWitt et al., 1998, Ellis et al., 2006, Briffa et al., 2008). This trade-off 

may be maintained by differential selection on these relatively fixed personality types 

across environments (Dingemanse et al., 2004). Recently though, it has been suggested 

that the balance of this trade-off between consistency and plasticity may differ also 

between personality types (Biro et al., 2010) with plasticity, represented by 

environmental sensitivity, equally subject to selection (Nussey, 2005, Wolf et al., 2008). 

As there are costs to plasticity, for example in time or energy devoted to information 

gathering (Johnston, 1982), it is predicted environmentally sensitive personality types 

should be selected in increasingly variable environments (DeWitt and Scheiner, 2004). 

However, plasticity may also be selected when the current environment differs from that 

in which a species has evolved, for example a current focus of research is the capacity of 

populations to adapt to climate change (Visser 2008). Within Parids, the timing of 

breeding provides an opportunity to estimate the extent of this capacity: birds respond to 

increasing day length as cue to breed but their larvae prey respond to air temperature as a 

cue to hatch, therefore if birds cannot adjust their response to toward shorter day length 

cues or else use other environmental cues to breed, breeding may be mistimed (Both et 

al., 2009, Visser et al., 2004). Evidence of adaptation to climate change is found in 
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selection on both stereotyped responses, for example lay date via selection on the Clock 

gene (Liedvogel et al., 2009), but also on “plasticity in breeding behaviour” (Nussey et 

al., 2005). Birds that are more plastic in breeding behaviour adjust their lay date relation 

to breeding success and environmental cues in previous breeding attempts, for example 

higher or lower spring temperatures (Nussey et al., 2005) or food supply (Grieco et al., 

2002). Here, I provide evidence that individuals differ in their response to temperature 

and food supply in winter. As adults were more environmentally sensitive than juveniles, 

I predict that neophobic and exploratory blue tits may be more sensitive to environmental 

cues and hence also exhibit plasticity in breeding behaviour. By developing methods to 

quantify both personality and environmental sensitivity, my study provides a foundation 

for this further research on the link between personality, environmental sensitivity and 

adaptation to long term environmental change. 

In chapter 2, I found no differences in personality between juvenile and adult (1 

year +) blue tits. This was surprising, as juveniles often exhibit lower neophobia than 

adults, perhaps to equip them to learn more quickly about their new environment (for 

review, see: Greenberg, 1995). However, in the wild juveniles exhibited less 

environmental sensitivity to temperature than adults (chapter 3). This is interesting: it 

suggests that the raw material underlying environmental sensitivity, i.e. the innate level of 

either sensitivity to environmental cues or behavioural plasticity, is evident in juveniles as 

well as adults, but that juveniles do not express that variation in the wild. Perhaps the 

ability to respond to environmental cues is contingent on experience: environmentally 

sensitive (fast-exploring, neophobic) juveniles may not have learnt to respond to 

temperature (Komers, 1996). Alternatively, the costs and benefits of responding 

plastically may differ between age classes. Juvenile Parids are generally subordinate to 

adults within competitive environments (Dingemanse and de Goede, 2004). Often, 

subordinate birds within dominance structured flocks carry more fat reserves than adults 

(Hake, 1996, Polo and Bautista, 2002). As food is less predictable for subordinates than 

dominants, with the added possibility of competitive exclusion, this may represent an 

alternative strategy for coping with environmental unpredictability: “insurance” (Dall and 

Johnstone, 2002). In this case, continued feeding despite warmer temperatures would be a 

safe strategy for juvenile blue tits. It is notable that age did not affect environmental 

sensitivity to food supply, where competition (for empty feeders) would be low (Chapter 

3). Most importantly, this age effect illustrates the value of considering personality in the 

wild: from captive studies, where ages did not differ in behaviour (Chapter 2), it may be 

predicted that age classes would behave the same in the wild.  
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An interesting observation on age and personality is that personality types often 

differ in longevity (for review: Biro and Stamps, 2008). As personality types differ also 

in metabolic rate (Careau et al., 2008) and physiological stress responsiveness (Cockrem, 

2007), hence production of pro-oxidants, it is suggested that this may reflect a cumulative 

physiological cost to personality. Indeed, personality variation may be maintained within 

populations by linkage to life history traits such as longevity or growth rate that are under 

selection in different environments (Wolf et al., 2007, Biro and Stamps, 2008). It is 

surprising therefore that the relationship between personality and oxidative profile has not 

been studied more extensively, as oxidative stress is often proposed as mediator in life 

history trade-offs (for review: Monaghan et al., 2009). In chapter 4, I found that 

greenfinches differing in neophobia and exploration differed also in oxidative profile 

(Chapter 4).  Specifically, birds at the “fast” end of the trait axes, which were fastest to 

explore novel objects and least neophobic, had lower levels of oxidative stress or 

oxidative damage than slow types. It is surprising that animal personality and oxidative 

stress have not been studied more extensively Whilst relationships between personality 

and oxidative profile have been measured explicitly in only one other study (Costantini et 

al., 2008), this result fits well into the broader literature on proximate mechanisms for 

personality. In a range of species, fast types have been shown to have lower 

gluccocorticoid (stress hormone) levels than their slower counterparts (Veenema et al., 

2003; Carere et al., 2003; Martin and Reale, 2008; Cavigelli and McClintock, 2003; 

Martins et al. 2007; Hoglund et al., 2008). Gluccocorticoids stimulate the metabolism to 

enable rapid behavioural response to environmental stressors, such as the fight or flight 

response (Cockrem, 2007). Pro-oxidants, biomolecules that damage the body tissue under 

oxidative stress, are primarily a by-product of metabolism. Therefore, personality types 

that have more sensitive or elevated stress responses may produce more pro-oxidants than 

less responsive types. The relationship between gluccocorticoid variation and oxidative 

damage has been demonstrated experimentally: supplementing poultry with 

gluccocorticoids has similar consequences for oxidative damage (Lin et al., 2004b) as 

observed in my study and that of Costantini and colleagues (2008). To test the hypothesis 

of oxidative costs as a cumulative cost of personality fully, I would need first to 

demonstrate that slow greenfinch personality types have higher stress responsiveness. If 

so, I would predict that slow types may have a shorter lifespan by cumulative costs of 

oxidative stress. In the wild though, bold types take greater behavioural risks, so this 

variation may be cancelled out by a higher rate of instantaneous mortality (Natoli et al., 

2005). This highlights again the importance of testing predictions in the wild. 
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A common assumption of personality research is that traits fall along a single-

dimensional continuum, with fast and slow individuals at the extremes (Wilson et al., 

1993). However in chapter 4, I found that physiological costs of personality in terms of 

oxidative damage were greatest in intermediate personality types. Whilst this conclusion 

was drawn from a small sample size (n = 22 greenfinches) of captive-bred animals, I 

suggest that study of the physiological and indeed behavioural costs to intermediate 

personality types warrant further investigation. In captive studies, personality traits have 

often been categorised into fast and slow extremes (e.g. bold and shy, Wilson et al., 

1993), or else intermediate personality types have been systematically excluded by 

experimental design (e.g. Hardcourt et al., 2009) or selective breeding (e.g. in mice: 

Benus et al., 1987, in great tits, for review: Groothuis and Carere, 2005). Also, by 

classifying individuals using averages across repeated measures of personality traits (as I 

have done in chapters 2 and 4, albeit across measures that were positively correlated), it is 

possible that both inconsistent individuals (fast in one trial, slow in the next) and 

genuinely intermediate individuals (intermediate in all trials) may be lumped together, 

leading to misrepresentation of intermediates in even studies where they are included. 

Animals that are intermediate in a personality trait are sometimes “different” rather than 

middling in other behaviours, such as foraging strategy within associative learning tasks 

(Arnold et al., 2007) or ranging behaviour (Boon et al., 2008). Furthermore, comparing 

the same trait across contexts, variance in behaviour is often lower in intermediates than 

extremes, with intermediates adjusting their behaviour less in response to changing social 

context (Vas et al., 2008) or predator presence (Coleman & Wilson 1996; Bourne & 

Sammons 2008). Indeed in wild great tits (Parus major), variance in survival and 

reproductive success between food-rich and food-poor years are also lowest in 

intermediates (Dingemanse et al., 2004). Therefore I suggest intermediate personality 

types, and perhaps comparison of true intermediates to “intermediates” that switch 

between fast and slow behaviour, may be an important line of inquiry in future studies. 

Finally, I found no correlation between personality traits within individuals hence 

no evidence of a proactive-reactive trait in either blue tits (Chapter 2) or greenfinches 

(Chapter 4). This was particularly surprising in blue tits, as the closely related great tit is 

the archetype of the proactive-reactive personality trait (Groothuis and Carere, 2005). In 

greenfinches, I suggest that the traits may have different underlying physiological 

correlates, as neophobia and object exploration related differently to oxidative profile 

(chapter 4). From studies on stress response to novel objects, it appears that presenting a 

novel object with food elicits a physiological stress response (Richard et al., 2008) but 
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presenting a novel object alone does not (Mettke-Hofmann et al., 2006, but see Apfelbeck 

and Raess, 2008). As a novel object presents both a potential threat and an opportunity 

for learning, it is possible that neophobia is an assay of variation in stress responsiveness 

between greenfinches but exploration only variation in information-gathering. In blue tits, 

neophobia and exploration traits appear also to reflect different behavioural strategies. 

Whilst both neophobic and fast-exploring individuals were most environmentally 

sensitive to changes in food supply, only fast-explorers appeared to gather information 

before food was removed (discovering new feeding opportunities: chapter 2). They also 

inspected feeders when they were first emptied, visiting at a higher rate than slow 

explorers on day 1 of the manipulation, whilst neophobic birds left immediately (chapter 

3). Unlike the trait neophobia, exploration did not predict avoidance of feeders that were 

novel in appearance (Chapter 2). These differences in the types of information gathered, 

and possibly also responsiveness toward stressors, may result in very different forms of 

environmental sensitivity between personality types (van Overveld and Matthysen, 2010). 

This is particularly important when considering the adaptive significance of behavioural 

syndromes such as the proactive-reactive trait: with no correlation between neophobia 

and exploration behaviour, blue tits and greenfinches could have any combination of 

oxidative profiles and any combination of behavioural strategies. Where behavioural 

syndromes exist therefore, this may reflect selection not only on particular traits but also 

particular combinations of traits (Sih et al., 2004). 

 

7.1 SUMMARY OF CUE SELECTION RESULTS 
 

In chapters 5 and 6, I examined cue selection in the relocation of temporally stable food 

sources. In captive greenfinches (chapter 5), I found that cue preferences changed with 

increasing experience of an invariant foraging situation. In a simple foraging task, I gave 

birds the option of re-finding hidden food either using a local cue: a conspicuous 

coloured cotton wool ball marking food, or a spatial cue: the position of a well on an ice 

cube tray in which food was hidden. After one encounter with this task (“one-trial test”), 

returning birds generally favoured the local cue. As discussed in Chapter 5, I cannot 

distinguish an adaptive bias toward local-cue learning from an artefact of stimulus design 

as explanations for this bias (LaDage et al., 2009). However, by observing a cue switch 

within the same scenario after ten encounters, I can eliminate stimulus design as the 
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reason for biases toward spatial cues in the “repeated-trial test”. I attribute this cue-switch 

to the development of an expectation of temporal stability, acquired through learning.  

I then examined in detail the mechanisms underlying cue selection in the one-trial 

test. I found that greenfinches were able to quickly learn spatial cues in the absence of 

local cues (“one-trial spatial test”). However, increasing visual distraction by substituting 

a white distracter for a coloured distracter interfered with this cue selection process. It is 

possible that birds were better able to learn local cues because the presence of a local cue 

“overshadowed” spatial cues in the first one-trial test (Cheng, 2008; Cheng et al., 2007; 

Gray et al., 2005). Over the ten repeated encounters though, birds both overcame any 

such interference and developed a bias toward spatial cues. As such I concluded that they 

were able to learn both cue types but actively favoured local or spatial cues dependent on 

the temporal stability of the context. However, this study utilised a very simple foraging 

task. Indeed, as discussed in Chapter 5, due to practical limitations it was necessary to 

further simplify the test from a selection of one option from seven to just one from three. 

This conclusion required further testing therefore, both using a more complex captive 

task and, as I attempted in Chapter 6, in the wild. 

Based on findings in chapter 5 I predicted that wild birds using feeders, which 

constitute a temporally stable feeding location, would disregard visual aspects of feeders 

when relocating them. In the wild, natural ephemeral foods may vary between scattered 

and clumped distributions. The ability to learn both cue types (as in chapter 5), and 

switch between them with varying temporal stability in food distribution may be adaptive 

(Humber et al., 2009). In chapter 6, I established eight artificial feeding sites across urban 

parks in Glasgow. At each site, there were four feeders, coloured red, blue, green and 

yellow, and every week I systematically rotated these colours amongst four fixed 

positions within each site. Over repeated encounters with the feeders, I expected birds 

would learn that they occurred in fixed positions and hence to disregard colour, feeding 

instead at random or perhaps exhibiting position biases. I was surprised therefore to find 

that four out of five species responded to colour, even after six days of exposure. 

Three species (the great tit, long tailed tit and robin) favoured red feeders, but 

particularly when the feeders had newly been rotated. Red feeders are most conspicuous 

against the predominantly green foliage background, so a conspicuousness-biased search 

pattern may be the mechanism by which they were relocated. Birds generally exhibit 

heightened attractions toward familiar palatable foods and aversions toward unpalatable 

foods when their background contrast is elevated (Osorio et al., 1999, Schmidt et al., 
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2004; Gamberale-Stille and Guilford, 2003). A conspicuousness-biased foraging strategy 

is therefore a highly basal strategy that, unlike spatial cue use, does not require context-

specific learning (Schmidt et al., 2004). Coupled with a tendency in great tits and long 

tailed tits toward using social cues to locate food, I suggest these birds did not learn in a 

context-specific manner but instead used a more general, ephemeral foraging strategy 

even within temporally stable contexts. In other studies, experience of enhanced 

environmental variability in early life has been shown to influence the kinds of behaviour 

animals display (Braithwaite and Salvanes, 2005), propensity toward learning (Brydges et 

al., 2008) and indeed to modify cue selection (Odling-Smee and Braithwaite, 2003) in 

adulthood. Perhaps experience of temporal instability in natural food (beyond the 

artificial feeding sites) caused wild birds to adopt a general strategy rather than learning 

specific strategies for each context. This again highlights the importance of testing 

behavioural predictions in the wild. 

 

7.3 BIRD FEEDERS: A LINK TO WILD BEHAVIOUR? 
 

Artificial feeders are a testing ground for captive and theoretical predictions on wild 

animals. The funnelling of birds from the broader environment to a focal point allows us 

to quantify for example dominance hierarchies (Dingemanse and de Goede, 2004), 

energy intake (e.g. Sandlin, 2000) or body mass change (Boisvert and Sherry, 2000). 

Moreover, feeders provide a site in which to perform manipulations on wild birds, for 

example to introduce novel objects (Echeverria et al., 2006, Herborn et al., 2010), or to 

alter perceived predation risk (Macleod et al., 2005), environmental stability (Humber et 

al., 2009; Chapter 6) or food availability (e.g. van Overveld and Matthysen, 2010; 

Chapter 3). In Chapters 2 and 3, I used feeding stations to monitor behaviour using PIT 

tag technology. PIT tags are a very powerful tool when individual presence in a particular 

place and time can be given meaning. For example, when it reveals with whom an 

individual associates (Pike et al., 2008) or, in my study, how long it has taken them to 

approach novel feeding opportunity (Chapter 2). Unlike observational studies or radio-

telemetry though, PIT tags cannot tell us about the behaviour of an individual in the 

broader environment. This poses an interesting question: to what extent does behaviour at 

feeders represent behaviour in the wild? 

Dependency: the transition from natural foods toward reliance on artificial feeders 

is a key concern, for both research and animal welfare (Brittingham and Temple 1988, 
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Sterba 2002). For research, the subversion of natural behaviour this would constitute 

could be a serious misrepresentation of wild behaviour. So far, there is little evidence that 

wild birds do become dependent on artificial feeding sites however. The diets of wild 

black-capped chickadees (Poecile atricapillus; Brittingham and Temple, 1992) and 

Australian magpies (Gimnorina tibicen; Jones, 2002), and the food provisioned to the 

nestlings of Australian magpies (O’Leary and Jones, 2006), blue tits (Cowie and Hinsley, 

1988) and Florida scrub-jays (Aphelocoma coerulescens; Fleisher et al., 2003) for 

example all have been shown to contain between 70 and 86% natural food despite the 

availability of artificial feeders. Moreover, at the population level birds appear to use 

feeders in a flexible manner, reducing feeder use with increasing air temperature 

(Chamberlain et al., 2005; Chapters 3 and 6) or greater natural food availability (Cannon 

et al., 2005; Chamberlain et al., 2005; 2007). Brittingham and Temple (1992b) suggest 

this flexibility reflects the persistence of natural foraging biases toward ephemeral food 

even within temporally stable contexts. Their suggestion is further supported by findings 

in chapter 6, in which four species of common garden passerine responded to colour and 

social cues when relocating feeders: foraging strategies better suited to the location of 

naturally ephemeral rather than artificially temporally stable food (chapter 5).  

Of course, what occurs at the population level does not necessarily reflect the 

behaviour of the individual (Chapter 3). Systematic variation in feeder use within species 

could still generate sampling biases in studies of intraspecific variation in behaviour. For 

example, I trapped 32 female blue tits at feeders but 86 males (Chapter 2). There was no 

evidence that sexes differed in average feeder use (Chapter 3), yet females are often 

subordinate to males in Parids (Braillet et al., 2002, Dingemanse and de Goede, 2004). It 

is possible therefore that I sampled only very competitive females. Feeders are often used 

to study personality in the wild (van Overveld and Matthysen, 2010, Herborn et al., 2010, 

Dingemanse and de Goede, 2004, Echeverria et al., 2006). With respect to personality, 

systematic biases in average feeder use between personality types would be a problem. 

Fortunately, consistent with studies on great tits (Dingemanse and de Goede, 2004, van 

Overveld and Matthysen, 2010), in blue tits I found no evidence that personality types 

differed in their average feeder use (chapter 3). This was contrary to expectation as in 

captive studies (Benus et al., 1987, Benus et al., 1988, Verbeek et al., 1994, Marchetti 

and Drent, 2000), neophilic animals are often more prone to routine-formation than 

neophobic animals: a tendency which I expected to translate into feeder dependency in 

the wild. For the purposes of comparing captive behaviour to wild therefore, feeder use 

appears an appropriate method of assaying wild behaviour. 
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However to fully understand personality traits in blue tits, I would need also to 

trap and personality test birds away from feeders. I attempted to trap blue tits away from 

feeders in the 2008-9 field season, but with no success. After mist-netting at each feeding 

station once, in the second of two rotations I mist-netted simultaneously at a permanent 

feeding station and a location that was near low scrubs and 50m from the feeding station 

but otherwise selected at random. On four such mornings of mist-netting, only one re-trap 

blue tit (captive tested already within the season) and non-focal species were trapped at 

the random locations. If non-feeder using blue tits exist I may not therefore have 

described the whole range of personality variation within the blue tit. Wilson and 

colleagues (1993) for example found that bolder pumpkinseed sunfish (Lepomis 

gibbosus) were more likely to enter novel traps than shier fish, which were caught instead 

using indiscriminate seine nets. Had they and other researchers (e.g. Minderman et al. 

2009; Dingemanse et al., 2002) not employed a range of trapping techniques, the full 

spectrum of personality traits within those species would not have been described (see 

also: Boon et al., 2008). 

 

7.3 FINAL THOUGHTS 
 

In this study, I have studied personality in both greenfinches and blue tits. Whilst 

greenfinches are a model species for variation in physiology (e.g. Lindstrom et al., 2003, 

Lindstrom, 2004, Horak et al., 2002), with personality I found consistent differences in 

oxidative profile that have not previously been accounted for. Moreover blue tits, a model 

species for research on breeding behaviour (e.g. Tripet et al., 2002, Arnold et al., 2010) 

differed consistently in their response to environmental cues in the wild. Personality 

variation may therefore represent a missing link in understanding existing literature in 

different fields of research (Careau et al., 2008). 

In this study, I have also sought to test captive behavioural predictions in the wild. 

In some cases, I was able to validate long-held beliefs (Chapter 2) but in others my 

findings have challenged expectations from captive studies (Chapters 3 and 6). In 

captivity, stickleback respond differently to environmental cues dependent on shoal 

composition (Pike et al., 2008, Nomakuchi et al., 2009), their experience (Dingemanse et 

al., 2009) or perception of predation risk (Bell and Sih, 2007) and their experience of 

water turbidity (Odling-Smee and Braithwaite, 2003). The wild environment is infinitely 

more complex than these few variables synthesised in captivity, and the variety of 
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conditions that animals are subject to and learn about in the wild can never truly be 

replicated. As such, I suggest that studies that find ways to test hypotheses in nature are 

crucial to understanding the adaptive significance of variation in response to 

environmental cues when foraging. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



147 
 

REFERENCES 
 

ALLEN, A.J. & HARPER, D.G.C. 2000. Foraging Blue Tits Parus caeruleus may trade of 
calorific value of food items and distance from cover. Bird Study, 47, 232-234 

ALONSO-ALVAREZ, C., BERTRAND, S., DEVEVEY, G., PROST, J., FAIVRE, B., 
CHASTEL, O. & SORCI, G. 2006. An experimental manipulation of life-history 
trajectories and resistance to oxidative stress. Evolution, 60, 1913-1924. 

ALONSO-ALVAREZ, C., BERTRAND, S., DEVEVEY, G., PROST, J., FAIVRE, B. & SORCI, 
G. 2004. Increased susceptibility to oxidative stress as a proximate cost of reproduction. 
Ecology Letters, 7, 363-368. 

APFELBECK, B. & RAESS, M. 2008. Behavioural and hormonal effects of social isolation and 
neophobia in a gregarious bird species, the European starling (Sturnus vulgaris). 
Hormones and Behavior, 54, 435-441. 

ARNOLD, K. E., RAMSAY, S. L., DONALDSON, C. & ADAM, A. 2007. Parental prey 
selection affects risk-taking behaviour and spatial learning in avian offspring. 
Proceedings of the Royal Society B-Biological Sciences, 274, 2563-2569. 

ARNOLD, K. E., Ramsay, S.L., Henderson, L. & Larcombe, S.D. 2010. Seasonal variation in 
diet quality: antioxidants, invertebrates and blue tits Cyanistes caeruleus. Biological 
Journal of the Linnean Society, 99, 708-717. 

ARNQVIST, G. & HENRIKSSON, S. 1997 Sexual cannibalism in the fishing spider and a model 
for the evolution of sexual cannibalism based on genetic constraints. Evolutionary 
Ecology, 11, 255–273 

AVERY, M.L., DECKER, D.G., HUMPHREY, J.S., HAYES, A.A. & C.C. LAUKERT. 1995. 
Color, size, and location of artificial fruits affect sucrose avoidance by Cedar Waxwings 
and European Starlings. AUK, 112, 436-444 

BADDELEY, R. J., OSORIO, D. & JONES, C. D. 2007. Generalization of color by chickens: 
Experimental observations and a Bayesian model. American Naturalist, 169, S27-S41. 

BARTOSZ, G. 2010. Non-enzymatic antioxidant capacity assays: limitations of use in 
biomedicine. Free Radical Research, 44, 711-720. 

BELL, A. M. & SIH, A. 2007. Exposure to predation generates personality in threespined 
sticklebacks (Gasterosteus aculeatus). Ecology Letters, 10, 828-834. 

BELL, A. M. 2005. Behavioural differences between individuals and two populations of 
stickleback (Gasterosteus aculeatus). Journal of Evolutionary Biology, 18, 464-473. 

BENNETT, A.T.D. 1996. Do animals have cognitive maps? The Journal of Experimental 
Biology, 199, 219-224 

BENUS, R. F., BOHUS, B., KOOLHAAS, J. M. & VANOORTMERSSEN, G. A. 1991. 
Heritable variation for aggression as a reflection of individual coping strategies. 
Experientia, 47, 1008-1019. 

BENUS, R. F., DENDAAS, S., KOOLHAAS, J. M. & VANOORTMERSSEN, G. A. 1990. 
Routine formation and flexibility in social and nonsocial behavior of aggressive and 
nonaggressive male-mice. Behaviour, 112, 176-193. 

BENUS, R. F., KOOLHAAS, J. M. & VANOORTMERSSEN, G. A. 1987. Individual-
differences in behavioral reaction to a changing environment in mice and rats. Behaviour, 
100, 105-122. 

BENUS, R. F., KOOLHAAS, J. M. & VANOORTMERSSEN, G. A. 1988. Aggression and 
adaptation to the light-dark cycle – role of intrinsic and extrinsic control. Physiology & 
Behavior, 43, 131-137. 

BERGLUND, A. 1993. Risky sex: male pipefishes mate at random in the presence of a predator. 
Animal Behaviour 46, 169-175 

BERGMAN, A. & FELDMAN, M. 1995. On the evolution of learning: representation of a 
stochastic environment. Theoretical Population Biology, 48, 251–276 

BIRO, P. A. & STAMPS, J. A. 2008. Are animal personality traits linked to life-history 
productivity? Trends in Ecology & Evolution, 23, 361-368. 



148 
 

BIRO, P. A., BECKMANN, C. & STAMPS, J. A. 2010. Small within-day increases in 
temperature affects boldness and alters personality in coral reef fish. Proceedings of the 
Royal Society of London. Series B, Biological Sciences, 277, 71-77. 

BONTE, D., BOSSUYT, B. & LENS, L. 2007. Aerial dispersal plasticity under different wind 
velocities in a salt marsh wolf spider. Behavioral Ecology, 18, 438-443. 

BOOGERT, N. J., READER, S. M. & LALAND, K. N. 2006. The relation between social rank, 
neophobia and individual learning in starlings. Animal Behaviour, 72, 1229-1239. 

BOON, A. K., REALE, D. & BOUTIN, S. 2008. Personality, habitat use, and their consequences 
for survival in North American red squirrels Tamiasciurus hudsonicus. Oikos, 117, 1321-
1328. 

BOTH, C., VAN ASCH, M., BIJLSMA, R. G., VAN DEN BURG, A. B. & VISSER, M. E. 2009. 
Climate change and unequal phenological changes across four trophic levels: constraints 
or adaptations? Journal of Animal Ecology, 78, 73-83. 

BOURNE, G. R. & SAMMONS, A. J. 2008. Boldness, aggression and exploration: evidence for 
a behavioural syndrome in male pentamorphic livebearing fish, Poecilia parae. AACL 
Bioflux, 1, 39-49. 

BOYCE, W.T. & ELLIS, B.J. 2005. Biological sensitivity to context: I. An evolutionary-
defelopmental theory of the origins and functions of stress reativity. Development & 
Psychopathology, 17, 271-301 

BOYER, N., Reale, D., Marmet, J., Pisanu, B. & Chapuis, J.L. 2010. Personality, space use and 
tick load in an intrdfoduced population of Siberian chipmunks Tamias sibiricus. Journal 
of Animal Ecology, 79, 538-547. 

BRAILLET, C., CHARMANTIER, A., ARCHAUX, F., DOS SANTOS, A., PERRET, P. & 
LAMBRECHTS, M. M. 2002. Two blue tit Parus caeruleus populations from Corsica 
differ in social dominance. Journal of Avian Biology, 33, 446-450. 

BRELIN, D., PETERSSON, E., DANNEWITZ, J., DAHL, J. & WINBERG, S. 2008. Frequency 
distribution of coping strategies in four populations of brown trout (Salmo trutta). 
Hormones and Behavior, 53, 546-556. 

BRIFFA, M., RUNDLE, S. D. & FRYER, A. 2008. Comparing the strength of behavioural 
plasticity and consistency across situations: animal personalities in the hermit crab 
Pagurus bernhardus. Proceedings of the Royal Society B-Biological Sciences, 275, 1305-
1311. 

BRITTINGHAM, M.C. & S.A. TEMPLE. 1992. Does winter bird feeding promote dependency? 
Journal of Field Ornithology , 63, 190-194 

BRODBECK, D. R. & SHETTLEWORTH, S. J. 1995. Matching Location and Color of a 
Compound Stimulus - Comparison of a Food-Storing and a Nonstoring Bird Species. 
Journal of Experimental Psychology-Animal Behavior Processes, 21, 64-77. 

BRODBECK, D. R. 1994. Memory for Spatial and Local Cues - a Comparison of a Storing and a 
Nonstoring Species. Animal Learning & Behavior, 22, 119-133. 

BROWN, C., BURGESS, F. & BRAITHWAITE, V. A. 2007. Heritable and experiential effects 
on boldness in a tropical poeciliid. Behavioral Ecology and Sociobiology, 62, 237-243. 

BROWN, C., JONES, F. & BRAITHWAITE, V. 2005. In situ examination of boldness-shyness 
traits in the tropical poeciliid, Brachyraphis episcopi. Animal Behaviour, 70, 1003-1009. 

BROWN, C., JONES, F. & BRAITHWAITE, V. 2005. In situ examination of boldness-shyness 
traits in the tropical poeciliid, Brachyraphis episcopi. Animal Behaviour, 70, 1003-1009. 

BURNS, K.L. & J.C. DALEN. 2002. Foliage colour contrasts and adaptive fruit colour variation 
in a bird-dispersed plant community. OIKOS, 96, 463-469 

BUSS, D. M. 1991. Evolutionary personality psychology. Annual Review of Psychology, 42, 459-
491 

CAMPBELL, D. L. M., WEINER, S. A., STARKS, P. T. & HAUBER, M. E. 2009. Context and 
control: behavioural ecology experiments in the laboratory. Annales Zoologici Fennici, 
46, 112-123. 

CANNON, A. R. 1999. The significance of private gardens for bird conservation. Bird 
Conservations International, 9, 287-297 

CANNON, A.R., CHAMBERLAIN, D.E., TOMS, M.P., HATCHWELL, B.J. & GASTON, K.J. 
2005. Trends in the use of private gardens by wild birds in Great Britain 1995-2002. 
Journal of Applied Ecology, 42, 659-671 



149 
 

CAREAU, V., BININDA-EMONDS, O. R. P., THOMAS, D. W., REALE, D. & HUMPHRIES, 
M. M. 2009. Exploration strategies map along fast-slow metabolic and life-history 
continua in muroid rodents. Functional Ecology, 23, 150-156. 

CAREAU, V., THOMAS, D., HUMPHRIES, M. M. & REALE, D. 2008. Energy metabolism 
and animal personality. Oikos, 117, 641-653. 

CARERE, C., DRENT, P. J., PRIVITERA, L., KOOLHAAS, J. M. & GROOTHUIS, T. G. G. 
2005. Personalities in great tits, Parus major: stability and consistency. Animal 
Behaviour, 70, 795-805. 

CARERE, C., GROOTHUIS, T. G. G., MOSTL, E., DAAN, S. & KOOLHAAS, J. M. 2003. 
Fecal corticosteroids in a territorial bird selected for different personalities: daily rhythm 
and the response to social stress. Hormones and Behavior, 43, 540-548. 

CARERE, C., WELINK, D., DRENT, P. J., KOOLHAAS, J. M. & GROOTHUIS, T. G. G. 2001. 
Effect of social defeat in a territorial bird (Parus major) selected for different coping 
styles. Physiology & Behavior, 73, 427-433. 

CARO, T.M. & BATESON, P. 1986. Organization and ontogeny of alternative tactics. Animal 
Behaviour, 34, 1483 – 1499 

CAVIGELLI, S. A. & MCCLINTOCK, M. K. 2003. Fear of novelty in infant rats predicts adult 
corticosterone dynamics and an early death. Proceedings of the National Academy of 
Sciences of the United States of America, 100, 16131-16136. 

CAVIGELLI, S. A. 2005. Animal personality and health. Behaviour, 142, 1223-1244. 
CHAMBERLAIN, D.E., VICKERY, J.A., GLUE, D.E., ROBINSON, R.A., CONWAY, G.J., 

WOODBURN, R.J.W. & A.R. CANNON. 2005. Annual and seasonal trends in the use of 
garden feeders by birds in winter. IBIS, 147, 563-575 

CHENG, K. 1999. Spatial generalization in honeybees confirms Shepard’s law. Behavioural 
Processes, 44, 309–316 

CHENG, K., SPETCH, M.L., & Johnston, M. 1997. Spatial peak shift and generalization in  
pigeons. Journal of Experimental Psychology: Animal Behavior Processes, 23, 469–481 

CHURCH, R. M. & GIBBON, J. 1982. Temporal generalization. Journal of Experimental 
Psychology: Animal Behavior Processes, 8, 165-186. 

CLARK, A. B. & EHLINGER, T. J. 1987. Pattern and adaptation in individual behavioral 
differences. Perspectives in Ethology, 7, 1-47. 

CLAYTON, N. S. & KREBS, J. R. 1994. One-Trial Associative Memory - Comparison of Food-
Storing and Nonstoring Species of Birds. Animal Learning & Behavior, 22, 366-372. 

COCKREM, J. F. 2007. Stress, corticosterone responses and avian personalities. Journal of 
Ornithology, 148, S169-S178. 

COCKREM, J. F., SILVERIN, B. 2002. Sight of a predator can stimulate a corticosterone 
response in the great tit (Parus major). General Comparative Endocrinology, 125, 248–
255 

COLEMAN, K. & WILSON, D. S. 1998. Shyness and boldness in pumpkinseed sunfish: 
individual differences are context-specific. Animal Behaviour, 56, 927-936. 

COLLETT, T.S. 1987. Insect maps. Trends in Neuroscience, 10, 139-141 
COSTANTINI, D. & DELL'OMO, G. 2006. Environmental and genetic components of oxidative 

stress in wild kestrel nestlings (Falco tinnunculus). Journal of Comparative Physiology 
B-Biochemical Systemic and Environmental Physiology, 176, 575-579. 

COSTANTINI, D. & VERHULST, S. 2009. Does high antioxidant capacity indicate low 
oxidative stress? Functional Ecology, 23, 506-509. 

COSTANTINI, D. 2008. Oxidative stress in ecology and evolution: lessons from avian studies. 
Ecology Letters, 11, 1238-1251. 

COSTANTINI, D., CARDINALE, M. & CARERE, C. 2007. Oxidative damage and anti-oxidant 
capacity in two migratory bird species at a stop-over site. Comparative Biochemistry and 
Physiology C-Toxicology & Pharmacology, 144, 363-371. 

COSTANTINI, D., CARERE, C., CARAMASCHI, D. & KOOLHAAS, J. M. 2008a. Aggressive 
and nonaggressive personalities differ in oxidative status in selected lines of mice (Mus 
musculus). Biology Letters, 4, 119-122. 

COSTANTINI, D., DELL'ARICCIA, G. & LIPP, H. P. 2008b. Long flights and age affect 
oxidative status of homing pigeons (Columba livia). Journal of Experimental Biology, 
211, 377-381. 



150 
 

COTE, J. & CLOBERT, J. 2007. Social personalities influence natal dispersal in a lizard. 
Proceedings of the Royal Society B-Biological Sciences, 274, 383-390. 

COWIE, R.J. & HINSLEY, S.A. 1988. The provision of food and the use of bird feeders in 
suburban gardens. Bird Study, 35, 163-168 

CRAMP, S & PERRINS, C.M. 1994. Handbook of the Birds of Europe, the Middle East and 
North Africa: The Birds of the Western Palaearctic, volumes V, VI,VII, VIII and IX. 
Oxford University Press, Oxford, UK 

CRAWLEY, M. J. 2007. The R book. Wiley and Sons Ltd., Chichester, UK 
CUTTS, C. J., ADAMS, C. E. & CAMPBELL, A. 2001. Stability of physiological and 

behavioural determinants of performance in Arctic char (Salvelinus alpinus). Canadian 
Journal of Fisheries and Aquatic Sciences, 58, 961-968. 

CUTTS, C. J., METCALFE, N. B. & TAYLOR, A. C. 1998. Aggression and growth depression 
in juvenile Atlantic salmon: the consequences of individual variation in standard 
metabolic rate. Journal of Fish Biology, 52, 1026-1037. 

CUTTS, C. J., METCALFE, N. B. & TAYLOR, A. C. 2002. Fish may fight rather than feed in a 
novel environment: metabolic rate and feeding motivation in juvenile Atlantic salmon. 
Journal of Fish Biology, 61, 1540-1548. 

CUTTS, C. J., METCALFE, N. B. & TAYLOR, A. C. 2002. Juvenile Atlantic Salmon (Salmo 
salar) with relatively high standard metabolic rates have small metabolic scopes. 
Functional Ecology, 16, 73-78. 

DALL, S. R. X. & CUTHILL, I. C. 1997. The information costs of generalism. Oikos, 80, 197–
202 

DALL, S. R. X. 2004. Behavioural biology: Fortune favours bold and shy personalities. Current 
Biology, 14, R470-R472. 

DALL, S. R. X., HOUSTON, A. I. & MCNAMARA, J. M. 2004. The behavioural ecology of 
personality: consistent individual differences from an adaptive perspective. Ecology 
Letters, 7, 734-739. 

DALL, S.R.X., & JOHNSTONE, R.A. 2002. Managing uncertainty: information and insurance 
under the risk of starvation. Philosophical Transactions of the Royal Society of London 
series B, 357, 1519-1526 

DALL, S.R.X., GIRALDEAU, L.A., OLSSON, O., MCNAMARA, J.M. & STEPHENS, D.W. 
2004. Information and its use by animals in evolutionary ecology. Trends in Ecology & 
Evolution 20: 187-193 

DALLY, J. M., CLAYTON, N. S. & EMERY, N. J. 2006. The behaviour and evolution of cache 
protection and pilferage. Animal Behaviour, 72, 13-23. 

DARWIN, C. (1859). On the Origin of Species by means of Natural Selection or the Preservation 
of Favored Races in the Struggle for Life. J. Murray, London. 

DAWKINS, M. 1971. Perceptual Changes in Chicks - Another Look at Search Image Concept. 
Animal Behaviour, 19, 566-&. 

DEWITT, T. J., SIH, A. & WILSON, D. S. 1998. Costs and limits of phenotypic plasticity. 
Trends in Ecology & Evolution, 13, 77-81. 

DEWITT, T.J. & SCHEINER, S.M. 2004. Plasticity. Functional and Conceptual Approaches, 
New York, NY, USA: Oxford University Press. 

DINGEMANSE, N. J. & DE GOEDE, P. 2004. The relation between dominance and exploratory 
behavior is context-dependent in wild great tits. Behavioral Ecology, 15, 1023-1030. 

DINGEMANSE, N. J., BOTH, C., DRENT, P. J. & TINBERGEN, J. M. 2004. Fitness 
consequences of avian personalities in a fluctuating environment. Proceedings of the 
Royal Society of London Series B-Biological Sciences, 271, 847-852. 

DINGEMANSE, N. J., BOTH, C., DRENT, P. J., VAN OERS, K. & VAN NOORDWIJK, A. J. 
2002. Repeatability and heritability of exploratory behaviour in great tits from the wild. 
Animal Behaviour, 64, 929-938. 

DINGEMANSE, N. J., BOTH, C., VAN NOORDWIJK, A. J., RUTTEN, A. L. & DRENT, P. J. 
2003. Natal dispersal and personalities in great tits (Parus major). Proceedings of the 
Royal Society of London Series B-Biological Sciences, 270, 741-747. 

DINGEMANSE, N. J., KAZEM, A. J. N., REALE, D. & WRIGHT, J. 2010. Behavioural 
reaction norms: animal personality meets individual plasticity. Trends in Ecology & 
Evolution, 25, 81-89. 



151 
 

DINGEMANSE, N. J., WRIGHT, J., KAZEM, A. J. N., THOMAS, D. K., HICKLING, R. & 
DAWNAY, N. 2007. Behavioural syndromes differ predictably between 12 populations 
of three-spined stickleback. Journal of Animal Ecology, 76, 1128-1138. 

DOTAN, Y., LICHTENBERG, D. & PINCHUK, I. 2004. Lipid peroxidation cannot be used as a 
universal criterion of oxidative stress. Progress in Lipid Research, 43, 200-227. 

DRENT, P. J., VAN OERS, K. & VAN NOORDWIJK, A. J. 2003. Realized heritability of 
personalities in the great tit (Parus major). Proceedings of the Royal Society of London 
Series B-Biological Sciences, 270, 45-51. 

DRENT, R. H. & DAAN, S. 1980. The prudent parent – energetic adjustments in avian breeding. 
Ardea, 68, 225-252. 

ECHEVERRIA, A. I., VASSALO, A. I. & ISACCH, J. P. 2006. Experimental analysis of novelty 
responses in a bird assemblage inhabiting a suburban marsh. Canadian Journal of 
Zoology-Revue Canadienne De Zoologie, 84, 974-980. 

ELLIS, B. J., JACKSON, J. J. & BOYCE, W. T. 2006. The stress response systems: Universality 
and adaptive individual differences. Developmental Review, 26, 175-212. 

ENDLER, J. A. 1993. The colour of light in forests and its implications. Ecology Monographs, 
63, 1-27 

ENDLER, J. A., BASOLO, A., GLOWACKI, S. & ZERR, J. 2001. Variation in response to 
artificial selection for light sensitivity in guppies (Poecilia reticulata). American 
Naturalist, 158, 36-48. 

EWALDS-KWIST, S.B.N& SEALNDER, R.K. 1996. Lifespans in mice from strains selected for 
high or low aggression. Aggressive Behavior, 22, 457-464 

EXNEROVA, A., LANDOVA, E., STYS, P., FUCHS, R., PROKOPOVA, M. & 
CEHLARIKOVA, P. 2003. Reactions of passerine birds to aposematic and non-
aposematic firebugs (Pyrrhocoris apterus; Heteroptera). Biological Journal of the 
Linnean Society, 78, 517-525 

EXNEROVA, A., SVADOVA, K. H., FUCIKOVA, E., DRENT, P. & STYS, P. 2010. 
Personality matters: individual variation in reactions of naive bird predators to 
aposematic prey. Proceedings of the Royal Society B-Biological Sciences, 277, 723-728. 

FAIRBANKS, L. A. 1993. Risk-Taking by Juvenile Vervet Monkeys. Behaviour, 124, 57-72. 
FARWELL, M. & MCLAUGHLIN, R. L. 2009. Alternative foraging tactics and risk taking in 

brook charr (Salvelinus fontinalis). Behavioral Ecology, 20, 913-921. 
FERGUSON, M., REBRIN, I., FORSTER, M. J. & SOHAL, R. S. 2008. Comparison of 

metabolic rate and oxidative stress between two different strains of mice with varying 
response to caloric restriction. Experimental Gerontology, 43, 757-763. 

FIDLER, A. E., VAN OERS, K., DRENT, P. J., KUHN, S., MUELLER, J. C. & 
KEMPENAERS, B. 2007. Drd4 gene polymorphisms are associated with personality 
variation in a passerine bird. Proceedings of the Royal Society B-Biological Sciences, 
274, 1685-1691 

FINKEL, T. & HOLBROOK, N. J. 2000. Oxidants, oxidative stress and the biology of ageing. 
Nature, 408, 239-247 

FLEISCHER, A.L., BOWMAN, R., & WOOLFENDEN, G.E. 2003. Variation in foraging 
behaviour, diet, and time of breeding in Florida scrub-jays in suburban and wildland 
habitats. Condor, 105, 515-527 

FRAISSE, F. & COCKREM, J. F. 2006. Corticosterone and fear behaviour in white and brown 
caged laying hens. British Poultry Science, 47, 110-119. 

FRASER, D. F., GILLIAM, J. F., DALEY, M. J., LE, A. N. & SKALSKI, G. T. 2001. Explaining 
leptokurtic movement distributions: Intrapopulation variation in boldness and 
exploration. American Naturalist, 158, 124-135. 

FREIDIN, E., CUELLO, M.I. & KACELNIK, A. 2009. Successive negative contrast in a bird: 
starlings’ behaviour after unpredictable negative changes in food quality. Animal 
Behaviour, 77, 857-865. 

FROST, A. J., WINROW-GIFFEN, A., ASHLEY, P. J. & SNEDDON, L. U. 2007. Plasticity in 
animal personality traits: does prior experience alter the degree of boldness? Proceedings 
of the Royal Society B-Biological Sciences, 274, 333-339. 

GAMBERALE, G. & TULLBERG, B. S. 1996. Evidence for a peak-shift in predator 
generalization among aposematic prey. Proceedings of the Royal Society of London 
Series B-Biological Sciences, 263, 1329-1334. 



152 
 

GAMBERALE-STILLE, G. & GUILFORD, T. 2003. Contrast versus colour in aposematic 
signals, Animal Behaviour, 65, 1021-1026. 

GOSLING, S. D. 1998. Personality dimensions in spotted hyenas (Crocuta crocuta). Journal of 
Comparative Psychology, 112, 107-118. 

GOSLING, S. D. 2001. From mice to men: What can I waslearn about personality from animal 
research? Psychological Bulletin, 127, 45-86. 

GREENBERG, R. 1983. The Role of Neophobia in Determining the Degree of Foraging 
Specialization in Some Migrant Warblers. American Naturalist, 122, 444-453. 

GREENBERG, R. 1995. Novelty Responses - the Bridge between Psychology, Behavioral 
Ecology and Community Ecology. Trends in Ecology & Evolution, 10, 165-166. 

GRIECO, F., VAN NOORDWIJK, A. J. & VISSER, M. E. 2002. Evidence for the effect of 
learning on timing of reproduction in blue tits. Science, 296, 136-138. 

GROOTHUIS, T. G. G. & CARERE, C. 2005. Avian personalities: characterization and 
epigenesis. Neuroscience and Biobehavioral Reviews, 29, 137-150. 

HADFIELD, J. D., BURGESS, M.D., LORD, A., PHILLIMORE, A.B., CLEGG, S.M. & 
OWENS, I.P.F. 2006. Direct versus indirect sexual selection: genetic basis of colour, size 
and recruitment in a wild bird. Proceedings of the Royal Society B-Biological Sciences, 
273, 1347-1353. 

HAKE, M.K. 1996. Fattening strategies in dominance-structured greenfinch (Carduelis chloris) 
flocks in winter. Behaviour, Ecology and Sociobiology, 39, 71–76 

HARMAN, D. 1956. Aging - a Theory Based on Free-Radical and Radiation-Chemistry. Journals 
of Gerontology, 11, 298-300. 

HARTLEY, L., O’CONNER, C., WAAS, J. & L. MATTHEWS. 2000. Colour preferences and 
coloured bait consumption by weak Gallirallus australis, an endemic New Zealand rail. 
Biological Conservation, 93, 255-263 

HEALY, S. D. 1995. Memory for Objects and Positions - Delayed Non-Matching-to-Sample in 
Storing and Nonstoring Tits. Quarterly Journal of Experimental Psychology Section B-
Comparative and Physiological Psychology, 48, 179-191. 

HERBERS, J.R., SERROUYA, R. & MAXCY, K.A. 2004. Effects of elevation and forest cover 
on winter birds in mature forest ecosystems of southern British Columbia. Canadian 
Journal of Zoology, 82, 1720-1730. 

HERBORN, K. A., MACLEOD, R., MILES, W. T. S., SCHOFIELD, A. N. B., ALEXANDER, 
L. & ARNOLD, K. E. 2010. Personality in captivity reflects personality in the wild. 
Animal Behaviour, 79, 835-843. 

HILTON, S. C. & KREBS, J. K. 1990. SPATIAL MEMORY OF 4 SPECIES OF PARUS - 
PERFORMANCE IN AN OPEN-FIELD ANALOG OF A RADIAL MAZE. Quarterly 
Journal of Experimental Psychology Section B-Comparative and Physiological 
Psychology, 42, 345-368. 

HINSLEY, S.A. 2000. The costs of multiple patch use by birds. Landscape Ecology, 15, 765-775 
HINSLEY, S.A., BELLAMY, P.E. & D. MOSS. 1995. Sparrowhawk Accipiter nisus predation 

and feeding site selection by tits. IBIS, 137, 418-420 
HODGSON, Z. G. & HEALY, S. D. 2005. Preference for spatial cues in a non-storing songbird 

species. Animal Cognition, 8, 211-214. 
HOGLUND, E., GJOEN, H. M., POTTINGER, T. G. & OVERLI, O. 2008. Parental stress-

coping styles affect the behaviour of rainbow trout Oncorhynchus mykiss at early 
developmental stages. Journal of Fish Biology, 73, 1764-1769. 

HOLLANDER, F. A., VAN OVERVELD, T., TOKKA, I. & MATTHYSEN, E. 2008. 
Personality and nest defence in the great tit (Parus major). Ethology, 114, 405-412. 

HONKAVAARA, J., SIITARI, H. & VIITALA, J. 2004. Fruit colour preferences of  Redwings 
(Turdus iliacus): Experiments with Hand-raised Juveniles and Wild-caught Adults. 
Ethology, 110, 445-457 

HORAK, P., OTS, I., SAKS, L. & ULVI, K. 2006. Immune function, carotenoids, and 
antioxidant defenses in captive Greenfinches. Journal of Ornithology, 147, 183-183. 

HORAK, P.L., SAKS, L., OTS, I. & KOLLIST, H. 2002. Repeatability of condition indices in 
captive greenfinches (Carduelis chloris). Canadian Journal of Zoology-Revue 
Canadienne De Zoologie, 80, 636-643. 



153 
 

HULBERT, A. J., PAMPLONA, R., BUFFENSTEIN, R. & BUTTEMER, W. A. 2007. Life and 
death: Metabolic rate, membrane composition, and life span of animals. Physiological 
Reviews, 87, 1175-1213. 

HUMBER, J. M., BRODBECK, D. R. & WARKENTIN, I. G. 2009. Use of spatial and colour 
cues by foraging pine siskins (Carduelis pinus): A field study. Behavioural Processes, 80, 
233-237. 

HUNT, S., BENNETT, A.T.D., CUTHILL, I.C. & GRIFFITHS, R. 1998. Blue tits are ultraviolet 
tits. Proceedings of the Royal Society of London Series B-Biological Sciences, 265, 451-
455. 

HUNTINGFORD, F. A. 1976. Relationship between Anti-Predator Behavior and Aggression 
among Conspecifics in 3-Spined Stickleback, Gasterosteus-Aculeatus. Animal Behaviour, 
24, 245-260. 

JENNI, L. & WINKLER, R. 1994. Moult and Ageing of European Passerines. Academic Press, 
London, UK 

JOHNSEN, A., FIDLER, A.E., KUHN, S et al. 2007. Avian Clock gene polymorphism: evidence 
for a latitudinal cline in allele frequencies. Molecular Ecology, 16, 4867–4880  

JOHNSON, J. C. & SIH, A. 2007. Fear, food, sex and parental care: a syndrome of boldness in 
the fishing spider, Dolomedes triton. Animal Behaviour, 74, 1131-1138. 

JOHNSTON, T. D. 1982. Selective costs and benefits in the evolution of learning. Advances in 
the Study of Behaviour, 12, 65–106 

JONES, D.N. 2002. Magpie Alert: Learning to Live with a Wild Neighbour. NSW University 
Press, Sydney, Australia 

JONES, K. A. & GODIN, J. G. J. 2010. Are fast explorers slow reactors? Linking personality 
type and anti-predator behaviour. Proceedings of the Royal Society B-Biological 
Sciences, 277, 625-632. 

JONES, K. A. & WHITTINGHAM, M. J. 2008. Anti-Predator Signals in the Chaffinch Fringilla 
coelebs in Response to Habitat Structure and Different Predator Types. Ethology, 114, 
1033-1043. 

KELLY, D.J. & N.M. MARPLES. 2004. The effects of novel odour and colour cues on food 
acceptance by the zebra finch, Taeniopygia guttata. Animal Behaviour, 68, 1049-1054 

KLOPFER, P.H. & MACARTHUR, R.H. 1960. Niche size and faunal diversity. American 
Naturalist, 94, 293-300 

KOMERS, P.E. 1997. Behavioural plasticity in variable environments. Canadian Journal of 
Zoology, 75, 161-169 

KOOLHAAS, J. M., KORTE, S. M., DE BOER, S. F., VAN DER VEGT, B. J., VAN REENEN, 
C. G., HOPSTER, H., DE JONG, I. C., RUIS, M. A. W. & BLOKHUIS, H. J. 1999. 
Coping styles in animals: current status in behavior and stress-physiology. Neuroscience 
and Biobehavioral Reviews, 23, 925-935. 

KORSTEN, P., MUELLER, J. C., HERMANNSTADTER, C., BOUWMAN, K. M., 
DINGEMANSE, N. J., DRENT, P. J., LIEDVOGEL, M., MATTHYSEN, E., VAN 
OERS, K., VAN OVERVELD, T., PATRICK, S. C., QUINN, J. L., SHELDON, B. C., 
TINBERGEN, J. M. & KEMPENAERS, B. 2010. Association between DRD4 gene 
polymorphism and personality variation in great tits: a test across four wild populations. 
Molecular Ecology, 19, 832-843. 

KORTE, S.M., KOOLHAAS, J.M., WINGFIELD, J.C. & MCEWEN, B.S. 2005. The Darwinian 
concept of stress: benefits of allostasis and costs of allostatic load and the trade-offs in 
health and disease. Neuroscience and Biobehavioral Reviews, 29, 3-38 

KRALJ-FISER, S., SHEIBER, I.B.R., BLEJEC, A., MOESTL, E. & KOTRSCHAL, K. 2006. 
Individualities in a flock of free roaming greylag geese: Behavioral and physiological 
consistency over time and across situations. Hormones and Behavior, 51,239-248 

KRAMS, I. 2001. Seeing without being seen: a removal experiment with mixed flocks of Willow 
and Crested Tits Parus montanus and cristatus. IBIS, 143, 476-481 

KREBS, J. R. 1990. Food-storing birds – adaptive specialization in brain and behaviour. 
Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 
329, 153-160. 

KREBS, J.R. & DAVIS, N.B. 1997. Behavioural Ecology, Blackwell Science, Oxford, UK 



154 
 

KROL, E. & SPEAKMAN, J. R. 2003. Limits to sustained energy intake VI. Energetics of 
lactation in laboratory mice at thermoneutrality. Journal of Experimental Biology, 206, 
4255-4266. 

LADAGE, L. D., ROTH, T. C., FOX, R. A. & PRAVOSUDOV, V. V. 2009. Flexible cue use in 
food-caching birds. Animal Cognition, 12, 419-426. 

LARCOMBE, S. D., COFFEY, J. S., BANN, D., ALEXANDER, L. & ARNOLD, K. E. 2010. 
Impacts of dietary antioxidants and flight training on post-exercise oxidative damage in 
adult parrots. Comparative Biochemistry and Physiology B-Biochemistry & Molecular 
Biology, 155, 49-53. 

LAWRENCE, E. S. 1986. Can great tits (Parus major) acquire search images. Oikos, 47, 3-12. 
LESSELLS, C. M. & BOAG, P. T. 1987. Unrepeatable Repeatabilities - a Common Mistake. 

Auk, 104, 116-121. 
LIEDVOGEL, M., SZULKIN, M., KNOWLES, S. C. L., WOOD, M. J. & SHELDON, B. C. 

2009. Phenotypic correlates of Clock gene variation in a wild blue tit population: 
evidence for a role in seasonal timing of reproduction. Molecular Ecology, 18, 2444-
2456. 

LIN, H., DECULYPERE, E. & BUYSE, J. 2004a. Oxidative stress induced by corticosterone 
administration in broiler chickens (Gallus gallus domesticus) - 2. Short-term effect. 
Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 139, 
745-751. 

LIN, H., DECUYPERE, E. & BUYSE, J. 2004b. Oxidative stress induced by corticosterone 
administration in broiler chickens (Gallus gallus domesticus) - 1. Chronic exposure. 
Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 139, 
737-744. 

LINDEN, M., GUSTAFSSON, L. & PART, T. 1992. Selection on Fledging Mass in the Collared 
Flycatcher and the Great Tit. Ecology, 73, 336-343. 

LINDSTROM, K.M. 2004. Social status in relation to Sindbis virus infection clearance in 
greenfinches. Behavioral Ecology and Sociobiology, 55, 236-241. 

LINDSTROM, K.M., VAN DER VEEN, I.T., LEGAULT, B.A. & LUNDSTROM, J.O. 2003. 
Activity and predator escape performance of Common Greenfinches Carduelis chloris 
infected with Sindbis virus. Ardea, 91, 103-111. 

LINDSTROM, L., ALATALO, R.V. & MAPPES, J. 1999. Reactions of hand-reared and wild-
caught predators toward warningly colored gregarious, and conspicuous prey. 
Behavioural Ecology , 10, 317-322 

LOVEGROVE, B. G. 2000. The zoogeography of mammalian basal metabolic rate. American 
Naturalist, 156, 201-219. 

MACARTHUR, R.H. & PIANKA, E.R. 1966. On optimal use of a patchy environment. American 
Naturalist, 100, 603-609 

MACLEOD, R., GOSLER, A. G. & CRESSWELL, W. 2005. Diurnal mass gain strategies and 
perceived predation risk in the great tit Parus major. Journal of Animal Ecology, 74, 956-
964. 

MANGEL, M. 1990. Dynamic information in uncertain and changing worlds. Journal of 
Theoretical Biology, 146, 317–332. 

MARCHETTI, C. & DRENT, P. J. 2000. Individual differences in the use of social information 
in foraging by captive great tits. Animal Behaviour, 60, 131-140. 

MARPLES, N.M., ROPER, T.J. & HARPER, D.G.C. 1998. Responses of wild birds to novel 
prey: evidence of dietary conservatism. OIKOS, 83, 161-165 

MARTIN, J. G. A. & REALE, D. 2008. Temperament, risk assessment and habituation to novelty 
in eastern chipmunks, Tamias striatus. Animal Behaviour, 75, 309-318. 

MARTIN, L.B. & FITZGERALD, L. 2005. A taste for novelty in invading house sparrows, 
Passer domesticus. Behavioral Ecology , 16, 702-707 

MARTINS, T. L. F., ROBERTS, M. L., GIBLIN, I., HUXHAM, R. & EVANS, M. R. 2007. 
Speed of exploration and risk-taking behavior are linked to corticosterone titres in zebra 
finches. Hormones and Behavior, 52, 445-453. 

MAYNARD SMITH, J. 1982. Evolution and the theory of games. Cambridge: Cambridge 
University Press. 

MAYNARD-SMITH, J. 1966. Sympatric Speciation. The American Naturalist, 100, 637. 



155 
 

MCGREGOR, A. & HEALY, S. D. 1999. Spatial accuracy in food-storing and nonstoring birds. 
Animal Behaviour, 58, 727-734. 

MCNAMARA, J. & HOUSTON, A. 1980. The Application of Statistical Decision-Theory to 
Animal Behavior. Journal of Theoretical Biology, 85, 673-690. 

MCNAMARA, J. M., STEPHENS, P. A., DALL, S. R. X. & HOUSTON, A. I. 2009. Evolution 
of trust and trustworthiness: social awareness favours personality differences. 
Proceedings of the Royal Society B-Biological Sciences, 276, 605-613. 

MENNERAT, A., PERRET, P., BOURGAULT, P., BLONDEL, J., GIMENEZ, O., THOMAS, 
D.W., HEEB, P. & LAMBRECHTS, M.M. 2009. Aromatic plants in nests of blue tits: 
positive effects on nestlings. Animal Behaviour, 77, 569-574. 

METCALFE, N. B., HUNTINGFORD, F. A., GRAHAM, W. D. & THORPE, J. E. 1989. Early 
social status and the development of life-history strategies in Atlantic salmon. 
Proceedings of the Royal Society of London B, 236, 7-19 

METTKE-HOFMANN, C. & GWINNER, E. 2004. Differential assessment of environmental 
information in a migratory and a nonmigratory passerine. Animal Behaviour, 68, 1079-
1086. 

METTKE-HOFMANN, C., LORENTZEN, S., SCHLICHT, E., SCHNEIDER, J. & WERNER, 
F. 2009. Spatial Neophilia and Spatial Neophobia in Resident and Migratory Warblers 
(Sylvia). Ethology, 115, 482-492. 

METTKE-HOFMANN, C., ROWE, K. C., HAYDEN, T. J. & CANOINE, V. 2006. Effects of 
experience and object complexity on exploration in garden warblers (Sylvia borin). 
Journal of Zoology, 268, 405-413. 

METTKE-HOFMANN, C., WINK, M., WINKLER, H. & LEISLER, B. 2005. Exploration of 
environmental changes relates to lifestyle. Behavioral Ecology, 16, 247-254. 

METTKE-HOFMANN, C., WINKLER, H. & LEISLER, B. 2002. The significance of ecological 
factors for exploration and neophobia in parrots. Ethology, 108, 249-272. 

MIKLOSI, A., GONDA, Z.S., OSORIO, D. & FARZIN, A. 2002. The effects of the visual 
environment on responses to colour by domestic chicks. The Journal of Comparative 
Physiology A, 188, 135-140. 

MINDERMAN, J., REID, J. M., EVANS, P. G. H. & WHITTINGHAM, M. J. 2009. Personality 
traits in wild starlings: exploration behavior and environmental sensitivity. Behavioral 
Ecology, 20, 830-837. 

MITCHELL, W. A. 1989. Informational constraints on optimally foraging hummingbirds. Oikos, 
55, 145-154. 

MONAGHAN, P., METCALFE, N. B. & TORRES, R. 2009. Oxidative stress as a mediator of 
life history trade-offs: mechanisms, measurements and interpretation. Ecology Letters, 
12, 75-92. 

MOREBY, S.J., AEBISCHER, N.J. & SOUTHWAY, S. Food preferences of grey partridge 
chicks, Perdix perdix, in relation to size, colour and movement of insect prey. Animal 
Behaviour, 71, 871-878 

MULLER, C., JENNI-EIERMANN, S., BLONDEL, J., PERRET, P., CARO, S. P., 
LAMBRECHTS, M. & JENNI, L. 2006. Effect of human presence and handling on 
circulating corticosterone levels in breeding blue tits (Parus caeruleus). Gen Comp 
Endocrinol, 148, 163-71. 

NATOLI, E., SAY, L., CAFAZZO, S., BONANNI, R., SCHMID, M. & PONTIER, D. 2005. 
Bold attitude makes male urban feral domestic cats more vulnerable to Feline 
Immunodeficiency Virus. Neuroscience and Biobehavioral Reviews, 29, 151-157. 

NETTLE, D. 2006. The evolution of personality variation in humans and other animals. American 
Psychology, 61, 622–631 

NEWTON, I. 1972. Finches - The New Naturalist. Collins, London, UK 
NOMAKUCHI, S., PARK, P. J. & BELL, M. A. 2009. Correlation between exploration activity 

and use of social information in three-spined sticklebacks. Behavioral Ecology, 20, 340-
345. 

NUSSEY, D. H., POSTMA, E., GIENAPP, P. & VISSER, M. E. 2005. Selection on heritable 
phenotypic plasticity in a wild bird population. Science, 310, 304-306. 

NUSSEY, D. H., POSTMA, E., GIENAPP, P. & VISSER, M. E. 2005. Selection on heritable 
phenotypic plasticity in a wild bird population. Science, 310, 304-306. 



156 
 

O’KEEFE, J. & NADEL, L. 1978. The hippocampus as a cognitive map. Oxford University 
Press, Oxford, UK 

O’LEARY, R. & JONES, D. N. 2006. The use of supplementary foods by Australian magpies 
Gymnorhina tibicen: Implications for wildlife feeding in suburban environments. 
Australian Ecology, 31, 208-216 

ODLING-SMEE, L. & BRAITHWAITE, V. A. 2003. The influence of habitat stability on 
landmark use during spatial learning in the three-spined stickleback. Animal Behaviour, 
65, 701-707. 

OSORIO, D., VOROBYEV, M. & JONES, C.D. 1999. Colour vision of domestic chicks. The 
Journal of Experimental Biology, 202, 2951-2959 

OVERLI, O., SORENSEN, C., PULMAN, K. G. T., POTTINGER, T. G., KORZAN, W., 
SUMMERS, C. H. & NILSSON, G. E. 2007. Evolutionary background for stress-coping 
styles: Relationships between physiological, behavioral, and cognitive traits in non-
mammalian vertebrates. Neuroscience and Biobehavioral Reviews, 31, 396-412. 

PELLEGRINI, A.F.A., WISENDEN, B.D. & SORENSEN, P.W. 2010. Bold minnows 
consistently approach danger in the field and lab in response to either chemical or visual 
indicators of predation risk. Behavioral Ecology and Sociobiology, 64, 381-387. 

PETERSEN, K. & SHERRY, D. F. 1996. No sex difference occurs in hippocampus, food-storing, 
or memory for food caches in black-capped chickadees. Behavioural Brain Research, 79, 
15-22. 

PIKE, T. W., SAMANTA, M., LINDSTROM, J. & ROYLE, N. J. 2008. Behavioural phenotype 
affects social interactions in an animal network. Proceedings of the Royal Society B-
Biological Sciences, 275, 2515-2520. 

POLO, V. & BAUTISTA, L.M. 2002. Daily body mass regulation in dominance structured coal 
tit (Parus ater) flocks in response to variable food access: a laboratory study. Behavioral 
Ecology, 13, 696–704 

PYKE, G.H. Optimal foraging theory: A critical review. Annual Review of Ecology and 
Systematics, 15, 523-575 

QUINN, J. L. & CRESSWELL, W. 2005. Personality, anti-predation behaviour and behavioural 
plasticity in the chaffinch Fringilla coelebs. Behaviour, 142, 1377-1402. 

QUINN, J.L., PATRICK, S.C., BOUWHUIS, S., WILKIN, T.A. & SHELDON, B.C. 2009. 
Heterogeneous selection on a heritable temperament trait in a variable environment. 
Journal of Animal Ecology, 78,1203–1215 

RAMSAY, S.L. & HOUSTON, D.C. 2003. Amino acid composition of some woodland 
arthropods and its implications for breeding tits and other passerines. Ibis, 145, 227-232 

REALE, D. & FESTA-BIANCHET, M. 2003. Predator-induced natural selection on temperament 
in bighorn ewes. Animal Behaviour, 65, 463-470. 

REALE, D., GALLANT, B. Y., LEBLANC, M. & FESTA-BIANCHET, M. 2000. Consistency 
of temperament in bighorn ewes and correlates with behaviour and life history. Animal 
Behaviour, 60, 589-597. 

REED, T. E., WARZYBOK, P., WILSON, A. J., BRADLEY, R. W., WANLESS, S. & 
SYDEMAN, W. J. 2009. Timing is everything: flexible phenology and shifting selection 
in a colonial seabird. Journal of Animal Ecology, 78, 376-387. 

RICH, E.L. & ROMERO, M. 2005. Exposure to chronic stress downregulates corticosterone 
responses to acute stressors. American Journal of Physiological Regulation and 
Integrated Comparative Physiology, 288, R1628-R1636 

RICHARD, S., WACRENIER-CERE, N., HAZARD, D., SAINT-DIZIER, H., ARNOULD, C. & 
FAURE, J. M. 2008. Behavioural and endocrine fear responses in Japanese quail upon 
presentation of a novel object in the home cage. Behavioural Processes, 77, 313-319. 

ROWE, C. & SKELHORN, J. 2004. Avian psychology and communication. Proceedings of the 
Royal Society of London series B, 271, 1435-1442. 

RUIZ-GOMEZ, M. D., KITTILSEN, S., HOGLUND, E., HUNTINGFORD, F. A., SORENSEN, 
C., POTTINGER, T. G., BAKKEN, M., WINBERG, S., KORZAN, W. J., & ØVERLI, 
Ø. 2008. Behavioral plasticity in rainbow trout (Oncorhynchus mykiss) with divergent 
coping styles: When doves become hawks. Hormones and Behavior, 54, 534-538. 

RUXTON, G.D., SHERRATT, T.N. & SPEED, M.P. 2004. Avoiding Attack – The Evolutionary 
Ecology of Crypsis, Warning Signals and Mimicry. Oxford University Press, 
Chippenham, UK 



157 
 

SANDLIN, E.A. 2000. Cue use affects resource subdivision among three coexisting 
hummingbird species. Behavioural Ecology, 11, 550-559 

SANFORD, K. & CLAYTON, N. S. 2008. Motivation and memory in zebra finch (Taeniopygia 
guttata) foraging behavior. Animal Cognition, 11, 189-198. 

SANZ, J. J. 2002. Climate change and breeding parameters of great and blue tits throughout the 
western Palaearctic. Global Change Biology, 8, 409-422. 

SCAPINI, F. 1988. Heredity and learning in animal orientation. Monitore Zoologia Italiano (NS), 
22, 203-234. 

SCHAEFER, H.M. & SCHMIDT, V. 2004. Detectability and content as opposing signal 
characteristics in fruits. Proceedings of the Royal Society of London Series B. (Suppl.), 
271, S370-S373. 

SCHAEFER, H.M., LEVEY, D.J., SCHAEFER, V. & AVERY, M.L. 2006. The role of 
chromatic and achromatic signals for fruit detection by birds. Behavioral Ecology, 17, 
784-789. 

SCHINKA, J.A., LETSCH, E.A. & CRAWFORD, F.C. 2002. DRD4 and novelty seeking: results 
of meta-analyses. American Journal of Medical Genetics, 114, 643–648. 

SCHINKA, J.A., LETSCH, E.A., CRAWFORD, F.C. 2002. DRD4 and novelty seeking: results 
of meta-analyses. American Journal of Medical Genetics, 114, 643–648 

SCHMIDT, V., SCHAEFER, H.M. & WINKLER, H. 2004. Conspicuousness, not colour as 
foraging cue in plant-animal signalling. OIKOS, 106, 551-557 

SCHUETT, W. & DALL, S. R. X. 2009. Sex differences, social context and personality in zebra 
finches, Taeniopygia guttata. Animal Behaviour, 77, 1041-1050. 

SEPP, T., SILD, E. & HORAK, P. 2010. Hematological Condition Indexes in Greenfinches: 
Effects of Captivity and Diurnal Variation. Physiological and Biochemical Zoology, 83, 
276-282. 

SHEPARD, R.N. 1987. Toward a universal law of generalization for psychological science. 
Science, 237, 1317–1323 

SHETTLEWORTH, S. J. & WESTWOOD, R. P. 2002. Divided attention, memory, and spatial 
discrimination in food-storing and nonstoring birds, black-capped chickadees (Poecile 
atricapilla) and dark-eyed juncos (Junco hyemalis). Journal of Experimental Psychology-
Animal Behavior Processes, 28, 227-241. 

SHETTLEWORTH, S. J. 2005. Taking the best for learning. Behavioural Processes, 69, 147-
149. 

SIH, A., BELL, A. M., JOHNSON, J. C. & ZIEMBA, R. E. 2004. Behavioral syndromes: An 
integrative overview. Quarterly Review of Biology, 79, 241-277. 

SIH, A., KATS, L. B. & MOORE, R. D. 1992. Effects of predatory sunfish on the density, drift 
and refuge use of stream salamander larvae. Ecology, 73, 1418-1430. 

SINN, D. L., MOLTSCHANIWSKYJ, N. A., WAPSTRA, E. & DALL, S. R. X. 2010. Are 
behavioral syndromes invariant? Spatiotemporal variation in shy/bold behavior in squid. 
Behavioral Ecology and Sociobiology, 64, 693-702. 

SIRIWARDENA, G.M., CALBRADE, N.A., VICKERY, J.A. & SUTHERLAND, W.J. 2006. 
The effect of the spatial distribution of winter seed food resources on their use by 
farmland birds. Journal of Applied Ecology, 43, 628-639 

SOKAL, R. R. & ROHLF, F. J. 1995. Biometry, 3rd edn. Freeman, San Francisco, CA 
STAMPS, J.A. 2007. Growth-mortality tradeoffs and ‘personality traits’ in animals. Ecology 

Letters, 10, 355–363 
STEPHENS, D. W. 1989. Variance and the value of information. American Naturalist, 134, 128–

140 
STOWE, M., BUGNYAR, T., LORETTO, M. C., SCHLOEGL, C., RANGE, F. & 

KOTRSCHAL, K. 2006. Novel object exploration in ravens (Corvus corax): Effects of 
social relationships. Behavioural Processes, 73, 68-75. 

SULIKOWSKI, D. & BURKE, D. 2007. Food-specific memory biases in an omnivorous bird. 
Biology Letters 3, 245-248. 

SULIKOWSKI, D. & BURKE, D. 2010. Reward type influences performance and search 
structure of an omnivorous bird in an open-field maze. Behavioural Processes, 83, 31-35. 

SWADDLE, J. P., CHE, J. P. K. & CLELLAND, R. E. 2004. Symmetry preference as a cognitive 
by-product in starlings. Behaviour, 141, 469-478. 



158 
 

TEBBICH, S., FESSL, B. & BLOMQVIST, D. 2009. Exploration and ecology in Darwin’s 
finches. Evolutionary Ecology, 23, 591-605 

TERRACCIANO, A., SANNA, S., UDA, M., DIEANA, B., USALA, G., BUSONERO, F., 
MASCHIO, A., SCALLY, M., PATRICIUL, N., CHEN, W.M., DISTEL, M.A., 
SLAGBOOM, E.P., BOOMSMA, D.I., VILLFUERTE, S., LIWERSKA, E.S., 
BURMEISTER, M., AMIN, A., JANSSENS, A.C.J.W., VAN DUIJN, C.M., 
SCHLESSINGER, D., ABECASIS, G.R. & COSTA JR, P.T. 2008. Genome-wide 
association scan for five major dimensions of personality. Molecular psychiatry, 1-10. 

THOMAS, R. J., MARPLES, N. M., CUTHILL, I. C., TAKAHASHI, M. & GIBSON, E. A. 
2003. Dietary conservatism may facilitate the initial evolution of aposematism. Oikos, 
101, 458-466. 

THOMAS, R.J., BARTLETT, L.A., MARPLES, N.M., KELLY, D.J. & CUTHILL, I.C. 2004. 
Prey selection by wild birds can allow novel and conspicuous colour morphs to spread in 
prey populations. OIKOS, 106, 285-294. 

TINBERGEN, L. 1960. The natural control of insects in pinewoods. I. Factors influencing the 
intensity of predation by songbirds. Arch Neerland Zool, 13, 265-343. 

TOBIAS, J. 1997. Aysmmetric territorial contests in the European robin: The role of settlement 
costs. Animal Behaviour, 54, 9-21. 

TRIPET, F., GLASER, M. & RICHNER, H. 2002. Behavioural responses to ectoparasites: time-
budget adjustments and what matters to Blue Tits Parus caeruleus infested by fleas. Ibis, 
144, 461-469. 

VAN DE POL, M. & WRIGHT, J. 2009. A simple method for distinguishing within- versus 
between-subject effects using mixed models. Animal Behaviour, 77, 753-758. 

VAN NOORDWIJK, A. J. & MULLER, C. B. 1993. On Adaptive Plasticity in Reproductive 
Traits, Illustrated with lay date in the Great Tit and Colony Inception in a Bumble Bee. 
Physiology and Ecology Japan, 29, 180-194. 

VAN OERS, K., DE JONG, G., VAN NOORDWIJK, A. J., KEMPENAERS, B. & DRENT, P. J. 
2005a. Contribution of genetics to the study of animal personalities: a review of case 
studies. Behaviour, 142, 1185-1206. 

VAN OERS, K., DRENT, P. J., DE GOEDE, P. & VAN NOORDWIJK, A. J. 2004. Realized 
heritability and repeatability of risk-taking behaviour in relation to avian personalities. 
Proceedings of the Royal Society of London Series B-Biological Sciences, 271, 65-73. 

VAN OERS, K., KLUNDER, M. & DRENT, P. J. 2005b. Context dependence of personalities: 
risk-taking behavior in a social and a nonsocial situation. Behavioral Ecology, 16, 716-
723. 

VAN OVERVELD, T. & MATTHYSEN, E. 2010. Personality predicts spatial responses to food 
manipulations in free-ranging great tits (Parus major). Biology Letters, 6, 187-190. 

VAS, J., TOPAL, J., GYORI, B. & MIKLOSI, A. 2008. Consistency of dogs' reactions to 
threatening cues of an unfamiliar person. Applied Animal Behaviour Science, 112, 331-
344. 

VEENEMA, A. H., MEIJER, O. C., DE KLOET, E. R., KOOLHAAS, J. M. & BOHUS, B. G. 
2003. Differences in basal and stress-induced HPA regulation of wild house mice 
selected for high and low aggression. Hormones and Behavior, 43, 197-204. 

VERBEEK, M. E. M., BOON, A. & DRENT, P. J. 1996. Exploration, aggressive behavior and 
dominance in pair-wise confrontations of juvenile male great tits. Behaviour, 133, 945-
963. 

VERBEEK, M. E. M., DE GOEDE, P., DRENT, P. J. & WIEPKEMA, P. R. 1999. Individual 
behavioural characteristics and dominance in aviary groups of great tits. Behaviour, 136, 
23-48. 

VERBEEK, M. E. M., DRENT, P. J. & WIEPKEMA, P. R. 1994. Consistent Individual-
Differences in Early Exploratory-Behavior of Male Great Tits. Animal Behaviour, 48, 
1113-1121. 

VIA, S., GOMULKIEWICZ, R., DEJONG, G., SCHEINER, S. M., SCHLICHTING, C. D. & 
VANTIENDEREN, P. H. 1995. Adaptive phenotypic plasticity – concenses and 
controversy. Trends in Ecology & Evolution, 10, 212-217. 

VISSER, M. E. 2008. Keeping up with a warming world; assessing the rate of adaptation to 
climate change. Proceedings of the Royal Society B-Biological Sciences, 275, 649-659. 



159 
 

VISSER, M. E. 2008. Keeping up with a warming world; assessing the rate of adaptation to 
climate change. Proceedings of the Royal Society B-Biological Sciences, 275, 649-659. 

VISSER, M. E., BOTH, C. & LAMBRECHTS, M. M. 2004. Global climate change leads to 
mistimed avian reproduction. Birds and Climate Change, 35, 89-110. 

VON HOLST, D. 1998. The concept of stress and its relevance for animal behavior. Stress and 
Behavior. San Diego: Academic Press Inc. 

WALTHER, B.A. & A.G. GOSLER. 2001. The effects of food availability and distance to 
protective cover on the winter foraging behaviour of tits (Aves: Parus). OECOLOGIA, 
129, 312-320 

WEBSTER, S. J. & LEFEBVRE, L. 2000. Neophobia by the Lesser-Antillean Bullfinch, a 
foraging generalist, and the Bananaquit, a nectar specialist. Wilson Bulletin, 112, 424-
427. 

WEBSTER, S. J. & LEFEBVRE, L. 2001. Problem solving and neophobia in a columbiform-
passeriform assemblage in Barbados. Animal Behaviour, 62, 23-32. 

WEST-EBERHARD, M. J. 1989. Phenotypic plasticity and the origins of diversity. Annual 
Review of Ecology and Systematics, 20, 249-278 

WEST-EBERHARD, M. J. 2003. Developmental Plasticity and Evolution. Oxford University 
Press, Oxford, UK 

WIERSMA, P. & VERHULST, S. 2005. Effects of intake rate on energy expenditure, somatic 
repair and reproduction of zebra finches. Journal of Experimental Biology, 208, 4091-
4098. 

WIERSMA, P., SALOMONS, H. M. & VERHULST, S. 2005. Metabolic adjustments to 
increasing foraging costs of starlings in a closed economy. Journal of Experimental 
Biology, 208, 4099-4108. 

WIERSMA, P., SELMAN, C., SPEAKMAN, J. R. & VERHULST, S. 2004. Birds sacrifice 
oxidative protection for reproduction. Proceedings of the Royal Society of London Series 
B-Biological Sciences, 271, S360-S363. 

WILSON, A. D. M. & MCLAUGHLIN, R. L. 2007. Behavioural syndromes in brook charr, 
Salvelinus fontinalis: prey-search in the field corresponds with space use in novel 
laboratory situations. Animal Behaviour, 74, 689-698. 

WILSON, D. S., CLARK, A. B., COLEMAN, K. & DEARSTYNE, T. 1994. Shyness and 
Boldness in Humans and Other Animals. Trends in Ecology & Evolution, 9, 442-446. 

WILSON, D. S., COLEMAN, K., CLARK, A. B. & BIEDERMAN, L. 1993. Shy Bold 
Continuum in Pumpkinseed Sunfish (Lepomis-Gibbosus) - an Ecological Study of a 
Psychological Trait. Journal of Comparative Psychology, 107, 250-260. 

WYSZECKI, G. & STILES, W.S. 2000. Color Science – Concepts and methods, Quantitative 
Data and Formulae. Wiley Classics Library, New York 2nd ed. 

YOUNG, I. S. & TRIMBLE, E. R. 1991. Measurement of malondialdehdye in plasma by high-
performance liquid-chromatography with fluorometric detection. Annals of Clinical 
Biochemistry, 28, 504-508. 

 
 

 

 

 

 

 

 



160 
 

APPENDIX I 
 

CAPTIVE EXPLORATION BEHAVIOUR AND WILD FORAGING 

BEHAVIOUR IN GREAT TITS 
 

 

I I ABSTRACT 
 

Personality traits are behavioural responses that vary between individuals but are 

consistent within individuals over time or contexts. Great tits (Parus major) are a model 

species for personality research, particularly within the trait “exploratory tendency”, 

which describes movement in novel environments. A key prediction from captive studies 

is that fast exploring great tits form foraging routines whilst slow explorers are more 

flexible in their foraging behaviour. I tested whether exploratory tendency predicted wild 

foraging behaviour. Over two winters, 37 great tits were taken into captivity for a short 

period and their movement in novel versus familiar parts of a small environment 

measured. Both exploratory tendency (movement in novel minus familiar) and activity in 

the trial were independent of the weather, day length or body condition at capture, and 

repeatable in 18 birds tested twice within years. Birds were returned to the wild and their 

behaviour recorded by an electronic monitoring system at feeding stations. I measured 

variation in two behaviours. First, “wild exploratory tendency”: discovery of short term 

feeding stations installed 110-260m from eight permanent feeding stations (n = 27 birds). 

Second, “environmental sensitivity to food supply”: latency to abandon experimentally 

emptied feeding stations (n = 14 birds). Surprisingly, captive exploratory tendency did 

not predict wild exploratory tendency. Moreover feeder abandonment was quickest in 

birds that were most exploratory in captivity, and also birds that were most active in the 

exploration trial. Therefore birds did not differ in foraging behaviour whilst food was 

available, and exploratory birds broke foraging routines most quickly. Results for wild 

exploratory tendency contradict those obtained contemporaneously from a sympatric blue 

tit population (Cyanistes caeruleus). However, the relationship between captive 

exploratory tendency and feeder abandonment is remarkably consistent with findings in 

blue tits and also an analogous study on another wild population of great tits. 
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I II INTRODUCTION 
 

Personality traits are behavioural responses that differ consistently between individuals 

over time or contexts. For example, individuals of the same species, sex and age often 

differ in exploratory tendency (activity within novel environments, e.g. Verbeek et al., 

1994), “boldness” (latency to feed in risky or novel environments, e.g. Wilson et al., 

1993), aggression (e.g. Huntingford, 1976), sociability (e.g. Cote and Clobert, 2007) or 

activity (Sih et al., 2003). These five axes of variation are personality traits that have been 

described in a broad taxonomic range (for review: Gosling, 2001). The great tit (Parus 

major) has become a model species for research on personality (for review: Groothuis 

and Carere, 2005), in particular the trait “exploratory tendency”. Work on captive bred 

lines of great tits selected for “fast” and “slow” exploration has contributed significantly 

to our understanding of the genetic and physiological basis of personality (Groothuis and 

Carere, 2005). Observing that fast and slow exploring great tits differ in their survival in 

the wild (Dingemanse et al., 2004), researchers have also drawn upon these captive line 

studies as a source of predictions on the behavioural mechanisms underlying that 

variation. 

Behavioural comparisons of the fast and slow selection lines (e.g. Marchetti and 

Drent, 2000, Verbeek et al., 1996, Verbeek et al., 1999, Verbeek et al., 1994) suggest that 

survival differences may be explained by variation in foraging strategy (Dingemanse et 

al., 2004). Fast and slow lines differ on three counts. First, they differ in their use of 

information when first locating food. For example when food is hidden and social cues to 

its whereabouts available (trained “demonstrators” foraging in the correct locations), only 

fast birds respond to those cues; slow birds continue to search independently (Marchetti 

and Drent, 2000). Second, when re-finding food, fast birds appear more reliant on old 

information than slow birds. For example, on commencing foraging, fast birds tend to 

target previously rewarding locations within an environment whilst slow birds appear to 

search anew (Groothuis and Carere, 2005). A consequence of this is the tendency toward 

routine-formation in fast birds: when previously predictable food sources are removed, 

fast individuals continue to visit the unrewarding location whilst slow birds quickly 

extend their search to new areas. Indeed, in a variety of species, “fast” personality types 

(exploratory but also in this species aggressive, bold, active) are often slower to respond 

to environmental changes, and hence more routine in their behaviour, than “slow” 

(passive, shy, inactive) types (Marchetti and Drent, 2000, Jones and Godin, 2010, Benus 

et al., 1987, Benus et al., 1988). This difference in responsiveness to environmental 
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change is referred to as “environmental sensitivity” (Boyce and Ellis, 2005, Koolhaas et 

al., 1999). Finally, in great tits exploratory tendency co-varies with the personality traits 

aggression and boldness (Carere et al., 2005). Fast or “proactive” (fast exploring, bold 

and aggressive) great tits are therefore prone to routine-formation but also equipped to 

monopolise feeding situations that prove to be predictable. Conversely, slow or “reactive” 

(slow exploring, shy and passive) individuals are more flexible and sensitive to change, 

hence are expected to cope better with unpredictable food availability (for review: 

Groothuis and Carere, 2005). These predicted differences in foraging strategy fit the 

observed variation in survival well: fast exploring females do better in food-rich winters, 

when monopolisation of clumped, predictable resources would be selected, and slow 

types do better in food-poor winters when the distribution of food is unpredictable 

(Dingemanse et al., 2004). 

In order to validate this behavioural mechanism, however, it is critical to 

determine whether fast and slow individuals behave in the wild as predicted. Specifically, 

whether slow types are less routine than fast types within predictable contexts and fast 

types more routine than slow types within unpredictable contexts. Studies comparing 

captive to wild behaviour do not always conform to prediction. For example, in captivity 

fast exploring great tits are generally subordinate to slow explorers (Verbeek et al., 1999), 

but in the wild this is only the case in non-territorial juveniles: fast exploring, territorial 

adults are most likely to dominate at feeders (Dingemanse and de Goede, 2004). 

Furthermore, third variables that covary with the traits I waspredict will generate 

variation in fitness may be the source of variation in fitness. For example, observing 

variation in reproductive success between personality types (Both et al., 2005), (2008) 

Hollander and colleagues (2008) expected exploratory tendency (activity in a novel hence 

potentially risky environment) to translate directly into movement during nest defence, 

i.e. predator mobbing behaviour (activity in a risky environment). Active mobbing 

behaviour did not differ with personality; instead exploratory tendency predicted level of 

vocal chiding toward predators, which may also have the consequence of improved 

fledging success. Routine-breaking has been studied twice in the wild in great tits. With 

the definition of routine-breaking as leaving a previously rewarding site, in both studies 

fast birds were actually more prone to routine-breaking than slow birds: fast birds 

dispersed further following post-natal dispersal (i.e. left familiar natal foraging sites: 

Dingemanse et al., 2003) and, whilst slow birds remained in the vicinity, moved away 

from emptied artificial feeding stations (van Overveld and Matthysen, 2010). The aim of 

my study was to test whether captive exploration behaviour predicted variation between 
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great tits foraging in the wild. After measuring exploration during a short period in 

captivity, I returned great tits to the wild where they were accustomed to foraging at 

artificial feeding stations. The birds were fitted with passive integrated transponders 

(“PIT tags”) so that I could monitor their behaviour at those feeding stations. My aims 

were as follows: first, to test whether exploration was repeatable within my methods and 

study population. Second, in 27 birds I tested whether exploration behaviour predicted 

individual discovery of new short term feeding stations, positioned near to permanent 

feeding station, which I refer to as “wild exploratory tendency” (Chapter 2). And finally, 

in 14 birds I measured variation in response to the emptying of those permanent feeding 

stations, which I refer to as “environmental sensitivity to food supply” (Chapter 3).  

 

I III METHODS 
 

The study site was located on the east bank of Loch Lomond, UK (56°08’N 4°37’W). In 

October 2008, I established a network 8 feeding stations at approximately 500m intervals 

through deciduous woodland. These feeding stations were baited with peanut granules 

until the end of February, thus were a predictable source of food throughout winter. Each 

consisted of two opaque tubular Defender™ feeders (35cm height, 7cm diameter) hung 

above one another from an oak trunk at 2m and 3m above ground level. Only one bird 

could access each feeder at a time, via a small hole. Onto that hole I attached an 8cm x 

5cm hoop antenna (TROVAN®, United Kingdom) fitted onto a wooden platform perch 

(both 8cm x 5cm). Over the two years, I caught 37 birds by mist-netting at these sites. On 

first capture, each bird was fitted with a leg-ring mounted Passively Integrated 

Transponder (“PIT” tag; 11.5 mm x 2.1 mm, <0.1g, Trovan Unique™; as Herborn et al., 

2010). The PIT tag produces an amplitude modulated code signal within the 

electromagnetic field of the antenna, thus allowed us to monitor feed use in the wild via 

an electronic monitoring system (Trovan™ LID665). At capture, I also determined age 

(juvenile/adult) and sex from plumage traits (Jenni & Winkler 1994). After 2 or (in 2009) 

3 days in captivity, the birds were released at their feeding station of capture. All birds 

were returned to the wild at least 12 days prior to the feeder abandonment manipulation 

in 2009, when the 8 permanent feeding stations were suddenly emptied at the end of 

winter. 
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I III A EXPLORATORY TENDENCY IN CAPTIVITY 
 

For husbandry and detailed methods, see Chapter 2. Briefly, the exploration trial was 

conducted within the home cage of the focal bird (150cm x 50cm x 50cm). On arrival in 

captivity, they were enclosed within one half of the cage, using an opaque metal divider, 

and left undisturbed for at least 2 hours. In the exploration trial, I measured behavioural 

response on gaining access to the “novel” half of the cage (see below). After this trial, 

birds had access to the entire cage. As part of separate studies, all birds then took part in 

further behavioural trials on this and one further day, and were also blood sampled on the 

second day in captivity. In the 2008-9 season, I kept the birds in captivity for a third 

morning, in order to re-run the exploration trial to test repeatability of individual 

behaviour. After two (2007-8) or three (2008-9) days in captivity, all birds were released 

at their feeding station of capture, at least one hour before sunset. 

By enclosing the birds into one half of the home cage for over two hours on 

arrival into captivity, I anticipated that they would become familiar with that part of the 

cage and hence behind the cage divider would be a novel environment. The familiar and 

novel cage halves were both similarly enriched: each contained three perches covered 

with plastic plant vines. My aim was to assay exploration independently of neophobia, 

and hence create an environment that was novel only in that it was unexplored. To 

motivate birds toward foraging activity, I removed the food bowl for 1hr and water bowl 

for 30 min prior to the trial. To start the trial, I removed the cage divider, stepped behind 

a screen, and observed the focal bird through a small hole for 10 minutes. In other 

exploration trials on great tits, only movement in novel environments is measured, and 

individuals are often forced to enter those environments to start the trial (e.g. Verbeek et 

al. 1994). Here, I allowed the birds the option of remaining within the familiar 

environment throughout the trial. As the birds had been in captivity for only a short while 

prior to testing, I allowed this option to help distinguish exploration from activity due to 

escape behaviours in the novel environment (Mettke-Hofmann et al. 2009). I scored birds 

for the number of movements in the trial, defining a movement as a hop/flight between 

two perches and/or the floor, the cage wall or the front and rear of the cage. I also 

recorded the endpoint of each movement: novel or familiar. After the test, I returned the 

food and water bowl and the bird was allowed free access to the entire cage.    

In 2008-9, I conducted a second exploration trial for each bird, on day 3 in 

captivity. In that season, on arrival into captivity all birds were randomly allotted to a 
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cage lined either with white paper (as in 2007-8) or brown paper. After collecting a blood 

sample on the afternoon of day 2 (when birds in 2007-8 were released), I moved each 

bird to one half of a new home cage, of the other cage type. They were left undisturbed 

until the following morning, when exploration trials began one hour after the lights were 

switched on. The arrangement of perches/artificial plant material was similar between 

these white-lined and brown-lined cage types, but the artificial leaf shapes differed 

slightly. My aim was to create two cage types that were sufficiently distinct to re-

motivate birds toward exploration but not so distinct that they stimulated different levels 

of exploration across replicates. This appeared successful: controlling for cage order and 

bird identity, there was no difference in movements in the familiar (linear mixed model, 

LME: t1, 17 = -1.12, P = 0.28) or novel environments (LME: t1, 17 = -1.43, P = 0.17) 

between brown versus white-lined cage types.  

To investigate whether activity specifically in the novel environment or activity in 

general correlated with behaviour in the wild, I drew two measures from the movement 

scores. “Exploratory tendency” related specifically to movement in the novel 

environment; I controlled for variation in activity level between birds by deducting the 

number of movements in the familiar environment from the number in the novel 

environment. “Activity in the exploration trial” was the movements in the novel and 

familiar environments summed. As these variables were not independent, they were 

subsequently analysed separately. 

 

I III B BETWEEN-INDIVIDUAL SOURCES OF VARIATION 
 

To measure repeatability of behaviour in the exploration trial, we must first identify and 

control for other sources of variation between individuals entering captivity that may also 

generate consistent individual differences in behaviour. Birds caught on colder, wetter or 

shorter days for example may have a higher perceived starvation risk than individuals 

caught on warm, dry or long days, which may in turn systematically alter their propensity 

toward exploration in captivity. Therefore I recorded day length and collated weather data 

on rainfall (mm), minimum and maximum temperature on the day of and day prior to 

capture from Met office records from nearby Glasgow Bishopton 

(www.metoffice.gov.uk). I also calculated body condition at capture, as the residual of 

body mass regressed on tarsus length (Linden et al., 1992). Finally, in Parids smaller, 

juvenile and female birds are generally subordinate at feeders (Braillet et al., 2002). 



166 
 

Coming from the wild where they may recently have experienced competitive exclusion, 

I predicted that these birds may also have greater motivation to explore on entering 

captivity than larger, adult or male birds. I used wing length as a measure of overall body 

size. Age (juvenile/adult) and sex were determined from plumage traits (Jenni & Winkler 

1994); there were 18 juveniles and 19 adults, and 25 males and 12 females.  

 

I III C WILD EXPLORATORY TENDENCY 
 

Birds were scored for whether or not they discovered new, short term feeding stations. 

For each replicate of this trial I installed one new feeder, on a 1.5m pole, within the study 

site an average of 160 meters (range: 110m-260m) from one of the eight established 

feeding stations. It was installed before sunrise, left undisturbed for three days, and then 

removed after sunset. The feeder had one perch fitted with a PIT tag antenna, to identify 

and score birds 1 or 0 for discovering the feeder within that time. There were nine 

consecutive replicates of this trial in the 2007-8 season, and 16 consecutive replicates in 

the 2008-9 season. As such replication was uneven across years but also, as birds were 

added to the study as the seasons progressed, between individuals within seasons. 

Therefore feeder discovery was analysed using the number of new feeders an individual 

did discover relative to the number it could have discovered (i.e. the number of replicates 

in which it participated).   

Independent of exploratory behaviour, an individual’s likelihood of discovering 

new feeders would be greater in birds using regularly using more of the permanent 

feeding stations, hence covering a larger area of the study site. At the end of the field 

season, from PIT tag records I deduced which permanent feeding stations each bird had 

used. On average, birds used on average 1.64 permanent feeding stations (range: 1-3). 

The likelihood of feeder discovery would also increase as the distance between an 

individual’s permanent feeding stations and the new feeder decreased. I therefore 

calculated the distance between the nearest permanent feeding station and the new feeder 

in each replicate for each bird. These variables were controlled for in the analyses of 

feeder discovery (see statistical methods).   
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I III D ENVIRONMENTAL SENSITIVITY TO FOOD SUPPLY 
 

Environmental sensitivity to food supply was defined as the tendency to abandon feeding 

stations within three days of emptying. To investigate feeder abandonment in more detail, 

I also compared feeder visitation on the day of feeder emptying and after five days. At the 

end of the 2008-9 season I emptied the 8 permanent feeding stations and then recorded 

visitation to the empty feeders on that day and after 3 and 5 days. Two days prior to that 

manipulation, I used PIT tag records to identify birds present at each feeding stations. 

Those birds were only then included in the experiment if they were recorded again at that 

feeding station on the day of the manipulation at least once prior to and once after 

emptying the feeders, hence experienced the change in food supply. Fourteen birds fitted 

these criteria. I conducted the manipulation in two blocks, emptying 4 feeding stations on 

02/03/09 and the remaining 4 on 03/03/09, between 9.20am and 10:40am each day. I 

installed PIT-tag readers at each site within 30 minutes of sunrise and removed them after 

sunset on the day of the manipulation, after 3 days and after 5 days. From these records, I 

extracted the number of visits by each bird on each day. Birds that visited least on day 3 

were classified as most environmentally sensitive. 

 

I III E ETHICAL NOTE 
 

All work was licensed by the UK Home Office, with permission for taking birds in 

captivity and for using PIT Tags obtained from Scottish Natural Heritage and the British 

Trust for Ornithology respectively. Studies were carried out in accordance with 

ASAB/ABS’s guidelines for the treatment of animals in research, and subject to ethical 

review by WALTHAM® Centre for Pet Nutrition and the University of Glasgow. I 

captive tested 37 great tits between 2007 and 2009 for this study. Whilst in captivity, no 

birds lost more than 10% body mass there was on average a body mass gain (0.52% ± 

5.12%). Following release, 31 of the 37 great tits were later identified in the wild within 

the same season via PIT tag records or re-trapping. 
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I III F STATISTICAL METHODS   
 

Analyses were carried out using R 2.9.1 (R development core team, 2009). There were no 

differences in behavioural data between years so data was pooled across years. 

Exploratory tendency and activity in the exploration trial were extracted from the same 

data (movement in the exploration trial), thus were not independent. As such, models 

were run separately for each of these measures and where both were significant I referred 

to Akaike’s Information Criterion (AIC) to determine which measure better described the 

data. 

 
I iii f i Defining captive exploration behaviour 
 

I first determined whether between-individual variation at capture explained a significant 

proportion of the variation in behaviour during the exploration trial. Captive personality 

traits were not normally distributed so I used nonparametric Mann-Whitney U-tests or 

Kendall rank sum correlations. I applied a Bonferonni correction for multiple 

comparisons, with a p-value of less than 0.004 for significance.  I tested consistency 

across days using a linear mixed model, with trial order as a random effect. I then 

calculated repeatability of exploratory tendency and activity in the exploration trial using 

the mean squares from an ANOVA, with the repeated measures of exploratory 

tendency/activity in the exploration trial as the dependent variable and individual identity 

as the independent variable, following Lessells & Boag (1987).   

 
I iii f ii Relationships between captive and wild exploratory tendency 
 

Feeder discovery was measured up to 16 times for each individual. I accounted for 

repeated measures with a Generalized Linear Mixed Model (GLMM), specifying feeder 

discovery as the dependent variable and individual identity as a random factor. Feeder 

discovery was binary (discovered versus not discovered) so I used a binomial error 

structure. To control for experimental variation between replicates, I included the number 

of permanent feeding stations an individual regularly used (i.e. site coverage) and also the 

distance between an individual’s nearest permanent feeding station and the new feeder in 

each replicate as covariates. Finally, I specified either exploratory tendency or activity in 

the exploration trial as an independent variable. To determine whether these exploration 
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measures explained a significant proportion of variation in feeder discovery, I compared 

this GLMM to a GLMM excluding the exploration measure using a likelihood ratio test 

(LRT). 

 

I iii f iii Relationships between captive exploratory tendency and 
environmental sensitivity to food supply 
 

To first relate prior feeder use (visitation two days prior to the manipulation) to 

exploration behaviour, I used generalized linear models (GLMs). Prior feeder use was a 

count: I used a quasi-Poisson error structure to account for this and for over-dispersion. 

To investigate relationships between exploration behaviour and feeder visitation on days 

1 and 3, I used generalized linear mixed models (GLMMs). The dependent variable, 

feeder visitation, was a count so models had a Poisson error structure. Day (day 1 or day 

3) and either exploratory tendency or activity in the exploration trial were my main 

independent variables. I included age (adult or juvenile) as a fixed factor to control for 

variation in foraging experience and, as juveniles are subordinate to adults in Parids 

(Dingemanse and de Goede, 2004), feeder access. I also included prior feeder use as a 

covariate, to control for individual differences in feeder dependency. Finally, as the 

manipulation was staggered over two days, I specified rotation (first or second) as fixed 

factor. To avoid over-parameterising the models I included only the interaction between 

day and exploration measure, as I was interested in changes in visitation behaviour 

between personality types over days. To test specifically whether captive behaviour 

affected feeder visitation on days 1 or 3, for each day I constructed a general linear model 

(GLM) with visitation as the dependent variable and age, prior feeder use, rotation and 

either captive exploratory tendency or activity in the captive exploration trial as the 

independent variables. For day 1, I specified quasi-Poisson error structure to account for 

overdispersion. For day 3, as visitation was very low (see results), I specified visitation as 

a binary variable: visited versus did not visit. To test the significance of either captive 

exploratory tendency or activity in the exploration trial I performed a likelihood ratio test 

(LRT) between a model including the captive behavioural measure and a model 

excluding the captive behavioural measure. On day 5, most birds did not visit the emptied 

feeders or visited only once (see results). As such, I treated feeder visitation on day 5 as a 

binary variable (visited, did not), and used GLMs with a binomial error structure to 

identify relationships between visitation and exploration measures. 
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I IV RESULTS 
 

I IV A DEFINING CAPTIVE EXPLORATION BEHAVIOUR 
 

The number of movements in the first exploration trial ranged from zero to 672, but the 

median was 12 and the mean 100 (IQR = 163), indicating that some individuals were 

highly active and others relatively inactive. Ten birds did not move at all in the first 

exploration trial, and 3 of these (of the 18 birds included in the repeatability analysis) also 

failed to move in the second exploration trial. 

Exploration behaviour did not differ between sexes or ages (exploratory tendency: 

all P > 0.54; activity in the exploration trial: all p > 0.06) so data were pooled to analyse 

other sources of between-individual variation. All other morphometric and environmental 

variables were non-significant (exploratory tendency: all P > 0.11; activity in the 

exploration trial all P > 0.08). Therefore consistency and repeatability were calculated on 

actual scores. Controlling for trial order, exploratory tendency (LME with trial order 

random: F1, 17 7.4, p = 0.0001) and activity in the exploration trial (F1, 17 3.83, p = 0.004) 

were both consistent within the 18 great tits tested twice in the 2008-9 season. 

Exploratory tendency across days 1 and 3 was significantly repeatable (ANOVA: F1, 17 

6.61, p = 0.0001, r = 0.74), as was activity in the exploration trial (F1, 17 3.83, p = 0.004, r 

= 0.57). 

 

I IV B RELATIONSHIPS BETWEEN CAPTIVE AND WILD EXPLORATORY TENDENCY 
 

Wild exploratory tendency (i.e. feeder discovery) was independent of both exploratory 

tendency (GLMM: LRT χ2 = 2.63, N = 27 birds, p = 0.11) and activity in the exploration 

trial (GLMM: LRT χ2 = 0.77, N = 27 birds, p = 0.38). 

 

I IV C RELATIONSHIPS BETWEEN CAPTIVE EXPLORATORY TENDENCY AND 

ENVIRONMENTAL SENSITIVITY TO FOOD SUPPLY 
 

Feeder use prior to food removal did not vary with exploratory tendency (GLM with 

quasi-Poisson error structure: t1,13 = 1.35, P =  0.2, effect ± s.e. 0.004 ± 0.003) or activity 
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in the exploration trial (t1,13 = 1.58, P =  0.14, effect ± s.e. 0.003 ± 0.002). Following 

emptying of the feeders, feeder visitation declined from a median of 30 visits (range 1 – 

87) on day 1 to zero (range 0 – 13) on day 3. In GLMMs of both exploratory tendency 

(Table I-1, Fig. I-1a) and activity in the exploration trial (Table I-2, Fig. I-1b), a 

significant interaction between exploratory tendency and day indicates that exploratory 

individuals visited the emptied feeding stations more frequently than less exploratory 

individuals on day 1, but this relationship was reversed on day 3. Age was significant 

within both models, with juvenile birds visiting the emptied feeding stations more often 

than adults (Tables I-1 and I-2). Rotation (date on which feeder manipulations were 

conducted) explained variation in post-manipulation feeder visitation in GLMMs with 

exploratory tendency as an independent variable (Table I-1) but not in GLMMs with 

activity in the exploration trial as an independent variable (Table I-2). Prior feeder use did 

not explain variation in either GLMM (Tables I-1 and I-2). Comparison of AIC values 

suggests exploratory tendency (AIC 153.2) described the variation in feeder visitation on 

days 1 and 3 better than activity in the captive exploration trial (AIC 158.5). In GLMs 

constructed to investigate feeder visitation on day 1 or day 3 separately, on day 1 feeder 

visitation was significantly greater in exploratory than non-exploratory birds (LRT 

deviance = -96.21, F = 5.87, n birds = 14, P = 0.03) but no significant differences were 

identified with activity in the exploration trial (LRT deviance = -71.75, F = 3.66, n birds 

= 14, P = 0.08). On day 3, exploratory birds were significantly less likely to visit than less 

exploratory birds (LRT deviance = -14.97, n = 14 birds, P = 0.0001) but no significances 

were identified with activity in the exploration trial (LRT deviance = -0.31, n birds = 14, 

P = 0.58). On day 5, only 4 of the 14 birds visited the emptied feeding stations. Visitation 

on day 5 was independent of exploratory tendency (GLM with binomial errors: z1,13 = -

0.9, p = 0.37, effect ± s.e. = -0.012 ± 0.013) or activity in the exploration trial (z1,13 = -

0.84, p = 0.4, effect ± s.e. = 0.003 ± 0.004). 
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Table I-1 Results from GLMM on visitation of the emptied feeding stations by great tits in 
relation to the independent variable: exploratory tendency 
Predictors z (d.f.) P-value R (S.E). 

    

Prior feeder use 0.28 (9) 0.776 0.001 (0.003) 

Rotation 2.44 (9) 0.014 1.195 (0.488) 

Age 2.08 (9) 0.037 1.334 (0.641) 

Exploratory tendency x day -3.72 (12) 0.0002 -0.02 (0.005) 

The results are of a model with individual identity specified as a random effect, and a Poisson 
error structure; n visitation records = 28 and n great tits = 14 

 

 

 

 

 

 

 

 

Table I-2 Results from GLMM on visitation of the emptied feeding stations by great tits in 
relation to the independent variable: activity in the exploration trial 
Predictors z (d.f.) P-value R (S.E.). 

    

Prior feeder use 0.33 (9) 0.74 0.001 (0.003) 

Rotation 1.9 (9) 0.057 1.061 (0.558) 

Age 2.0 (9) 0.046 1.301 (0.652) 

Activity in exploration trial x day -4.9 (12) < 0.0001 -0.008 (0.002) 

The results are of a model with individual identity specified as a random effect, and a Poisson 
error structure; n visitation records = 28 and n great tits = 14 
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Figure I-1 Relationships between (a) exploratory tendency and (b) activity in the exploration trial 
and the number of visits to the emptied feeders 1 and 3 days after the feeders were emptied. Visits 
on day 1 are shown with open circles and relationships with lines; visits on day 2 are shown with 
crosses and relationships with dashed lines 
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I V DISCUSSION 
 

Captive exploration behaviour did not predict exploratory tendency in the wild (i.e. 

feeder discovery) but did predict environmental sensitivity in the wild (i.e. feeder 

abandonment after three days). In the environmental sensitivity to food supply trial, there 

was a positive relationship between exploratory tendency (also, but less powerfully, 

activity in the exploration trial) and feeder visitation immediately after the loss of the 

food supply (day 1). This represents a change in behaviour as personality types did not 

differ in feeder use prior to the manipulation. However, by day 3, only the less 

exploratory individuals continued to visit the feeders. Therefore results were contrary to 

predictions from captive studies (for review: Groothuis and Carere, 2005): I expected less 

exploratory birds, analogous to the “slow” exploration lines, to remain flexible in their 

foraging behaviour and hence to discover new feeding opportunities in spite of available 

predictable food sources. I also expected fast explorers to remain longer at emptied 

permanent feeding stations than slow explorers, due to formation of foraging routines. 

Less exploratory birds also abandoned the emptied feeding stations, but over a longer 

time scale, by day 5. This suggests that exploratory tendency relates positively to the rate 

at which unprofitable feeding opportunities are abandoned. 

 From captive studies, it was predicted that exploratory birds would form foraging 

routines, hence discover fewer new feeding opportunities and take longer to abandon 

unprofitable feeding sites than less exploratory birds (Marchetti and Drent, 2000). Whilst 

contrary to captive studies, this study draws striking parallels to work on another 

population of great tits by van Overveld and Matthyssen (2010). Overveld and 

Matthyssen found that the abrupt removal of an artificial feeding site stimulated fast 

explorers to move to new foraging areas whilst slow explorers remained within the 

vicinity of the old feeding site (Overveld & Matthysen, 2009). As the great tits in that 

study did not differ in feeding range size after that manipulation, the authors suggest the 

movement reflected variation in the way individuals used information. As predicted by 

studies on the captive lines (for review: Groothuis and Carere, 2005), it appeared that fast 

explorers relied on old information, returning to formerly encountered feeding sites (thus 

explaining the sudden distant movement). In contrast, slow explorers relied on current 

information, remaining within the area to continue updating their information on the 

currently unprofitable site. Perhaps therefore the prolonged visitation to the emptied 

feeding stations in my study represents updating of information on food availability by 

less exploratory birds, rather than expectation of food per se.  Intriguingly, Overveld and 
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Matthysen (2010) also found no difference in range size between fast and slow 

individuals prior to the manipulation. This corroborates the absence of correlation 

between personality and feeder discovery in this study: perhaps all birds maintained a 

similar range size about the permanent feeding stations, thus were equally likely to 

encounter the new feeders. Moreover, the similarity between these studies suggests some 

generality in the expression of the exploration trait across populations of great tits.  

The same studies were conducted simultaneously on a sympatric population of 

blue tits (Cyanistes caeruleus; Chapter 6). I found striking similarity between species in 

the relationship between exploratory tendency and environmental sensitivity to food 

supply: exploratory blue tits also visited feeders at a higher rate immediately following 

feeder emptying on day 1, but visited less often than less exploratory blue tits on day 3. 

However in blue tits, exploratory tendency also positively predicted wild exploratory 

tendency (i.e. feeder discovery). The blue tit and great tit are closely related species that 

share a similar ecological niche and indeed use similar space, often foraging together in 

mixed flocks during winter (Cramp and Perrins, 1994). As such, blue tits and great tits 

are often in direct competition for food. At nearly twice the mass of the blue tit, the great 

tit it is the dominant species in these mixed flocks (Cramp and Perrins, 1994). Where 

food is predictable to great tits therefore, their monopolisation of those sites may render 

the permanent feeding stations relatively unpredictable to blue tits. Moreover, where food 

availability permits, great tits are territorial in winter, thus the feeding stations may 

support territorial behaviour in great tits (Dingemanse and de Goede, 2004). Therefore, I 

suggest the expression of exploratory behaviour was either not stimulated in great tits, 

with low requirement to find alternate feeding opportunities (i.e. competitive dominance) 

and/or suppressed by pressure to remain near the feeding station (i.e. territoriality). By 

this reasoning, we may expect juvenile great tits, which are subordinate to adults 

(Dingemanse and de Goede, 2004), to be more exploratory, but this was not the case. 

However, within the community, mist-netting efforts at the permanent feeding stations in 

both years suggest that blue tits and coal tits out-numbered great tits, by a ratio of around 

8:2 in the 2007-8 (blue tit: coal tit: great tit = 113:50:61) and 8:1 in 2008-9 (58:41:19). 

Therefore even juvenile great tits may have relatively high status within predominantly 

blue tit and coal tit mixed flocks.  

It is suggested that personality variation is maintained within great tits by a trade-

off between selection against fast types in unpredictable environments, where they are 

unable to find enough food to sustain their level of activity/aggression/exploration (or 

take excessive risks to do so), and against slow personality types in predictable 
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environments where food availability and the opportunity to monopolise food selects for 

a higher (more competitive) levels of activity/aggression/exploration (Dingemanse et al., 

2004). My results provide mixed support for the predictions on coping behaviour within 

predictable versus unpredictable environments, as personality types differed in their 

response to environmental change (new feeding opportunities or altered food 

availability), but not as traditionally expected from captive studies. 

 

I VI REFERENCES 
 

BENUS, R. F., KOOLHAAS, J. M. & VANOORTMERSSEN, G. A. 1987. Individual-

differences in behavioural reaction to a changing environment in mice and rats. 

Behaviour, 100, 105-122. 

BENUS, R. F., KOOLHAAS, J. M. & VANOORTMERSSEN, G. A. 1988. Aggression 

and adapatation to the light-dark cycle – role of intrinsic and extrinsic control. Physiology 

& Behaviour, 43, 131-137. 

BOTH, C., DINGEMANSE, N. J., DRENT, P. J. & TINBERGEN, J. M. 2005. Pairs of 

extreme avian personalities have highest reproductive success. Journal of Animal 

Ecology, 74, 667-674. 

CARERE, C., DRENT, P. J., PRIVITERA, L., KOOLHAAS, J. M. & GROOTHUIS, T. 

G. G. 2005. Personalities in great tits, Parus major: stability and consistency. Animal 

Behaviour, 70, 795-805. 

COTE, J. & CLOBERT, J. 2007. Social personalities influence natal dispersal in a lizard. 

Proceedings of the Royal Society B-Biological Sciences, 274, 383-390. 

DINGEMANSE, N. J., BOTH, C., DRENT, P. J. & TINBERGEN, J. M. 2004. Fitness 

consequences of avian personalities in a fluctuating environment. Proceedings of the 

Royal Society of London Series B-Biological Sciences, 271, 847-852. 

DINGEMANSE, N. J., BOTH, C., VAN NOORDWIJK, A. J., RUTTEN, A. L. & 

DRENT, P. J. 2003. Natal dispersal and personalities in great tits (Parus major). 

Proceedings of the Royal Society of London Series B-Biological Sciences, 270, 741-747. 

DINGEMANSE, N. J. & DE GOEDE, P. 2004. The relation between dominance and 

exploratory behaviour is context-dependent in wild great tits. Behavioural Ecology, 15, 

1023-1030. 

GOSLING, S. D. 2001. From mice to men: What can I waslearn about personality from 

animal research? Psychological Bulletin, 127, 45-86. 



177 
 

GROOTHUIS, T. G. G. & CARERE, C. 2005. Avian personalities: characterization and 

epigenesis. Neuroscience and Biobehavioural Reviews, 29, 137-150. 

HOLLANDER, F. A., VAN OVERVELD, T., TOKKA, I. & MATTHYSEN, E. 2008. 

Personality and nest defence in the great tit (Parus major). Ethology, 114, 405-412. 

HUNTINGFORD, F. A. 1976. Relationship between Anti-Predator Behaviour and 

Aggression among Conspecifics in 3-Spined Stickleback, Gasterosteus-Aculeatus. 

Animal Behaviour, 24, 245-260. 

JONES, K. A. & GODIN, J. G. J. 2010. Are fast explorers slow reactors? Linking 

personality type and anti-predator behaviour. Proceedings of the Royal Society B-

Biological Sciences, 277, 625-632. 

KOOLHAAS, J. M., KORTE, S. M., DE BOER, S. F., VAN DER VEGT, B. J., VAN 

REENEN, C. G., HOPSTER, H., DE JONG, I. C., RUIS, M. A. W. & BLOKHUIS, H. J. 

1999. Coping styles in animals: current status in behaviour and stress-physiology. 

Neuroscience and Biobehavioural Reviews, 23, 925-935. 

MARCHETTI, C. & DRENT, P. J. 2000. Individual differences in the use of social 

information in foraging by captive great tits. Animal Behaviour, 60, 131-140. 

SIH, A., KATS, L. B. & MAURER, E. F. 2003. Behavioural correlations across 

situations and the evolution of antipredator behaviour in a sunfish-salamander system. 

Animal Behaviour, 65, 29-44. 

VAN OVERVELD, T. & MATTHYSEN, E. 2010. Personality predicts spatial responses 

to food manipulations in free-ranging great tits (Parus major). Biology Letters, 6, 187-

190. 

VERBEEK, M. E. M., BOON, A. & DRENT, P. J. 1996. Exploration, aggressive 

behaviour and dominance in pair-wise confrontations of juvenile male great tits. 

Behaviour, 133, 945-963. 

VERBEEK, M. E. M., DE GOEDE, P., DRENT, P. J. & WIEPKEMA, P. R. 1999. 

Individual behavioural characteristics and dominance in aviary groups of great tits. 

Behaviour, 136, 23-48. 

VERBEEK, M. E. M., DRENT, P. J. & WIEPKEMA, P. R. 1994. Consistent Individual-

Differences in Early Exploratory-Behaviour of Male Great Tits. Animal Behaviour, 48, 

1113-1121. 

WILSON, D. S., COLEMAN, K., CLARK, A. B. & BIEDERMAN, L. 1993. Shy Bold 

Continuum in Pumpkinseed Sunfish (Lepomis-Gibbosus) - an Ecological Study of a 

Psychological Trait. Journal of Comparative Psychology, 107, 250-260. 

 

 



178 
 

APPENDIX II 
 

LONG TERM CONSISTENCY IN NEOPHOBIA IN THE EUROPEAN 

GREENFINCH 
 

 

II I INTRODUCTION 
 

I measured neophobia in 17 male captive-bred greenfinches (Carduelis chloris) in spring 

2008. The same individuals contributed to the study for chapter 4, four months later, in 

which neophobia was re-measured by similar methods. Here, I describe the methods used 

to measure neophobia in spring 2008 and compare the scores obtained for the same 

individuals in spring 2008 and autumn 2008. My aim was to examine temporal 

consistency in the neophobia trait. 

 

II II METHODS 
 

In spring 2008, from the 30/04/08 to 1/5/08, each bird took part in two neophobia trials, 

one on each day.  Each trial consisted of two phases: a novel object phase and a 

disturbance phase. Phases were conducted around 1.5 hrs apart within each day, with the 

order randomised on day 1 and counter-swapped on day 2. Prior to a phase, the food bowl 

was removed to motivate birds toward foraging activity. After a further 30 min the water 

bowl was also removed. After 1h total without food, the food bowl was returned to the 

cage and the latency to approach recorded. In the novel object phase, the food bowl also 

contained one of four similarly sized (c. 3cm3) novel plastic objects, one red, one white, 

one yellow and one silver. Unlike the trial described in chapter 2, along with the regular 

seed mix the food bowl in both phases contained three fresh spinach leaves, a food type 

with which the birds were familiar. The spinach appeared to stimulate the birds to 

approach more quickly in this trial than that described in chapter 2, as mean disturbance 

latencies were significantly shorter in this trial (paired Wilcoxon rank sum test: V16 = 28, 
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P = 0.02). Therefore birds were only observed for 10 min, and birds that did not approach 

within that time given a maximum latency of 600 seconds.  

To calculate neophobia scores, I took into account two issues. First, each 

individual was exposed to only 2 of the 4 novel objects, although there were no 

differences in novel object phase latency between objects (LME, with individual as a 

random effect: F3,14 = 0.33, P = 0.8). Second, independent of response toward the novel 

object, individuals may differ in their feeding motivation or tolerance of disturbance by 

the observer. Therefore for each trial I constructed a general linear model (GLM) 

between novel object phase latency as the dependent variable and disturbance phase 

latency and object identity as the independent variables, after first log-transforming both 

latencies to meet the assumptions of normality and homogeneity of variance. The 

residuals of these models, converted to z scores, provided two measure of neophobia for 

each bird, one per object (as Boogert et al., 2006). This is the method by which 

neophobia scores were calculated in autumn 2008 (chapter 4). 

 

II III RESULTS AND CONCLUSIONS  
 

Mean latency to approach the food bowl was significantly greater when a novel object 

was present (paired Wilcoxon rank sum test: V = 0, N1 = N2 = 17, P < 0.0001), thus the 

object elicited a neophobic response. Bird identity explained a significant proportion of 

the variation in the disturbance phases (LME, with trial order as random factor: F1, 15 = 

18.16, P < 0.0001) and novel object phases (LME, with object identity nested in trial 

order as a random factor: F1, 10 = 3.91, P = 0.01). As birds were consistently fast or slow 

within phases I used a mean z value per bird as the neophobia score to compare to 

neophobia in autumn 2008. Individual neophobia was significantly repeatable (ANOVA: 

r = 0.53, F1, 16 = 3.28, P = 0.01) in spring 2008. Finally, individual neophobia measured 

in spring 2008 correlated positively with their neophobia measured in autumn 2008 

(GLM: t1, 16 = 3.2, P = 0.006; see Fig. II-1). Therefore, neophobia was a temporally stable 

personality trait in greenfinches. 
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Figure II-1 The relationship between neophobia measured in spring 2008 and neophobia 
measured in autumn 2008 (chapter 4) for 17 male greenfinches. 
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