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Abstract

We reinvestigate Kreimer’s Hopf algebra structure of perturbative
quantum field theories. In Kreimer’s original work, overlapping diver-
gences were first disentangled into a linear combination of disjoint and
nested ones using the Schwinger-Dyson equation. The linear combination
then was tackled by the Hopf algebra operations. We present a formula-
tion where the coproduct itself produces the linear combination, without
reference to external input.

PACS-98: 02.10.Sp Linear and multilinear algebra, 11.10.Gh Renormalization,
11.15.Bt General properties of perturbation theory

1 Introduction

This paper is the result of our efforts to understand the article by Dirk Kreimer on
the Hopf algebra structure of perturbative quantum field theories [1]. That article
was brought to our attention by Alain Connes in his talk during the Vietri confer-
ence on noncommutative geometry. Kreimer discovered that divergent Feynman
graphs can be understood as elements of a Hopf algebra. The forest formula
guiding the renormalization of Feynman graphs with subdivergences is repro-
duced by a certain interplay of product, coproduct, antipode and counit of that
Hopf algebra.

We noticed that in all examples in the general part of [1], overlapping diver-
gences – the target of the forest formula – never occurred. Thanks to a hint by
Kreimer we understand now that overlapping divergences must first be disentan-
gled into a linear combination of terms containing disjoint or nested divergences
exclusively. The tool used in this procedure is the Schwinger-Dyson equation. It
was shown in [2] that disentangling overlapping divergences is always possible.
It is therefore no restriction that the operations of the Hopf algebra are applied
only to terms containing no overlapping divergences.
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In this paper we present our independent approach to the problem of overlap-
ping divergences. Our goal is to treat overlapping divergences on the same footing
with disjoint and nested ones. We wish the operations of the Hopf algebra them-
selves to disentangle overlapping divergences, without reference to exterior input
like the Schwinger-Dyson equation. We show that this aim can be achieved by
endowing Kreimer’s parenthesized words (PW) describing the Feynman graphs
with additional information. In our formulation, a PW is a collection of all max-
imal forests of a Feynman graph, where identical regions in various forests are
visualized. The Hopf algebra given by the set of all such extended PWs is always
coassociative and has always a left counit and left antipode. It has a right counit
and right antipode for certain renormalization schemes. The axiom for the left
antipode yields the forest formula for any Feynman graph.

We introduce in section 2 our extended PWs and discuss in section 4 the R-
operation of renormalization. The Hopf algebra is identified in section 5, where
longer proofs are delegated to the appendix. In sections 3 and 6 we apply our
methods to examples of Feynman graphs with overlapping divergences.

2 Feynman graphs, maximal forests and parenthesized words

Let Γ be a Feynman graph. In the way described by Kreimer we draw boxes
around superficially (UV-) divergent sectors of Γ:

�

4
5

2

3
1

= (((s1)(v2)v4)(p3)v5) (1)

(As usual, straight lines stand for fermions and wavy lines for bosons.) A super-
ficially divergent sector [3] is necessarily a region of Γ which contains loops. The
boxes must be drawn in such a way that no vertex of Γ is situated on the border
of the box and no line of Γ is tangential to the border. Boxes can be deformed.
During the deformation, no vertex is allowed to pass the border and at no time
a line may be tangent to the border of the box. We consider boxes which differ
by a deformation as identical.

We shall work in four dimensional spacetime, but generalization is obvious.
We are interested in the case typical for renormalizable gauge field theories where
for each vertex V of Γ the momentum dimension of the fields meeting at V is
equal to the spacetime dimension (= 4). A criterium for superficial divergence
of a region confined in a box is power counting. The box under consideration
will contain nB bosonic and nF fermionic external legs. Ghosts are regarded as
bosons here. There can only be a superficial (ultraviolet) divergence in the box
if it contains at least one loop and if the power counting degree of divergence dpc
satisfies

dpc := 4− nB − 3
2
nF ≥ 0 . (2)

2



Owing to symmetries the actual degree of divergence d of one graph or a sum
of graphs can be lower than dpc calculated from (2), see ref. [3]. Examples are
graphs in QED with nB = 3, nF = 0 (which can be omitted due to Furry’s
theorem) and with nB = 4, nF = 0 (which are superficially convergent due to
gauge symmetry). Always if d < 0 the box must be erased. This does not mean
that there cannot be divergences in the box to erase. But these non-superficial
divergences must be contained in other boxes which cannot be deformed into the
box we erased.

Our boxes represent the forest structure of Γ. A forest is a set of 1PI (one-
particle-irreducible, i.e. the graph remains connected after cutting an arbitrary
line) divergent subgraphs γ ⊂ Γ which do not overlap. Instead, any two elements
(= boxes) of a forest are either disjoint or nested. The forest structure is the
collection of the maximal forests of Γ, i.e. the forests which are not contained in
another forest. There are several maximal forests in general to a Feynman graph.

Kreimer defines [1] a recursive procedure to assign parenthesized words (PW)
to the boxes of a maximal forest. The total graph Γ stands for a certain integrand
IΓ depending on external and internal momenta. A box is represented by a pair
of opening-closing parentheses. Two nested boxes are represented by (( ) ) and
two disjoint boxes by ( )( ). In an irreducible PW (iPW) the leftmost opening
parenthesis matches its rightmost closing parenthesis. A primitive box contains
no nested boxes and represents a graph γ without subdivergences. Examples of
primitive boxes ( ) are:

������

(3)

(The reader is encouraged to verify using (2) that the last three examples contain
no divergent subgraphs.) We associate the integrand Iγ defined by the vertices
and propagators of γ to such a primitive box and write the PW (Iγ). A non-
primitive box contains nested boxes. It describes a graph γ with subdivergences
γi, which are already characterized by PWs Xi. Examples for graphs with one
nested subdivergence (( ) ) are:

�	
��

(4)

Examples for graphs with two disjoint nested subdivergences: (( )( ) ) are:

Æ �

(5)

And here are two examples for graphs with a nested subdivergence which has
itself a nested subsubdivergence ((( ) ) ):

� �

(6)

3



If we shrink all nested boxes (=divergent subgraphs γi) of γ to points, there
remains a fraction Iγ/∪γi of the integrand of γ defined by the vertices and propa-
gators of γ/∪ γi. We write this fraction next to the right closing parenthesis and
everything we have shrunk to a point (the Xi) between that fraction and the left
opening parenthesis. The resulting PW looks like this:

(

X1 . . .Xn Iγ/{γ1∪···∪γn}
)

.
Note that the order of disjoint boxes is irrelevant.

By this procedure we associate a PW to each maximal forest. As discovered
by Kreimer [1], the PWs form a Hopf algebra whose antipode axiom reproduces
the forest formula [4]. This assumes that overlapping divergences such as

�

�

(7)

have been disentangled into a linear combination of PWs containing disjoint and
nested divergences exclusively. That procedure is an external one as it uses the
Schwinger-Dyson equation [2]. The outcome is thus a linear combination of PWs
each of them describing precisely one maximal forest.

The goal of this paper is to modify the PWs and the Hopf algebra operations
in such a way that any 1PI-Feynman graph is described by a single PW and
that all Hopf algebra operations are defined on such a PW. Our starting point
is the observation that in the case of overlapping divergences there exist several
maximal forests to a Feynman graph. It is clear that democracy requires to
comprise all PWs associated to these maximal forests to one bigger object. We
propose to build a column vector whose components are the PWs of maximal
forests. The order of the components (or rows as they are long objects) of this
vector is not relevant, of course. As the integrands associated to the PWs of each
row are equal (up to cyclic permutations), we associate this universal integrand
to our column vector.

There is one further modification necessary. Later on we are going to identify
the subwords of such a vector and define the removal of subwords. Subwords
represent subgraphs and the removal means shrinking the subgraphs to points.
But subgraphs or subwords can occur identically in various maximal forests. If
we now compare the maximal forests of a graph with removed subgraph and
the maximal forests of the original graph, it is easy to see that the subgraph is
removed in all maximal forest it had occurred. (An example is the step from
(10) to (8) in the next section by shrinking the loop 3.) We must implement
this feature in our vectors. We propose to connect by a tree of lines the closing
parentheses of identical and simultaneously shrinkable boxes. If we pull out a
subword of such a vector and if the subword is connected over various rows, we
simply have to remove all of them.

Thus, our PWs are vectors of one-line-PWs representing the maximal forests
of a Feynman graph, where the closing parentheses of simultaneously shrink-
able boxes are connected. We define now the notion of a parenthesized subword
(PSW) of a PW. A PSW Y of X is everything between a set of connected clos-
ing parentheses and its matching opening parentheses. Disconnected rows of X
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which are accidentally between connected rows are not part of the PSW Y under
consideration.

There is an algorithm which yields all PSW of a PW. Starting with the first
row we run from the left through the PW until we meet a closing parenthesis.
In general, it will be connected with other closing parentheses in different rows.
These connected closing parentheses and their matching opening parentheses de-
fine our first PSW. We mark all these connected closing parentheses. We then go
ahead and move through the first row until we arrive at the next closing paren-
thesis. This gives the next PSW and marks the next set of parentheses. We
repeat this procedure until the rightmost closing parenthesis is reached. Then we
pass to the second row and continue to search for new closing parentheses and
related PSW, i.e. we ignore all parentheses marked in the previous steps. This
search continues through all rows and stops at the lower right corner of our PW.

In what follows we will freely use the notions parenthesized word (PW), ir-
reducible PW (iPW, the leftmost and rightmost parentheses match), primitive
PW (no nested divergences, a special iPW) and parenthesized subword (PSW,
a special iPW). We remark that a possible extension could be the inclusion of
superficially convergent 1PI-graphs (d < 0) with subdivergences. All finite inte-
grands fuse and stand immediately before the rightmost closing parentheses.

We will give now some examples for Feynman graphs with overlapping diver-
gences which are represented by parenthesized words of several maximal forests.
The PSW of some of these examples are discussed and further evaluated in sec-
tion 6.

3 Examples for Feynman graphs with several maximal forests

In QED there is the following contribution to the photon propagator:

�

p

k1

k2+pk1+p

k2

p

κ

κ

µ ν
k1 −k2 ((v1)p2)

((v2)p1)
(8)

We can draw two maximal forests of boxes. We can first draw a box around the
left loop which contains the vertex correction with interior momentum k1. Then
we put this box into the large box which encircles both loops. Or we can first
enclose the right loop by a vertex box and then put everything into the same

large box. Graphically, the two possibilities look like this:

�

1 2 = ((v1)p2) or

�

1 2 = ((v2)p1) . (9)

In the first case, the innermost box is the primitive box (v1) the integrand of
which is in the Feynman gauge given by

v1 = eγκ 1
k/1−µ

eγµ 1
k/1+p/−µ

eγκ
1

(k1−k2)2−M2 .
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Here, e is the electron charge, µ is the electron mass and M an auxiliary photon
mass to avoid IR-divergences. This vertex box is nested in the large box, so we
must write ((v1)p2) as the maximal forest. The integrand p2 is the interior of the
large box after shrinking the small box (v1) to a point. What remains is loop 2
and the integrand is found to be

p2 =
1

k/2+p/−µ
eγν 1

k/2−µ
.

In the second case the loops 1 and 2 change their role and we obtain the maximal
forest ((v2)p1) with

v2 = eγκ 1
k/2+p/−µ

eγν 1
k/2−µ

eγκ
1

(k2−k1)2−M2 , p1 =
1

k/1−µ
eγµ 1

k/1+p/−µ
.

We have found two maximal forests ((v1)p2) and ((v2)p1) in this example. These

two forests form the 2-line vector
((v1)p2)
((v2)p1)

. However, the large box occurs identi-

cally in both maximal forests. We cannot shrink it in one of them and keep it in
the other. Therefore, the closing parentheses representing the large box in both
rows of the vector must be connected, as we have already indicated in (8).

Here is a graph with two maximal forests containing a nested divergence:

�

1 2

3

(((v3) v13)p2)
(((v3) v23)p1)

(10)

The vertex correction v3 is nested in both vertex corrections vi3 comprising the
common loop 3 and loop i. The subword (v3) is identical in both maximal forests
(((v3)v13)p2) and (((v3)(v23)p1). If we shrink it in one of them it is automati-
cally removed in the other one. For the same reasons both maximal forests are
connected at the outermost box.

Here is now a more complicated forest structure:

�

31 2

( (v1) (v2) p3)
(((v1) v13)p2)
(( (v2) v23)p1)

(11)

We have three possibilities for drawing disjoint boxes: We can take loops 1 and 2
and put them into the large box, or we can put loop 1 into the vertex box which
covers loops 1 and 3 and then everything into the large box, or we can exchange
the role of loops 1 and 2.

Let us also give an example from φ4-theory. There is the following second-
order correction to the propagator:

�

1

3

2

((x23)y1)
((x31)y2)
((x12)y3)

(12)

Here, xij is the vertex correction� involving the lines i, j and yk the tadpole
graph� involving the line k. The three maximal forests are connected
because shrinking one of them to a point forces the reduction of the other two.
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4 Kreimer’s R-operation [1]

To any PW X , Kreimer associates a second, in a certain sense equivalent copy
R[X ]. The philosophy is that R[X ] is a local counterterm, a point-like interaction.
It is so to say a new vertex, mass or kinetic term in the Lagrangian, which itself
is infinite but such that a certain combination of counterterms and divergent 1PI
graphs is finite. The finite linear combination in question is given by the forest
formula or – as discovered by Kreimer – by the antipode axiom of a (quasi-) Hopf
algebra to construct. For renormalizability it is essential that all counterterms can
be absorbed by a redefinition of physical parameters of the theory. In particular
in gauge theories there are potentially more types of counterterms than physical
parameters [3]. It is important then that counterterms and divergences of the sum
of all graphs contributing to a certain amplitude cancel. We avoid a discussion
of these subtleties by considering scalar theories or – with some care – QED.

The R-operation depends on the renormalization scheme, which in principle
is arbitrary but fixed throughout the investigation. We shall work in the BPHZ
scheme [5, 6, 4] which is the standard one in connection with the forest formula. A
iPW X represents one box containing a divergent Feynman graph with in general
several forests of subdivergences. The box has nB bosonic and nF fermionic
external legs. The superficial degree of divergence d[X ] of the iPW X is bounded
by the power counting theorem (2), d[X ] ≤ 4−nB−

3
2
nF . In the BPHZ scheme

the integrand R[X ] is the Taylor expansion until order d[X ] with respect to the
external momenta of X . This implies that R[X ] and X have the same asymptotic
dependence of all internal momenta of X , this is Kreimer’s equivalence relation
X ∼ R[X ]. But this does not mean thatX−R[X ] is an integrand yielding a finite
integral. This is only the case if X is a primitive PW without subdivergences.

To give an example, consider the divergent Feynman graph with subdivergence

�

p1−p2

p2

p1−p2+k1

p1−p2+k2

k1−k2
k1

p1

k2−p2

k2

µ ν

ν

κ

κ

= ((v1)v2) , (13)

v1 = eγν 1
k/1−µ

eγµ 1
k/1+(p/1−p/2+k/2)−k/2−µ

eγν
1

(k1−k2)2−M2 ,

v2 =
1

p/1−p/2+k/2−µ
eγκ 1

(k2−p2)2−M2 eγκ
1

k/2−µ
.

We have written v1 in a form where its external momenta p1−p2+k2 and k2
are explicit. The two subwords of ((v1)v2) are clearly (v1) and ((v1)v2). Let us
compute R[(v1)]. It has 2 fermionic and 1 bosonic external legs, hence d[(v1)] ≤ 0,
and actually d[(v1)] = 0. In the BPHZ scheme we take the Taylor expansion of
(v1) in its external momenta p1−p2+k2 and k2 until order 0. This gives

R[(v1)] = (v1)|p1−p2+k2=k2=0 = eγν 1
k/1−µ

eγµ 1
k/1−µ

eγν
1

k2
1
−M2

=
�

p1−p2
k2

p1−p2+k2
µ

(14a)
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(R[(v1)]v2) = eγν 1
k/1−µ

eγµ 1
k/1−µ

eγν
1

k2
1
−M2

1
p/1−p/2+k/2−µ

eγκ 1
(k2−p2)2−M2 eγκ

1
k/2−µ

=

�

p1−p2

p2

p1−p2+k2
p1

k2−p2
k2

µ κ

κ
(14b)

The asymptotic behavior of (v1) and R[(v1)] with respect to k1 is identical, this
is symbolized by the equivalence relation (v1) ∼ R[(v1)]. We also see that R[(v1)]
defines a local counterterm. The integral

∫

d4k1 tr{(v1)−R[(v1)]} is finite.
We can now apply the R-operation to the PWs (R[(v1)]v2) and ((v1)v2),

which both have 2 fermionic and 1 bosonic external legs and d[((v1)v2)] =
d[(R[(v1)]v2)] = 0. We have to take the Taylor expansion of these PWs in their
external momenta p1 and p2 until order 0, which gives

R[(R[(v1)]v2)] = eγν 1
k/1−µ

eγµ 1
k/1−µ

eγν
1

k2
1
−M2

1
k/2−µ

eγκ 1
k2
2
−M2 eγκ

1
k/2−µ

=
�

p1−p2
p2

p1
µ
• (15a)

R[((v1)v2)] = eγν 1
k/1−µ

eγµ 1
k/1−µ

eγν
1

(k1−k2)2−M2

1
k/2−µ

eγκ 1
k2
2
−M2 eγκ

1
k/2−µ

=
�

p1−p2
p2

p1
µ

(15b)

Observe that R[(R[(v1)]v2)] and (R[(v1)]v2) have the same asymptotic behavior
with respect to k1 and k2, the same is true for the pair ((v1)v2) and R[((v1)v2)].
Both R[(R[(v1)]v2)] and R[((v1)v2)] define local counterterms, but both integrals
∫

d4k2d
4k1 tr{((v1)v2)−R[((v1)v2)]} and

∫

d4k2d
4k1 tr{((v1)v2)−R[(R[(v1)]v2)]}

are infinite. To obtain a finite expression one has to include (R[(v1)]v2) in a way
given by the forest formula.

We must say a few words how equivalence is defined quantitatively. Renor-
malization schemes depend on some regularization parameter ǫ. Infinities corre-
spond to pole terms in ǫ. In terms of ǫ, Kreimer gives the following definition of
equivalence:

X ∼ Y iff lim
h̄→0,ǫ→0

{X − Y } = 0 . (16)

The equivalence R[X ] ∼ X has to be regarded in this sense. It is important to
understand that R[X ] ∼ X does not imply R[X ]Y ∼ XY . The reason is that if
Y has pole terms in ǫ then in the product (R[X ]−X)Y also terms of order ǫ in
R[X ]− Y become essential. It turns out that the full set of properties of a Hopf
algebra can only be guaranteed if equivalence works for products, in a certain
sense. The precise condition to the the renormalization map R is

R
[
∏

i

R[Xi]
∏

j

Yj

]

=
∏

i

R[Xi]
∏

j

R[Yj] . (17)

We indicate by X ≈ Y that under the condition (17) we have X ∼ Y , but that
in general equivalence is not guaranteed.
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In the BPHZ scheme there is no regularization parameter ǫ, so we cannot use
the definition (16). Nevertheless, R is defined for any Feynman graph, and we
say that X ∼ Y iff Y = X or Y = R[X ]. The condition (17) makes sense, and we
have R2 = R by construction. We remark that superficially convergent graphs
with subdivergences (if included, see the remark at the end of section 2) are
annihilated by R. This is clear in the BPHZ scheme, because a Taylor expansion
until order d < 0 makes no sense. In what follows we work on a general level
without specifying the renormalization scheme and its R-operation.

5 The Hopf algebra

Following the work of Kreimer [1] we will now equip the PWs with the structure
of a (left-) Hopf algebra. This goes in four steps. First, we would like to consider
the set A of all PWs (which include from now on its R-equivalents) as a vector
space. Stricty speaking, the product definition below will force us to introduce a
refinement of PWs, and A is the set of such refined PWs. We enlarge formally
this set A by all rational linear combinations of PWs. This makes A to a formal
vector space over the field Q of rational numbers, Q just for simplicity.

The second step makes A to an algebra by defining a product m. This is an
operation which assigns to a sum of pairs of elements of A a new one. Actually
only Q-equivalence classes of pairs are essential as m(qX, Y ) = m(X, qY ) =
q m(X, Y ), for X, Y ∈ A and q ∈ Q. Thus, m operates on the tensor product.
Suppose we want to multiply two iPWs (X) and (Y ) to a new PW Z = m[(X)⊗
(Y )]. There are clearly many possibilities. We could write the PW Z = (X)(Y )
which corresponds to two disjoint divergences. Or we could insert (X) into (Y )
and write Z = ((X)Y ). This corresponds to a subdivergence X nested in the
divergence Y . Or we could exchange the role of X and Y . Kreimer always takes
the disjoint product (X)(Y ). We believe that this is not justified. Let us look
again at the example (14b), where we have computed the diagram (R[(v1)]v2).
On our way to recover the forest formula we will be forced to identify this term
with m[R[(v1)] ⊗ (v2)]. The integrand is by chance equal to R[(v1)](v2). But
how can we distinguish it from two disjoint vertices R[(v1)] and (v2)? In writing
(R[(v1)]v2) we say unambiguously that the counterterm R[(v1)] is inserted into
the vertex correction (v2). This is important because with that interpretation,
formula (17) is much less restrictive. In particular, we do not need (17) for
1PI-graphs.

To cut a long story short, we are motivated to modify Kreimer’s product defi-
nition. But how does the multiplication operator m know whether it must insert
a subword or take a disjoint product? One idea is to add more information to the
tensor product. For example, if we have a tensor product of (X1)(X2)(X3)(X4)
with (Y1)(Y2)(Y3) and we want m to insert (X2) and (X3) into (Y2) and (X4) into
(Y1), we indicate this by the following assignment of horizontal brackets:

m
[

(X1)(X2)(X3)(X4)⊗ (Y1)(Y2)(Y3)
]

= (X1) ((X4)Y1) ((X3)(X2)Y2) (Y3) .

This multiplication rule also works across R-operations. For example, if we have
a tensor product of R[(X1)]R[(X2)](X3) with R[(Y1)]((Y2)Y3) and we want m to

9



insert R[(X2)] and (X3) into R(Y1)] and R[(X1)] into the subword (Y2) of ((Y2)Y3),
we indicate this by

m
[

R[(X1)]R[(X2)](X3)⊗R[(Y1)]((Y2)Y3)
]

=R[((X3)R[(X2)]Y1)] ((R[(X1)]Y2)Y3) .

This is easy. However, such brackets across tensor products seem to be a severe
violation of algebraic principles. Actually, these horizontal brackets are a conve-
nient visualization of very complicated index structures. By construction there is
always a countable number of divergent 1PI-Feynman graphs, hence a countable
number of iPWs. Thus, we can assign a number to the rightmost closing paren-
thesis of each iPW. We can now label the subwords of the iPW Xn according to
their position and their depth, for instance

Xn = (((( . )n,221 . )n,22( . )n,21 . )n,2( . )n,1 . )n .

If we now pull out a subword (that operation will be rigorously defined below),
say (( . )n,221 . )n,22, then the label structure tells us that the reminder (also
characterized below) X ′

n = ((( . )n,21 . )n,2( . )n,1 . )n is a PW where a subword
is missing, just because the word with the same parenthesis arrangements as X ′

n

would carry another label than n, and that the missing subword carries the label

n,22 at its closing parenthesis. Now, there are five possibilities for the relative
position of any two PWs Xk and Yl occurring in the tensor product Xk ⊗ Yl:

1. They intersect, which means that there exists a parenthesis with the same
label in Xk and Yl, such as ( . )n,221 and (( . )n,221 . )22 above.

2. They are disjoint, such as ( . )n,21 and ( . )n,1 above.

3. The closing parenthesis of Xk is missing in Yl and depth(k)− depth(l) = 1,
such as ( . )n,221 and ( . )n,22 above.

4. The closing parenthesis of Xk is missing in Yl and depth(k)− depth(l) > 1,
such as ( . )n,221 and (( . )n,21 . )n,2 above.

5. The closing parenthesis of Yl is missing in Xk.

We define m[Xk ⊗Yl] = 0 in cases 1,4,5. The multiplication m builds the disjoint
product in case 2 and inserts the immediately missing subword Xk into the correct
position in Yl in case 3.

All this complicated index structure is encoded in the brackets across tensor
products. The brackets are much easier to memorize, but they are completely
equivalent to true tensor products and large towers of indices.

We shall define the multiplication as an operator

m : A ⊗A → A

acting as above explained. This multiplication is noncommutative in general. If
there is a horizontal bracket we always insert the left factor into the right factor,
never the right into the left. If there is no bracket we build the disjoint product
which is commutative. The multiplication m is always associative,

m ◦ (id⊗m) = m ◦ (m⊗ id) .

10



This is clear for disjoint products, but also for brackets: If we have three factors
related by brackets, it is obviously the same to insert first the left into the middle
and then everything into the right factor, or to insert first the middle into the
right and finally the left into the same place in the middle factor which is now
considered as a subword of the right factor. We further define a formal unit e by

m[e⊗X ] = m[X ⊗ e] = X ∀ X ∈ A .

The unit e is not considered as a PSW. It is convenient to consider e as produced
by an operation

E : Q → A , E(q) = qe .

The third step is to make A to a coalgebra. The operations of a coalgebra
are the duals of the algebra operations. Dual means turning the arrows. For
instance, the dual of the above unit E, the counit ē, will be a formal operation
given by

ē : A → Q , ē[qe] := q , ē[X ] := 0 ∀X 6= e , X ∈ A .

Now comes a physically significant ingredient of our coalgebra, the coproduct ∆.
A product was the assignment of one element to sums of pairs of other elements,
the pairs being connected by horizontal brackets. Hence, a coproduct will be
the splitting of one element into sums of connected pairs of other elements, in
symbols

∆ : A → A⊗A .

The philosophy is that ∆ provides the splitting of a 1PI-graph Γ into a formal
sum of tensor products of all possible divergent subgraphs γi (left factor) by the
fraction Γ/γi obtained by reducing γi to a point (right factor). The left factors
are, moreover, treated by the R-operation and a horizontal bracket connects them
to the places in Γ/γi where they had been before.

Let us formalize this idea. The graph Γ is represented by a PW X describing
its forest structure. Let X be an iPW and Y be a PSW of X in the sense of
section 2. We are going to define the fraction X/Y . If Y = X we define X/X = e
(no brackets between X and e = X/X). Otherwise we label the rows of X . Each
row of Y is a substring of one determined row of X . We give to the Y -rows the
labels of the X-rows they are contained in. These labels could be ambiguous but
we fix one choice for all subwords of X . We delete all rows of X which have no
counterpart in Y . Let X ′ be the result of this cutting procedure. Now, there is
a 1 : 1-correspondence between the rows of X ′ and Y . It remains to remove in
each X ′-row its related Y -row and to put one end of a string at this position, the
other end is attached to the Y -row. The result is an n-line iPW X/Y connected
by n strings (or brackets) to the n-line PSW Y .

Let us now compare X/Y with a second PSW Z of X . Assume that both
have some rows of common labels. We remove all but the common rows of Z
and X/Y and moreover all of the remaining related rows, where the Z-row is

11



not a subword of its corresponding X/Y -row. (This happens if Z is a subword
of Y .) The results are two n′-line PWs Z ′ and (X/Y )′ where each row of Z ′ is a
subword of its corresponding (X/Y )′-row. Again we remove in each (X/Y )′-row
its related Z ′-row and put one end of a string at this position, the other end is
attached to the Z ′-row. The outcome is the n′-line iPW (X/Y )/Z connected by
n′ strings with the n′-line PW Z ′ and by the same number n′ of strings with the
n′-line PW Y ′ obtained from Y by deleting its rows whose labels do not meet the
labels of the rows of Z ′. If after deleting the rows nothing remains from X/Y
and Z then we put (X/Y )/Z = 0. This procedure can be repeated for various
PSWs Yi1, . . . , Yik of X and gives nk-line PWs

X/(Yi1Yi2 · · ·Yik) ≡ ((. . . ((X/Yi1)/Yi2)/ . . . )/Yik)

connected by each nk strings to the nk-line PWs Y ′
i1
, . . . , Y ′

ik
. If we have a disjoint

product X =
∏

i Xi and Y is a PSW of X , then Y is a PSW of precisely one Xj

or one Xj itself. In that case we define X/Y := {Xj/Y }
∏

i 6=j Xi.
Now, the coproduct of a PW X containing the PSWs Y1, . . . Yn is defined by

∆[e] := e⊗ e ,

∆[X ] := e⊗X +
∑

i1<i2<···<ik

{

R[Yik] · · ·R[Yi2]R[Yi1]⊗X/(Yi1Yi2 · · ·Yik)
}

, (18)

where the sum runs over all ordered subsets {i1, . . . , ik} ⊂ {1, 2, . . . , n}. The
order of the factors and products is not important in this definition, but we must
avoid taking identical terms several times. We have omitted the primes which
indicate that only the common rows of Yi1, . . . Yik are taken.

Our algebra A also contains elements of the type R[X ], where X is a PW.
Kreimer gives two possible definitions for ∆ ◦R,

∆[R[X ]] = ∆[X ] , (19a)

∆[R[X ]] = (id⊗R) ◦∆[X ] . (19b)

He chooses to work with (19a). We prefer (19b), because R[X ] is always a local
counterterm • . The philosophy is that ∆ splits a graph into subgraphs and
reminders. Hence, both of them should be local counterterms in this example,
∆[•] =

∑

• ⊗ •, and the natural definition is (19b) or

∆[R[X ]] := e⊗R[X ] +
∑

i1<i2<···<ik

{

R[Yik] · · ·R[Yi2]R[Yi1]⊗R[X/(Yi1Yi2 · · ·Yik)]
′
}

.

(20)

Here, the prime means that R[X/X ] has to be replaced by e instead of R[e].
This can be easily interpreted in terms of PSWs. The PSWs Yi of R[X ] are
identical with the PSWs of X , except for the total PW R[X ]. The fraction
R[X ]/Yi obtained by removing Yi in R[X ] clearly coincides with R[X/Yi], except
for R[X ]/R[X ] = e.

There are of course some consistency conditions to fulfill before we can call
A a coalgebra. One of these conditions to ∆ is coassociativity, which is derived
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from associativity by turning the arrows: If we split one element into sum of
pairs, it must be the same to split the left or the right factor further. In symbols,
coassociativity means

(id⊗∆) ◦∆[X ] = (∆⊗ id) ◦∆[X ] , ∀ X ∈ A . (21)

We give the proof in proposition 1 in the appendix. For the choice (19a), coas-
sociativity was only satisfied under the additional condition (17). We suppose
that Kreimer had rejected (19b) because of problems with the antipode defined
below. These problems are due to his product definition and disappear (partly)
with our modification. We recall that there are also physical reasons in favour
of (19b) and for the horizontal brackets across tensor products. However, (19b)
does not remove all problems. The ‘counit’ ē is only a left counit and becomes a
true counit under the condition (17), see proposition 2. This means that we have

(ē⊗ id) ◦∆[X ] = X , ∀X ∈ A , (22a)

which is good, but only the weak property

(id⊗ ē) ◦∆[X ] ≈ X (22b)

in general. We see that without condition (17), A is only some sort of left-
coalgebra. Moreover, the ‘antipode’ S defined below turns out to be only a left
antipode in general.

So far we have equipped A with the structures of an algebra and a coalgebra.
Both merge to a bialgebra if ∆ is an algebra homomorphism,

∆ ◦m[X ⊗ Y ] = m̃[∆[X ]⊗∆[Y ]] , ∀ X, Y ∈ A . (23)

We must check that it is possible to define m̃ : (A ⊗ A) ⊗ (A ⊗ A) → A ⊗ A
appropriately. This definition depends on the brackets (which we have omitted)
joining the various A-factors. If X and Y in (23) are disjoint, we also take the
disjoint product

m̃
[

(
∏

i

R[Xi]⊗X ′)⊗ (
∏

j

R[Yj]⊗Y ′)
]

:= (
∏

j

R[Yj]
∏

i

R[Xi])⊗ (X ′Y ′) . (24a)

It is evident now that (23) is fulfilled for the disjoint product, because the sub-
words of XY are the subwords Xi of X and Yi of Y together. Extension of the
disjoint m̃ to more than two factors is obvious. For the tensor product related
by brackets we define

m̃
[

(
∏

i

R[Xi]⊗X ′)⊗ (
∏

j

R[Yj]⊗Y ′)
]

:= 0 , (24b)

m̃
[

(
∏

i

R[Xi]⊗X ′)⊗ (
∏

j

R[Yj]⊗Y ′)
]

:=(
∏

j

R[Yj]
∏

i

R[Xi])⊗m[(X ′⊗Y ′)] , (24c)

m̃
[

(R[X]⊗ e)⊗ (
∏

j

R[Yj]⊗ Y ′)
]

:= (
∏

j

R[Yj] R[X])⊗ Y ′ , Y ′ 6= e , (24d)

m̃
[

(R[X]⊗ e)⊗ (R[Y ]⊗ e)
]

:= m[X ⊗ R[Y ]]⊗ e . (24e)

13



This is easy to understand. In (24b) we would have the PSW X ′ on the right
of its reminder Yj, which is impossible. Thus, the generic case is (24c) where X
is a PSW of Y ′. This implies that X and all its subwords Xi are disjoint from
all Yj . A special case is X ′ = e. As long as Y ′ 6= e, the generic formula (24c)
remains correct and reads (24d). For Y ′ = e, however, the product on lhs of
(24e) must give the insertion of X and not R[X ] into R[Y ]. These definitions
remain unchanged for R[X ′] and R[Y ′] instead of X ′ and Y ′. The product of
several disjoint factors Xk related by horizontal brackets to Y is defined via
associativity, which for two factors Xk reads m̃◦ (m̃⊗ id⊗ id) = m̃◦ (id⊗ id⊗m̃).
The proof that (23) is fulfilled in the case where X is related to Y by a bracket
is straightforward.

The last step extends the bialgebra to a Hopf algebra. On a Hopf algebra
there exists the additional structure of an antipode S : A → A, which is the dual
of the inverse in an algebra. Our algebra does not have an inverse (except for
e−1 = e), nevertheless it has an antipode, which will provide the link to the forest
formula:

S[e] = e , (25a)

S[XY ] = S[Y ]S[X ] , ∀X, Y ∈ A , (25b)

S[X ] = −X −m ◦ (id⊗ S) ◦ P2 ◦∆[X ] , ∀ iPW X ∈ A , (25c)

S[R[X ]] = −R[X +m ◦ (S ⊗ id) ◦ P2 ◦∆[X ]] , ∀ iPW X ∈ A , (25d)

where P2 = (id − E ◦ ē) ⊗ (id − E ◦ ē). The antipode is by (25) recursively
defined, because in P2◦∆[X ] only smaller words thanX survive, and for primitive
words (x) we simply have S[(x)] = −(x) and S[R[(x)]] = −R[(x)]. We prove in
proposition 3 that S is only a left antipode and becomes a true antipode for
renormalization schemes fulfilling (17),

m ◦ (S ⊗ id) ◦∆[X ] ∼ E ◦ ē[X ] (26a)

m ◦ (id⊗ S) ◦∆[X ] ≈ E ◦ ē[X ] . (26b)

Formula (26a) relies deeply on the fact that for X being an iPW the equation

m ◦ (S ⊗ id) ◦∆[X ] = (id− R)
[

X +
∑

T

{

m
[

∏

i∈T

(−R[X̄i])⊗X/(
∏

i∈T

Xi)
]}]

= (id− R)[X̄ ] , (27a)

R[X̄i] := −S[R[Xi]] ,

reproduces Bogoliubov’s recurrence formula of renormalization [7]. In this equa-
tion, Xi 6= X , i = 1, . . . , n, are the proper PSWs of X and T the set of all ordered
subsets of {1, . . . , n}. Denoting by Xij 6= Xi, j = 1, . . . ni, the proper PSW of
Xi, we can write

R[X̄i] ≡ −S[R[Xi]] = R[Xi +m ◦ (S ⊗ id) ◦ P2 ◦∆[Xi]]

= R
[

Xi +
∑

Ti

{

m
[

∏

j∈Ti

S[R[Xij]]⊗Xi/(
∏

j∈Ti

Xij)
]}]

. (27b)
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Thus, X̄i has the same structure as X̄ , and we obtain indeed a recurrence for-
mula. The integrand X̄ associated to an integrand X is pre-finite, which means
that all subdivergences are compensated. The remaining superficial divergence
is compensated by id−R. In any recurrence step, the pre-finite X̄ is given by
X plus the sum over all different products of pre-finite integrands of disjoint
subdivergences, where each such product is multiplied by the fraction obtained
by shrinking the subdivergences of X to points. It is important to include all
combinations of disjoint subdivergences, which are encoded in the set of maximal
forests.

This means that in describing a Feynman graph Γ with subdivergences by
a parenthesized word X , we must somehow include in X all maximal forests
of Γ. That is why we have written the maximal forests as lines of X . The
maximal forests are defined by the relative position of the subdivergences. Each
time we meet an overlap of subdivergences we have a branching of forests. Having
defined the forests we must say how to detect the disjoint subdivergences. Forests
contain by definition no overlapping divergences, so the only problem is to avoid
nested divergences. This is now achieved by taking from Γ any subdivergence
and shrinking it to a point, from the rest we take again any Γ-subdivergence and
shrink it, and so on. By variation of the choices we find all products of disjoint
subdivergences. It is extremely important that if a subdivergence occurs in two
or more forests, we must shrink it in all of them simultaneously. If not, we could
remove in the next step the same subdivergence again, or a subsubdivergence.
All that must be avoided, and we did it by connecting the closing parentheses of
simultaneously shrinkable boxes. Finally, as the disjoint product is commutative,
we must get rid of the multiplicities. We achieved this by assigning numbers to
the subdivergences and by considering only the ordered products.

In conclusion, our modified definition of a parenthesized word that keeps
track of different maximal forests and connects simultaneously shrinkable boxes
is the correct language for Bogoliubov’s recurrence formula [7]. This formula has
an explicit solution, Zimmermann’s forest formula [4]. Both are reproduced by
coproduct and antipode of a (left-) Hopf algebra via m ◦ (S ⊗ id) ◦∆.

We remark that the crucial formula (26a) is actually a stronger equivalence ≃.
Due to the forest formula (27), the difference between left and right hand sides is
finite in any renormalization scheme. This suggests to give up the goal of building
a true Hopf algebra whose axioms are fulfilled modulo the weak equivalence ≈
and building instead a left-Hopf algebra (A, m,E,∆, ē, S) whose axioms are

m ◦ (m⊗ id) = m ◦ (id⊗m) , (∆⊗ id) ◦∆ = (id⊗∆) ◦∆ ,

(ē⊗ id) ◦∆ = id , m ◦ (S ⊗ id) ◦∆ ≃ E ◦ ē .

That could be an alternative as it is unclear so far what the Hopf algebra structure
of perturbative quantum field theories is good for. There are some relations [9]
to the recent article by Connes and Moscovici [8], but further work to clarify this
point is necessary.
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6 Two examples for the coproduct and the forest formula

We compute here the coproducts and forest formulas for two striking examples
of section 3. By PSW we shall always mean proper PSW, we write the trivial
PWs explicitly. The PSWs of

X =
((v1)p2)
((v2)p1)
�

1 2 (8)

are obviously

Y1 = (v1) , Y2 = (v2) . (8s)

Let us compute X/Y1. The only row of Y1 can only be related to the upper row
of X so that X ′ = ((v1)p2). To obtain X/Y1 we must remove Y1 from X ′, the
result is X/Y1 = (p2). There remains the horizontal bracket attached to Y1 which
points into (p2). Analogously one finds

X/Y1 = (p2) , X/Y2 = (p1) , X/(Y1Y2) = 0 , (8r)

because Y2 = (v2) is not a PSW of X/Y1 = (p2). Therefore, the coproduct reads

∆[X ] = e⊗
((v1)p2)
((v2)p1)

+R

[

((v1)p2)
((v2)p1)

]

⊗ e+R[(v1)]⊗ (p2) +R[(v2)]⊗ (p1) . (8∆)

Let us now apply the operator m ◦ (S⊗ id). To avoid unnecessary calculation we
use the general result (27a),

m ◦ (S ⊗ id) ◦∆[X ] = (id− R)[X +m ◦ (S ⊗ id) ◦ P2 ◦∆[X ]] .

The projection P2 removes all terms containing the unit e so that in our case we
have P2 ◦∆[X ]] = R[(v1)]⊗ (p2) +R[(v2)]⊗ (p1). This gives

m ◦ (S ⊗ id) ◦∆[X ]

= (id−R)

[

((v1)p2)
((v2)p1)

+m
[

S[R[(v1)]]⊗ (p2)
]

+m
[

S[R[(v2)]]⊗ (p1)
]

]

= (id−R)

[

((v1)p2)
((v2)p1)

−m
[

R[(v1)]⊗ (p2)
]

−m
[

R[(v2)]⊗ (p1)
]

]

= (id−R)

[

((v1)p2)
((v2)p1)

− (R[(v1)]p2)− (R[(v2)]p1)

]

. (8f)
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Let us do the same steps for example (10):

X =
(((v3) v13)p2)
(((v3) v23)p1)

,

�

1 2

3

(10)

Y1 =
(v3)
(v3)

, Y2 = ((v3)v13) , Y3 = ((v3)v23) , (10s)

X/Y1 =
((v13)p2)
((v23)p1)

, X/Y2 = (p2) , X/Y3 = (p1) , (10r)

X/(Y1Y2) = X/(Y1Y3) = X/(Y2Y3) = X/(Y1Y2Y3) = 0 ,

∆[X ] = e⊗
(((v3) v13)p2)
(((v3) v23)p1)

+R

[

(((v3) v13)p2)
(((v3) v23)p1)

]

⊗ e+R

[

(v3)
(v3)

]

⊗
((v13)p2)
((v23)p1)

+R[((v3)v13)]⊗ (p2) +R[((v3)v23)]⊗ (p1) , (10∆)

m ◦ (S ⊗ id)⊗∆[X ]

= (id− R)

[

(((v3) v13)p2)
(((v3) v23)p1)

+m
[

S

[

R

[

(v3)
(v3)

]]

⊗
((v13)p2)
((v23)p1)

]

+m
[

S[R[((v3)v13)]]⊗ (p2)
]

+m
[

S[R[((v3)v23)]]⊗ (p1)
]

]

= (id− R)

[

(((v3) v13)p2)
(((v3) v23)p1)

−m
[

R

[

(v3)
(v3)

]

⊗
((v13)p2)
((v23)p1)

]

−m
[

{

R[((v3)v13)] +R[m ◦ (S ⊗ id) ◦ P2∆[((v3)v13)]
}

⊗ (p2)]
]

−m
[

{

R[((v3)v23)] +R[m ◦ (S ⊗ id) ◦ P2∆[((v3)v23)]
}

⊗ (p1)]
]

]

= (id− R)

[

(((v3) v13)p2)
(((v3) v23)p1)

−
((R[(v3)] v13)p2)
((R[(v3)] v23)p1)

− (R[((v3)v13)]p2)−m
[

R
[

m
[

S[R[(v3)]]⊗ (v13)
]]

⊗ (p2)
]

− (R[((v3)v23)]p1)−m
[

R
[

m
[

S[R[(v3)]]⊗ (v23)
]]

⊗ (p1)
]

]

= (id− R)

[

(((v3) v13)p2)
(((v3) v23)p1)

−
((R[(v3)] v13)p2)
((R[(v3)] v23)p1)

− (R[((v3)v13)]p2)

+ (R[(R[(v3)]v13)]p2)− (R[((v3)v23)]p1) + (R[(R[(v3)]v23)]p1)

]

.

(10f)

Example (11) is similar to (10) and left as an exercise to the reader. Example
(12) is the obvious generalization of (8) to three maximal forests.
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Appendix: Verification of the Hopf algebra properties

Proposition 1 The coproduct ∆ is coassociative, (∆⊗ id) ◦∆ = (id⊗∆) ◦∆.

Proof. Let X be an iPW which is not R[X ′]. Let Xi 6= X , i = 1, . . . , n, be the
proper PSW of X . Let T be the set of all ordered subsets of {1, 2, . . . , n}. We
write the contribution of the trivial PSW X of X explicitly:

∆[X ] = e⊗X +R[X ]⊗ e+
∑

T

{

∏

i∈T

R[Xi]⊗X/(
∏

i∈T

Xi)
}

.

This gives

(id⊗∆) ◦∆[X ] (A.1)

= e⊗
{

e⊗X +R[X ]⊗ e+
∑

T

{

∏

i∈T

R[Xi]⊗X/(
∏

i∈T

Xi)
}}

+R[X ]⊗ e⊗ e

+
∑

T

{

∏

i∈T

R[Xi]⊗ e⊗X/(
∏

i∈T

Xi)
}

+
∑

T

{

∏

i∈T

R[Xi]⊗R[X/(
∏

i∈T

Xi)]⊗ e
}

+
∑

T

{

∏

i∈T

R[Xi]⊗
∑

T ′

{

∏

j∈T ′

R
[{

X/(
∏

i∈T

Xi)
}

j

]

⊗
{

X/(
∏

i∈T

Xi)
}

/
(
∏

j∈T ′

{

X/(
∏

i∈T

Xi)
}

j

)

}}

,

where
{

X/(
∏

i∈T Xi)
}

j
are the proper PSW of X/(

∏

i∈T Xi), j = 1, . . . , n′ < n,

and T ′ is the set of all ordered subsets of {1, . . . , n′}. The following terms can be
rearranged:

e⊗ e⊗X

+
{

e⊗R[X ]⊗ e+R[X ]⊗ e⊗ e +
∑

T

{

∏

i∈T

R[Xi]⊗ R[X/(
∏

i∈T

Xi)]
}

⊗ e
}

= (∆⊗ id)(e⊗X +R[X ]⊗ e) (A.2)

so that there remain
∑

T

{

∏

i∈T

R[Xi]⊗ e⊗X/(
∏

i∈T

Xi)
}

+ e⊗
∑

T

{

∏

i∈T

R[Xi]⊗X/(
∏

i∈T

Xi)
}

and (A.3)

∑

T,T ′

{

∏

i∈T

R[Xi]⊗
{

∏

j∈T ′

R
[{

X/(
∏

i∈T

Xi)
}

j

]

⊗
{

X/(
∏

i∈T

Xi)
}

/
(
∏

j∈T ′

{

X/(
∏

i∈T

Xi)
}

j

)

}}

.

(A.4)

We investigate
{

X/(
∏

i∈T Xi)
}

j
. Either this is a PSW of X or not. If not there

must exist a PSW Xm of X and some PSWs Xk with k ∈ Tm ⊂ T such that
{

X/(
∏

i∈T Xi)
}

j
= Xm/(

∏

k∈Tm Xk). This means that T ′ = T1 ⊕ T2 (both T1, T2

can be empty but not the sum) and
∏

j∈T ′

R
[{

X/(
∏

i∈T

Xi)
}

j

]

=
∏

l∈T1

R[Xl]
∏

m∈T2

R[Xm/(
∏

km∈Tm

Xkm)] .

Let us assume that T2 contains at least two elements m1, m2 and perform the
factorization

{

X/(
∏

i∈T

Xi)
}

/
({

Xm1
/(

∏

k1∈Tm1

Xk1)
}{

Xm2
/(

∏

k2∈Tm2

Xk2)
})

. (A.5)
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Recall that Tm1⊂T and Tm2⊂T and assume that Xn ∈ Tm1 ∩ Tm2 . The fraction
(A.5) will only be non-zero if Xm1

/(
∏

k1∈Tm1
Xk1) and Xm2

/(
∏

k2∈Tm2
Xk2) occur

together and disjoint in at least one row of X/(
∏

i∈T Xi). These rows correspond
to those rows of X each of which contain all Xi, i∈T , too. But each Xi occurs
precisely once in any row, so does the Xn in question, hence it will either occur in
Tm1 or in Tm2 , but never in both. Therefore, we have a direct sum decomposition
T = T3 ⊕

⊕

m∈T2
Tm and (A.4) takes the form

(A.4) =
∑

{T1,T2,T3,
⋃

m∈T2
Tm}

{

∏

i∈T3

R[Xi]
∏

m∈T2

{
∏

km∈Tm

R[Xkm ] }⊗

⊗
∏

l∈T1

R[Xl]
∏

m∈T2

R
[

Xm/(
∏

km∈Tm

Xkm)
]

⊗X/(
∏

m∈T2

Xm

∏

l∈T1

Xl

∏

i∈T3

Xi)
}

=
∑

T

{

{
∑

T3⊂T

∏

i∈T3

R[Xi]⊗
∑

T1⊂T/T3

∏

l∈T1

R[Xl]
}

×

×
{

∏

m∈T2=T/(T1⊕T3)

∑

Tm

{

∏

km∈Tm

R[Xkm]⊗ R[Xm/(
∏

km∈Tm

Xkm)]
}

}

⊗X/(
∏

j∈T

Xj)
}

.

Note that T1, T2, T3 can be empty, in that case the missing product over R[Xj ]
has to be replaced by e. If T2 is empty then the sum over T1 = T/T3 has to
be omitted. Observe that neither T1 ⊕ T2 nor T3 ⊕ T2 can be empty, but these
two terms T2 = ∅ and either T1 = ∅ or T3 = ∅ are precisely those of (A.3). All
together can be rewritten as

(A.3) + (A.4) =
∑

T

{

∏

j∈T

{

e⊗ R[Xj] +R[Xj]⊗ e +

+
∑

T j

{

∏

kj∈T j

R[Xkj ]⊗R[Xj/(
∏

kj∈T j

Xkj)]
}

}

⊗X/(
∏

j∈T

Xj)
}

=(∆⊗ id)
{
∑

T

∏

j∈T

R[Xj]⊗X/(
∏

j∈T

Xj)
}

, (A.6)

and we conclude

(A.2) + (A.3) + (A.4) = (∆⊗ id) ◦∆[X ] = (id⊗∆) ◦∆[X ] . (A.7)

To finish the proof of coassociativity of ∆ we must write down

(id⊗∆) ◦∆[R[X ]] = (id⊗∆) ◦ (id⊗ R) ◦∆[X ]

= (id⊗ id⊗ R) ◦ (id⊗∆) ◦∆[X ]

= (id⊗ id⊗ R) ◦ (∆⊗ id) ◦∆[X ]

= (∆⊗ id) ◦∆[R[X ]] ,

(id⊗∆) ◦∆[XY ] = m̂
[

{(id⊗∆) ◦∆[X ]} ⊗ {(id⊗∆) ◦∆[Y ]}
]

= m̂
[

{(∆⊗ id) ◦∆[X ]} ⊗ {(∆⊗ id) ◦∆[Y ]}
]

= (∆⊗ id) ◦∆[XY ] .

We have defined m̂[{X ′⊗X ′′⊗X ′′′} ⊗ {Y ′⊗Y ′′⊗Y ′′′}] := X ′Y ′ ⊗X ′′Y ′′ ⊗X ′′′Y ′′′,
if a set of brackets connects {X ′, X ′′, X ′′′} and a disjoint set of brackets connects
{Y ′, Y ′′, Y ′′′}.
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Proposition 2 The ‘counit’ ē is only a left counit, it fulfills (ē ⊗ id) ◦∆ = id,
but in general only the weak relation (id⊗ ē) ◦∆ ≈ id.

Proof. An element of A is a formal linear combinations of disjoint products
X =

∏

i Xi

∏

j R[Yj], where Xi, Yi are iPWs. The case X = e is trivial. We have

∆[X ] =
∏

i

R[Xi]
∏

j

R[Yj ]⊗ e+ e⊗
∏

i

Xi

∏

j

R[Yj] +
∑

Z ⊗ Z ′ , X 6= e ,

where Z,Z ′ stand for terms which do not contain the unit e and which are
annihilated by ē. Hence,

(ē⊗ id) ◦∆[X ] =
∏

i

Xi

∏

j

R[Yj ] = X ,

(id⊗ ē) ◦∆[X ] =
∏

i

R[Xi]
∏

j

R[Yj] ≈ R[X ] ∼ X .

In the last line we need (17) to obtain equivalence with X .

Proposition 3 The ‘antipode’ S is only a left antipode, it fulfills m◦(S⊗id)◦∆ ∼
E ◦ ē but in general only the weak property m ◦ (id⊗ S) ◦∆ ≈ E ◦ ē.

Proof. We first apply both operators to X and R[X ], where X 6= e is a iPW:

m ◦ (S ⊗ id) ◦∆[X ] = m ◦ (S ⊗ id)[e⊗X +R[X ]⊗ e + P2∆[X ]]

= X + S[R[X ]] +m ◦ (S ⊗ id) ◦ P2∆[X ]

= X − R
[

X +m ◦ (S ⊗ id) ◦ P2∆[X ]
]

+m ◦ (S ⊗ id) ◦ P2∆[X ]

= (id−R)
[

X +m ◦ (S ⊗ id) ◦ P2∆[X ]
]

∼ 0 = E ◦ ē[X ] ,

m ◦ (S ⊗ id) ◦∆[R[X ]] = m ◦ (S ⊗ id)[e⊗ R[X ] +R[X ]⊗ e+ P2∆[R[X ]]]

= R[X ] + S[R[X ]] +m ◦ (S ⊗ id) ◦ P2∆[R[X ]]

= R[X ]−R
[

X +m ◦ (S ⊗ id) ◦ P2∆[X ]
]

+m ◦ (S ⊗ id) ◦ P2∆[R[X ]]

= 0 = E ◦ ē[R[X ]] ,

m ◦ (id⊗ S) ◦∆[X ] = m ◦ (id⊗ S)[e⊗X +R[X ]⊗ e + P2∆[X ]]

= S[X ] +R[X ] +m ◦ (id⊗ S) ◦ P2∆[X ]

= −(X +m ◦ (id⊗ S) ◦ P2∆[X ]) +R[X ] +m ◦ (id⊗ S) ◦ P2∆[X ]

= −(id− R)[X ] ∼ 0 = E ◦ ē[X ] ,

where we have used
∑

T

m
[
∏

i∈T

R[Xi]⊗ R[X/(
∏

i∈T

Xi)]
]

= R
[
∑

T

m
[
∏

i∈T

R[Xi]⊗X/(
∏

i∈T

Xi)
]]

, (A.8)

forXi 6= X being the proper PSW ofX . The remaining case is more complicated:

m ◦ (id⊗ S) ◦∆[R[X ]] = S[R[X ]] +R[X ] +m ◦ (id⊗ S) ◦ P2∆[R[X ]]

= −R
[

X +m ◦ (S ⊗ id) ◦ P2∆[X ]
]

+R[X ] +m ◦ (id⊗ S) ◦ P2∆[R[X ]]

= m ◦ (id⊗ S) ◦ P2∆[R[X ]]−R
[

m ◦ (S ⊗ id) ◦ P2∆[X ]
]

. (A.9)
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We transform the first term, using (A.8) and the definition of S acting on R[ . ]:

m ◦ (id⊗ S) ◦ P2∆[R[X ]] (A.10)

= −m[P2∆[R[X ]]]−m ◦ (id⊗ {R ◦m ◦ (S ⊗ id) ◦ P2∆}) ◦ P2∆[X ]

= −R
[

m[P2∆[X ]] +m ◦ (id⊗m) ◦ (id⊗ S ⊗ id) ◦ (id⊗ P2∆) ◦ P2∆[X ]
]

.

Now observe that due to coassociativity of ∆ we have

(id⊗ P2∆) ◦ P2∆[X ] = P3 ◦ (id⊗∆) ◦∆[X ] = P3 ◦ (∆⊗ id) ◦∆[X ]

= (P2 ⊗ id) ◦ (∆⊗ id) ◦ P2∆[X ] ,

with P3 = (id−E ◦ ē)⊗ (id−E ◦ ē)⊗ (id−E ◦ ē). Note that ∆ is multiplicative,
not (P2∆). Using also associativity of m we can write

−R
[

m ◦ (id⊗m) ◦ (id⊗ S ⊗ id) ◦ (id⊗ P2∆) ◦ P2∆[X ]
]

= −R
[

m ◦ (m⊗ id) ◦ (id⊗ S ⊗ id) ◦ (P2 ⊗ id) ◦ (∆⊗ id) ◦ P2∆[X ]
]

.

We have computed (∆ ⊗ id) ◦ P2∆[X ] in (A.6). By inspection of that formula
we find that (P2 ⊗ id)(∆⊗ id) ◦P2∆[X ] equals (∆⊗ id) ◦P2∆[X ]− (A.3), which
gives

−R
[

m ◦ (id⊗m) ◦ (id⊗ S ⊗ id) ◦ (id⊗ P2∆) ◦ P2∆[X ]
]

= −R
[

∑

T

m
[

∏

j∈T

{

m ◦ (id⊗ S) ◦∆[R[Xj ]]
}

⊗X/
∏

j∈T

Xj

]]

+R
[

∑

T

m
[

∏

j∈T

S[[R[Xj ]]]⊗X/
∏

j∈T

Xj

]]

+R
[

∑

T

m
[

∏

j∈T

[R[Xj ]]⊗X/
∏

j∈T

Xj

]]

.

The last term cancels −R[m[P2∆[X ]]] in (A.10) and the middle term cancels
−R[m◦ (S⊗ id)◦P2∆[X ]] in (A.9). We end up with the same problem as before,
to calculatem◦(id⊗S)◦∆[R[Xi]], however, these Xi are smaller than the original
X . This leads to an iteration which stops if Xi is primitive, and for primitive Xi

we have

m ◦ (id⊗ S) ◦∆[R[Xi]] = m ◦ (id⊗ S) ◦ (e⊗R[Xi] +R[Xi]⊗ e)

= S[R[Xi]] +R[Xi] = 0 .

The conclusion is m ◦ (id⊗ S) ◦∆[R[X ]] = 0 = E ◦ ē[R[X ]] for all iPW X .
It remains to apply m ◦ (id⊗S) ◦∆ and m ◦ (S⊗ id) ◦∆ to disjoint products

∏

i Xi

∏

j R[Yj]. Here we have the multiplicativity of ∆ (23) and S (25b) at
disposal. The result is zero if at least one R[Yj] is present. Otherwise we have

m ◦ (id⊗ S) ◦∆[
∏

i

Xi] =
∏

i

{R[Xi]−Xi}

∼ R
[
∏

i

{R[Xi]−Xi}
]

≈ 0 = E ◦ ē[
∏

i

Xi] , (A.11)

m ◦ (S ⊗ id) ◦∆[
∏

i

Xi] =
∏

i

{

(id− R)
[

Xi +m ◦ (S ⊗ id) ◦ P2∆[Xi]
]}

∼ 0 = E ◦ ē[
∏

i

Xi] . (A.12)
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In (A.11) note that R[Xi]−Xi is divergent in general and that the multiplication
of R[Xj]−Xj by a divergent term is not equivalent to zero. Equivalence follows
for renormalization schemes satisfying (17). In (A.12) however, (id − R)

[

Xi +
m ◦ (S⊗ id) ◦P2∆[Xi]

]

is convergent as it reproduces the forest formula, see (27).
Now, multiplication of (id−R)

[

Xi+m◦ (S⊗ id)◦P2∆[Xi]
]

by a convergent term
is equivalent to zero. It is even strongly equivalent (≃) to zero which means that
the integral is finite. The fact that m ◦ (S ⊗ id) ◦ ∆ gives the forest formula is
essential for S being a left antipode in any renormalization scheme.
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