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The effects due to electron scattering by rough boundaries on the electrical conductivity of quan-
tum wires are analysed theoretically in the diffusive regime. The boundary roughness is assumed
to be random self-affine fractal characterised by the roughness exponent H, roughness correlation
length x, and rms roughness amplitude D. In the limit of small correlation lengths and a single
occupied quasi-one-dimensional miniband, the conductivity s shows a power-law behaviour with
the wire width d; s / d9. For large N, on the other hand, the conductivity increases then as
s / dc �c � 2� with increasing d.

1. Introduction

Electron scattering by rough boundaries in confined electron systems is usually the
dominant source of electrical resistance, when the size of the system is comparable to
the Fermi wavelength. This takes place e.g. in ultra-thin films, where the electron gas is
confined along one direction, being generally free in two others.

In quantum-mechanical calculations [1 to 3] of the electrical conductivity of thin films
the boundary roughness was described by the rms roughness amplitude D and the cor-
relation length x, usually in terms of Gaussian or simple exponential correlation func-
tions. It was shown that the conductivity s of ultra-thin metallic films (e.g. in CoSi2) [4]
follows a universal power law with the film thickness d; s / dc �c � 2:3� [2], while for
semiconducting films a similar law with c � 6 was found [2, 5]. Both results hold in the
limit kFx� 1, where kF is the Fermi wavevector. In the opposite limit, kFx� 1, the
roughness correlation form was found to play a significant role, and the mean variation
of s with film thickness could no longer be approximated by a power law [3]. However,
one should note that the limit kFx� 1 is not properly described by the Born approx-
imation. Recently, some additional features of the roughness, that arise from possible
surface/interface fractality (described by the roughness exponent H), were shown to
have a significant influence on the film conductivity [6] and spin-valve magnetoresis-
tance in magnetic multilayers [7].

Recent advances in nanotechnology allow to fabricate quantum wires, e.g., by impos-
ing a lateral confining potential on two-dimensional electron gas. Such quantum struc-
tures were fabricated e.g. from GaAs/AlGaAs heterostructures. A long electron mean-
free-path in comparison with the wire width leads to a wide variety of new transport
phenomena in such systems, as for example bend resistance [8, 9], transfer resistance
[10], or anomalies in the low-field Hall effect [11].
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It has been shown experimentally that the boundary roughness scattering has a strong
influence on the magnetoresistance of long wires and, in general, on their transport prop-
erties [12]. When the wire width is comparable to the Fermi wavelength, remarkable
quantum size effects are also expected. Quantum-mechanical calculations of electronic
transport in quantum wires with an externally applied magnetic field were performed by
Akera and Ando [13] in the presence of boundary roughness scattering. The roughness
was described by the rms roughness amplitude and the correlation length in terms of the
Gaussian correlation function. It was shown that the roughness scattering gives rise to a
large positive magnetoresistance for wire widths larger than and correlation lengths smal-
ler than the Fermi wavelength. The boundary roughness in quantum wires was also shown
to have a pronounced influence on the current distribution and Hall effect [14].

The main objective of the present paper is the analysis of fractality boundary effects
in quantum wires within the formalism similar to that of Fishman and Calecki [2, 3],
but reduced to one-dimensional structures. Analytical results of the wire conductivity
are derived in terms of phenomenological boundary height±height correlation models
for any roughness exponent H in the range 0 � H � 1. The results are compared with
those obtained for two-dimensional thin films.

In Section 2 we describe briefly the theoretical formalism. The model of a rough
boundary is described in Section 3. The limits of small and large numbers of occupied
one-dimensional minibands are considered in Sections 4 and 5, respectively. Finally, the
concluding remarks are gathered in Section 6.

2. Conductivity of Quantum Wires

Consider a two-dimensional electron gas in the plane z � 0, which is laterally con-
fined to form a narrow quasi-one-dimensional wire along the axis x. The boundaries
of the wire are determined by y � ÿd=2� hÿ�x� and y � d=2� h��x�, where the
roughness is described by single-valued random functions h��x�. Apart from this, the
roughness is assumed isotropic, so that the height±height correlation function
Cb�x0 ÿ x00� � hhb�x0� hb�x00�i �b � �;ÿ� depends only on the relative distance jx0 ÿ x00j.
Denoting the potential heights outside the wire as Vÿ for y < ÿd=2� hÿ�x� and as
V� for y > d=2� h��x�, the system can be described by the Hamiltonian

H � ÿ �h2

2m

@2

@x2
� @2

@y2

� �
� VÿQ�y� d=2� � V�Q�yÿ d=2�

( )
� fVÿhÿ�x�Q�y� d=2� ÿ V�h��x�Q�yÿ d=2�g � H0 �U ; �1�

where Q�x� � 1 for x � 0 and Q�x� � 0 for x < 0. The first term, H0, describes electron
motion in a quantum wire with ideal boundaries. The corresponding eigenfunctions
Fnk�x; y� and eigenenergies Enk are then given by Fnk�x; y� � Lÿ1=2 eikx jn�y� and
Enk � en � �h2k2=2m, respectively, where L is the wire length, jn�y� and en are the wave-
function and energy, respectively, of the n-th discrete state due to quantization of the
electron motion along the y direction. The second term in Eq. (1) is the scattering
potential of the rough boundaries. We assumed in Eq. (1) that only the boundary mor-
phology of the lateral confining potential contributes substantially to the electron scat-
tering, while scattering due to nonuniformity of the potential confining electron gas to
the plane z � 0 is neglected.
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Under the assumptions described above the wire conductivity in the Born approxima-
tion is given by the formula [2, 3, 15]

s � e2�h3

4pm2d

PN
n�1

PN
n0�1

k2
nk2

n0 �Dÿ1�nn0 ; �2�

where N is the number of occupied one-dimensional minibands, whereas kn is defined
as kn � ��2m=�h2� �EF ÿ en��1=2, with EF the Fermi energy. The matrix elements Dnn0 are
determined by the scattering potential U, and are given by

Dnn0 �
P

b��;ÿ
dnn0

PN
m�1

AnbAmb
kn

km
�Fb�jkn ÿ kmj� � Fb�jkn � kmj��

(

ÿAnbAn0b�Fb�jkn ÿ kn0 j� ÿ Fb�jkn � kn0 j��
)
; �3�

where An� � V�j2
n�y � �d=2�, and Fb�k� is defined as Fb�k� � hjhb�k�j2i. Here,

hjhb�k�j2i is the Fourier transform of the height±height correlation function Cb�x�,
Cb�x� � �1=L� � hhb�x0� hb�x0 � x�i dx0. Since the boundary roughness is isotropic, one
finds hjhb�k�j2i � hjhb�ÿk�j2i:

The Fermi energy EF and the number N of occupied one-dimensional minibands for
a given wire width d and a given electron density n per unit area can be determined
from the condition

nd � 2
p

2m

�h

� �1=2 PN
n�1
�EF ÿ en�1=2 : �4�

When the electrons are laterally confined by an infinite potential �V� ! 1�, then
An � �h2p2n2=md3 and en � ��h2=2m� �np=d�2.

3. Model of a Rough Boundary

For clarity of notation the boundary index b will be suppressed in this section. For
a self-affine fractal boundary the height±height correlation function C�x� has the
scaling behaviour C�x� � D2 ÿ B jxj2H if jxj � x, and C�x� � 0 if jxj � x [16], with B
being a constant �B � D2=x2H�. Here, x is the in-plane roughness correlation length,
D is the saturated rms surface roughness, D � hh�x�2i1=2, and H�0 � H � 1� is the
roughness exponent which characterises the degree of boundary irregularity at small
length scales �x� x� [17 to 19]. For self-affine fractals the roughness spectrum
hjh�k�j2i / � C�x� eÿikx dx [16] obeys the following scaling limits:

hjh�k�j2i / jkjÿ1ÿ2H if jkj x� 1 ;
const if jkj x� 1 :

�
�5�

The scaling behaviour given by Eq. (5) can be described by the simple Lorentzian ana-
lytic model [20]

hjh�k�j2i � 2pD2x

�1� ajkj x�1�2H
�6�

with a � �1=H� �1ÿ �1� akcx�ÿ2H � if 0 < H � 1, and a � 2 ln �1� akcx� if H � 0 (logar-
ithmic roughness) [20]. Here kc is the cut-off vector, kc � p=a0, where a0 is of the order
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of the atomic spacing. Indeed, in the limit jkj x� 1, we have hjh�k�j2i � 2pD2x, while
in the limit jkj x� 1 we obtain hjh�k�j2i / jkjÿ1ÿ2H . Models similar to that described by
Eq. (6) were also discussed in the past in the context of optical scattering from rough
surfaces [21]. More complicated correlation models which are based on predictions
from linear Langevin growth equations can be found for example in [22].

4. Limit of N = 1

If the wire width d is sufficiently small, only a few one-dimensional minibands are occu-
pied. When only one miniband is occupied �N � 1�, then the conductivity reads

s � e2�h3

8pm2d

k4
1

hjhÿ�2k1�j2iA2
1ÿ � hjh��2k1�j2iA2

1�
: �7�

Assuming an infinite confining potential for both boundaries as well as the same ampli-
tude D, correlation length x and roughness exponent H one finds, on taking into ac-
count Eq. (6), the following expression for the wire conductivity:

s � e2n4

29p2�h

�1� 2ak1x�1�2H

D2x

" #
d9 ; �8�

where we also took into account that k1 � npd=2 and An� � �h2p2n2=md3 for an infinite
confining potential. In the limit of small correlation lengths, k1x� 1, we obtain the
power law dependence of the conductivity on the wire width d; s / d9, which is inde-
pendent of the roughness exponent H. In contrast, for a two-dimensional film the con-
ductivity follows in this limit the power law s / d6 [2].

The wire conductivity as a function of the correlation length x has a minimum at a
certain value of x, which can be determined from the condition 4aHk1x � 1. Note that
the parameter a in this condition depends generally on H and x, as described in Sec-
tion 3. The minimum is clearly visible in Fig. 1, where the conductivity is shown as a
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Fig. 1. Wire conductivity vs. roughness
correlation length x for the indicated
roughness exponents H. The other
parameters are:
d � 5 nm (d < dc � 9:3 nm),
n � 0:4 nmÿ2, a0 � 0:3 nm,
and D � 0:3 nm



function of the correlation length x for indicated roughness exponents H. The assumed
electron density is n � 0:4 nmÿ2, for which the critical wire width above which the Fer-
mi level crosses the second one-dimensional miniband is dc � 9:3 nm. For correlation
lengths larger than lF=2 (lF � 8 nm in the case shown in Fig. 1) the conductivity in-
creases with increasing correlation length x and increasing roughness exponent H. For
x smaller than lF=2 the conductivity variation with x and H is more complex and the
minimum becomes weaker as the roughness exponent H decreases. Similar behaviour
of the electrical conductivity was also found in the case of two-dimensional ultrathin
films [5, 6], where the minimum, however, was more pronounced. Variation of the
electrical conductivity with increasing H is shown explicitly in Fig. 2. For small corre-
lation lengths �x < lF=4� the conductivity decreases monotonously with increasing H,
while for larger correlation lengths �x > lF=2� it monotonously increases with increas-
ing H.

5. General Case, N > 1

Assume as before symmetrical wire boundaries, that is the same confining potential on
both sides �An� � Anÿ � An� and the same roughness parameters D; x and H. For arbi-
trary number N of occupied one-dimensional minibands the conductivity is then given
by Eq. (2), with the matrix elements Dnn0 of the form

Dnn0 � 4pD2x dnn0
PN
m�1

AnAm
kn

km

1

�1� a jkn ÿ kmj x�1�2H
� 1

�1� a jkn � kmj x�1�2H

" #(

ÿAnAn0
1

�1� a jkn ÿ kn0 �1�2H
ÿ 1

�1� a jkn � kn0 j x�1�2H

" #)
: �9�

In the limit of small correlation lengths the matrix Dnn0 is approximately diagonal,

Dnn0 � 8pD2x
PN
m�1

AnAm�kn=km� dnn0 . Thus, in that limit the conductivity is given by the
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Fig. 2. Wire conductivity vs. rough-
ness exponent H for the indicated
roughness correlation lengths x. The
other parameters are as in Fig. 1



simplified formula

s � e2�h3

32p2m2d

PN
n�1

k3
n

AnD2x
PN
m�1
�Am=km�

: �10�

In the case of two-dimensional quantum wells, an important quantity that charac-
terises scattering processes and electronic structure is the so-called conductivity (or mob-
ility) ratio, i.e., the ratio of conductivities (or mobilities) for the Fermi levels slightly
below and above the second miniband edge [3]. A similar ratio can also be introduced
in the case of quantum wires. In principle such a ratio can be measured by varying the
wire width. In Fig. 3 we show the conductivity ratio as a function of the correlation
length x, calculated for an infinite confining potential and for the indicated roughness
exponents H. The ratio increases monotonously with increasing correlation length and
roughness exponent H, contrary to the case of two-dimensional films, where the ratio
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Fig. 3. Mobility ratio, s�dcÿe�=s�dc�e�,
vs. x for the roughness exponents as indi-
cated. The other parameters are:
dc � 9:3 nm, a0 � 0:3 nm, D � 0:3 nm,
and e � 0:1 nm

Fig. 4. Conductivity vs. wire width d for
x and H as indicated. The other param-
eters are: n � 4 nmÿ2, a0 � 0:3 nm, and
D � 0:3 nm



has an extremum at a certain x. It is also worth noting that the mobility ratio in quan-
tum wires is significantly larger than the corresponding ratio in ultrathin films.

For on infinite confining potential one finds An / dÿ3, and the conductivity on aver-
age increases with the wire width as s / d5f �d�, where f �d� is determined by the depend-
ence of the wave vectors kn on the wire width d. Numerical fits in the regime of the wire
width d 2 �1; 10� nm, small correlation length (x � 0:5 nm) and relatively high electron
density n (in order to have large N) showed that f �d� / dÿc, or alternatively s / d5ÿc,
with c � 3. Thus, for large N the conductivity shows a similar mean variation with the
wire width d as in two-dimensional films in the same large N limit.

The conductivity as a function of the wire width d shows oscillations due to the quan-
tum size effects. The corresponding oscillation period is equal to half the Fermi wave-
length. Fig. 4 shows this behaviour for two different values of the roughness exponent
H and for a fixed correlation length x. The relative amplitude of the oscillations in-
creases with decreasing H.

The roughness amplitude D has a rather trivial influence on the conductivity; namely
s / Dÿ2 (since hjh�k�j2i / D2). A significantly more complex behaviour appears when
considering the dependence on the roughness exponent H and correlation length x.
The conductivity increases rather fast with increasing roughness exponent H in the
regime or large H�� 1� and long correlation lengths, as shown in Fig. 5. It is also worth
noting that for large correlation length �kFx > 1�, the conductivity can change by an
order of magnitude when the roughness exponent H varies from H � 0 to H � 1.

6. Summary

In this paper we investigated the boundary roughness scattering effects on the electrical
conductivity of quantum wires formed from a laterally confined two-dimensional elec-
tron gas. The boundary roughness was assumed to be random self-affine fractal (power-
law roughness) with analytic roughness spectrum characterised by the roughness expo-
nent H, roughness correlation length x, and roughness amplitude D. For the sake of
simplicity and to single out the effects due to fractality, we assumed a rectangular lat-
eral confining potential.
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Fig. 5. Conductivity vs. H for indi-
cated roughness correlation lengths x.
The other parameters are: d � 2 nm,
n � 4 nmÿ2, a0 � 0:3 nm, and
D � 0:3 nm



For quantum wires with only a single one-dimensional miniband occupied, we
found a complex dependence of the conductivity on the roughness exponent H and
correlation length x, especially in the regime of correlation lengths comparable to
half the Fermi wavelength. However, in the limit kFx� 1 the conductivity follows
the power law s / d9 with increasing d, which is independent of the roughness ex-
ponent.

For quantum wires with a large number N of occupied minibands the conductivity
increases as H increases and/or the ratio D=x decreases (boundary smoothing). In the
limit kFx� 1 we found the s / d2 power law. For large correlation lengths �kFx > 1�,
the conductivity is very sensitive to H and can change by an order of magnitude when
H varies from H � 0 to H � 1.

We also showed that the conductivity ratio (or mobility ratio) for the Fermi level just
above and below the second lateral miniband is significantly larger in the case of quan-
tum wires than in the case of thin films. Moreover, the quantum size effects appear
more pronounced in quantum wires, than in two-dimensional metallic films.
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